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Cpo-models for second order lambda calculus 
with recursive types and sub typing 

Erik Poll • 

Abstract 

In this paper we present constructions of cpo models for second order lambda calculi 
with recursive types and/or subtyping. The model constructions are based on a model 
construction by ten Eikelder and Hemerik for second order lambda calculus with recur
sive types ([tEH89a]). The models will be compatible with conventional denotational 
semantics. 

For each of the systems we consider, the general structure of an environment model 
for that system is described first. For the systems with subtyping we prove coherence, 
i.e. that the meaning of a term is independent of which particular type derivation we 
consider. The actual model constructions are then based on a standard fixed-point result 
for w-categories. The combination and interaction of recursive types and sUbtyping does 
not pose any problems. 

·supported by the Dutch organization for scientific research (NWO). 
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1 Introduction 

The second order lambda calculus (or polymorphic lambda calculus) was discovered independently 

by Girard [Gir72) and Reynolds [Rey74). It is an extension of the simple typed lambda calculus: 

not only terms but also types can be passed as parameters. This means that besides abstraction 

over term variables and application of terms to terms we also have abstraction over type variable~ 

and application of terms to types. 

In this paper we consider two extensions of the second order lambda calculus: subtyping and 

recursive types. We first construct a model for the second order lambda calculus, and then show 

how this construction can be adapted to include suhtyping and recursive types. 

Both subtyping and recursive types are interesting from the point of view of programming lan

guages. Recursive types can be used to make types such as list and trees. Also fixed point 

operators, which cannot be typed in second order lambda calculus, can be typed using recursive 

types. 

Subtyping can also be found in progamming languages: in combination with labelled records it 

corresponds with inheritance in object-oriented languages. This form of subtyping can be found 

in Cardelli and Wegner's language Fun [CW85), and more recently also in Quest [CL90). 

We only consider a very simple form of subtyping. We do not have labelled records or bounded 

quantification, as for instance in Fun, but instead all sub typing will be based on a subtype relation 

on a set of base types. For example, if we have base types int and real we could have int :::; real, 

i.e. int is a subtype of real. In the final section we will show that the incorporation of bounded 

quantification and record types in the models is straightforward. 

Several models for second order lambda calculus are known, for example models based on partial 

equivalence relations [Gir72J, the closure model [Mac79), the finitary projection model [ABL86) 

and models based on qualitative domains [Gir86). 

The model constructions in this paper are based on a model construction by ten Eikelder and 

Hemerik for second order lambda calculus with recursive types [tEH89a). The models are more 

oriented towards programming language semantics, and are compatible with conventional deno

tational semantics. Types will be interpreted as cpos, which are commonly used as semant.ic 

domains in denotational semantics. Directed cpos or complete lattices could also be used. Recur

sion at term level can then be handled by the usual fixed point theory for cpos. Because types are 

interpreted as cpos we do not have empty types. 

A pleasing aspect of the model constructions is that other type constructors, such as L (existential 

types), x (Cartesian product) , + (seperated sum), 0 (smashed product) , III (coalesced sum) or 

(-h (lifting) can easily be added. 

Coercion functions are used to give the semantics of subtyping : if a type" is a subtype of a type 

T, we have a coercion function from the cpo for a to the cpo for T. 

The main problem in giving a model for systems with subtyping is that meanings are defined 

by induction on type derivations, and because of the sUbtyping many type derivations will be 

possible. We must prove that all derivations for a term give the same meaning, which is called 

coherence. Examples of coherence proofs can be found in [BTCGS89) and [CG90). In both papers 

coercions are used to interpret a second order A-calculus with subtyping, and coherence is proved 

for this interpretation. 
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Providing a semantics for systems which have both sub typing and recursive types has long been 

regarded as problematic. Models that incorporate subtyping based on partial equivalence relat.ions, 

such as Bruce and Longo's model for Fun [BL88] and Cardelli and Longo's model for (a part of) 

Quest [CL90], cannot easily be extended to model recursive types. Using the method described 

in [BTCGS89] however, a semantics for subtyping and recursive types (but not for subtyping on 

recursive types) can be constructed using a semantics that models recursive types but. does not 

model subtyping. For the models we construct the combination and interaction of recursive types 

and subtyping does not pose any problems. There will be no need to restrict the recursive types 

to those without negative occurences of the type variables. 

Before we combine sub typing and recursive types, we first consider them separately. ,\Ve will 

consider several ways to define equality for recursive types, each resulting in slightly different. 

systems. 

For all resulting systems we give general model definitions similar to t.he definit.ion of a Brucc

Meyer-Mitchell environment model [BMM90], and we construct cpo models baBed on those general 

model definitions. An advantage of the general model definitions is that we can pl'Ove propert.ies 

not just for one particular model but for all models that fit the general model definit.ion. For 

example, for the systems with subtyping we can prove that a model is coherent, if the coerciolls 

satisfy certain conditions. 

Once we have the general model definition, the construction of a model is relatively simple. 

For the systems without subtyping, the model constructions are slight. modifications of t.he one 

given in [tEHS9al. Constructing a model is a question of solving the set of recursive dornalll 

equations given by the general model definition. Because types are interpreted as cpos, the problem 

of the contravariance of (J' ---;. T in (J' can be overcome in the standard way, by working in a category 

of embedding-projection pairs, a technique described in [SP82] [BH88] . A solution for the rect'll'sive 
domain equation is then found using a standard fixed point construction for w-continuous functors 

on a suitable product category of CPOPR (an inverse-limit construction). 

For the systems with subtyping, we not only have to solve the recursive domain equat.ions, but we 

also have to find coercion functions bet.ween the domains of types that are in the Stl btype I·elation. 

For the semantics to be coherent, the coercions have to satisfy certain conditions. Together, the 

domains and coercions form a functor from a category corresponding wit.h the subtype rclat.ion on 

types to CPO. Such a functor, satifying both the recursive domain equa.tions and the coherence 

conditions, is again found by an inverse limit construction, only this time in a functor cRt.egory. 

The problem of the contravariance of ---;. is overcome in the same way as for the systems without 

sub typing, viz. by using projection-embedding pairs. For the rather technical proofs of the 

categorical properties needed for this construction we refer to [Pol9I]. 

In the following section we give a short description of the second order lambda calculus. The 

version we describe is identical to the one described in [BMM90],[Mit84] and [ABL86]. We t.hen 

give the definition of a Bruce-Meyer-Mitchell environment model and construct a cpo model based 

on that definition. 

In section 3 we consider several ways to extend second order lambda calculus wit.h recursive types. 

For each possibility we give a general model definition and we construct a cpo model. 

In section 4 we then describe the second order lambda calculus extended wit.h sub typing, and 

again we give a general model definition and construct a cpo model, and in section .5 we consider 

the second order lambda calculus with both sub typing and recursive types. 
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Finally in the concluding section we indicate how bounded quantification, record types and other 

extensions can be included in the model, and we briefly discuss the model constructions. 
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2 Second order lambda calculus 

2.1 Syntax 

We will now give a short description of the second order lambda calculus (A for short). The 

system described here is the same as in [BMM90], [ABL86] and [Mit84]. 

We distinguish three sorts of expressions: kinds, constructors and terms. 

Every term has a type. Types are made using constructors. In fact, the types themselves are also 

constructors. The constructors also have" types", which we call kinds. 

kinds 

The set of kinds is given by 

Kinds are the "types" of construction expressions. 

constructors and their kinds 

Let Ceon " be a set of constructor constants and Veon" be a set of constructor variables. All 

constructors constants have a specified kind, which we will write as a superscript when necessary. 

First we define the set of pseudo-constructors over Ccon" and Veo"" ,of which the set of constructor 

expressions will be a subset. 

The set of pseudo-constructors over CeoM and Veon" is given by: 

U = C I u I U'U2 I (Au: ".u) 

where c E Ceon" , Q' E VconJ and K a kind. 

The system A we describe here is not quite the same as Girard's system F or ,\2 in Barendregt's 

cube [Bar9]' because we allow abstraction over all kinds here and not just over types. In the 

terms however, we shall only allow abstraction over types. 

Constructors are those pseudo-constructors for which a kind can be derived in a. context. A context 

here is a syntactic kind assignment) i.e. a partial function from VcQns to the set of kinds. So a 

context assigns kinds to constructor variables. We write r f- (J : n, if we can derive that in cont.ext. 

r the' constructor u has kind ", using the following rules: 

fl-C":K ( C' E C ) can" f,O':x:I-O':x: 

r I- u : "I => "2 r I- T : "I (=> E) 
r I- UT : "2 

Constructor expressions of kind * will be called type expressions. r I- (J' : * means that (j is a type 

in context r. 
We assume that Ccon6 contains the following constants: 

II 
*=>(*=>*) 
(*=>*)=>* 

(for function types) 
(for polymorphic types) 

We also have constructor constants of kind * , which we call the the base types. For example, 

these might include the types bool, int or real. 
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So, for example 

a: * r ---'I- aa : * 

---'I- will be written infix. 

<> I- (Aa: •. a~a):.=}. 

<> I- I1(A",: '.a ~ ",) : • 

The constructor expressions form a simple typed lambda calculus. Equality on constructor expre

sions is pry-equality. If in a context r constructors u and T are equal, we write r r u =c T. 

The following are well-known properties of simple typed A-calculus. 

1 property 

(i) the kind of a constructor in a given context is unique 

(ii) equal constructors have the same kind 

o 

terms and their types 

We will now define the set of term expressions, in the same way as we defined the set of constructor 

expressions. 

Let Cterm be a set of term constants and Vterm be a set of term variables. All term constants 

have a specified type, which we will write as a superscript when necessary. 

We first define the set of pseudo-terms over Cterm and Vterm ,of which the set of term expressions 

will be a subset. 

The set of pseudo-terms over Cterm and Vterm is given by: 

M = c I x I (.\x: <r.M) I M,M21 (Aa: •. M) I M<r 

where x E Vterm J c E Cterm , a E Vcon8 and u a pseudo-constructor. 

So we have abstraction over term variables, (AX: u.M) , and we have abstraction over type 

variables, (Aa: •. M) , and the corresponding forms of application: of a term to a term, M,M" 
and of a term to a type, M u. 

Terms are those pseudo-terms for which a type can be derived in a context. \Ve ext.end the notion 

of a context to a partial function on Vcon8 U Vterm , which assigns kinds to constructor variables 

and types to term variables. 

We write r r M : (J if we can derive that in context r the term M has type u, using the following 

rules: 

r,X:<rI-M:T (I) 
r I- (.\x : <r.M) : <r ~ T ~ 

f,x:urx:(J 

r I- M : <r ~ T r I- N : <r (~E) 
fl-MN:T 
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r, a '* I- M : T (II I) 
r I- (Aa: •. M) : II(Aa : •. r) 

r I- M : II~ r I- (T : • (II E) r F (T : f(T 

r I- M : (T r I- (T =, T (T EQ) 
rl-M:T 

Term equality is the equality induced by the fJ and ~ rules (for both term and type abstraction 

and application). 

2 property 

(i) the type of a term in a given context is unique (up to fJ~-equality) 

(ii) equal terms have equal types 

o 

2.2 Semantics: general model definition 

We now give the general structure of an environment model for second order lambda calculus, as 

described in [BMM90j. The difference is that types are interpreted as cpos whereas in [BMM90j 

types are interpreted as sets. Because terms may depend on types (in terms A10') , but types and 

other constructors cannot depend on terms, we can first consider the semantics of constructor 

expressions seperateiy. 

the semantics of constructor expressions 

As we mentioned earlier, constructors (with their kinds) form a simple typed typed lambda cal

culus. So as the (sub )model for the constructor expressions we can take a model for the simple 

type lambda calculus. 

