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Abstract

This paper deals with the discrete-time infinite-horizon linear quadratic problem with
indefinite cost criterion. Given a discrete-time linear system, an indefinite cost- functional
and a linear subspace of the state space, we consider the problem of minimizing the cost­
functional over all inputs that force the state trajectory to converge to the given subspace.
We give a geometric characterization of the set of all hermitian solutions of the discrete­
time algebraic Riccati equation. This characterization forms the discrete-time counterpart
of the well-known geometric characterization of the set of all real symmetric solutions of
the continuous-time algebraic Riccati equation as developed by Willems [IEEE Trans.
Automat. Control, 16 (1971), pp. 621- 694] and Coppel [Bull. Austral. Math. Soc.,
10 (1974), pp. 977-401]. In the set of all hermitian solutions of the Riccati equation
we identify the solution that leads to the optimal cost for the above mentioned linear
quadratic problem. Finally, we give necessary and sufficient conditions for the existence
of optimal controls.

Keywords: Discrete time optimal control, indefinite cost, algebraic Riccati equation, linear
endpoint constraints.

AMS subject classification: 93C05, 93C35, 93C55, 93C45.

1 Introduction

This paper has two main goals. Firstly, we want to establish the discrete-time counterpart
of the by now 'classical' geometric characterization of the lattice of real symmetric solutions
of the continuous-time algebraic Riccati equation as given in [1] and [8]. Subsequently, we
want to apply these results to the discrete-time linear quadratic optimization problem with
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linear endpoint-constraints. Given a discrete-time linear system, the latter problem consists
of minimizing a general indefinite quadratic cost-functional over the class of input functions
that force the state trajectory to converge to an a priori given subspace of the state-space (or,
equivalently, that force a given linear function of the state to converge to zero). A complete
treatment of this optimization problem for the continuous-time case was given only very
recently in [5] and [6].

With respect to our first goal, it will be shown that like in the continuous- time case, if the
algebraic Riccati equation has at least one hermitian solution, then it has a smallest one and
a largest one. Furthermore, any hermitian solution of the algebraic Riccati equation can be
written as a 'linear combination' of these extremal solutions. In order to derive these results
we will make use of the characterization of all hermitian solutions of the discrete-time Riccati
equation in terms of certain invariant Lagrangian subspaces, as established in [4] (see also
[2]).

With respect to our second goal, we want to note that compared to usual discrete-time
linear quadratic optimal control problems, our problem formulation introduces generalizations
into two independent directions. Firstly, in contrast to the existing literature on this subject,
we do not require the quadratic form in the cost-functional to be positive semi-definite (the
'linear-quadratic regulator problem'). Instead, the quadratic form is allowed to be indefinite.
Secondly, our problem formulation includes a fixed, but arbitrary, linear endpoint constraint,
in the sense that the optimization is performed over the class of all input functions that
force the state trajectory to converge to an a priori given subspace. A solution to the usual
zero-endpoint problem (in which the optimal state trajectory is required to converge to the
origin) can thus be obtained from our results by setting this subspace to be equal to the
zero-subspace. On the other hand, a solution to the free-endpoint problem (no constraint on
the optimal state-trajectory) can be obtained from our results by taking the subspace to be
equal to the entire state space.

The outline of this paper is as follows. In section 2 we shall formulate the optimization
problem that we want to consider. This section also contains a statement of the main result of
this paper, that is, a characterization of the optimal cost, necessary and sufficient conditions
for the existence of optimal controls and an expression for the optimal state feedback control
law. In section 3 we shall establish the characterization of the set of all hermitian solutions
of the discrete-time algebraic Riccati equation as announced above. Finally, in section 4 we
shall give a proof of the main result as stated in section 2.

2 Problem statement and main results

In this paper we will consider the discrete time system

(2.1)

where the state variable Xk takes its values in en and the input variable Uk takes its values
in em. In 2.1 we have A E enxn and B E enxm. As a standing assumption we take (A,B)
to be a controllable pair. We will consider optimization problems of the type
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inf f= (Xk ) * (Q C*) (Xk) .
10=0 Uk C R Uk

(2.2)

Here, R, Q and C are complex matrices of appropriate dimensions and R > 0, Q = Q*. The
expression 2.2 of course needs some explanation. For any Xo E en and any control sequence
U = {Uk};:;o we define

(2.3)

Let

U(xo):={ul lim JT(xo,u)existsinRU{-OO,+oo}}
T-oo

and for any control sequence u E U(xo) define the associated cost by

J(Xo, u):= lim JT(XO, u).
T-oo

(2.4)

The optimization problem of minimizing the cost functional 2.4 over the class of inputs U(xo)
is called the free-endpoint linear quadratic problem. The optimal cost associated with this
problem is equal to

(2.5)

Compare this problem with the usual zero-endpoint problem, where instead of U(xo) the
cost functional is minimized over the class of all inputs that force the corresponding state
trajectory to converge to the origin, i.e. over

(2.6)

