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THE COMPENSATION APPROACH FOR THREE OR MORE

DIMENSIONAL RANDOM WALKS

GJ. van Houtum, I J.B.F. Adan, J. Wessels and W.H.M. Zijm, Eindlwven

Abstract. In this paper we investigate for which random walks with three or more dimensions

the compensation approach can be used to determine the equilibrium distribution. As we will

see, the compensation approach is not appropriate for the symmetric shortest queue system

with three queues, but for the 2 x 3 buffered switch it is. By using this compensation approach,

we show that for the 2 x 3 buffered switch the equilibrium distribution can be expressed as a

linear combination of six series of binary trees of product-form (geometric) distributions.

1. Introduction

In another paper in this volume, Adan and Wessels [2] give an overview of the class of queueing systems

for which the equilibrium distribution can be written as a linear combination of product forms. In some

cases (like Jackson networks) the equilibrium distribution can be expressed as a linear combination of a

finite number of product forms, while in other cases (like the two-dimensional shortest queue problem) an

infinite number of product forms is needed. In this paper we focus on the latter problems.

In [1] Adan et al. develope a compensation approach for two-dimensional, ergodic random walks on

the lattice of the first quadrant, with the following properties:

(i) only transitions to neighbouring states occur;

(ii) semi-homogeneity: the same transition rates occur for all interior points, and similarly for all points

on the horizontal boundary and for all points on the vertical boundary;

(iii) transitions from interior points to the North, North-East and East are not permitted, i.e. for the tran

sitions rates qi,j for the interior points (qi,j is the rate for a transition in the direction (i,j», it is

required that

qO,l = ql,l = ql,O = O. (1)

By using the compensation approach it is shown that for such a random walk the equilibrium distribution

can be written as a linear combination of at most four series of product forms.

For a two-dimensional, semi-homogeneous, ergodic random walk with transitions to neighbouring

states only, it appears that condition (iii) is sufficient for succesfully applying the compensation

approach; if an infinite number of product forms is needed to construct the equilibrium distribution, then

this condition (1) is also necessary. In this paper we try to find the analogue of condition (iii) for the
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three or more dimensional case. An idea about when the compensation approach works and when not,

can be obtained by analyzing the ratios of the equilibrium probabilities for neighbouring states. Let us

consider a three-dimensional problem, for example. If the compensation approach can be used to deter

mine the equilibrium distribution {Pm,n,r}' then this equilibrium distribution is a linear combination of

product forms, i.e.

and therefore the sequences of ratios Pm+l,n,r1pm,n,r have the same limit for all nand r:

Pm+l,n,rlPm,n,r ~ Umax := maxi (Xi ,if m ~ 00;

a similar property holds for the ratios Pm,n+l,rlPm,n,r and Pm,n,r+l Ipm,n,r'

In the sections 2 and 3 we consider the three-dimensional versions of the symmetric shortest queue

system with two queues and the 2 x 2 buffered switch, which both belong to the class of two-dimensional

problems for which the equilibrium distribution can be determined by using the compensation approach.

Analyzing the ratios of the equilibrium probabilities learns that the compensation approach is not

appropriate for the symmetric shortest queue problem with three queues, but it may be appropriate for the

2 x 3 buffered switch. In section 4 we confirm our conjecture: by using the compensation approach we

show that for the 2 x 3 buffered switch the equilibrium distribution can be written as a linear combination

of six series of binary trees of product forms. Finally, in section 5 we present the analogue of condition

(iii) for three or more dimensional random walks.

2. The symmetric shortest queue system with three queues

Consider the shortest queue system with three identical parallel servers, each with exponentionally distri

buted service times with parameter 1. At this system jobs arrive according to a Poisson stream with

intensity 3p, 0< P < 1, (p is the average workload) and on arrival a job always joins the shortest queue.