3 definition (environment model for constructor expressions) 

An environment model for the constuctor expressions over Vcon" and Ceoll " is a 3-t.uple 

< Kind~ ~eon", Icon" > ,where 

o 

• f{ ind =< J{ ind. I K. is a kind> is a family of sets, indexed by kind expressions. 

• ~con .. =< ~"'l;;}"'::.! I It! => K2 is a kind> is a family of bijections such that 

~1t1=>1t::.! E [{ind"'I;;}J(::.! ---1- [Kind"' l ---t Kind,.::.!) , 

where the square brackets denote some subset of the function space. 

• Icon" E Cecn .!' ---t Ult K indlt gives the meanings of the constructor constants. Of course 

Icon.!' (c"') E f{ indJ( for all e" E Ceon" . 

The meaning of a constructor expression of kind K will be a element of the set f{ ind". 

The bijections ~"'1;;}J(2 are the element-to-function mappings, well-known from models of the type

free lambda calculus. In fact, for the simple typed lambda calculus we do not need the <J:t"'1=>1o:2; 

we can take KindJ(l=>"::.! = Kind"l ---t Kindlt2 and all the <J:t"1=> 1t 2 the identity on /(ind"' I =>K2' 
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We maintain the ~""l=?"":l here to emphasize the similarity with the definition of the semantics of 

terms that will be given later. 

If we can derive r r (1" : K, [r r (1" : K ] 1] is the meaning of the constructor expressions (1" 

in environment 1]. Here an environment 1] is a function which gives the meanings of the free 

constructor variables occurring in r, so TJ E Vcon , - U .... Kind ..... 

We say that environment 'I satisfies context r, written r 1= 'I, if 'I(a) E Kind, for all a:" in r. 

For these environments we define the semantics of constructor expressions, by induction on their 

kind derivation, as follows: 

[rl-a:,,],., = 'I(a) (1) 

[rl-c:"h = l,on, (e) (2) 

[r I- O"T : "2 ] 1) (<1>"*,, [r I- 0" : "1 :} "2 ] 1)) [r I- T : "2 ],., (3) 

<1>;;-,I*.,(J.a E Kind". [r,a: "11- 0": "2] 17[a:= aJ) (1) 

Remember that every constructor has a unique kind, so there is only one possible choice for the 

kind "1 of 0" in (3). This guarantees that (3) defines a unique meaning for o"T. 

For the semantics of construction expression to be defined correctly 

<1>;i*,,(J.a E Kind". [r,a : "1 I- 0" : "2 ] 1)[a:= aj) 

has to be defined for all possible rand 0". In other words, the range of the <1>.,*" must be large 

enough. In the actual models we will construct this will never be a problem. We will always have 

]{ind .... 1=? .... :l = Kind .... } - I<ind .... :l ,and ~ .... I=?,.:l the identity on I<ind,.1=> .... 2· 

For this definition of a constructor model kind we can prove soundness, 

[ r I- p : " ] 'I E [( ind, 

as well as soundness with respect to constructor equality, 

rI-O" =, T : " :} [ rI-O" : " ] 1) = [r I- T : " ] '7 

(see [BMM90j). 

the semantics of terms 

The definition of the semantics of terms will be similar to the definition of the semantics of 

constructors. 

Instead of having a family of sets I< ind, indexed by kinds, we will now need a family of cpos Dom, 

indexed by !{ind",. As for the constructor expressions, we can only talk about the meaning or 

terms in a context and a matching environment. The meaning of r r M : a in an enviwnment. 1] 

will be an element of Domln_o," J,. 

To define the semantics of terms we will need mappings similar to the element-to-function mappings 

~t;;l=>t;;~ we needed to define the semantics of constructors. However) because we have two kinds 

of abstraction, over term and over type variables, it will be slightly more complicated. 

First we consider the function types. 

Suppose r I-- M : (T _ T. Then for all r t- N : (1" we have r I- M N : T, so we should be able to 

define the meaning of M N (E DomIn.", J,) in terms of the meanings of M (E D01nln_o_", J,) 
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and N (E Domlrf-".,.). To get the meaning of M N, the meaning of M has to be considered as 

a mapping from Dom[I't-O':.]'1 to D01n[n-'r:ot< 1fI. So we require 

where the square brackets denote some subset of the function space. 

The isomorphism corresponding with (i), the bijection 

(i) 

is the element-to-function mapping that we need to define the meaning of term abstraction and 

application. 

For polymorphic types we need different mapppings. 

Suppose r I- M : III. Then for all T, r I- T : *, we have r I- MT : IT. SO we should be able 

to define the meaning of M T E Domlrf-In ,. in terms of the meanings of M and T , which are 

elements of DOm[n-IIj:*]1] and ]{ind"" respectively. This is achieved by requiring 

II· Dom[I',cx:*l-ja:* ]'1[a:=a] 

where Q' is of course a fresh type variable, 

The isomorphism corresponding with (ii), the bijection 

~[n'nJ;"']'1 E Dom[n-ITJ:*]1/ ---+ n Dom[I',a:.l-fa:>I' ]'1[a:=a] 
aEKind. 

will be used to define the meaning of type abstraction and application. 

(i i) 

We now have recursive domain equations for al1 function types and aU polymorphic types. For t,he 

sake of a more uniform treatment, we also want a recursive domain equation for the remaining 

types, the base types. For every base type (J a cpo domainq has to be given. 'Ve could of course 

take Dom(1 equal to domainq , but instead we will require 

For all a E Kind., we define a function F. that maps a family of cpos to a single cpo. 

If < Da I a E f{ ind. > is a family of cpos, then 

FIr,.." ,. < Da I a E I(ind. » 
Flrf-._". ,. « D. I a E J( ind. » 

Flrf-llj. ,. « Da I a E f{ ind. » 

domainq for base types (J 

[DIn .• " ,. ~ Dlrf-p ",1 
TIaE/(ind .. D[r,a:.+-Jec. )1}[a·.=a] 

( iii) 

The system of coupled domain equations formed by (i) , (ii) and (iii) can now be written as follows: 

If a E Kind.: Dom. "" F.(Dom) 

We will now give the general model definit.ion for second order environment models. 
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4 definition (second order environment model) 

A second order environment model for A over Vterm , Cterm , Vcon..t and Ceo"" is a 6-tuple 

< Kind, ~cQn." Icon" 1 Dam, <I»termJ I term >, 
where 

• < Kind, 4>con,n Iconl > IS an environment model for the constructor expressions over 

Vcon6 and Ceon8 . 

o 

• Dom =< Doma I a E J{ indo > is a family of cpos. 

• 4>term =< <Pa I a E Kind. > is a family of continuous bijections such that 

4>a E Doma ----; Fa(Dom) 

where the Fa are defined by 

F[n-u,. J. < Da I a E J{ indo » = domainu for base types J 

F[rf-u_". J.« Da I a E Kind. » 
F[rf-lIh J.« Da I a E Kind. » 

[D[rf-u,. J. ----; D[rf-". bl 
II D[r,a:.I-Jcr .. ]1/[o:::::;a] 

aEKind. 

• Lterm E Cterm ---+ UaEKind. Doma gives the meanings of the term constants. Of conrse 

Iterm{cO") E DOm[rh,.:* ]11 for all ct7 E Cterm . 

If we can derive r I- M : J, [r I- M : u ] ry is the meaning of M with type U III envIron

ment TJ. It will be an element of the cpo Domln-".: .. ]T/' Here the environment 1J is a function 

which gives the meanings of the free constructor and the free term variables occurring in r, so 

7] E (V'Qn, U V'"m ) ----; (U. f{ indo U Ua Doma). 

We say that an environment 1] satisfies a context r 1 again witten r F 7], if 17( 0') E [( ind/>. for all 

a:" in rand ry(x) E Domlrf-u" J. for all x: J in r. 

For these environments we define the semantics of term expressions, by induction on theil' type 

derivation, as follows: 

[rl-x:uh = 'I(X) 

[r I- c: J]ry = I'''m(c) 

[r f- M N : r ] 7] (4), [r f- M : u ~ r ] ry) [r I- N : u h 

[rI-MJ:fJh = 
[r I- (Aa: *.M): Il(Aa: *.r) ] ry 

[rl-M:u]ry = 

(4), [r,a: * I- M: Il(Aa: *.r) h) [r I- J: * h 
<I>,'(Aa E Kind •. [r, a: * I- M : r ] II[a:= aJ) 

[ r I- M : r ] ry if r I- J =, r 

Here s is [r I- u ~ r : * ] ry and t is [r I- Il(Aa : *. r) : * ] ry. 

( I ) 

(2) 

(3) 

(5) 

(6) 

(7) 

We require that the ranges of the <l>a are large enough, so that the right-hand sides of (4) and (6), 

which involve a 4>-1, are always defined. 
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There may be several derivations for r I- M : tT, but becuse terms have a unique type it can easily 

be proved that all type derivations give the same meaning. For this general model definition we 

can prove type soundness, 

as well as soundness with respect to term equality, 

r I- M = N : IT =} [r I- M : IT ] ry = [r I- N : IT ] ry 

(see [BMM90]). 

2.3 The construction of a cpo model 

In this section we will construct a cpo model for A. 

First we consider the submodel for the constructor expressions. For this we can use a simple 

term model. So [r I- iT : " ] ry is the equivalence class of constructor expressions pry-equal to the 

expression obtained by substituting 1)(<» for a in IT, for all free constructor variables a. 

notation To keep things readable, we write iT - T for [r I- iT - T : * ] 1), IIf for [r I- IIf : * 11) 
and fa for [r,a: * I- fa: * ] 1) [a := oj. These abbreviations will be used throughout this paper, 

whenever we are dealing with a term model as the su bmodel for the constructor expressions. \Vhell 

we have a different constuctor model, or when we are discussing a general model definition, we 

will write [iT - T ], [llf ] and [fCY ]. 

Because of the general model definition we have given, there only remains the task of finding a 

family of cpos Dam =< Dama 10 E Kind. >, that solves the system of coupled domain equa

tions: 

'Va E Kind. : Dama ~ Fa(Dam) (i) 

with the associated continuous bijections <Pa E Doma ---+ Fa(Dom}. 

We use a standard technique, described in [SP82J, to find a solution for the recursIVe domain 

equations. For this some category theory is needed. A clear and self-contained presentation of 

this technique can be found in [BH88J. 

An w-category is a category with an initial object in which every w-chain has a colimit. A functor 

is called w-continuous if it preserves colimits of w-chains. A fixed point of a functor F : K - K is 

a pair (D, 4», where D is a K-object and ¢> an isomorphism between D and F(D). 

The initial fixed point theorem ([SP82],[BH88]) states that for an w-continuous functor on au 

w-category an initial fixed point can be constructed, rather like for every continuous function on a 

cpo a least fixed point can be constructed. In fact, the fixed point theorem for cpos is a particular 

case of the initial fixed point theorem for w-categories. 

