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Abstract 
This paper describes the results of a study on the impact of lifecycle events on activity-travel 
choice decisions of individuals. An Internet-based survey was designed to collect data 
concerning structural lifecycle events. In addition, respondents answered questions about 
personal and household characteristics, possession and availability of transport modes and their 
current travel behavior. In total, 710 respondents completed the online survey. The complexity 
of transport mode choice is modeled using a Bayesian Belief Network. Previous papers 
describe the conceptual framework underlying the model and the temporal effects of lifecycle 
events on mode choice. This paper focuses on influences of structural life trajectory events on 
each other and on changes in resources that impact activity-travel decisions. We investigate the 



extent to which causal relations exist between these events and their direct and indirect effects 
on changes in transport mode availability and the possession of transit passes. A structure 
learning algorithm is used to build a Bayesian Belief Network of interdependencies between 
these events from the data.  
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1. Introduction 
The increasing interest in encouraging public and slow transport modes has stimulated the need 
for further research about transport mode choice decisions. The effectiveness of transport 
policies in decreasing car use and stimulate alternative transport modes such as bike and public 
transport will benefit from a better understanding of the decision process underlying transport 
mode choices. It is generally believed that decision processes underlying transport mode choice 
are much more complex than traditional models reflect. Traditional transport mode choice 
models typically assume that the probability that an individual will choose a particular transport 
mode is a function of attributes of the choice alternatives and a set of socio-demographics 
(Verhoeven et al, 2005a).  
 
However, transport mode choice decisions are not made in isolation. Choice behavior is often 
context-dependent, implying that conditions beyond socio-demographics and attributes of the 
choice alternatives influence the outcome of the decision. Moreover, the dynamics of transport 
mode decisions are often ignored. We assume that other aspects in addition to 
socio-demographics and attributes of the choice alternatives influence the transport mode 
choice decision. In particular, structural lifecycle events that occur during an individual’s and 
household’s life course could trigger shifts on activity-travel choice decisions of individuals. 
Traditional models often take changes in attributes into account. However, these changes are 
not modeled in a dynamic network. In this context, structural lifecycle events are defined as 
major events in a person’s life such as moving house, an increase or decrease in the number of 
persons in a household, and changing job or job location.  
 
We assume that an individual is more likely to reconsider his/her current mode choice after or in 
anticipation of the occurrence of a structural lifecycle event. Some structural lifecycle events, 
for instance moving to another residence, may dramatically change the spatial context within 
which travel mode choice decisions have to be made. A consequence of this change could be a 
shift in characteristics, like accessibility, distance and travel time relationships, and with it a 
shift in the utilities an individual derive from alternative travel modes. Such structural lifecycle 
events may also trigger other events, such as a change in car possesion, that may expand or 
reduce a choice set. The change in situation may trigger learning processes so that the 
implications for choice behavior may materialize gradually over time after the event. 
 
The aim of the study is to analyze the influence of structural lifecycle events on activity-travel 
decisions with a special focus on changes in resources influencing transport mode decisions 
using a Bayesian Belief Network (BBN). BBN is a powerful knowledge representation and 
reasoning tool, depiciting the direct and indirect effects between probabilistic variables. A BBN 
takes into account the (inter)dependencies among the variables which are involved in the 
complex decision making process without imposing a hierarchy of importance on the variables 
of the model. The advantage of using a network structure is that both direct and indirect effects 
of events can be measured and modelled.  
 
This paper describes the first results of a study that examines the causal relationships between 
structural lifecycle events and their effect on activity-travel decisions. First, we will discuss our 
perspective of taking structural lifecycle events influence activity-travel choice. Next, we will 
discuss briefly how Bayesian Belief Networks can be used to model the problem at hand and 
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how the structure and parameter learning algorithms work. After that, our modeling approach is 
illustrated and the data collection, which is used to build the network, is introduced. Finally, the 
core contribution of the paper will be discussed: the application of a structure learning 
algorithm to derive the causal structure of the Bayesian Belief Network. The paper will be 
concluded by discussing the potential of the suggested approach and some avenues of future 
research. 
 