The associated optimal cost is given by

V+(xo):= inf J(xo, u).
uEU,(:eo)
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In the present paper we will study a generalization of the above two linear quadratic problems,
the linear quadratic problem with linear endpoint constraints. Given a linear subspace £ of
the state space en, the latter problem consists of minimizing the cost functional 2.4 over all
inputs u that force the state trajectory to converge to the subspace £:

VcCxo) := {u E U(xo)1 lim d(x(xo, u)1e, £) = o} .
1e-+oo

(2.7)

In the above, for a given point x E en, d( x,.c) denotes the usual distance from the point x
to the subspace £. The optimal cost for the latter problem is given by

V.c(xo) := inf J(xo, u).
uEU£(zo)

(2.8)

Obviously, both the free-endpoint problem as well as the fixed endpoint problem are special
cases of the latter problem formulation: take.c = en and .c = 0, respectively.

An important role will be played by the set of hermitian solutions of the discrete time
algebraic lliccati equation

P = A*PA + Q - (C + B* PA)*(R +B*PB)-l(C +B* PA). (2.9)

Besides controllability of (A, B) we shall assume throughout that A - BR-IC is nonsingular
and that '1'(17) > 0 for some 17 E T, where

Here, T denotes the unit circle. In that case the set of hermitian solutions of 2.9 will turn
out to have a maximal element P+ and a minimal element P_ (see Theorem 3.4 below). Put
.6.. := P+ - P_. Let us denote by A+ and A_ the matrices

It will be seen that 0"(A+) C fJ and 0"(A_) C 15e (here V denotes the open unit disk, 'De
denotes the exterior of the closed unit disc). Given a subspace £ of en we introduce the
subspace
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(2.10)

(Here, for a matrix A, X+(A) denotes the spectral subspace of A corresponding to its eigenval­
ues in 'De; likewise we shall denote Xo(A), X_(A) the spectral subspaces of A corresponding
to its eigenvalues in 'T, respectively, 'D). As usual, the notation < }V I A >, where W is a
subspace of en and A an n X n matrix, denotes the largest A-invariant subspace in W. If H
is a matrix such that ker H = £- n ker P_ then V(£-) is the undetectable subspace of the pair
(H, A_) with respect to the the stability set 1). Now, let

(2.11)

where 1l"V (,) is the projection onto V(£-) along (D.V(£-))l.. It will turn out that P£- is a
solution o} 2.9. Finally, if £- is a subspace of en and if P is a hermitian n X n matrix then we
will say that P is negative semi-definite on £- if the following conditions hold:

• 'ixo E £-: xoPxo::S; 0,

• 'ixo E £-: xoPxo = 0 ¢} Pxo = O.

According to this definition, a hermitian matrix P is negative semi-definite on en if and
only if it is negative semi-definite in the usual sense. Furthermore, any hermitian matrix is
negative semi-definite on the zero-subspace {O}. The main result of this paper can now be
formulated as follows:

Theorem 2.1 Suppose (A, B) is controllable, A - BR-IC is nonsingular and W(17) > 0 for
some 17 E 'T. Assume further 2.9 has at least one hermitian solution and assume P_ is
negative semi-definite on £-. Then we have:

(i) Vdxo) is finite for all xo, and Vi:(xo) = xoP£-xo,

(ii) for all Xo there is an input u+ such that V(,(xo) = J(xo, u+) if and only if ker D. ~
£- n ker P_,. in that case u+ is unique and is given by the state feedback control law

This result is the discrete time analogue of [6, Theorem 4.1.]. We stress that the above
theorem also provides information on the free-endpoint problem and on the zero-endpoint
problem. Indeed, for the free-endpoint problem we set (, =en. The corresponding subspace
V((') is then equal to V =< ker P_ I A_ > n X+(A_). Define

where, again, 1l"V is the projection onto V along (D.V)l.. PI is a solution of 2.9 and we find:
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Corollary 2.2 Suppose (A,B) is controllable, A - BR-1C is nonsingular and '1'(17) > 0 for
some 17 E T. Assume further 2.9 has at least one hermitian solution and assumE: that P_ ~ o.
Then we have:

(i) Vf(xo) is finite for all Xo, and Vf(xo) = xoPfxo,

(ii) for all Xo there is an input u+ such that Vf(xo) = J(xo.u-'-) if and only ifker ~ ~

ker P_; in that case u+ is unique and is given by the state fadback control law

The above corrolary is the discrete time analogue of [5, Theorem 5.1]. In order to get
the corresponding result on the zero-endpoint problem we set £, = {O}. The corresponding
subspace V(£') is then equal to V = {O} and we find that the relevant solution of 2.9 is equal
to P+. Thus we find the following discrete time version of [8, Theorem 7].

