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1. INTRODUCTION 

This thesis describes an investigation of some structural aspects of crystalline 
sodium metaborate and vitreous alkali borates. An investigation of the struc
tural properties of glasses is of interest for the purpose of explaining and pre
dicting their physical and chemical behaviour. 

We chose the vitreous alkali borates for several reasons. One of them was 
their low melting point, which makes them easy to handle. From the scientific 
point of view these glasses are very interesting because of the different ways in 
which the boron atom may be surrounded by the oxygen atoms. This property 
is responsible for extremes in some physical properties as a function of com
position. The occurrence of these extremes is often called the boron oxide 
anomaly. Generally it is assumed that with increasing alkali oxide percentage 
the amount of four-membered boron atoms (with four bridging oxygen 
atoms *)) increases and the amount ofthree-membered boron atoms (with three 
bridging oxygen atoms) decreases. At a definite percentage of alkali oxide the 
number of four-membered boron atoms reaches a maximum. Opinions about 
the percentage differ, since three-membered boron atoms with one non-bridg
ing oxygen atom also arise (see for instance Beekenkamp 1 - 1), Bray and 
O'Keefe 1- 2)). The differences in the attraction forces of these three different 
units within the network explain the non-linear properties (the boron oxide 
anomaly). The three smallest structural units observed in borate glasses and 
compounds will be indicated with an a for the B03 triangle with three bridg
ing oxygens, with a b for the B03 triangle with one non-bridging oxygen and 
with a c for the B04 tetrahedra with four bridging oxygens. 

The vitreous borates are probably built up from much larger groups than 
these units. These larger groups are similar to those found in crystalline borates. 
Some of them are shown in fig. 1.1. In chapter 4 we shall demonstrate that these 
groups occur in the alkali borate glasses. The nomenclature of the groups will 
follow Krogh-Moe 1 - 3) and Konijnendijk 1 -

4
). Between brackets we will always 

give the smallest units from which the group is made. Konijnendijk 1 -4) gives a 
review of the occurrence of the various groups in crystalline borates found by 
X-ray diffraction. 

Two points of interest are the glass-forming region and the area of phase 
separation. The glass-forming region of the sodium borates goes up to a com
position of about 40 % Na20. This figure cannot be given exactly, because the 
glass-forming is a function of the cooling rate. We found for instance that it is 
possible to vitrify a sample of composition 50% Na20.50% B20 3 • The glass
forming regions of the other alkali borates extend to a limit which is approx
imately equal to that for sodium borate. According to Shaw and Uhlmann 1 - 5) 

*) A bridging oxygen is an oxygen that is bound to the glass network with two covalent 
honds. A non-bridging oxygen has only one covalent bond to the network. 
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Fig. 1.1. Borate groups found in crystalline borates. The groups are schemahcally drawn. 
The configurations in space will usually be different. 

and Vogel 1 - 6 ) the area of phase separation in the sodium borates is between 
8 % and 25 % Na20. These authors also givethe areasforthe other alkali borates. 

The chosen experimental method in this thesis for obtaining new information 
about the structure of the vitreous borates is Raman spectroscopy. Although 
Kujumzelis 1 - 1 ) made some Raman spectra of glasses only a few years after the 
discovery of the effect (1923-1928), the method first became a valuable tool of 
research with the introduction of the ion-gas lasers. The first articles on laser 
Raman spectroscopy of glasses appeared in 1970-1971: notable publications 
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include those by Etchepare 1 - 8), White 1- 9) and Tobin 1 - 10). The spectra 
appeared to have some marked properties: 
(1) They possessed only a limited number of peaks. These were well defined 

and intensive and often polarised (due to totally symmetrie vibrations). 
(2) The spectra looked relatively simpte (in comparison with the infrared 

spectra). 
(3) There were marked changes as a function of the composition. 
These three factors, together with the excellent quality of the spectra, gave a 
new impulse to research on the structure of glasses by means of vibrational 
spectroscopy. Some other advantages oflaser Raman spectroscopy as compared 
with infrared spectroscopy are: 
(1) Sample preparation is easier; in the infrared only very thin films or a sample 

suspended in a matrix can be used. 
(2) In the infrared measurements the spectrum mainly represents the structure 

of the surface, because the infrared light is absorbed within a very short 
distance. 

(3) The occurrence of small amounts of water has very little inftuence. 
( 4) High-temperature recordings are easier to make. 
(5) The lower frequencies (200 cm- 1) are easier to measure. 

A disadvantage of Raman spectroscopy is the lack of an absolute intensity 
measurement. Essentially vibrational spectroscopy can provide a great deal of 
information about structures. The vibrational frequencies provide informa
tion about the values of the bonding forces between the vibrating atoms (or 
between bigger groups). Using the selection rules we can obtain information 
about the symmetry properties of the vibrations and the vibrating units. The 
halfwidth of the peaks in the glass spectra is correlated with the degree of 
disorder of the vitreous network (Brawer 1 - 11)). 

An important advantage of vibrational spectroscopy is the difference in 
magnitude of the frequencies between the vibrations of the atoms in the net
work (internal vibrations) and the vibrations as a result of the interaction of the 
alkali ions and the network (lattice vibrations or external vibrations). This is a 
consequence of the difference in bonding force ( covalent bonding inside the net
work, ionic bonding between alkali ions and network) and in mass (light atoms 
in the network, heavy ions in the case of lattice vibrations). 

A disadvantage of vibrational spectroscopy is the complicated procedure 
required to get the information from the experiments. For free molecules and 
crystals the theory is well understood (see for instance Wilson, Decius and 
Cross 1 - 12) and Shimanouchi 1 - 13)). Schachtschneider 1 - 14) has written a 
number of computer programs which can be used with the so-called G-Fmatrix 
method (cf. chapter 3) to perform calculations on free molecules. We have 
adapted these programs for calculations on crystals, as will be described in 
chapter 3. 
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The vibrational spectra of glasses are more difficult to interpret. Brawer 1 - 11) 

has recently developed a theory which describes these vibrations in disordered 
systems. The starting point of his theory is a comparison of the glass with a 
regularly built structure (a crystal or a :fictive crystal). The short range order in 
the glass includes the appearance of structural groups, which give rise to rather 
sharply defined vibrational frequencies. The lack of a long-range order causes 
small changes in the geometry of these groups and in their coupling. This gives 
rise to a broadening of the peaks. 

In the present investigation we also make a comparison between crystal and 
glass. The best comparisons are made when crystal and glass have the same 
composition, and this can be realised with the alkali borates. For several rea
sons, described in chapter 2, we chose the sodium metaborate (Na3B30 6 ) for 
our first investigation (chapters 2 and 3). The analysis of the spectra of this 
crystal yielded much information, although it was practically impossible to 
make a good glass of the same composition. We were able to calculate some 
force constants of the boron-oxygen honds. lt was also possible to correlate 
one special vibration (770 cm- 1), which had little coupling with the sur
rounding, with the same kind of vibration in the alkali borate glasses ( chap
ter 4). 

The sodium metaborate is very easy to crystallise. The first correct X-ray 
analysis of the crystal dates from 1938 (Fang 1 - 15)). Later Marezio et al.1-16) 

repeated the structure analysis, and found that there were differences in the 
boron-oxygen distances. The infrared spectra have been described by Hisatsune 
et aI. 1 - 17), Goubeau and Hummel 1- 18) and many others. Up to now, how
ever, the Raman spectra were lacking. The new information given by our 
Raman spectra made it necessary to revise the interpretation of the spectra. 
This is described in chapter 2. The calculations based on this revised inter
pretation gave better results than those reported by Kristiansen and Krogh
Moe 1

-
19

). These new calculations, of which the potential energy distribution 
was the most important, enabled us to pro vide an explanation for the vibrational 
frequencies 770 cm- 1 and 806 cm- 1 in alkali borate glasses (chapter 4). 

1-1) 

1-2) 
1-3) 

1--4) 

1-5) 

1-6) 

1-7) 
1-8) 

1-9) 
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2. RING-TYPE METABORATES 

2.1. Introduction 

In chapter 1 we have explained why the borates are of interest for the pur
pose of investigating the structural properties of glass. We showed also that 
vibrational spectroscopy can be of great help to this investigation. In the present 
chapter we shall first present some arguments for the choice of the nietaborates, 
after which a description of the structure will be given. The major part of this 
chapter is concerned with the information that can be obtained from the inter
pretation of the spectra. 

As can be seen from the phase diagrams ofboron oxide and metal oxides (refs 
2-17 to 2-22) there are a great many crystalline compounds. 

The materials we need for our investigation are crystalline cornpounds with 
known structures. Konijnendijk 2 - 1 ) bas given a review of these compounds. 
A survey of some borates with known crystal structure is given in table 2-I. 

TABLE 2-1 

Structure of some crystalline alkali borates 
Na20.B2 0 3 and K20.B20 3 are isomorphous, and so are P-K2 0.5B2 0 3 and 
Rb2 0.5B20 3 (not included in this table). All crystals, except Na20.B2 0 3 and 
K20.B20 3 , possess networks of boron and oxygen. Na20.B20 3 and K20.B20 3 

are built up from isolated rings of boron and oxygen. 
All crystals in this table have a structure that is stable at high temperature and 
normal pressure (and stable or meta-stable at room temperature) 

number of number of 
space group formula units atoms per ref. 

per unit cel! prim. cel! 

Li20.B203 P21/c 2 16 2-23 
Liz0.2B203 141cd 8 52 2-24 
NazO.B203 R3c 3 24 2- 3 
Naz0.2B203 PI 4 52 2-25 
o:-Na20.3B203 P21/c 6 108 2-26 
P-Na20.3B203 P21/C 6 108 2-27 
Na20.4B203 P21 /a 4 92 2-28 
K:1.0.B203 R3c 3 24 2- 4 
K20.2B203 PI 4 52 2-29 
Kz0.3B203 triclinic 6 108 2-30 
o:-Kz0.5B203 Pbca 4 112 2-31 
P·K20.5B203 Pbca 4 112 2-32 
y·K20.5B203 monoclinic 8 224 2-30 

We started our investigation with ring-type metaborates. Although the meta
borates do not form glass readily, there are three main arguments in support 
of the choice: 
(1) The first is the simplicity of the vibrational analysis. The symmetry of the 

crystal and the number of atoms in the primitive unit cell determine the 
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number of vibrations. It is obvious that the interpretation becomes more 
difficult as the number of vibrations increases. A higher symmetry can give 
a greater variety of symmetry species and these can be experimentally 
separated and recognised. Moreover, a higher symmetry may possess de
generate species, which will diminish the number of frequencies. 

(2) The second supporting argument is ease of crystallisation. The borates with 
more than 66 mole % B2 0 3 do not readily crystallise, since this percentage 
coincides with the glass-forming region. The tendency to crystallisation 
decreases with increasing percentage of B20 3 • Pure B20 3 will only crystal
lise under special conditions (McCulloch 2 - 34) and Gurr 2 - 35)). Cesium 
ennea borate (Cs20 . 9B2 0 3) will crystallise but this can take months. 
We therefore looked fora compound that would not present problems of 
crystallisation, especially because we needed single crystals. This meant 
tbat we had to choose a compound that lays slightly outside the glass
forming area. 

(3) The third consideration was the occurrence of isomorphous compounds. 
Por our purpose it was of particular interest to have isomorphous com
pounds to work with, both because they enlarge the number of data and 
because, in our case, they inform us about the infiuence of the alkali ions. 
The sodium and potassium compounds of most crystalline borates resemble 
each other. Na3B30 6 and K3B30 6 are isomorphous, and the Rb and Cs 
metaborates are also very probably isomorphous with the first two com
pounds (v. Grotel 2 - 2)). Unfortunately, no structural investigations of the 
latter two compounds have yet been reported. None of the other borates 
have so many isomorphous compounds as the ring-type metaborates. 

An added advantage was the presence of isolated rings of boron and oxygen, 
which makes the analysis easier. 

2.2. Structure considerations 

2.2.1. Description of the structure 

Sodium metaborate and potassium metaborate belong to the same space 
group R3c (D~d) (see refs 2-3 and 2-4). This group can be represented in two 
ways: 
(1) with the rhombohedral cell, 
(2) with the hexagonal cell. 
The hexagonal cell contains six formula units of Na3B306' the rhombohedral 
cell contains only two formula units. The rhombohedral cell is also the primitive 
unit cell (Bravais lattice R, only the cell corners are occupied). 

The crystal is built up of plane B3 0 6
3 - (b3 ) rings and Na+ (or K+) ions 

(fig. 2.1 ). The centre of mass of the ring is on the intersection of a threefold 
inversion axis with three twofold rotation axes normal to the threefold inversion 
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Fig.2.1 

Fig. 2.1. TheR cell ofsodiummetaborate. There are two formula units Na3 B3 0 6 per primitive 
unit cell. The hexagonal cell is also drawn. 

axis (Wyckoff a-position). All atoms are on twofold rotation axis (Wyckoff 
e-position}. The centre of inversion, which is located halfway between two 
rings, causes an alternating orientation oftwo rings lying one above the other. 

0 (IJ 
j1.2a.Jt 

o/"-o (11) 

[1.43.it 1 

o./3'-....o/
8

'-.....o 

Fig. 2.2 

Fig. 2.2. Ring distances in metaborate rings. The rings have symmetry D3 h. 

As can be seen from fig. 2.2 the boron-oxygen distances in the sodium and 
potassium metaborates show remarkable differences. The Na+ (or K+) ions are 
surrounded by seven oxygens. The distances according to Marezio et al. 2 - 3) 

and Schneider and Carpenter 2 - 4 ) are: 



-9-

Na3B306 K3B306 
lx 2.461 A 2.849 A distance M+-o(I) 
2x 2.474 A 2.801 A -do-
2x 2.607 A 2.835 A -do-
2x 2.482 A 2.775 A distance M+ -0(11). 

The shortest distances between oxygen and oxygen are: 
2.383 A 2.381 A distance O(I)-0(11) 
2.410 A 2.389 A distance O(II)-0(11) 

and some important angles are: 
114.8° 117.3° 
122.6° 121.3° 
125.2° 122.6° 

angle O(II)-B-O(II) 
angle O(I)-B-0(11) 
angle B-O(II)-B. 

0(1) refers to an extra-annular oxygen atom and 0(11) to an intra-annular 
oxygen atom of the metaborate ring. 

2.2.2. Factor group analysis 

Factor group analysis is the method of classifying the modes of a crystal in 
terms of symmetry species. The method is analogous to that used for free 
molecules (see e.g. Bhagavantam 2 - 1 ), Woodward 2 - 9 ) or Nakamoto 2 - 10)). 

The factor group of a space group is the set of cosets obtained when the space 
group is decomposed relative to the group of all its primitive translations. The 
factor group is homomorphous with one of the 32 point groups. The homo
morphous point group can be obtained from the Schoenflies notation of the 
space group by dropping the superscript. Turrell 2-

5
) (pp. 103-108) describes 

why only the irreducible representations of the factor group need be considered 
in the case of fundamental infrared- and Raman-active vibrations. In the case 
of an infrared-active vibration the dipole moment vector (or the changes in it) 
transforms in the same way as the translation vector. The primitive translations 
belong to the totally symmetrie species of the translation group T (this is the 
group of all primitive translations of the space group ). Therefore, the dipole 
moment vector also belongs to this totally symmetrie species. Turrell shows 
further that the polarisability tensor (with its changes) belongs to this totally 
symmetrie species of the translation group. This means that the fundamental 
infrared and Raman vibrations belong to this totally symmetrie species of T 
and in this case the wave vector k is equal to zero *). This also means that we 
only need to consider those representations of the space group which occur as 
irreducible representations of the factor group (Turrell p. 107) **). 

*) The wave vector kis the reciprocal of the wavelength of the standing wave in the crystal. 
If all primitive cells vibrate in phase, then k = 0. 

**) For non fundamentals, i.e. for combination tones and overtones (more-phonon processes), 
a totally different treatment is necessary. The theory can be found in for instance Tur
rell 2-5), Poulet and Mathieu 2- 6), Bhagavantam and Venkatarayudu 2- 7) or Nuss
baum 2- 8). 
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These are also the irreducible representations of the homomorphous space 
group, i.e. the group D 3d in the case of Na3B30 6 , since homomorphous groups 
have the same representations. Bhagavantam and Venkatarayudu 2

-
1

) devel
oped a method of calculating the number of vibrations in the different sym
metry species. Of course the Wyckoff positions of the atoms in the crystal have 
to be known. Adams and Newton 2 - 11) used this method to tabulate for all 
230 space groups and all possible (Wyckoff) positions of the atoms the number 
of vibrations per symmetry species. In this way we can immediately read in 
which species the 3N = 72 modes of the Na3 B3 0 6 crystal can be found. The 
tabulation for the space group R3c is given in table 2-II, since all atoms in 

TABLE 2-II *) 

Space group R3c, no. 167. Factor group is isomorphous with D 3d 

Wyckoff pos. A1g A2g 
1 

Eg A1u 
1 

A2u Eu 

translation 2a 0 1 1 0 1 1 
rotation 2a 0 1 1 0 ~ 1 
translation 6e 1 2 3 1 2 3 
rotation 6e 1 2 3 1 2 3 

*) From Adams and Newton 2 - 11). 

the crystal are at the Wyckoff e position, we readily find that the 72 modes 
are distributed as follows: 

Na(6) 
B(6) 
0(12) 

Total: 