This result can be used to find a solution of a recursive domain equation. Because of the in

terdependence of the domain equations, we have to solve all of them together. \Ve considel' olle 

recursive domain equation D::::: F(D)) where D is a family of cpos. ~Te will construct a solution 

in a product category. 
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product categories 

Let I be an index set and C a category. The product category K = naEI C is then defined as 

follows: 

• objects of K are families < Da I a E I >, where each Da is a C-object 

• a K-morphism from < Da I a E I > to < Ea I a E I > is a family < fa I a E I >, where each 

fa is a C-morphism from Da to Ea. 

If C is an w-category, then so is naEI C (see [HS73] , [tEH89b]). 

For every bEl we have a projection functor Pb from K. to C, which selects the b-component of a K

object or morphism, i.e. Ph( < Xa I a E [{ indo » = X h. The projection functors are w-continuous 

(see [tEH89b]). 

A functor F from K to K can be considered as a family of functors < Fa I a E I >, where every 

Fa is a functor from K. to C. It is easily shown that F is w-continuous iff every component Fa is 

w-continuous (see [tEH89b]). 

Tupling of functors will be denoted by < , >. For example, < Pa, Ph >: K ~ C x C is the funct.or 

which selects the a and b components of a K-object or morphism. 

the construction of a second order model 

CPO is the category with cpos as objects and continuous functions as morphisms. 

For the domain equations for function types we have the function space junctor, F S, defined by 

• FS: CPOoP x CPO ~ CPO 

• if D and E are cpos, then FS(D, E) = [D ~ E], the cpo of continuous functions from D to 

E, with the ordering pointwise. 

• if f E [D' ~ D] and 9 E [E ~ E], then 

FS(j,g) = (l~ E [D ~ E].g,~,j) E [[D ~ E] ~ [D' ~ E']] 

For the polymorphic types we have the the genemlized product functor, C P, defined by 

• CP: naEI CPO ~ CPO 

• if < Da I a E I > is a family of cpos, then CP« Da I a E Kind. » = naEI D" the cpo 
which is the product of all the cpos D a , with the ordering coordinatewise. 

• if < fa I a E I > is a family of functions, where fa E [Da ~ Ea] for all a E I, then 

CP( < fa I a E I » = .1« da I a E I » E CP( < Da I a E I ». < fa(da) I a E I > which is 

a continuous function from CP« Da I a E I » to CP« Ea I a E I ». 

Because of the contravariance of F S in its first argument we cannot solve the recursive domain 

equations in the category naEKind. CPO. 
This problem is overcome using the standard technique. In [SP82] a theory of O-categories, a 

special class of categories, is developed. For an O-category C there is an associated category of 

embedding-projection pairs CPR, and given a functor F on an O-category C, a corresponding 

functor FpR on the category CPR can be defined, which is covariant in all its arguments. 
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CPO is an O-category.'The associated category-of embedding-projection pairs is CPO pR , 

C POPR is the category with cpos as objects and embedding-projection pairs as morphisms. An 
embedding-projection pairfrom cpo A to cpo B is a pair (</>, 1/;) of continuous functions </> : A ~ B 

and 1/; : B ---> A such that 1/;.</> = idA and </>.1/; !;; idB. 

CPOPR is an w-category (see [SP82], [BH88]). 

The functors corresponding with FS and GP are FSPR : CPOPR x CPO pR ~ CPO PR and 

GPPR : n.El CPOpR ~ CPOpR . They are defined as follows 

and 

FSPR(D,E) 

FSPR ((</>, 1/;), (</>', 1/;'» = 
FS(D,E) 

(FS(1/;, </>'), FS(</>, 1/;'» 

GPPR«D.laEI» = GP«D.laEI» 

GPPR« (</>.,1/;.) I a E I » = (GP« </>.1 a E I »,GP« 1/;a I a E I ») 

So the object parts are unchanged. FSPR and GPPR are w-continuous (see [SP82J or [B1I88J for 

FSPR , and [tEH89bJ for GPPR ). 

For the base types we will need constant functors. If A is a cpo then CA : K: ~ CPOpR is the 

functor which maps every K-object to the cpo A, and every K-morphism to the identity morphism 

on A, which in the category CPOpR is the embedding-projection pair ((A~ E A.O, (A~ E A.~». 

We will construct Dam in the product category K = n.EK;nd. CPO pR . 
We define F : K: ~ K by 

F =< Fa I a E Kind. > 

where the functors Fa : K --+ CPO PR are defined as follows 

Fo = C domaino 
FO _ T FSPR 0 < Po, PT > 
Fn, GPPR • < Pl. I a E Kind. > 

Since FSPR , GPPR , CA and Pa are all w-continuous, so are all the Fa and hence so is F. Then 

by the initial fixed point theorem an initial fixed point can be constructed. 

Let (Dam, m) be a fixed point of F. Then m is an isomorphism from Dom to F(Dom) in 

n CPOPR · Because everything is defined pointwise, this means that all its components rna = 
(<I>a, 'Ii,) are isomorphisms from Dam, to F,(Dom) in CPOPR (i.e. W, = <1>;;-1) . So Dam solves 

the recursive domain equations, and the embed dings cl>a : Doma ---+ Fa(Dom) are the bijections 

we need. 

So an initial fixed point of F gives a family of cpos Dam that satisfies the recursive domain 

equations and the associated bijections. 

So, recapitulating, 

• CPO pR is an w-category 

• OaEKind. CPO PR is an w-category 

• for all a E Kind .. the functor Fa : n CPO PR --+ CPO PR is w-continuous 
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• the functor F =< Fa I a E Kind, >: n CPOPR ---> n CPOPR is w-cont.inuous 

• in naEKind. CPOPR the equation D ~ F(D) has an initial solution (Dam, m) where 

Dam =< Doma I a E Kind. > and m =< ma I a E Kind. > 

• rna = (<I>a, >Ira) is an isomorphism between Doma and Fa(Dom) for all a E Kind. 
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3 Recursive types 

In this section we consider the extension of second order lambda calculus with recursive types. 

As far as the constructors expressions are concerned, we just add another constructor constant 1', 
of kind (_ => _) => _. So if r I- I: _ => _, then r I- 1'1:-. 
The whole idea behind a recursive type 1'1 is that it is a solution of 

I'f '" I(I'!) 

so that the types 1'1, I(I'!), IU(I'!)), .. ' are equivalent. 

For example, if we have an expression M of type 1'1, where I:; (Aa : _.a - int). Because of the 

equivalence between 1'1 and I(I'!) = 1'1 - int, we want to be able to apply AI to itself, and the 

result should be of type into 

This means that for all r I- I : _ => • we require that 

We will consider three ways to treat recursive types: 

A", A recursive type 1'1 and its unfolding I(I'!) are not identified. 

Because we want terms to have a unique type, this means that we cannot both have 

r I- M : 1'1 and r I- M : I(I'!). We introduce explicit coercion operators lo/d", and ""Io/d", 

in the syntax of terms. If r I- AI : 1'1 then r I- unJo/d",AI: J(I'!), and if r I- AI : J(/I!) 

then r I- Jo/d", M : 1'1. The meaning of the fold and unfold operators is given by t.he 

isomorphism between Dom[n-ljj:*]1'/ and DOm[H-J(llf):* h' 

A", A recursive type 1'1 and its unfolding I(I'!) are identified. 

So [r 1-1'/:' h = [r I- I(I'!) : - h = [r I- JU(I'!)):' h = ... , which means (i) is 

trivially satisfied, and if r I- AI : I'J then also r I- AI : J(I'!) and vice versa. 

AP3 We interpret recursive types as infinite types. This means we not only identify recursive 

types and their unfoldings, but that we identify all recursive types tha.t have the same 

infinite unfolding. 

For example, the types I'(Aa : '.a _ int) and I'(Aa : •. (a _ int) - int), will be identified, 

because if we keep unfolding them they both have the same" limit" , namely 
««( ... ) ~ int) _ int) ~ int) _ int) _ int. 

In AI':I these types would not be identified, because by unfolding them we can never get. 

the same term: unfoldings of the first type will be of the form 
« ... (I'(Aa : _.a ~ int) ... _ int) _ int 

and unfoldings of the second type will be of the form 

« ... (I'(Aa: •. (a - int) _ int) ... _ int) - int 

In the next three sections we will consider how for each of these systems the general model definition 

and the construction of the cpo model given in part 2 are affected. The general model definition 

will be changed for each system, and we will alter the construction of the cpo model accordingly. 
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3.1 AJ11 

3.1.1 Syntax 

constructors 

The definition of constructor expressions is unchanged. We just have a new constructor const.ant, 
p : (_ ~ _) ~ _, for making recursive types. 

Constructor equality is I1rrequality. 

terms 

The set of pseudo-terms over Cterm and Vterm is now defined by 

M = c I x I (-\x: u.M) I M,Mol (Au: -.(7) I Mu I fold",M I unfold",M 

where c E Cterm ) x E Vterm ! and u and f are pseudo-constructors. 

We have two additional type inference rules 

r f- M : I'f ( OLD) d r f- unfold", M : f(p!) UN F an 
r f- M : f(p!) ( ) 

[' F fold", M : II} FOLD 

As remarked in [tEM88], the subscript J.lf of fo1djJJ is necessary. If it is omitted, some terms 110 

longer have a unique type. This is shown in the following example. 

Suppose r f- M : f(p!). Using (FOLD) we can derive two types for fold Ai: the 

type pf of course, but also the type pg, 9 == (ACY : -.f(p!), where a is a fresh type 

variable. Since u does not occur in I(p!), f(p!) = f(p!) [0':= pgJ = g(pg). 

We needed the fact that terms have a unique type to guarantee that the definition of the meaning 

of a term was unambiguous. Therefore fold is written with the subscript pI By symmet.ry, we 

also write unfold with a subscript pl. This subscript, however, could be omit.ted without ca.using 

any problems. 

We redefine term equality for AI',. Term equality is the congruence relation generated by 11'1)
equality and the following two rules: 

fold", ( tmfold", M) = M 

unfold", ( fold", M) = M 

3.1.2 Semantics: general lllodel definition 

The definition of the semantics of constructor expressions can remain uncIJanged, since we have 

no new rules for kind derivations. 

We do have new rules for the type inference system. We have to define the meaning of terms that 

are typed using the new type inference rules (FOLD) and (U N FOLD). 
For this we require 
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The associated isomorphism, the bijection 

gives the semantics of folding and unfolding: 

[r I- unlold.,M: I(p!) ] TJ = <p[n-.,. 10([ r I- M : pi ]'1) 

[r I- lold.,M : pi] TJ = <Plif-.'. lo(l r I- M : I(p!) ]11) 

We extend the definition of < Fa I a E [(indo > with 

5 definition (general model definition Ap.) 
An environment model for AI'. is defined as for A (definition 4), except with the definition of [ I 
extended as above, and with F =< Fa I a E [( indo > defined by 

o 

F[u 1« Da I a E Kind. » 
F[u_rl« Da I a E [(indo » = 

F[n, I( < Da I a E [( indo » 
F[., 1« Da I a E [(indo » = 

3.1.3 The construction of a cpo model 

domaina 
[D[u I ~ D[r IJ 
0[0 IE Kind. D[,o I 
D(J(.J) I 

for base types" 

The definition for the submodel for the constructors is the same as it was for A, so we can use t.he 

same sub model we used for A, i.e. a term model. 

To complete the model we have to construct a family of cpos Dom =< Dom a I a E ]{ in-d" >, that 

solves the system of coupled domain equations 

v . Doma "" Fa(Dom) a E ]{ind~ . 

We have the additional domain equations 

for all r I- I : < => <. 

Now we have seen how we found a solution of the system of coupled domain equations for A, 

solving the new system of coupled domain equations for AI'. is completely straightforward. 