2. Structural Lifecycle Events and Activity-Travel 
Decisions 

Activity-travel choices are not made in isolation, choice behavior is often context-dependent. 
The dynamics of activity-travel decisions are often ignored in traditional models. Van der 
Waerden, et al (2003a, b) argued that critical incidents and key events may be relevant concepts 
for studying the dynamics of activity-travel. Structural lifecycle events are the main events they 
considered. Later, Prillwitz and Lanzendorf (2006) described the impact of life course events on 
car ownership, while Beige and Axhausen (2006) described long-term mobility decisions in 
terms of a life course. To model the effects of key events, Verhoeven, et al (2005a, b) argued 
that a Bayesian Network may constitute a valuable approach. More recently, Xie et al (2006) 
also applied this approach in modeling travel mode choice behavior. Their explanatory 
variables were personal characteristics, such as household income, household size, dwelling 
type, travel time etc.  
 
In this study, we explore the causal relations between structural lifecycle events at different 
moments in the past and activity-travel choice, with special reference to car changes in 
ownership and transit pass. A structural lifecycle event is defined here as a major event in a 
person’s life such as a marriage or move that may trigger a process of reconsideration of current 
behavior. Some events may dramatically change the space-time context within which travel 
decisions have to be made. Moving house implies a shift in characteristics such as accessibility, 
distance/travel time relationships and perhaps also the utility an individual derives from 
alternative travel modes. An event such as changing jobs may also lead to changes in these 
characteristics. A final example is the birth or adoption of a child, which may induce new 
activities (e.g. day care). 
 
This new perspective is modeled in terms of a Bayesian Belief Network. The advantages of this 
method are that it allows representing a complex network with direct and indirect causal 
relationships between a set of variables and that it is based on probabilistic distributions among 
the various states of a variable. This BBN method is explained briefly in the next section.  
 

3. Bayesian Belief Networks 
Bayesian Belief Networks (BBN) developed in overlapping fields such as Artificial 
Intelligence and Machine Learning represent a powerful approach for combining different 
knowledge sources with various degrees of uncertainty in an efficient and structured way. A 
Bayesian network is a network representation of the interrelationships and conditional 
dependencies between a set of variables (Neapolitan, 1990).  
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Bayesian networks are directed acyclic graphs (DAGs) in which the nodes represent variables, 
the arcs signify the existence of direct causal influences between the linked variables, and the 
strenghts of these influences are expressed by the forward conditional probabilities (Pearl 1988). 
The directed acyclic graphs do not allow undirected or bidirectional arcs and cyclic feedback 
loops are neither permitted. A Bayesian network consists of two components: 1) a structure 
component (i.e., the DAG), which specifies the structure of cause-effect relationships between 
variables; and 2) a parameter component, which consists of a set of conditional probability 
distributions that provide the statistical interpretation of the cause-effect dependence 
relationships depicted by the graphical structure.  
 
Thus, each node has an underlying conditional probability table (CPT) that describes the chance 
distribution across the states of that specific node for each possible combination of states of the 
parent nodes. An arc between two nodes represents a causal relation, the node from which the 
arc originates is called the parent node and the other node is called the child node. The CPT of a 
node that has no parents is simple, it only contains the states of this node and the chance 
distribution across the states, the sum of all chances is of course equal to 1.0 (for each row). The 
CPT of a child node is more complicated; the conditional probability table expands with the 
possible state configurations of the involved parent node(s). The CPT describes the chance 
distribution across the states of that specific child node for each (combined) state of the parent 
node(s). Each node has a certain probability distribution, which represents posterior 
probabilities about the likelihood of possible outcomes for each node. The initial probabilities 
for a node that has no parents are simple, they exactly correspond with the chance distribution 
across the states in the CPT. The probabilities of a child node depend on the probabilities 
regarding the parent nodes.  
 
A Bayesian network is denoted by B(G, Θ) , in which G =(N, A) is a DAG where N, the set of 
nodes, represents a set of variables X = {X1, X2,…., Xn } and A is a set of arcs representing the 
directed dependency relationships from parent nodes to child nodes, and Θ denotes a set of 
CPTs associated with the node set N and the arc set A , where θi ∈  Θ , where i = 1, 2,...,n , is the 
CPT of variable Xi, θi = P(Xi | Πi), given the parent variable set Πi of Xi. In a given Bayesian 
network B, marginal and conditional independencies encoded by its DAG structure provide the 
following factorization of the joint probability distribution: 

∏
=

∏=
n

i
iin XPXXXP

1
21 )|(),....,,(       (1) 

 
Standard algorithms can be used to compile the network and update probabilities when 
evidence for certain nodes becomes available and is entered to the network. The BBN can 
handle uncertainty in the sense that it uses probability distributions across states. If evidence for 
a certain node becomes available it can be entered in the network and all probability 
distributions can be updated by automated procedures.  
 