Corollary 2.3 Suppose (A, B) is controllable, A - BR-IC is nonsingular and '1'(1]) > 0 for
some 1] E T. Assume further 2.9 has at least one hermitian solution. Then we have:

(i) V+(xo) is finite for all Xo, and 1/+ (xo) = xoP+xo,

(ii) for all Xo there is an input u+ such that V+(xo) = J(xo,u+) if and only if ~ > 0; in
that case u+ is unique and is given by the state feedback control law

In this paper we shall give a proof of 2.1. The proof that we shall give basically follows
the line of [6]; the details will be provided in Section 4. In Section 3 we give a description of
all solutions of 2.9 in terms of P_ and P+. The continuous time analogue of this description
is due to Coppel [1]. The argument here is somewhat more complicated and uses ideas from
[2] and [4].

3 Description of solutions of the algebraic Riccati equation

Consider the discrete time algebraic Riccati equation 2.9. In addition to the controllability of
(A, B) and the assumption R > 0, we assume throughout that A - BR-l C is nonsingular and
'1'(17) > 0 for some 17 on the unit circle. We are then in a position to apply [4, Theorem 4.1]
(see also [2, Theorem 4.4]), which gives a description of solutions of the algebraic Riccati
equation in terms of certain invariant subspaces. To be precise, put

T = ( A - BR-IC + BR-lB*(A - BR-IC)*-l(Q - C* R-IC) -BR-lB*(A - BR-IC)*-l )
-(A - BR-IC)*-l(Q - C* R-IC) (A - BR-IC)*-l .

(3.1)

Then we have the following theorem:
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Theorem 3.1 Assume (A,B) is controllable, A - BR-1C is nonsingular and \If(7]) > 0 for
some 'rJ E T. Then the following statements are equivalent:

(i) There exists a hermitian solution of 2.9,

(ii) T has an invariant subspace.M such that

( 0 1) M = M..L
-1 0 '

(3.2)

(iii) the partial multiplicities of T (i.e., the sizes of the Jordan blocks in the Jordan normal
form of T) corresponding to its eigenvalues on the unit circle T are all even,

(iv) \If(z) ~ 0 for all z on the unit circle T.

In that case any T -invariant subspace M for which 3.2 holds is of the form

(3.3)

for some hermitian solution P of 2.9, and, conversely, if P = P* solves 2.9 then M given by
3.3 is T -invariant and satisfies 3.2.

Furthermore, in case (i) to (iv) hold, for every T -invariant subspace N with the property
that a(T IN) c 1Je there is a unique solution P = P* of 2.9 with

(3.4)

Conversely, for every hermitian solution P of 2.9 the subspace N given by 3.4 is T -invariant
and has the property that a(T IN) c 1Je. Here X+(T) denotes the sum of the generalized
eigenspaces of T with respect to its eigenvalues in 1Je. 0

Now let P be any hermitian solution of 2.9. Then it is a straightforward calculation to
see that

where

~(z) =1 + (R + B* PB)-l(C + B* PA)(Iz - A)-l B.
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(see e.g. [2]). So, if (i) - (iv) in the above hold then we have R +B~ P B > 0 for any solution
P = P* of 2.9 (see also Theorem 2.5 in [2]).

Let P+ and P_ be the unique solutions for which

(3..5)

respectively. We shall show that P+ is the maximal solution and P_ the minimal solution of
the equation 2.9. First we prove a lemma.

Lemma 3.2 Let P_ be the solution introduced above, and suppose P is an arbitrary hermitian
solution. Introduce

Then X := P - P_ satisfies the algebraic Riccati equation

Conversely, any hermitian solution X of 3.6 gives a solution of 2.9 via P = X + P_.

Proof: Introduce the following matrices

(3.6)

S_:= R+ B*P_B,

E_ :=C+B*P_A,

L_ := S.=lE_,

To prove 3.6, compute

S:=R+B*PB,

E:= C+B*PA,

L:=S-lE.

X - A:'XA_ = X - (A - BL_)*X(A - BL_)

(P - P_) - A*(P - P_)A + A*(P - P_)BL_

+ L:'B*(P - P_)A - L:'B*(P - P_)BL_.

Since P and P_ solve 2.9 we have

8
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Furthermore,

A*(P- P_)BL_ = (A*PB - A*P_B)L_

= (E* - E~)L_

= (E* - E~)S:lE_

and

Using these equalities and 3.8 in 3.7 we obtain

x - A:'XA_ = E~S:lE_ - E*S-l E + (E* - E~ )S:lE_

+E~S:l(E - E_) - E~S:lB*(P - P_)BS:1 E_

= -E~S:lE_ - E*S-l E + E*S:lE_ + E~S:lE

- E~S:lB*(P - P_ )BS:1 E_

= -E':.-S:l(S_ +B*(P - P_)B)S:l E_ - E*S-lE

+E*S:l E_ +E':.-S:lE

= -E':.-S:lSS:lE_ - E*S-l E + E*S:lE_ + E~S:lE

= -(E* - E':.-S:lS)S-l(E - SS:1E_).

Here we used that S_ + B*X B = S. Moreover,

SS:l = (R +B*PB)(R +B* p_B)-l =1+ B*XBS:1 ,

so

E - SS:lE_ = E - E_ - B*XBS:1E_

= B*XA- B*XBS:1E_

= B*X(A - BS:1 E_)

= B*XA_.

