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Abstract

This paper deals with the analysis of a multi-item, continuous review model of two-location

inventory systems for repairable spare parts in which lateral and emergency shipments occur in

response to stockouts. A continuous review basestock policy is assumed for the inventory control

of the spare parts. The objective is to minimize the total costs for inventory holding, lateral

transshipments and emergency shipments subject to a target level for the average waiting time at

each of the two locations. A solution procedure based on Lagrangian relaxation is developed to

obtain both a lower bound and an upper bound of the optimal total costs. The upper bound

follows from a heuristic solution. An extensive numerical experiment shows an average gap of

only 0.77% between the best obtained lower and upper bounds. It also gives  insights into the

relative improvement achieved when moving from a no-pooling policy to a pooling policy and

when moving from an item approach to a system approach. We also applied the model to actual

data from an air carrier company.

Keywords: Inventory; Emergency transshipments; Spare parts; Lagrangian relaxation

1. Introduction

Equipment-intensive industries such as airlines, nuclear power plants, various process and

manufacturing plants using complex machines are often confronted with the difficult task of

maintaining a high system availability, while at the same time there is a pressure to limit the

spare parts inventories. A random failure of just one component can cause the system to go
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down. As the downtime can be very costly, spare part inventories are required to keep the

downtime to a minimal level. So it is very important to keep the probability of parts being out

of stock as low as possible. However, as most parts are quite expensive,  maintaining an

excessive number of spare parts should also be avoided.

Lateral transshipments (also referred to as inventory pooling) represent an effective

strategy to improve a company’s system availability while reducing the total system costs.

Lateral transshipments are used to satisfy a demand at a location that is out of stock from

another location with a surplus of on-hand inventory. Since costs for lateral transshipments

are generally much lower than downtime costs, lateral transshipments can reduce total system

costs. This research was originally motivated by an air carrier  company, located in Brussels,

who was interested in pooling its spare parts inventories with another company (see Timmers,

1999).

Although a significant amount of research has been done studying various aspects of

lateral transshipments in inventory systems, most of it deals with single-item problems in

which only one type of part is considered. Such problems are typical when we use an item

approach. Under an item approach, inventory levels for each individual part are set

independently. An alternative approach, denoted as the system approach by Sherbrooke

(1992a), considers all parts in the system when making inventory-level decisions, and may

lead to large reductions in inventory costs in comparison to an item approach (see also

Thonemann et al., 2002 and Rustenburg et al., 2003). The main purpose of this paper is to

advance the existing literature on multi-item inventory systems with lateral transshipments.

Archibald et al. (1997) is the only previous study dealing with such problems. They consider

a two-location, multi-item, multi-period, periodic review inventory system with a limited

storage space for all items together, i.e. the only connection between the problems for

different items is due to the limited storage space. In contrast to their work, we analyze a two-

location, multi-item, continuous-review system for repairable items with one-for-one stock

replenishments and  our optimization problem is to determine stocking policies for all items

that minimize the total system costs subject to a target level for the average waiting time for

an arbitrary request for a ready-for-use part at each of the two locations. In our model, the

decisions with respect to different items are coupled because of the multi-item service

measure that is used.

Analyzing lateral transshipments in single-item inventory systems using a continuous

review policy with one-for-one stock replenishments is done by Lee (1987), Axsäter (1990),

Sherbrooke (1992b), Yanagi and Sasaki (1992), Alfredsson and Verrijdt (1999), Grahovac

and Chakravarty (2001), Kukreja et al. (2001), and Wong et al. (2002). One-for-one stock
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replenishments are common when we deal with (repairable) slow-moving and expensive

items. Needham and Evers (1998), Evers (2001), and recently Xu et al. (2003) and Axsäter

(2003) considered continuous review (R,Q) policies. Other studies assume periodic review

policies and they usually assume no order setup cost, so that an order-up-to or base-stock

policy is appropriate. Examples are Gross (1963), Krishnan and Rao (1965), Das (1975),

Hoadley and Heyman (1977), Cohen et al. (1986), Karmarkar (1987), Tagaras (1989, 1999),

Robinson (1990), Tagaras and Cohen (1992), Archibald et al. (1997), Herer and Rashit

(1999), and Rudi et al. (2001) and Herer et al. (2002).

In this paper we also allow emergency supplies from an infinite source when demand at a

location cannot be met by either the stock at the local warehouse or the stock at the other

locations. This emergency supply mode is also used in Archibald et al. (1997) and Alfredsson

and Verrijdt (1999), whereas the other studies consider backlogging. For the systems in which

the down time is very costly, e.g. airline companies, the assumption of an emergency supply

mode is more realistic than assuming backlogging. Most previous studies do not give exact

analysis for the optimization problems with the notable exception of the models of Gross

(1963), Krishnan and Rao (1965), Das (1975), Hoadley and Heyman (1977), Robinson

(1990), Archibald et al. (1997), and Herer and Rashit (1999). In this paper we derive tight

lower and upper bounds of the optimal costs for our multi-item model. The study in this paper

can be used as a building block for the analysis of more complex systems. Table 1 presents a

brief review of the previous studies and  shows the position of this paper in comparison to

them.

This paper is organized as follows. In Section 2, we present the problem formulation. We

introduce the basic assumptions and the notation of the model, and we present the

mathematical formulation our problem. Section 3 describes our solution method which is

based on Lagrangian relaxation. We describe how to find the best lower and upper bounds of

the optimal objective function. The best lower bound is obtained by optimization of the

Lagrange parameters, which is done by the subgradient optimization method. The upper

bound follows from a heuristic solution. In Section 4, we perform a computational experiment

to show the tightness of the bounds and to study the effect of several parameters on the

reduction in costs obtained by applying lateral transshipments and the system approach (in

comparison to no lateral transshipments and the item approach). Section 5 presents a model

application. We apply our model to actual data from the air carrier company that motivated

this work. Finally, we summarize the results in Section 6 and conclude with directions for

further research.
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Table 1. A brief review of the literature on the multi-location inventory systems

paper #
echelons

#
items

class of
policies

model analysis important remarks

Gross (1963) single single (s, S) exact opt. • allows the transshipments before the realization of demand
Krishnan and
Rao (1965)

single single (s, S) exact. opt. • derive optimal solution for two-location systems with identical cost parameters; allow the transshipment after
demand is realized but before it must be satisfied