4. Learning Networks 
Until now we assumed that the structure and conditional probabilities necessary for 
characterizing the network were provided externally, say by an expert or an intelligent agent 
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capable of encoding real-world experience in such terms. Our task has been to draw inferences 
from the network but not to challenge its authenticity. It is not always easy to construct a 
complicated network based on the literature and/or common knowledge. Fortunately, nowadays, 
methods are available that support the derivation of a network automatically from direct 
emperical observations, thus bypassing the human link in the process known as knowledge 
acquisition.  
 
Pearl (1988) describes that the task of finding a generic model of emperical data usually falls 
under the category of learning. Learning can be thought of as the process of acquiring an 
effective internal representation for the persistent constraints in the world, i.e., generic facts and 
rules, as well as assembling the computational facilities by which predictions and explanations 
are produced. Learning is comprised of two subtasks; structure learning and parameter 
learning. Taking Bayesian belief networks as the basic scheme of knowledge representation, 
the learning task seperates nicely into two additional subtasks; learning the numerical 
parameters (i.e., the conditional probabilities) for a given network topology and identifying the 
structure itself, specifically, the links and the directionality of the arrows. These subtasks are 
clearly not independent because the set of parameters needed depends largely on the structure 
assumed, and conversely, the structure of the network is formally dictated by the joint 
distribution. Still, it is more convenient to execute the learning process in two separate phases: 
structure learning and parameter learning. 
 
Hugin, a software program for learning Bayesian networks (Hugin Expert, 2005), uses the PC 
or NPC algorithm for structure learning and the EM algorithm (Estimation-Maximalisation) for 
parameter learning. The PC algorithm, which Hugin uses, is a variant of the original PC 
algorithm (Spirtes et al, 2000) and it belongs to the class of constraint-based learning 
algorithms. The basic idea of these algorithms is to derive a set of conditional independence and 
dependence statements by statistical tests. The PC algorithm consists of the five following steps 
(Spirtes et al, 2000 and Jensen et al, 2002):  
 
1. Statistical tests for conditional independence are performed for all pairs of variables (except 

for those pairs for which a structural constraint has been specified). 
2. An undirected link is added between each pair of variables for which no conditional 

independences were found. The resulting undirected graph is referred to as the skeleton of 
the learned structure. 

3. Colliders are then identified, ensuring that no directed cycles occur. (A collider is a pair of 
links directed such that they meet in a node.) For example, if we find that A and B are 
dependent, B and C are dependent, but A and C are conditionally independent given S, not 
containing B, then this can be represented by the structure A --> B <-- C. 

4. Next, directions are enforced for those links whose direction can be derived from the 
conditional independences found and the colliders identified. 

5. Finally, the remaining undirected links are directed randomly, ensuring that no directed 
cycles occur. 

 
The first two steps are repeated until all the possible pairs are tested. First only pairs are tested 
(no conditional relations), after that pairs are tested conditional on a third variable and so on 
until all pairs are tested conditional. The following independence testing procedure is used for 
the first step in the PC algorithm: If variable X causes variable Y, it implies a probabilistic 
dependency, P(Y | X) ≠ P(Y). Thus, if the null hypothesis of marginal independence of X and Y, 
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H0 : P(Y | X) = P(Y) or P(X, Y) = P(X)P(Y) is rejected, the directed dependence X Y is 
supported. 
 
One important thing to note about the PC algorithm is that, in general, it will not be able to 
derive the direction of all the links from data, and thus some links will be directed randomly. 
This means that the learned structure should be inspected, and if any links seem counterintuitive 
the NPC algorithm, which allows the user to interactively decide on the directionality of 
undirected links, could be used instead. Another possibility is to import constraints in the 
structure learning process. Constraints describe were no directed or undirected link could 
appear. 
 
The EM algorithm (Lauritzen 1995, Cowell and Dawid (1992) tries to find the model 
parameters (probability distribution) of the network from observed (but often not complete) 
data that maximizes the log-likelihood of the current joint probability distribution on the case 
data (for details of the method readers are referred to Lauritzen (1995) and Cowell and Dawid 
(1992)).  
 