Hence, from 3.9 we see

9
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which proves 3.6. The converse follows by a similar computation. o

According to Theorem 3.1 the subspaces im (:+) and im (:_) are T-invariant. The

following lemma states that the restrictions of T to these subspaces are semi-stable and
semi-antistable, respectively.

Lemma 3.3

Proof: The first statement is an immediate consequence of 3..5. To prove the second state­
ment, define

J := (0 1).
-1 0

Note that Tis J-unitary, Le., T*JT = J. This implies that T is invertible and that T-1 =

-JT* J. Now, assume that x E im (:_) , Tx = >'x and>. E 1). Then T-1 x = >.-1 X whence

T*Jx = >.-1Jx. This implies that Jx E X+(T*), since >.-1 E 1)e. We also have

Using 3.5 the latter implies Jx E X+(T)1.. Since X+(T)1. = Xo(T*) EB X_(T*) we obtain
J x = 0 so x = o. 0

It is a straightforward, but tedious, calculation to show that

are similar to A+ and A_ respectively. Consequently, O'(A+) C f) and O'(A_) C 15e . Introduce

Ap = A - B(R +B*PB)-1(C +B* PA).

10

(3.10)



The following theorem states that P_ is the smallest hermitian solution of 2.9. Likewise, P+
is the largest hermitian solution of 2.9. Furthermore, P = P_ is the only hermitian solution
with the property that 0'(.4p) C if and P = P+ is the only hermitian solution with the
property that 0'( Ap) C fJ.

Theorem 3.4 Assume (A,B) is controllable, A - BR-1C is nonsingular and \[t(17) > °for
some 17 E T. Assume that 2.9 has at least one hermitian solution. LEt P_ and P+ be the
solutions determined by 3.5. Then O'(A+) C fJ and 0'(1L) C t>e. Furhermore, for any
hermitian solution of 2.9 we have

In addition, if P is a hermitian solution with the property that 0'( Ap) C fJe, then P = P_.
If P is a hermitian solution with the property that 0'( Ap) C fJ, then P = P+.

Proof: Let P be a hermitian solution. Then X = P - P_ solves 'l.6 and S_ + B* X B =
R + B* P B > 0. We shall prove that X ~ O. Fir"t "'f' shall prove tlldt X o( A_) ~ ker X.
In order to prove this, choose a basis of X o(A_) (,. "ting of eigenvectors and generalized
eigenvectors. Such a basis consists of chains of veclul' .rb" ., Xk with the property that

where IAI = 1. We will show by induction that X Xl = ... = X Xk = O. Assume A_Xl = AX1'

Using 3.6 we obtain

This yields xiXB(S_ +B* X B)-l B*X Xl =0, from which we obtain xiXB =O. Again using
3.6 this implies xiX = XxiX A_ whence

11



By controllability of (A, B) the latter implies that X Xl
Xr-l + AXr and X Xr-l = O. Using 3.6 we find

O. Kow, assume that A_xr

X;X Xr = (X;_l + Xx;)X (Xr-l + AXr)
- (X;_l + Xx;)X B(S_ + B*X B)-l B* X(J'r-l + ..\.Tr )

The latter implies that (X;_l + Xx;)X B = 0 and hence x;X B = O. Also, x;X = Xx;X A_.
Again, by controllability of (A, B) this yields X X r = O. This proves our claim that X o(A_) ~
kerX.

To proceed, let U be a unitary matrix such that

with 0'(.411 ) C T and 0'(.422 ) C "De. Let Y = U*XU. Obviously, since Xo(A_) ~ ker X, we
have

1"=(0 0).
o Y22

Furthermore if follows from 3.6 that Y22 - AizY22 A 22 :s O. Since the eigenvalues of A 22 lie
strictly outside the unit disc the latter can be shown to imply Y22 ~ O. Thus we have proven
X ~ O.

A completely similar argument can be used to show that any hermitian solution P satisfies
P :s P+. Finally, note that in the above proof we only used the facts that 0'( A_) C rf and
O'(A+) C V. Hence, if P is a hermitian solution with the property that tr(Ap) eVe, then we
must have P :s Q for any hermitian solution Q, in particular for Q = P_. This shows that
P = P_. The statement on P+ is proven similarly. 0

Next we prove an analogue for the discrete time case of a theorem first proved by Coppel
[1] for the continuous time case.

Theorem 3.5 Assume that (A, B) is controllable, that A - BR-1C is nonsingular and that
'1'(7]) > 0 for some 7] on the unit circle. Let P_ and P+ be the minimal and maximal hermitian
solution of 2.9, respectively. Put .6. := P+ - P_ and

Then for every A_ -invariant subspace V of X+ (A_) we have

12



(3.11)

Let 1l"V denote the projection onto V along (~V).L. For every .·L-iT/l'oriOT/t subspace V ~

X+(A_) the matrix P defined by

(3.12)

is a hermitian solution of 2.9. Conversely, for every hermitian solution P of 2.9 there exists
a unique A_ -invariant subspace V of X+ (A_) such that 3.12 holds. This subspace V is equal
to V = X +(Ap), where Ap is defined by

Ap = A - B(R + B*PB)-l(C +B* PA).