We define a new functor F: K. ~ K. by F =< Fa I a E Kind. >, where the Fa : K. ~ CPO PR are 

defined as follows 

Cdomaina = FSPRO < Pa , PT > 
= GPPRo < Pta I a E [(indo > 

p,(.J) 

for base types" 

The initial fixed point of F gives the cpos Doma satisfying the recursive domain equations, alld 

the associated isomorphisms cI> a E Doma ---;. Fa (Dom). 
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3.2 Ajl. 

3.2.1 Syntax 

We define constructor equality, =" as the equivalence relation induced by ,B~-equality and by 

r I- 1'1 =. I(I'!) for all r I- I : • =? * 

We call the equality induced by the rule above I'-equality. 

Using the type conversion rule 

r I- M : urI- u =, T (T EQ) 
rl-M:T 

we can derive 
r I- M : ft[ 

r I- M : f p!) 
r I- M : [(I'!) 

l' F M : 1'1 
So we can drop the fo1dpJ and unfoldl,f from our syntaxl and we no longer need the extra domain 

equations 

Dom[r>_.,oo I" "'" Domlre ,(.n. I" 

we needed for AIL" since 1'1 =, !(fJ!), and so [r I- 1'1 : • ] ~ = [r I- l(fJ!) : • ] '7· 

3.2.2 Semantics: general model definition 

We can take the same recursive domain equations we had for A: 

where 

Va E Kind.: Doma "'" Fa(Dom) 

F[o 1« Da I a E Kind. » 
F[ a_T I( < Da I a E [{ indo » 

Flnj)« Da I a E Kind. » 

domainq for base types u 

[Dla 1 - D[T Il 
IT[a IEKind. D[Ja I 

For the recursive types these domain equations achieve precisely what we want them to. Because 

1'[ =. I(I'!), the constructor model should satisfy [r r 1'1 : * ] ry = [r r [Cll!) : * ] 1) and for 

the recursive type 1'1 == fJ(ACt: '.Ct -> int) we then get 

Dom[., I Doml.,_in, 1 ' slllce [I'I ] = [/(fJ!) ] = [1'1 -> int ] 

'" [Doml.' I -> Dam[in'll 

[Dom,.,_in'l -> Dam['n' l 1 

If 1'1 =~". fJ(ACt : •. Ct) then Fl., 1 is as yet undefined. We take 

This means the domain equation for p(A" : •. Ct) is 
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6 definition (general model definition Ap,) 

An environment model for Al',is defined as for A (definition 4), except with 

F =< Fa I a E Kind. > defined by 

o 

FluJ« Da I a E Kind. » = 
Flu_ T J« Da I a E Kind. » 
FIlI/J«DalaEKind.» = 

FI"(Ao",o))« Da I a E Kind. » = 

3.2.3 The construction of a cpo model 

domainu 
[DIu J ~ D[T Jl 
0[0 IEKind. DUo J 
D["(Aa",o) I 

for base types u 

'For the 'constructors we again take' a term model, only this time [r I- u : " ]'7 is the equivalence 

class of constructor expressions ,Bryp-equal (and not just ,Bry-equal) to u with all free construct.or 

variables fr replaced by ry(fr), 

The family of cpos Dom satisfying 

'I a E Kind, Doma ~ Fa(Dom) 

is constructed in the by now familiar way, as the initial fixed point of a functor F : K - K, 

F =< Fa I a E Kind. >, where the Fa : K. ---+ CPOPR are defined by 

Fu-+r = 
FlII = 
FJ.l(Aa:*.a) 

Cdomainu 
FSPRo < PO-) Pr > 
GPPRo < PIa I a E Kind. > 
PJ.l(A(n •. a) 

if u is a base type 

The initial fixed point of F gives the cpos Doma satisfying the recursive domain equations, and t.he 

associated isomorphisms ~a E Doma --+ Fa{Dom). The cpo DomJJ(AOi;~<.(:r) will be the one-point. 

cpo. 
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3.3 AJl3 

3.3.1 Syntax 

We shall now interpret recursive types as infinite types. 

To define the resulting congruence relation on types, we define a tree T( u) for every type u. These 

trees will be regular trees, i.e. trees with a finite set of subtrees. The leaves will be base types or 

types only consisting of constructor variables, and the nodes correspond to type constl'Uctors. 

7 definition (T) 
The function T from types to regular trees is defined by 

T(u) .u if u consists only of constructor variables 

T(c) .c 

T(u -> T) /- '" T(u) T(T) 

T(Il(Aa : <.u» = ITa 
1 

T(u) 

T(I'(Aa: <.u» { f(u) [a:= T(I'(Aa: <.u))] if T(u) '" IT = if T(u) =" 
T(u) = T(T) if (T =f31/ T 

Note that we have bound type variables in the trees: every II-node introduces a bound t.ype 

variable. a-equal trees are identified. T(u)[a:= ... ] is tree substitution. 
o 

By the following property it is clear that this defines a regular tree for every type. 

8 property ([Cou83], theorem 4.2.1) 

If t '" .a, and t is regular, then there is a unique tree x such that x = t[<l':= x], and x will be 
regular. 0 

Some examples. Suppose r == 9 : * => * , {j : *. Then 

T({j) .{j 

T(g{j) .g{j 

T(Il(Aa : *.a -> f') = Ila 

1 

/-'" a {j 

T(lt(Afr: *.a» .L 

Let f == (Aa : *.0" -> {j). Then 

[a:= T(I'f)] 

= 
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So 

T(p!) == 

We would get the same tree for p(Ao:: •. (a -> fJ) -> fJ), p(Aa: •. «a -> fJ) -> fJ) -> fJ)), etc. 

9 definition ("') 

The equivalence relation", on types is defined by 

u '" T <==? T(u) == T(T) 
o 

For all types u and T, u '" T is decidable. (This is because T(u) and T(T) are regular.) 

We take:::::: as our notion of type equality. Equality for constructor expressions of higher kinds is 

the congruence relation generated by '" and the fJ'I rules. So the type conversion rule (TEQ) has 

become 
rl--M:O' (J'~T 

rl-M:T 

3.3.2 Semantics: general model definition 

Again we take the same recursive domain equations as for A, and for the type p(Ao' : *.0) we add 

as we did for A1'2' 

10 definition (general model definition Ap3) 

An environment model for AP3is defined as for A (definition 4), except with 

F =< Fa I a E Kind. > defined by 

o 

F[u 1« Da I a E Kind. » 
F[u_, 1« D. I a E Kind. » 

F[ll! 1« D. I a E Kind. » == 
F["(Aa,..a)]« D. I a E Kind. » 

3.3.3 The construction of a cpo 1110del 

domainq 

[D[u 1 ~ D[, Il 
TI[a IEKind. D[Ja 1 
D["(Aa,..a) 1 

the sub model for the constructor expressions 

for base types u 

For AJta we choose a different constructor model: types wi11 be interpreted as trees. The leaves 

will be base types or type variables, and the nodes correspond to type constructors. 

If all free constructor variables in u are type variables, then the meaning of a type u in environment 

'I will be the tree 

T(u)["o :== '1(0:0),"" a n :== 'I(an)] 

I.e. T(u) with all type variables a replaced by '1(0:). 
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For example 

[r r int : * h 
[r,n,* r n ~ int '*]1] = 

. int 

Let 1 == (An: *." ~ f3). Then 

Kind.",. will be a subset of J( indo ~.j{ ind., and [r r 1'1 : *] 1] E J( indo will be a fixed point 

of [r r 1 : * =} * hE Kind.", •. 
For instance, the meaning of 1 will be : 

[rr/,*=}*1'7 = AaEJ(ind •. [rr"~f3'*h[,,:=al 

= Aa E f{ ind.. ./-

[r r " : * ] 1)[n := aJ "[ r r f3 : * ] 1) 

= Aa E Kind •. ./- " 
a 1)(f3) 

So [r r 1'1 : * ] 1) = [r r 1 : * =} * ] 1) [r r 1'1 : * ] 1). 

We will now define the sub model for the constructors in the way prescribed by the general model 

definition. So we have to define Kind =< Kind.:- I K a kind>, and we have to define ICOn$l giving 
the meaning of the constructor constants, with Lcon$(CK.) E I<ind.:-. 

11 definition (Tree) 

Tree is the set of all finite and infinite trees with base types and type variables as leaves, and ---l. 

and ITcr, Q' a type variable, as nodes. ---l--nodes have two subtrees, ITa-nodes have one subtree. 

o 

We will define a partial order ~ on Tree, so that for all r r 1 : * =} * we can define IT r r 1'1 : * ] ') 
as the least fixed point of [r r 1 : * =} * ] 1). 

12 definition (~) 

~ is a partial order on Tree defined by 

1. ~ a for all a E Tree 

a ~ a for all a E Tree 

./- c - if a ~ a' and b ~ b' 

"b 
,./ "b' a a 

ITa ~ ITa if a ~ b 

1 1 
a b 

o 
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So a I;;; b, if we can get a by cutting of some subtrees of b and replacing them by 1.. Every 

ascending chain in Tree has a least upper bound. 

< Kind. I " a kind > is defined by 

Kind. 
I<ind.~. 
I{indIt1:;;;},,'J 

{i liE Tree A FV(i) = 0} 
[[(ind. --+ Kind.] 

= ]( ind/;'l -+ [{ ind/i,'J ,Kl => "2 f:. * => * 

Here FV(i) denotes the set of free type variables occurring in i. 

I< ind.~. is restricted to functions from f{ ind. to f( ind. that are continuous with respect to !;, 

because for all F E Kind.=? we want [I : * ~ * f- ,..1 : * ] [I := F] to be the initial fixed point 

of F. For I{indIt1=?"'Jl Kl => "2 i= * => *, we have no such requirements. 

The meaning of the constructor constants is given by 

Ioo",(O') 
Ioo",(--+) 

.0' for base types 0' 

.la E Kind •. .lb E [( ind.. --+ 

/' "'b 
.IF E [( ind.=?. ITo 

1 
Fa 

.IF E J( ind.=?. U;EIN F;.l 

It is easy to see that I,on.(O') E Kind., I,on.(--+) E Kind.=?(.=?), I,on.(Ir) E Kind(.=?)=? and 

I,on.("') E J(ind(.=?)=?. 

The sets Kind. are actually larger than they have to be. The following [( ind~ could also be used 

J{ind~ 

Kind~=? 

Kind~1=>"2 

= {t I t E Tree A FV(t) = 0 A t is regular} 
= {(.la E Kind'.t) It E Tree A FV(i) C;; {a} A i is regular} 
= I( ind~l -+ f{ ind~2 ,"1 => 1\,2 f= * => * 

Clearly I,on.(O') E Kind:, I,on.(--+) E Kind:=?(.",.) and I,on.(IT) E Kinde.",.)=? 

That Icon$(J.t) E Kinde.:::}",)=> .. is an immediate consequence of the following lemma. 

13 lemma For F E Kind:",. , UiEIN F;.l E Kind: 

proof 

Suppose F = (.la E Kind:.i) E Kind:_ •. This means Fi' = i[a:= i'] ,so 

F.l = i[a := .l], F 2.l = i[a := F.l], F 3 .l = i[a := F 2.l] , ... 

and therefore .l I;;; F.l I;;; F'.ll;;; ... . This chain has a lub, U;EIN F; .l E Tree. 