Das (1975) single single (s, S) exact opt. • extends Gross’s model by permitting transshipments in the middle of each period
Hoadley and Heyman (1977) two single (s, S) exact opt. • allow balancing acts at the beginning of a period and emergency acts at the end of a period
Karmarkar (1981) single single general appr. opt. • considers the multi-period problem; develops lower and upper bounds of the optimal costs
Cohen et al. (1986) multi single (s, S) appr. eval.; appr. opt. • allow transshipments at higher echelons
Lee (1987) two single (S-1, S) appr. eval.; appr. opt. • assumes identical bases
Tagaras (1989) single single (s, S) appr. opt. • extends the model of Krishnan and Rao (1965) by using a more general cost structure
Axsäter (1990) two single (S-1, S) appr. eval. • allows non-identical bases, focus on the demand processes
Robinson (1990) single single general exact opt. • shows the optimality of a basestock ordering policy when the cost parameters are identical or there are only

two locations; analyzes multi-period problems using dynamic programming model
Tagaras and Cohen (1992) single single (s, S) appr. eval.; appr. opt. • consider positive replenishment lead times and shows the superiority of complete pooling
Yanagi and Sasaki (1992) single single (S-1, S) appr. eval. • consider limited repair capacity
Sherbrooke (1992) two single (S-1, S) appr. eval. • estimates the expected backorders using a regression model
Archibald et al. (1997) single multi (s, S) exact. eval; exact opt. • allow lateral transshipments at any time during a period;  model the problem as a Markov decision process

• considers the multi-item problem with limited storage space
Needham and Evers (1998) two single (R, Q) appr. eval.; appr. opt. • examine the interaction of relevant costs and transshipment policies; use a simulation-based optimization
Tagaras (1999) single single (s, S) appr. eval. • studies several lateral transshipment policies using a simulation model
Herer and Rashit (1999) single single general exact opt. • consider fixed and joint replenishment costs; characterize the form of the optimal policy (single period)
Alfredsson and Verrijdt (1999) two single (S-1, S) appr. eval. • allow emergency shipments from the depot and an outside supplier
Grahovac & Chakravarty (2001) two single (S-1, S) appr. eval. • allow lateral transshipments before and after a location is out of stock
Kukreja et al. (2001) single single (S-1, S) appr. eval.; appr. opt. • relax the assumption of exponential repair time distribution
Evers (2001) single single (R, Q) appr. opt. • develops heuristics for determining when transshipments should be made
Rudi et al. (2001) single single (s, S) exact. opt. • consider local decision making; focus on determining transshipment price
Wong et al. (2002) single single (S-1, S) appr. eval.; appr. opt. • consider pooling in a multi-hub system and delayed lateral transshipments
Herer et al. (2002) single single general appr. opt. • prove the optimality of  (s,S) policies; consider dynamic transshipments; use a simulation-based optimization
Xu et al. (2003) single single (R, Q) appr. eval. • introduce hold-back parameter which limit the level of outgoing transshipments
Axsäter (2003) single single (R, Q) appr. eval. • allow lateral transshipments only in one direction
This paper single multi (S-1, S) exact eval.; appr.opt. • considers the multi-item problem and employs waiting time constraints
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2. Problem formulation

2.1. Notations and assumptions

We model the situation of two independent companies who keep spare parts on stock for

their technical systems. Note that throughout this paper the words company and location are

used interchangeably. The companies are indexed by j = 1, 2. We assume that both companies

have a number of technical systems of the same type. These systems consist of components

which are subject to failures. In total there are I different items (SKU’s). These items are

indexed by i = 1, 2, …, I. Failures occur according to Poisson processes with constant rates.

The total failure rate of components of item i at company j is given by mij (≥ 0). If an item i

does not occur in the configurations of the technical systems at company j, then mij = 0. We

assume that mi1 + mi2 > 0 for all i. Further, Mj = 
1

I
iji

m
=∑  denotes the total failure rate at

company j. We assume that Mj > 0 for j = 1, 2. Company j has 0( : {0} )ijS ∈ = spare parts

of item i. We define 1: ( ,..., )j j IjS S S= . In total, both companies share Si spare parts of item i,

where Si = Si1 + Si2. All parts are repairable and there is no condemnation. When a part of item

i fails at company j, the failed part is replaced by a spare part. This means that the failed part

is immediately removed and sent into repair. A ready-for-use part is put back into the system

where the failed part belongs to, as soon as such a part is available. If  company j has a ready-

for-use part on stock then this can be done immediately. If not, then there is a waiting time for

a ready-for-use part. In that case, if the other company has a ready-for-use part on stock, it

sends a part by a lateral transshipment, and the waiting time is limited to the average

transshipment time tr
iET (> 0). We assume that complete pooling is applied. This means a

company offers its entire available inventory when the other company is experiencing a

stockout. If also at the other company no ready-for-use part is available, an emergency supply

mode is applied. This means that either the repair operation is expedited or the required part is

ordered from an outside supplier e.g., an OEM or a third party supplier. A ready-for-use part

becomes available after an average time ( )em tr
i iET ET≥ . We believe that for many real life

situations, the assumption of an emergency supply mode is more realistic than assuming that

one just waits till one of the parts becomes available by the standard repair mode. Failed parts

that are sent into repair are returned as ready-for-use parts after exponential repair lead-times.

The lead-times of different parts of the same item and of parts of different items are

independent. The repair rate of a failed part of item i is given by iµ . We assume that in case a

lateral transshipment (an emergency shipment) takes place from company j (the outside
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supplier) to the other company, the failed part will be returned to company j (the outside

supplier) upon completion of its repair. With this assumption, the number of parts on stock

plus the number of parts in repair of item i at company j  is always equal to Sij.