The behavior of this symmetric shortest queue system is described by a Markov process with states

(m,n,r), where m denotes the number of jobs in the shortest queue (including the job being served), n

denotes the difference between the second shortest and the shortest queue and r denotes the difference

between the longest and the second shortest queue. This Markov process is a semi-homogeneous,

ergodic random walk with transitions to neighbouring states only. For later reference, we list the transi

tion rates qi,j,k for the interior points:

ql,-l,O = 3p, q-l,l,O = qO,-l.l = qO,O.-l = 1, (2)

and qi,j,k =°for all other directions (i,j,k), i,j,k E {-1,0, I}.

Let {Pm,n,r} be the equilibrium distribution of the Markov process. By truncating the state space

and using successive approximations to compute the solution of the equilibrium equations of the trun

cated process, we get accurate approximations for the equilibrium probabilities Pm,n,r with m, nand r not

too large. For the case p = 0.8, we used this technique to compute the ratios of the equilibrium
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p=0.8 r=O r=l r=2 r=3

n 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
m=O 1.55 0.64 0.48 0.46 0.82 0.49 0.46 0.46 0.48 0.44 0.45 0.46 0.45 0.44 0.46 0.46

1 0.62 0.53 0.51 0.50 0.55 0.50 0.50 0.50 0.48 0.49 0.50 0.50 0.47 0.49 0.50 0.50
2 0.53 0.51 0.51 0.51 0.52 0.51 0.51 0.51 0.50 0.51 0.51 0.51 0.50 0.51 0.51 0.51
3 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51
4 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51
5 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51

Table 1. The ratios Pm+l.n,rIPm.n.rfor the 3-dimensional symmetric shortest queue system.

p=0.8 r=O r=l r=2 r=3
m 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

n =0 0.89 0.37 0.32 0.31 0.28 0.17 0.15 0.15 0.20 0.18 0.18 0.19 0.19 0.18 0.19 0.19
1 0.16 0.12 0.12 0.11 0.13 0.12 0.12 0.12 0.14 0.14 0.14 0.14 0.14 0.15 0.15 0.15
2 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14
3 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.13 0.13 0.13 0.13 0.14 0.14 0.14 0.14
4 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.13 0.13 0.13 0.13 0.14 0.14 0.14 0.14
5 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.13 0.13 0.13 0.13 0.14 0.14 0.14 0.14

Table 2. The ratios Pm.n+l.r1pm.n.r for the 3-dimensional symmetric shortest queue system.

p=0.8 n=O n=l n=2 n=3
m 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

r=O 0.80 0.42 0.37 0.36 0.25 0.19 0.18 0.18 0.21 0.20 0.19 0.19 0.21 0.21 0.21 0.21
1 0.17 0.10 0.09 0.09 0.12 0.11 0.11 0.11 0.12 0.12 0.12 0.12 0.13 0.13 0.13 0.13
2 0.12 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12
3 0.11 0.11 0.11 0.11 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12
4 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12
5 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12

Table 3. The ratios Pm,n.r+l/Pm,n,r for the 3-dimensional symmetric shortest queue system.

probabilities, which are listed in the tables 1,2 and 3. As we see in table 1, the sequences Pm+l,n,r1pm.n,r

have the same limit for all nand r; and similarly for the sequences Pm.n,r+l/Pm.n,r (see table 3). However,

for the sequences Pm,n+l,rIPm.n.r the limit seems to increase if r increases (see table 2). For other work

loads p the ratios of the probabilities have the same behavior. This behavior suggests that for the three

dimensional symmetric shortest queue system the equilibrium distribution probably is not a linear combi

nation of product forms and therefore the compensation approach is probably not appropriate for this sys

tem.
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3. The 2 x 3 clocked buffered switch

Buffered switches are being used in parallel data processing networks to route messages and to resolve

conflicts. A k x s clocked buffered switch is a switching system with k input and s output ports. Such a

system is modeled as a discrete time queueing system with s parallel servers and k types of arriving jobs.

The 2 x 2 buffered switch has been succesfully analyzed by using the compensation approach (see [3]).

By using a uniformization technique, Jaffe [4] analyzed the symmetric 2 x 2 switch (Le. a switch with

identical arrival rates for the two types of jobs and identical routing probabilities). In this section and the

next one, we consider the 2 x 3 switch. This system is not very interesting from a practical point of view,

however, it surely is from a mathematical point of view, since the 2 x 3 switch is described by a three

dimensional random walk for which the compensation approach works. To shorten the analysis, we res

trict ourselves to the symmetric case. All results can be extended to the asymmetric case.

