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TWO ROBUST METHODS TO COMPUTE THE CURRENT
ALONG A STRAIGHT THIN WIRE

M. C. van Beurden and A. G. Tijhuis
Faculty of Electrical Engineering, Eindhoven University of Technology,

P.O. Box 513, 5600 MB Eindhoven, The Netherlands.

Abstract: We propose two methods to compute the current along a straight wire segment in a robust manner. In the
first we employ the integral equation with exact kernel and a modified forcing function. In the second method, we use the
integral equation with reduced kernel in combination with a regularization and filtering procedure. The regularization
and filtering are inspired by uniqueness and conditional existence results for the integral equation with reduced kernel,
which have been obtained via a renewed interpretation of the integral equations with exact and reduced kernel.

INTRODUCTION
In free space, we consider a straight wire of length L, circular cross section with radius a, and central
axis coinciding with the z-axis. For this configuration, the so-called integral equations with exact and
reduced kernel, after a Laplace transformation, are obtained as special cases of

[
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c2
0

] L∫

0

g(r, z − z′, a)Iz(z′)dz′ = −F i
z(r, z), (1)
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π∫
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exp
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]

4π
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r2 + a2 − 2ra cos(φ) + z2
dφ, (2)

is the angular-averaged Green’s function kernel, Iz is the total current along the wire in the z-direction
and F i

z(r, z) is the forcing function, which is related to the z-component of incident electric field. The
integral equation with exact kernel is obtained for r = a, whereas the integral equation with reduced
kernel is obtained by choosing r = 0.

The integral equation with reduced kernel, regarded as an integral operator equation, is ill-posed
for Lebesgue spaces and for all standard Sobolev spaces W r,p(0, L) with positive and finite r and
1 ≤ p < ∞. This is due to the fact that the reduced kernel is a C∞ function. The crucial observation
is that the operator is compact in these function spaces and a compact operator has an unbounded
inverse (see Kress [1]). A typical example of the associated numerical problems is given in Figure 1a,
which we will discuss later on.

EXACT KERNEL APPROACH
For the integral equation with exact kernel, existence and uniqueness were proven by Jones [2] for
excitations that are continuous and have finite derivative with respect to the axial variable. Later,
the existence results were extended by Rynne [3–6] to a large class of vector spaces. This means that
we can assume that the solution to the integral equation with exact kernel exists. The exact kernel
representation corresponds to the angular-averaged scattered field at the mantle of a hollow tube with
open end faces. Therefore, the proper forcing function is given by

F i
z(a, z) = sε0

π∫

−π

Ei
z(a, φ, z)dφ, (3)

which differs from the conventional forcing function, which is generally the incident electric field on
the axis of the wire. Hence, this approach requires the additional computation of the angular average
of the incident field. In view of the space limitations, we do not present numerical results. However,
the papers by Rynne have illustrated the capabilities of this approach.
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CONDITIONAL EQUIVALENCE
Many existing numerical codes employ the integral equation with reduced kernel. Therefore, it is
interesting to further examine the properties of this equation and devise a way to improve the perfor-
mance of these codes. It was shown by Tijhuis et al. [7] that the integral representation with reduced
kernel represents exactly the z-component of the scattered electric field on the axis of the wire due to
the current on the mantle. Therefore, in the present context, the most important question is which
incident field should be chosen for the forcing function.

We assume that the incident field has a source that lies outside the domain 0 ≤ r ≤ a, 0 ≤ z ≤ L.
Under this assumption, both the incident field and the scattered field, due to the current on the mantle
of the wire, are regular inside this domain. To find a forcing function on the axis of the wire, we make
the following observations. The thin-wire equation with exact kernel yields a current Iz, owing to the
existence results mentioned above, and it is readily shown that the left-hand side of Eq. (1), which we
denote as F s

z (r, z), satisfies
(

∂2
r +

1
r
∂r + ∂2

z − s2

c2
0

)

F s
z (r, z) = 0, (4a)

{

F i
z(a, z) + F s

z (a, z) = 0 for 0 < z < L,
F s

z (r, z) regular for 0 ≤ r ≤ a, 0 < z < L.
(4b)