At company j, there is a maximum level max
jW given for the average waiting time per

request for a ready-for-use part. In this paper, we consider a service model rather than a cost

model.  In a service model, the objective is to minimize the total system costs subject to a set

of  service level constraints. In our case, the service level constraints are maximum waiting

time constraints. In a cost model, however, the service constraints are replaced with penalty

(downtime) costs. Although in general the cost models are analytically more tractable, they

have a serious limitation in that the penalty costs are generally hard to quantify. Thus service

models are more acceptable from a practical point of view. For a systematic overview of

possible relations between the two types of models for general inventory systems, see Van

Houtum and Zijm (2000).

Total system costs consist of holding costs, transshipment costs and emergency supply

costs. Holding costs h
ic  are counted for each spare part of item i. A cost tr

ic  is counted for

each lateral transshipment of part of item i. A cost em
ic is counted for each part coming from

the emergency supply. The objective is to find a policy 1 2( , )S S under which the total average

costs are minimized subject to the waiting time constraints for the companies 1 and 2.

2.2. Model formulation

To formulate the problem, we define:

βij = fraction of demands for item i at company j satisfied by its own stocks

αij = fraction of demands for item i at company j satisfied by lateral transshipments

θij = fraction of demands for item i at company j satisfied by emergency supply

Wj = average waiting time per request for a ready-for-use part at company j

Obviously, βij + αij + θij = 1 for i = 1,…,I; j = 1, 2.  Since complete pooling is applied here, θij

is the same for j = 1, 2, i.e. θi1 = θi2 = θi for all i.

The system behavior with respect to an item i is independent of all other items and may be

described by a two-dimensional Markov process. For each item i, we introduce the state xi =

(xi1,xi2), where xij represents the physical stock of spare parts of item i at company j, and 0 ≤ xij

≤ Sij, 0ijx ∈ . We define xi1−−−− = (xi1−1,xi2), xi1+ = (xi1+1,xi2), xi2−−−− = (xi1,xi2−1), xi2+ = (xi1,xi2+1).

All possible transitions of the Markov process are as follows:
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Transition 1: a failure of a part of item i occurs at location j while xij > 0; the state transition is

xi→xij−−−−; the transition rate is mij.

Transition 2: a failure of a part of item i occurs at company j while xij = 0 and the other

company j’ has a positive stock of item i; the state transition is xi→xij’−−−− ; the transition rate is

mij and this represents a lateral transshipment requested by company j.

Transition 3: a failure of a part of item i occurs at company j while xi1=xi2=0; an emergency

supply is applied; the state transition is xi→ xi ; the transition rate is mij.

Transition 4: the repair of a part of item i belonging to company j is completed; the state

transition is xi→xij+; the transition rate is (Sij−xij)µi.

Figure 1 shows the Markov process that is obtained when (Si1,Si2) = (2,1). A similar

process is obtained for any other choice for (Si1,Si2).

Figure 1. Markov process for item i with (Si1,Si2) = (2,1)

We define ππππ  as the steady-state probability vector andπ (k,l) as the steady-state probability

of being in state (k,l), 10 ik S≤ ≤ , 20 il S≤ ≤ . Since the number of states in our problem is not

large, a direct method based on Gaussian elimination is applied to determine ππππ . The fraction

of demands for item i satisfied by an emergency supply is equal to the probability of being in

state (0,0). Thus, we can write (0,0)iθ π= . This fraction can also be obtained by aggregation on

the basis of total physical stock at the locations 1 and 2. That shows that iθ  is also equal to

the Erlang loss probability of an M/M/Si/Si queuing system. The fraction of demands for parts

of item i at company 1 satisfied by lateral transshipments from company 2 is given by
2

1 (0, )1
iS

i ll
α π

=
= ∑ . Similarly, 1

2 ( ,0)1
iS

i kk
α π

=
= ∑ . The fraction of demands that is satisfied by the

local stock is obtained from 1ij ij iβ α θ= − − , j = 1,2.

2,1

1,1

0,1

2,0

1,0

0,0

mi2

µ i

m i2

µ i

µ i

m i1µ i

2µ i m i1

m i1+mi2µ i

2µ i m i1+m i2

mi1+mi2
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We now explain how to obtain the average waiting time. It is possible to aggregate the

individual item service (waiting time) functions in several ways. Here, we employ the

demand-weighted average service functions as used in Cohen et al. (1992) and Thonemann et

al. (2002). For given stocking decisions, the average waiting time per request for a ready-for-

use part at company j can be expressed as:

1

I
j i

W
=

= ∑ Prob{an arbitrary failing part at location j is of item i} (average waiting time for a

                   ready-for-use part of item i)

     = 
1

( 0 )I ij tr em
ij ij i i ii

j

m
ET ET

M
β α θ

=
+ +∑

     = 
1

( )I ij tr em
ij i i ii

j

m
ET ET

M
α θ

=
+∑ (1)

With this notation, we can formulate our problem as follows:

Problem P0: Minimize ( )2

1 1

I h tr em
i ij i ij ij i ij ij i

c S c m c mα θ
= =

+ +∑ ∑  (2)

subject to 
1

( )I ij tr em max
ij i i i ji

j

m
ET ET W

M
α θ

=
+ ≤∑ ,  j = 1, 2 , (3)

0ijS ∈ ,  i = 1, …, I;  j = 1, 2 (4)

The constraints in (3) can be rewritten as

1
( )I tr em max

ij ij i i i j ji
m ET ET M Wα θ

=
+ ≤∑   j = 1, 2 (5)

Remark 1 Finding approximations for the fractions of demand satisfied by stock on hand, by

lateral transshipments, and by emergency supply has been the focus of previous research; see

Lee (1987), Axsäter (1990), Sherbrooke (1992b), Yanagi and Sasaki (1992), Alfredsson and

Verrijdt (1999), Grahovac and Chakravarty (2001), Kukreja et al. (2001). Since we want an

exact analysis, we work with exact expressions for these fractions instead of  approximations.
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3. Solution procedure

3.1. The relaxed problem

The problem P0 is an integer-programming problem with a non-linear objective function

and non-linear constraints. We apply the Lagrangian relaxation method to solve this problem

and derive relations between the relaxation and the original problem in a similar way as in

Van Houtum and Zijm (2000). For a given vector 2λ ∈ℜ  with λj ≥ 0, j = 1, 2, we formulate

the following problem P1 that is obtained from problem P0 by relaxing the waiting time

constraints:

Problem P1:

Minimize

( ) ( )2 2

1 1 1 1
( )I Ih tr em tr em max

i ij i ij ij i ij i j ij ij i i i j jj i j i
c S c m c m m ET ET M Wα θ λ α θ

= = = =
+ + + + −∑ ∑ ∑ ∑ (6)

subject to    0ijS ∈   i = 1, …, I;  j = 1, 2 (7)

The original problem P0 is a service model, a model in which the objective is to minimize

the average total costs subject to the constraints that certain target service levels have to be

met. In our case, the target service levels are represented by the maximum waiting time

constraints. By putting the service level constraints in the objective function as in the problem

P1, we obtain a pure cost model, a model without service level constraints. The pure cost

problem can be decomposed into I  independent single-item problems.