À1g + 2 À2g + 3 Eg + À1u + 2 À2u + 3 Eu 

À1g + 2 À2g + 3 Eg + Á1u + 2 À2u + 3 Eu 

2 À1g + 4 À2g + 6 Eg+ 2 Á1u + 4 À2u + 6 Eu 
~~~~~~~~~~~~~~~~- + 
4A1g + 8 À2g +12E9 + 4 Á1u + 8 À2u +12Eu 

Three modes belong to the optically inactive acoustic vibrations. These are 
vibrations where the whole lattice carries out a translational movement. The 
modes of the acoustic vibrations belong to the same species as the pure trans
lations. The character table of the point group D 3d (table 2-III) shows that these 

TABLE 2-III 

Character table of the point group D 3d 

A1g 1 1 1 1 1 1 <Xxx + <Xyy• <Xzz 
A29 1 1 -1 1 1 -1 R. 
Eg 2 -1 0 2 -1 0 (Rx,Ry) (<Xxx - <Xyy,<Xxy), (ac,"<Xzx) 
Aiu 1 1 1 -1 -1 -1 
A2u 1 1 -1 -1 -1 1 T. 
Eu 2 -1 0 -2 1 0 (Tx,T,) 
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must be the species A2 u and Eu. From this table we also find the Raman- or 
infrared-active vibrations. The A 2 g and A 1u species are inactive, so we have left 

2.2.3. Site group analysis 

Factor group analysis supplies the total number of vibrations in the different 
symmetry species. However, it is worth making a distinction between lattice 
vibrations and internal vibrations. We are able to do this because the crystal 
has two distinct structural parts: the covalent bonded boron and oxygen in the 
ring and the Na+ ions, which have a much weaker bonding with the B30 6

3 -

ions. The strong covalent bond of the boron and oxygen atoms in the ring gives 
rise to a relatively high vibrational energy as compared to the sodium-oxygen 
vibrations. This causes a difference in frequency between the two kinds of 
vibrations. We can easily classify these vibrations by means of site group 
analysis. 

If we consider the B30 6
3

- ring as a whole, we see that it is situated at a 
Wyckoff a position. The ring has D3 site symmetry in the crystal, because one 
threefold and three twofold rotation axes pass through its centre of mass. The 
inversion centre in the primitive unit cell delivers two equivalent sites, both 
having D3 site symmetry. D3 is a subgroup of the point group D 3d (with which 
the factor group is homomorphous). Each ring in a primitive cell contains 
N 9 atoms and has therefore 3N - 6 = 21 modes of vibration. Thus, the 
two rings in the primitive cell give rise to 42 internal vibrations. Their distribu
tion over the symmetry species will be given later. 

There remain in this way 72 - 42 = 30 modes for the lattice vibrations. 
The acoustic vibrations belong to the species A 2u and Eu, as previously de
duced. The distribution of the remaining 27 modes can be inferred from 
table 2-II. We have two rings at a Wyckoff a position and six Na+ ions at the 
Wyckoff e position. 

Translations 6 Na+ 
Translations 2 rings 
Rotations 2 rings 

Acoustic vibrations 
Total number of optical 
lattice vibrations 

A 10 2A2 g + 3E0 + A 1u + 2A2" 3E11 

A 2 g Eg + A 2" + E" 
A 29 E9 + A 2u + E" 

Au+ 4A29 + 5Eg + A1u + 4A211 + 5Eu 

A 2" + E 11 

À1g + 4À2g + 5Eg + À1u + 3A2u + 4E" 
(= 27 modes) 

The A2g and A1" are Raman- and infrared-inactive, so the number of active 
lattice vibrations is given by 
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A10(R) + 5 E9(R) + 3 A2 u(IR) 4 Eu(IR). 

These vibrations can be expected in the low frequencyr ange, i.e. below approxi
mately 250 cm- 1 • 

We can specify the rotations and the translations of the rings somewhat 
better. Fig. 2.3 shows the two rings in a primitive unit cell; the rings are in the 

0 

\---!-. -\ 
\/ lsiteb 8-0 
rb\ / 

8 1 0 

I \ f-·-·-·-Y 
/ 

/ 
x 

Fig. 2.3. Two B30 6
3 - rings in the primitive unit cell. 

X-Yplane and the Z axis is along the threefold inversion axis. For symmetry 
reasons, the translations in the plane of the ring have to belong to the doubly 
degenerate species E9 or Eu. The translations along the Z axis belong to the 
symmetry species A2 u or A29• If both rings shift in the same direction, then this 
is an anti-symmetrie movement with respect to the inversion centre i. For this 
reason these movements belong to the ungerade species. If both ri.ngs move in 
opposite directions (antiphase) then these vibrations will belong to the gerade 
species. The rotations can be treated in an analogous way. The rotations around 
the Z axis belong to the A 29 or A 2u species and the rotations around an axis in 
the plane of the ring to the E0 or Eu species. If both rings rotate in the same 
direction, then this rotation is symmetrie with respect to the inversion centre i 
and the vibration belongs tö the gerade species. Whereas if they ~otate in op
posite directions it is an antisymmetric vibration which belongs to the ungerade 
species. Summarising we find the following species: 

Ta Tb along the Z axis 
Ta + T0 in the plane of the rings 
Ta - Tb along the Z axis 
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~ ~~*~~~*ri• ~ 
Ra+ Rb around the Z axis A2 g 

R0 + Rb around an axis in the plane of the rings Eg 
Ra - Rb around the Z axis A 2u 
R0 - Rb around an axis in the plane of the rings Eu 

(T0 and T" are translations, and R 0 and R" rotations of ring a and ring b, 
respectively. + =in phase; = antiphase.) 

For the internal vibrations the same arguments can be used. Consider a par
ticular vibration occurring in both ring a and ring b. If the atoms in a move 
completely in phase with the corresponding atoms in b, the overall vibration 
is symmetrie with respect to i, and belongs to a gerade species. If the atoms 
in a move in antiphase with the corresponding atoms in b, the overall vibration 
is antisymmetric with respect to i, and belongs to an ungerade species. 

Thus, each particular vibration of the 'free' ring is associated with the occur
rence of two vibrations, one of the gerade and one of the ungerade species, in 
the crystal. 

Due to the weak interaction between both rings in the unit cell the frequencies 
of the gerade and ungerade crystal vibration will differ very little. 

2.2.4. Correlation D3h-D3-D3d 

Since the sodium metaborate crystal has a centre of inversion, we can use 
here the rule of mutual exclusion. Tuis rule means that among the active vibra
tions the Raman-active vibrations belong to the gerade species and the infrared 
active vibrations belong to the ungerade species. If we use this rule for a pair 
of vibrations from the two rings, then this pair will be split up into a Raman
active (or inactive) vibration and an infrared-active (or inactive) vibration. 

If we take the B30 6
3 - ring as a 'free' ion, then its symmetry is D 3h. Placing 

this ring in the crystal we find that the horizontal mirror plane, the vertical 
mirror planes and the S3 axis disappear, that is to say they are locally present 
hut do not form part of the crystal symmetry. We are thus left with symmetry D3 • 

Because the D3 site bas less symmetry than the free ion, the more differentiated 

TABLE 2-IV 

Character table of the point group D 3h 

E 2C3 3C2 ah 2S3 311v 

A'1 1 1 1 1 1 1 a,,;;, + 17.yy,17.zz 
A 1

2 1 1 -1 1 1 -1 Rz 
E' 2 1 0 2 -1 0 (Tx,Ty) (axx - 17.yy,17.xy) 
A" 1 1 1 l -1 -1 1 
A"z 1 1 -1 -1 -1 1 T, 
E" 2 -1 0 -2 l 0 (Rx,Ry) (ayz•l7.zx) 
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TABLE 2-V 

Character table of the point group D3 

E 2C3 3C2 

A1 1 1 1 1Xxx + GCyy,Cl'.zz 
Az 1 1 -1 Tz;Rz 
E 2 -1 0 (T",Ty); (Rx,Rv) (1Xxx - GCyy,GCxy); (GCyz,GCzx) 

species of D3h are converted into the species of D 3 with fewer symmetry ele
ments. We can easily find the correlation between D 3 h and D3 from the character 
tables (tables 2-IV and 2-V) (see Turrell 2 - 5) for the method), or from the cor
relation tables of Wilson, Decius and Cross 2 - 33) (p. 333). Table :2-VIa gives 
a survey of the correlations between the groups D3n, D3 and D3à and table 
2-Vlb gives the resulting internal vibrations in the crystal. 

TABLE 2-VI 

a. Correlation D3n-D3-D34 

D3n 

A'1(R) A1 

A',Q.")~ 
· E' (R, IR) ------- A2 
A" i (i.a.) 
A"2 (IR) E 
E" (R) 

Dst1 

A19 (R) 
A111 (i.a.) 

--============ A2
9 

(i.a.) A2u (IR) 

-=========== E
9 

(R) E" (IR) 

b. Internal vibrations of crystalline Na20.B2 0 3 (RJc) 
3A 19 (A' 1) R 
2A29 (A' 2) i.a. 
2A29 (A" 2) i.a. 
5E9 (E') R 
2E9 (E") R 

3Ai. (A' 1) i.a. 
2A2u (A' 2) IR 
2A2u (A" 2) IR 
5Eu (E') IR 
2Eu (E") IR 

2.2.5. Vibrations of the 'free' ion B30 6
3 -

The 'free' B30 6
3 - ion contains 9 atoms and there will be 3N - 6 21 

vibrational modes. Starting with the reducible representation of the ion we 
can reduce this representation to a set of irreducible representa~ions of D 3h 

(see for instance Turrell 2 - 5), chapter 2, sec. IX): 

TB3°63
- = 3A'1 + 2 A' 2 + 5 E' + 2 A" 2 + 2 E" (totalling 21 modes). 

Note: in the case of the planar B30 6
3 - ring, the species A' 1, A' 2 and E' repre

sent the in-plane vibrations and the species A" 2 and E" the out-of-plane 
vibrations. 
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2.2.6. Displacement configurations 

Por the interpretation of the spectra it can be helpful to have a visual repre
sentation of the (relative) displacements during the vibrations. We confine our
selves to the B30 6

3
- ion, because, as has been shown in the preceding secs, the 

movements in the crystal will be very similar. 
The influence of the Na+ ion is expected to be small and is disregarded in 

this respect. Por the purpose of this representation we wish to be informed 
about: 
{l) the directions of the displacements of every atom for every vibration; 
(2) the amplitude of these displacements; 
(3) the frequency of the vibration whose displacements are known. 
We can get all this information from the calculations carried out with the 
G-F matrix method (see chapter 3). But before we can start the calculation 
we need an assignment of the spectra. As long as we have no assignment (and 
no calculations) we are deprived of the information on the points 2 and 3, which 
leaves us with point one - the directions of the displacements. This is primarily 
a point of symmetry. With this information it is possible to give an approxima
tion of what we shall call the displacement configurations. 

For these approximate displacement configurations we make use of the 
(internal) symmetry coordinates (cf. chapter 3), which can be constructed from 
the intemal coordinates (e.g. stretching, bending and torsion) in such a way 
that they have the full symmetry of the B30 6

3 - ring. These symmetry coordi
nates are linear combinations of the normal coordinates, which describe 
exactly the displacements but have to be calculated as mentioned before. Every 
symmetry coordinate belongs to one of the species of the symmetry group of 
the ion. If there are n1 symmetry coordinates for a species r and the number 
of vibrational modes of species r is v1 , then n1 ):. v1 and n1 - v1 is the number 
of redundant symmetry coordinates for the species. An example of a (com
pletely symmetrie) coordinate is s r1 + r2 + r3 + r4 + r5 + r6 • It belongs 
to the A' 1 species, in which r x refers to stretching of one of the six B-0 honds 
in the ring. As will be shown in the next chapter, the symmetry coordinates 
are found by framing a U matrix. The redundant coordinates have to be 
deleted from this U matrix (see sec. 3.4.1). 

One problem encountered in using the U matrix is that it is not unique. It 
must be chosen to be orthonormal (or unitary if its elements are complex) and 
in such a way as to give the matrix product G. U G Ü (see sec. 3.2) the 
diagonal block form, in which each block corresponds to a particular irre
ducible representation of the group. This leaves us with an infinite number of 
possibilities for U except in the rare case that each species contains at most 
one vibrational mode. 

Since the normal coordinates are linear combinations of the symmetry coor
dinates, they are only identical for a vibration which is the only one occurring 
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in its species. However, if there are more symmetry coordinates per species 
there is a considerable chance that each of them will make the biggest contri
bution to a different normal coordinate of the species. If this is not the case 
then the symmetry coordinates are not representative of the normal coor
dinates. A calculation of the potential energy distribution over the various 
symmetry coordinates can settle this question. 

A special problem arises from the degenerate species. We already mentioned 
that the congruence transformation G. = U G V yields a diagonal block 
form. If this transformation is performed with a U matrix obtained with the 
aid of the projection operator on the basis of the characters of the irreducible 
representations, the block pattern is often incorrect for the degenerate species. 
However, for calculation reasons a correct block form is necessary and it also 
gives more insight into the displacement configurations. 

In practice the correct block form can often be realised by constructing the 
U matrix by means of the projection operator on the basis of the elements of 

TABLE 2-VII 

U matrix of B30 6
3 - obtained by the method of Nielsen and Berryman 2 - 36) 

symmetry 
coordinates 

internal coordinates 

t 11 2 3 41 51 61 7 81 9l1011ll213l14ll5l16l1718l1920l2ll22j23124i25l26l2728l29130 

1 ' 1 111 1 1 ' 1 . ' • i 1 . ' 

A' 1 ~ 1 1 1 1 1 1 1· 1 11 1 ' Il ' 

4 -1-11-1 i i 
5 1 1 1 1 1, 1 1 

A'2 l 61j, 1-1 i1-1 11-11' 1 1 1 ' 1 1 ' I 1 
' 1 1!-1 1-1 lf-1 

A"1 l:!I 1 1 1 i 1 1 ' i ~ 
A" 2 91 1 1 "Iî1Tï 

10 ' ' 1,1 1 ·l 1-1 

1 ' 

' 1 

1 1! 11 1 1 1 

}1 red. 

red. 

red. 

11 1 1 21-1-1 1 1 12 l 1-2-2 1 l 
13 1-1 -1 1 
14 2"-l-1 

1
_

2
,I, 

1 
2 red. 

1156 li li ' 1 1 1-2-21 1 
E' 17 i 1 1-1 ' H 

181 :I~ +-1 -+--+~-+---+_-.+-c i1ci--;- +-+--+-~l -+--+-+--+---+l-t-+---+-+----+--+-1 ··········-1 
191-1-1 1 1 
20 1-11-2 2 1-1 

~~ -1 1 -1 11 1 
2red. 

~3 1-h-1 1 
241 ,-1 1-1-,1 2 1 



r = stretching 
oc, {J, y bending 

o out of plane wag 
T = torsion 
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TABLE 2-VII (continued) 

Definitions of the internal coordinates 

internal atom numbers coordinate kind 
number IJK L 

1 '1 l 2 0 0 
2 Tz 2 3 0 0 
3 T3 3 4 0 0 
4 T4 4 5 0 0 
5 rs 5 6 0 0 
6 r6 6 l 0 0 
7 r, l 7 0 0 
8 rs 3 8 0 0 
9 rg 5 9 0 0 

10 IX1 6 1 2 0 
11 IX2 2 3 4 0 
12 OC3 4 5 6 0 
13 /31 1 2 3 0 
14 /32 3 4 5 0 
15 {33 5 6 1 0 
16 Y1 6 l 7 0 
17 Y2 7 l 2 0 
18 Y3 2 3 8 0 
19 Y4 8 3 4 0 
20 Ys 4 5 9 0 
21 h 9 5 6 0 
22 01 7 l 2 6 
23 02 8 3 4 2 
24 03 9 5 6 4 
25 T1 1 2 3 4 
26 Tz 2 3 4 5 
27 T3 3 4 5 6 
28 T4 4 5 6 1 
29 't's 5 6 1 2 
30 T6 6 l 2 3 

the matrices of the irreducible representations. We call this the method of 
Nielsen and Berryman 2 - 36), who, to our knowledge, were the first to construct 
the U matrix with this projection operator. In chapter 3 this is done for B30 6

3 -

(3.4.l); table 2-VII gives the U matrix of B30 6
3 -. The symmetry coordinates 

nos. 5 and 8 are zero coordinates or straightforward redundant coordinates. 
This is seen by performing the congruence transformation G. = U G Ü. If 
n is the serial number of a symmetry coordinate and if this coordinate is a 
zero coordinate, then the nth row and the nth column of G. will consist of 
zeros only. However, more redundancies are present among our 30 symmetry 
coordinates: one more in species A' 1, four in species E' and two in species E" 
(table 2-VII). This can be seen at once ifwe compare the number ofsymmetry 
coordinates with the number of modes per species, which have to be equal. 
They are not straightforwardly redundant in the sense that they do not give 
rise to the occurrence of rows and columns consisting of only zeros in G,. This 
is because, owing to the non-uniqueness of U, zero coordinates are linearly 
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combined with non-redundant symmetry coordinates of the same species. As 
for the species A' 1 the Iinear combination s3 - s4 is the true redundancy. 
Because we are allowed to make Iinear combinations of the symmetry coor
dinates within a species, we can take s3 + s4 and s3 - s4 instead of s3 and s4 • 

In this way only s3 s4 remains, because s3 s4 is redundant. 
The redundancies in the degenerate species are not so easy to. remove. A 

method of eliminating the redundancies (which we called the SPC method) is 
described in chapter 3, sec. 3.3.2. The resulting linear combinations are numeri
cally too complicated to get an easy sketch of the displacement configurations. 

S2=r1+r2+r3 
+r4+r5 +r6 

s3+s,,. =«1+«2+«3 s11=2r1-ra-r9 st2='i +r2 -2r3 s13=r, -r2 -rs +r, 

E" 

-p, -P2 -{J3 -2r4 +r5 +r5 

~ 
~ 

5PJ=r,+r2 +r3-2r4 
-2rs +r, 

~ 
~ 

Fig. 2.4. Displacement configurations based on the U matrix of B30 6
3 -. v8 to v12 belong 

to species E'. 
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The symmetry coordinates of a doubly degenerate species may be divided into 
two sets, each yielding an identical G. (and F,) block. Therefore, for each species 
only one set needs to be considered. For species E' this set is composed of 
symmetry coordinates nos. 11 to 17 inclusive, and for species E" of nos. 25, 
26 and 27. The coordinates are sketched in fig. 2.4. It can be seen from these 
figs that s26 and s27 are identical. Obviously, therefore, a linear combination 
of these two must be redundant! 

2.2.7. Vibration-intensity relations between ring and crystal 

In secs 2.2.3 and 2.2.4 it has been shown how a vibration of the ring is du
plicated in the crystal. To be able to differentiate between the crystal vibrations 
we will mention their origin: this will be done by placing the original species 
of the vibration in the B30 6

3 - ion in parentheses behind the symmetry species 
of the crystal vibration. Por instance a crystal vibration belonging to Eg and 
due to an in-phase vibration of two identical E" modes of the two rings will 
be indicated by Eg (E"). 

It is interesting to see how the inactive vibration A' 2 in the free ring becomes 
infrared-active in the crystal as À 2 u (A' 2 ). In this section we will deduce what 
can be said about the intensity of vibrations of this kind. The theoretica! back
ground may be found in Poulet and Mathieu 2 - 6) (sec. IX.7). 

We shall start by looking at the relation between the site (symmetry D3) and 
the crystal (symmetry D3d), after which we shall consider the relations between 
the free ring (symmetry D3h) and the site. Por a vibration on site a (see fig. 2.3) 
we can de.fine the normal coordinate Qao the derived polarisability tensor, P °' 
and the derived dipole moment vector, M 0 • This can also be done for the same 
vibration on site b, giving Qb, P b and Mb. We know that the combination of 
these vibrations in the crystal gives rise to a gerade and an ungerade vibration. 
These can be represented by the symmetry coordinates 

Sg = (Qa + Qb)/V2, 

Su = (Qa Qb)/V2. 

The derived polarisability tensors and dipole moment vectors can be combined 
in the same way to get the derived crystal polarisability tensor and dipole moment 
vector of each vibration. This may be done in the following way. 

Let a rectangular coordinate system Ox:yz be fixed in the crystal, and a Iocal 
coordinate system 0 a be chosen with its origin on site a and its axes parallel 
to the corresponding axes of Ox:yz· If a second local coordinate system Ob is 
chosen with its origin on site b and in such an orientation that Oa and Ob 
transform into each other under the inversion operation, and if Pa and Ma are 
defined in 0 0 and Pb and Mb in Ob, then 
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The transformation matrices T0 and T11 which transform Oa and Ob to the 
crystal coordinate system 0 xyz are given by 

(
1 0 0) 

Ta= 010, 
0 0 1 

Tb (-~ -~ ~). 
0 0 -1 

The contributions from the ring tensor and vector in the crystal tensor and 
vector will now be 

site a 

site b 

pacryst Tap Ta-1 
Ma cryst = Ta M 

p 
M 

p b cryst = Tb p Tb - 1 = p 
Mbcryst Tb M =-M. 

The total derived polarisability tensor and dipole moment of the crystal become 
now 

for the gerade species pcryst = (Pacryst + pbcrysl)/V2 = v2 P, 
Mcryst= (Macryst Mbcryst)/V2 O; 

for the ungerade species pcryst = 0, 
Mcrrst = V2 M. 

This deduction shows that gerade species cannot be infrared-active and unge
rade species cannot be Raman-active. 

The next thing we have to do is to give the relations between the vibration 
of the 'free' ion and the ion on the site D3 • In table 2-VI it can be seen that 
there are different symmetry species of the group D 3h (of the 'free' ring) which 
contribute to one species of the site group D3 . We will now, after Mathieu 
and Poulet 2 - 6 ) (sec. XI.8.1) make the following assumptions: Let a vibration 
of the 'free' B3 0 6

3 - ion belong to the species I'1 and another to the species I'2 

(I'1 and I'2 are species of D3h). We then assume that both, if incorporated in 
the crystal, pass into I' of D 3 • Two crystal vibrations will now result. One will 
be basically the I'1 ring vibration with a slight admixture of the I'2 ring vibra
tion, the other will be basically the I'2 vibration with a slight admixture of 
the I'1 vibration. We will denote them by I'(I'1) and I'(I'2), respectively. If we 
represent the vectors of the derived dipole moment and the tensors of the de
rived polarisability in D3h by M(I'1) and M(I'2), and P(I'1) and P(I'2) respec
tively, then vectors and tensors from the vibrations I'(I'1) in D 3 are 

M(I'(I'1)) = M(I'1) ), M(I'2); 
P(I' (I'1)) = P(I'1) + -1 P(I'2); 

where -1 is a small number. For the I'(I'2) vibrations in D3 we have 
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M(I'(I'2)) À M(I'1) + M(I'2); 

P(I' (I'2)) = À P(I'1) + P(I'2) ; 

The À's in these four expressions will in principle be different, hut that is not 
relevant to this discussion. 

Let us now see how this works out for the vibrations of the B3 0 6
3

- ion. 
Taking the crystal vibrations Eg (E') and Eu (E') we see that they are cor
related with the E species of D 3 . Thus 

M (E (E')) = M (E') + J, M (E"). 

The character table 2-IV gives the components of the derived dipole moment 
vector (Mx, My and Mz): 

M(E') = {Mx, My, O} and M(E") {O, 0, O}. 

so that in this case M(E(E')) = {Mx, My, O}. 
We represent the non-zero components of the ( derivative) of the polarisability 

tensor by a, b, c and d, and have 

P (E (E') P (E') + À P (E"). 

The tensors P (E') and P (E") may be found in Poulet and Mathieu 2
-

6
), 

p. 245, for the following setting of the local coordinate system Oa: Oz//C3 , 

Oxf /C2 • They are 

P (E', x) (~ -~ 
0 0 

P(E", I) ~ (~ 
0 
0 
d 

We now obtain 

(

c 0 
P (E,x (E')) = 0 -c 

0 }. 

~) and P (E',y) (~ ~ ~). 
0 0 0 

~) and P (E'', 2) ~ (J ~ 1)-

0) ( 0 -c -.:t) A and P (E, y (E')) = -c 0 0 . 
0 -À 0 0 

Combining these results with the results of the first part of this section, we can 
write for the crystal vibrations 

species Eg (E') (gerade species, i.e. M 0) 

and 

(

c 0 
v2 p (E, x (E')) = v2 o -c 

0 ;,, ~) 
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(

' 0 -c -À) 
P (E9 , 2) = V2 -c 0 0 ; 

-À 0 0 

species Eu (E') (ungerade species, i.e. P = 0) 

M(Eu, 1) = M(Eui 2) V2 {Mx, My, O}. 

There are two polarisability tensors for the degenerate species (and also two 
dipole moment vectors), because these vibrations are composed of two vibra
tions (with the same frequency), both possessing their own tensor (and vector). 
In the same way we can deduce the Mand P for the other species of the crystal: 

species A 19 (A'1): M(A 19) = 0; P (A 19) = V2 (~ ~ ~); 
0 0 b 

species A2" (A'2): M(A2 u) V2 {O, 0, l}; P (A2u) 0. 

species A2u (A" 2): M(A2u) = V2 (0, 0, Mz); P (A2u) 0; 

species E9(E") P (E9 , 1) = V2 (~ -~ ~) 
0 d 0 

and P (E9, 2) 

M(E9, 1) 

species Eu (E") : M (E", 1) 
P (E", 1) 

( 
0 -À -d) v2 -À o o ; 

-d 0 0 
M(Eg, 2) = 0. 

M (E", 2) = V2 {A, À, O}; 
P (E", 2) = O; 

lt is clear now why the infrared-inactive vibration A' 2 of the ring has become 
active in the crystal as an A211 vibration: its derived dipole moment is not equal 
to zero. However, it is unlikely that the species À 2u (A' 2) and E" (E") can be 
seen in the infrared, because in their case all contributions to the derived dipole 
moment vector are small. 

2.2.8. Single crystals 

In the factor group analysis we have distributed the normal vibrafions among 
the different symmetry species. Every active species is characterised by one or 
more non-zero components specific to the species - of the derivative of 
the polarisability tensor or dipole moment vector. The components can be 
measured separately if we take into account the directions that define these 
components. This is only possible if we use polarised light and single crystals 
for our measurements. If the components are found for every vibration, then 
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we are able to decide what the symmetry species of the vibrations are. This is 
of course an important tool for the assignment of the vibrational spectra. 

We succeeded in growing single crystals of sodium metaborate from the melt 
and also in recording the Raman spectra of these crystals. We decided not to 
align the crystal for several reasons. 
(1) Since the alkali metaborates are very hygroscopic, the alignment would have 

involved taking special precautions to protect the crystal against moisture. 
(2) The alignment is time consuming. 
(3) The information can be obtained without an alignment, as will be shown 

in this section. 
We did not try to make infrared spectra from the single crystals, because the 
crystals were too small. 

In this section we will calculate the expected intensities of the different vibra
tions in a non-aligned single crystal. Before starting the calculation of the 
intensity we define a right handed coordinate system 0 pqr· This is placed in 
such a way that the laser beam enters along the r axis and the observed radia
tion leaves the sample along the p axis. The entering beam is polarised parallel 
to the q axis. The coordinate system of the crystal, which is independent of 
Opqr. will be Oxvz (see fig. 2.5). 

The derivative of the polarisability tensor P xvz can be transposed to the 
coordinate system Opqr with the transformation matrix T: 

"Analyser" 
.1. 

r 

z 

p ...... ~~0-bs-e~rv~e-d~~--,r--~~~~~-fft.1 

scattered 
beam 

Il 

q 

Fig.2.5 

x 
y 

Incident laser beam 
{pofarised) 

(2.1) 
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(

t 11 ti2 t13) (cos (p, x) cos (q, x) cos (r, x)) 
T t21 t 22 t 23 = cos (p, y) cos (q, y) cos (r, y) . 

h 1 h2 t33 cos (p, z) cos (q, z) cos (r, z) 
(2.2) 

The relations between the direction cosines are 

3 3 

t11 tk1 Ö;k and L til t1k Ö1k (i, k 1, 2 ,3) 
J=l i=l 

This implies the orthonormality of the matrix T and will be used below. 
According to Poulet and Mathieu 2

-
6

) the intensity of the scattered Raman 
radiation for a vibration belonging to the species rm with a degree of de
generacy 11 is given by 

11 

I kL 1 l:;e2"e16 P"6 ((i),n)j 2
• (2.3) 

n=l ix,p 

In this equation e16 and e2" (a, fJ = p, q, r) are the components of the unit 
vectors e1 and e2 , which define the respective directions of the entering polarised 
beam and the polarisation direction of the analyser. P"p((i), n) is the component 
on row a and in column fJ of the tensor P for member n from the degenerate 
set of vibrations of species r(i>; k is a constant. We know for the entering 
beam that e1u = 0, e1q 1 and e1, = 0 and for the components of the ob
served scattered beam, after it has passed through the analyser, we have*) 

/ 11 : e211 0, e2 ,,, = 1 and e2 , = O; 

IL: e211 0, e2 " = 0 and e2 , = 1; 

There are two symmetry species we are interested in: A1g and 
tered intensities I11 and IL are (from eq. (2.3)) 

Á1g: I11 k [Pqq (A10)]2, 

IL k [P,a (A 19)]2; 

Eg I11 = k {[Paa (E0, 1)]2 [Paa (Eg, 2) ]2 }, 

IL = k {[P,a (Eg, 1)]2 [Pra (E0 , 2)]2}. 

(Pis symmetrie, hence P,q = Pqr·) 

The scat-

(2.4) 

(2.5) 

(2.6) 

(2.7) 

The polarisability tensors P :x:vz for the different symmetry species are (see 
Mathieu and Poulet 2

-
6
), pp. 244-245 or Turrell 2

-
5
), p. 359) 

*) / 11 is the intensity of the scattered light polarised in the q direction (by means of an analyser). 
IJ. is the intensity of the scattered beam polarised in the r direction. 
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P,,, (A") ~ ( ~ ~ ~) , 

P,~(E" 1) ( ~ ~ ;) , 

p xyz (Eg, 2) = (~ -~ -~) • 
-d 0 0 

(2.8) 

(2.9) 

(2.10) 

From eqs (2.4), (2.5), (2.6) and (2.7) we know that only Pqq and Prq are of 
interest. Por the intensities we now obtain the following expressions with the 
help of eq. (2.1): 

A": 111 ~ k P"' ~ k [ (t, "t," t") P.,, (A") (:;:) r 
A": h ~ kP ~' +'" t," t") P.,, (A") (:::) r 

= k [a (t12 t13 + t22 t23) + bt32 t33 ]2 k [132 133 (a b) ]2, 
(2.12) 

= k {[c (t122 - 1222) + 2d 132 t22l2 + [2c t12122 + 2d t11 t32]2 }, 
(2.13) 

= k {[c (t12 t13 - tz2 t23) d (t23 t32 + t22 t33) ]2 

[c(t12 t22 + t12 t23) d(t13 t32 + t12 h3)]2}. (2.14) 
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With the last four equations it is possible to say something about the intensity 
ratio e - IJ./I11 , also called the degree of depolarisation. For A19 : 

(2.15) 

For the A 19 vibrations it seems reasonable to suppose that 

since the three internal A 19 vibrations of the ring are all in the x+y plane. Jf 
it is further supposed that t32 is sufficiently smaller than 1 we have 

Then 
a » b t32

2/(1- t32 2). 

t322 t332 a2 

e ~ a2 (1 - t322)2 

If t32
2 approaches l, we can write 

(2.16) 

(2.17) 

and because t33
2 + t3l + t31

2 = 1, t332 and t31
2 have to be very small. 

Then, it is evident that 

Since a2/b2 » 1, e cannot be predicted. But in this case IJ. and I 11 are very 
small because t32

2 • t33 2 « 1, (1 - t322) « 1 and also b t32
2 « a. Provided 

we take a direction of the crystal with enough intensity we can use eq. (2.16). 
Figure 2.6 gives the value of e from eq. (2.16) for values of the direction 