It will become clear in the proof that this result is actually little more than a reformulation
of the last part of Theorem 2.1

Proof: First we show that it suffices to prove the theorem for equation 3.6. Note that X_ = 0
is the minimal solution of 3.6 and X+ = P+ - P_ is the maximal solution. Moreover, by
straightforward computation,

(A_)x .- A_-B(S_+B*XB)-lB*XA_

Ax+p_. (3.13)

In particular this means that (A_ )x_ = A_ and (A_ )x+ = A+, Le., the A_ and A+ matrices
remain the same. Because of Lemma 3.2 P is a solution of 2.9 if and only if P = X + P_
for some solution of 3.6. Now assume the theorem is true for equation 3.6. Let V be an
A_-invariant subspace of X +(A_). As the A_ matrix remains the same, we conclude that
3.11 holds. Furthermore, the matrix X := X+(I - 1l"V) is a hermitian solution of 3.6. This
implies that P:= P_ +X = P_1l"V + P+(I - 1l"V) is a hermitian solution of 2.9. Conversely,
let P is a solution of 2.9. Define X := P - P_. There (''\i~ts an A_-invariant subspace of
X +(A_) such that X = X+(I - 1l"V)' This however yields }) = P_1l"V - P+(I - 1l"V)' Finally,
since (A_)x = Ap and (A_)x+ = A+, we also find V = X+(Ap), ker ~ = Xo(Ap) and
X _(A+) n (~V).L = X _(Ap).

It remains to prove the statements of the theorem for equation 3.6. The matrix T given
by 3.1 looks particularly simple in the case of equation 3.6:

(
A_ -BS-1 B* A*-l )

T = --
o A:.-1 '

13



with S_ > O. Note that A_ has all its eigenvalues on or outside the unit circle. Hence we

have X+(T) ~ im (~), more precisely,

So, T-invariant subspaces N with a(T IN) c 1)e are precisely the subspaces of the form

N = V X {O},

where V is A_-invariant and V ~ X+(A_).
Now, let V be an A_-invariant subspace of X+(A_). We will prove 3.11 and that X+(I­

1rV) is a hermitian solution of 3.6. According to Theorem 3.1, there is a unique solution X
of 3.6 such that

From [3], Sections 2 and 7 and Theorem 3.1 we have

and moreover im (~) n Xo(T) is the same subspace for any hermitian solution X (here we

also use the fact that the signs in the sign characteristic of (T, ( 01)) are all the same,
-1 0

see Theorem 1.2 in [4]). Then

im (~) n Xo(T) 1m (}+) n .:ro(T)

1m C:J n Xo(T)

im (~) n Xo(T)

C ker X+ X {O}.

Conversely, for x E ker X+ we have from 3.6

14



On the other hand X+ 2: 0, by Lemma 3.4 so (A* _X+A_x, x) = 0, i.e .. X+"Lx = O. It
follows that ker X+ is A_-invariant. \\'e claim that

(3.14)

Indeed, assume x E ker X+, x =1= 0, and A_x = .Ax. Then T (~) = .A (~). Since (~) E

im (L), by Lemma 3.3 we have A E fJ. On the other hand, since .A E 0"( A_), .A E fJe.

Thus AE T, which proves the claim. It follows from 3.14 that

im (~) n Xo(T) = ker X+ x {O}.

Next,

so

(3.15)

Using the previous inclusion it is easy to see that en =V +(X+ V)J.. We claim that the latter
is, in fact, a direct sum. Indeed, x E V n (X+V)J. implies (x,X+x) = 0 whence X+x = o.
Thus V n (X+V)J. ~ ker X+ n V = 0 (recall that V ~ X+(A_) while ker X+ ~ XO(A_».
Now, if 1rV is the projection onto V along (X+ V)J., it can be seen that 3.15 implies
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Next, conversely, let X be a hermitian solution of 3.6. Define

.N:= im (~) n X+(T).

Then N is a T-invariant subspace and O'(T IN) c ve • Thus.V has the form N =V X {O}
for some A_-invariant subspace V of X +(A_). By repeating the argument in the first part
of this proof it is then shown that we must have X = X+(I - 1rV)'

Finally, we will show that if V c X+(A_) is A_-invariant and X = X+(I - 1rV), then
V = X +((A_)x), ker X+ = Xo((A_)x) and (X+V)J.. n X _(A+) = X _((A_)x).

As in the proof of Theorem 3.4 one shows that Xo(A_) ~ ker X+. Combined with 3.14
this yields ker X+ = Xo(A_). Since 0 $ X $ X+, ker X+ ~ ker X. Hence (A_)x Iker X+ =
A_ I ker X +. This yields

as desired. vVe will now show that

(3.16)

Indeed, note that V ~ ker X. Hence (A-h IV = A_ IV, which yields 3.16. Next, we show
that

(3.17)

In order to prove this, first note that A_V = V, since V is A_-invariant and since A_ is
invertible. Now, the Riccati equation 3.6 with X = X+ can be written as X+ = A:X+A+.
We claim that (X+ V)J.. is A+-invariant. Let W E (X+V)J... Then for all v E V

Hence A+ wE (X+A_ V)J.. = (X+ V)J... Next, by straightforward caculation, one shows that

(3.18)

Since X I (X+V)J.. = X+ I (X+V)J.., 3.18 yields (A_)x I (X+V)J.. = A+ I (X+V)J... Since
O'(A+) C fJ, this implies O'((A_)x I (X+V)J..) C fJ, which yields 3.17.