Let 0*PZ denote the costs of the optimal solution of problem P0, let 1 ( )PZ λ denote the costs

of the optimal solution of problem P1 for given λ = (λ1,λ2), and let 0
1 2( , )PZ S S  denote the

costs of problem P0 under basestock policy 1 2( , )S S . We define 1 2( , )jW S S as the average

waiting time for company j obtained under the stocking policy 1 2( , )S S .

Property 1

(i) 0*PZ ≥ 1 ( )PZ λ  for all (λ1,λ2) ≥ (0,0)

(ii) 0*PZ ≥ Maxλ 1 ( )PZ λ
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(iii) If for some λ = (λ1,λ2) ≥ (0,0) the optimal solution for problem P1 is * *
1 2( , )S S  and

* *
1 2( , ) max

j jW S S W≤ , j = 1, 2, then * *
1 2( , )S S  is feasible for problem P0, and

0 0* * * * * **
1 2 1 2 1 21 1 1 2 2 2( , ) ( ( , )) ( ( , ))P P max maxZ S S Z W W S S W W S Sλ λ− ≤ − + − .

(iv) If for some λ = (λ1,λ2) ≥ (0,0) the optimal solution for problem P1 is * *
1 2( , )S S and

* *
1 2( , ) max

j jW S S W= , j = 1, 2, then * *
1 2( , )S S  is the optimal stocking policy for problem

P0

Proof:

(i) An optimal solution for problem P0 is also a feasible solution for problem P1 for any

(λ1,λ2) ≥ (0,0). The costs of this solution for problem P1 are smaller than or equal to

the costs of this solution for problem P0. The costs of an optimal solution of problem

P1 in their turn are smaller than or equal to the costs of any feasible solution.

(ii) This follows from (i).

(iii) The first part follows from the problem definition in P0. The second part follows

directly from (i).

(iv) This follows immediately from (iii). 

By Property 1(i), for any (λ1,λ2) we obtain a lower bound on 0*PZ . The maximum value of

this lower bound over all considered values (λ1,λ2) is the best obtained lower bound (Property

1(ii)). Besides a lower bound, Property 1 provides us with an upper bound for the distance

between the total costs of any feasible solution and the optimal solution (Property 1(iii)). In

the next subsection, we describe how to solve problem P1 for given values of the Lagrange

multipliers.

3.2. Solving the relaxed problem for a given λλλλ

The objective function of P1 may be rewritten as

Minimize ( )2 2

1 1 1
( ) ( )I h tr tr em em max

i ij i j i ij ij i j i ij i j j ji j j
c S c ET m c ET m M Wλ α λ θ λ

= = =
+ + + + −∑ ∑ ∑ (8)

Now, the λj values are assumed to be given. Then the second factor 2

1
max

j j jj
M Wλ

=
−∑  is a

constant, and thus can be ignored for optimization purposes. Thus, we are left with I

independent single-item optimization problems. For each item i the optimization problem can

be stated as follows:
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Minimize 1 1 1 1 1 1( ) ( )h tr tr em em
i i i i i i i i i ic S c ET m c ET mλ α λ θ+ + + +

2 2 2 2 2 2( ) ( )h tr tr em em
i i i i i i i i i ic S c ET m c ET mλ α λ θ+ + + + + (9)

subject to 1 0iS ∈ , 2 0iS ∈

Recall that αi1 and αi2 depend on the individual stocks Si1 and Si2, while θi depends on the

aggregate stocks level iS . We can rewrite the objective function as follows:

Minimize  f ( iS ) + g (Si1,Si2) (10)

where f ( iS ) = 1 1 1 2 2 2( )h em em em em
i i i i i i i i i i ic S c m m ET c m m ETλ λ θ+ + + + (11)

g (Si1,Si2) = 1 1 1 2 2 2( ) ( )tr tr tr tr
i i i i i i i ic ET m c ET mλ α λ α+ + + . (12)

First, we will look at the behavior of the costs function. It is known that iθ  is decreasing

and convex as a function of Si (see Dowdy et al., 1984); see also Appendix A of Kranenburg

and Van Houtum, 2003). As a result, f ( iS ) is convex. For each value of  Si  there exist

(Si1,Si2) with 1 2i i iS S S+ =  such that g(Si1,Si2) is minimized. Let us define

{ }
1 2

1 2 1 2,
*( ) Min ( , ) |

i i
i i i i i iS S

g S g S S S S S= + = . For Si = 0, no lateral transshipments occur and

g*(Si) = 0. Then, increasing Si will also increase g*(Si), but when Si  is large enough, the need

for a lateral transshipment diminishes and hence,  increasing Si will then decrease g*(Si).

We use the following method to obtain the optimal solution. We evaluate the costs over

the values of Si. We start with Si = 0 and then increase Si incrementally by one. For each Si,

we evaluate the costs f(Si) + g*(Si), and we keep track of the best solution obtained so far. If

we arrive at an Si  such that f (Si) is larger than or equal to the minimum costs obtained so far,

we may stop the procedure. It is easy to see that such Si value is found in the increasing part

of f(Si). At this point we can conclude that no better solutions can be found. The best solution

obtained so far is an optimal solution. Below we give the optimization procedure in more

detail.