cosines t32 and t33 ranging from 0 to 1. In this figure it can be seen that (! < 1 
for most angles. Only in the shaded àrea is e > 1, and this was the part where 
eq. (2.17) had to be used. This last area is not of practical interest. Conclusion: 
For the internal A 19 vibrations with sufficient intensity is (! < 1 (J11 >Il.). 

The treatment for the E9 vibrations is somewhat more complicated. From the 
preceding section we know that there are two kinds of internal Eg vibrations: 
E9 (E') and Eg (E"). In sec. 2.2.7 it has been shown that for E9 (E') the value 
ford in eq. (2.9) and (2.10) is small (d À) and for E9 (E") we found c =À. 

Filling in these values in eqs (2.13) and (2.14) we obtain the following inten· 
sities: 
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0 0 0 0 0 0 

-;:; 
0.1 .... -'- • 2As ·Vat 0 

-l!! 
gi 

0.25 -q; rr/3 •VY .5'/152 0 

! 0.5 t rrft ·2h •Vat 0 

tk 
0.75 1(/6 •%4 0 

0o :r/6 

0.75 0.5 0.25 0.1 0 
tk--

Fig. 2.6. Q·Values for O.:;; t32
2 , t33

2 .:;; 1. 

Eg (E') : 111 k {[c (t12
2 tz22) + 2 Î.. t22 t 32 ]2 + [2ct12 t22 + 2 Àt12 t 32]2}, 

l .L k {[c (t12 tll - tz2 tz3) + Ä (t23 ts2 + tz2 tss) ]2 + 
[c (t12 t23 + tz2 tis) + Î.. (t1s ts2 + t12 tss)P}; 

Eg (E"): 111 k {[2d t22 t32 + À (t12 2 - 122 
2) ]2 + [2d t12 t32 + 2l t12 tz2 ]2}, 

l .L k {[d (t22 tss + tzs t32) + Á (t12 ti3 - tzz tz3) ]2 

+ [d (t12 t33 ti3 t32) + Î.. (t22 tll + tu tz3)]2 }. 

Since the Ä's are small quantities we assume them to be zero and obtain f~ 
~~ . 

e (E9 (E')) 
1 - t332 

(2.18) 

(2.19) 

It can be seen that these equations for e (Eg (E')) and e (E9 (E")) are inde
pendent of c and d and that in general they will not be equal. 
Conclusion: The value of e for the Eg species is only dependent on the angles 
and not on the values of c or d. In the general case E9 (E') and Eg (E") have 
a different (!. 
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2.3. Experiments 

2.3.1. Preparation of the samples 

The majority of the samples were obtained by melting together anhydric 
B2 0 3 and alkali carbonates (if possible borax). The chemicals used were reagent 
grade from Merck; the chemicals enriched with 10B were delivered by 20th Cen
tury Electronics Ltd. The metaborate crystals were made by cooling the melt 
about 50 °C below their melting point and annealing for several hours at this 
temperature. The single crystals were formed by cooling the melt very slowly 
(0.5 °C/hr) to a temperature below the melting point (Bronswijk 2

-
37

)). 

The structure was checked with X-ray diffraction (Debye-Sherrerexposures). 
Because of the hygroscopic behaviour of the metaborates, the sample was en
closed in a Lindemann capillary. The measured d values of Na3 B30 6 and 
K3 B30 6 agreed well with the calculated values from the crystal structure (and 
the values of the ASTM system). A detailed structure of the rubidium meta
borate and the cesium metaborate is not known. Schneider and Carpenter 2- 4) 

found that these compounds were isostructural with Na3B3 0 6 and K 3B30 6 , 

which agrees well with our measurements (v. Grote! 2 -
2
)). 

The glass samples were made by cooling the meltin air. There was no meas
urable influence of small amounts of water or carbon dioxide in the Raman 
spectra. Samples were melted in the normal way and also in a vacuum fumace 
(10- 4 Torr, 1000 °C) but no difference in the Raman spectra was found between 
the m. 

For the Raman measurements (and also for the infrared measurements) the 
crystals were powdered in an agate mortar. The powder was placed in the 
Raman spectroscope at an angle of 60° with the laser beam. The infrared 
measurements were done by suspending the powder in a polyethylene matrix 
{for the frequency region below 600 cm- 1) or in an alkali-halide matrix (above 
600 cm- 1). This alkali-halide was usually KBr. The single-crystal samples were 

-nly measured in the Raman spectroscope and irradiated at different angles. 
The glass samples were made by drawing a thin bar (some millimetres thick 
and about 5 cm long) from the melt. The bars were irradiated by the laser 
beam along their length axis. In this way a maximum output was obtained, 
because the whole sample was irradiated by the beam and the path of the 
scattered light through the sample was very short. No infrared measurements 
were made on these glasses, recent infrared measurements on bo~ate glasses 
having been made by Konijnendijk 2 - 1). 

2.3.2. Raman and infrared measurements 

All Raman scattering measurements were made on a Cary 82 Raman spectro
graph (from Varian). The spectrograph was equipped with an Ar+ laser (Spectra 
Physics model 165) giving a maximum output of about two watts for the used 
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lines. The wavelength of the incident laser beam generally used was the green 
line at 514.5 nm. In a few cases the blue line at 488.0 nm was used, in order 
to be sure that no plasma lines (or other interference) had been recorded. The 
bandwidth used was normally 5 cm- 1 • 

The infrared measurements were done with a Hitachi EPI-L spectrograph 
for the frequency region from 200 cm- 1 up to 700 cm- 1 . The measurements 
in the frequency region from 400 cm- 1 up to 4000 cm- 1 were done on a type 
MK-3 double-beam grating spectrophotometer from Grubb-Parsons. The 
infrared spectrum of Na3B30 6 in the region from 40 cm- 1 up to 280 cm- 1 

was recorded by H. v.d. Boom (Philips Research Laboratories). A cooling cell 
equipped with KBr windows was used for infrared measurements at liquid 
nitrogen temperatures. 

For the Raman spectroscopy two special cells were developed by E. Strijks: 
one for liquid nitrogen temperature and one for temperatures up to 500 °C. 
The Raman spectra of Na3B3 0 6 (with three different ratios of 10B/11B), 
K3B30 6, Rb3 B30 6 and Cs3B306 are given in figs 2.7 to 2.13. The peak fre
quencies of Na3B30 6 are tabulated in tables 2-VIII and 2-IX with an indica
tion of the intensity. Tables 2-X and 2-XI give the infrared frequencies and 
intensities. Table 2-XII shows the Raman frequencies of the four metaborates. 

1600 1400 1200 1000 800 600 0 
Wavenumber (cm-1

) -

Fig. 2.7. Raman spectrum of Na3 
1'B3 0 6 (81 % 11B/19% 10B). 
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Wavenumber (cm-•) -

Fig. 2.8. Raman spectrum of Na3 
1"B3 0 6 (56% 10B/44% 11B). 

1600 1400. 1200 0 
Wavenumber (cm-•) -

Fig. 2.9. Raman spectrum of Na3 
1B30 6 (93 % 10B/7 % 11 B). 
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Wavenumber (cm-•) -

Fig. 2.10. Raman spectrum ofK3B06 (81% 10B/19% 11B). 

1600 1400 
Wavenumber (cm-•) -

Fig. 2.11. Raman spectrum of RbB3 0 6 (81 % 10B/19% 11B). 
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Wavenumber {cm-•) -

Fig. 2.12. Raman spectrum of CsB3 0 6 (81 % 10B/19% 11B). 

------ .L 
--// 

1400 1200 1000 800 500 400 . 200 0 
Wavenumber {cm-') -

Fig. 2.13. Single crystal Raman spectrum of Na3 
1"B30 6 (56% 10B/44% 11 B). 
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TABLE 2-VIII 

Raman frequencies of Na3 iB30 6 (93 % 10B). The values between brackets are 
the differences between the maximum and the minimum value of three obser
vations 

1274 (0.9) cm- 1 s 
1405 (1.0) cm- 1 m, sh 
1856 (0.8) cm- 1 w 
2173 (1.4) cm- 1 w 
2387 (1.2) cm- 1 w 
3974 (0.9) cm- 1 m 
4762 (0.5) cm- 1 s 
6306 (0.4) cm - 1 ss 

694° (0.6) cm- 1 m 
7064 (0.9) cm- 1 s 
7694 (1.3) cm- 1 s 
973 2 (2.3) cm- 1 w 

(1468?) cm- 1 vw 
(1490?) cm- 1 vw, sh 
15038 cm- 1 w 
16047 (0.2)cm- 1 ss 

s strong, m = medium, w weak, ? uncertain, sh = shoulder. 

TABLE 2-IX 

Raman frequencies of Na3 
1'B30 6 (81 % 11B, natural abundance). The values 

between brackets are the differences between two observations 

25 °C 

126 (l.l) cm- 1 s 
142 (0.8) cm- 1 m, sh 
186 (0.4) cm- 1 w 
217 (1.0) cm- 1 w 
239 (1.5) cm- 1 w 
397 (LO) cm- 1 m 
473 (0.4) cm- 1 s 
624 (0.4) cm- 1 ss 

230°C 

125 (0.1) cm- 1 

139(1.2)cm- 1 

183 (0.5) cm- 1 

213 (-) cm- 1 

235 (-) cm- 1 

398 (3.0) cm- 1 

474 (0.0) cm- 1 

624 (0.3) cm- 1 

25 °C 

679 (1.5) cm- 1 s 
769 (1.1) cm- 1 s 
969 (1.0) cm- 1 w 

1440(?) cm- 1 vw 
1461 cm- 1 vw 
1550 (0.8) cm- 1 s 
1573 (1.0) cm- 1 s 
1585 (0.0) cm- 1 m, sh 

TABLE 2-X 

230°C 

679 (O.I) cm- 1 

768 (1.5) cm- 1 

1549 (-) cm- 1 

1572 cm- 1 

1584 (-) cm- 1 

Infrared frequencies of Na3 
1B30 6 (93 % 10B). The values are the average of 

two observations 

225 cm - 1 very broad 
380 cm- 1 s 
480 cm- 1 w 
690 cm- 1 w 
738 cm- 1 s 

955 cm- 1 m 
1240 cm- 1 s 
1275 cm- 1 ss 
1440 cm- 1 s 
1480 cm- 1 ss 

TABLE 2-XI 

Infrared frequencies of Na3 
1'B30 6 (81 % 11 B, natural abundance). The values 

are the average of two observations 

225 cm - 1 very broad 
380 cm- 1 s 
480 cm- 1 vw 
707 cm- 1 m 
722 cm- 1 m 

950 cm- 1 m 
1217 cm- 1 s 
1250 cm- 1 s 
1390 cm- 1 m 
1450 cm - 1 ss, broad maximum 
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TABLE 2-XII 

Raman frequencies of Na3 B306' K 3B306' Rb3 B30 6 and Cs3B30 6 (81 % 11 B 
and 19 % 10B, natural abundance). The Raman spectra ofNa3 B30 6 and K 3B30 6 

were also recorded at liquid nitrogen temperature. No change was observed 
iri the spectrum of Na3B30 6 • In the case of K3B3 0 6 the peaks at 100 cm- 1 

and 612 cm- 1 were split up 

Na3B306 K3B306 Rb3B306 Cs3B306 

126 cm- 1 s 100 cm- 1 s 44 cm- 1 ? 39cm- 1 s 
142 cm- 1 m, sh 120 cm- 1 m 64 cm- 1 m 58cm- 1 s 
186 cm- 1 w 154 cm- 1 w 76 cm- 1 s 85cm- 1 s 
217cm- 1 w 176 cm- 1 w 102cm- 1 s 105cm- 1 s 
239 cm- 1 w 190 cm- 1 w, sh 122 cm- 1 s 158 cm- 1 ms 

148 cm- 1 m 
172 cm- 1 m 

397 cm- 1 m 397 cm- 1 w 390 cm- 1 m 384 cm- 1 ms 
473 cm- 1 s 471 cm- 1 m 467cm- 1 s 465cm- 1 s 
624 cm- 1 ss 612 cm- 1 ss 606 cm- 1 ss 601 cm- 1 ss 
679 cm- 1 s 697 cm- 1 m 700 cm- 1 m 702 cm- 1 m 
769 cm- 1 s 766 cm- 1 m 766 cm- 1 ms 763 cm- 1 ms 
969 cm- 1 w 960 cm- 1 vw 956 cm- 1 ? 935cm- 1 ? 

1055 cm- 1 m 1040 cm- 1 m 
1440? cm- 1 vw 
1461 cm- 1 vw 1430 cm- 1 ? 
1550 cm- 1 s 1522 cm- 1 s 1507 cm- 1 s 1494 cm- 1 s 
1573 cm- 1 ss 1548 cm- 1 ss 1527 cm- 1 m, sh 1512 cm- 1 s 

1536 cm- 1 s 1530 cm- 1 m 
1585 cm- 1 m, sh 1558 cm- 1 s 1550 cm- 1 m, sh 1543 cm- 1 ?, sh 

2.4. Assignment of spectra 

2.4.1. Introduction 

In the following part of this chapter we give an assignment of the crystal 
spectra of sodium metaborate. Our assignment was based in the first place on 
the established data of the preceding secs. Since these data were not sufficient 
for a complete assignment we used other methods, such as a comparison with 
the tri-substituted benzenes, to complete the picture. 

2.4.2. lsotope ejfects 

As already mentioned in sec. 2.3, we used samples with different 10B/11B 
ratios. Both isotopes are stable and found in the natural boron compounds 
in the ratio 10B/11 B = 19/81. If we assume that both isotopes are randomly 
distributed over all boron positions, we can distinguish four different rings with 
percentages as given in table 2-XIII. 

In these compounds we expect at least four peaks from every fundamental 
vibration, one for every ring of different isotopic composition. It is even pos
sible that as a result of lowering the symmetry of the ring containing both iso
topes the doubly degenerate species will split up into two non-degenerate 



TABLE 2-XIII 

Frequencies and intensities of two ring vibrations for the rings with different isotope composition 

sample composition ring frequencies ring frequencies ring frequencies ring frequencies 
108 118 1083063- 1606 707 108 2

11806
3 - 1593 698 108 11 8 2 0 6

3 - 1576 682 1183063 - 1550 682 
cm- 1 cm- 1 cm- 1 *) cm- 1 *) 

Na3 i8a06 93% 7% 
1 

80.4% ss ss 18.2% - ms 1.4% - - O.o3% - -

Na3 v8306 
1 

19% 81 % 
1 

0.8% w - 9.4% ms w 38.2% ss (ss) 1 51.6% s (ss) 

Na3 
1"8306 56% 44% 17.9% w - 41.6% ss m 32.3% ms (ss) 8.3% m (ss) 
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species. Unfortunately this symmetry splitting is much smaller than the width 
of the peaks and cannot be observed, so that only isotope shifts are visible. 
Moreover, the peaks due to rings occurring in a low concentration will merge 
into the background. It is also possible that there will be fewer than four peaks 
owing to the overlap of two or more peaks. 

From the Raman spectra of the three compounds it is clear that there are 
two vibrations, which show the isotope splitting (Bronswijk 2 - 37)). The infra
red spectra are less suited to the study of this effect because of the poor reso
lution of the different peaks. The two split Raman vibrations occur in the region 
from 1550 to 1600 cm- 1 and around 700 cm- 1 • It can be seen from the spectra 
(figs 2.7, 2.8 and 2.9) that the peak intensities agree rather well with the per
centages of the different rings *) as can be seen in table 2-XIII. The frequency 
increases as the mass of the ring decreases, as must be expected. 

2.4.3. Infrared and Raman spectra 

The first thing we can do is to separate the lattice vibrations from the internal 
vibrations of the B30 6

3 - ring. Table 2-XII shows the Raman frequencies of 
the four alkali metaborates (Na, K, Rb and Cs). As was stated .in sec. 2.1, 
these crystals are all isomorphous. It is easy to see from this table that the 
peaks with a frequency lower than 250 cm- 1 show great differences, whereas 
the peaks above 250 cm- 1 resemble each other very much in frequency and 
intensity. Therefore we assign the peaks below 250 cm- 1 to the lattice vibra
tions **). 

In the spectrum of Na3B30 6 we can see five lattice vibrations, which is one 
less than the expected number of six. Of these six, five beloog to Eg and one 
to A 1g. Bagavantam 2 - 1 ) and Harrand 2 - 38) establish that a libration (be
longing to the lattice vibrations) of an optical anisotropic group gives rise to 
an intensive Raman line, while the translational vibrations are usually weak. 
If we apply this rule to our spectra, then the peak with the frequency of 
126 cm- 1 will be the libration of the B30 6

3
- group. The remaining lattice vibra

tions are not easy to assign. The infrared spectra do not help; in the low fre
quency region only a broad band around 225 cm- 1 was detected. 

The infrared spectra do give information about the internal vibrations. The 
infrared-active vibrations beloog to the species A2u and Eu (see table 2-VI). If 
we assume that the intensities of A2 u (A' 2) and Eu (E") are low (see sec. 2.2.7) 
we are left with the vibrations belonging to A2 u (A" 2 ) and E" (E'). The five 
vibrations belonging to Eu (E') should correspond in frequency to the five 

~ 

*) The rings with both 10B and 11B (frequencies 1576 cm- 1 and1593 cm- 1) have arelatively 
too high intensity. It is not possible to give a comparison of the peak heights owing to the 
overlap of the peaks. 

**) As wil! be seen later, internal vibrations with frequencies below 250 cm- 1 ltre not to be 
excluded. Actually, our normal coordinate analysis of the compound provided strong 
evidence that the frequencies of two internal vibrations do fall in this region. 
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Raman-active vibrations Eg (E') (see sec. 2.2.3). The assignment of these species 
is done in secs 2.4.5 and 2.4.6. 

The three internal vibrations belonging to A 1g are assigned in the next section. 

2.4.4. Single-crystal Raman spectra 

In sec. 2.2.8 we derived some expressions for the e of the two Raman-active 
species (internal vibrations )A 19 and Eg. If we take the same assumptions, 
hence a » b and enough intensity for the A 10 vibrations, and for the Eg vibra
tions À = 0, then the e's are only dependent on the orientation of the crystal 
with respect to the incident laser beam. Within each symmetry species (A 1g, 

E0 (E'), or Eg (E")), the value of (! does not depend on the modes. 
In the spectra, three peaks possessed an equal value for e ( < 1) for each 

orientation of the crystal. One of these spectra is shown in fig. 2.13. The 
peaks referred to have a e =tin this case. They are found at 1547 cm- 1 to 
1606 cm- 1 (isotope shift), at 769 cm- 1 and at 630 cm- 1 . Moreover, they are 
the strongest peaks in the spectrum. For both these reasons it is reasonable to 
suppose that they are the three internal A 10 vibrations. 

The e of all the other peaks in the spectrum is ~ 1. The intensity of the 
majority of these peaks is too low for more precise measurements of (!. Two 
strong peaks, which have a measurable (!, are the peaks at 478 cm- 1 and 
686 cm- 1 • From fig. 2.13 it is easy to see that their e's are different, hence 
we conclude that they belong to different species, i.e. E9 (E') and Eg (E"). 

The lattice vibrations (with frequencies lower than 250 cm- 1) cannot be 
divided among the symmetry species. Five of them belong to Eg and one to 
A 19• In the spectrum five peaks can be seen, mostly too weak fora measure
ment of(!. The A10 lattice vibration does not need to have a e-value equal to 
that of the other internal A 1g vibrations, because there is no certainty that in 
this case the components of the polarisability tensor will have the property 
a » b. The vibration is again in the x-y plane (Na-0 stretching) but there 
is a considerable influence from the Na+ ions, which are not aJl in the x-y 
plane and have the same distances to the oxygen atom as the in-plane Na+ ion. 
The single crystal in this case can provide no further information. 

2.4.5. Out-of-plane vibrations A 2" (A" 2) and Eg (E") 

From the character table of the group D3h (table 2-IV) we see that the 
vibrations that are antisymmetric with respect to the horizontal mirror plane 
belong to (A" 1), A" 2 or E". These are the out-of-plane vibrations. The B30 6

3 -

ring possesses only four of these vibrations (two belonging to A" 2 , two to E" 
and none to A" 1; see sec. 2.2.5), and in consequence the crystal has eight, viz. 
2A 29 (A" 2), 2A 2 " (A" 2), 2E9 (E") and 2E" (E"); see also table 2-VIb. In sec. 
2.2. 7 we have seen that a reasonable intensity can only be expected for A 2 " (A" 2 ) 

and the E9 (E") vibrations. The two A 2 g (A" 2 ) vibrations are not active, either 
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in the Raman or in the infrared spectrum. The Eu (E") is infrared active. 
However, the small value of the change in dipole moment (sec. 2.2.7) makes 
it very probable that these vibrations are lack:ing in the infrared. 

If we are able to indicate the out-of-plane vibrations we only need to check 
whether the remaining peaks belong to the E9/Eu (E') *) vibrations. We will 
now assign these out-of-plane vibrations one at a time. 

Discussion of the vibration v14 (E9/Eu (E")) 

A good start for the identification of the out-of-plane vibrations is provided 
by the peaks around 700 cm- 1

• As mentioned in sec. 2.4.2, the three Raman 
frequencies in this region belong to only one fundamental vibration of the 
E9 species (2.4.3). In the same region we must encounter the corresponding 
infrared vibration of species Eu. 

Hisatsune and Suarez 2 -4°) studied the infrared spectrum of the metaborate 
ion very thoroughly, varying the 10Bj1 1 B ratio up to high degrees of enrichment 
for both isotopes. They concluded that the peak should belong to E" by reason
ing as follows. In the highly enriched 10B and 11 B compounds the peak at 
707 cm- 1 is lacking. In the compounds with both 10B and 11B the peak is 
present. Hence the conclusion is that this peak is due to a vibration, which 
becomes active if the symmetry of the B30 6

3 - group is lowered. If we intro
duce two kinds of boron atoms the symmetry changes from D 3 h to C2 v. The 
correlation table between these groups is: 

D3h 

A'1 (R) 
A' 2 (inactive) 
E' (R, IR) 
A''i (inactive) 
A" 2 (IR) 
E" (R) 

C2v 
A1 (IR, R) 
B2 (IR, R) 
A1 (IR, R) + B2 (IR, &) 
A 2 (R) 
B1 (IR, R) 
A2 (R) + B1 (IR, R). 

Only the symmetry species that are not infrared-active in D311, but are active 
in C2 v, need to be considered, i.e. A' i. A' 2 and E". Species A' 1 drops out, 
since it corresponds to the species A 19 (and A 1u) of the crystal and this bas 
already been assigned. The species A' 2 and E" remain. Hisatsune and Suarez 
motivate their choice for E" with an intensity argument. They assigned the 
peak at 722 cm- 1 (738 cm- 1 for the 10B compound) to a vibration of A"2 • 

With the symmetry lowering to C2 v this species is also correlated with the species 
B1 of C2 v, just as is E". In this case there is a possibility of Fermi resonance, 
which may explain the relatively high intensity of the 707 cm- 1 peak. 

This notation stands for: vibrations belonging to E' in the case of the 'free' B30 6
3 - ion 

and split in the crystal into an Eg (E') and an E. (E') vibration. 
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The arguments for assigning the v14 to the peaks around 700 cm- 1 may be 
summarised as follows: 
(1) The peaks are only Raman-active in the compounds with a high degree of 

isotope enrichment, as was expected from sec. 2.2.7. 
(2) In the case of symmetry lowering (by isotope substitution) a peak is found 

in the infrared spectrum. The intensity may be enhanced by Fermi resonance. 
The frequency of this peak is similar to the frequencies in the Raman 
spectrum. Moreover, according to Hisatsune and Suarez, the infrared peak 
shifts to higher frequencies as the ratio 10B/11B increases. This is similar 
to the behaviour of the Raman peaks, if we re gard this infrared peak as the 
envelope of two peaks, one corresponding to the 10B2

11B06
3 - and the 

other to the 10B11 B20 6
3 - ring. 

On these grounds we assign the peaks around 700 cm1- to Eg (E") (R) and 
Eu (E") (IR). If we had an orientated single crystal at our disposal it would be 
possible to designate peaks belonging to E9 (E") and (E'), which could con
firm this assignment. 

The choice between v13 and v14, both Eg (E") vibrations, is easy to make. 
If we look at the displacement configurations (sec. 2.2.6 and fig. 2.4) we see 
that the boron atoms play an important part in the vibration only in v14• 

Therefore v14 alone can give a measurable isotope shift. Moreover, if we make 
a comparison with the tri-substituted benzenes *) we see that v14 has a com
parable frequency (see table 2-XIV). In these spectra v13 bas a lower frequency 
than v14• This will also be found fromourcalculations in chapter 3 for B30 6

3
-. 

Discussion of the vibration v1 (A20 (A" 2)) 

The next peak to be considered is the strong absorption in the infrared at 
722 cm- 1 ( 11B) and 738 cm- 1 ( 10B). This peak is not visible in the Raman 
spectrum and therefore it must belong to the A 2u species, because this is the 
only symmetry species that is active only in the infrared. The vibration can be 
derived from the A' 2 or the A" 2 species of the free ion. We did not expect a 

*) It is possible to compare the tri-substituted benzene ring (C6 H3X3) with the B3 0 6
3 - ring 

because they have much in common: 
(1) D3n symmetry; 
(2) sp2-hybridisation of the ring atoms and therefore a comparable electronic structure. 

The charge distribution over the ring atoms is slightly different; electrons of the benzene 
ring have a homogeneous distribution, while the B30 6

3 - ring has an extra charge on 
the oxygen atoms in the ring; 

(3) the distances in the ring are almost equal; 
(4) in the compounds C6 H 3 F 3 and C6 H 3 (0H)a the substituents have almost the same 

mass as the extra-annular oxygen atoms of the B3 0 6
3 - ring. Nor does the distance 

C-F (1.30 Á) differ very much from B-0 (1.28 Á). 
Where they differ is in the binding between substituent and ring. In the B30 6

3 - ring this 
binding has an bond character (Coulson and Dingle 2 - 48), which is not the case with the 
tri-substituted benzenes. Table 2-XIV gives an assignment of some tri-substituted benzenes 
based on a comparison of published data of these compounds. This comparison will not 
be published here; only the results are given in the table. 
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TABLE 2-XIV

Assignment of some tn-substituted benzenes

C6H3D3 C6H3(CL-13)3 C6H3F3 — C5D3F3
references 2—41, 2—44) 2—47) 2—42, 2—47) 2—42, 2_47)

description v JR Raman JR Raman IR Raman JR Raman

sym C—H stretch — 3055 p 3020 p 3080 m,p 2309
syrnC—Xstretch hi 2384p 1299p J350s,p 1344

A’1 syrnringbend u3 1002p 997p lOlOvs,p 966
sym ring stretch v2 955 p 579 p 578 vs,p 576

— 1226? (1290) (1294) (1189)
A’, ringstretch — (1260) (1163) ( 998)

V5 — ( 495) ( 565) ( 516)

asymC—Hstretch — 3055 3017 3108m 2308
ring stretch 1574 1613 1606dp 1624 vs 1606

E’ ring bend-stretch u10 1405 1472 1475 s 1420
asyrn C—H bend — 1166 1166 1164 1122 vs 1046
asym C—X stretch v3 2272 930 930 993 vs 792
ringbend i’,1 592 516 517dp 500s 484
asymC—Xbend v12 833 275 275dp 326— 322

out-of-plane C—H — 917 835 845 vs 771
A”2 ring torsion v7 697 686 665s 520

out-of-planeC—X v6 531 181 214 —

out-of-plane C—H — 933? 880 879 (860) 699
E” ring torsion 375 ( 533) 595 s 547

out-of-planeC—X u13 714 224 253vs 238

perceptible intensity from the A21, (A’2) (sec. 2.2.7), so that the only possibility
is A21, (A”2).

There are some other infrared peaks that do not have Raman peaks either
and could also belong to A21, (A”2) (see table 2-XV). These are the peaks at
1250 cn~’ and possibly at 375 cm’ (there is a Raman peak at 397 cn~’)
and at 950 cm’ (there is again a Raman peak in the neighbourhood at
970 cm ‘). There are only two vibrations belonging to A,~ (A”2): v6 and v7.

Taking the frequencies of the tn-substituted benzenes into account, v6 is ex
pected to have a low frequency. The 375 cm’ could be v6. For v7 the three
other frequencies remain. The peak at 950 cm’ drops out because it has no
isotope shift, while the occurrence of an isotope shift for v7 is to be expected
from the displacement configurations (sec. 2.2.6). The peak at 1250 cm’ (in
fact there are two peaks) has too high a frequency with respect to v,4, which
has a displacement configuration similar to that of v7.

The arguments for the assignment of the peak at 722 cm’ to v7 of the
species A,~ (A”2) may be summarised as follows:
(1) There is an isotope shift from 722 cm’ (“B) to 738 cm~ (10B), which

is expected from the displacement configurations.
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C6H3C13 C6D3C13 C6H3Br3 C6D3Br3 C6H3(OH)3
2—45, 2_47) 2-45, 2—47) 2—46, 2—47) 2—46, 2—47) 2_41)

JR Raman IR Raman IR Raman JR Raman

3084 s,p 2296 s,p 3073 s,p 2296
1I49p 1146s,p 1115p 1113
995 vs,p 956 vs,p 985 p 956
379m,p 376s,p 241p 241

(1333) (1319) (1222)
(1194) (1194) ( 982)

(464) (435) ( 407)

3089 2312m 3090 2313
l57Ovvvs 1552vvs 1552s,dp 1557vvs 1553s 1540
1420vs 1342vvs 1408 vvs 1408vw 1324
1098vs 1095vw,dp 840vs 1099s 1082w 836
8lOvs 800vs 806 742vvs 745vw 736
429s 429w,dp 418s 417m,dp 348— 348w 340
190s 191s,dp l9lvvs,dp 118— ll8vs 118

853vs 763s 849vvs 775 815
662 vs 534vs 659 vvs 534 668
149s (113) (110) (187?)

869m 713w,dp 87Ovvw 713 (923?)
530 vw 498 w,dp 509 vvw 478 566

215 ms,dp 203 rn,dp 193s 182 249

s — strong, rn = medium, w weak, ? uncertain, p = polarised, dp = depolarised
( ) =calculated.

TABLE 2-XV

Frequencies of internal vibrations used for the assignment (for detailed data
see tables 2-V1II—2-XI). The final assignment is given between brackets (based
on B3063j

Infrared Rarnan

375 cm1 (s) (E’)
397 cm1 (m) (E’)

480 cm~ (vw) (E’) 476 cm 1 (s) (E’)
630 crn 1 (ss) (A’1)

707 cm 1 (w) *) (E”) 679—698—706 cn~ 1 (s) (E”)
722 cm 1 (s) (A2”) 769 cm 1 (s) (A’1)
950 cm~ (m) (E’) 970 cn~1 (m) (E’)

1217 cm~ (s)
1250 cm’ (s) (E’?)
1441 cm 1 (sh) 5*) (E’?) 1440 cm 1 (vw) (E’?)
1466 cm’ (s) 5*) (E’) 1460 cm’ (w) (E’)

1547 cm~—1606 cm~ (A’1)

5) A broad tail of the peak at 707 cm 1 to lower frequencies suggests that this peak en
velops the peaks of different isotope compositions.

**) These frequencies are taken from Cole 2—39). Our spectra give a broad band.
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(2) The peak shows a great resemblance with that at 707 cm- 1 (v14) as regards 
the displacement configuration and hence the frequency. 

(3) There is a Fermi resonance with v14 in the case of symmetry lowering to C2v. 

(4) The infrared absorption is very strong. According to Nonnenmacher 2 -44 ) 

the infrared-active out-of-plane peaks are very strong, at least in the case 
of the tri-substituted benzenes. 

(5) Hisatsune and Suarez, Parsons 2 - 49) and Fisher et aI.2 - 50) have also 
assigned this peak to the A " 2 species. 

The frequency of v7 shows a similarity with the tri-substituted benzenes 
(table 2-XIV). The frequency of v14 (Eg/E" (E")) is higher than the frequencies 
for these benzenes. The tri-substituted benzenes that show the greatest resem
blance with the B30 6

3 - ring have a frequency difference between v1 and v14 

of 70 cm- 1 (C6 H3 F3) and 100 cm- 1 (C6 H3(0H)J). For Na3B30 6 this differ-
ence is 722 cm- 1 - 680 cm- 1 42 cm- 1• 

Discussion of the vibrations v6 (A2 " (A" 2)) and v13 (E9 (E")) 

These vibrations too show a similarity, as can be seen from the displacement 
configurations. Table 2-XIV shows that in the case of the tri-substituted ben
zenes these vibrations usually have very low frequencies. They depend, more
over, on the kind of substituent, as is to be expected from the displacement 
configurations. We do not expect an important isotope shift because the boron 
atoms do not play an important part in the vibrations. The internal vibrations 
with the lowest frequencies larger than 250 cm- 1 are the infrared peak at 
375 cm- 1 and the Raman peak at 397 cm- 1 • Except for the relatively high fre
quencies, these peaks satisfy the mentioned conditions. In this case the peak at 
375 cm- 1 (IR) should be v6 (A 2" (A" 2)) and the peak at 397 cm- 1 1113 (E9 (E")). 

It is also possible that these vibrations are influenced by the alk;ali ion. This 
seems reasonable if we look at the displacement configurations; the most im
portant part of the vibration is formed by the extra-annular oxygen atoms. 
These oxygen atoms have a relatively strong connection with the alkali atoms 
as compared with the ring oxygen atoms and the boron atoms. Therefore these 