There remains to be shown that U pi 1.. E f{ ind~, i.e. that U Fi 1.. contains no free variables, and 

that U F; .l is regular. 

Clearly U Fi 1.. does not contain free variables, since all pi 1.. E f{ ind~, so none of them cont.ain 

free variables. 

To prove that U F;.l is regular, we distinguish between i = a and i oF a. The former case is t.riviol. 

If i oF a, then the equation x = i[a := x] ha, a unique, regular, solution (property 8). But. sillce 

F is continuous (see [Cou83], proposition 3.3.3), U F;.l = F(U F'.l) = t[a:= U F;.lJ, 

that solution must be U F;.l. 

o 
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the model for the terms 

To complete the model, we have to construct a family of cpos Dom that solves the system of 

coupled domain equations: 

II a E Kind. Doma '" Fa(Dom) 

i.e. 

Dom[. I = Dom.u '" domainq 

Dom[._T I = Dom '" [Doml. I ~ D01l1[T IJ 
I' r/--"[ T I 

Dom[II! I = Damna 
dal 

'" IlIa leK;nd. D01l1[ja I 

Doml"(Aa,..a) I = DomJ. '" DomJ. 

We define the functor F: fC _ fC by F =< Fa I a E Kind. >, where the functors 

Fa : fC - CPO P R are defined by 

Cdomainq 
for base types 17 

FSPRo < Pu ) Pr > 

The initial fixed point of F gives the cpos Doma satisfying the recursive domain equations, and 

the associated isomorphisms ~a E Doma .--.. Fa{Dom). Again, the cpo D01n[JJ(Aa: .... o)] will be the 

one-point cpo. 
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4 Subtyping 

We now consider the extension of system A with subtyping. This system will be called A~. 

4.1 Syntax 

We will have a subtype relation:O; on types. If u:O;r, we say that u is a subtype of r. The subtype 

relation will he a pre-order (ie. reflexive and transitive). 

We add the following type inference rule: the subsumptio1l rule 

rf-M:u rf-u<r( ) 
r f- M : r ,SUB 

This means that terms no longer have a unique type. 

The subtype- relation will be based on a subtype relation $.B on the base types. For example, if 
int and real are base types 1 we could have int $.B real. 

We have the following rules for deducing u :0; r for more complex types u and r. 

r f- u -, r(REFL) 
rf-u:O;r 

r f- u' < u r f- r < r'( ~) , ,< rl-u-T$.U _; -

rf- p< u r f- u < r(TRANS) 
rf-p:O;r 

r,a: * f- fa < g,,« II) 
r f- IIf :0; IIg -

Note the contravariance of __ with respect to the subtype relation. 

That :0; is indeed a pre-order is of course guaranteed by the rule (REF L) and (TRANS). The 

rule (TEQ) is omitted, since it can be derived from (REFL) and (SUB). 
For the model construction we will need the following lemma. 

14 lemma r I- u ---+ T $. (1"' ----+ " ==:} r I- (1"' $. 0' and r I- T $. r' 

o 
r f- IIf :0; IIg =} r,a '* f- fa:O; ga 

This lemma can be proved as follows. 'Ve define a relation ::;' on types. For $.' we have the same 

derivation rules as for :0;, except instead of (T RAN S) we have the following rule 

r f- u <' r 

Clearly r f- u :0;' r ~ r f- u :0; r. 

r f- u =, u' rf- r=, r'(~TEQ) 
r I- (/ '5:.' r' 

By the next lemma we also have r f- u :0; r ~ r f- u :0;' r. 

15 lemma "5:.' is transitive, ie. r I- p -:;.' u & r l-- {J' "5:.' T =:} r I- p 5:' T 

proof By induction on the derivation length, not counting the rule (:O;T EQ). 

Suppose r f- p :0;' u and r f- u :0;' r . Then 

(a) p,u and rare ,6ry-equal to base types a,,6 and" respectively, and a:o;B,6:o;B, ,or 

(c) p =, IIf , u =, IIg and r =, IIh . 
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We must prove rl- P <;,' T . For (a) this is trivial. We will give the proof for (b). The proof for 

( c) is similar. 

The derivations of r I- P <;,' " and r I- " <;" T , must both end with (<;, ~), possibly followed by 

(<;,TEQ). SO r I- "I <;,' PI , r I- p, <;,' '" , r I- TI <;,' "I and r I- '" <;" T, . 
By the induction hypothesis r I- TI <;,' PI and r I- P2 <;" T2 , and hence r I- P <;,' T 

o 

So r I- " <;" T {} r I- " <;, T, and for <;,' it is obviolls that lemma 14 holds. In fact, we already 

used it in the proof of lemma 15. 

4.2 Semantics: general model definition 

Because the semantics of terms is defined by induction on type derivations, we have to define the 

semantics of the new type inference rule, the subsumption rule. 

Suppose r I- M : T is derived from from r I- M : " and r I- " <;, T: 

r I- M :" r I- " < T (SUB) 
rl-M:T 

Since [r I- M : " D'I E DomIre". lry and we want [r I- M : T D'I E Dom[re". lry, we need a coer

cion function from Dom[rt-O:*]11 to Dom[n--r:. ]'1' We will call this function Coe[n-U:*]11 [rrT:* ]1/ 

We can now give the meaning of M : T in terms of the meaning of M : (Y 

[r I- M : T ] 'I = Coe[re,,, lry [reT·.' lry [r I- M : " D'I 

For all types u and T such that r f- (J' :::; T, we need a coercion function from DOJ11[rt-u:*]'1 to 

Dom[ ['1-7:* ]'1' We require that the coercion functions are continuous. 

Not any set of coercion function will do. Remember that the meaning of a term is defined 

by induction on its type derivation. Not only will there be more than one type derivation for 

r I- M : u, but in different derivations a subexpression of M may have different types and hence 

different meanings. We have to prove coherence, that all derivations for r I- Al : a give the Sflllle 

meaning [r I- M : " D'I. 
We will now try to find some additional requirements for the coercion functions to guarantee that 

an environment model is coherent. 

notation The same same conventions we use to abbreviate the subscripts of the form Dom will be 

used for the subscripts of Coe and 4>. So we will write COe[(1][7] instead of C oe [rt-(1:*]I] [n-T:*]1I 

and <t>[q J instead of <t>[req" lry. When we are dealing with the term model for the constructor 

expressions, we will just write Coe(1 T and <1>(1' 

coherence 

The subsumption rule itself gives rise to the following two fairly obvious requirements for t.he 

coercion fuctions: 

Po Coe •• = l.~ E Dom •. ~ for all a E I< indo 
P 1 Coea c = Coeb cO Coea b for all a~*b~*c 
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16 lemma If Po or P, does not hold, then the semantics is not coherent. 

proof The subtype relation is reflexive, so 

which yields 

rf-M:u rf-u<u 
r f- M: u 

[rf-M:uh= COf[ollo) [rf-M:u]q , 

So if Po does not hold, than r f- M : u does not have a unique meaning. 

Suppose r f- p :'0 u :'0 T. Then 
rf-M:p rf-p<T 

rf-M:T 

yields [r f- M : T ]I) = Coe[p II T I [r f- M : p ] ry 

but 
rf-M:p rf-p<u 

rf-M:u rf-U<T 
rf-M:T 

yields 

[r f- M : T h = Coe[o liT I( Coe[p 110 I [r f- M: p h) 
So if PI does not hold, than r I- M : T does not have a unique meaning. 0 

Po and P l are not sufficient to have coherence. We will also require propert.ies of the coercions 

between -->-types and IT-types. 

First we consider function types. Let (/ :S (1 and T :S T', so U --+ T .::; 0-' ----;. ,'. Suppose 

r I- M : u --+ T and r I- N : (1'. Then r I- M N : I' can be derived in several ways, for instance: 

N:u' a'<u 

(i) 

M:U--+T (T-T<U'-T' 

M'(['_r' N:u
l 

M:U--+T N:u 
MN 'T 

MN:r' (ii) 
MN:T' 

These two derivations give as [r f- M N : T' ] 11 

(<1>( COe[O_T 1I0'-T' I [r f- M : u -; T h)) [r f- N : u' JrJ 
COe[T liT' 1«<1> [r f- M : u -; T ] 11) ( Coe[o' 110 I [r f- N : u' h)) 

T < T' 

(i) 

( ii) 

In order for these to be equal, some equation between COe[O_T 1I0'-T' I and Coe[o' 110 I and 

C oe( T )[ T' ) has to hold. There is really only one way to express a relation between C oe[ q ..... T ][ (1'--1"' ] 

and Coe[o' 110 J and COe[T liT' J. 

1 Coe[TIIT') 

P2 : for all r f- u' :'0 u and r f- T :'0 T' 

COe[a_T 1I0'-T' J = <I>[,,"_T' I,FS( Coe[o' 110 I, COe[T liT' I),<I>[O_T I 

If P, holds, then (i) and (ii) give the same meaning for r f- M N : T'. 
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Now we consider polymorphic types. Let r, a- : • I- fa- $ gex so IIf $ IIg, r I- " : • and r I- Ai : IIf. 

Then f" $ g", and r I- Ai" : g" can be derived in several ways, for example: 

(i) 

Ai : IIf IIf < IIg 
Ai: IIg u:* 

These two derivations give for [r I- Ai" : g" ] ry 

Ai : IIf ,,:. 

(ii) Ai" 1: f" $ g" 
u: gu 

(~( Goeln! nn, I [r I- M : IIf ] ry)) [r I- <T : • ] ry 

GoelJ. ng. I«~ [r I- M : IIf ] ry) [r I- <T : * h) 

Of course, we want these to be equal. 

(i) 

(ii) 

Again, there is only one way we can express a relation between CoqnJ ][09] and Coe[Jct ][gO"]' 

DomIn! I 0.< IlIa IEKind. DomlJa I 

! Goeln!nngl J< Goe[!angal I[a-]E/(ind. > 

Dom[ng I 0.< Il[a IEKind. Dom[ga I 

P3 : for all r, a- : • I- fa- ::; ga-

Goe[nfllng I = ~[rig I'C P( < GoelJa nga I I [a- ] E /( indo > )'~[n! I 

If P3 holds, then (i) and (ii) do indeed give the same meaning for r I- Ai,,: g". 

So we now have the following requirements for the coercion functions 

Po for all a E /( indo 
Goea a = A~ E Doma.~ 

P, for all a::;'b::;'c 
Coea b = Coeb CO Coea b 

P2 for all r I- <T ::; ,,' and r I- 7 $ 7' 

COe[U_T ][O'_T'] 

P3 for all r,a-:.I- fa- $ ga

Goe[n! ling I = ~[rig I'CP( < GoelJa lIgn II [a I E [(ind, > )''''[n! J 

If the coherence conditions Po ,PI) P2 and Pa hold, then the semantics is coherent. In fact, the 

semantics is coherent if and only if these conditions are satisfied. The proof can be found ill the 

appendix. For the proof we use the fact that we have minimal typing in A;S. 