Optimization algorithm for the single-item problem

Step 1: Initialization: Set Si = 0, Si1 = 0, Si2 = 0, min = f(0), *
1 1i iS S= , *

2 2i iS S= .
Step 2: Set 1i iS S= +  and calculate f ( iS ).  If  f ( iS ) ≥  min go to END, otherwise set k = 0

and continue.
Step 3: Set Si1 = k and Si2 = iS k− ; calculate  f ( iS ) and g (Si1,Si2).
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Step 4: If  f ( iS ) + g (Si1,Si2) < min, then set  min = f ( iS ) + g (Si1,Si2), *
1 1i iS S=  and

*
2 2i iS S= .

Step 5: If k < iS , set  k = k + 1 and go to Step 3, otherwise go to Step 2.
END

3.3. Finding the tightest lower bound

Once the Lagrangian problem P1 is solved for a given λ, we know that the objective

function 1 ( )PZ λ  is a lower bound of the optimal costs of the original problem P0. The

Lagrange multipliers giving the tightest lower bound are denoted by λ* = (λ1
*,λ2

*). The value

of the best possible bound that can be obtained using Lagrangian relaxation is then given by
1 *( )PZ λ  where

1 1*

0
( ) ( )P PZ Z

λ
λ λ

≥
= Max .  (13)

The next step is to find the best Lagrange multipliers λ1
* and λ2

*. Since 1 ( )PZ λ  is not

differentiable in general, methods like steepest ascent, which depend on the gradient

directions, are not applicable. The subgradient optimization method is usually used instead. It

can be viewed as a generalization of the steepest ascent method in which the gradient

direction is substituted by a subgradient-based direction (see e.g. Bazaraa et al., 1993). The

subgradient optimization is an iterative procedure that has been effective in producing good

multiplier values in a variety of Lagrangian-based optimization problems (see Fisher, 1985).

We use this method also for solving our problem defined in (13).

Overview of the subgradient optimization method

Let k
jW , j = 1, 2, be the expected waiting times that correspond to an optimal solution of

the Lagrangian problem for the current vector of multipliers λk at iteration k of the

subgradient method. Then the subgradient direction 1 2( , )k k kγ = γ γ  for λk is calculated as

k k max
j j jW Wγ = −   for  j = 1, 2. (14)

At each iteration k, the vector of Lagrange multipliers for iteration (k + 1) is updated as
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( )1 max 0,k k k k
j j jtλ λ+ = − γ    for  j = 1, 2. (15)

In this formula, tk is a scalar stepsize. For the tk, we use

1

2

2

( )P k
k k

k

Z Zt s λ −=
γ

 (16)

which is a stepsize updating procedure that has been used for widespread practical

applications. Justification for this formula is given in Held et al. (1974). In this formula, Z  is

the objective function value of the best known feasible solution to P0 (the best upper bound so

far) and sk is a scalar chosen between 0 and 2. The value of  sk is halved whenever there is no

improvement in the value of the Lagrangian solution after a specified number of iterations.

Usually λ0 = 0 is the most natural choice as an initial solution. Here, we develop a simple

bisection-based procedure to obtain an initial solution that is expected to be close to the

optimal solution λ* .  We describe the initialization procedure in the following part.

Initialization procedure

From Property 1(iii),  we know that the optimal vector λ* will be found at iteration k where

the subgradient direction ( max
1 1 2 2,k max kW W W W− − ) is close to 0. Our estimation of the location

of λ* is based on the following property.

Property 2:

Let 
1 2

* *
1 2 ,( , )S S λ λ  denote the optimal solution of problem P1 at penalty values  λ1 and λ2, and

1 2

* *
1 2 ,( , )jW S S λ λ , j = 1, 2, the corresponding achieved average waiting times.

(i) For '
1λ  > λ1 , '

1 21 2

* * * *
1 2 1 21 1 ,,

( , ) ( , )W S S W S S λ λλ λ
≤

(ii) For '
2λ  > λ2 , '

1 2 1 2

* * * *
1 2 1 22 2, ,

( , ) ( , )W S S W S S
λ λ λ λ

≤

Proof:  See Theorem 2, Van Houtum and Zijm (2002) .

For each value of λ2 there exists a smallest value of λ1, say λ1min,  at which 1
maxW is satisfied.

These points form a function in λ2. Similarly, we can have λ2min as a function of λ1. From

Property 2, it follows that of all the points (λ1,λ2) that give feasible solutions for problem P0,
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the point where the functions λ1min(λ2) and λ2min(λ1) cross each other (if they do cross) is the

best estimate for λ*. If both functions do not cross, we would expect that the location of λ* is

close to the point (λ1,λ2) where both functions come close to each other. Let us define

( 1min 2min,λ λ ) to represent such point.

We performed a computational experiment to learn about the behavior of the functions

λ1min(λ2), λ2min(λ1), and the locations of ( 1min 2min,λ λ ). Interesting results were obtained from

this experiment and several possible situations are depicted in Figure 2(a)-(f). For each

situation, we plotted both functions λ1min(λ2) and λ2min(λ1) and also ( 1min 2min,λ λ ). In each

figure, ( 1min 2min,λ λ ) is represented by a small circle. As expected, we found that in general,

λ1min is decreasing in λ2, and λ2min is decreasing in λ1. The locations of ( 1min 2min,λ λ ) can be

classified as follows:

(a) 1minλ ≈ 2 minλ (see Figure 2(a) and 2(b)): this occurs when the two companies are identical

so that the function λ1min(λ2) and λ2min(λ1) are symmetrical to each other. If the aggregate

stocks are even numbers, both companies will have precisely the same number of stocks

and both functions λ1min(λ2) and λ2min(λ1) lie on the same line as shown by Figure 1(a).

(b) 1minλ < 2 minλ  (see Figure 2(c) and 2(d)): this occurs in the two following cases: (i)

1 2i im m>  for all i and 1 2
max maxW W= ; (ii) 1 2i im m≥  for all i and 1 2

max maxW W> . In those

two cases, if   is as an arbitrary value of Lagrange multiplier, we will find that

λ1min(λ2= ) < λ2min(λ1= ). In the extreme case, we may find the situation where the first

constraint is inactive and 1minλ = 0.

(c) 1minλ > 2 minλ  (see Figure 2(e) and 2(f)): this occurs in the two following cases: (i)

1 2i im m< and 1 2
max maxW W= ; (ii) 1 2i im m≤ and 1 2

max maxW W< . By symmetry, the same

explanation as under (b) applies here too.