vibrations may be among the vibrations below 250 cm- 1 , which depend on the 
alkali ion. The strong and broad infrared absorption found at 225 cm- 1 may 
partly be due to 116 • Not all the peaks with a frequency below 250 cm- 1 neces
sarily belong to lattice vibrations. There are six lattice vibrations and only five 
peaks below 250 cm- 1• The translational vibrations are usually weak (sec. 2.2.4) 
and some might be absent from the spectrum. Thus, one or two of the frequen
cies in this area might belong to internal vibrations. However, there is no way to 
decide which one of them could be v13• 

Our conclusion is that we have to check two possibilities for these vibrations. 
In the next chapter we will show that the latter possibility (v6 and v13 lower 
than 250 cm- 1) is the right one. 
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2.4.6. Species Eg (E') and Eu (E') 

There remain five internal vibrations of the species Eg/Eu (E') to assign. 

The peaks not yet assigned are 
infrared Raman 

375 cm- 1 (s) 397 cm- 1 (m) (possibly the out-of-plane 

480 cm- 1 (vw) 
950 cm- 1 (m) 

1217 cm- 1 (s) 
1250 cm- 1 (s) 
1441 cm- 1 (sh) 
1466 cm- 1 (s) 

473 cm- 1 (s) 
969 cm- 1 (m) 

1440 cm- 1 (vw) 
1460 cm- 1 (w) 

vibrations P6 and P 1a) 

There are several uncertainties in this row of frequencies. The first one has 
been mentioned in the preceding section: the peaks at 375 cm- 1 (IR) and 
397 cm- 1 (R) can be two out-of-plane vibrations A2 u (A" 2) and Eg (E") or 
one in-plane vibration E9/Eu (E'). The second uncertainty concerns the peaks 
at 1217 cm- 1 (IR) and 1250 cm- 1 (IR), which have no counterparts in the 
Raman spectrum. They are possibly vibrations of the type A2 u (A' 2), which 
were expected to have little or no intensity (see sec. 2.2.7). Another possibility 
is that the Raman activity is too small to detect and that the vibration belongs 
to Eg/Eu (E'). Both possibilities are checked in the next chapter. The third 
uncertainty is the peak at 1440 cm- 1 (R). This peak is very weak in the Raman 
spectrum and it is not certain that it really exists. In the infrared this peak is a 
shoulder of the peak at 1466 cm- 1

• In our spectra it was not always possible 
to separate it from the peak at 1466 cm- 1 • 

Because of these uncertainties we will not try to assign the peaks to the dis
placement configurations. We conclude by summarising three assignments for 
the E9/Eu (E') vibrations, which will be used in our normal coordinate analysis 
in the following chapter (natura! abundance of 11 B/1°B). 

model 1 model 2 model 3 
1460 cm- 1 

1440 cm- 1 

1250 cm- 1 

969 cm- 1 

473 cm- 1 

1460 cm- 1 

1440 cm- 1 

969 cm- 1 

473 cm- 1 

397 cm- 1 

1460 cm- 1 

1250 cm- 1 

969 cm- 1 

473 cm- 1 

397 cm- 1 

Note: Since we need five intemal vibrations in the species Eu/Eu (E'), we do 
not consider the possibility of all three uncertain peaks being skipped. 
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3. NORMAL COORDINATE ANAL YSIS 

3.1. Introduction 

This chapter describes the manner in which the force or interaction constants 
of a crystal of known structure can be calculated from the vibrational frequen
cies. The importance of a calculation of the force constants in relation to the 
structure and vibrational frequencies of glasses has already been explained in 
chapter 1. 

The chapter is divided into three parts. The first part (3.2) gives a short review 
of the principles underlying the method of calculation and the computer pro
grams used for the purpose. The second part (3.3) describes the manner in which 
the computer programs were made suitable for crystals and for eliminating the 
redundant coordinates. The third part (3.4 and 3.5) deals with the application 
of the method of calculation to the B30 6

3
- ion and crystalline Na20. B20 3 • 

3.2. G-F matrix method and the Schachtschneider programs 

The G-F matrix method developed by E. B. Wilson Jr. is a method of cal
culating the vibrational frequencies starting from the kinetic and the potential 
energy of a molecule (represented in the G and F matrices respectively). A de
tailed derivation and description of the method is given in Wilson, Decius and 
Cross 3 - 1). We shall con:fine ourselves here to a brief review of the method. 

Schachtschneider has described a number of computer programs which, 
based on the G-F matrix method, can calculate the vibrational frequencies of a 
free molecule or, using experimentally determined frequencies, give an approxi
mation of the force constants with the aid of an iteration program. 

The classical method of determining the vibrational frequencies starts from 
the equations of motion: 

d ( êlT) êlV + 0 (i 
dt 0Q1 <>Q1 

1, ... , 3N-6), (3.1) 

where T is the kinetic energy of the vibration, V the potential energy of the 
vibration and Q1 the normal coordinate, describing the displacements of all 
atoms vibrating with frequency v1• 

The solution of eq. (3.1) is given by 

Q1 = Qio cos (A,1t t b), 

where Ä. 1 = 4n v/. 
Unfortunately, the normal coordinates are not known in advance, so that 

we are obliged to describe the equations of motion with a different coordinate 
system. 
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The kinetic energy of the molecule or crystal can easily be expressed in 
cartesian coordinates: 

2T .f MX, (3.2) 

where M is a diagonal matrix with the masses of the atoms on the diagonal. 
The column vector X is composed of the cartesian components of the atomie 
displacements. 

The potential energy, based on the forces between the atoms, can best be 
described with internal coordinates. Intemal coordinates are the changes in 
distance (stretching), angle (bending) or dihedral angle (torsion) between the 
atoms. Since we are interested in the forces (interaction between atoms) our 
obvious procedure is to start from intemal coordinates. 

The kinetic energy expressed in intemal coordinates can be written as 

(3.3) 

where R represents the column vector of the intemal coordinates. If G is 
singular, a- 1 does not exist. The theory for this case will not be treated here. 
R can be determined from X using the transformation matrix B: 

R=BX. 

With eqs (3.2), (3.3) and (3.4) we can define the G matrix as 

G=BM- 1 1J. 

(3.4) 

(3.5) 

In order to express the potential energy V in internal coordinates we shall ex
pand V in a Taylor series: 

+ higher derivatives. (3.6) 

R 1 , R2 , R 3 etc. are the individual internal coordinates, which together form the 
inte~al coor~ina~e vector R. In the h~rmonic ap~roximatio.n we fill. ?e~lect 
the higher denvatlves. The first term V0 is the potential energy m the èqmhbnum 
position, which is arbitrarily chosen equal to zero. The first derivative with 
respect to an internal coordinate must be zero in the equilibrium position, since 
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the potential energy is then a minimum. If we define the quadratic terms as 
force or interaction constants: 

then the expression for the potential energy becomes 

or, in matrix notation 

2V=RFR, (3.8) 

where Fis the matrix that comprises the above-mentioned force and interaction 
constants. For a set of r internal coordinates the equations of motion are 

d (bT) bV - + - = 0 (i = 1, ... , r) 
dt bR1 bR; 

(3.9) 

with, as the general solution, 

R; A 1 cos (Ji.t t + <5) (i = 1, ... , r), (3.10) 

where }, = 4n v2
, v again being the frequency of a normal vibration. Substi

tution of eq. (3.10) in eq. (3.9) gives a set of linear equations in A1 , ••• , A" 
This set of equations bas only a non-trivial solution for the amplitudes A 1 if 
the following secular equation is satisfied: 

F11 - Ji.G11 - 1 F12 -Ji.G12- 1 F13 -Ji.G13 
1 ••• 

F21-ÀG21-1 F22-AG22-1 F23 J..G23-1 ... =0 

or jF- Ji.G- 1
1 = 0. Multiplication by !GI then gives the familiar notation of 

the secular equation 

jGF-EJi.I =0, (3.11) 

where E is the identity matrix of order r. 
Using the foregoing treatment, and given the masses, the position and the 

force and interaction constants of the atoms, it is possible to determine the 
vibrational frequencies of a molecule or crystal. 

The problem can be greatly simplified, however, by making use of the sym
metry of the molecule or crystal. We shall explain this with the G matrix; 
similar considerations apply to the F matrix. 
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So far we have proceeded from a coordinate system based on the internal 
coordinates. We can also use so-called internal symmetry coordinates as basis 
vectors. The relation with the internal coordinates is given by 

s=UR, (3.12) 

where s is the symmetry coordinate column vector and U a transformation 
matrix. 

A typical characteristic of these symmetry coordinates is that they belong 
to one of the symmetry species of the factor or point group of the crystal or 
molecule. The kinetic energy can now be written as 

-
2r=iG.- 1 s, (3.13) 

where G. is the G matrix based on the symmetry coordinates. Ifwe ensure that 
U is orthonormal (or unitary), then the relation between G. and G is 

G. = UGU. (3.14) 

Writing out eq. (3.13) we get 

2T s1
2

g11- 1 +s2
2

g22 
1

+s3
2

g33-
1 

2s1s2g12-
1 

+2s1s3g13-
1 

2s2s3g23-
1 

+ •.• (3.15) 

with 
g11 

-1 
g12 

-1 
g13 

-1 

g21 
-1 

g22 
-1 

g23 
-1 

G-1= s - -1 -1 -1 
g31 g32 g33 

(3.16) 

s1 , s2 , ••• are the individual symmetry coordinates. 
We assume now that s1 and s2 belong to the same symmetry species and s3 

toa different species. We see that a number of squares occur in eq. (3.15) and 
a number of cross products. These products are zero if the symmetry coor
dinates occurring in the product do not belong to the same symmetry species. 
This is because the kinetic energy is invariant under each symmetry operation 
of the group. Since s1 and s3 do not belong to the same species, an operation 
may always be found that leaves s1 unchanged and causes s3 to transform to 
-s3 • The product s1 s3 g13 -

1 should change sign under that operation. Since 
the kinetic energy does not change under a symmetry operation we have 
g13 -

1 = 0. The appearance of zero elements causes G.- 1 to assume a block 
form, provided the symmetry coordinates are grouped together a~cording to 
their species. The blocks with non-zero elements are situated alortg the main 
diagonal of the matrix and each particular block is of order n, where n is the 
number of symmetry coordinates belonging to that block. 
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We have not yet taken any account of the degenerate species. It may be noted 
in this connection that a degenerate block can in turn be divided up into a 
number of m identical blocks, where m represents the degeneracy. For a more 
detailed description, reference may be made to W oodward 3

-
2
), p. 183. 

The F matrix factorises into blocks in the same way. 
The great advantage of this procedure is the splitting up of the secular equa

tion into a number of equations of smaller dimensions, making it possible to 
relate the calculated frequencies to their symmetry species. 

The Schachtschneider computer programs are based on the G-F matrix 
method described above. Fig. 3.1 illustrates schematically how the various pro
grams yield the desired result from the basic data. The functions of these pro
grams are briefly described below. 

(1) CART. This program calculates from a given geometry of a molecule the 
cartesian coordinates of all atoms. There are also options for computing the 
centre of mass and moments of inertia. The origin of the coordinate system 
can be placed at the centre of mass. 

(2) GMAT calculates the (Wilson) G matrix for a 'free' molecule. The input 
consists of the cartesian coordinates of the atoms (called X matrix and can be 
obtained from CART) and the internal coordinates chosen. 

With eq. (3.4) the B matrix is then determined, after which, using eq. (3.5) 
and the stated masses of the atoms, the G matrix is calculated, schematically: 

R =BX-+B-+G BM- 1 Ê. 

The U matrix may also be optionally introduced, after which G s is calculated 
from eq. (3.14). 

(3) VSEC calculates the vibrational frequencies from the G matrix and 
Z matrix. The Z matrix is a three-dimensional matrix with elements Zijk· The 
indices i and j refer to the row and column numbers of the F matrix and the 
index k refers to a force constant <Pk. The element Z;Jk is the coefficient of the 
force constant <Pk in the expression 

The advantage of this representation of the F matrix is the ease with which 
F matrices based on e.g. symmetry coordinates can be introduced. Later, more
over, it is easier to see which force constants refer to a particular coordinate 
and vibrational frequency. 

The G and Z input may be block-diagonalised or not. By way of option the 
amplitudes of the vibration, the potential energy distribution over the force 
constants, the cartesian displacements for each normal coordinate and the 
coriolis coefficients can be computed. 

(4a) FPERT is an iteration program. The input consists of the G matrix, 
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CART ------~-------, the atoms in the molecule. l 
-distances and angles between 

l - atomie masses. 

X matrix ( optionally including the centre of mass, the moments of inertia, and 

j 
an X matrix based on the origin at the centre of mass). 

GMAT ~----------- dinates and the masses of the 

1

- definitions of the internal coor-

atoms. l - optionally the U matrix as well. 

G matrix (may or may not be block-diagonalised). 

a. FPERT or 

UBZM, - optional, calculates a Z matrix 
on the basis of a Urey-Bradley 
forcefield . 

.i 
- Z matrix and an estimate of the 

force constants. 

b. FLEPO +-~~~~~ -~- - The experimentally determined 
frequencies. 

1 

"' a set of adjusted 
force constants 

1 
VSEC----~~~~~--~~< 

l 

- optionally the U matrix. 

the G matrix, the Z matrix, force 
constants and optionally the U 
matrix. 

Calculated frequencies with a potential energy distribution for each normal 
coordinate and optionally the amplitudes of the vibrations, cartesian displace
ments for each normal coordinate and the coriolis coefficients. 

Fig. 3.1. Diagram illustrating the Schachtschneider programs. Basic data: the geometry of 
the molecule, the masses of the atoms and the experimentally determined frequencies. 

the Z matrix, and the force constants '1>1• For the force constants 11>1 the best 
possible estimates of their real values are taken. The input should also include 
the experimentally determined frequencies. The program calculates the frequen
cies, v1(calc), and compares them with the observed values, v1(obs). Following 
a method proposed by King and Crawford (refs 3-3 and 3-4) the differences 
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lli(calc)- Ä1(obs)I are used to adjust the force constants (Ä = 4n v2
). This 

process is repeated until 

2: ll1(calc)- Ä.1(obs)l 2 

1 

is a minimum. 
(4b) FLEPO is also an iteration program. It is based on a minimisation 

method developed by Fletcher and Powell 3 - 15). The algorithm for this method 
(FLEPOMIN) is given by Wells 3 - 16) and corrected by Fletcher 3 - 11). The 
input is identical with the input for FPERT. FLEPO has some advantages over 
FPERT. The minimisation procedure in FPERT diverges very easily, and there
fore it is often difficult to get results from this program. Moreover, FLEPO is 
more rapid then FPERT. A more detailed description has been given by 
Dikhoff 3 - 18). For the calculations in this chapter we used FLEPO instead of 
FPERT. 

3.3. GMOP, the subroutine SPC and GZ conversion 

Schachtschneider 3 - 3) bas written a program for the calculation of the 
G matrix for polymers and crystals (program GMATP). For the polymer poly
ethylene he has given an example, showing that 20 atoms and 60 internal coor
dinates are required for this simple substance. However, he does not indicate 
how the input of a crystal should be composed. The method described below 
requires only 8 atoms and 20 internal coordinates for the polyethylene problem. 

To make up for this shortcoming in Schachtschneider's programs we have 
written a new program, called GMOP, which is a substitute for GMAT and 
CART at the same time. Program GMOP is based on Schachtschneider's 
GMAT and CART. 

An important procedure included in the new program is the subroutine SPC. 
This subroutine develops a transformation matrix which ensures that redundant 
coordinates can be eliminated. 

A supplementary program, GZ conversion, removes the zero and redundant 
degenerate coordinates from the G and Z matrices. The new, much smaller G 
and Z matrices are suitable for input in VSEC and FLEPO. 

3.3.1. GMOP 

Shimanouchi et al. 3 - 5 ) describe how the G-F matrix method can be applied 
to the optically active vibrations of crystals. As already pointed out in sec. 2.2.2, 
the optically active vibrations are vibrations which are in phase in all primitive 
cells (k = 0). It is therefore sufficient to compose G and F matrices for only one 
primitive cell, including interactions with neighbouring cells in so far as these 
are different from zero. Doing this for a cell i, j, k we find 

Gap = L GIJk,l'J'k' 
t',J',k' 

and Fop= L F1jk,i'J'k'> 

l'j'k' 

(3.17) 
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where G0P is the G matrix for the optically active vibrations. According to 
Shimanouchi, we may write i' = i, i 1 or i 2, j' = j, j ± 1 or j 2, and 
k' = k, k 1 or k ± 2, i.e. the interactions extend over nearest-neighbour 
cells and next-neighbour cells. It may be necessary to add i' = i ± 3 to this if 
the torsions are also taken into account. For the F matrix the interaction could 
theoretically extend further than next-next-neighbouring cells. However, the 
force constants will be very small in that case. In the program GMATP, G0P 

is in fact obtained by such an addition of G matrices. For this purpose the 
input must also comprise the neighbour cells. If we include all nearest-neigh
bour cells and next-neighbour cells in the calculation, this would give us a 
maximum of 125 primitive cells. U sually we can do with fewer than this, as will 
be clear from the example of diamond given in the article by Shimanouchi et al. 

The solution worked out by us is based on the following consideration. 
The kinetic energy of the optical vibrations in cell i, j, k is 

(3.18) 

where Xuk is the cartesian displacement coordinate vector of the atoms in cel! 
ijk and M 1ik is the diagonal matrix of the masses of the atoms in cel! ijk. 

In cell ijk we can define a number of internal coordinates, represented by the 
vector Rm. The kinetic energy is now 

(3.19) 

The internal coordinates R 11k are defined by atoms that may also lie outside 
the cel! ijk, hence 

Rijk= Bijk,ijkxljk + Bijk,i'J'k' xi'j'k' + Bijk,i"j"k" Xt"J"k" +... (3.20) 

Since the displacement coordinate vector X is identical for all cel1s, eq. (3.20) 
may also be written as 

(3.21) 
t'j'k' 

After substitution in eq. (3.18) we obtain 

G0p Bop Miik - l Bop (3.22) 

(see e.g. Woodward 3- 2), p. 76 ff). 
The problem has now been converted into the determination of B0 P, that is 

to say into the addition of the B matrices. Now in eq. (3.20) only those elements 
Bu1c,t'J'"' and B111<,i"J"k" are different from zero that involve atoms in the neigh
bour cells which are part of an internal coordinate R1jk of cell i,j, k. It is there
fore not necessary to consider more atoms than are needed for the definition 
of all coordinates Rijk· 

Each element of the matrices Buk.par from eq. (3.20) is characterised by a row 
number corresponding to the serial number of an internal coordinate in the 
vector R 11k, and a column number corresponding to an atom coordinate. For 
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the nth atom in the primitive cell the atom coordinate numbers are 3 (n- 1) + 1 for 
Li.x, 3(n 1) + 2 for Äy and 3(n 1) + 3 for Äz. The B0P is now obtained 
by adding the B elements with the same row numbers that are recorded under 
identical atom coordinate numbers in the various cells ijk, i'j'k', i"j"k", .... 
The row number of the sum remains of course the same, and the column number 
becomes equal to the number of the atom coordinate in the cell ijk. To 
summarise, it is sufficient to include in the input those atoms which are 
needed for the definitions of Rijk and to indicate which atoms are equivalent 
to the atoms in the cell ijk. The great advantage of the procedure outlined above 
is that it limits the number of atoms that need to be considered in the calculation 
toa strict minimum. Furthermore, we are always sure that sufficient atoms have 
been included, as otherwise the definition of one or more internal coordinates 
is impossible. 

8 

7 3 

1 
1 
li 

r1 1 
1 
1 

1 
1 

6 

z 

}--x 
-y . 

4 

a) 5 b) 
Fig. 3.2. Dia.mond. (a) Diamond lattice. The two f.c.c. sublattices of which diamond is com
posed are indicated by C atoms shown as open and solid circles. There are six i + 1 nearest
neighbour cells and six i + 2 next-neighbour cells. (b) Schematic representation of a primitive 
cell. The atom numbering and various internal coördinates are defined in this figure. 

We shall illustrate this procedure by taking diamond as an example, as was 
also done by Shimanouchi 3 - 5). The primitive cell (Bravais cell) of diamond 
contains two carbon atoms. In this primitive cell we can define 16 internal 
coordinates, namely four stretchings and twelve bendings. The primitive cell 
is shown schematically in fig. 3.2, which also illustrates the location of the 
neighbouring cells in the diamond lattice. 

Shimanouchi obtains G0P by adding the G;jk,i'i'k.'s, for which purpose he 
bas to determine and add 13 matrices!*) We need a total of 8 atoms in order 

*) lt should be noted here that Shimanouchi also gives a shorter method which makes use 
of cartesian coordinates. The cartesian force constant matrix Fcart is then determined by 
Fcart Bop Fintern Bop· The drawback of this is that the force constants no Jonger have 
any physical meaning. In our case this would imply that we could no Jonger use the 
programs FLEPO and VSEC directly. 
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to define the 16 internal coordinates as can be inferred from fig. 3.2. If we cal
culate the B matrix in the ordinary way for this ‘eight atom molecule’ using the
internal coordinates defined for it, we obtain the B matrix of table 3-I.

TABLE 3-I

The B matrix of the ‘eight atom molecule’ for calculating the B00 of diamond.
The internal coordinates are defined in fig. 3,2, as well as the atom numbers.
The coordinate numbers are only of relevance to the calculations. Atoms 1 and
2 are in cell i, the other atoms are in different + 1 cells

no.
atom 3 7 8 1

coord.
no. 7 8 9 19 20 21 22 23 24 1 2 3

r1 —1
r2 .943 .333
r3 —.471 .816 .333
r4 —.471 —.816 .333
a12 —.866 .612
a~ .433 —.750 .612
a14 .433 .750 .612
a34 .866 —.612
a42 —.433 .750 —.612
a23 —.433 —.750 —.612
I~12 —.216 .612 —.649
~j3 .325 .108 .187 .612 —.562
/~14 .108 .187 .612 .325 .562
fl34 .433 —.375 —.3C6 .433 .375 —.306
~42 .108 .562 —.306 —.541 .187 —.306
~23 .108 —.562 —.306 —.541 —.187 —.306

Table 3-I clearly shows the division into cells. A division can also be made
in terms of the position of an atom in the primitive cell. We shall call atom 1
and the equivalent atoms in the neighbour cells A atoms, and atom 2 with its
equivalent atoms B atoms (in fig. 3.2 the open circles are the atoms A and the
solid circles the atoms B). Atom numbers 3, 7 and 8 are A atoms and 4, 5
and 6 are B atoms.

Matrix B00 is obtained by adding the B~,~~1’s to B~. Table 3-I gives six
(half) B~~+1’s, the other halves consist of zero elements. These half matrices
have to be added to the proper half of the (complete) B1,~. For example, in
the case of the column with atom coordinate number 5 the columns with the
atom coordinate numbers 11, 14 and 17 have to be added to this column (the
‘y-coordinate’ of the atoms B). After addition, the values we obtain for the
elements of B00 are those listed in table 3-Il. The matrix multiplication:

G00 B00 JW— 1

then yields G00. We shall not work out this matrix here; the values are found
to agree with the C00 values obtained by Shimanouchi 3_5),
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3.3.2. Sun—Parr—Crawford method

3.3.2.1. Introduction

The purpose of this method is to find a set of symmetry coordinates that
contain no redundancies. A set of symmetry coordinates contains redundancies
if the coordinates are not all independent. It is often particularly useful (for
symmetry reasons) to introduce one or more redundancies. A familiar example
is the use of six bending coordinates in the case of methane, where one of these

2 4 5 6

4 5 6 10 11 12 13 14 15 16 17 18

—.943 —.333
.471 —.816 .333

.471 .816 —.333
.649 .216 —.612

—.325 .562 —.108 .187 —.612
—.325 —.562 —.108 —.187 —.612

—.433 —.375 .306 —.433 .375 .306
—.108 —.562 .306 .541 —.187 .306
—.108 .562 .306 .541 .187 .306

.866 —.612
—.433 .750 —.612
— .433 —.750 —.612
—.866 .612

.433 —.750 .612

.433 .750 .612

TABLE 3-Il

B0~ of diamond

atom no. 1 (A) 2 (B)

coord.no. 1 2 3 4 5 6

r1 —1 1
r2 .943 .333 —.943 —.333
r3 —.471 .816 .333 .471 —.816 —.333
r4 —.471 —.816 .333 .471 .816 —.333
a12 —.866 .612 .866 —.612
4~3 .433 —.750 .612 —.433 .750 —.612
a14 .433 .750 .612 —.433 —.750 —.612
a34 .866 —.612 —.866 .612
~42 ~.433 .750 —.612 .433 —.750 .612
a23 —.433 —.750 —.612 .433 .750 .612
j~12 —.866 .612 .866 —.612
fl13 .433 —.750 .612 —.433 .750 —.612
#14 .433 .750 .612 —.433 —.750 —.612
#34 .866 —.612 —.866 .612
#42 —.433 .750 —.612 .433 —.750 .612
#23 —.433 —.750 —.612 .433 .750 .612
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symmetrically equivalent coordinates is redundant in the description of the 
vibrations. 

In framing the symmetry coordinates ( U matrix) we shall include the redun
dancies. Without the redundant coordinates it would in many cases be quite 
impossibJe to set up the U matrix. 

The solution of the secular equation is rendered cumbersome by the occur
rence of redundancies. In the first place the dimension of the determinant 
(jGF- EA.j 0) increases unnecessariJy, and moreover, the first derivative of 
the potentiaJ energy with respect to the coordinate is no Jonger necessarily zero 
(see eq. (3.6)). The consequences of the Jatter problem have been treated by 
Wilson, Decius and Cross 3 - 1) (p. 171 ff) and by Jones 3 - 6) (sec. 1.10.2). 

It is therefore appropriate to eJiminate these redundancies before beginning 
with the soJution of the secuJar equation. 

The procedure adopted for this purpose was first suggested by Sun, Parr and 
Crawford 3

-
7
). It is based on the transformation of the old symmetry coor

dinates (s) to a set of new coordinates s which contain the redundancies as 
zero coordinates (e.g. s1 0, and possibly 82 = 0, etc.). 

The following calculation has been elaborated by Vogel 3 -s) and is based 
on the suggestion of Sun, Parr and Crawford. 

3.3.2.2. Calculation 

We assume that the G matrix is based on symmetry coordinates and that the 
matrix is consequently in the block-diagonal form. The transformation to a 
new set of coordinates s can now be carried out per block. The. number of 
redundancies per bJock is known beforehand and thus provides a check on the 
correctness of the result. lt is not essential that the G matrix be in the block
diagonal form, hut if it is not we are unable to make any distinction in terms 
of symmetry species. 

Let G be a bJock of the G matrix pertaining to the symmetry species I'. 
A known number of independent modes, r, will pertain to I'. r is equal to the 
rank of G, while the order of Gis equal to the number of symmetry c:oordinates, 
k, which pertain to G (k ~ r ). The symmetry coordinates are collected in the 
column vector s = {s1, ... , sk}. The number of redundant coordinates is equal 
to k r. The zero coordinates are in general linear combinations of the sym
metry coordinates. For CH4 the symmetry coordinate 

happens to be a straightforward zero coordinate, since 

in this case. 
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The kinetic energy (for the block) expressed in the old symmetry coordinates 
is: 

2r=80- 1 8. (3.23) 

We can also express the kinetic energy in the space spanned by the new sym
metry coordinates s1 , ••• , sk pertaining to the block. The new space is ob
tained from the old one by means of a linear transformation using an ortho
normal transformation matrix C: 

(3.24) 

The kinetic energy is now 

(3.25) 

The relation between the old and new G matrix block is 

c (}-l c (3.26) 

as is seen after substitution of (3.24) in (3.25) and comparison with (3.23). 
Since C is orthonormal, C c- 1 , and we get upon inversion of (3.26): 

G CGC. 

Pre- and post-multiplying this by C and C, respectively we obtain 

G CGC. (3.26') 

If C is properly chosen the new G block, G, will reflect the zero coordinates 
through the appearance of corresponding rows and columns of zeros. A cor
rect choice for C can be made along the lines now to be described. 

If .i1 {x11, ... , xk1} is a solution of the set of linear equations 

(3.27) 

where O"' is the k-dimensional zero vector, then according to Sun, Parr and 
Crawford 3

- 7), the linear combination of old symmetry coordinates s1 = x1 s · 
is a zero coordinate. The number of linear independent solutions x1 for (3.27) 
is equal to k r. Thus, k - r zero coordinates may be found. Generally, they 
are not orthonormal, but may be chosen to be so. The (k r) orthonormal 
solutions .i1 together form a matrix X: 

-(~11• · · ·, X1,k-r) 
x= . . 

xk,1• ••• ' xk.k-r 

(3.28) 



58 -

We may write 

s0 =X s, (3.29) 

where s0 = {s1 , 0 , ••• , sk-r,o} is the column vector of the k r zero coor
dinates. Equation (3.27) can now be written as 

G X = Ok,k-ro (3.30) 

where Ok,k-r rx(k-r) zero matrix. 
We must now solve X from eq. (3.30), and this is done by transforming the 