The symmetric 2 x 3 clocked buffered switch is modeled as a discrete time queueing system with 3

parallel servers and 2 types of arriving jobs (see figure 1). Jobs of type i, i = 1,2, arrive according to a

Bernoulli stream with rate p, 0 <p $1, i.e. every time unit (clock cycle) the number of arriving jobs of

type i is one with probability p and zero with probability I-p. Jobs always arrive at the beginning of a

time unit and once a job of type i has arrived, it joins the queue at server j with probability 113, j = 1,2,3.

A server serves exactly one job per time unit, if one present. Jobs are served according to FCFS service

discipline.

The behavior of the 2 x 3 switch is described by an irreducible, aperiodic Markov chain with states

(m,n,r), m,n,r ~ 0, where m, nand r denote the numbers of waiting jobs at the servers 1,2 and 3 at the

end of a time unit. Again, we have a semi-homogeneous random walk with transitions to neighbouring

states only. The fact that we have discrete instead of continuous time does not affect the analysis of the

equilibrium distribution. The non-zero transition probabilities qi,j,k for the interior points are given by:

q1,-1,-1 = q-1,1,-1 = q-1,-1,1 = p2/9, q-1,O.O = qO,-I,O = qO.O.-1 = 2p 2/9,

q-I,-I,O = q-1,O,-1 = qO,-I,-1 = 2p(l-p)/3, q-1,-1,-1 = (l_p)2 . (3)

For the other states each transition probability can be written as a sum of the probabilities qi.j.k. The sets

of transitions at the boundary planes, at the axes and at the origin are "projections" of the set of transi

tions in the interior. For example, for a state (m,n, 0), m,n > 0, at the boundary plane r=O the transition

probability for each direction (i,j, 1) equals qi.j. 1 and the transition probability for each direction (i,j, 0)

equals qi,j. o+qi,j, -1' This remarkable property is called the projection property. Due to this property we

can easily derive formulae for the equilibrium (marginal) distributions of the component (projected)

chains.

Let {Pm,n,r}, {pW}, {p~2)} and {pP)} be the equilibrium distributions of the full Markov chain and

the three component chains, which describe the numbers of jobs present at one particular server. By

symmetry we have

Pm,n,r = Pm,r,n = Pn,m,r = Pn,r,m = Pr,m,n = Pr,n,m' m ~ 0, n ~ 0, r ~ 0, (4)
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P

P

Figure 1. The 2 x 3 buffered switch.

p=l r=O r=l r=2 r=3

n 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

m=O 0.50 0.09 0.05 0.04 0.09 0.00 0.00 0.00 0.05 0.00 0.00 0.00 0.04 0.00 0.00 0.00
1 0.27 0.15 0.07 0.05 0.15 0.10 0.04 0.02 0.07 0.04 0.00 0.00 0.05 0.02 0.00 0.00
2 0.25 0.22 0.15 0.07 0.22 0.22 0.14 0.07 0.15 0.14 0.10 0.04 0.07 0.07 0.04 0.00
3 0.25 0.24 0.22 0.15 0.24 0.24 0.22 0.14 0.22 0.22 0.22 0.14 0.15 0.14 0.14 0.10
4 0.25 0.25 0.24 0.22 0.25 0.25 0.24 0.22 0.24 0.24 0.24 0.22 0.22 0.22 0.22 0.22
5 0.25 0.25 0.25 0.24 0.25 0.25 0.25 0.24 0.25 0.25 0.25 0.24 0.24 0.24 0.24 0.24
6 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25
7 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25

Table 4. The ratios Pm+l.n.r/Pm,n,r for the symmetric 2 x3 buffered switch.

and the distributions {p~)}, {p~2)} and {p~3)}, which are marginal distributions of {Pm.n,r }, are identical.