The homogeneous solution can be described in terms of the angular-independent TM modes of a hollow
cylinder, with unknown amplitudes. In general, these mode amplitudes will not be zero. They are
determined by the fields at the end faces, which result after applying appropriate boundary conditions
at the end faces at z = 0 and z = L. Therefore, we immediately obtain existence for the integral
equation with reduced kernel for specific values of the amplitudes, at the expense of taking into
account the boundary conditions at the end faces. In case the wire is sufficiently thin with respect to
the wavelength, all modes are evanescent and therefore take effect only in proximity of the end faces
of the wire. This leads to an alternative interpretation of the approximation introduced by Tijhuis et
al. [7] that the end effects are negligible. Also, the frequently occurring numerical breakdown near the
end faces of implementations of the integral equation with reduced kernel can be understood in this
way, since the mode amplitudes are taken identically zero.

A uniqueness result for the integral equation with reduced kernel is obtained by employing the same
partial differential equation and the regularity results. However, in this case we propagate the solution
from the axis of the wire to the mantle of the wire. This yields a unique solution, owing to the
uniqueness for the integral equation with exact kernel and the fact that the cylindrical coordinate
system is singular in r = 0.

REDUCED KERNEL APPROACH
In the above, we have argued that it is possible to construct a proper forcing function for the integral
equation with reduced kernel. However, this procedure would destroy the simplicity of the thin-wire
equation with reduced kernel and its numerical implementation. Further, even if we were to obtain
the mode amplitudes of the forcing function, the integral equation would remain ill-posed, due to the
smoothness of the reduced kernel. To circumvent these problems, we propose a regularization and
filtering procedure. We employ a penalty function, which is based on the discretized Laplacian. Since
the Laplacian induces monotonicity, this penalty function will suppress rapidly varying oscillations.

Our numerical implementation employs subsectional basis and testing functions. To demonstrate the
effect of the proposed regularization, we consider a straight thin-wire segment of length L = 0.5λ and
circular cross-section with radius a = 5 · 10−3λ, and the incident field is a plane wave, polarized in
the z-direction. We have computed the current on the wire using 1000 basis functions. Although the
number of basis functions is extremely high for this example, it allows us to clearly demonstrate the
effect of regularization.
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Figure 1b: Modulus of the current distribution versus
the position on the wire, with L = 0.5λ, a = 5 · 10−3λ,
after regularization and filtering, using 1000 basis func-
tions. The incident field is a plane wave, polarized in
the z-direction.

0 0.1 0.2 0.3 0.4 0.5
0

0.5

1

1.5

2

2.5

3

3.5
x 10

−3

Z/λ

I z [A
]

Figure 1a: Modulus of the current distribution versus
the position on the wire, with L = 0.5λ, a = 5 · 10−3λ,
without regularization, using 1000 basis functions. The
incident field is a plane wave, polarized in the z-
direction.

First, we have tried to solve the linear system by the conjugate-gradient method without regularization.
After 65000 iterations, the residual error was 1.8·10−3 and did not yet meet our termination criterion of
10−3. The result for the current on the wire after 65000 iterations is shown in Figure 1a. Subsequently,
we have computed the current from the regularized system with the above choice for the penalty
function. The residual error in the conjugate-gradient method reached the termination criterion of 10−3

after 391 iterations. We have observed that the regularization drastically improves the convergence
of the conjugate-gradient method and that the oscillations are suppressed, except at the end faces.
This is due to the fact that the modes have not been taken into account. To improve the results for
the current, we have applied post-processing. In particular, we have applied a filter based on local
averaging by the stencil (0.25, 0.5, 0.25). This stencil was applied nine times to the current coefficients
after regularization. The result of the regularization and filtering procedure is presented in Figure 1b.

CONCLUSIONS
We have described two approaches to obtain robust results for the current on a straight wire segment.
The first approach is to use the integral equation with exact kernel with a modified forcing function. As
an alternative, we have proposed to use the integral equation with reduced kernel in combination with
a regularization and filtering technique. This approach is substantiated by uniqueness and conditional
existence results for the integral equation with reduced kernel.
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