matrix G into its row-echelon form (see B. Noble 3 - 9), sec. 3.7). This row
echelon form will be indicated here by M: 

M 

1x0 0 x x x 0 0 x 0 .•• 
OOIOxxxOOxO ... 
0 0 0 1 x x x 0 0 x 0 ..• 
OOOOOOOIOxO .•• 
OOOOOOOOlxO .•. 
0 0 0 0 0 0 0 0 0 0 1 .. . 
00000000000 .. . 

00000000000 ... 

(3.31) 

I 

!(k- ') rows of zeros 

Here the symbol x stands for a numeral, which is not necessarily equal to 
zero. The equation 

MX=O (3.32) 

is equivalent to eq. (3.30) (see Noble, sec. 4.8). 
By interchanging columns, i.e. by renumbering the columns, we 9btain from 

M the normal row-echelon form Mn: 

(3.33) 

where /, = identity matrix of order r, 
B r x (k - r) matrix, with at least one element unequal to zero, and 
0 1,1 = ixj zero matrix. 

We must remember here which columns have been interchanged in order to 
obtain Mn, and this can be represented as follows: 

(3.34) 

Here Iku.« is a matrix of order k, which is obtained from the identity matrix 
by interchanging the pth and qth columns. 
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1 0 0 0 0 
0 1 0 0 0 

/5 3 •4 = 0 0 0 1 0 
0 0 1 0 0 
0 0 0 0 1 

Since JkP.« is equal to its own inverse, we have 

M = Mn • . • Jkl,m Jkl,J. (3.35) 

We had to determine the solutions of eq. (3.30): GX = 0, which is equivalent 
to MX = 0 and hence also to 

If we write 

this is further equivalent to 

The solutions for this equation are given by 

x'1(r) -Bx'1(k r) (i = 1, ... , k r), 
where 

x'1(r) {x'1 , 1, •• " x',, 1} 

and 

hence 

(3.36) 

(3.37) 

(3.38) 

(3.39) 

Bis taken from eq. (3.33). The x'1(k- r) can be chosen arbitrarily, hut will 
be taken in such a way as to form a set of linear independent vectors. This 
may be done by putting them equal to 

x' 1(k- r) = {l, 0,0 . "O} 
x'2(k-r) {O, 1,0 .. , O} 

x' k-r(k r) {0,0 . " 0, 1 }. 

Substitution of these relations in eq. (3.39) yields 

x'1 = {-B1 , l, 0,0 .. , O} 
x'2 = {-B2 , 0, 1,0. "O} . 
:r' k-r = {-Bk-r> 0,0 .. , 0, 1 }, 
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where Ê; represents the ith row of the transposed matrix Ê (or the ith column 
of B). Collecting these k - r independent solutions again in a matrix X' we 
obtain 

X' = (i~:) (3.40) 

as the solution of (3.38). If we compare eq. (3.38) with its equivalent, eq. (3.32) 
it follows, using eq. (3.34), that 

(3.42) 

Since we know X' from eq. (3.40), we also know X. We only need to make 
all vectors of X orthonormal. 

In the normal coordinate analysis we are interested in a set of coordinates s 
which are mutually orthonormal and which contain all (k - r) zero coordinates. 
We can obtain this new set of coordinates as follows from the old set of sym
metry coordinates s. 

The k - r generally non-orthonormal zero coordinates are given by eq. (3.29). 
To these we add r linear combinations from the set s, which are mutually inde
pendent and also independent of the (k- r) zero coordinates. We do this by 
means of the linear transformation 

s' =C's, (3.43) 
where 

(3.44) 

In other words, we take the zero coordinates given by eq. (3.29) and, in addi
tion, the symmetry coordinates s1 , .•• , s, from the original set s (these sym
metry coordinates must be independent of the zero coordinates, otherwise others 
would have to be chosen). 

Using the relation 

(3.45) 

and 

(3.46) 

we can write C' as 

(3.47) 

By subjecting C' to a Gram-Schmidt orthogonalisation we obtain an ortho
normal matrix C, which we shall call the Sun-Parr-Crawford transformation 
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matrix. The symmetry coordinate s, which we shall call the Sun-Parr-Crawford 
symmetry coordinates, are now given by eq. (3.24): 

s=Cs, 

where s is an orthonormal set as well, provided that s formed an orthonormal 
set. If G. refers to the total, block-diagonalised G matrix with respect to the 
new coordinates s, we obtain from eq. (3.26') and eq. (3.14), sec. 3.2 

G. C GJ:, = C U G Ü C, (3.48) 

where C is now taken over all species. 
We will call G. the Sun-Parr-Crawford G matrix, and 

ü_cu, (3.49) 

the Sun-Parr-Crawford U-matrix. Ü is evaluated in the subroutine SPC of 
program GMOPSECONDVERSION. From (3.48) and (3.49) we obtain 

G. ÜG Ü. (3.50) 

3.4. Calculations on B30/ .... 

3.4.1. GMOPSECONDVERSION 

As has been pointed out in the foregoing, it is useful to consider first the 
internal vibrations of the Na20.B20 3 crystal as vibrations of the 'free' ion 
B3063 ..... 

The force constants obtained in this approximation will serve as initial values 
for calculations on the crystal itself. In table 2-VII the 30 internal coordinates 
of the B30 6

3 .... ion are defined. The geometry of the ring is described in sec. 2.2.1, 
so that working out the G matrix does not offer any further problem. The 
numerical data are listed in appendix L 

Drawing up a good U matrix is rather more complicated. We use for this 
the method given by Nielsen and Berryman 3 - 12). (Nussbaum 3 - 19) bas also 
given a good description of it.) The symmetry coordinates must be ordered 
very carefully because upon interchanging them the matrix may not assume 
the correct block form or degenerate blocks may arise that are not subdivided. 
This method calls for the complete matrices of the irreducible representations 
of the symmetry group D3h (the characters alone are not sufficient). Corn
well 3 - 10) (p. 237) and Bradley and Cracknell 3 - 11) (p. 61) have given these 
matrices for the various point groups. For the degenerate species of symmetry 
group D3h they are the following *) 

*) + stands for a rotation in the right-hand screw sense, seen from the origin. 
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D3h E C3+ C3- C2x C2a C2b f1h S3+ s3- <lvx <1va <lvb 

E' a b c d e f a b c d e f 
E" a b c d e f -a -b -c -d -e 

where 

-(-1 o)· -( t -!V3)· -( t tV3)· a - o 1 • e - -! V3 -l ' / - t V3 -! ' 

C2 x and Cvx are respectively the twofold axis and the vertical mirror plane 
through the atoms 7, 1 and 4 (fig. in table 2-VII). C2a and Cva are respectively 
the twofold axis and the vertical mirror plane through the atoms 8, 3 and 6. 
C2 b and Cvb are respectively the twofold axis and the vertical mirror plane 
through the atoms 9, 5 and 2. The matrices of the non-degenerate symmetry 
species correspond to the characters in the character table. 

The U matrix given in table 2-VII is now compiled by applying toa number 
of internal coordinates the projection operator proposed by Nielsen and 
Berryman 3 - 12). 

This projection operator contains, instead of the character, the same matrix 
element a;J (i,j 1, 2) from the 2x 2 matrix for each symmet11y operator. 
There are thus four projection operators for each doubly degenerate symmetry 
species; we shall call these p11, p 1 z, p 21 and p22 (the subscripts correspond to 
the chosen element from the 2 x 2 matrices). For the non-degenerate species the 
projection operator is the familiar one based on the characters. 

Before the projection operators can be applied, it is useful to make first a 
table of the transformation properties of a number of internal coordinates. 
Not all internal coordinates are required for this purpose; one of each kind 
(r, R, et., {J, y, ~and T) is sufficient. The application of the projection operators 
upon a second internal coordinate of a given kind only provides linear com
binations of the symmetry coordinates already obtained. In the specific case of 
the B30 6

3 - ring (plane) is it not necessary to include in the table the symmetry 
elements ah, S3 +, S3 - , <lvx• <1va snd C1vb· For the in-plane coordinates these sym
metry operations yield the same result as the operations E, C3 +, C3 - , C2 x, C2 a 

and C2b. After application of the former operations (ah, etc.) to the out-of-plane 
coordinates, the sign is changed with respect to the application of the Jatter 
operations (E, C3 +, etc.). 



Table of symmetry coordinates developed by using Nielsen and Berryman's method 

projection applied sym. intemal coordinates 
operator to coord. l 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 

E' P11 73 Szo 1 1 2 -2 -1 1 
Piz f3 S19 1 -1 0 0 1 1 
P21 r3 S13 1 -1 0 0 -1 l 
P22 r3 S12 -1 -1 2 2 -1 -1 
P12 R1 Sis 0 1 -1 
P22 Ri Su 2 1 -1 
P12 0!1 Sz1 0 1 -1 
P22 0!1 S14 2 -1 -1 
Pu fJz S22 -1 0 1 
P22 fJz S15 1 2 -1 
Pu '.)'4 Sz4 1 -1 1 2 -2 -1 
P12 î'4 Sz3 1 -1 -1 0 0 1 
P21 Î'4 S17 1 1 -1 0 0 -1 
P22 î'4 S16 -1 -1 -1 2 2 -1 

22 23 24 25 26 27 28 29 30 

E" P11 01 Szs 2 -1 -1 
P12 '51 Szs 0 1 -1 
P11 <2 Sz6 -1 2 2 -1 -1 -1 
PD. <2 Sz7 -1 0 0 1 1 -1 
P21 1:z Sz9 1 0 0 -1 -1 1 
Pzz <2 S30 1 2 -2 -1 1 -1 



-64-

Transformation properties of a number of internal coordinates 

Symmetry operation: E C3+ C3- C2x C2a C2" 

Internal coord. no. ~"~ 

T3 3 3 5 1 4 2 6 
R1 7 7 8 9 7 9 8 
0:1 10 10 11 12 10 12 11 
fJz 14 14 15 13 14 13 15 
Î'4 19 19 21 17 20 18 16 
61 22 22 23 24 -22 -24 -23 
•2 26 26 28 30 -27 -25 -29 

Remarks: 
- Coordinates r7 , r8 and r9 (defined in table 2-VII) are also represented by 

Rl> R 2 and R3 • 

- r3 , y4 and • 2 have been chosen in order to obtain agreement with the U 
matrix earlier set up for crystalline Na20.B20 3 , where the definitions of the 
internal coordinates differed slightly from the definitions for the ring given 
in table 2-VII. 

- {J2 was chosen with a view to the factorising of the E' species into two iden
tical blocks. This choice is not arbitrary since the <X's and the (:J's together 
yield a number of redundancies which must be properly divided among the 
two identical blocks. 

For the E' and the E" blocks we now obtain the symmetry coordinates as 
presented in the table. They have also been listed in table 2-VII and have 
not been normalised. 

It is evident that the out-of-plane coordinates must yield zero in species E', 
just as the in-plane coordinates do in species E". The U matrix 1 is given in 
table 2-VII. The serial order of the symmetry coordinates must be found by 
inspection of the form of the G matrix. In each species, symmetry coordinates 
must be interchanged until the correct block form is obtained. 

With the above data we can now run the computer program GMOPSECOND
VERSION (i.e. GMOP including the SPC transformation described in the fore
going). The B matrix, the G matrix (for the natural isotope ratio ofiboron), the 
block-diagonalised G matrix and the Sun-Parr-Crawford G matrix are given 
in appendix 1. The Iatter matrix is obtained from the G matrix and the 
Sun-Parr-Crawford U matrix, ü (sec. 3.3.2.2), with the help of program GZ 
conversion. 

3.4.2. F matrix (Z matrix) 
i 

The force field chosen is the Genera! Quadratic Valence Force Field (GQVFF) 
This is the force field most generally used in vibrational analysis. It might be 
possible to use other force fields, such as the MUBFF (Modified Urey Bradley 
Force Field), but that would only be meaningful ifthe GQVFF did not provide 
satisfactory results. 
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The force and interaction constants (further simply referred to as force con
stants) from eq. (3.7) in sec. 3.2 are defined in table 3-III, for the B30 6

3 - ion. 

TABLE 3-III 

Definitions of the force constants of the 'free' ion B30 6
3-, with an estimate 

of their initia] values (in mdyn/Á). 0 = intra-annular 0 atom; O' = extra
annular 0 atom 

no. explanation 
principal force constants 

f1 fr, B-0 (stretching) 
fz fR, B-0' (stretching) 
f3 f., 0-B-O (bending) 
f4 fp, B-0-B (bending) 
fs f 1, 0-B-O' (bending) 
f6 f" O-B-0-B (torsion) 
J, f 6, out-of-plane wagging 

interaction constants 

.fs /.,, common B atom 
f9 f,,' common 0 atom 
/10 fR" 
/11 f,., with r as part of ei 
f12 fr"', rand ei having an 0 atom in common 
f13 frf!• with r as part of fJ 
fi4 f,/, rand fJ having a B atom in common 
fis f,y, with r as part of y 
ft6 fry', rand y having a B atom in common 
ft7 fr1", rand y having an 0 atom in common 
fis fR", adjacent R and ei 
fi9 fRf!• adjacent R and fJ 
fzo fR 1, with R as part of y 
1:21 f •• , adjacent ei's 
122 fofJ• r common 
/23 f.,, r common 
/24 f./, 0 atom common 
/25 f 11f!, adjacent {J's 
126 fp,, r common 
/27 fw/, B atom common 
fzs / 17, R common 
/29 fn'• O atom common 
f3o /.., B-0-B common 
/31 h/, O-B-0 common 
/32 fi/1

, r common 
/33 /,/", end atoms common 
/34 fóó• an 0 atom common 
/35 fa" r common 
fa6 fi;/, two r's common 
/37 / 6/', 0 atom common 

r stretching B-0 
R stretching B-0' 
ei = bending O-B-0 
fJ = bending B-0-B 
y = bending O-B-0' 
o = out-of-plane wag *) 
-r = torsion O-B-0-B 

*) Is defined by a boron atom and its three covalently bonded atoms. 

estimated value 
(mdyn/À) 

6.5 
9.5 
0.33 
0.33 
0.33 
0.8 
0.3 

l 
1 
1.5 
0.5 
0 
0.5 
0 
0.5 
0 
0 
0 
0 
small 
0 
0.12 
0 
0 
0 
0 
0 
0 
0 
? 
? 
? 
0 
0 
? 
? 
0 
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The force constants that represent an interaction between an out-of-plane 
and an in-plane coordinate must be zero. This is readily understood if we con
sider the potential energy before and after reflection with respect to the plane 
of the B30 6

3- ring (O'h). The potential energy before and after refiection must 
be identical : 

Before reflection in uh: 2 V = ... +ho R1 Ro + ... 
after refiection in O'h : 2V = ... +ho R1 (-R0) 

hence ho R1 R0 = -fi0 R1 R0 , which is only true for ho = 0. Here, ho is the 
force constant of the interaction between an in-plane (R1) and an out-of-plane 
coordinate (R0). 

There are a total of 37 different force constants, and with these the Z matrix 
can be drawn up. For each element of the F matrix we must determine which 
of the 37 force constants is represented in that element. In the F matrix each 
element consists of only one force constant. The Z matrix for B30 6

3 - is given 
in appendix 1. 

3.4.3. GZ CONVERS/ON 

We now have at our disposal the G and Z matrices and the SPC U matrix, ü. 
The next thing to do is to reduce the size of the secular equation as far as pos
sible. Por this purpose the superfluous coordinates from the SPC matrix must 
be eliminated, i.e. the zero coordinates and one of each pair of degenerate 
blocks. We can also delete the non-active symmetry species, such as the A' 2 

block. The dimension of the G and Z matrices obtained in this way (after 
transformation with the reduced SPC U matrix) is only 12. This is because we 
are only left with the following new symmetry coordinates: 

A' 1 : coordinates 1, 2 and 3 
A " 2 : coordinates 4 and 5 
E' coordinates 6, 7, 8, 9 and 10 
E" : coordinates 11 and 12. 

The elimination of the superfluous coordinates is done by the program GZ 
conversion. This program will not be described here. With the G and F matrices 
and the SPC U matrix as an input, it yields the SPC G and F matrices. These 
are given in appendix 1. 

As was to be expected, the two symmetry species that contain only out-of
plane coordinates (A" 2 and E") are completely independent of the 'in-plane 
symmetry species' (A' 1 and E'). The blocks A" 2 and E" only contain force 
constants that relate to the out-of-plane motion, and these force constants do 
not occur in the blocks A'1 and E', and vice versa. 

This means that the problem is divided into two smaller sub-problems: the 
out-of-plane problem (dimension 4), and the in-plane problem (dimensîon 8). 
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3.4.4. Out-of-plane vibrations 

The SPC G and F matrices that relate to the out-of-plane vibrations may be 
represented as follows: 

Fmatrix 

4 5 11 12 

4 F1 0 
5 F2 

11 0 F3 
12 F4 

where F1 + 2/34 
F2 = /6 - /30 - /31 2/32 - /33 
F3 /1-/34 

G matrix 

4 5 

4 a1 bi 
5 b1 C1 

11 0 0 
12 0 0 

F4 = f6 - 0.582125f30 0.4131/31 - /32 + 0.995227f33 

and a1 = 0.881480; b1 1.721677; c1 = 3.792065 
a2 = 0.754024; b2 0.832911; C2 = l.256209 

(these-data have been taken from appendix 1). 

11 12 

0 0 
0 0 
a2 b2 
b2 C2 

The four F's can be calculated from four observed frequencies. However, 
the observed frequencies are required to satisfy certain conditions, and these 
will first be derived. 

The above F and G matrices can each be subdivided into two blocks (the 
A" 2 and the E" blocks), and for each block we may write 

or: 

(3.51) 

If v1 and v2 are two observed frequencies appertaining to the block ( = species), 
we have A. 1 = 4:n: v/c2

, À2 4:n: v2
2c2

, and 

(ac b2
) Fx F" - À1 (aFx + cF,) .À. 1

2 = 0 (3.52) 

(ac b2
) Fx F, - À2 (aF:,, + cF,) À2

2 = 0. (3.53) 

Subtraction of the above equations, and dividing by (A.1 - A.2 ) yields 

(3.54) 

Multiplying eq. (3.52) by À2 and eq. (3.53) by À1 followed by subtraction and 
divisiori by (A.2 - A. 1) yields 
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(ac - b2) F,., Fy À1 À2. (3.55) 

From eqs (3.54) and (3.55) we can solve F,., and Fy: 

(3.56) 

(Fy gives a similar equation). If this equation is to yield a real value for F,., 
the determinant must be ~ 0, i.e. 

(3.57) 

where p 4ac/(ac- b)2
, and p depends only on the values from the G block 

(Fy gives the same determinant). Equation (3.57) can also be written as 

(3.58) 

where p 2 33.33 for the A" 2 block and 
p-2 12.95 for the E" block. 

In sec. 2.4.5 the frequencies 722 cm- 1 and678 cm- 1 of the crystal were assigned 
to the modes v7(A 2u (A" 2)) and v1iE9/E" (E")), respectively. The frequencies 
of the modes v7(Afl 2) and v1.i.{E") of the •free' B30 6

3 - ion will be approximately 
equal to these vafües. Therefore we can calculate the frequencies v6(A" 2) and 
v13(E") of the ion from eq. (3.58). The result is that v6 and '1'13 must be less 
than 126 cm- 1 and 198 cm-1, respectively. In the far-infrared spectrum (sec. 
2.3.2), however, no band could be observed in this region, so that the precise 
value of the infrared active 116-mode is not known and the force constants of 
the block A" 2 cannot be determined. 

In the Raman spectrum, however, we do find a number ofpeaks at the lower 
frequencies, but these have been assigned to the lattice vibrations. It is possible 
that one of these peaks belong to the internal vibration 1113(E"), in spite of 
the fact that the frequency is strongly influenced by the alkali ion. 

Thus, for the E" block, we cannot calculate any force constants either. Since, 
however, in the case of the crystal the frequency of 1113 pertains to the same 
species as most of the lattice vibrations (Ea), it may be possible to find the 
relevant force constants and establish the frequency from a calculation on the 
crystal. 

3.4.5. In-plane vibrations 

In sec. 3.4.3 we reduced the dimension of this problem to 8. This is too large, 
however, to allow of a derivation of similar relations between the !frequencies 
as we have done for the out-of-plane vibrations. 

This problem must therefore be solved directly with the iteration program 
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FLEPO. For this purpose the observed frequencies from the A' 1 and E' species 
are needed. As already explained in chapter 4, there are still a few uncertainties 
as regards the assignment of the symmetry species E'. The various possibilities 
that arise will be separately calculated. 

A problem in the calculations is the larger number of force constants that 
occur in the two blocks. Appendix 1 gives the SPC Z matrix and shows that 
27 different force constants occur in blocks A' 1 and E'. This number must be 
reduced. To do this, we shall assume as a first approximation that the force 
constants relating to interactions between internal coordinates having only one 
atom in common are equal to zero *). The number of force constants is then 
reduced to 16. Since this is still too large, a further approximation is needed. 
If we look at the force constants in table 3-III we notice that f 8 and f 9 are 
rather similar (they are bothf,.r's hut have a different central atom). The same 
thing is true for f 11 andf13 and for f 23 and / 26 . We shall therefore take these 
force constants pairwise equal, which can easily be realised in the Z matrix. 
We are now left with 13 force constants. 

From this point onwards the problem can be solved in two steps, firstly by 
calculating the A' 1 block and secondly by calculating the two blocks A' 1 and 
E' together. The great advantage of this is that the frequencies from the A'1 
block, which have been assigned with high certainty, yield a limited number 
of force constants that are no longer varied in the second step. Furthermore, 
for the A' 1 block we have well-defined frequencies for both the natural isotope 
composition of the ring and the 10B-enriched composition. The E' block does 
not have this advantage, because the infrared spectrum often has no sharply 
defined peaks, and we do need a number of values from this spectrum. 

The F matrices of the various isotope compositions are the same, hut the 
G matrices differ. From the two A' 1 blocks we can now make a single large 
block: 

Fmatrix G matrix 
1 2 3 4 5 6 2 3 4 5 6 

1 F1 F4 F6 1 a b c 
2 F2 Fs 0 2 d e 0 
3 F3 3 f 
4 F1 F4 F6 4 a' b' c' 
5 F2 Fs 5 d' e' 
6 F3 6 f' 

where the first three 'coordinates' relate to the 10B composition and the last 
three to the natural isotope composition. The force constants in the F matrix, 

*) With the exception of frr (the interaction constants between two adjacent stretchings), which 
often have a relatively high value. 
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which is the SPC F matrix, are related to the original GQVFF force constants 
(as may be seen in appendix 1) as follows: 

F1 = !2; F2 + fs + /9; F3 = 0.41/3 + 0.41/4 + 0.18/s -1.63/22 O.l8/2s; 
F4 = 1.41/io; F5 0.43fi 5 and F6 -0.60/20· 

The G matrix elements have the following values (where a tof originate from 
the G matrix of 10B30 6

3- and a' tof' from B30 6
3- with ms = 10.811): 

a = 0.162374; b -0.076510; c 0.262618; d = 0.08473; e = 0.088770; 
f = 1.17448. 
a' = 0.155001; b' -0.070862; c' = 0.243231; d' = 0.080406; e' = 0.073918; 
f' 1.123468. 

The appertaining frequencies are: 1605, 769, 631, 1573, 769, 624 cm- 1 • 

These frequencies show a few small discrepancies compared with the as
sociated G matrix blocks. The frequencies 769 cm- 1 and 631 cm- 1 belong to 
the 10B-enriched sample (93 % 10B), whereas the G matrix is that of 100% 10B. 
The frequency of 1573 cm- 1 is due to 10B11B20 6

3-, and thus pertains to 
33 % 10B instead of 20 % 10B, on which the G matrix is based. (The small error 
which this involves is to some extent compensated by the overlap of the peaks 
of 10B11B2 0 63- and 11B3063 -.) 

At first sight we should now be able to calculate the force constants F1 to F6' 
since we have just as many unknown F's as frequencies. This is not entirely 
true, however (see Jones 3 - 6), p. 34), because the frequencies are not indepen· 
dent of each other. The rule of Teller and Redlich (the isotope product rule) 
gives the relation between the frequencies and the G matrices (blocks): 

22~=1/~ 
V1' V2' V3' r IG'I' 

which means that one of the frequencies is dependent on the other frequencies. 
This problem is solved by applying an approximation, namely by choosing 
F6 0 and leaving this force constant out of the iterations. In this way five 
independent force constants remain to be solved. 

The drawback ofthis method is that one force constant (F6) bas wrongly been 
taken equal to zero. Another method is to work towards a minimum sum of 
squared residuals, 

6 

SUMDD = L [J,1(obs)- il1(calc)] 2 
, 

with six variable force constants using the FLEPO program. This gives a solu
tion that is not strictly correct mathematically hut is physically more acceptable 
than the previous approximation. Both solutions are given in appendix 2, and 
show very little difference (A2 and A3 in appendix 2). 
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Before running the program FLEPO we had to choose a number of initial 
values for the force constants. These values have to be estimated as accurately 
as possible, otherwise the number of iterations that have to be performed 
increases enormously. Starting with six variable force constants with unrealistic 
initial values there is even a great chance that the program will find another 
minimum. An example is given in appendix 2 (A4), where all six F's have zero 
as their initial value. The solution is seen to be physically unrealistic (e.g. F6 

is relatively very large in this case). 
Firstly, therefore, we estimated the force constants (see table in sec. 3.4.1), 

taking F6 0 (and constant), and then used the resultant improved values 
(appendix 2, Al) in order to: 
(1) refine these values still further (appendix 2, A2) and 
(2) to run the program with the six variable force constants (appendix 2, A3). 

We can now move on to the second step of the calculations, i.e. the treatment 
of the blocks A' 1 and E' together. For this, we need the values of the GQVFF 
force constants f 1 , f 2 , etc. Since F 1 F4 = 1.41/10, F5 = 0.43/15 and 
F6 -0.60f20, the values of f 2 , / 10, fis and / 20 are immediately obtained 
from F1 , F4 , F5 and F6' taking for the latter the physically most meaningful 
values (appendix 2, A3). F2 and F3 are composed of a larger number of GQVFF 
force constants and therefore provide only limited information. However, we 
can calculate fi, f 8 and / 9 from F2 assuming that the ratio fi : f 8 : f 9 is equal 
to that for their initial values. Analogously, j 3 , f 4 , f 5 , f 22 and / 28 may be ob
tained from F3 • In the calculation we have fixed/2,/i0 and/20 at the calculated 
values, hut have left/15 variable, since this force constant occurs in very many 
elements of the E' block and probably plays only a minor role in the A' 1 block. 
In this way we are left with 10 variable force constants and we have 8 frequencies. 
In mathematical terms the solution will not be unique, and there is a chance 
that we shall arrive at an entirely wrong minimum. The chance of this happening 
is smaller the better are the initial values of the force constants. The solution 
obtained was evaluated afterwards for its physicochemical relevance. In doing 
so, we were guided by the following criteria: 
(1) Force consmnts relating to the stretchings usually have the largest values; 
(2) Principal force constants, i.e. force constants on the diagonal of the Fmatrix 

(on the basis of the internal coordinates) are positive *); 
(3) Principal force constants are usually larger than interaction constants; 
(4) As far as the B30 6

3 - ring is concernedfi (intra-annular B-0 stretching) 
will be smaller than/2 (extra-annular B-0 stretching) owing to the difference 
in distances between the two honds. 

*) At first sight it is entirely logica! that a deviation from the equilibrium state for one of 
the bonding distances, angles etc. will give rise to an increased potential energy. In spite 
of this, there are authors who have found negative values for a diagonal constant (Pandey 
and Shanna 3 - 13) and Ramaswamy and Muthusubramanian 3 - 14). So has Dikhoff 3 - 18) 

for Na2 W04 , and he has given a possible explanation for this case. 
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If all these conditions are satisfied we may consider that we have; obtained a 
good force field for the B30 6

3 - ion. The frequencies in the E' block have been 
given in sec. 2.4.6. There were some doubts, however, about the assignment of 
the frequencies at 397 cm- 1 (R), 1240 + 1275 cm- 1 (IR), and 1440 cm- 1 

(IR + R ?). There remain three possibilities which have all been tested. 
(1) The peak at 397 cm- 1 does not beloog to the E' block, but the peaks at 

1440 cm- 1 and at 1275 cm- 1 do. 
(2) The peak at 397 cm- 1 belongs to the E' block (with the peak at 375 cm- 1 

as corresponding vibration in the infrared). The peak at 1440 cm- 1 also 
belongs to the E' block. Neither the peak at 1240 nor the one at 1275 cm- 1 

belongs to E'. 
(3) The peak at 397 cm- 1 (with that at 375 cm- 1) again belongs to the E' block, 

as does 1275 cm- 1 • The peaks at 1440 cm- 1 and at 1240 cm- 1 do not. 
The three possibilities are now (10B): 

1 2 3 

1605 cm- 1 1605 cm- 1 1605 cm- 1 

769 cm- 1 769 cm- 1 769 cm- 1 

631 cm- 1 631 cm- 1 631 cm- 1 

............. "." ...... , .... " ................ " .......... .............. "." .. , . 

1480 cm- 1 1480 cm- 1 1480 cm- 1 

1440 cm- 1 1440 cm- 1 1275 cm- 1 

E' 1275 cm- 1 973 cm- 1 973 cm- 1 

973 cm- 1 476 cm- 1 476 cm- 1 

476 cm- 1 397 cm- 1 397 cm- 1 

The frequencies used here are the best known values. In most cases they have 
been taken from the Raman spectrum. 

The results of the calculations with the three models are presented in appen
dix 2, B1 , B2 and B3). They show that: 
Model 1 is not satisfactory;fi seems to be rather large,/3 has a large negative 
value, which is unlikely for a principal force constant),/4 is much tdo large for 
a bending force constant, and/8 f 9 ) is too small. The frequency agreement 
(calculated frequencies vs. observed frequencies) is not optimum either. 
Model 2 gives a very good solution; all force constants have good values and 
the frequencies are in good agreement. 
Model 3 does not give such a good description, but is fairly satisfactory;/3 is 
negative, but is so small that it might have been found to be zero or positive 
upon a slight change in the observed frequencies within their limits of accuracy. 
However, the frequency agreement is rather poorer than in the case of model 2. 

On these grounds we can reject model 1, implying that the peak at 397 cm- 1 

belongs to species E'. This is in agreement with the conclusions drawn from 
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the out-of-planevibrations (sec. 3.4.4) sincethe peak at 397 cm- 1 (and375 cm- 1) 

could not possibly belong to species A" 2 or E". 
Summarising, there is a preference for model 2, as regards both the frequency 

agreement and the values of the force constants. The two infrared peaks at 
1250 cm- 1 for the crystal could then originate from species A' 2 (not active in 
the case of the 'free' ion, but infrared-active in A 20 for the crystal). 