Each component chain is a random walks on ~ + with a negative drift: for all i ~ 0 the transition proba

bility for a transition from i to i+1 is equal to (p /3)2, while the probability for the opposite transition is

equal to (l-p /3)2, which is larger than (p /3)2. This implies that each component chain is ergodic and we

obtain the following geometric distribution for {p~)}, {p~2)} and {pP)}:

p~) = p~) = p~) = [1- (p/3)2 ] [ (p/3)2 ] m, m~O. (5)
(l-p /3)2 (l-p /3)2

Since all component chains are ergodic, the full Markov chain is also ergodic and its equilibrium distribu

tion {Pm.n.r} is the unique solution of the equilibrium equations and the normalizing equation.

In the same way as for the symmetric shortest queue system, we computed the ratios of the equili

brium probabilities to check whether the compensation approach may be appropriate to find {Pm.n,r}' BY

symmetry, we only have to analyze the ratios Pm+l,n,r/Pm.n.r' For the case P = 1 these ratios are listed in

table 4. As we see, for all fixed nand r the sequence Pm+l,n,r/Pm,n,r has limit 0.25. This limit is reached

very fast as soon as m > max[n,r]. Notice that the compensation approach may be appropriate to deter

mine the equilibrium distribution. Finally, we remark that the limit 0.25 is equal to the factor of the
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geometric distribution for the component chains (see (5». The factor of the geometric distribution in (5)

appears to be the maximum 0.-, P- and y-factor in the linear combination of product forms which is found

for the equilibrium distribution {Pm,n,r} in the next section.

4. The compensation approach for the 2 x 3 buffered switch

By using the compensation approach for the 2 x 3 buffered switch, we generate binary trees of product

forms, which are called formal solutions. The equilibrium distribution {Pm,n,r} appears to consist of an

infinite linear combination of such formal solutions. The main ideas with respect to the compensation

approach are explained below.

A formal solution consists of an infinite linear combination of product forms am pny , which all are

solutions of the equilibrium equations for the interior of the state space. We can restrict ourselves to pro

duct forms with real factors a, p and y with 0 < a, p,y < 1. Substituting a product form in the equilibrium

equation for the interior shows that each product form is a solution of the following quadratic equation:

apy = q1,-1,-1 p2i + q-1,1,-1 a2i + q-1,-1,1 a 2p2 + q-I.O.O a 2py+ qO,-I,O ap2y + qO,O,-I aPi

+ qO,-I,-I ap2i + q-I,O,-1 a2 pi + q-I,-I,O a 2p2y + q-I,-I,-I a2 p2i . (6)

The first term of a formal solution, called the start term, is chosen such that it also satisfies the equili

brium equations for one of the boundaries m = 0, n = 0 and r = O. The other terms are called compensa

tion terms, since they are added to compensate for an error of a previous term on of the three boundaries.

By symmetry we can restrict ourselves to formal solutions starting on the boundary r = O. Let us

consider the construction of such a formal solution, denoted by xm,n,r(a,p,y). Here a, p and yare the fac

tors of the start term, which we want to satisfy the equilibrium equations for the interior and the boundary

r=O. It appears that a and p have to be chosen such that (a,p) satisfies the quadratic equation (6) for

fixed y= 1 (i.e. such that (a,p) satisfies the equilibrium equation for the interior points of the Markov

chain that describes the joint behavior of the queues at the servers 1 and 2). Further, we have to set

y=f(a, P), where

2 2
q 1 -1 -1 X Y

f (X,y) := 2 2 ' , 2 2 2 2 . (7)
q-1,I,-IY +q-I,-I,I X +q-l,O,Oxy+q-l,O,-IXY +q-l,-I,OX y+q-l,-I,-I X Y

For fixed a and p, f(a, P) represents the product of the two solutions for y of the quadratic equation (6);

similarly for fixed a and yand for fixed p and y (use the symmetry to prove this).