By combining 3.16, 3.17 and the fact that V ED (X+ V)J.. = en we find that the inclusions
3.16 and 3.17 are, in fact, equalities. Finally, since (A_)x I (X+V)J.. = A+ I (X+V)J.., we find
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4 A proof of Theorem 2.1

The proof is split up into several lemmas, which are all discrete time counterparts of results
in [6]. In this section, let £ be an arbitrary but fixed subspace of en. We will first study the
finiteness of the optimal cost V£(xo). Note that our assumption that (A, B) is controllable
is sufficient to guarantee that V£(xo) < +00 for all xo. In the sequel we shall establish a
sufficient condition to guarantee V£(xo) > -00 for all xo. From section 2 recall the definition
of negative semi-definiteness on £ of a given hermitian matrix P. It turns out that if the
smallest solution P_ of the Rlccati equation 2.9 is negative semi-definite on £, then the
optimal cost is finite:

Lemma 4.1 Assume that (A,B) is controllable, A - BR-IC is non-singular and W(1]) > 0
for some 1] E T. Furthermore, assume that 2.9 has at least one hermitian solution. Then we
have: if P_ is negative semi-definite on £ then Vdxo) E n for all Xo E en

Our proof of Lemma 4.1 uses the following two lemmas:

Lemma 4.2 Let £ be a subspace of en and let H be a matrix such that £ = ker H. Let
P E enxn be hermitian. Then P is negative semi-definite on £ if and only if there exists
>. E n such that P - >'H*H is negative semi-definite. 0

For a proof of the above lemma we refer to [6].

Lemma 4.3 For any Xo E en, any sequence u and any hermitian solution P of 2.9 we have

JT(XO, u) = xoPxo - XT+IPXT+l

+ ~r=olluk + (R +B*PB)-l(C + B*PA)Xkllh+BoPB'

Here, Ilvll~ := v* Sv.

Giving a proof of this lemma is just a matter of standard computation.

o

Proof of Lemma 4.1 : Let Xo E en. Since (A, B) is controllable there is an input sequence
u E U£(xo) such that J(xo, u) < +00 (in fact, one can steer from Xo to the origin in finite
time). Thus V£(xo) E n U {-oo}. Now let u E U£(xo) be arbitrary. Let H be such that
£ = ker H and let >. E n be such that P_ - >'H*H is negative semi-definite. According to
Lemma 4.3, for all T we have
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Thus, for all T 2:: 0,

Since XT converges to I:- as T -+ 00, we have H XT+l -+ O. It follows that

Since the latter holds for all u E UI:-(xo) this proves our claim.

The next few lemmas give some general properties of linear systems.

Lemma 4.4 Consider the system

o

and suppose that (C,A) is observable. Then if {Vk}~o E f 2 and {Yk1~o E f oo necessarily
{Xk}~o E f oo .

Proof: Since (C,A) is observable there exists a matrix L such that O'(A +LC) C V. Obvi­
ously, {Xk}~o satisfies the difference equation

Using some straightforward estimates we see that v E f oo and y E f oo imply x E f oo • 0

In the following, if Cg is a subset of C, then Xg(A) will denote the spectral subspace of A
associated with its eigenvalues in Cg , Le., the largest A-invariant subspace V with the property
that O'(A IV) C Cg. Using the previous lemma we can now prove the following:

Lemma 4.5 Consider the system

Assume that (C, A) is detectable (relative to Cg). Let the state space Cn be decomposed into
cn = Xl EB X 2, where Xl is A-invariant. In this decomposition, let
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Assume that O'(A I Xd c Cg and 0'(A2 ) C CjCg • Then for trEry initio! condition TO we have:

if {Vk}k=O E l2 and {Yk}~o E loo then {X2,k}k=O E £00'

Proof: Clearly Xl = Xg(A). By the fact that (C, A) is detectable with respect to Cg
we may now conclude that < ker C I A >~ Xl' Decompose ''\:'1 = X 11 EB X 12 , with

X 11 :=< ker C I A> and X 12 arbitrary. Accordingly, partition x = (%11). We then have
%12

cn = X 11 EB X 12 EB X 2 with x= (Xfl' Xf2' xnT . In this decomposition let

Obviously, the system

is observable. Moreover,

It now follows from the previous lemma that (:122) E lcx» which implies that X2 E loo. 0

The next lemma tells us that a semi-stable controllable system has the property that all
initial states can be steered to the origin with arbitrary small controls (in t'2-sense).