3.4.6. Application of the isotope product ru/e 

The results of the previous section can be checked with the isotope product 
rule (Teller and Redlich). This rule can be applied to each symmetry hlock, 
and reads: 

'l'1 'l'2···'jln =Y~ 
, f ' IG'I '1'1 '1'2 • • · 'l'n 

(see, for example, Woodward 3 - 2), page 207ff), where '1'1 to vnare the frequen
cies of the vibrations of the species in question and IGj is the determinant of the 
appertaining G hlock *). The prime refers to the modified isotope compo
sition. 

We now define 

and 

'1'1 1'2 • • • 'l'n 
Po = -,--,---, 

1'1 '1'2 • • • 'lln 

p = i/~J 
c v IG'I' 

which enables us to compare the observed and calculated values per block **). 
The P values for hlock A' 1 are as follows: 

1573 x 769 x 624 

Po= 1605x769x631 °'969
; P" 

0.962. 

The frequencies contain the same minor errors with respect to composition as 
earlier mentioned (3.4.5). P0 and Pc would have agreed better if the highest 
frequency of composition i had not been taken equal to 1573 cm- 1 hut some
what lower, as it should be fora composition with 20% 10B (instead of 33 % 
10B). For species E' we have for the three models, respectively: 

*) This value is equal to .11 1il2 ••• Äm where the ./11's are the non-zero roots of jG- },Ej = 0, 
G being the block in question of the block-diagonalised G matrix G" 

**) The observed frequencies always refer to the isotope composition i' (19 % 10B and 
81 % 11B) and i (93% 10B and 7% 11B); the G block of composition i is based on 
100% 10B. 
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composition: 
1 

model 1 model 2 model 3 
i' i i' i i' i 

frequencies 1450 1480 1460 1480 1450 1480 
(cm- 1) 1390 1440 1390 1440 1252 1270 

1252 1270 969 973 969 973 
969 973 473 476 473 476 
473 476 397 397 397 397 

P. 0.923 0.936 0.956 
Pc 0.935 0.935 0.935 

There is clearly a preference for model 2, in accordance with the result of 
the previous section. 

3.4.7. Potential energy distribution and the displacements of the atoms during the 
normal vibrations 

Computer program VSEC yields, for given force constants, a large number 
of data. Among these data are the frequencies, the potential energy distribution 
and the (relative) displacements of the atoms during the normal vibrations (in 
cartesian coordinates). 

The potential energy distribution of the B30 6
3 - ion over the force constants 

per normal vibration is given in appendix 3 (based on the frequencies and force 
constants of model 2). It is evident from this energy distribution that the normal 
vibration with frequency 1610 cm- 1 is virtually exclusively determined by / 2 

( = fR), i.e. by the extra-annular B-0 stretching (99.56 %) *). Likewise, the 
normal vibration with frequency 767 cm- 1 is largely determined by fi ( = .fr), 
the intra-annular B-0 stretching (92.91 %). The largest contribu~ion to the 
normal vibration with frequency 625 cm- 1 is given by / 4 (= ft1), the intra
annular B-0-B bending (78.94 %). 

The relative amplitudes of the atoms are also given in appendix 3. For each 
normal vibration the program calculates the amplitudes (multiplied by a specific 
vibration-dependent scale factor). The potential energy V of the harmonie 
oscillator is given by 

V = (v + ·!) hv', 

where v is the vibrational quantum number and v' the frequency of the oscil
lator in s- 1 . Using eq. (3.7) for the potential energy we can now calculate the 
amplitudes of the atoms expressed in internal coordinates. The relative cartesian 
displacements can then be obtained from these internal coordinate !amplitudes 
by using the B matrix. For the special case of v = 1, the amplitudes for the 
vibrations in the species A' 1 are calculated. These can be found in the fol
lowing table: 

*) lt should be noted that negative contributions are also possible (the sum of negative and 
positive contributions is 100%). 
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1610 cm- 1 767 cm- 1 625 cm- 1 

V = t hcv x 1020 J 4.7928 2.2823 1.8621 
t/2 1'1R2 x 1020 J 4.7717 0.1148 0.3948 
3/1 f'ir2 x 1020 J 0.5358 2.1205 0.0084 
t/4(r/'1{3)2X1020 J 0.8339 0.1693 1.4700 
f'iR x 102 A 5.71 8.85 1.64 
f'ir x102 A 1.75 3.48 2.19 
rf'i{J x102 A 7.52 3.38 9.97 
amplitude extra-annular 
oxygen x 102 A 1.92 1.80 4.30 
amplitude intra-annular 
oxygen x 102 A 0.65 4.45 2.77 
amplitude boron x 102 A 3.77 2.69 2.73 

(/1 = 5.823 mdyn/A, / 2 = 9.77 mdyn/A, and / 4 = 0.997 mdyn/A) 

The values of the amplitudes of the various atoms are also calculated, and 
listed in the table above. The vibrations are now fully determined. With these 
data we can usefully turn our attention to the vitreous borates. 

3.5. Calculations on Na3B30 6 

The calculations on the crystal do not differ in essence from those on the 
B30 6

3 - ion. The dimension of the problem, however, is very much increased: 
the number of internal coordinates in one primitive cell is 108. This number 
is given by the internal coordinates of the two B30 6

3 - ions (2 x 33) and the 
Na-0 stretchings (42). Some comments are called for at this point: 
(1) The number of internal coordinates per ring is now 33 instead of 30. The 

reason is that we have proceeded in this calculation from torsions instead 
of 'out-of-plane wag' to define the out-of-plane movement of the extra
annular 0. 

(2) Only the Na-0 stretchings have been taken into account. This bonding is 
ionic and we assume that only the Na-0 attraction plays a role. 

(3) In order to avoid making the problem still more complicated, we have not 
considered the rotation of the two rings relative to one another (libration). 
This would require the definition of a separate internal coordinate. 

Appendix 4 gives the projection of the hexagonal cell on the x-y plane, with 
the numbers chosen for the atoms. The primitive cell is formed by rings C 
and F, and six sodium atoms. These atoms are numbered from 1 to 24. The 
definitions of the 108 internal coordinates are also given in appendix 4. 

With these data the G matrix can be calculated using the method already 
described for diamond. 

As for B3 0 6
3 -, the U matrix can be determined using the Nielsen and 

Berryman method. The resulting U matrix will not be given here, because of 
its length. 

After setting up the U matrix, program GMOPSECONDVERSION can be 
run. This delivers the block-diagonalised G matrix and, in addition, the 
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Sun-Parr-Crawford G and U matrices. Since the SPC U matrix contains 
6500 non-zero elements (corresponding to 19500 numbers), it will not be given 
here. The block-diagonalised G matrix and the SPC G matrix are listed in 
appendix 4. 

The latter is the matrix obtained after reduction using the program GZ CON
VERSION, that is to say after removal of zero coordinates, inactive species, 
and one of each pair of degenerate blocks and after renumbering the matrix. 
The resulting matrix is 'only' of order 35. Now that the block-diagonalised G 
matrix is known, we can find the determinants of the resultant blocks and again 
apply the isotope product rule. The calculated values P0 CIGl/IG''I}~· are com
pared with the values for B30 6

3 -; G relates to the isotope composition 100% 
11B, and G' to composition 100% 10B. 

Na20.B203 B3063-
block Pc block Pc 

A1g 0.954 A'1 0.954 
A1u 0.954 A" i no active 

vibrations 
A2g 0.916 A'2 0.960 
Àzu 0.916 A"z 0.965 
Eg 0.867 E' 0.920 

E" 0.874 E" 0.960 

It can be seen from the above table that the lattice vibration of symmetry 
species A 1g (besides the three internal vibrations, which also occur in the ion, 
there is only one lattice vibration in A19) very probably has no isotope splitting, 
since the P0 values of A 1g and A' 1 are identical. Moreover, this is an indication 
that taking the B30 6

3 - ring for the crystal is a reasonable approximation in 
the case of the total symmetrical species. In the same way we can approximate 
to the glass by considering separate B30 6

3 - rings. The fact that the P0 values 
of the other species do not show a more direct agreement is due 'to the more 
complicated relationship between these species. Thus, for example, all vibra
tions of E' and E" correlate with those of Eg and Eu (see the correlation table 
in table 2-VI). Therefore, the P0 values of E' and E" must be multiplied in order 
that they can be compared with the Pc value of Eg or Eu. The difference then 
remaining will probably be attributable to the lattice vibrations, which may 
also show an isotope :;hift. However, such a shift must necessarily be small, 
since B30 6

3
- moves as a rigid entity in the lattice vibrations and the mass 

ratio 10B30 6 to 11B30 6 is only 126 to 129. The equation now ~ields: 

Pc(E') xPc(E") 
Pc(A'2)X P.,(A"2) 

0.883; Pc(E0) = 0.867 
0.926; P0 (A2u) = 0.916. 

By analogy with the method of calculation used for B30 6
3 - we can now set 

out to find the Z matrix. We have chosen the same force constants, with the 
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exception of those that relate to the out-of-plane movement of the extra
annular oxygen atoms (see comment no. 1 at the beginning of this sec). More
over, force constants have to be added that determine the attraction between 
sodium and oxygen. For this purpose we have introduced only two different 
force constants, namely one for the attraction between Na+ and an extra
annular oxygen atom and one for the attraction between Na+ and an intra
annular oxygen atom. The Na-0 honds are assumed to be completely ionic, 
so that the attraction may be considered to be inversely proportional to the 
square of the distance. Since there are three different distances between Na+ 
and extra-annular 0, this saves two unknown f constants. The definition of 
the force constants is given in appendix 4. The resultant Z-matrix is now easily 
drawn up. Unfortunately the SPC Z matrix obtained with program GZ CON
VERSION contains too many elements (more than 4000) to be reproduced. 

After the SPC G and Z matrix have been established, it is the turn of program 
FLEPO to start calculating a set of force constants from the observed frequen
cies. This calculation has been carried out on the basis of the force constants 
already obtained for the B30 6

3 - ion. It was found that eigenvalues pertaining 
to a given symmetry species were shifted to the block of another species. This 
was due to an error in the subroutine which calculates these eigenvalues. Time 
was too short to overcome this imperfection. 

The results after the first perturbations, apart from the block division, are 
particularly encouraging. lt is found, for example, that the frequencies of the 
gerade and ungerade vibrations (vibrations of the rings in phase or in anti
phase) show very little difference, i.e. the calculated differences are often smaller 
than the observed differences. Furthermore the frequency values found for the 
crystal are in good agreement with those found for the 'free' ion. 
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4. RAMAN SPECTRA OF SOME BORATE GLASSES 

4.1. Introduction 

Using the data obtained from the calculations on the metaborate ring we shall 
construct in this chapter a (limited) model for the structure of the alkali borate 
glasses. Many attempts have been made to determine the structure of the borate 
glasses. Krogh-Moe 4

-
1

) has given a review of the attempts made to throw light 
on the structure of B20 3 glass. Extending ideas put forward by Goubeau and 
Keller 4 - 3), Krogh-Moe 4 -4) concluded that this glass consists of a random 
three-dimensional network with a large fraction of boroxol rings. 

Mozzi and Warren 4 - 2) confirm his conclusion on the grounds of X-ray 
measurements (fluorescence excitation). 

Kristiansen and Krogh-Moe 4 - 5) and Nagarajan 4 - 6) have carried out a 
normal coordinate analysis on the boroxol ring. We shall consider these cal
culations more closely since they form the basis for the conclusions on the 
occurrence of the boroxol ring in glass. 

In glasses with less than 20 mole % alkali oxide the excess of oxygen is used 
only for the formation of B04 tetrahedra. This has been concluded from NMR 
and other measurements (Bray and O'Keefe 4 - 1), Beekenkamp 4 - 26)) and partly 
explains the so-called boron oxide anomaly. With the aid of the infrared spectra 
Krogh-Moe 4 -4) determined the distribution of the B04 tetrahedra over the 
structural units and found indications for the formation of large and typical 
borate groups. As will appear later in this chapter, the Raman spectra can 
supplement these data. 

Also considered in this chapter is the influence oftemperature on the structure 
of two borate glasses. Finally an interpretation is given of a peak which is always 
present near the excitation line. 

4.2. Vibration spectra of glasses 

Several research workers, including Gaskell 4 -s), Shuker and Gammon 4 - 9), 

Bell et aI. 4 - 1o,u,12) and Lazarev 4 - 13), have tried to give amore fundamental 
description of the vibration spectra of glasses. The most recent and, in the 
present author's opinion, the best description has been given by Brawer 4 - 14). 

The starting premises and conclusions of his article will be briefly recapitulated 
here. 

Brawer considers an oxidic glass network built up from certain structural 
groups. Each structural group consists of several atoms, and together these 
groups form the glass network. Brawer compares these structural groups with 
the unit cells in a crystal. The equations of motion fora structural group include 
the disorder. Disorder means here the deviation from a strict translational 
repetition of the groups, which would couvert the glass into the crystalline 
state. The result of solving these equations depends on the coup1ing of the 
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modes between the structural groups. For two cases he works out in more 
detail the Raman intensity and the width of the peaks, firstly for the case where 
the interaction between the structural groups is negligible (molecular structure) 
and secondly for the case where this interaction is significant. The conclusions 
drawn by Brawer are the following: 
(1) The spectra of glass and crystal (with the same composition) show con

siderable agreement if certain conditions are satisfied. The main conditions 
are that the same groups should occur both in the glass and in the crystal 
and that there should be very little coupling between the structural groups. 
This coupling must be considered for each vibrational mode. The agreement 
remains even when the degree of disorder increases. The width. of the peak 
increases with increasing disorder. 

(2) The disorder in the glass can enhance the polarisability. For this reason 
certain modes that were not or hardly visible in the crystal spectrum can 
become visible in the corresponding glass spectrum. 

(3) In the case of strong coupling, calculation shows that the width of the 
modes generally increases considerably. 

Without going any further into the calculations given by Brawer, we shall 
use his conclusions to interpret our glass spectra. 

The calculations carried out by Brawer on the metasilicate glass would also 
be particularly useful for the borate glasses. However, a good set of force 
constants is needed in order to carry out calculations on different borates. If 
we were to disregard virtually all force constants, as Brawer does, we might 
also be able in the short term to perform calculations on the borates. The 
resultant model would be a rough approximation, which is easier to set up 
for the silicates than for the borates, in view of the changing coordination 
number of the B atoms. 

4.3. Alkali borate glasses 

The Raman spectra of B20 3 and of the alkali borate glasses are not new. 
As long ago as 1936, Kujumzelis 4 - 15) described a spectrum ofi B20 3 • The 
advent of laser Raman spectroscopy, however, led various research workers to 
embark upon amore systematic study of glasses. Bobovich 4 - 16) has studied 
a number of sodium borate glasses. The slit width he used was too large, and 
therefore he did not discover the existence side by side of the peaks at 806 cm- 1 

and 770 cm- 1 • White et aI.4 - 17) have determined the spectra of a number of 
alkali borate glasses, but they have not yet published their data. 

Recently Krishnan 4
-

18
) redetermined the Raman spectrum of B20 3 and 

found a number of new strong peaks at 2000 cm- 1 • We have not been able to 
observe these peaks. However, he used very old samples and probably observed 
vibrations due to water and carbon dioxide bound to the glass. 

The most recent data have been reported by Konijnendijk 4 - 19). He used 



-81-

the borate spectra for interpreting those of borosilicate glasses. We have deter
mined a number of data from the glass spectra that have not been described by 
the above-mentioned authors. These are the intensity ratio of the two large 
Raman peaks at 806 cm- 1 and 770 cm-1, the half-width of the 806 cm- 1 peak 
and the frequency of the peak near the excitation line as a function of com
position. 

Glass spectra were recorded for alkali contents equal to 0, 5, 10, 15, 16, 17, 
20, 25, 30, 35 and 40 mole%. Only those for 15% and 16% are shown (figs 4.5 
and 4.6). These spectra show the rapid growth of the peak at 770 cm- 1 with 
an increase of alkali content. The data from the spectra of all compositions 
have been collected in figs 4.1, 4.2, 4.3 and 4.4. 
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Fig. 4.1. Ringstructures in alkali 
borates. 
Curve 1 : the ratio of the peak 
heights of the peaks at 806 cm- 1 

and 770 cm- 1 for sodium borate 
glasses. The ratio of the peak 
heights of the peaks at 806 cm - 1 

and 770 cm - is also given for 
some other alkali borate glasses 
of the composition 10% M20. 
90%B203. 
Curve 2: the calculated ratio of 
the maximum number ofboroxol 
rings to the number of triborate 
rings (all 804 units are situated 
in the rings). 
Curve 3 : the calculated ratio of 
the maximumnumber ofboroxol 
rings to twice the number of 
pentaborates groups. 
Curve 4: the calculated ratio of 
the maximum number of boro
xol rings to three times the num
ber of tetraborate groups. 
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Fig. 4.2. Half-width of the peak at 806 cm- 1 as a function of alkali-oxide content. 
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Fig. 4.3. Half-width as function oftemperature for 100% B2 0 3 and 15% Na20.. 85% B20 3 
glasses. 

Looking at the spectra of the borate glasses we note immediately that the 
strongest peaks lie at 806 cm- 1 and 770 cm- 1 • Kristiansen and Krogh-Moe 4 -s) 
assigned the 806 cm- 1 peak to a deformation vibration of the boroxol ring. 
This assignment does not entirely agree with our interpretation of the spectra. 
We shall go into this question here in rather more detail. 
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Fig. 4.4. Frequency of the peak near the excitation line as a function of alkali content, and 
A12 0 3 content. 
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Fig. 4.5. Raman spectrum of vitreous 15 % Na20. 85 % B20 3 • 

As already discussed in chapter 1, a distinction must be made between the 
boroxol ring and the metaborate ring. The distances in both rings (B-0) are 
different, and so too is the bonding state. This leads to different force constants 
in the ring and thus to different ring frequencies. Kristiansen and Krogh
Moe 4 -s) did not have Raman spectra at their disposal. Their assignment of 
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Fig. 4.6. Raman spectrum of vitreous 16% Na20. 84% B2 0 3 • 

the Raman active A' 1 species of the metaborate ring was taken from Hisatsune 
and Suarez 4 -

20
). These authors assigned the A' 1 species vibrations toa number 

of weak infrared bands. Of course this led to mistakes in the calculations of 
Kristiansen and Krogh-Moe, as is shown in table 4-I. 

TABLE 4-I 

Comparison of observed and calculated frequencies 

Kristiansen and Krogh-Moe 
observed calculated 
frequency frequency 

1167 cm- 1 

823 cm- 1 

616 cm- 1 

1243 cm- 1 

817 cm- 1 

619 cm- 1 

this work 
observed calculated 
frequency frequency 

1573cm- 1 

769 cm- 1 

624 cm- 1 

1569 cm- 1 

767 cm- 1 

624 cm- 1 

With the incorrect frequencies Krogh-Moe finds too low a value for the 
extra-annular B-0 stretching force constant: 

/ 2 (extra-annular B-0 stretching) 
/ 1 (intra-annular B-0 stretching) 

dB-0 

I.28 A 
1.43 A 

Krogh-Moe 

5.8 mdyn/A 
6.4 mdyn/A 

this work 

9.8 mdyn/A 
5.8 mdyn/Á 
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It is evident that the shortest B-0 distance must also yield the largest bonding 
force constant (see e.g. Coulson and Dingle 4

-
21

), and for this reason too the 
values of Krogh-Moe cannot be correct. 

In spite of these objections we can, however, endorse the conclusion of 
Kristiansen and Krogh-Moe that the 770 cm- 1 peak (in their calculations 
823 cm- 1

) will not be much influenced by the mass of the extra-annular atoms. 
This may be explained as being due to the not very significant amplitude of the 
extra-annular oxygen atom (see the table in sec. 3.4. 7), in consequence of which 
this atom has little influence on the vibration. This, then, is a vibration that has 
little coupling with the environment. According to Brawer, the spectra of crystal 
and glass show considerable agreement as far as such vibrations are concerned. 
The conclusion is that the peak at 770 cm- 1 (for crystalline Na3B30 6 : 769 cm- 1) 

in the glasses with high alkali content ( 40 %) may be attributed to the 'ring 
breathing' of the metaborate ring. The other peaks from these glasses are much 
less intensive (except for the peak near the excitation line) and we have not 
attempted to assign these. 

Many authors assume that the boroxol ring is present in B20 3 glass (Mozzi 
and Warren 4 - 2), Goubeau and Keiler 4 - 3), and Krogh-Moe 4 -4)). lf we also 
assume that this boroxol ring is in fact present in the glass, it is obvious to 
assign the breathing of this ring to the peak at 806 cm- 1

• The difference in 
value between 806 cm- 1 and 770 cm- 1 might be explained as follows. 

As appears from the potential energy distribution (sec. 3.4.7), the vibration 
of the metaborate ring at 770 cm- 1 is mainly determined by the intra-annular 
force constant / 1 • The magnitude of this force constant depends mainly on the 
bonding state between the boron atom and the oxygen atom in the ring. 

In view of the bonding distance of 1.43 A, this bond is weak compared with 
that in the boroxol ring (1.37 Á). We can explain this change in bond strength 
as being due to the different character of the bonding in the metaborate ring 
and that in the boroxol ring. In the metaborate ring the bonding between boron 
and extra~annular oxygen is very strong (9.8 mdyne/Á), and it is very probable 
that in addition to the a bond it will also have the character of a n bond. 
This is confirmed by Coulson and Dingle 4 - 21). Inside the metaborate ring the 
n bond character will be much less, the Pz orbital of the sp2 hybrid boron atom 
being already 'filled'. Inside the boroxol ring, on the other hand, the bonding 
will much rather have the character of a n bond. The Pz orbital of the boron 
atom not yet being filled, this may be done equally by the extra-annular and the 
intra-annular oxygen atoms. The intra-annular B-0 distance is therefore 
shorter and the bond consequently stronger. 

The boroxol ring and the metaborate ring have the same symmetry, and in 
the boroxol ring there must, therefore, be a vibration corresponding to the 
vibration at 770 cm- 1 of the metaborate ring. Since the comparable force 
constant B-0 (intra-annular) of the boroxol ring must be greater than that in 
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the metaborate ring, the frequency of this ring vibration must also be higher. 
It is evident that the peak at 806 cm- 1 satisfies this condition. Moreover, it 
appears from the glass spectra that the peak at 806 cm- 1 is strongly polarised 
and must therefore be due to a symmetrie vibration; the ring vibration sought 
for belongs to the A species (and is therefore symmetrie). By assuming that the 
ai bond character of the bonding determines the frequency 806 cm- 1 or 770 cm- 1 

we can also see clearly why Na20.B20 3 and K20.B20 3 have the same ring fre
quency 770 cm- 1 • The B-0 distance in the ring is different: 1.43 A (Na20.B20 3) 

and 1.39 A (K20.B2 0 3), hut the bonding state is identical. In both cases there 
is no n-bond in the ring. The potential energy as a function of the distance B-0 
has the same shape for both rings. Only the equilibrium distance is moved over 
a short distance. However, the second derivative with respect to the distance 
(i.e. the force constants) will be the same for both functions. 

The foregoing theory concerning the existence of two comparable ring vibra
tions also makes it possible to explain the 770 cm- 1 peak in the vitreous alkali 
borates. This peak is already observable at very small concentrations of alkali 
oxide (5 %). From the crystal structures of the alkali borates with a low alkali 
content it appears that the B04 units formed are taken up in the rings. The boron 
atom in the B04 unit has an sp3 hybridisation and therefore no Pz orbital. Con
sequently, there can be no question of a n bond with the oxygen ~toms in the 
ring. The 'resonance structure' found in the boroxol ring cannot therefore pos
sibly be maintained, and the bonding state in the ring corresponds much rather 
to that in the metaborate ring. The appertaining force constant and the fre
quency of the vibration will then also correspond to those of the metaborate 
ring. 

With these data we can frame the following hypothesis: 
(1) The 806 cm- 1 peak originates from the breathing vibration of the boroxol 

ring. 
(2) The 770 cm- 1 peak is due to ring breathing,where the n-bond character 

in the ring is disturbed. This may apply both to rings with one and two 
B04 groups and to rings with one or two non-bridging oxygen atoms. 

We can now use this hypothesis to interpret the spectra of the alkiali borates. 
The structural units that occur in the crystalline alkali borates have already 

been dealt with in chapter l. Crystals containing less than 25 % alkali oxide only 
have structural groups with B04 and B03 units; there are no non-bridging 
oxygen atoms. Together with data obtained on the vitreous alkali borates 
(NMR, viscosity, etc.) this is sufficient to allow the assumption that below the 
20 % alkali oxide content the number of non-bridging oxygen atoms in glasses 
is negligible and only B03 (a) and B04 (c) units occur. A B04 unit can be 
incorporated in a structural group in various ways. The manner of incorpora
tion determines the maximum number of boroxol groups that will be present 
in the glass, if all B03 units that are not bound to B04 units in structural 



- 87-

groups have been taken up in boroxol groups. If, for example, all B04 units 
are incorporated in pentaborate groups (a4c) then the maximum number of 
boroxol groups that can be formed is (expressed as a fraction of the total 
amount of material in moles) 

2 12 x 

3 

where x is the mole fraction of alkali-oxide (composition x M20.(1 - x) B20 3). 

For the triborate group (a2c) this maximum number is 

2-8x 

3 

and for the tetraborate group (a6c2) 

2-lOx 

3 

In the cases of crystalline K20.5B20 3 and Na2 0.4B2 0 3 we see that the 
number of boroxol groups is zero, since these borates are built up respectively 
from pentaborate groups and tetraborate groups. In the case of Cs20.9B20 3 

a number of boroxol groups is left, but in this crystal triborate groups are 
formed in addition to the boroxol groups (2 boroxol and 1 triborate). 

The three crystalline alkali borates mentioned, of which the K20.5B20 3 has 
three modifications, are the only alkaliborates with an alkali oxide content 

20 mole % and a known crystal structure. In glasses it is precisely the region 
up to 20 % alkali-oxide that is interesting, because in this region the peak at 
806 cm- 1 decreases in intensity with rising alkali content in favour of the peak 
at 770 cm- 1• In terms of the hypothesis on the origin of the peaks this means 
qualitatively that the number of boroxol rings decreases and rings with B04 

units are formed. 
We can work this out in somewhat more quantitative terms if we assume 

that the intensity of the peaks is proportional to the number of vibrating rings. 
The intensity can be approximated by the product of the halfwidth and the 
height of the appertaining peak. The half-width, however, cannot be accurately 
determined. We shall, therefore, take the ratio of the peak heights and assume 
that the width of the peaks increases to the same extent with increasing alkali 
content (within the accuracy of the measurement this was in fact the case). 
The ratio of the peak intensities does not equal a priori the ratio of the number 
of boroxol rings to the numbers of rings with a B04 unit. For of course the 
contribution of the various kinds of rings to the intensity might differ or, in 
other words, the rings might possess a different oscillator strength. However, 
since the vîbrations with which we are concerned here are largely analogous, 
we may assume that each ring will have roughly the same oscillator strength. 
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(If the oscillator strengths were not identical, the ratio of the heights would 
have to be multiplied by a constant factor.) 

We can now plot the peak heights versus the alkali-oxide percentage, as 
shown in fig. 4.1. The ratio of the maximum number of boroxol rings to the 
number of triborate rings versus the alkali oxide content is also plotted in this 
figure. The measured ratio h806/h770 equals 2 for the glass composition 