For the start term of the formal solution xm,n,r(a,p,y) we take Cl aTPl"f1 with 0.1 =0., PI =p, Yl =y

and c 1= (1-0.1 )(1-Pd(1-Yl)' This start term satisfies the equilibrium equations for the interior and the

boundary r = 0, but it violates the equations for the boundaries n = 0 and r = O. To compensate for the

errors on these two boundaries, we add two compensation terms to the initial term. We add c2a~p~'Y2

such that this second term, together with the first term, satisfies the equilibrium equations for the interior

and the boundary m = O. It appears that the choice 0.2 = f(PI ,YI )/0.1 , P2 = PI , Y2 = Y1 ,

c2 =-Cl (1-a2)/(1-ad (so c2 =-(l-a2)(1-p2)(l-Y2)) suffices. For the compensation on the boundary
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(I-al )aT(I-Bl )B1(I-Yl)¥i

Figure 2. The construction ofa binary tree ofproduct forms starting on the boundary r =0.

n=O, we add the term c3a~~~Y3 with a3=a1> ~3=f(a1,")'d/~1' Y3=Y1 and c3=-c1(l-~2)/(l-~1)'

The second tenn as well as the third term compensates an error of the first term, but they both introduce

two new errors: the second term on the boundaries n =°and r =°and the third term on the boundaries

m =°and r = O. Just as for the first term, each compensation term needs two new compensation terms.

Repeating the above procedure leads to the construction of the binary tree pictured in figure 2.

For all a, ~ and Y, the binary tree xm,n,r(a,~,y) appears to be absolutely convergent in all states

(m,n,r) with o(m)+o(n)+o(r)~2. Here, oU):=O for i=O and oU):=l for all i~1. The following

theorem states that {Pm,n,r} is the sum of six series of binary trees of product forms.

Theorem. For all m ~ 0, n ~O, r ~ 0, o(m)+o(n)+o(r) ~ 2, define

Ym,n,r := :£(_1)i+1 xm,n,r(ai'~i'Yi) ,
i=1

- - - -.. -
ai = f(~i-1> 1)/ai-1 ,~i =~i-1 ,Yi = f(ai, ~i)' iii even,

- - -
ai=ai-l '~i=f(ai-l>1)/~i-1 'Yi=f(ai'~i)' iii odd.

Then

(8)

Pm,n,r = Ym,n,r +Ym,r,n +Yn,m,r +Yn,r,m +Yr,m,n +Yr,n,m' m,n,r ~O, o(m)+o(n)+o(r) ~ 2, (9)

Pm,O,O = PO,m,O = PO,O,m = (1-a.1)a.T - L Pm,n,r' m ~ 1,
n~O, r~O

n+r~ 1

P 0,0,0 = 1- L Pm,n,r
m~O, n~O, r~O

m+n+r~ 1

(10)

(11)
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The theorem can be proved by showing that the solution defined by (9)-(11) satisfies all equilibrium

equations, for which one has to use the fact that the solution in the theorem is defined in such a way that

it satisfies the expressions for the two-dimensional marginal distributions (see also [3], in which the Main

Theorem has been proved along the same lines).

5. Condition for applying the compensation approach to three or more dimensional random walks

Consider an ergodic, N-dimensional, semi-homogeneous random walk with transitions to neighbouring

states only. Let the transition rates for the interior points be given by qi l •... ,iN' We would like to know

for which cases the compensation approach works. The compensation approach that we described for the

2 x 3 buffered switch can be extended to N-dimensional random walks which satisfy the projection pro

perty and the following property:

(12)

So, for an N-dimensional random walk with the projection property, condition (12) is sufficient. This

condition appears to be also necessary if an infinite number of product forms is needed to construct the

equilibrium distribution. Condition (12) originates from the requirement that the compensation approach

also has to work for each two-dimensional marginal distribution. For the case N = 2, condition (12) is

equivalent with condition (1). Unfortunately, condition (12) is rather severe; if qi l •... ,iN> 0, then ik =1

implies i, = -1 for all I '* k. For an N-dimensional random walk without the projection property, condition

(12) will also be necessary (and maybe also sufficient), if an infinite number of product forms is needed.

It follows from (2) that the three-dimensional symmetric shortest queue system violates condition (12),

which confirms the suspicion stated at the end of section 3.
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