Based on these characteristics, we now describe our initialization procedure. The main

idea here is to obtain an initial solution which is expected to be close to the optimal solution

of problem (13). In general, we do so by examining three points of (λ1,λ2). For the first point,

λ1 is set to zero, and we determine smallest value λ2  for which both constraints are satisfied.

For the second point, we have to find the smallest value λ, where λ1 = λ2 = λ, such that both

constraints are satisfied. And for the third point, similar to the first point, we set λ2 equal to

zero and we determine smallest value λ1  for which both constraints are satisfied. The point
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with the largest objective function value 1 ( )PZ λ  is then selected as the initial solution for the

subgradient optimization procedure. Those three points can be easily determined by applying

a  standard bisection method. Since the corresponding optimal solution to the selected point is

feasible in problem P0,  the total costs function 0PZ of this solution is used as the initial value

for Z  in the subgradient method.

(a)       (b)       (c)

(d)        (e)        (f)

Figure 2. Some possibilities of λ1min(λ2), λ2min(λ1) and ( 1min 2min,λ λ )

3.4. Finding the best upper bound

In this section we describe the procedure to obtain a good feasible solution for the original

problem P0 which provides an upper bound of the optimal total costs. In particular, we are

interested in knowing the distance between the best upper bound obtained by this procedure

and the best lower bound obtained by the subgradient method described in the previous

section.

The procedure works as follows. During the execution of the subgradient method, for each

solution 1 2( , )S S that is feasible in problem P0, we evaluate the costs 0
1 2( , )PZ S S and we keep

track of the best solution obtained so far. If the final solution of the subgradient method is

feasible, we stop. If it is not feasible, we apply the procedure described below which may give

a better feasible solution than obtained so far.

λ 2

λ 1

λ 1min

λ 2min

λ 2

λ 1

λ 1min

λ 2min

λ 2

λ 1

λ 2min

λ 1min

λ 2

λ 1

λ 2min

λ 1min

λ 2

λ 1

λ 1min

λ 2min

λ 1

λ 2

λ 2min

λ 1min



16

We consider two ways for obtaining a feasible solution from a non-feasible solution. First,

if both constraints are violated, we increase the stock levels in the system. A greedy approach

is applied for this purpose. We increase the stock levels for the item that gives the maximum

ratio of reduction of waiting time for emergency shipments and extra inventory holding costs
h
ic . Next, we put the additional stock at the location where the average waiting time is closest

to the target level. This is done until we obtain a feasible solution. Second, if only one of the

two constraints is not satisfied, we first try to redistribute the stock at both locations by

moving one unit of stock from the location where the constraint is satisfied to the location

where the constraint is not satisfied. Since the inventory holding costs are relatively much

higher than the transshipment costs, redistributing the stock is usually less costly than

increasing the stock levels. The selection of items for the redistribution is done based on the

slack parameter (the distance between the maximum waiting time and the individual waiting

time) for the location at which the constraint is satisfied. The item which has the largest slack

gets the highest priority for the redistribution. This is repeated until a feasible solution is

obtained or the two constraints become unsatisfied. In the latter case, we need to proceed with

increasing the stock levels. Below we give the procedure in more detail.

Algorithm for obtaining a feasible solution

Input: A basestock policy 1 2( , )S S  with max
1 21 1( , )W S S W>  or  max

1 22 2( , )W S S W> .

Step 1: If max
1 21 1( , )W S S W>  and max

1 22 2( , )W S S W>  go to Step 4, otherwise continue.

Step 2: Here we have either (a) max
1 21 1( , )W S S W>  and max

1 22 2( , )W S S W≤ ; or

(b) max
1 21 1( , )W S S W≤  and max

1 22 2( , )W S S W> . For (a),  find item k such that

max max max
2 2 1 2 2 12 11 12 2 2 1, 2( , ) max( ( , ),..., ( ))k k k I I IW W S S W W S S W W S S− = − − . Set 2 2 1k kS S= −  and

1 1 1k kS S= + .  For (b), do the symmetry.

Step 3: Calculate 1 2 1 21 1 2 2 1 2 1 2( , ),  ( , ),  ( , ) and ( , )k k k k k kW S S W S S W S S W S S . If max
1 21 1( , )W S S W>

and max
1 22 2( , )W S S W>  go to Step 4, otherwise if max

1 21 1( , )W S S W≤  and max
1 22 2( , )W S S W≤  go

to END, otherwise go to Step 2.

Step 4: For each item i, obtain ( )1 2( ) ( ) ( 1)em
i i i i i i i i

h
i

m m ET S S
r

c
θ θ+ − +

=  and choose item k

with 1max( ,..., )k Ir r r= . If max max
1 2 1 21 1 2 2( , ) ( , )W W S S W W S S− < −  set 1 1 1k kS S= + , otherwise

set 2 2 1k kS S= + . Go to Step 3.

END
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4. Computational experiment

In this section we present and discuss our numerical findings. Our main focus of inquiry

will span:

• the performance of our bounds,

• improvement (in terms of costs) relative to no-pooling solution,

• improvement (in term of costs) relative to the item-approach solution.

Table 3 shows all parameter values for the experiment. All parameter values were selected

such that they are realistic for real-life situations, at least for the airline industry. In our

experiments the ratio of demand and repair rates for each item were generated randomly from

a uniform distribution (notice that only these ratios matter for our problem, and not the precise

values for mi1, mi2 and µi). Two uniform distributions were used representing two different

variability levels of this ratio among items. From the first distribution, we could have the

situation where the maximum value is five times the minimum value while from the second

distribution, the ratio of 5 is increased to 30. The same value has been taken for the repair

rates of all items, that is, µi = 0.03 unit/day. Similarly, the values of the inventory holding

costs were generated in the same way. For each combination of N, the distribution for

generating the 1 2i i

i

m m
µ
+ , and the distribution for generating the h

ic , ten samples were generated.

This results in 120 sample sets. Combined with 2x2x2x2=16 different possibilities for the

other parameters, we obtain 1920 instances in total.