5. Modeling Approach 
The assumed effect of events on activity-travel decisions is inspired by the theory of learning 
and adaptation. According to this theory, individuals develop and continuously adapt choice 
rules while interacting with their environment. Transport systems, urban environments are 
highly dynamic, non-stationary and uncertain. People are also very dynamic; they adapt to all 
kind of changes (Arentze et al, 2003).  
 
The reinforcement learning approach assumes that individuals’ choices in complex 
environments are driven by rules that are formed and continuously adapted through learning 
while the individual is interacting with the environment. Through search an individual explores 
choice opportunities in his or her environment and keeps a memory record of the varying 
rewards associated with his actions. Actions that produce positive rewards are reinforced and 
have a higher probability of being repeated in future choice situations under similar conditions, 
while actions with negative outcomes tend to be avoided. In stationary environments, 
reinforcement learning implies that random behavior will ultimately evolve into habitual 
behavior.  
 
In non-stationary environments, a gradually changing environment or discrepancies between 
the changing environments and changing personal or household circumstances may imply that 
the behavior of interest is no longer adequate to cope with the new situation. An individual may 
then have to change one or more facets of his habitual behavior, and/or change household 
resources such as number of available cars or transit passes that influence such patterns. 
Structural lifecycle events may have a similar, but attenuated effect. A dilemma for any 
individual, who has limited knowledge about new circumstances, is the choice between 
exploration and exploiting current knowledge. Selecting actions that have not been tried before 
gives the opportunity of discovering new choices that may yield higher rewards than the 
currently best action. However, this comes with the risk of negative experiences. Individuals 
who wish to avoid such risks may stick to the currently best choice. Thresholds for 
reconsidering current choices and the thoroughness of search will vary depending on the 
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individual’s tendency to take or avoid such risks.   
 
The link with this general theory of learning and adaptation and lifecycle events is that by 
learning and adaptation individuals have adapted to some extent to their environment, and are 
therefore in some state of equilibrium (exhibit habitual behavior) until an event causes such an 
amount of change that an individual feels the need to start exploration, implying they may 
reconsider their current choices and/or resources. Such behavior may be reactive or proactive. 
Learning would imply that adaptation to new circumstances takes time and, hence, that current 
behavior cannot be fully understood in terms of the current state of the individual and the 
environment. Besides learning processes, other mechanisms may produce temporal effects such 
as delayed responses (people respond to a change only after some time), accumulation of stress 
(people avoid too many changes in a short amount of time), etc. 
 
The existence of temporal effects of lifecycle events on mode choice was tested in a previous 
paper (Verhoeven et al, 2005b). The results of a regression analysis indicated that all identified 
events had significant temporal effects. Moreover, the effects were interpretable in terms of 
particular temporal patterns of adaptation. We assume that a structural lifecycle event changes a 
certain personal situation, i.e., state. Figure 1 illustrates such influences in a graph. In this 
example, the events describe changes in residential location and the substates describe the 
different residential conditions. This graph represents (a part of) the life course of one 
individual. For instance an individual lives with his parents (substate C) and he/she moves in 
the first quarter of 2004 to his/her first dorm room (substate B). Soon after this change he/she 
moves again and starts living together (substate A). This example illustrates transitions between 
different substates, which describe the residential condition of an individual; substate A = living 
on your own, state B = living in a dorm room and state C = living with parents. The event 
describes changes in residential situation. Several different type events are possible; for 
example first dorm room, another dorm room, living on your own, renting a house, buying a 
house, etc.  
 
 
 
 
 
 
 

 
Figure 1: Effects of events on one state dimension 

 
Figure 2 illustrates another example of changes in states caused by a structural lifecycle event. 
In this case the structural lifecycle event describes changes in household composition. There are 
different aspects of household composition and, hence, dimensions of states, namely the 
number of household members (state 1), the number of children (state 2) and the marital state 
(state 3). Figure 2 illustrates the changes in household composition and the corresponding 
substates for one individual. In this example the event in the third quarter of 2002 is a 
birth/adoption of a child. This results in a change in state 1, from two persons (substate B) to 
three persons (substate C). State 2 changes from no children (substate A) to 1 child (substate B), 
while state 3, the marital state stays the same, i.e. married (state C). The second change, the 
event in the third quarter of 2004, is also a birth/adaptation of a child. These two changes have 

Event Event 

substate C 

   2002            2003       2004 

substate B substate A
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no effect on state 3, marital state, this state stays the same. In case of a change such as getting 
married, it will only affect state 3 and states 1 and 2 will stay the same.  
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Effect of changes of an event on more states 
 