Lemma 4.6 Consider the controllable system

Assume that O'(A) C D. Then for all e > 0 there exists a u E l2 such that IIul12 < f and
x(xo, U)k -+ 0 as k -+ 00.
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Proof: We will first show that it suffices to prove the statement of the lemma with 1> replaced
by T. Indeed, we can always choose a basis in en such that A and B have the form

with (T(Ad C 'D and (T(A 2 ) C To Consider the subsystem xI,HI = AIXI,k + BUk, with XI,O
given. Obviously, for any input sequence U E £2 we automatically have that Xl E £2 and
hence XI,Ie -+ 0 as k -+ 00.

Assume therefore that (T(A) C To For any 6 > 0, any initial state Xo and any input
sequence U define the quadratic cost

00

J6(XO, u) = :E II ukl1 2+621Ix(xo, u)le11 2

k==O

and consider the optimization problem

(4.1)

(4.2)

Note that 4.2 can be considered as a 'standard' discrete time linear quadratic problem of
minimizing 2:~oU'kRUk + x'kD* DXk, with R = 1 and D = H (see for example [7]). Since
(A,B) is controllable and (H,A) is observable, the infimum 4.2 is equal to xoP(o)xo, with
P(6) the unique positive semi-definite solution of the lliccati equation

P = A"PA +021 - A"PB(I + B"PB)-IB"PA.

(In fact, P(O) > 0). Furthermore, for any Xo there exists a unique optimal input u+ which is
given by the state feedback control law

u+ = -(I + B" P(6)B)-1 B" P(o)Ax+,

and the corresponding optimal closed loop matrix

A - B(I + B" P(O)B)-l B" P(6)A

is stable, i.e., has all its eigenvalues in 'D. Now, we shall analyse what happens if 6 ! O. We
claim that P(0) ! o. Indeed, P(0) ~ 0 and P(6) is monotonically decreasing as 0 1 O. Hence
there exists a hermitian matrix P ~ 0 such that P(0) 1 P. Clearly, P satisfies the Riccati
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equation.

P = A*PA - A*PB(I + B*PB)-l B*PA (4.3)

Now, by applying Theorem 3.4 we find that the latter Riccati equation has a largest hermitian
solution, say, P+. We contend that P+ = O. Indeed, P = 0 is a solution of 4.3 and it has the
property that O"(Ap) C t> (since Ap = A and O"(A) C T). Thus, we must have P ~ O. Our
conclusion is that P = O.

In order to complete the proof, let f > O. Choose 6 > 0 such that xoP(6)xo < f. Choose
the input sequence given by u+ = -(1 +B* P(6)B)B* P(6)Ax+. Then we have

Since the corresponding closed loop matrix is stable, the corresponding state trajectory con­
verges to zero as k -+ 00. 0

\Ve proceed by decomposing en as follows. Let

and let P£ be the solution corresponding to V(£) according to Theorem 3.5. Put

According to Theorem 3.5 we have X+(A£) = Xl. In addition, we define

With respect to the decomposition en = X I EEl X 2 EEl X 3 we have

(

An
A_ = 0

o
o )o ,
A~3

Here, we have used that A_ IXl = A£ IXl and that A_ IX 2 = A£ I X 2 • This follows most
easily by combining 3.13 and the facts that P£ I V(£) = P_ I V(£) and P£ I (~V(£))J.. =
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P+ I (~V(.c))J.. We aIso have

~3)' ~ =
Pi3

and

where pi; := P33 + ~33.

The next lemma states that P.c yields a lower bound for the linear quadratic problem 2.8
under consideration.

Lemma 4.7 Suppose (A,B) is controllable, A - BR-IC is nonsingular and \l1(1]) > 0 for
some 1] E T. Assume further 2.9 has at least one hermitian solution and assume P_ is
negative semi-definite on.c. Then for all Xo and for all u E U.c(xo) we have:

Proof: Let H be a matrix such that L = ker H. Let A E n be such that P_ - AH* H ~ 0
(see Lemma 4.2). Take an arbitrary u E U.c(xo). It follows from Lemma 4.1 that J(xo, u) E
n U {+oo}. If it is equal to +00 then the inequality trivially holds. Assume therefore that
J(xo, u) is finite. Put

From Lemma 4.3 we have

Lr=ollvkll~+B.p_B

JT(XO, u) - xoP_xo + xT+l(P- - AH*H)XT+l +AIIHxT+l11 2

~ JT(XO, u) - xoP_xo + AIIH XT+111 2
• (4.4)

Since JT(XO, u) -.. J(xo, u) and H XT -.. 0 we find that {Vk} E £2' Again using 4.4 this implies
that
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lim xT(P- - >"H* H)XT
T-+oo

exists and is finite. Thus limT-+oo xTP_ XT exists and is finite. Also. since P_ - >..H" H is
semi-definite, (P_ - >"H* H)Xk and hence P_Xk are bounded functions of k. Denote