Through our experiments we computed and recorded the following performance measures:

• %GAP : percentage gap between the upper and the lower bound:

%GAP = upper bound - lower bound  x 100
lower bound

• %SAVE1 : percentage cost savings when moving from the no-pooling strategy to the

pooling strategy. For the problem without lateral transshipments policy, we treated each

company independently. For each company, a similar technique using Lagrangian

relaxation is used to solve the multi-item optimization problem.

• %SAVE2 : percentage cost savings when moving from the item approach to the system

approach. An algorithm similar to the one presented in Table 1 can be used to solve the

problem with an item approach. The only difference is that for each item, we need to
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check the feasibility of the obtained solutions and the individual waiting time is used

instead of the demand-weighted average waiting time.

Table 3. Parameter values for the computational experiments

Name of the parameter Unit
Number
of values Values

Number of items (N) 3 20, 50, 100

Inventory holding costs ( h
ic ) $/unit/year 2 U[5000,15000], U[1000,19000]

Transshipment costs ( tr
ic ) $ 1 250

Emergency supply costs ( em
ic ) $ 2 1250, 2500

Lateral transshipment lead time ( tr
iET ) days 2 0.1, 0.25

Emergency supply lead time ( em
iET ) days 1 2

Maximum waiting time ( 1 2
max maxW W= ) days 2 0.25, 0.1

Demand rates
Repair rates

 ( 1 2i i

i

m m
µ
+ ) 2 U[0.5,2.5], U[0.1,3.0]

Demand rates at company 1
Demand rates at company2

 ( 1

2

i

i

m
m

) 2 1, 3

The results of our experiments are presented in Table 4(a)-(h). Each table records the

average values for: the total costs of the best feasible solutions, %GAP, %SAVE1, and

%SAVE2. In Table 4(a)-(g) we show how the performance measures behave with respect to

the difference of several parameters. The average results for all instances are presented in

Table 4(h). The main observations drawn from Table 4(a)-(h) are summarized as follows:

• For the parameter set used in this experiment, we observe that the performance of our

bounds is very good as indicated by very low %GAP (with the average of 0.77%).  We

also observe that %GAP is decreasing in N. Such behavior is common for many

optimization problems with integer decision variables, e.g. Knapsack problems, where the

heuristic can provide a reasonable approximation if the number of items is large enough.

The %GAP is rather insensitive for the other parameters.

• The average percentage cost savings gained from allowing lateral transshipments between

two companies (%SAVE1) is 17.4%. As expected, %SAVE1 is sensitive to the lateral

transshipment lead-time and the target service level (maximum waiting time). Intuitively,

as lateral transshipment lead-time increases, the savings resulting from the cooperation

diminish as more stocks will  be needed to satisfy the maximum waiting time constraints.

The system with tight waiting time constraints ( maxW = 0.1) obtains higher %SAVE1 than
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the system with looser waiting time constraints ( maxW = 0.25). This shows that a lateral

transshipment policy becomes more interesting if the cooperating companies set  high

target service levels.

• The average percentage cost savings when moving from an item approach to a system

approach, %SAVE2  is 9.15%. It is also shown that the variability of inventory holding

costs among items has a significant impact on %SAVE2 as indicated in Table 4(c). The

percentage cost savings increase when the variability of inventory holding costs is higher.

On the other hand, %SAVE2 is not sensitive to the variability of ratios between demand

and repair rates. This result is in line with the findings of Thonemann et al. (2002).

Table 4. Summary of the computational results

(a) Performance measures with respect to i

i

m
µ

(b) Performance measures with respect to 1

2

i

i

m
m

U[0.5,2.5] U[0.1,3.0] 1 3

Total costs 3451500 3472500 Total costs 3473100 3450900
%GAP 0.75 0.78 %GAP 0.70 0.84
%SAVE1 17.69 17.17 %SAVE1 17.97 16.90
%SAVE2 8.70 9.60 %SAVE2 8.92 9.38

(c) Performance measures with respect to h
ic (d) Performance measures with respect to 

em
i
tr
i

c
c

U[5000,15000] U[1000,19000] 5 10

Total costs 3485900 3438100 Total costs 3377600 3546400
%GAP 0.71 0.82 %GAP 0.81 0.72
%SAVE1 17.95 16.92 %SAVE1 17.24 17.63
%SAVE2 7.50 10.80 %SAVE2 9.55 8.76

(e) Performance measures with respect to tr
iET (f) Performance measures with respect to maxW

0.1 0.25 0.1 0.25

Total costs 3361200 3562800 Total costs 3718400 3205600
%GAP 0.79 0.74 %GAP 0.87 0.66
%SAVE1 18.98 15.89 %SAVE1 15.99 18.88
%SAVE2 8.92 9.38 %SAVE2 9.06 9.24

 (g) Performance measures with respect to N (h) Average results for all instances

20 50 100

Total costs 1236100 3049100 6100900 Total costs 3462000
%GAP 0.99 0.78 0.53 %GAP 0.77
%SAVE1 17.60 17.31 17.39 %SAVE1 17.43
%SAVE2 8.91 9.21 9.30 %SAVE2 9.15
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• The total costs values increase linearly with the number of items. The ratios between

emergency supply costs and lateral transshipment costs, the lateral transshipment lead

times, and the maximum waiting times are factors that also influence the total costs. The

other parameters, the variability of the inventory holding costs, the variability of the ratios

between demand rates and repair rates, and also the relative sizes of the two companies

have only a very small effect on total costs.

The average computation times for solving the problems in Table 4 are 2.5, 6.3 and 13.8

minutes for N = 20, 50 and 100 respectively, using a PC with a 333-MHz Pentium II

processor.

5. Model application

As already mentioned, this research was originally motivated by an air carrier company

located in Brussels who wanted to cooperate with another company to pool their spare parts

inventories. We performed a pilot study to help management of the company to have an idea

of the cost advantages of a pooling strategy. A potential partner considered at that time was a

company located in Liege which has approximately two hours of driving from Brussels.