Figures 1 and 2 represent parts of a life course for one individual. Events may however be 
interrelated and have complex relationships with (aspects of) activity-travel behavior and 
attributes of the person that are not influenced by events (e.g., education, age, gender, etc.). In 
order to describe those influences of events for more individuals and take the complexity into 
account a Bayesian network is constructed. Figure 3 illustrates one component of this 
conceptual model describing the influences of events on states in time on a single dimension. 
The first row corresponds with a structural life cycle event, for example change in residential 
location. The first possible change in residential location for the time period t=1 is illustrated 
with node E1, the second possible change in residential location for the time period t=2 is 
illustrated with node E2, and so on until time period t. For every time period there is a 
corresponding state, which describes a personal situation. The logical causal relationships are 
represented with arrows; from Event to State within the same time period and from a prior State 
to the next State. 
 

 
 

Figure 3: Assumed conceptual model of the influence of an event on a state 
(E is event and S is state) 

 
This conceptual model could of course be extended with more events and corresponding states. 
Besides the assumption that a structural lifecycle event changes a person or household-level 
state, we also assume that events could influence each other. When an individual starts with a 
new job in a different location he/she might consider moving to that new location soon or late. 
In that case the occurrence of a change in work location could trigger a change in residential 
location. Another example of influences between structural lifecycle events could be the effect 

substate C substate C substate C

substate A substate B substate C

substate B substate C substate D

Event Event 

   2002            2003       2004 

State 3 

State 2 

State 1 
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of a change in work on income.  
 
Figure 4 illustrates the extended conceptual model. Besides the event i and the corresponding 
substate, an event j is included with the three corresponding substates 1, 2 and 3. Personal 
characteristics, such as age, education and gender, are included as well. Since they are not 
influenced by events, these characteristics are not represented in a state which corresponds with 
an structural lifecycle event. The continuous links represent the logical relationships, thus 
between event and state (in the same time period) and between prior state and the next state. 
The dashed lines represent possible relations among events and between events and personal 
characteristics, the existence and direction are still uncertain. The structure learning algorithm 
will decide if a relation exist and which direction the link should have. Every dashed line 
represents one of four categories of possible relations; (1) within event i, across time periods; 
(2) between event i and event j during the same time period, (3) between event i and event j 
across time periods and (4) between event i and personal chararteristics.  
 

 
 

Figure 4: conceptual model of the influence of event on each other 
 
Depending on the purpose of the model, two alternative approaches are relevant to structure 
those assumed event influences, namely by time period (i.e., quarter) or in a life course (i.e., age 
classes). The first approach can visualize influences between different events and the 
corresponding states in time, direct or with a certain delay in time. This first approach is time 
specific, while the second approach visualizes influence between events that could occur during 
a (general) life course at a certain age (period). According to the first approach the subscript in 
Figure 4 corresponds with a certain time period (for instance a quarter), but the subscript could 



 9

also represent a certain age period in the second approach (for example 1 = younger than 20 
years old, 2 = 20-30 years old, 3 = 30-40 years etc.). Obviously more structural lifecycle events 
could be included in the model, as well as corresponding states. Of course the model becomes 
more complicated when more variables are included in the model. 
 
In this paper, the result of the first approach, time period structure, will be described. In 
particular, we wish to analyze the influence of structural lifecycle events on each other and on 
changes in resources, influencing activity travel decisions. Given this focus, the events without 
corresponding states are included in the network structure. As mentioned before, the structure 
learning algorithm in Hugin will be used to discover which causal relationships exist between 
the five structural lifecycle events and the events, representing changes in resources. An 
Internet-based survey was designed to collect data concerning the events. First the data 
collection is described in more detail and after that the results of the structure learning will be 
discussed. 
 

6. Data Collection 
Existing data collections often do not exactly match the necessary data for a particular research. 
For that reason researchers collect more and more data. These days especially internet-based 
questionnaires are popular compared to questionnaires distributed by post. The advantages of 
an internet-based questionnaire are rather simple distribution among respondents by e-mail, the 
costs are low compared to the cost for postal distribution and the processing of data is less time 
consuming. For this particular study various personal information is needed: structural lifecycle 
information, transport mode choice and of course personal characteristics. Unfortunately, no 
known existing data set provides this required information. For that reason an Internet-based 
questionnaire, based on a conceptual network model (Verhoeven et al, 2005a), was designed to 
collect data for this study. 
 