10 % Cs20.90 % B20 3 • From the crystal structure of Cs20.9B20 3 it appears 
that the ratio of the number of boroxolrings to the number of triborate rings 
is also equal to 2. Supposing the latter to be the case for the vitreous state as 
well this agreement implies that the oscillator strengths of boroxol ring and 
triborate ring are indeed equal. We see, however, in fig. 4.1 that the experimental 
curve of the sodium borate glasses is clearly above the calculated curves for 
triborate, tetraborate and pentaborate groups. This means that the number of 
boroxol rings is greater than the calculated maximum number. Hence, it is clear 
that the glass structure must also contain structural groups with a higher content 
of B04 units, e.g. diborate groups (a2c2 ), di-triborate groups (ac2 ), di-penta
borate groups (a3c2) or groups which are interconnected by a B04 (c) unit. 
Por the smaller ions this effect is even stronger, as can be seen from fig. 4.1 for 
the alkali content 10 %. This effect may be due to the higher field strength with 
decreasing (alkali) ionic radius and the tendency of small alkali ions to form 
low coordination numbers (see for instance Gossink 4 - 22)). These small alkali 
ions will result in shorter distances to their charge compensating anions, i.e. 
B04 (c) units and hence give rise to the formation of a2c2 , ac2 , a3c2 groups or 
c-units. This gives rise to an increase in the maximum number .of boroxol 
groups and also diminishes the mean size of the groups. 

Half-width of the 806 cm- 1 peak 

From the spectra of the alkali-borate glasses it is also possible to determine 
the half-width of the 806 cm- 1 peak. This peak lends itself particularly well 
to such a measurement up to about 20 % alkali oxide. A typical result is 
presented in fig. 4.2, where the peak width (within the experimental accuracy) 
is seen to be independent of the type of alkali ion. If we assume with Brawer 
that the disorder increases with peak width, then the B20 3 glass would seem 
to have the most ordered state. This might partly explain the strong glassforming 
tendency of B20 3 • 

Temperature dependence 

Another phenomenon we have investigated is the influence of temperature on 
the spectra of B20 3 glass and glass of the composition 15 % Na20.85 % B20 3 • 

We found that the only change that occurs in B2 0 3 is a considerable broadening 
of the 806 cm- 1 peak. Fig. 4.3 gives the half-width as a function of absolute 
temperature. The other peaks are too broad for an accurate study, hut they 
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too are undoubtedly broadened. Hence, with increasing temperature no other 
structural groups are formed. Only the disorder increases. 

We established that the form of the spectra does not even change, above the 
transformation range of the glass. Even at the moment when the sample started 
dripping no change was found ! The conclusion, therefore, is that the melt and 
the glass contain the same structural groups, viz. boroxol rings. 

Nor is there any significant change in the spectra up to 500 °C for the com
position 15% Na2 0.85% B2 0 3 • Por this composition the transformation tem
perature lies at about 350 °C, and the viscosity at 500 °C is still 108 poise (see 
Visser 4 -

24
)). The ratio of the peak heights (h806/h770) underwent no measurable 

change either. 
It is remarkable that the broadening of the 806 cm- 1 peak at 500 °C for 

B20 3 glass (relative to the width at 20 °C) is just as great as the broadening 
of the double peak (peaks at 770 and 806 cm- 1 are overlapping) found for the 
composition 15 % Na20.85 % B2 0 3 , being in both cases 13 cm- 1 • 

The low frequency peak 

In all spectra of the borate glasses one particularly strong peak is found, 
namely a peak near the excitation line. Fig. 4.4 gives the frequency of this 
peak as a function of composition. Up to about 30 % Na2 0 the frequency rises 
linearly. In the two compositions that have a very high alkali content (at the 
edge of the glass-forming region) a deviation is found; the frequency decreases 
slightly and, moreover, the peak becomes very broad. This effect may be due 
toa phase separation through partial crystallisation (this means that the alkali 
oxide content of the remaining glass is lowered). In the composition with 
40 % Na2 0 it is clear from the sharp peak at 630 cm- 1 that partial crystalli
sation must have taken place. 

The origin of the low frequency peak is unknown. Stolen 4 -
25

) has stated 
that this peakin B2 0 3 glass must originate from a band of modes. Thetemperature 
dependence he finds is that of a harmonie oscillator. Vibrations with such a low 
frequency may be due toa translation or to a libration of part of the network. The 
vibrations of these movements depend both on the mass (moment of inertia) 
and on a force constant or constants. Let us (with Stolen) assume for simplicity 
that the frequency is proportional to (k/m)i, where kis the force constant and 
m the mass of the vibrating fragment of the network. The force constant k will 
probably change only very gradually with the composition, since it is mainly 
determined by the bonding forces between boron and oxygen atoms. When 
alkali oxide is added, more and more boron atoms change to a four-membered 
surrounding. The associated force constants are slightly smaller, hut the number 
of honds increases, so that the overall effect is small. lf the alkali-oxide per
centage increases still further, non-bridging oxygen atoms will start to appear, 
and these are bound to the rest of the glass in an entirely different way. In that 
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case the force constant may show a very marked decrease, and this may perhaps 
explain the decrease in the frequency at high alkali contents (fig. 4.4). 

At the lower alkali oxide percentages ( < 30 %) the frequency will depend 
mainly on the mass of the vibrating fragment. It can be seen from fig. 4.4 that 
the frequency decreases with decreasing alkali oxide percentage, and this could 
then mean that the mass of the fragment rises considerably. Assuming that a 
glass with 50% alkali oxide consists of B30 6

3 - groups (b3) with mass 130, 
and taking as the frequency of vibration in question a value of 100 cm- 1 at 
this composition ( obtained by extrapolation in fig. 4.4), we obtain a mass of 
approximately 3000 for the fragments in vitreous B20 3 (frequency 24 cm- 1). 

This will imply more then 200 atoms. Ifwe add 10% Al20 3 to the glass (samples 
indicated with a square in the figure) we know that the aluminium atom will 
partly take the place of the four-membered boron atoms (Konijnendijk 4 - 19)). 

The size of the fragments should not then undergo any significant increase, and 
the measured frequencies in fig. 4.4 indeed agree with this. 

Changing the alkali ion, however, does have an effect. From the foregoing 
we know that the small alkali ions cause a decrease of the mean size of the 
structural groups, and this is what we see happening here (fig. 4.4). The glasses 
with the smaller alkali ions have a higher frequency at the same alkali oxide 
content and therefore the mass of the fragment must be smaller. 
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APPENDIX 1 

Numerical data for B30c;3" 

For symmetrical matrices M only the elements M 11 are given for which holds 
i ~ j, Only non-zero elements are given. 

B matrix ( 139 non-zero elements) 

The row number is equal to the uumber of the corresponding internal coor
dinate. The column number is equal to: (3 x atom number - 3) + i, where 

1, 2, 3 for x-, y- and z-coordinate, respectively. 

row column 
no. no. 

1 1 -1.000000 
2 5 -0.813101 
3 8 -0.866025 
4 11 -0.097582 
5 14 0.866026 
6 17 0.910684 
7 2 0.840567 
8 8 0.048849 
9 14 -0.889416 

10 17 -0.413105 
11 10 0.866025 
11 8 0.082122 
12 11 0.995228 
13 4 -0.813101 
14 7 0.866025 
14 14 0.995228 
15 16 1.776710 
16 16 0.860696 
16 20 -0.573169 
17 20 0.573170 
18 22 0.051686 
18 8 -1.606985 
19 23 -1.056816 
20 25 -0.941073 
20 14 1.424245 
21 26 0.483647 
22 6 0.824458 
23 12 0.824457 
24 18 0.824457 
25 6 2.399408 
26 9 2.267625 
27 12 2.399409 
28 15 2.267624 
29 18 2.399416 
30 3 2.267626 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
l1 
12 
12 
13 
14 
14 
15 
16 
16 
17 
18 
19 
19 
20 
21 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 

4 1.000000 2 4 -0.582123 
8 0.813101 3 7 0.500001 

11 0.866025 4 10 0.995227 
14 0.097582 5 13 0.499998 
17 -0.866026 6 16 -0.413105 
2 -0.910684 7 l 0.541708 

20 -0.840567 8 7 -0.998806 
23 -0.048849 9 13 0.457099 
26 0.889416 10 16 -0.910684 

5 -0.999999 10 2 1.413104 
7 -1.679126 11 5 -0.582123 

10 0.097582 12 16 -0.866026 
17 0.499998 12 14 -1.495226 
2 -1.000000 13 8 -0.582123 

13 0.097582 14 10 -0.963607 
11 -1.495228 15 13 -0.866025 
14 0.499998 15 2 -0.413105 
19 0.889385 16 1 -1.750081 
2 0.182740 17 19 -0.889386 
5 0.945109 17 2 -1.518279 
7 0.716783 18 5 0.550169 

22 -0.051686 19 10 -0.818488 
11 -0.472555 19 8 1.529371 
13 1.033298 20 11 -0.940598 
25 0.941073 21 16 0.818489 
17 -0.472553 21 14 -0.011094 
18 0.824459 22 3 -2.648917 
6 0.824457 23 9 -2.648915 

12 0.824456 24 15 -2.648913 
12 1.098076 25 9 -2.267624 
15 1.229860 26 12 -2.399409 
18 1.098076 27 15 -2.267624 
3 1.229862 28 18 -2.399412 
6 1.098076 29 3 -2.267631 
9 1.229858 20 6 -2.399407 

2 7 0.582123 
3 10 -0.500001 
4 13 -0.995227 
5 16 -0.499998 
6 1 -0.413105 
7 19 -0.541708 
8 22 0.998806 
9 25 -0.457099 

10 1 0.910684 
11 4 0.813101 
Il 11 0.500001 
12 13 0.768444 
13 7 0.813101 
13 5 1.582123 
14 8 0.500001 
15 1 -0.910684 
15 17 -0.086893 
16 17 0.390429 
17 1 0.889396 
18 4 -0.768469 
18 23 1.056816 
19 7 0.871074 
20 10 -0.092226 
20 26 -0.483647 
21 13 1.759562 
22 21 1.000000 
23 24 1.000000 
24 27 1.000000 
25 3 1.229860 
26 6 -1.098076 
27 9 -1.229860 
28 12 1.098075 
29 15 -1.229861 
30 18 -1.098078 
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G matrix (177 non-zero elements) 

The masses of the boron and oxygen atoms are: B = 10.811and0 = 15.999 
(natura} abundance). Row and column numbers are the numbers of the cor
responding internal coordinates. 

row column 
no. no. 

1 1 0.155001 
1 10 -0.084237 
l 16 0.161880 
2 3 -0.038211 
2 13 -0.050821 
2 19 0.161880 
3 11 -0.084237 
3 18 0.161880 
4 5 -0.038211 
4 14 -0.050821 
4 21 0.161880 
5 10 0.050821 
s 16 -0.048031 
6 7 -0.050107 
6 15 -0.050821 
7 7 0.155001 
7 16 -0.073483 
8 13 -0.077751 
9 9 0.155001 
9 20 -0.073483 

10 12 0.036384 
10 17 -0.182606 
11 12 0.036384 
11 18 -0.182607 
12 14 -0.229596 
12 20 -0.182606 
13 15 0.038212 
13 19 -0.016903 
14 19 0.233897 
15 16 0.233897 
16 16 0.412194 
17 18 0.032499 
19 20 0.032499 
22 22 0.796511 
22 26 -0.056584 
22 30 -0.735842 
23 26 -0.735841 
23 30 -0.424983 
24 27 0.735841 
25 25 0.050746 
25 29 0.422643 
26 28 0.422642 
27 28 -0.804992 
28 29 -0.875769 
30 30 1.050746 

1 2 -0.036384 
1 11 0.050821 
1 17 -0.082267 
2 8 -0.050107 
2 14 0.084237 
3 3 0.155001 
3 12 0.050821 
3 19 -0.082267 
4 9 -0.050107 
4 15 0.084237 
5 5 0.155001 
5 12 -0.084237 
5 20 0.161880 
6 10 -0.084237 
6 16 -0.082267 
7 10 0.155502 
7 17 -0.073483 
8 14 -0.077751 
9 12 0.155502 
9 21 -0.073483 

10 13 -0.229596 
10 18 -0.034387 
11 13 -0.229596 
11 19 --0.182607 
12 15 -0.229596 
12 21 -0.182607 
13 16 -0.016903 
14 14 0.382770 
14 20 0.233897 
15 17 -0.016903 
16 17 -0.239611 
18 18 0.412194 
20 20 0.412194 
22 23 0.042485 
22 27 0.056585 
23 23 0.796510 
23 27 0.424983 
24 24 0.796509 
24 28 -0.735841 
25 26 -0.804992 
25 30 -0.875766 
26 29 -0.215273 
27 29 0.422643 
28 30 0.422643 

1 6 -0.038212 1 7 -0.050107 
1 13 -0.050821 1 15 0.084237 
1 18 -0.048031 2 2 0.155001 
2 10 0.050821 2 11 -0.084237 
2 17 -0.048031 2 18 -0.082267 
3 4 -0.036384 3 8 -0.050107 
3 13 0.084237 3 14 -0.050821 
3 20 -0.048031 4 4 0.155001 
4 Il 0.050821 4 12 -0.084237 
4 19 -0.048031 4 20 -0.082267 
5 6 -0.036384 s 9 -0.050107 
5 14 0.084237 5 15 -0.050821 
5 21 -0.082267 6 6 0.155001 
6 12 0.050821 6 13 0.084237 
6 17 0.161880 6 21 -0.048031 
7 13 --0.077751 7 15 -0.077751 
8 8 0.155001 8 11 0.155502 
8 18 -0.073483 8 19 -0.073483 
9 14 -0.077751 9 15 -0.077751 

10 10 0.386424 10 11 0.036384 
10 15 -0.229597 10 l<;i -0.182607 
10 21 -0.034387 11 11 0.386424 
11 14 -0.229596 11 17 -0.034387 
11 20 -0.034387 12 12 0.386424 
12 16 -0.034387 12 19 -0.034387 
13 13 0.382770 13 14 0.038211 
13 17 0.233897 13 18 0.233897 
14 15 0.038211 14 18 -0.016903 
14 21 -0.016903 15 15 0.382770 
15 20 -0.016903 15 21 0.233897 
16 21 0.032499 17 17 0.412194 
18 19 -0.239611 19 19 0.412194 
20 21 -0.239611 21 21 0.412194 
22 24 0.042485 22 25 0.424984 
22 28 -0.424985 22 29 0.735844 
23 24 0.042485 23 25 0.735841 
23 28 -0.056584 23 29 0.056584 
24 25 0.056584 24 26 -0.424983 
24 29 0.424984 24 30 -0.056584 
25 27 0.422642 25 28 -0.215273 
26 26 1.050747 26 27 -0.875766 
26 30 0.422642 27 27 1.050746 
27 30 -0.215272 28 28 1.050748 
29 29 1.050752 29 30 -0.804994 
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Block-diagonalised G matrix (based on the U matrix of table 2-VII) 

symmetry block A' 1 

row column 
no. no. 

1 1 0.155001 1 2 -0.070862 1 3 0.155502 
1 5 -0.103921 2 2 0.080405 2 3 -0.047257 
2 5 0.031582 3 3 0.459193 3 4 0.459193 
4 4 0.459193 4 5 -0.306875 5 5 0.205082 

Row and column numbers refer to the first five symmetry coordinates. 

symmetry block A' 2 

row column 
no. no. 

0.2295961 2 0.196115 1 2 2 0.619305 1 

Symmetry coordinates 6 and 7 (row and column nos. 1 and 2) 

block A" 2 

Symmetry coordinates 9 and 10 (row and column nos. 1 and 2) 

block E' 

no. no. 

1 1 0.155001 1 2 -0.035431 1 3 -0.061368 
1 5 -0.077751 1 6 -0.051960 1 7 -0.089998 
2 3 -0.033092 2 4 -0.023629 2 5 -0.131436 
2 7 0.140192 3 3 0.172279 3 4 -0.165411 
3 6 0.140192 3 7 0.046705 4 4 0.350040 
4 6 -0.153438 4 7 -0.181531 5 5 0.344558 
5 7 -0.020702 6 6 0.564499 6 7 -0.207509 

1 4 
2 4 
3 5 

1 4 
2 2 
2 6 
3 5 
4 5 
5 6 
7 7 

0.155502 
-0.047257 
-0.306875 

0.155502 
0.137722 

-0.211238 
0.103169 

-0.229596 
0.342733 
0.259889 

Row (column) numbers 1 to 7 correspond to the symmetry coordinates 11 to 17. 

and 
row column 
no. no. 

1 1 0.155001 
1 5 -0.077751 
2 3 -0.033092 
2 7 0.140192 
3 6 0.140192 
4 6 -0.153438 
5 7 -0.020702 

1 2 -0.035431 
1 6 -0.051960 
2 4 -0.023629 
3 3 0.172279 
3 7 0.046704 
4 7 -0.181531 
6 6 0.564499 

1 3 -0.061368 1 4 0.155502 
1 7 -0.089998 2 2 0.137772 
2 5 -0.131436 2 6 -0.211238 
3 4 -0.165411 3 5 0.103169 
4 4 0.350040 4 5 -0.229596 
5 5 0.344558 5 6 0.342732 
6 7 -0.207509 7 7 0.259889 

The row (column) numbers 1 to 7 correspond to the symmetry coordinates 18 to 24. 

symmetry block E" 
row 
no. no. 

1 1 
2 3 

0.754025 1 2 
0.510712 3 3 

0.380721 
0.993739 

3 0.740804 2 2 0.262470 

The row (column) numbers 1 to 3 correspond to the symmetry coordinates 25 to 27. 
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and 
row column 
no. no. 

1 1 0.754026 1 2 0.380722 3 0.740806 2 2 0.262471 
2 3 0.510713 3 3 0.993740 

The row (column) numbers 1 to 3 correspond to the symmetry coordinates 28 to 30. 

Z matrix 

The first two elements correspond with the row and the column numbers 
of the F matrix element Fii' respectively. The third element is the number of the 
force constant (table 3-III). The last element corresponds with the coefficient 
of that force constant FIJ 

1 1 1 1 1 2 9 1 1 6 8 1 1 7 10 1 
1 10 11 1 1 11 12 1 1 13 13 1 1 15 14 1 
1 16 16 1 1 17 15 1 1 18 17 1 2 2 1 1 
2 3 8 1 2 8 10 1 2 10 12 1 2 11 11 1 
2 13 13 1 2 14 14 1 2 17 17 1 2 18 15 1 
2 19 16 1 3 3 1 1 3 4 9 1 3 8 10 1 
3 11 11 1 3 12 12 1 3 13 14 1 3 14 13 1 
3 18 16 1 3 19 15 1 3 20 17 1 4 4 1 1 
4 5 8 1 4 9 10 1 4 11 12 1 4 12 11 1 
4 14 13 1 4 15 14 1 4 19 17 1 4 20 15 1 
4 21 16 1 5 5 1 1 5 6 9 1 5 9 10 1 
5 10 12 1 5 12 11 1 5 14 14 1 5 15 13 1 
5 16 17 1 5 20 16 1 5 21 15 1 6 6 1 1 
6 7 10 1 6 10 11 1 6 12 12 1 6 13 14 1 
6 15 13 1 6 16 15 1 6 17 16 1 6 21 17 1 
7 7 2 1 7 10 18 1 7 13 19 1 7 15 19 1 
7 16 20 1 7 17 20 1 8 8 2 1 8 11 18 1 
8 13 19 1 8 14 19 1 8 18 20 1 8 19 20 1 
9 9 2 1 9 12 18 1 9 14 19 1 9 15 19 1 
9 20 20 1 9 21 20 1 10 10 3 1 10 11 21 1 

10 12 21 1 10 13 22 1 10 15 22 1 10 16 23 1 
10 17 23 1 10 18 24 1 10 21 24 1 11 11 3 1 
11 12 21 1 11 13 22 1 11 14 22 1 11 17 24 1 
11 18 23 1 11 19 23 1 11 20 24 1 12 12 3 1 
12 14 22 1 12 15 22 1 12 16 24 1 12 19 24 1 
12 20 23 1 12 21 23 1 13 13 4 1 13 14 25 1 
13 15 25 1 13 16 27 1 13 17 26 1 13 18 26 1 
13 19 27 1 14 14 4 1 14 15 25 1 14 18 27 1 
14 19 26 1 14 20 26 1 14 21 27 1 15 15 4 1 
15 16 26 1 15 17 27 1 15 20 27 1 15 21 26 1 
16 16 5 1 16 17 28 1 16 21 29 1 17 17 5 1 
17 18 29 1 18 18 5 1 18 19 28 1 19 19 5 1 
19 20 29 1 20 20 5 1 20 21 28 1 21 21 5 1 
22 22 7 1 22 23 34 1 22 24 34 1 22 25 35 1 
22 26 37 1 22 27 37 1 22 28 35 1 22 29 36 1 
22 30 36 1 23 23 7 1 23 24 34 1 23 25 36 1 
23 26 36 1 23 27 35 1 23 28 37 1 23 29 37 1 
23 30 35 1 24 24 7 1 24 25 37 1 24 26 35 1 
24 27 36 1 24 28 36 1 24 29 35 1 24 30 37 1 
25 25 6 1 25 26 31 1 25 27 32 1 25 28 33 1 
25 29 32 1 25 30 30 1 26 26 6 1 26 27 30 1 
26 28 32 1 26 29 33 1 26 30 32 1 27 27 6 1 
27 28 31 1 27 29 32 1 27 30 33 1 28 28 6 1 
28 29 30 1 28 30 32 1 29 29 6 1 29 30 31 1 
30 30 6 1 
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Sun-Parr-Crawford U matrix 

row column 
no. no. 

1 10 -0.408248 
1 14 -0.408248 
2 12 0.174425 
2 16 0.369111 
2 20 0.369111 
3 9 0.577350 
4 4 0.408248 
5 11 0.369111 
5 15 -0.369111 
5 19 -0.174425 
6 1 0.408248 
6 5 0.408248 
7 18 0.408248 
8 25 0.408248 
8 29 0.408248 
9 22 0.577350 

10 26 -0.488248 
10 30 -0.408248 
11 1 0.343296 
11 5 0.019951 
11 12 -0.209721 
12 l -0.102242 
12 5 -0.005942 
12 12 -0.174224 
12 16 0.500861 
12 20 -0.250430 
13 9 -0.408248 
14 4 -0.435524 
14 Il 0.131640 
14 15 -0.179973 
14 19 -0.062207 
15 2 -0.447205 
15 11 0.100272 
15 15 -0.137089 
15 19 -0.047384 
16 11 -0.254846 
16 15 -0.269656 
16 19 0.120428 
17 19 -0.500000 
18 1 -0.221239 
18 5 0.407923 
18 13 -0.343296 
19 3 0.055599 
19 11 -0.301764 
19 18 -0.433758 
20 8 -0.707107 
21 3 0.169514 
21 11 0.228007 
21 18 -0.107746 
22 1 0.258194 
22 5 0.258194 
22 13 0.237445 
22 20 0.082072 
23 13 0.467058 
23 20 -0.208588 
24 18 -0.288675 
25 25 -0.028204 

1 
1 
2 
2 
2 
4 
4 
5 
5 
5 
6 
6 
7 
8 
8 
9 

10 

11 
11 
11 
12 
12 
12 
12 
12 
14 
14 
14 
14 
14 
15 
15 
15 
15 
16 
16 
16 
17 
18 
18 
18 
19 
19 
19 
20 
21 
21 
21 
22 
22 
22 
22 
23 
23 
24 

: 25 

11 -0.408248 1 
15 -0.408248 2 
13 -0.174425 2 
17 0.369111 2 
21 0.369111 3 
1 0.408248 4 
5 0.408248 4 

12 0.369111 5 
16 -0.174425 5 
20 -0.174425 5 

2 -0.408248 6 
6 -0.408248 7 

19 -0.408248 7 
26 0.402848 8 
30 0.408248 
23 0.577350 9 
27 0.408248 10 

2 0.019951 11 
6 0.343296 11 

13 0.198202 11 
2 -0.005942 12 
6 -0.102242 12 

13 -0.059030 12 
17 0.500861 12 
21 -0.250430 13 

l 0.070959 14 
5 0.364565 14 

12 0.131640 14 
16 0.124414 14 
20 -0.062207 14 

5 -0.447205 15 
12 0.100272 15 
16 0.094768 15 
20 -0.047384 15 
12 -0.254846 16 
16 -0.240857 16 
20 0.120428 16 
20 -0.500000 17 

2 -0.407923 18 
6 0.221239 18 

15 0.343296 19 
4 -0.055599 19 

12 0.301764 19 
19 -0.433758 19 
9 0.707107 21 
4 -0.169514 21 

12 -0.228007 21 
19 -0.107746 21 
2 -0.258194 22 
6 -0.258194 22 

15 -0.237445 22 
21 0.082072 23 
15 -0.467058 23 
21 -0.208588 24 
19 0.288875 24 
26 0.513505 25 

12 -0.408248 1 13 -0.408248 
10 0.174425 2 11 0.174425 
14 -0.174425 2 15 -0.174425 
18 0.369111 2 19 0.369111 

7 0.577350 3 8 0.577350 
2 0.408248 4 3 0.408248 
6 0.408248 5 10 0.369111 

13 -0.369111 5 14 -0.369111 
17 -0.174425 5 18 -0.174425 
21 -0.174425 

3 0.408248 6 4 -0.408248 
16 0.408248 7 17 -0.408248 
20 0.408248 7 21 -0.408248 
27 0.408248 8 28 0.408248 

24 0.577350 10 25 0.408248 
28 -0.408248 10 29 0.408248 

3 -0.363247 11 4 -0.363247 
10 0.419442 11 11 -0.209721 
14 -0.396405 11 15 0.198202 
3 0.108184 12 4 0.108184 

10 0.348448 12 11 -0.174224 
14 0.118059 12 15 -0.059030 
18 -0.250430 12 19 -0.250430 
7 0.816497 13 8 -0.408248 
2 0.364565 14 3 -0.534424 
6 0.070959 14 10 -0.263280 

13 -0.179973 14 14 0.359946 
17 0.124414 14 18 -0.062207 
21 -0.062207 15 l 0.447205 
6 0.447205 15 10 -0.200545 

13 -0.137089 15 14 0.274178 
17 0.094768 15 18 -0.047384 
21 -0.047384 16 10 0.509691 
13 -0.269656 16 14 0.539312 
17 -0.240857 16 18 0.120428 
21 0.120428 17 18 0.500000 
21 0.500000 

3 -0.186684 18 4 0.186684 
11 -0.363247 18 12 0.363247 

1 0.065891 19 2 0.121490 
5 -0.121490 19 6 -0.065891 

13 0.102242 19 15 -0.102242 
20 0.433758 19 21 0.433758 

1 -0.461932 21 2 -0.292418 
5 0.292418 21 6 0.461932 

13 0.311722 21 15 -0.311722 
20 0.107746 21 21 0.107746 

3 -0.156388 22 4 0.516388 
11 0.173677 22 12 -0.173677 
18 -0.082072 22 19 -0.082072 
11 -0.441405 23 12 0.441405 
18 0.208588 23 19 0.208588 
16 0.577350 24 17 -0.577350 
20 -0.288675 24 21 0.288675 
27 0.513505 25 28 -0.028204 
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Sun-Parr-Crawford U matrix, continued 

row column 
no no 

25 29 -0.485301 
27 25 0.576661 
27 29 -0.312756 
28 25 0.576661 
28 29 -0.312755 
29 24 -0.408248 
30 28 -0.028203 

25 30 -0.485301 
27 26 -0.263905 
27 30 -0.312756 
28 26 0.263906 
28 30 0.312755 
30 25 0.028203 
30 29 0.485301 

Sun-Parr-Crawford G matrix 

26 
27 

28 
29 
30 
30 

23 0.707107 26 24 -0.707107 
27 -0.263905 27 28 0.576661 

27 -0.263906 28 28 -0.576661 
22 0.816497 29 23 -0.408248 
26 0.513505 30 27 -0.513505 
30 -0.485301 

Only blocks containing optically active modes are given: A 'i. A" 2 , E' and E". 
One of each pair of degenerated blocks is only retained, the other one being 
identical with the first. 

row column 
no. no. 

1 1 0.155001 
2 3 -0.073918 
5 5 3.792065 
6 9 0.191780 
7 10 -0.335433 
9 9 0.709673 

11 12 0.832911 

l 2 -0.070862 1 3 
3 3 1.123468 4 4 
6 6 0.155001 6 7 
7 7 0.242025 7 8 
8 8 0.209236 8 9 
9 10 -0.240921 i 10 10 

12 12 1.256209 

Row (and column) numbers 1 to 3 belong to A' 1 • 

Row (and column) numbers 4 to 5 belong to A" 2 • 

Row (and column) numbers 6 to 10 belong to E'. 
Row (and column) numbers 11 and 12 belong to E". 

0.243231 2 2; 0.080406 
0.881480 4 5: l.721677 

-0.046969 6 8 -0.084031 
0.030402 7 9 0.086802 

-0.214702 8 10 -0.000478 
0.668055 11 11 0.754024 
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Sun-Parr-Crawford Z matrix 

The meaning of the four numbers is identical to that for the Z matrix. The 
block division is identical to that for the SPC-G matrix. 

2 2 l 1.000000 7 7 1 0.655247 7 8 1-0.262604 8 8 1 0.799969 
1 1 2 1.000000 6 6 2 1.000000 3 3 3 0.408728 7 7 3 0.103974 
7 8 3 0.079199 7 9 3-0.201287 8 8 3 0.060327 8 9 3-0.153324 
9 9 3 0.389678 3 3 4 0.408728 7 7 4 0.194342 7 8 4 0.148034 
7 9 4 0.291185 8 8 4 0.112760 8 9 4 0.221801 9 9 4 0.436286 
3 3 5 0.182544 7 7 5 0.046436 7 8 5 0,035371 7 9 5-0.089898 
8 8 5 0.028943 8 9 5-0.068477 9 9 5 0.174036 10 10 5 1.000000 
5 5 6 1.000000 12 12 6 1.000000 4 4 7 1.000000 11 11 7 1.000000 
2 2 8 1.000000 7 7 8-0.625036 7 8 8 0.453003 8 8 8 0.399985 
2 2 9 1.000000 7 7 9 0.482839 7 8 9 0.262604 8 8 9-0.799969 
l 2 10 1.414214 6 7 10 0.173813 6 8 10 1.095424 2 3 11 0.904133 
7 7 11-0.112092 7 8 11-0.395912 7 9 11 0.108502 8 8 11-0.538108 
8 9 11 0.683810 2 3 12 0.904133 7 7 12-0.575896 7 8 12 0.133886 
7 9 12 0.557447 8 8 12 0.538108 8 9 12-0.683810 2 3 13-0.904133 
7 7 13-0.940590 7 8 13-0.358233 7 9 13-0. 704650 2 3 14-0.904133 
7 7 14 0.787342 7 8 14-0.183042 7 9 14 0.589843 8 8 14-0.735683 
8 9 14-0.723549 2 3 15-0.427252 7 7 15 0.052970 7 8 15 0.187090 
7 9 15-0.051273 7 10 15 0.800089 8 8 15 0.254284 8 9 15-0.323137 
8 10 15-0.447205 2 3 16-0.427252 7 7 16 0.052970 7 8 16 0.187090 
7 9 16-0.051273 7 10 16-0.800089 8 8 16 0.254284 8 9 16-0.323137 
8 10 16 0.447205 2 3 17-0.427252 7 7 17 0.272142 7 8 17-0.063268 
7 9 17-0.263424 7 10 17 0.506483 8 8 17-0.254284 8 9 17 0.323137 
8 10 17 0.447205 l 3 18 0.639318 6 7 18-0.322451 6 8 18-0.245616 
6 9 18 0.624242 1 3 19-1.278637 6 7 19-0.440842 6 8 19-0.335798 
6 9 19-0.660520 l 3 20-0.604225 6 7 20 0.304751 6 8 20 0.232133 
6 9 20-0.589976 3 3 21 0.817456 7 7 21-0.103974 7 8 21-0.079199 
7 9 21 0.201287 8 8 21-0.060327 8 9 21 0.153324 9 9 21-0.389678 
3 3 22-1.634912 7 7 22 0.284300 7 8 22 0.216556 7 9 22-0.062207 
8 8 22 0.164955 8 9 22-0.047385 9 9 22-0.824648 3 3 23-0.772585 
7 7 23-0.196534 7 8 23-0.149703 7 9 23 0.380476 8 8 23-0.114031 
8 9 23 0.289815 9 9 23-0. 736575 3 3 24-0.772585 7 7 24 0.098267 
7 8 24 0.074852 7 9 24-0.190238 7 10 24-0.394920 8 8 24 0.057016 
8 9 24-0.144907 8 10 24-0.300817 9 9 24.0.368288 9 10 24 0.764537 
3 3 25 0.817456 7 7 25-0.194342 7 8 25-0.148034 7 9 25-0.291185 
8 8 25-0.112760 8 9 25-0.22180 l 9 9 25-0.436286 3 3 26 0.772585 
7 7 26-0.134347 7 8 26-0.102334 7 9 26 0.029396 7 10 26-0.539919 
8 8 26-0.077950 8 9 26 0.022392 8 10 26-0.411267 9 9 26 0.389691 
9 10 26-0.808968 3 3 27 0.772585 7 7 27-0.134347 7 8 27-0.102334 
7 9 27 0.029396 7 10 27 0.539919 8 8 27-0.077950 8 9 27 0.022392 
8 10 27 0.411267 9 9 27 0.389691 9 10 27 0.808968 3 3 28 0.182544 
7 7 28 0.046436 7 8 28 0.035371 7 9 28-0.089898 8 8 28 0.026943 
8 9 28-0.068477 9 9 28 0.174036 1 10 10 28-1.000000 3 3 29 0.182544 
7 7 29-0.023218 7 8 29-0.017686 7 9 29 0.044949 7 10 29 0.186621 
8 8 29-0.013471 8 9 29 0.034238 8 10 29 0.142152 9 9 29-0.087018 
9 10 29-0.361285 10 10 29 0.500000 5 5 30-1.000000 12 12 30-0.582125 
5 5 31-1.000000 12 12 31-0.413102 5 5 32 2.000000 12 12 32-1.000000 
5 5 33-1.000000 12 12 33 0.995227 4 4 34 2.000000 11 11 34-1.000000 
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APPENDIX 2 

Results of program FLEPO 

A. Calculations with two A' 1 blocks together, one of the samples enriched with 
10B(93 %) and one of the samples with natural abundance of the two iso
topes 11B(81 %). 

A.I. F6 = 0 and kept constant. 
Data: Variable force constants nos. l, 2, 3, 4 and 5 

Constant force constant no. 6 
Number of iterations: 50 
Initial values (mdyn/Á): 
F1 9.5 
F2 = /1 + fs + fg = 8.5 
F3 = 0.41/3 0.41/4 0.18/5 = 0.34 
F4 = 1.41/10 2.1 
F5 = -0.43/15 = 0.22 *) 
F6 =0 

Results: 

FORCE CONSTANTS AFTER 50 PERTURBATIONS: 

1 9.652738 2 7.254965 3 0.389279 4 3.641003 5 -0.170012 

OBS. FREQ. CALC.FREQ. DIFFERENCE % ERROR WEIGHT (CM-1) (CM-1) (CM-1) 

1 
1 

1604.7 1612.0 -7.3 -0.455 0.2517 
2 769.4 771.2 -1.8 -0.232 1.0951 
3 630.6 629.1 1.5 0.244 l.6302 
4 1573.0 1569.6 3.4 0.218 0.2620 
5 769.0 765.8 3.2 0.413 1.0962 
6 624.0 626.1 -2.1 -0.338 1.6648 

AVERAGE ERROR= 3.22 CM-1, OR 0.317% 
SUMDD 0.000077 

These results are used as initial values for the calculations in A.2 and A.3. 

A.2. Problem no. A.l, continued. 
Another 50 perturbations. 
Results: 

*) When the initial values were established the negative sign was forgotten. This was auto
matically corrected by the program. 
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FORCE CONSTANTS AFTER 46 PERTURBATIONS *): 

l 9.992551 2 7.006609 3 0.387263 4 3.726446 5 -0.043835 

OSB. FREQ. CALC.FREQ. DIFFERENCE %ERROR (CM-1) (CM-1) (CM-1) 

1 1604.7 1609.5 -4.8 -0.297 
2 769.4 771.9 -2.5 -0.320 
3 630.6 628.3 2.3 0.369 
4 1573.0 1569.0 4.0 0.252 
5 769.0 767.6 1.4 0.183 
6 624.0 623.7 0.3 0.052 

i 

AVERAGE ERROR 2.54 CM-1, OR 0.246%. 
SUMDD = 0.000047 

A.3. All force constants taken to be variable. 
Data: Variable force constants (F) nos. 1, 2, 3, 4, 5 and 6 

Number of iterations: 50 
Initia! values: see the results of A.1. 

Results: 

FORCE CONSTANTS AFTER 40 PERTURBATIONS *): 

WEIGHT 

0.2517 
1.0951 
1.6302 
0.2620 
1.0962 
1.6648 

1 9.773469 2 7.010711 3 0.398321 4 3.729067 5 -0.041481 
6 0.043119 

OBS. FREQ. j CALC. FREQ. DJFFERENCE %ERROR (CM-1) (CM-1) (CM-1) 

1 1604.7 1609.3 -4.6 -0.286 
2 769.4 771.6 -2.2 -0.286 
3 630.6 628.4 2.2 0.342 
4 1573.0 1568.6 4.4 0.283 
5 769.0 767.1 1.9 0.242 
6 624.0 624.1 -0.1 -0.022 

AVERAGE ERROR 2.57 CM-1, OR 0.243%. 
SUMDD 0.000048 

A.4. All force constants variable. Initial values all zero. 
Data: Variable force constants (F) nos. 1, 2, 3, 4, 5 and 6 

Number of iterations: 100 
Initialvalues: F1 = F2 = F3 = F4 F5 F6 = 0. 

Results: 

*) Tuis perturbation had the lowest average error. 

WEIGHT 

0.2517 
1.0951 
1.6302 
0.2620 
1.0962 
1.6648 
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FORCE CONSTANTS AFTER 50 PERTURBATIONS: 

1 6.410791 2 5.242864 3 1.871938 4 3.018461 5 -0.048075 
6 -2.162397 

OBS. FREQ. CALC.FREQ. DIFFERENCE % ERROR WEIGHT (CM-1) (CM-1) (CM-1) 

1 1604.7 1598.7 6.0 0.373 0.2517 
2 769.4 773.5 -4.1 -0.536 1.0951 
3 

1 

630.6 634.6 -4.0 -0.640 1.6302 
4 1573.0 1580.3 -7.3 -0.467 0.2620 
5 769.0 766.9 2.1 0.267 1.0962 
6 

1 

624.0 623.2 0.8 0.132 1.6648 

AVERAGE ERROR 4.06 CM-1, OR 0.402%. 
SUMDD = 0.000115. 

B. Calculations based on the blocks A' 1 and E' together 

The calculations are based on the hypothetic sample 100 % 10B. Three 
models are tested. The number of perturbations is 50 in eacli case. The 
initial values of the force constants and the choice in taking them constant 
or variable are the same for the three calculations. 

Data: Variable force constants (f's) nos. 1, 3, 4, 5, 8 (9), 11 (13), 15, 
22, 23 (26) and 28. 
Constant force constants (f's) nos. 2, 10, 16, 17, 18, 19, 20, 21, 
24, 25, 27, 29. 
Initial values (mdyn/A): 

/1 5.5 fz 9.77 /3 0.4 /4 0.4 fs 0.4 
fs 0.75 f9 0.75 !10 2.64 /11 1.0 f 12 0 
/13 1.0 /14 0 f1s 0.10 !16 0 !11 0 

f1s 0 /19 0 !20 --0.07 !21 0 !22 0.12 

/23 0 /24 0 fzs 0 !26 0 f 21 0 
fzs 0 /29 0 

B.l. Model 1 

Force constants after 50 perturbations (mdyn/A): 

/1 7.15 fz 9.77 /3 -1.80 /4 5.26 fs 0.21 
.fs 0.036 f9 0.036 /10 2.64 f 11 0.51 f 12 0 
/13 0.51 /14 0 fis 0.87 /16 0 !11 0 
f1s 0 /19 0 fzo --0.07 !21 0 !22 0.46 
/23 -1.50 /24 0 fzs 0 !26 -1.50 !21 0 
fzs -1.78 /29 0 



- 101 -

OBS. FREQ. CALC. FREQ. I DIFFERENCE %ERROR WEIGHT (CM-1) (CM-1) (CM-1) 

1 1604.7 1654.9 -50.2 -3.126 0.5197 
2 769.4 759.3 10.1 1.311 1.6955 
3 630.6 595.8 34.8 5.514 2.5240 
4 1480.0 1588.9 -108.9 -7.361 0.1527 
5 1440.0 1469.6 -29.6 -2.053 0.1613 
6 1275.0 1230.0 45.0 3.531 0.4116 
7 973.2 949.2 24.0 2.464 1.0597 
8 476.2 389.7 86.5 18.160 1.4754 