The subtype relation :S" on types induces a subtype relation ~. on I< ind •. 

a~·b 
iff 

3r ,",.,Tr F= 'I & [r I- " : * 1'1= a & [r I- 7 : • ] 'I = b & r I- "$7 

which is the same as 
[r I- <T : • 1'1 $' [r I- 7 : • I ry 

iff 
rl-,,::;7 

Because :$ is a pre-order, so is :$"'. Once we have decided on a part.icula.r submodel for t.he 

constructors, we will give a simpler a.nd more workable definit.ion of :5"'. 
So we get the following model definition for A~ 
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17 definition (general model definition A~) 

An environment model for A:$ is a 7-tupJe 

< Kind, <I>con" , Lcontl ; Dom, cI>termJ 'LtermJ Coe >, 
where Coe is a family of coercion functions satisfying Po ,'P l 1 P2 and P3 J 

Coe =< Coea , I for all a, bE Kind, , a::;'b> 

where for all a::;'b 

Cae a , E [Doma ~ Dam,] 

and the rest as in definition 4, with the definition of [ ] for the subsumption rule given by 

[r I- M : T ] 1) = Coelrf-u" lq Irh" lq [r I- M : u ] 1) 

o 

4.3 The construction of a cpo model 

We will use the same submoclel for the constructor expressions we used for A, ie. a term model 

Because we have a term model we can define .$* as follows: 

18 definition (::;') 

If a,b E ]{ind. , then a and b are closed type expressions, ie. <>1- a: * and <>f- b: *, and SO we 

can define ::;' by 

a ::;' b iff <>1- a < b 

o 

19 lemma r I- u ::; T ~ 111) [r I- u : * ] 1) ::;' [r I- T : * ] 1) 

proof By induction on u or T. 0 

Before we can begin to construct a cpo-model for A::; J some coercions have to be given. \Ve need 

coercion functions coerce(jT from d01nainq to domainr ,for all base types u and T such t.hat 

u"!S.B T . We require that these coercion functions are continuous, and that Po and PI hold) ie . 

coerceuu 
coercep, 

.a.~ E domain. . ~ 
::::. coerceu, 0 coercepu 

For u$B T, Coeu , E [Domu ----f. Dom,] is of course defined by 

So we are looking for a family of cpos < Dom a I a E Kind. >, solving tile coupled domain 

equations 

domainu 

FS(Domu, DomT ) 

GP« Dom!a I a E Kind, » 
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and a family of coercion functions < Coea , I a~'b > satisfying Po , PI and 

Coe q T = ~;locoerceo"T ocf>q for all (T '5:. B T 

CoeO_ T 17'_7' = ~;/:'710FS( Coeq l 0, Coer 7/)04>0-_7 for all (J' -+ T :::;"' (1" - r' 

Coen! ng = <l>jj~oGP« Coe!a ga I a E Kind. »o<l>n! for all IT! ~. ITg 

We define the category corresponding with the subtype relation on Kind •. 

20 definition (Kind.) 

The objects of Kind are the elements of Kind. 1 and there is a unique arrow, called aSb, from 

a to b iff a~·b. 

Because :::;'" is reflexive, there is an identity a:5:a for all objects a. Because <* is transit.ive 1 

composition is always defined: b~coa~b will be a~c. 
o 

Together, Dom and Cae can be seen as a functor from Kind .. to CPO. Dam is the object 

part, mapping every I<ind.-object, ie. every element of Kind., to a CPO-object, a cpo. Coe is 

the morphism part, mapping every J( ind. -morphism ab to a continuous function from Doma to 

Dom,. 

For this to be a functor I identities and composition must be preserved. This is guaranteed by Po 

and PI . 

< domaina I u a base type> and < coercear I u~BT > form a functor from the category corre

sponding withthe pre-order ~ B on base types to CPO. 

We will construct Dom&Coe , the functor formed by Dom and Coe together, as an initial 

fixed point in a functor category. Because of the contravariance of FS in its first argument, 

we cannot construct Dom in the standard functor category [Kind, CPOJ (usually written 

CPOKind
.). Instead, we work in the associated category of embedding-projection pairs. Mo1'

ph isms of [ Kind., CPO] are natural transformations, families of C PO-morphisms. So point.wise, 

they have the same properties as C PO-morphisms, in particular those properties that enable t.he 

use of embedding-projection pairs. 

CPO 1. is the category with cpos as objects and strict continuous functions as morphisllls. rt. is 

a subcategory of CPO. 

21 definition [Kind., CPO .lJPR 
[Kind*, CPO .L]PR is the category with as objects functors from Kind. to CP0.L) and as 

morphisms embedding-projection pairs of natural transformations: 

if F and G are functors from Kind. to CP0.l, then (~, 0) is a morphism from F to G if 

~ 

o 
(ie. T) is a natural transformation from F to G) 

and for all a E Kind. Oao~a = idFa 
~aoOa !;; idGa 

Composition is of course defined by (17, O)o(~', 0') = (17' o~, 000') 
o 
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The reason for using CPO.1 instead of CPO, is that [Kind., CPO]PR is not an w-category, 

because it does not have an initial element. 

22 lemma [Kind" CP0.1]PR is an w-category 

proof see [Pol9l] 0 

As a consequence of using CPO.l instead of CPO, the coercion functions coerceqT will have 

to be strict. 1 Because QEQ.1 is a subcategory of CPO and FS and GP preserve strictness, 

FS: CPO~P x CP0.1 -+ CP0.1 and GP: fI CP0.1 -+ CP0.1' 

Dom&Coe will be the initial fixed point of the following functor 'IF 

23 definition ('IF: 1K-+1K) 
'IF is a functor 1K to 1K, so it consists of an object part, a mapping from Obj('JK) to Obj('JK), and 

an morphism part, a mapping from M or(1K) to M or(1K). 
The object part of 'IF is defined as follows. Let F E Obj(1K). Then 'IFF E Obj(1K), ie. 'IFF is a 

functor from Kind. to CP0.1' 
The object part oLlF F, a mapping from Obj( Kind.) to Obj( CPO .1)' is defined by 

('IFF)o 
('IF F)o -+ b 
('IFF) IT J 

= domaina 

FS(Fo, Fb) 
= GP« FUo) 10 E Kind. » 

and the morphism part of 'IFF, a mapping from M ore Kind.) to M 01'( CPO .1)' is defined by 

('IF F)o :5 b 
('IFF)a -+ b:5 0' -; b' = 
('IF F)ITJ :5 ITg 

coerceab 
FS(Fa' :5 0, Fb:5 b') 
GP« FJo:5 go 10 E Kind. » 

The morphism part of 'IF is defined as follows: 

if (1),0) E Hom1K(F,G), so 'I: F~G and 0: G~F then 

'IF«'1,0» = ('1',0'), ie. 'I' : 'IF F~'IFG and 0' : 'IFG~'IF F where 

('1~,0~) 
('1~_" e~_,) 
(1)[1f ' O~I ) 

(iddomaina ,iddomaina ) 
F SPR« 'la, Oa), (1)" 0,» 

= GPPR« (1)10,°10) I a E Kind. » 

Checking '1' : 'IF F ~'IFG and 0' : 'IFG~'IF F is straightforward, and it can easily be verified 

(pointwise) that 'IF preserves identities and composition. 

o 

Note that for the coercions FS is used, which takes care of the contravariallce of -;. with respect 

to the subtype relation 
l'f--(f'S;a rl-TS;T' 

r f-- (T ---+ T ::; (T' ---+ T' 

whereas for the morphisms FSPR is lIsed, which is covariant in both arguments, so that a fixed 

point can he constructed. 

Any fixed point of 'IF will solve the recursive domain equations and satisfy the conditions foJ' the 

coercion functions. 

lThe requirement that the coercions be strict also comes up in [BTCGS89j , although for different reasons. 
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For instance, let (F, (~, \)I)) be a fixed point of 1F, ie. (~, \)I) is an isomorphism between F and 

1FF. This means that ~: F~1FF and \)I : 1FF~F, such that ~o\)l = id1FF and \)Io~ = idF. 

Because everything is defined pointwise, this means that for all a$;'b 

~bo\)lb = id(1FF)b and ~a 

\)Ibo~b idn Fa • (1FF)a 
~aoWa id(1FF)a 

.. 
\)Ia = i Fa $ b i(1FF)a $ b 

Wao<J)a idFa © 
~b 

Fb (1FF)b .. 
\)Ib 

Let ITf$'ITg. Then 

~II! 
FITf-------... • (1FF)ITf = GP« F(fa) I a E Kind. » 

• I \)I~ I ! FITf $ ITg © r1FF)ITf $; ITg = GP« F(fa)(ga) I a E Kind, » 

~IIy 

FITg ... 1--_--:;:--____ • (1F F)ITg = GP( < F(ga) I a E Kind, » • \)Illy 

and FITg$;ITf = \)Illy 0 ((1F F)ITf $; ITg) 0 ~II! 

= \)Illy 0 GP« Ffa $; ga I a E Kind, » 0 ~n! 
so Pa is satisfied. In the same way it can be shown that P2 is satisfied. 

24 lemma 1F is w-continuous 

proof (sketch,for details see [PoI91J) 

We define a functor ~ : [Kind" C POlop x [ Kind" C PO] ~ [ Kind" CPO] sHch that 

1FF 
1F(7],e) 

= ~(F,F) = ~PR(F,F) 
= (~(e, '7)'~('7, e» = ~PR(('I, e), ('I, e» 

We prove so-called Ioea] continuity for -:Ii, which can be done pointwise. This means that 7iPR is 

w-continuous. Using the correspondence between IF and 7iPR given above, we can prove that if 

'JiPR is w-continuous,1F is also w-continuous. 

o 

So by the initial fixed point theorem 1F has an initial solution (Dom&Coe, (~, \)I». The object 

part of Dom&Coe 1F gives us the family of cpos Dom, the morphism part gives us the family of 

coercions Coe, and <I> is the required family of bijections. 

So, recapitulating, 

• CPO 1. is an O-category 

• [f{ ind.. CPO 1.] is an O-category 

• [Kind" CPO 1.]PR is an w-category 
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• 1F is w-continuous 

• in [Kind, CPO .LJPR the equation 1F(D) 3!' D has an initial solution (Dom&Coe, (<1>, w)) 

• (Dom&Coe, (<1>, w)) gives us a family of cpos solving the recursive domain equations with 

the associated bijections, and a family of coercions satisfying the coherence conditions. 
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5 Recursive types and suhtyping 

We will now combine the two extensions of A we have dealt with, subtyping and recursive types. 

5.1 Syntax 

First we consider how to define the subtype relation on recursive types. The natural rule for 

subtyping on recursive types is 

r,a:*,(3:*,a<(3l- l a<g(3« ) 
r I- III ::; Ilg - Il 

This is the same as 
r,a ,*1- la < gl.Y 

r I- Il! ::; Ilg 

where a may only occurs at covariant positions in fa: or ga. 

Contexts call now also also contain expressions of the form Q' :5 {3, where Q' and (3 are type 

variables, but only when we are deriving subtype judgements. In r r 1\1 : 0" the contex will not 

contain expressions of the form a :5 p. 
We will now also need the rule 

r,a::; (31- a::; (3 

Since we considered three ways to incorporate recursive types in A, several options are open to us. 

The systems we get by extending AIL "All' and Alla with subtyping will be called A~IL"A~IL, 

and ASJ.t3' respectively. 

Since in All, III =1= 1(1l1l, we could add the following rules for A~Il, 

rl-t'*'** 
r I- III ::; t(lltJ 

rl- '*'** 
r I- I III ::; Itt 

The loldp! and unloldp! can then be omitted. The coercions for III ::; 1(ltll and 1(,,1l ::; It I 
are of course if!p.j and cp;). However, the resulting system is then virtually the same as ASI.L2J 

because the same type derivations r I- M : (j will be derivable. The only difference is the notion 

of constructor equality. 