In total, 710 respondents completed the whole survey in the end of 2004. The survey was 
designed to collect data concerning five important structural lifecycle events and changes in 
resources influencing activity-travel behavior. Respondents indicated whether they experienced 
these events, and, if so, they indicated in a matrix the timing of the event (month and year), the 
cause of the change (i.e., the specific type of event) that took place and the before and after 
situation for every change.  
 
In addition, respondents answered questions about their current situation in terms of personal 
and household characteristics, possession and availability of transport modes, their current 
travel behavior and their perception and preference of certain trip conditions. The total 
questionnaire consisted of the following components: 
 
1. Household and personal characteristics; 
2. Availability of transport mode; 
3. Occurance of lifecylce events: (a) Change in residential location, (b) Change in household 

composition, (c) Change in work location, (d) Change in study location, and (e) change in 
household income; 

4. Change in resources, influencing activity-travel decisions: car possession and availability; 
availability of public transport pass; 
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5. Current travel behavior per trip purpose: (a) work, (b) study, (c) grocery, (d) shopping and 
(e) sports; 

6. Perception of trip conditions: comfort, safety, privacy, environmental damage, expenses, 
and time; 

7. Stated preference part for evaluation of the selected trip conditions. 
In this paper, only data of parts one, three and four are used.  
 
Each respondent who experienced one of the events filled in the matrix up to ten changes. The 
data concerning the events was recoded into new (time) variables for each respondent. For the 
present purpose, only the last three years (2002, 2003 and 2004) are taken into account, because 
changes longer ago probably will have no impact on the current situation (Fearnley and Bekken, 
2005). Every event has 12 new (time) variables which correspond with the quarters in these 
years. 
 

7. Results and Analysis 
For every event the questionnaire used a classification of the more specific changes that were 
involved. Across events, the number of changes (i.e., classes) distinguished varied from three to 
ten. The calculation time of the learning algorithm increases when the number of classes of 
variables increases. The size of the CPTs also expands if there are more classes involved. For 
these reasons and for a better comprehension of the network we reduced the number of classes 
into three; no change, the change with the highest frequency for the event under concern and 
other change. The class with the highest frequency for each event was determined over all three 
years. The most frequent classes were buying a house (residential location), birth/adoption of a 
child (household composition), other job (work location), start with (new) study (study 
location) and increase in income (household income). For the change in resources there are two 
classes beside no change, namely increase or decrease (car possession and availability) and start 
or stop with PT pass (public transport pass). 
 
This data collection was used for constructing the Bayesian Belief Network. The whole 
network is empirically derived through structure and parameter learning using the PC and EM 
algorithms in Hugin. First, structure learning was used to determine the structure of the network 
that best fits the data and after that we applied parameter learning. The input for the structure 
and parameter learning is a file with the new (time) variables. Table 1 shows the frequencies of 
the changes of all seven events, first in total, second subdivided into the years 2002, 2003 and 
2004 and after that the years are divided into quarters. 

 
Table 1: Frequencies of the seven structural lifecycle events 
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The table shows that only a part of all changes occurred in 2002/2003/2004. Missing values are 
caused by missing information of a change, like year of month. Those missing values do not 
affect structure learning. Due to the moment of data collection, that took place in the end of 
2004, only a few changes occurred in the fourth quarter of 2004. The effect of this could be less 
causal relations with the variables that represent the last quarters in 2004.  
 
The PC algorithm was used for the structure learning with the significance level of 0.05. Figure 
5 represents the learned network, with causal relations between the events. Every row 
represents all time-related variables of one event, the columns represent a time period (i.e., 
quarter of a year). In total Hugin produces 61 links in this network. A disadvantage of the PC 
algorithm is that it will not be able to derive the direction of all the links from data. Some links 
will be directed randomly. Constraints were included in the structure learning to prevent that 
directions of links are back-in-time.  
 