Now decompose en as above: en = Xl EB X 2 EB X 3 • Since

we have

for given matrices D2 and D3 • With respect to the given decomposition, let

Since Xl is the undetectable subspace (relative to 1») of the system

it is easily verified that the pair
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is detectable (relative to 1». Since O"(A_) C if and ,l'2 = .1'ol.·L). v;e hayc 0"(A 22 ) C T and

0"( (All A13
) C'De •

o A33

Hence 0"(A33 ) C 'De. Also we have

Since {Vk} E £2 and {Yk} E £00' by Lemma 4.5 (applied with Cg = 1» we have {X3,k} E £00'
Now consider Lemma 4.3. We haye

where

Then

(
X2,k )
X3,k

JT(XO,U) XoP£XO + ~r=ollwkllh+B'P£B

_ ( X2,T+l ) * (P~* P2:)
X3.T+l P23 P33

xoP£xo + ~r=ollwkllh+B'P£B

- x3.T+l~33X3.T+l - xT+lP_XT+l' (4.6)

Now xT+lP_XT+ll JT(XO'U) are bounded as T --+ 00, and likewise X3,T+l is bounded as
T --+ 00. It follows that
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and as R + B* P,eB 2: R + B* P_B > 0 we have {Wk} E (2' Now considering

one sees X3,k+l = A~3X3,k + B3Wk. As (7(A~3) C V (because of the fact that .1'3 = X _(A,e))
we obtain {X3,k} E £2. Hence limlt-+oo X3,It = O. Now from 4.6 we have

JT(XO,U) = x~P,exo - XT+l(P- - >"H*H)XT+l

- >..IIHxT+111
2+~r=ollwkll~+B.P,eB - X3,T+l~33X3,T+l

> x~P,exo +>..lllIxT+11l2+ ~r=o"wltll~+B.P,eB - X3,T+l~33X3,T+l'

The desired result then follows by taking the limit as T -+ 00 in the above inequality. 0

Our next lemma states that lii:(XO) = x'OP,exo, taking into account the previous lemma.

Lemma 4.8 Suppose (A,B) is controllable, A - BR-IC is nonsingular and 'l1(1]) > 0 for
some 1] E T. Assume further 2.9 has at least one hermitian solution and assume P_ is
negative semi-definite on £. Then for all Xo and for all E > 0 there is a u E U,e(xo) such
that J(xo, u) ~ xoP,exo +E.

Proof: Put Wit = Uk + (R+ B* P,eB)-l(C +B* P,eA)xlt. From 4.6 we have for all u E U,e(xo):

JT(XO,U) =

(
X2,It ) .
X3,It

lIoreover XIt+l = A,exlt + BWk, so

Now (7(A 22 ) C T, (7(A~3) C V. By Lemma 4.8 there is W E £2 such that
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and (::) (XO,W)k ---. 0 as k ---. 00. Introduce

Then

J(xo, u) = lim JT(XO, u)
T-+oo

= x~P£xo + ~k=ollwklljl+B'P£B

< € + x~P£xo.

o
\Ve now turn to the proof of Theorem 2.1.

Proof of Theorem 2.1: (i) is proved in Lemmas 4.1, 4.7 and 4.4. It remains to prove (ii).
(ii) First assume that for all Xo there is an optimal control, i.e., u+ E U£(xo) for which

~7£(XO) = J(xo, u+). Choose Xo and let u+ be the corresponding optimal control. Put
xt = x(xo, U+)k. By Lemma 4.7

where Wk = ut + (R +B* P£B)-l(C +B* P£A)xt. Hence Wk = 0, i.e.,

Since Xk+l = A£Xk +BWk this yields xt+l = A£xt, in particular

As 0"(A~3) C 1) we have xik ---. 0 as k ---. 00. From 4.6 we see that.

(4.7)

As JT(XO,U+) - xoP£xo ---. 0, HXT+l ---. 0 and Xt,T+1Ll33Xt,T+l ---. 0 as T ---. 00, we get

xt~l(P- - >'H*H)xt+l ---. O. As P_ - >'H*H ~ 0 this gives (P_ - >'H*H)xt+l ---. 0 and
hence P_XT ---. O. In turn this implies that D 2 xt,k + D3xt,k ---. 0 (see 4.5). As X3,k ---. 0 we
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obtain D2xt,. -+ o. Using Xtk+l = A22xtk together with the fact that 0(A. 22 ) C T, this
yields D 2 = 0 (note that Xo, so x2,O, is arbitrary). We conclude that

ker ~ = X 2 ~ ker ( ~ ) = .c n ker P_.

Conversely, suppose that ker ~ ~ .c n ker P_. Then we have P22 = 0 and Pia = O. Also
D2 = O. Put U= {Uk}, where Uk is given by

Then by 4.6

Since x3,k+l = A33x3,k and a(A33 )' C 7), we have X3,T+l -+ o. Hence JT(XO'U) -+ xoP.cxo

so J(xo,u) = xoP.cxo. Also note that (~)Xk = D3X3,k -+ 0 and hence HX3,k -+ O. Thus

U E U£,(xo) and we can conclude that U is optimal.
The second part of (ii) was already proved (c.f. 4.7). 0
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