5.2 Semantics: general model definition 

,Remember that· we can· now have expressions such as 0' ::; f3 in contexts. For an environment. 7] to 

satisfy a context r we now also require that 

for all (a ::; (3) E r 

We get environment models for these systems with subtyping and recursive types by extending 

a model for the corresponding system without subtyping with a family of coercion functions 

Coe =< Coe a b I a, b E Kind, , a::;'b > 

25 definition (general model definition A~Il" A~Il, and A~lla) 

A second order environment model for AS""l, A::;J.t2 or ASJ.t3 is a 7-tuple 

< Kind, if!con8) Tcons; Dom, if!termJ T term , Coe >, 
where Coe is a family of coercion functions, 

Coe =< Coea b E [DOnla ----+ Domb] I a, bE /(ind* , as*b > 
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satisfying 'Po , 'P1 , Parrow and 'P3 , and the rest as in the definition of the general model definition 

for AI'" AI'. or AI'3 (definitions 5,6 and 10). 
o 

26 theorem (coherence) 

The semantics of ASi'll ASi'2 and ASi'3 are coherent 

proof 

For the systems A~I'. and A~1'3 we have the same type inference rules as for A~. So the proof 

of coherence for A$ (theorem 39) also proves coherence for A~I'. and A~I"3' 

The two extra type inference rules that we have in A~I'" viz. (FOLD) and (UNFOLD) 

r I- M : I'f ( NFOLD) 
r I- unfold., M : f(p!) U 

r I- M: f(p!) (FOLD) 
l' F lold., M : 1'1 

do not pose a problem as far as coherence is concerned, because of the subscripts of fo1dIJJ and 

unfold., 
o 

For the model constructions we only have to define a pre-order on f{ ind", that corresponds with 

the subtype relation on types. We can then construct a model in the same way as we did for A$, 

as an initial fixed point of a functor IF on [Kind., CPO .L]PR. 

5.3 The construction of a cpo model for A -:;, PI 

For the model construction we will again need some properties of the subtype relation: 

27 lemma 

o 

r I- (T --+ T ~ (T' --+ T' ==> 
r I- ilf :<::: ilg ==? 

r I- pf :s 1'9 ==? 

r I- (T' < (T and T < T' - -
r, (l' : * I- f et :<::: get 
r,a: *,(3: *,a:S (31- fa:S g(3 

We prove this in the same way as we proved lemma 14 . We define a relation 5:.' on types. For ::;' 

we have the same derivation rules as for:S, except instead of (TRANS) we have the rule (:STEQ). 

Clearly r I- u :S' T co} r I- u :s T, and by the next lemma we also have r I- u :s T co} r I- u :S' T. 

28 lemma ~'is transitive, i.e. r I- p $.' (T &r I- (T 5:.' T => r I- p 5:.' T 

proof 

The proof is almost the same as for lemma 15. The only difference is that we now also have the 

possibility that 

(d) p =, pf , u =, pg and T =, ph 

For this case r I- p :s' T is proven as for (b) and (c): 

The derivations of r I- p :s' u and r I- u :S' T , must both end with (:Sll), possibly followed by 

(:STEQ). SO r,a: *,(3: *,a:S(31- fet:S' g(3 and r,(3: *,,: .,(3:S, I- g(3:S' 11.,. 

By the induction hypothesis r,a: *,r: *,O'::;'r f- hO' 5:.' hr, so r I- III $.' Ilh and hence r I- p $.' T. 

o 

So r I- u :s' T o¢o} r I- u :s T, and for :s' it is obvious that lemma 27 holds. 

We will also need 
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29 lemma r I- I'f $ 1'9 => r I- f(l'fl $ 9(1'9) 
proof 

Suppose r I- I'f $ 1'9. 

Then r, a: *, (3 : *, a $ (31- fa $ g(3, and in the derivation of this we can substitute I'f for a anel 

1'9 for (3, which gives us r I- f(l'fl $ g(l'g) 
o 

We again use a term model as the submodel for the constructor expressions. 'Ve define the relat.ion 

:$'" on I( ind. as we did for the model construction for A:$;. 

30 definition ($') 
If a,b E Kind., then a and b are closed type expressions, i.e. <>1- a: * and <>1- b: *, so we can 

define $'by 

a <' b iff < >1- a < b 

o 

31 lemma r I- u $ T <==> 't1J [r I- u : * ] 'I $'[ r I- T : * ] 'I 
proof By induction on u or T. 0 

We define a functor 1F on 1X, 1X = [Kind" CPO 1.]PR. 

32 definition (1F: 1X-->1X) 

The object part of 1F is defined as follows. Let F E Obj(1X). Then 1F F E Obj(1K.), i.e. 1F F is a 

functor from I{ ind, to CPO 1.. The object part of 1F F, is defined by 

(1FF)a = 
(1F F)u --> T 

(1FF)ITf 
(1FF)l'f 

domaina 
FS(Fu, FT) 
GP« FUa) I a E Kind, » 
FU(l'fl) 

and the morphism part of 1F F, is defined by 

(1FF)a$b 
(1F F)u --> T$U' --> T' 
(1F F)ITf $ITg 
(1F F)I'/$I'g 

coerceab 
FS(F u'$u, F T$T') 

= GP« F fa$ga I a E I{ind, » 
F f(1'f)$g(l'9) 

The morphism part of 1F is defined as follows: 

if(1J,O) E Hom1K.(F,G), so 'I: F~G and 0: G~F then 1F(1J,O) = ('1',0'), where 

(1J~,O~) 

(t]~_T,(i~_T) 
(1J~f,O~f) 
(1J~f,O~f) 

That 1F preserves identities and composition can easily be verified (pointwise). 
o 

In the same way lemma 24 is proved, we can prove that 1F is w-continuous. 

So 1F has an initial fixed point (Dom&Coe, (if>, 1jI)), which gives us a family of cpos solving the 

recursive domain equations with the associated bijections, and a family of coercions satisfying 

the coherence conditions. 
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For the coercions between recursive types 

will hold. This means that coercions commute with unfolding and folding, i.e. Cae",", followed 

by unfold"g gives the same result as unfold", followed by Coe'("fl g(MI' and foid", followed 

by Cae", "g gives the same result as Coe'("J) '("'I followed by fold", . However, because of the 

subscripts of fold and unfold this is not needed for coherence; Cae",", and Coe'("fl 9("') cOllld 

be completely unrelated. 

Because of (.), the subscript of unfold can be omitted. We can check that lemma 38 holds foJ' the 

rule (UNFOLD), so the semantics will then still be coherent. 

Possibly the subscript of fold can also be omitted. However, as shown in the example on page 16, 

there are two possible types for a term fold M, and fold M does not have a minimal type. Therefore 

the coherence proof as given in the appendix can not be used. 
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5.4 The construction of a cpo model for A'S./-l3 

We distinguish covariant and contravariant positions in trees. A node or leaf in t is at a covariant 

position in t if, going from that node or leaf to the root oft, we enter an even number of -4-nodes 

from the left-hand side, and else it is at a contravariant position in t. For example, in 

--> 
. ./ '\. 
mt real 

int and 0' occur at covariant positions, whereas real and ----+ , occur at contravariant 
. ./ "I 

positions. 

33 definition (S") 
s $,*t 

iff 

mt rea 

except for their leaves, sand t are the same tree, and for all leaves a and b in the same place in s 

and t, respectively: 

• a 5:. B b and a and b occur at covariant positions in sand t , or 

• b s;,Ba and a and b occur at contravariant positions in sand t , or 

oa=b 

o 

We want to prove 

r I- <T S T ~ V ry [ r I- <T : * ] ry S" [ r I- T '* ] ry 

It is really the implication ==> that is important, since if that implication holds, then a family of 

coercion functions 

< Coe a b I as"b > 
will contain the required coercions. 

34 lemma r I- <T S T ~ Vrl=" [r I- " : * ] ry S' [r I- T : * ] ry 
proof by induction on the derivation of r I- <T S T. 

We only treat the prime case, (SI'). Suppose the last rule of the derivation is (SI'I, 

Define r' = r, a: *, (3 : *,0' S (3. 

r,a: *,(3: *,0' < (31- fa <g(3 

r I- I'f S I'g 

By the induction hypothesis: Vr'l=" [r' I- fa : * ] ry S' [r' I- g(3 : * ] ry. 
To prove: Vrl=" [r I- I'f : * ] ry S" [r I- I'g : * ] ry. 
Assume r 1= 1). Define F = [r I- f : * => * hand G = [r I- 9 '* => * h· 
By induction on i E IN we prove F; 1- S'G; L 

base FO 1- = 1- S'1- = GO 1-
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step F'+1.L = ([ f I- I : * =} * hHF'.L) = [f' I- Iu : * h[u:= F' .L][~:= C'.L] 

0'+1.1 = ([r I- 9 : * =} * h)(C'.L) = If' I- g~: * h[u:= F' .L][~:= C'.L] 
F'.L ::;'C'.L, so ry[u:= F' .L][~:= C'.L] satisfies f'. Then by the induction hypothesis 

I f' I- lu : * h[u := F' .L][~:= e'.L]::;' I f' I- g~ : * ] ry[u := F' .L][~ := C'.L] 
so Fi+l.l =:;*Ci +1 .1.. 

[f I- 1'1 : * ]ry = U F' .1 ::;' U C'.L = I f I- I'g : * 1>J. 
o 

It is easy to see that 

so 

<' ==> Sf $* S 1\ t ::;*t' 

ITO' <* TIcr ==> s ::;*t 

! ! 
s t 

[u ~ T ] ::;' [u' ~ T'] ==} I u' ] ::;' [u ] and [T ]::;' [ T' ] 

[III]::;' [IIg] ==} '1'[0 lEK'nd, Ifu: * ]::;' [ga : * ] 

By P2 : for all [u ~ T] ::;' [u' --> T' ] 

and by P3 : for all [III] ::;' [IIg ] 

To construct the required family of cpos and a family of coercion functions we can now use the 

same construction we used for ...1.:$. 

35 definition (IF: lK....,lK) 

The object part of IF is defined as follows. Let F E Obj(lK). Then the object part of lFF, a 

mapping from Obj( Kind,) to Obj( CPO .L), is defined by 

(lFF).u 
(lFF) /_ '\,. 

u T 

(lFF) IIo 
! 
T 

(IF F).L 

:::;; domain,(1 
= FS(Fu, FT) 

CP« F(T[u:= all I a E Kind, » 

= Yl 

and the morphism part of IF F, a mapping from M 01·( J{ ind,) to M orr CPO.L ), is defined by 

(IF F).u ::; . T = coerceOT 

(lFF) ,/_ '\. ::; ,/_ '\. = FS(Fu'::;u,FT'5oT) 
u ru' T' 

(lFF) IIo5o IIo = CP«Fu[fr:=a]::;T[u:=a] laEKind, » 
! ! 
U T 

(IF F).l5o.l = F .1::;.1 
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The morphism part of 1F is defined a, follows: 

if('I,O) E Hom1lC(F,G), then 1F('I,O) = ('1',0'), where 

(iddomainq ,iddomaino 

F SPR«'Iu. 0"), ('1,,0,» 

o 

In the same way lemma 24 is proved J we can prove that 1F is w-continuous. 

So 1F has an initial fixed point (Dom&Coe, (<I>, 'II)) which gives us a family of cpos solving the 

recursive domain equations with the asociated bijections, and a family of coercions satisfying the 

coherence conditions. 