All causal links found during the structure learing are represented in the complex network in 
Figure 5. To distinguish the different links (group 1 – 4), the total learned network is divided 
into four networks, see Figure 6 – 9. Each network only displays the links of one group. The 
causal links of the first group are ordered horizontal, the links of the second group are ordered 
vertical and the other links, third and fourth group, are ordered diagonal.  
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Figure 5: Learned network with all causal relations between the events and personal characteristics 
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Figure 6: Learned network with all links of group 1 
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Figure 7: Learned network with all links of group 2 
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Figure 8: Learned network with all links of group 3 
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Figure 9: Learned network with all links of group 4 



 17

Based on this learned network we can conclude that there are influences among the five 
structural lifecycle events and between the structural lifecycle events and the events, which 
correspond with changes in resource variables. The occurrence of one event could trigger 
another event. In general we can say that most links in the learned network, Figure 5, are in the 
second group, links between events in the same time period. In the total network most links are 
in the middle of the figure, around 2003. The data collection was held in the end of 2004, this 
can explain that less links exist in this year. The causal links are a result of the structure learning. 
Besides structure learning, parameter learning was also executed. The result of parameter 
learning is that all influences are quantified in conditional probability tables (CPTs) based on 
the data. Two links of group one and three will be discussed in detail to illustrate their influence. 
Both examples involve the impact on the resources. 

 
All links in Figure 6, group 1 (temporal links within event group), go beyond a quarter. This 
shows that there is a certain “time span” between events. The “time span” for events varies from 
half a year to two years. These temporal links do not necessarily mean that one change 
influences another change. The causal relation could also mean that a change lead to no change 
or the other way around, underlying CPTs quantify these links. For instance there exist a link 
between the node ‘Public Transport_03_4’ and ‘Public Transport _04_2’ with a time span of 
half a year. All CPTs are filled out in the parameter learning part, based on the data. The 
compiled network in Netica (Norsys Software Corp., 1997) represents probabilities for all 
nodes. Figure 10 illustrate a small part of this compiled network. The probabilities for the 
classes no change, Stop with PT pass and Start with PT pass of the node ‘Public 
Transport_03_4’ are respectively: 98.6, 0.99 and 0.42. The probabilities of the node ‘Public 
Transport_04_2’ are respectively: 98.6, 0.42 and 0.99.  
 

 
Figure 10 Small part of the compiled network without evidence 

 
The BBN can handle probalistic reasoning under uncertainty. If evidence for a certain node 
becomes available it can be entered in the network and all conditional probabilities will be 
updated automatically. For example, the evidence ‘Stop with PT pass’ for the node ‘Public 
Transport_03_4’ is entered and the conditional probabilities for the classes of the node ‘Public 
Transport_04_2’ change. Figure 11 illustrates the BBN when the evidence is entered into the 
network.  

 
Figure 11 Small part of the compiled network with entered evidence 
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The conditional probability of classes ‘no change’ and ‘Stop with PT pass’ of the node ‘Public 
Transport_04_2’ decreases, respectively from 98.6 to 57.1 percent and from 0.42 to 0 percent. 
While the probability of the class ‘Start with PT pass’ increases from 0.99 to 42.9 percent.  
Figure 12 illustrates the CPT of the node ‘Public Transport_04_2’, which shows the probability 
distribution across the classes of this node for each class of the parent node.  
 
 

 
 

Figure 12 CPT of the node ‘Public Transport_04_2’ 
 
Figure 7 shows that causal links between structural lifecycle events also exists. In general the 
following relations can be distinguished, often in both directions: Housing – Household, 
Housing – Income, Household – Income, Work – Income and Study – Income. More 
importantly, the learned network also depicts causal links between changes in lifecycle events 
and changes in the resource variables, influencing activity-travel behavior. Example are 
Housing – Public Transport, Household – Cars and Users, Household – Public Transport, Work 
– Cars and Users; Work – Public Transport, Study – Public Transport and Income- Cars and 
Users. All relations, as quantified in the underlying CPTs (not shown), are well-interpretable.  
 
The third network, Figure 8, portrays the links between structural lifecycle events across 
quarters. In total 12 links were found between: Housing – Household, Housing – Work, 
Housing – Study; Housing – Cars and Users, Household – Work, Household – Cars and Users, 
Study – Cars and Users, Study – Public Transport and Income – Cars and Users. All links show 
a certain response time, not every event immediately triggers another event. All links, as 
quantified in the underlying CPTs, are plausible and can be explained. For example the link 
between ‘Study_02_2’ and ‘Public Transport_02_3’: in the Netherlands all students receive a 
public transport pass which they can use during their study period. After ending a study 
(succesfully or unsuccesfully) they have to return the pass within a certain period. Figure 13 
shows the probabilities for these nodes and Figure 14 shows the probabilities after the evidence 
‘Other change’ for the node ‘Study_02_2’ is entered. This supports the causal relations 
described before. 
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   Figure 13        Figure 14  