However, since complete information of the partner company was not available, we assumed

that both companies were identical. We selected a sample of 32 expensive parts, of which the

prices are at least 25,000. The maximum average waiting time, as desired by the company,

was set at 2 hours. Holding costs were 20% of unit prices.  Transportation costs per unit for

lateral transshipments are based on the distance between the two companies. Three possible

distances: 2, 4, and 6 hours were selected (the two latter distances are used for the purpose of

sensitivity analysis). The unit transportation cost was set at 50 per hour. Emergency supply

lead-time was set at the average level of one day with the costs of 500. Table 4 shows all the

data and solutions for this model application. In particular, we compared the total costs

resulting from the pooling policy with the total costs corresponding to the current company’s

no-cooperation policy. For the range of distances between 2 and 6 hours, the gained savings

range from 21% to 14.5%. In conclusion, the use of a pooling strategy can reduce their

respective total annual operating costs significantly. The percentage gaps between the lower

and upper bounds for the three distances are 1.19%, 1.05%, and 1.03%.
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Table 4. Data and solutions for model application

Data Spare parts inventory levels ( 1 2,i iS S )

PoolingPart
#

Part title mi

(day-1)
µI

(day-1)
Price
( )

No
pooling tr

iET =2 tr
iET =4 tr

iET =6

1 flap elec. control 0.0229 0.0141 143450 2, 2 1, 1 1, 1 2, 1
2 flap hydr. control 0.0029 0.0204 113625 0, 0 0, 0 0, 0 0, 0
3 fuel control 0.0143 0.0263 94575 1, 1 1, 1 1, 1 1, 1
4 autopilot computer 0.0343 0.0303 89900 3, 3 2, 2 3, 2 3, 2
5 engine display 0.0114 0.0417 74875 1, 1 1, 1 1, 1 1, 1
6 APU generator gearbox 0.0029 0.0084 55750 0, 0 1, 0 1, 0 0, 0
7 cold air unit 0.0029 0.0119 50292 1, 1 1, 0 1, 0 1, 0
8 multi process unit 0.0400 0.0500 47775 3, 3 3, 2 3, 2 3, 2
9 actuator flap nacelle 0.0029 0.0217 45750 1, 1 1, 0 1, 0 1, 0

10 pitch computer 0.0171 0.0294 45325 2, 2 2, 1 2, 2 2, 2
11 radar 0.0086 0.0345 44100 1, 1 1, 1 1, 1 1, 1
12 roll computer 0.0057 0.0185 43350 1, 1 1, 1 1, 1 1, 1
13 rudder servo 0.0057 0.0167 41325 1, 1 1, 1 1, 1 1, 1
14 TMS computer 0.0400 0.0147 40225 6, 6 5, 4 5, 5 5, 5
15 generator 0.0457 0.0164 37550 6, 6 5, 5 5, 5 5, 5
16 flap actuator outboard 0.0457 0.0357 34800 4, 4 3, 3 4, 3 4, 3
17 roll splr. servo 0.0114 0.0139 33925 2, 2 2, 2 2, 2 2, 2
18 cabin pressure control 0.0086 0.0159 32475 2, 2 2, 1 2, 1 2, 1
19 instr. switching unit 0.0257 0.0500 31425 3, 3 2, 2 2, 2 2, 2
20 prop. control unit 0.0171 0.0125 30750 3, 3 3, 3 3, 3 3, 3
21 distance bearing 0.0143 0.0130 30025 3, 3 3, 2 3, 2 3, 2
22 servo altimeter 0.0400 0.0278 29000 4, 4 4, 3 4, 3 4, 4
23 speed brake hydr. act. 0.0086 0.0417 28700 2, 2 1, 1 1, 1 1, 1
24 navigation selector 0.0171 0.0370 28325 2, 2 2, 2 2, 2 2, 2
25 yaw actuator 0.0114 0.0167 27625 2, 2 2, 2 2, 2 2, 2
26 display processor unit 0.0886 0.0476 27425 6, 6 5, 4 5, 5 5, 5
27 flap indicator switch 0.0029 0.0213 27375 1, 1 1, 0 1, 0 1, 1
28 flap screw jack 0.0171 0.0500 27050 2, 2 2, 1 2, 1 2, 2
29 EFIS display 0.0286 0.0196 26075 4, 4 4, 3 4, 3 4, 3
30 TMS display 0.0200 0.0167 25650 4, 4 3, 3 3, 3 3, 3
31 discharge valve 0.0086 0.0137 25250 2, 2 2, 1 2, 2 2, 2
32 air speed indicator 0.0143 0.0192 25000 3, 3 2, 2 2, 2 2, 2

Total costs 1244700 973880 1028100 1064700
%Savings 21.97% 17.04% 14.46%

%GAP 1.19% 1.05% 1.03%
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6. Conclusions and directions for further research

In this article we considered a multi-item, continuous review model of a two-location

inventory system for repairable spare parts in which lateral and emergency shipments can

occur in response to stockouts. In the system that we analyzed the failed part at one location is

replaced by a ready-for-use spare part that can come either from the local warehouse, or from

the other location as a lateral transshipment, or from an emergency supply. Additionally, our

formulation addresses the concern for service performance by stating constraints in terms of

maximum average waiting time for  a ready-for-use spare part. We have developed a solution

procedure based on Lagrangian relaxation that provides tight bounds of the optimal total

costs.

Our computational results give us some important insights into the tightness of the bounds

and into the effect of the system parameters on the system performance  that might be of

interest from a managerial point of view. Some of which are summarized as follows: (1) the

quality of our heuristic solution is quite good as indicated by a very small percentage of the

gap between the costs of our solution and the lower bound for the optimal costs, (2) the

performance of our solution increases with an increasing number of items, (3) the relative

cost savings of the pooling policy  increase when the lateral transshipment lead-time is short

and the target service level is high, and (4) the relative cost savings of using a system

approach increase when the variability of inventory holding costs among items increases.

The application of our model in the real system of an air carrier company has indicated

that significant cost savings can be gained by pooling the spare parts inventories with another

company.

Our work can be extended in several directions. One possible extension is to consider

more than two, say N companies. The main difficulty is defining a policy for lateral

transshipments when there may be more than one company that can be the source for the

lateral transshipments. A very reasonable policy is to source the lateral transshipment from

the closest neighbor company. In fact, under such pre-specified policy one can apply the same

optimization procedure as in this paper. However, as the number of companies grows, the

development of a more efficient heuristic is needed and becomes an interesting topic for

further research.
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