5.5 The construction of a cpo model for II:::: /12 

The only difficulty for AS", is that to construct a model we have to prove 

r I- (J' --+ T ::; a' -4 T' =::::} r I- u' ::; u and T ::; T' 

r f- IIf < IIg ==} r, a '* f- fa :'0 ga 

which is still an open problem. 

Once it is proved, we can construct a model in the same way the models for A~J.t1 and A~/t3 
have been constructed. 

The subtype relation on Kind. is of course defined as it was for ASI-', (definition 30). 
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6 Conclusion 

The theory of O-categories has proved extremely useful. Because the functor category [A, BJ is 

an O-category if B is, we can use all the standard results for O-categories and the associated 

categories of embedding-projection pairs. The fact that we have used the O-category CPO is not 

essential. Other O-categories could be used, for instance the category of directed cpos or complete 

lattices: types would then be interpreted as directed cpos or complete lattices. 

To all the systems we described, other type constructors, such as x (Cartesian product) , + (sepa

rated sum), ® (smashed product) , Ell (coalesced sum) or (-h (lifting) can easily be included. We 

add them as constructor constants of the approprate kind, and add the associated type inference 

rules. For the general model definitions the necessary domain equations must. be given, and all 

that is required for the construction of a cpo model is a corresponding functor, like we have the 

function space functor FS for ~-types. 

For example, for x-types we would have to add a type constructor x of kind * ~ *( * ~ *) and 

the recursive domain equations 

DOm[UXT] 

so we would have to extend the definition of F with 

where CP is the product functor. The natural subtyping rule for x-types 

rl-q<U'rI-T<T' 
r r q x T :::; q' X " 

can be added, and for coherence we will need the additional requirement 

The type constructor E, which can be used for abstract data types (see [MP88j), can also be added. 

These E-types or existential types, can be treated like the II-types. Just like the generalized 

product functor is used for II-types, the generalized sum functor (see [tEHS9b]) can be used for 

E-types. 

For the systems with subtyping, interesting extensions are of course labelled products, i.e. records, 

and bounded quantification. 

For bounded quantification we have the type formation rule 

r,a:*,a<ul-T:* rl-a:* 
r I- (IIQ~u.T): * 

The recursive domain equations for such a type is 

II 
so we get 

G P( < Dam[ T J I [ Q I E f{ ind. , [Q I ~. [u I » 
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The subtyping rule for II-types becomes 

r, " : ., <> <" I- T < T' r I- ,,' < " «II) 
r I- (II<>::;".T) ::; (II<>::;,,'.T') -

and for the coercion functions we get the following coherence conditions 

= 

where proia is the" a" -th projection function, so 

proja E ( II Dom[ T 1.[a,=oJ) ~ Dom[ T 1.[.,=oJ 
a'S"'(q) 

and 

Labelled products can be handled similarly. For these types we have the type formation rule 

rl-",:" ... ,,,":, Z" ... ,I"EC V;,j(l;=lj=}i=j) 
r 1-< 11 : Ul, ... ,In: O'n >: * 

Here C is the set of all labels. 

The required domain equations are 

II Dom[n'a,,, I. 
"E{l, , ... J.} 

so we get 

The subtyping rule for record-types is 

r I- "I < T" ... ,"rn < Trn m < n (::;REC) 
rl-< I}: O'I, ... ,ln: O'n > ~ < 11: Tl1 ... ,lm: Tm > 

and the associated coherence conditions are 
Coe«ll:Ul .... ,I .. :u n > ][<11 :1"11 .. ,lm:7",>] 

<1>-1 
<1.:71, .. ,lm:T",> 

oGP« Coel a, liT;] II; E {1" ... ,lm } ». <proj" II; E {Z" ... ,I.d > 
O<P<11 :0'1, .. ,/ .. ;0- .. > 

where 

< proj" II; E {I""" 1M } > E II Dom[a, I) ~ ( II DOJll[a, I) 
liE{11, ... ,I .. } l;f{I I , ... ,/",} 

When record types are added in this way, the models will also provide the semantics for record 

updates. It remains to be seen, which of the operations on records and record types mentioned in 

[CM89] can be modelled in this way. 
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Labelled sums, or variants, and bounded E-types can be treated in the same way as bounded 11-

types and labelled products. Instead of the generalized product functor GP we use the generalized 

sum functor. 

Another possible extension of the systems is to allow abstraction not only of terms over types but 

of terms over all kinds, and the corresponding form of application, i.e. terms to kinds. The system 

we then get is Fw ( AW in Barendregt's cube [Bar9 ]) extended with subtyping and recursive types 

(but without recursion on higher kinds). To model the polymorphic types II(A" : 1<.0") we also 

use the GP-functor, only this time applied to a family indexed by Kind. instead of Kind •. 
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Appendix: Coherence 

We will now prove that the semantics is coherent if the coherence conditions Po ,PI ,1'2 and 1'3 
hold. We use the fact that we have minimal typing in A~: 

36 lemma (minimal typing) 

In a given context r every term M has a minimal type, i.e. a type Urn;» such that 

r I- M : Umin and 't/q r I- M : (T ::::;} r I- Urnin ~ (J' 

proof by induction on M 
o 

Type derivations for a term are for a large part determined by the syntax of that term. If we ha.ve 

a derivation for r I- M : (T, then the syntax of M determines which is the last rule other than 

(SUB) used in that derivation. For instance, if r f- (Ax: O'.M) : 0' ---+ T the last rule ot.her than 

(SUB) used in the derivation must be (---+ I). We cannot tell by the syntax of a term if and \\'here 

the rules (SUB) may have been used in a type derivation. 

First a few words about notation. 

• By [r f- M : 0' ] we mean the function (J.~ . I r f- M : 0' ] ry) from environments ry, ry Fr. 

to U" Dom, n-q" I"' 

• Suppose Ll. is a derivation deriving r f- M : T from r 1 f- N, : 0'1 ... r n f- Nn : O'n I.e. 

fnl-Nn:Tn 

rf- M: T 

Using the definition of [ ], this derivation gives us I r f- M : T ] in terms of 

Ir f- N, : 0'1] '" Ir f- Nn : O'n l In other words, Ll. determines a function n", such t.hat. 

• We write 

[rf-M:T] = n,,([rf-N, :0'1 ] ... [rf-Nn :O'n]) 

r f- M: 0' 

rf-M:T 

for any derivation deriving r f- M : 0' from r f- M : T. Such a derivation can only use rule 

(SUB), a number of times. 

• If (T) is a type inference rule, we write 

r 1 f- N1: O'I ... r n f- Nn :O'n(T) 
rf-M:T 

if r f- M : T can be derived from r 1 f- N1 : 0'1 ... r n f- Nn : O'n using (T) exactly once, (S U il) 
any number of times, and no other rules, i.e. 

r 1 f- N, : 0'1 r n f- Nn : Un 

r 1 f- N1 :? r n f- Nn :? 
r f- M :? 
rf-M:T 
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37 lemma For all derivations A : 
ff-M:<7 

ff-M:T 

nil. is the same, viz. 'R.tl. = .le. Coe q " 0 e 
proof follows directly from Po and PI . 

o 

38 lemma For all type inference rules (T) not equal to (SUB) all derivations A, 

yield the same Ro.. 
proof 

We distinguish between the four possible choices for (T): (- I), (- E), (III) and (lIE). For 

the first two we will need Pz , for the last two P3 . We treat only one case, ~ E; the ot.hers are 

similar. 

Suppose 

A: ~f~f-=M~: ~<7±1 =_~<7~2=f~f-=N~: <7~3 ) 
f f- MN: T (- E 

then there are types PI and P2 such that <73 :<:: PI :<:: <71 and <72 :<:: pz < T and 

M : 0'1 --+ 0-2 N: 0'3 

M : PI - pz N: PI (_ E) 
MN :P2 

MN:T 

Using 'P2 , we can prove that ntl. does not depend on PI and pz· 

<l>p,_p, [M: PI - pz ] '1 

{ lemma 37} 

4>Pl_p~( CoeQ1--+U'J PI-P'J [M : 0"1 ---+ 0'2] 1]) 
= {pz} 

<l>p,_p,«<I>;;,I_p,oFS( Coep, 0" Coea, p,)o<l>a,_o,) [M : <71 - <72 ] '7) 

= {definition FS} 

«PPt--+P2( CPp/_P2 0 CoeU2 P2 0 (<P Q1 --+0"2 [AI: 0'1 - CT2 ] 1J)o Coe pt 171 ) 

{<I> p, _p, is a bijection} 

CoeU';l P20(cI>UI_0"2 [M : 0'1 ----> (7"2 ] fJ)O Goe pl 0") 

and using this we can prove 
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IMN:rl'7 

= {lemma 37} 

Coep, T[MN:P2)'7 
{definition I ) for (-> E)} 

Coe p, T«<I>p,_p, 1M: P' -> P2 )11) [N : p, )'7) 
= {lemma 37} 

Coep, T( (<I>p,_p,IM :p, ->P,)TJ) (Coeo, p, IN: 0"3 ]11)) 
= 

( Coep, T.(<I>p,_p, 1M: p, -> P2 )'7). Coeo, p,) IN: 0"3 )11) 
= {see above} 

( Coep, T' Coeo, p,.(<I>o, _0, [M : 0", -> 0"2 D I)), Coe p, 0,' Coeo, p,)[ N : 0"3 )1) 
{2 X P, } 

( Coeo, T.(<I>O,_o, 1M: 0", -> 0"2] 'I)' Coeo, 0,) [N : 0"3] 'I 
So 1M N : r ) = AI) [M N : r ] '7 does not depend on p, or P2. 
o 

39 theorem (coherence) 

All derivations of r I- M : r give the same meaning [r I- M : r ) '7 . 
proof by induction on M. 

base 

M is a variable or a constant: trivial. 

step 

Suppose we have two derivations, ~1 and ~2 , for r I- M : T. Then these derivations must end 

with the same rule, so they are of the following form 

~11 .6. In ,6,21 .6. 211 

A rj I- N, : 0", ... r 0 I- Nn : O"n (T) 
~, : l' F M : 0" ~2 : 

r,I-N,:p, ... rnI-No:p"(T) 
I'FM:p 

rl-M:r rl-M:r 
By the induction hypothesis, all derivations for r I- Ni : O"i yield the same meaning 

[r I- Ni : O"i ), and the same is true for r I- Ni : Pi. 

So in tl.j each D..ji can be replaced by any derivation we want, and the resulting derivation will 

give the same meaning for r I- M : r as ~j. 

We wiII now use the fact that we have minimal typing. 

Let ai be the minimal type of Ni for i = 1 ... n. Then the following two derivations, ~\ and ~~, 

give the same meaning for r f- M : T as 81 and .6. 2 , respectively: 

... 
~, . 

f 1 l-N1 :al fnI-Nn:Q:'n 

r, I- N, : 0", . .. r n I- Nn : (Tn (T) 
I'I-M:(T 
rl-M:r 

But by lemma 38 for all derivations ~ 

... 
~2 . 

fl I- Nt : al rn I- Nn : 0',1 

f l I-N1 :PI rnl-Nn:Pl 
rl-M:p 

rl-M:r 

~ : r, I- N, : 0', ... r 0 I- No : an (T) 
rl-M:r 

R", is the same. So ~\ and ~~ both give the same meaning for r I- M : T. 

o 
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Using lemma 16 and the examples on page 27) we can actually show that the semantics is coherent 

if and only if Po ,Pt ,P2 and P3 hold. 
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