Small part of the compiled network  Compiled network with evidence 
 
 
The last network, Figure 9, represents the links between events and personal characteristics. In 
total, three links between the personal characteristics were found and four links between events 
and the personal characteristics. No direct link exists between personal characteristics and the 
variables related to resource changes. However, all groups were described seperately, but the 
total network represents of course all causal links. Sometimes there are also indirect links 
between variables, which means that event A also influences event C through event B (A  B 

 C). For example, the link between Age and Public Transport; Age  Study_02_2  Public 
Transport_02_3. All links, as quantified in the underlying CPTs (not shown), are reasonable 
and intuitively correct.  
 
The links in the total network are not identical for all years, whereas one could expect that this 
would be the case. There are two possible explanations; (1) the links are not structural but 
coincidental, (2) the links exist in general, but only a few are learned based on this specific 
sample. Further analysis is necessary to examine this. One option is to cluster the three years in 
one year and learn the structure again with structure learning. In this case the sample will be 
three times bigger. Another option is decrease the temporal resolution and cluster the quarters 
into years. This will probably result in less distorted distributions in the CPTs and probabilities. 
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8. Summary and Conclusion 
As part of a wider study, which seeks to apply Bayesian networks in estimating direct and 
indirect effects of lifecycle events on activity-travel decisions, and transport mode choice in 
particular, in this paper we have reported the first results of such an approach, which aimed at 
providing evidence that structural lifecycle events influence each other and in isolation or 
combination affect resource decisions that influence transport mode choice decisions. 
 
The framework showed how the influence of structural lifecycle events on personal states could 
be modeled in a Bayesian belief network. The BBN represents the causal relationships between 
nodes, which represent the structural lifecycle events and the corresponding personal states. 
Certain characteristics of this BBN method, such as representing a complex network with direct 
and indirect causal relationships between variables, the use of a probabilistic chance 
distribution among the states of a variable and the dynamic updating of the network in case of 
entering new evidence, can offer some advantages compared to other methods. 
 
The learned network proves that indeed structural lifecycle events influence each other and 
resource decisions.. Four different influences are distinguished: (1) within one event, across 
time periods; (2) between one event and another event during the same time period, (3) between 
one event and another event across time periods and (4) between one event and personal 
chararteristics. The occurrence of one event triggers another event with some probability. There 
is a certain “time span” between changes within an event, this varies from half a year to two 
year. This does not necessarily mean that one change influences another change, for example a 
change can also ‘cause’ no change. The links between events within a time period indicates that 
one event influences another event, all links are logic. Links across a time period suggest that 
there is a certain response time between events. Not every event immediately influence another 
event, some changes take time.  
 
Not all changes from the data collection are included in the network. Only the changes in the 
last three years were taken into account. Fearnley and Bekken (2005) argued that it makes little 
sense to try to estimate effect that matrialise 10 or more years after a change. Too many other 
factors will have changed during the same period, which are impossible to include. However, 
another way to include more changes in a network is the structure of the second approach, life 
course (i.e., age classes). 
 
These results imply that we will continue future research by estimating networks. The next step 
is to add state variables and transport mode to the network. Besides that, we will also explore 
the second approach of structuring the lifecycle events (age classes) to find out which causal 
relations could be learned. Ultimately, the results of this approach will be embedded into a more 
comprehensive dynamic system of activity-travel behavior. The Bayesian Network can be 
linked to a demographic forecasting or simulation model, which allows us not only to simulate 
the probabilistic relationships between demographic and other structural life cycle events, but 
also how such events directly and indirectly influence key facets of activity-travel behavior, not 
only transport mode choice decisions, but also activity-type participation. A long term model 
such as this can then be combined with short term activity-travel simulation models.  
 
 
In this study, the analysis has been restricted to reactive behavior, based on the notion that 
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individuals may physically experience change in their behavior. However, adjustment may also 
be proactive in the sense that people knowing that an important event will happen in the future 
anticipate its likely consequences and mentally search for the best coping strategy and decide to 
adjust certain facets of their activity patterns proactively. In principle, a similar approach can be 
adopted to study any such proactive effects. We hope to report the findings of such further 
extensions and alternative specifications in the near future. 
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