AVERAGE ERROR 48.63 CM-1, OR 5.440% 
SUMDD = 0.018348. 

B.2. Mode/2 

Force constants after 49 perturbations (mdyn/ Á): 

11 5.82 12 9.77 13 0.072 14 0.99 Is 0.44 

Is 0.60 19 0.60 110 2.64 111 0.45 112 0 
113 0.45 114 0 l1s 0.17 116 0 111 0 
l1s 0 119 0 120 -0.07 121 0 122 0.038 
123 -0.079 124 0 l2s 0 126 -0.079 121 0 
l2s -0.34 129 0 

OBS. FREQ. CALC. FREQ. DIFFERENCE %ERROR WEIGHT (CM-1) (CM-1) (CM-1) 

1 1604.7 1610.3 -5.6 -0.350 0.4095 
2 769.4 766.8 2.6 0.336 1.3361 
3 630.6 624.7 5.9 0.930 1.9889 
4 1480.0 1504.4 -24.4 -1.646 0.1204 
5 1440.0 1444.1 -4.1 -0.287 0.1271 
6 973.2 971.5 1.7 0.179 0.5567 
7 476.2 479.5 -3.3 -0.692 3.4878 
8 397.4 392.6 4.8 1.207 1.6694 

AVERAGE ERROR= 6.55 CM-1, OR 0.703%. 
SUMDD 0.000340. 

B.3. Model 3 

Force constants after 50 perturbations (mdyn/Á): 

11 5.41 12 9.77 13 -0.05 14 0.86 Is 0.36 

Is 0.83 19 0.83 110 2.64 111 0.37 112 0 

113 0.37 114 0 lis 0.28 116 0 111 0 

l1s 0 119 0 120 -0.07 121 0 122 -0.033 
123 -0.18 124 0 l2s 0 126 -0.18 121 0 
l2s -0.36 129 0 
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OBS. FREQ. CALC.FREQ. DIFFERENCE 
(CM-1) (CM-1) (CM-1) 

1 1604.7 1616.0 -11.3 
2 769.4 764.5 4.9 
3 630.6 622.l 8.5 
4 1480.0 1508.9 -28.9 
5 1275.0 1279.0 -4.0 
6 973.2 968.5 4.7 
7 476.2 476.0 0.2 
8 397.4 381.9 15.5 

AVERAGE ERROR= 9.76 CM-1, OR 1.173%. 
SUMDD = 0.000664. 

%ERROR WEIGHT 

-0.707 0.3820 
0.642 1.2462 
1.342 1.8551 
l.954 0.1123 

-0.313 0.1513 
0.481 0.5193 
0.037 3.2532 
3.904 1.5571 



103 -

APPENDIX 3 

A. Potential energy distribution 

The potential energy distribution over the force constants is given for every 
normal vibration belonging to symmetry species A' 1 and E'. In eq. (3.7) sec. 3.2 
for the potential energy V t / 1 r 1 

2 + . . . . 29 force constants occur. The 
contribution (in fractions) of every force constant is given, their algebraic sum 
being equal to 1. The fractions in the first row refer to force constants / 1 to / 9 , 

those in the second row to / 10 to / 18, those in the third row to / 19 to / 27, and 
those in the last row to / 28 and / 29• 

POTENTIAL ENERGY DISTRIBUTION 

FREQUENCY 1610.3 CM-1 
0.1118 0.9956 0.0127 0.1745 0.0350 0.0000 0.0000 0.0115 0.0115 

-0.3302 -0.0737 0.0000 0.0737 0.0000 0.0134 0.0000 0.0000 0.0000 
0.0000 0.0178 0.0000 -0.0269 0.0264 0.0000 0.0000 -0.0264 0.0000 

-0.0266 0.0000 

FREQUENCY = 766.8 CM-1 
0.9291 0.0503 0.0054 0.0742 0.0149 0.0000 0.0000 0.0953 0.0953 

-0.2140 0.1387 0.0000 -0.1387 0.0000 -0.0252 0.0000 0.0000 0.0000 
0.0000 -0.0026 0.0000 -0.0114 0.0112 0.0000 0.0000 -0.0112 0.0000 

-0.0113 0.0000 

FREQUENCY 624.7 CM-1 
0.0045 0.2120 0.0575 0.7894 0.1585 0.0000 0.0000 0.0005 0.0005 
0.0306 -0.0315 0.0000 0.0315 0.0000 0.0057 0.0000 0.0000 0.0000 
0.0000 -0.0174 0.0000 -0.1216 0.1193 0.0000 0.0000 -0.1193 0.0000 

-0.1203 0.0000 

FREQUENCY = 1504.4 CM-1 
0.0830 1.0735 0.0062 0.0195 0.0201 0.0000 0.0000 0.0003 0.0072 

-0.2127 -0.0320 0.0000 0.0204 0.0000 0.0035 0.0000 0.0000 0.0000 
0.0000 0.0129 0.0000 -0.0031 0.0129 0.0000 0.0000 -0.0009 0.0000 

-0.0107 0.0000 

FREQUENCY = 1444.1 CM-
0.8161 0.0456 0.0024 0.1758 0.2105 0.0000 0.0000 -0.0806 0.2070 

-0.0261 -0.0117 0.0000 -0.1579 0.0000 -0.0844 0.0000 0.0000 0.0000 
0.0000 0.0016 0.0000 -0.0058 0.0049 0.0000 0.0000 -0.0610 0.0000 
0.1499 0.0000 

FREQUENCY 971.5 CM-1 
1.3355 0.1620 0.0144 0.0019 0.0885 0.0000 0.0000 0.1296 -0.1031 

-0.4543 -0.2672 0.0000 -0.0083 0.0000 0.0575 0.0000 0.0000 0.0000 
0.0000 0.0076 0.0000 0.0015 0.0298 0.0000 0.0000 -0.0014 0.0000 
0.0071 0.0000 

FREQUENCY 479.5 CM-1 
0.0063 0.0718 0.0469 0.7968 0.1539 0.0000 0.0000 0.0006 -0.0002 

-0.0209 0.0334 0.0000 -0.0231 0.0000 -0.0057 0.0000 0.0000 0.0000 
0.0000 -0.0092 0.0000 -0.0552 0.0973 0.0000 0.0000 -0.0133 0.0000 

-0.0796 0.0000 

FREQUENCY = 392.6 CM-1 
0.3884 0.0002 0.0126 0.0083 0.3368 0.0000 0.0000 -0.0124 0.0390 

-0.0056 -0.0801 0.0000 0.0298 0.0000 0.0739 0.0000 0.0000 0.0000 
0.0000 0.0003 0.0000 -0.0020 0.0260 0.0000 0.0000 -0.0174 0.0000 
0.2031 0.0000 
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B. Amplitudes of the atoms during the normal vibrations (in cartesian coordina
tes ). Symmetry species A' 1 and E'. The amplitudes with respect to their equilib
rium state are multiplied with a scale factor, which has been given for the A' 1 

species. EQUILIBRIUM CARTESIAN 
COORDINATES 

ATOM MASS x y 
1 10.013 0.0000 0.0000 
2 15.999 1.4330 0.0000 
3 10.013 2.2672 1.1652 
4 15.999 1.5507 2.4062 
5 10.013 0.1245 2.5460 
6 15.999 -0.5920 1.3050 
7 15.999 -0.6934 -1.0759 
8 15.999 3.5457 1.1026 

A'1 9 15.999 -0.4606 3.6845 

z 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 

CARTESIAN COORDINATES FOR 
ATOMS DISPLACED BY FREQUENCY 
=1610.3 CM-1. SCALE=8 

CARTESIAN COORDINATES FOR 
ATOMS DISPLACED BY FREQUENCY 
=624.7 CM-1. SCALE=5.2 

ATOM MASS x y z 
1 10.013 0.1636 0.2538 0.0000 
2 15.999 1.4568 -0.0463 0.0000 
3 10.013 1.9656 1.1799 0.0000 
4 15.999 1.5789 2.4499 0.0000 
5 10.013 0.2625 2.2775 0.0000 
6 15.999 -0.6439 1.3075 0.0000 
7 15.999 -0.7766 -1.2050 0.0000 
8 15.999 3.6990 1.0951 0.0000 
9 15.999 -0.5308 3.8211 0.0000 

CARTESIAN COORDINATES FOR 
ATOMS DISPLACED BY FREQUENCY 
=766.8 CM-1. SCALE=5.5 

ATOM MASS x y z 
1 10.013 -0.0801 -0.1243 0.0000 
2 15.999 1.5448 -0.2175 0.0000 
3 10.013 2.4149 1.1579 0.0000 
4 15.999 1.6832 2.6118 0.0000 
5 10.013 0.0569 2.6776 0.0000 
6 15.999 -0.8363 1.3170 0.0000 
7 15.999 -0.7471 -1.1593 0.0000 
8 15.999 3.6447 1.0978 0.0000 
9 15.999 -0.5059 3.7727 0.0000 

E' 
CARTESIAN COORDINATES FOR 
ATOMS DISPLACED BY FREQUENCY 
=1504.4 CM-1. 

ATOM MASS x y z 
1 10.013 0.1978 0.3070 0.0000 
2 15.999 1.5163 0.0298 0.0000 
3 10.013 2.4458 1.0796 0.0000 
4 15.999 1.5382 2.3868 0.0000 
5 10.013 -0.0272 2.6733 0.0000 
6 15.999 -0.5992 1.3932 0.0000 
7 15.999 -0.8341 -1.2942 0.0000 
8 15.999 3.4163 1.1162 0.0000 
9 15.999 -0.3948 3.5723 0.0000 

ATOM MASS x y z 
1 10.013 0.0769 0.1193 0.0000 
2 15.999 1.4990 -0.1283 0.0000 
3 10.013 2.1255 1.1721 0.0000 
4 15.999 1.6288 2.5275 0.0000 
5 10.013 0.1894 2.4198 0.0000 
6 15.999 -0.7361 1.3121 0.0000 
7 15.999 -0.5724 -0.8881 0.0000 
8 15.999 3.3225 1.1136 0.0000 
9 15.999 -0.3584 3.4858 0.0000 

CARTESIAN COORDINATES FOR 
ATOMS DISPLACED BY FREQUENCY 
=971.5 CM-1. 

ATOM M x y z 
1 10.01 0.1202 0.1866 0.0000 
2 15.999 1.1466 -0.0854 0.0000 
3 10.013 2.3760 1,1188 0.0000 
4 15.999 1.6102 2J4935 0.0000 
5 10.013 0.0373 2.6260 0.0000 
6 15.999 -0.5515 1.0089 0.0000 
7 15.999 -0.6581 -1.0211 0.0000 
8 15.999 3.5805 1.1486 0.0000 
9 15.999 -0.4331 3'7352 0.0000 

CARTESIAN COORDINATES FOR 
ATOMS DISPLACED BY FREQUENCY 
=479.5 CM-1. 

ATOM MASS x y z 
1 10.013 -0.0716 -0.1111 0.0000 
2 15.999 1.3475 0.1317 0.0000 
3 10.013 2.2069 1.2853 0.0000 
4 15.999 1.7119 2.6688 0.0000 
5 10.013 0.2588 2.5408 0.0000 
6 15.999 -0.4367 t.2816 0.0000 
7 15.999 -0.7929 -1.2308 0.0000 
8 15.999 3.4492 1.0098 0.0000 
9 15.999 -0.5052 8.5583 0.0000 
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E' (continued) 

CARTESIAN COORDINATES FOR 
ATOMS DISPLACED BY FREQUENCY 
=1444.1 CM-1. 

ATOM MASS x y z 
1 10.013 0.0000 
2 15.999 1.4102 -0.0981 0.0000 
3 10.013 2.3256 1.5546 0.0000 
4 15.999 1.4675 2.2771 0.0000 
5 10.013 0.4550 2.7601 0.0000 
6 15.999 -0.6719 1.2437 0.0000 
7 15.999 -0.7178 -1.1138 0.0000 
8 15.999 3.5207 1.0531 0.0000 
9 15.999 -0.4954 3.6413 0.0000 

CARTESIAN COORDINATES FOR 
ATOMS DISPLACED BY FREQUENCY 
=392.6 CM-1. 

ATOM MASS x y z 
1 10.013 -0.0912 -0.1415 0.0000 
2 15.999 1.3945 -0.0387 0.0000 
3 10.013 2.1848 1.2031 0.0000 
4 15.999 1.5125 2.3779 0.0000 
5 10.013 0.1931 2.4866 0.0000 
6 15.999 -0.6113 1.2540 0.0000 
7 15.999 -0.7832 -1.2153 0.0000 
8 15.999 3.4772 1.4010 0.0000 
9 15.999 -0.1606 3.7554 0.0000 
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llcalc = 1610.3cm-1 

Ai 

8 

Vcalc =766.Bcm-1 

Ai 

8 

Vcalc = 479.5 cm-1 

E' 

llcatc=392.6cm-1 

E' 
2 

3 

8 

9 

9 

7 

7 

7 

6 

Vcarc=624.7cm·1 

At 

llcalc = 1504.4cm·1 

E' 

8 

Vcatc = 1444cm-1 

E' 

Vcalc = 971.Scm-1 

E' 

8 

The amplitudes of the atoms during the normal vibrations. The drawings of the vibrations 
are made with help from the amplitudes in cartesian coordinates. For every vibration a scale 
factor is used. 
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APPENDIX 4 

Crystalline Na3B30 6 

Projection of the hexagonal cell on the x-y plane and the definitions of the 
internal coordinates in the primitive cell. 

For rings A, z = c/6, for rings B, z = 2c/6, etc. Ring C (atom numbers 1 
to 9) and ring F (atom numbers 13 to 21) and the sodium atoms nos. 10, 11, 
12, 22, 23 and 24 all belong to one primitive cell. Atom nos. 25 and higher 
are included to define all internal coordinates, which are necessary in the cal
culation. 
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Definitions of the internal coordinates in the primitive cel! of Na3B30 6 

Internal coordinates are numbered from 1 to 108. 
Code defines the type of coordinate in question: 
1 = stretching 
2 bending 
4 torsion. 
The atoms are numbered as shown in the projection (see also Schachtschnei* 
der 3- 3). 

The bending is multiplied by (r,j · rjk)t to get the dimension of length. The 
torsion is multiplied by (r11 • rk1)t for the same reason. 

fij~jk 
cr:r_ .. "'® 

Bending 

NO. CODE I J K L NO. CODEI J K L NO. CODE I J K L 

1 1 1 5 0 0 37 1 10 29 0 0 73 2 4 1 8 0 
2 1 2 5 0 0 38 1 11 30 0 0 74 2 5 1 8 0 
3 1 2 6 0 0 39 1 12 28 0 0 75 2 5 2 9 0 
4 1 3 6 0 0 40 1 10 32 0 0 76 2 6 2 9 0 
5 1 3 4 0 0 41 1 11 33 0 0 77 2 6 3 7 0 
6 1 1 4 0 0 42 1 12 31 0 0 78 2 4 3 7 0 
7 1 13 17 0 0 43 1 22 42 0 0 79 2 16 13 20 0 
8 l 14 17 0 0 44 t 23 40 0 0 80 2 17 13 20 0 
9 1 14 18 0 0 45 1 24 41 0 0 81 2 17 14 21 0 

10 1 15 18 0 0 46 1 22 43 0 0 82 2 18 14 21 0 
11 1 15 16 0 0 47 1 23 44 0 0 83 2 18 15 19 0 
12 1 13 16 0 0 48 1 24 45 0 0 84 2 16 15 19 0 
13 1 1 8 0 0 49 1 10 50 0 0 85 4 1 5 2 6 
14 1 2 9 0 0 50 1 11 51 0 0 86 4 6 2 6 3 
15 1 3 7 0 0 51 1 12 49 0 0 87 4 2 6 3 4 
16 1 13 20 0 0 52 1 10 53 0 0 88 4 6 3 4 1 
17 1 14 21 0 0 53 1 11 54 0 0 89 4 3 4 1 5 
18 1 15 19 0 0 54 1 12 52 0 0 90 4 4 1 5 2 
19 1 10 7 0 0 55 1 22 55 0 0 91 4 13 17 14 18 
20 1 Il 8 0 0 56 l 23 56 0 0 92 4 17 14 18 15 
21 1 12 9 0 0 57 1 24 57 0 0 93 4 14 18 15 16 
22 1 22 19 0 0 58 1 22 58 0 0 94 4 18 15 16 13 
23 1 23 20 0 0 59 l 23 59 0 0 95 4 15 16 13 17 
24 l 24 21 0 0 60 l 24 60 0 0 96 4 18 13 17 14 
25 1 10 26 0 0 61 2 4 1 5 0 97 4 8 1 5 2 
26 1 11 27 0 0 62 2 5 2 6 0 98 4 9 2 5 1 
27 1 12 25 0 0 63 2 6 3 4 0 99 4 9 2 6 3 
28 1 10 35 0 0 64 2 16 13 17 0 100 4 7 3 6 2 
29 1 11 36 0 0 65 2 17 14 18 0 101 4 7 3 4 1 
30 1 12 34 0 0 66 2 18 15 16 0 102 4 8 1 4 3 
31 1 22 37 0 0 67 2 3 4 1 0 103 4 20 13 17 14 
32 1 23 38 0 0 68 2 l 5 2 0 104 4 21 14 17 13 
33 1 24 39 0 0 69 2 2 6 3 0 105 4 21 14 18 15 
34 1 22 48 0 0 70 2 15 16 13 0 106 4 19 15 18 14 
35 1 23 46 0 0 71 2 13 17 14 0 107 4 19 IS 16 13 
36 l 24 47 0 0 72 2 14 18 15 0 108 4 20 13 16 15 
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X matrix of Na3B306 

The X matrix contains the cartesian coordinates for each of the 60 atoms, which 
are needed for the definition of the internal coordinates in the primitive cell. 
The cartesian coordinates have been obtained from the atomie positions given 
by Marezio et al.2 - 3). Every X element is preceeded by a row and column 
number. The row number refers to the direction of the cartesian coordinate 
(x = 1, y = 2, z = 3), and the column number to the atom number. The 
X element itself is the value of the appertaining cartesian coordinate (in Á) of 
the atom in question. 

1 1 1.471500 2 1 0.000000 3 l 1.609800 1 2 -0.735750 
2 2 1.274360 3 2 1.609800 1 3 -0.735750 2 3 -1.274360 
3 3 1.609800 1 4 0.695350 2 4 1.205250 3 4 1.609800 
1 5 0.695850 2 5 1.205250 3 5 1.609800 1 6 -1.391700 
2 6 0.000000 3 6 1.609800 1 7 -1.375550 2 7 -2.382520 
3 7 1.609800 1 8 2.751100 2 8 0.000000 3 8' 1.609800 
1 9 -1.375550 2 9 2.382520 3 9 1.609800 1 10 -2.606200 
2 10 -4.514070 3 10 1.609800 1 11 5.212400 2 11 0.000000 
3 11 1.609800 1 12 -2.606200 2 12 4.514070 3 12 1.609800 
1 13 -1.471500 2 13 0.000000 3 13 4.829200 1 14 0.735750 
2 14 -1.274360 3 14 4.829200 1 15 0.735750 2 15 1.274360 
3 15 4.829200 1 16 -0.695850 2 16 1.205250 3 16 4.829200 
1 17 -0.695850 2 17 -1.205250 3 17 4.829200 1 18 1.391700 
2 18 0.000000 3 18 4.829200 1 19 1.375550 2 19 2.382520 
3 19 4.829200 1 20 -2.751100 2 20 0.000000 3 20 4.829200 
1 21 1.375550 2 21 -2.382520 3 21 4.829200 1 22 2.606200 
2 22 4.514070 3 22 4.829200 1 23 -5.212400 2 23 0.000000 
3 23 4.829200 1 24 2.606200 2 24 -4.514070 3 24 4.829200 
1 25 -l.375550 2 25 4.502380 3 25 -0.536600 1 26 -3.211400 
2 26 -3.442450 3 26 -0.536600 1 27 4.586950 2 27 -1.059930 
3 27 -0.536600 1 28 -4.586950 2 28 5.824970 3 28 0.536600 
1 29 -2.751100 2 29 -6.884900 3 29 0.536600 1 30 . 7.338050 
2 30 1.059930 3 30 0.536600 1 31 -2.751100 2 31 6.884900 
3 31 2.682900 1 32 -4.586950 2 32 -5.824970 3 32 2.682900 
l 33 7.338050 2 33 -1.059930 3 33 2.682900 1 34 -3.211400 
2 34 3.442450 3 34 3.756100 1 35 -1.375550 2 35 -4.502380 
3 35 3.756100 1 36 4.586950 2 36 1.059930 3 36 3.756100 
1 37 1.375550 2 37 4.502380 3 37 2.682900 1 38 -4.586950 
2 38 -1.059930 3 38 2.682900 1 39 3.211400 2 39 -3.442450 
3 39 2.682900 l 40 -7.338050 2 40 1.059930 3 40 3.756100 
2 42 5.824970 3 42 3.756100 l 43 2.751100 2 43 6.884900 
1 41 2.751100 2 41 -6.884900 3 41 3.756100 l 42 4.586950 
3 43 5.902400 l 44 -7.338050 2 44 -1.059930 3 44 5.902400 
1 45 4.586950 2 45 -5.824970 3 45 5.902400 l 46 -4.586950 
2 46 1.059930 3 46 6.975600 l 47 1.375550 2 47 -4.502380 
3 47 6.975600 1 48 3.211400 2 48 3.442450 3 48 6.975600 
1 49 -4.571000 2 49 3.442450 3 49 0.536600 l 50 -0.695850 
2 50 -5.679650 3 50 0.536600 1 51 5.266700 2 51 2.237290 
3 51 0.536600 l 52 -0.695900 2 52 5.679740 3 52 2.682900 
1 53 -4.570800 2 53 -3.442450 3 53 2.682900 l 54 5.266700 
2 54 -2.237290 3 54 2.682900 1 55 4.570900 2 55 3.442450 
3 55 3.756100 1 56 -5.266700 2 56 2.237290 3 56 3.756100 
1 57 0.695750 2 57 -5.679650 3 57 3.756100 1 58 0.695800 
2 58 5.679740 3 58 5.902400 l 59 -5.266650 2 59 -2.237200 
3 59 5.902400 1 60 4.570900 2 60 -3.442460 3 60 5.902400 
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Equivalent positions 

In the table below the atoms of the primitive cell are given in the first column 
(nos. 1 to 24). Bebind these atom numbers the numbers of the equivalent atoms 
in neighbouring cells are given, as far as these atoms are necessary for the 
definition of the intemal coordinates. (see sec 3.3.1). 

1 9 27 35 42 44 17 51 52 
2 10 18 49 53 
3 11 19 28 33 38 47 
4 56 58 12 20 29 31 39 48 
5 57 59 l3 21 30 32 37 46 
6 55 60 14 22 
7 25 36 40 45 15 23 
8 26 34 41 43 16 50 54 24 

Block-diagonalised G matrix of Na3B30 6 (natura/ abundance: 81 % llB, 
19% 10B) 

À1g 

1 1 0.080363 1 2 -0.070793 1 6 -0.045287 l 7 -0.047124 
1 8 0.047124 1 9 0.031485 2 2 0.155001 2 3 -0.062502 
2 4 -0.021621 2 5 0.004914 2 7 0.155565 2 8 -0.155565 
2 9 -0.103937 3 3 0.106000 3 4 0.037172 3 5 -0.055082 
3 6 -0.001346 4 4 0.013039 4 5 -0.019635 4 6 -0.000461 
5 5 0.058247 5 6 0.001552 6 6 0.078372 6 7 -0.124425 
6 8 0.124425 6 9 0.083131 7 7 0.459277 7 8 -0.459277 
7 9 -0.306854 8 8 0.459277 8 9 0.306854 9 9 0.205017 

À2g 

1 1 0.229638 1 4 -0.047989 l 5 0.196127 2 2 0.198961 
2 3 0.020517 2 4 -0.000963 2 5 0.057302 2 7 -0.136483 
3 3 0.153753 3 4 0.047377 3 s 0.120339 3 7 0.064777 
4 4 0.133628 4 5 0.023340 4 6 0.188993 4 7 -0.066351 
5 5 0.619209 6 6 3.796186 6 1 -0.516521 7 1 0.386562 

À1u 

1 l 0.080363 l 2 -0.070793 l 6 0.045287 1 2 -0.047124 
l 8 0.047124 1 9 0.031465 2 2 0.155001 2 3 -0.062502 
2 4 -0.021621 2 5 -0.004914 2 7 0.155565 2 8 -0.155565 
2 9 -0.103937 3 3 0.106000 3 4 0.037172 3 5 -0.045254 
3 6 -0.001346 4 4 0.013039 4 5 -0.016235 4 6 -0.000481 
5 5 0.058247 5 6 0.001552 6 6 0.078372 6 7 0.124425 
6 8 -0.124425 6 9 -0.083131 7 7 0.459277 7 8 -0.459277 
7 9 -0.306854 8 8 0.459277 9 9 0.306854 9 9 0.205017 

À2u 

1 1 0.229638 1 4 0.047989 l 5 0.196127 2 2 0.198961 
2 3 0.011318 2 4 -0.000963 2 5 0.057302 2 7 -0.136483 
3 3 0.153753 3 4 0.047377 3 5 -0.120339 3 7 -0.064777 
4 4 0.133628 4 5 -0.023340 4 6 -0.188993 4 1 0.066351 
5 5 0.619209 6 6 3.796186 6 7 -0.516521 7 7 0.386562 
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Eg (one of the two equal E0-blocks) 

1 l 0.137840 1 2 -0.033184 l 3 -0.035396 1 9 -0.045287 
l 11 -0.023562 1 12 -0.131467 1 13 -0.211318 1 14 0.140182 
2 2 0.172161 2 3 -0.061309 2 14 0.047989 2 l -0.165408 
2 12 0.103109 2 11 0.140182 2 14 0.046676 3 3 0.155001 
3 4 0.062502 3 5 -0.010811 3 6 -0.018725 3 7 0.002457 
3 8 0.004256 3 Il 0.155566 3 2 -0.077783 3 13 -0.051969 
3 14 -0.090012 4 4 0.106000 4 5 -0.018580 1 6 -0.005258 
4 7 0.027541 4 8 -0.039191 4 9 0.000673 4 10 -0.001165 
5 5 0.152480 5 6 -0.014796 5 7 0.010479 5 8 0.011931 
5 9 -0.000843 5 10 -0.000209 5 13 0.042976 5 14 -0.024812 
5 17 0.102362 5 10 -0.059099 6 6 0.059519 6 7 0.011931 
6 8 -0.009597 6 9 -0.000209 6 10 -0.000601 6 13 -0.024812 
6 14 0.014325 6 17 -0.059099 6 18 0.034121 7 7 0.129876 
7 8 -0.066233 7 9 0.035921 7 10 0.019843 7 13 0.090255 
7 14 -0.052109 7 17 -0.048583 7 18 0.028049 8 8 0.082124 
8 9 0.019843 8 10 0.013008 8 13 -0.052109 8 14 0.030085 
8 17 0.028049 8 18 -0.016194 9 9 0.143556 9 10 0.037634 
9 11 -0.062212 9 12 0.124425 9 13 0.083131 10 10 0.068444 

10 11 -0.030253 10 14 0.023340 10 15 -0.060815 10 16 -0.094497 
10 18 0.066351 11 11 0.350318 11 12 -0.229638 11 13 -0.153427 
11 14 -0.181684 12 12 0.344323 12 13 0.342435 12 14 -0.020543 
13 13 0.564300 13 14 -0.270432 14 14 0.259927 15 151 0.367734 
15 16 0.571404 15 17 -0.401155 15 18 -0.169606 16 16 0.887879 
16 17 -0.623336 16 18 -0.263543 17 17 0.916703 17 18 -0.091583 
18 18 0.237923 1 

Eu (one of the two equal Eu-blocks) 

1 1 0.137840 1 2 -0.033184 1 3 -0.035396 1 9 0.045287 
1 11 -0.023562 l 12 -0.131467 1 13 -0.211318 1 14 0.140182 
2 2 0.172161 2 3 -0.061308 2 10 -0.047989 2 11 -0.165408 
2 12 0.103109 2 13 0.140182 2 14 0.046676 3 3 0.155001 
3 4 0.062502 3 5 -0.010811 3 6 -0.018725 3 7 -0.002457 
3 8 -0.004258 3 11 0.155566 3 12 -0.077783 3 13 -0.051969 
3 14 -0.090012 4 4 0.106000 4 5 -0.018586 4 6 -0.005258 
4 7 0.022627 4 8 -0.047702 4 9 0.000673 4 lOi -0.001165 
5 5 0.152480 5 6 -0.014796 5 7 0.004430 5 8 0.017386 
5 9 -0.000843 5 10 -0.000209 5 13 0.042976 5 14 -0.024812 
5 17 0.102362 5 18 -0.059099 6 6 0.059519 6 7 0.017386 
6 8 -0.009347 6 9 -0.000209 6 10 -0.000601 6 13i -0.024812 
6 14 0.014325 6 17 -0.059099 6 18 0.034121 7 7 0.129876 
7 8 -0.068233 7 9 0.035921 7 10 0.019843 7 13 -0.090255 
7 14 0.052108 7 17 0.048583 7 18 -0.028049 8 8 0.082124 
8 9 0.019843 8 10 0.013008 8 13 0.052109 8 14! -0.030085 
8 17 -0.028049 8 18 0.016194 9 9 0.143556 9 10 0.037634 
9 11 0.062212 9 12 -0.124425 9 13 -0.083131 lO 10 0.068444 

10 11 0.030253 10 14 -0.023340 10 15 0.060815 10 16 0.094497 
10 18 -0.066351 11 11 0.350318 11 12 -0.229638 11 13, -0.153427 
11 14 -0.181684 12 12 0.344323 12 13 0.342435 12 14

1 -0.020543 
13 13 0.564300 13 14 -0.207432 14 14 0.259927 15 15 0.367734 
15 16 0.571404 15 17 -0.401155 15 18 -0.169606 16 16 0.887879 
16 17 -0.623336 16 18 -0.263543 17 17 0.916703 17 18

1 
-0.091583 

18 18 0.237932 
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Sun-Parr-Crawford G matrix of Na3B30 6 after GZ conversion 

This G matrix is made by conversion with the SPC-U matrix and removal of 
the rendundant coordinates. Inactive symmetry species and one of each pair 
of degenerate blocks are also removed. The matrix has been renumbered. There 
is one redundancy left in species A 19• 

Coordinates 1 to 5 belonging to species A 19 

6 to 12 belonging to species A2 u 

13 to 24 belonging to species E9 

25 to 35 belonging to species Eu 

1 1 0.099062 1 2 -0.067549 l 3 -0.013865 1 4 0.064998 
1 5 -0.067604 2 2 0.186803 2 3 -0.021478 2 4 -0.049672 
2 5 0.269017 3 3 0.161809 3 4 0.005464 3 5 0.135010 
4 4 0.044060 4 5 -0.042045 5 5 1.122859 6 6 0.229639 
6 9 0.047989 6 10 0.196127 7 7 0.198961 7 8 0.011318 
7 9 -0.000963 7 10 0.057301 7 12 -0.136483 8 8 0.153753 
8 9 0.047377 8 10 -0.120339 8 12 -0.064777 9 9 0.133628 
9 10 -0.023340 9 11 -0.188994 9 12 0.066351 10 10 0.619209 

11 11 3.790185 11 12 -0.516522 12 12 0.386563 13 13 0.356035 
13 14 0.047225 13 15 -0.018965 13 16 -0.008413 13 17 -0.011378 
13 18 0.082723 13 19 -0.204132 13 20 -0.139054 13 21 0.148585 
13 22 0.177498 13 23 0.147130 14 14 0.255332 14 15 -0.097738 
14 16 0.007407 14 17 0.010571 14 18 -0.009451 14 19 -0.029685 
14 20 -0.016681 14 21 0.081467 14 22 -0.140917 14 23 -0.133507 
15 15 0.159143 15 16 0.059473 15 17 -0.017145 15 18 -0.007339 
15 19 0.001539 15 20 0.003090 15 21 -0.046392 15 22 0.160975 
15 23 0.133915 16 16 0.105301 16 17 -0.018171 16 18 -0.004622 
16 19 0.036458 16 20 -0.032208 16 21 -0.001091 16 22 -0.011928 
16 23 -0.010035 17 17 0.155853 17 18 -0.027105 17 19 0.037789 
17 20 0.033890 17 21 -0.023554 17 22 -0.082564 17 23 0.048682 
17 24 -0.074542 18 18 0.091822 18 19 -0.055294 18 20 -0.054647 
18 21 0.042136 18 22 0.109879 18 23 0.012652 18 24 0.050265 
19 19 0.368683 19 20 0.064864 19 21 -0.132343 19 22 -0.132200 
19 23 -0.159569 19 24 0.027529 20 20 0.121447 20 21 -0.014349 
20 22 -0.089993 20 23 -0.046655 20 24 -0.021452 21 21 0.301272 
21 22 -0.050097 21 23 -0.045948 21 24 -0.007181 22 22 0.709072 
22 23 0.090229 22 24 -0.172041 23 23 0.692972 23 24 0.198701 
24 24 1.819178 25 25 0.401910 25 26 0.058318 25 27 0.061906 
25 28 -0.174704 25 29 -0.067912 25 30 0.086495 25 31 0.260981 
25 32 -0.162900 25 33 0.041610 26 26 0.258418 26 27 -0.093347 
26 28 0.021995 26 29 0.005932 26 30 -0.026606 26 31 0.028459 
26 32 0.083912 26 33 -0.188076 26 34 -0.012879 27 27 0.224674 
27 28 -0.034626 27 29 -0.039715 27 30 0.026270 27 31 0.066896 
27 32 -0.159955 27 33 0.205672 27 34 -0.000150 28 28 0.221684 
28 29 0.023671 28 30 -0.064355 28 31 -0.094782 28 32 0.107723 
28 33 -0.118769 28 34 0.000123 29 29 0.175935 29 30 -0.043270 
29 31 -0.076694 29 32 0.058126 29 33 -0.022687 29 34 0.092845 
29 35 -0.076627 30 30 0.093441 30 31 0.092226 30 32 -0.078696 
30 33 0.061712 30 34 -0.060418 30 35 0.050224 31 31 0.428359 
31 32 -0.200828 31 33 0.063878 31 34 0.035289 31 35 -0.024910 
32 32 0.322189 32 33 -0.182797 32 34 -0.015349 32 35 0.019147 
33 33 0.579455 33 34 0.008361 33 35 0.001713 34 34 0.610845 
34 35 0.262724 35 35 1.819197 
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Definitions of the force constants in Na3B30 6 (GQVF Field) 

The force constants / 1 to / 33 are identical with those in the B30 6
3 - ring (see 

table 3-III). 

no. explanation 

/ 34 /,v two honds (r) common, the common B atom is centra! atom in both 
coordinates. 

/ 35 /,{ two honds (r) common, a common B atom of• and v is in • at the 
end and in v in the centre. 

/36 //f only the centra! r of v is common. 
/ 37 Jft1 only the rat the end of vis common. 
/ 38 J!! the central B atom in vis common. 
/ 39 ft~ the B atom at the end of v is common. 
/ 4 o fvv two honds (r) common. 
/ 41 fv1:., one Ris common. 
/ 42 fit a B atom is common, this atom is in one coordinate in the centre and 

in the other one at the end. 
/ 43 f .;;1 one B atom is common, in both coordinates at the end. 
/ 44 fNa ionic attraction of sodium and oxygen outside the ring, distance 

2.4613 A. 
dito, distance 2.474 A. 
dito, distance 2.6065 A. 
ionic attraction of sodium and oxygen in the ring, at a distance of 
2.4819 A. 

The force constants / 44" and /44b can be calculated from / 44 (these force con
stants are proportional to 1/r 2

): 

/ 44a = 0.9896/44 and / 44b 0.8917 / 4 4. 

This can be entered in the Z-matrix, hence the force constants f4Aa and / 44b 

are not explicitly necessary. 

• = torsion, in which only atoms in the ring participate. 
v = torsion, in which also the oxygen atom outside the ring participates. It 

replaces the out of plane wag. 
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Summary 

Since the appearance of gaslasers Raman spectroscopy bas emerged as a new 
tool in research on the structure of glasses. Knowledge of crystalline compounds 
is indispensable for such research. This thesis firstly describes an investigation 
of the vibrational spectra of crystalline sodium metaborate, including a normal 
coordinate analysis (chapters 2 and 3). With the data of this investigation an 
interpretation is given of the Raman spectra of some vitreous borates ( chap
ter 4), leading to the conclusion that the vitreous borates contain structural 
groups similar to the crystalline borates. 

The methods used to interpret the vibrational spectra of sodium metaborate 
included single-crystal recordings, isotope substitution and recording of iso
morphous compounds. The results provjded an explanation for a large part of 
the spectrum. For some peaks different possibilities remained, resulting in three 
different interpretations of the complete spectrum. One of the three inter
pretations was chosen as preferable for the subsequent calculations. 

Chapter 3 describes the methods of calculation. The computer programs 
reported by Schachtschneider are extended with a program to calculate the 
kinetic energy of the vibrations ( G matrix) of crystals, particulars are also given 
of a method devised by Vogel for removing the redundant coordinates from the 
calculations. The calculations are mainly made for the 'free' metaborate ion. 
This seems to be a good approximation for the same ion in the sodium meta
borate crystal. The force constants, the potential energy distribution of the 
normal vibrations and the amplitudes of the atoms during the vibrations are 
calculated. With the isotope product rule a rough comparison is made between 
the frequencies of the 'free' metaborate ion and those of the ion in the crystal. 

In chapter 4 the strongest peaks of the Raman spectrum of vitreous alkali 
borates (at 806 cm- 1 and 770 cm- 1) are assigned to the ring breathing of 
respectively the boroxol group and a group containing a six-membered ring 
with at least one B04 or B03 - unit. 

An explanation is also suggested for a peak appearing near the excitation 
line. This peak is possibly due to a translation or libration of large fragments 
of the network. 

The last investigation of this chapter concerns the temperature dependence 
of the Raman spectra of the vitreous alkali borates. It appeared that, except 
for an expected line-broadening, nothing happened, not even above the transi
tion temperature. This leads us to the conclusion that the structural groups 
found must also exist at higher temperatures and even in the melt. 

The work described in this thesis was supported in part by the Netherlands 
Foundation for Chemica! Research (SON) with financial aid from the Nether
lands Organization for the Advancement of Pure Research (ZWO). 
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Samenvatting 

De Ramanspectroscopie is sedert de beschikbaarheid van gaslasers een 
nieuw hulpmiddel bij het onderzoek naar de struktuur van glazen. Hiervoor is 
echter de kennis van de vibratiespektra van kristallijne verbindingen onont
beerlijk. 

Dit proefschrift beschrijft in de hoofdstukken 2 en 3 de interpretatie van de 
vibratiespektra van natriummetaboraat en de daarbij behorende normaal
koördinatenanalyse. Met behulp van de verkregen gegevens, zoals de potentiële 
energieverdeling van de trillingen van het metaboraat en de berekende krachts
konstanten, zijn in hoofdstuk 4 de vibratiespektra van de alkaliboraat glazen 
onderzocht. Het bleek hiermee mogelijk de belangrijkste pieken uit deze glas
spektra toe te kennen aan ringvibraties van bepaalde struktuureertheden. Met 
deze overbrenging van gegevens van het kristal via de vibratiespektra en de 
normaalkoördinatenanalyse naar het glas is er een mogelijkheid ontstaan om 
een beter inzicht te verkrijgen in de opbouw van de glasstruktuur. 

Voor de interpretatie van de vibratiespektra van natriurnmetaboraat is ge
bruik gemaakt van éénkristalopnamen, isotoopsubstitutie en isomorfe verbin
dingen. Hiermee kon een groot deel van het spektrum verklaard worden. Voor 
een aantal pieken bleven echter verschillende mogelijkheden over. Eén hiervan 
bleek bij de berekeningen de voorkeur te verdienen. In hoofdstuk 3 is uiteen
gezet welke berekeningswijze is gevolgd. De hierbij gebruikte computerpro
gramma's van Schachtschneider zijn aangevuld met een programma om de 
G-matrix van kristallen te berekenen. Voorts is een door Vogel uitgewerkte 
methode beschreven om de redundante koördinaten uit de berekeningen te ver
wijderen gebaseerd op een principe van Sun, Parr en Crawford. 

De berekeningen zijn voornamelijk uitgevoerd aan het 'vrije' metaboraat ion. 
Dit blijkt een goede benadering te zijn voor ditzelfde ion in het natriummeta
boraat kristal. De krachtskonstanten, de potentiële energieverdeling van de 
normaalvibraties en de maximale amplitudes van de atomen tijdens die vibraties 
zijn berekend. Met behulp van de isotopen produktregel is globaal een verge
lijking gemaakt tussen de frequenties van het 'vrije' metaboraat ion en de 
vibraties van dit ion in het kristal. 

In het laatste hoofdstuk zijn de sterkste pieken uit de Ramanspektra van de 
alkaliboraatglazen (bij 806 cm- 1 en 770 cm- 1) toegekend aan een ringbreathing 
van de z.g. boroxolring en van een zesring met één of meer B04 bn/of B03 -

groepen. 
Er is een suggestie gegeven voor een steeds voorkomende piek in de glas

spektra vlakbij de excitatielijn. Deze piek zou toegeschreven kunnen worden 
aan een translatie of libratie van grote brokstukken uit het boriuJn-zuurstof
netwerk. 

Als laatste is onderzocht wat de temperatuurinvloed op de glasspektra is. 
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Het blijkt dat er, behalve een verwachte lijnverbreding, zelfs tot boven het trans
formatietrajekt niets gebeurt. De konklusie is dat de gevonden struktuureen
heden ook bij hogere temperaturen blijven bestaan. 

Het onderzoek beschreven in dit proefschrift werd mogelijk gemaakt door finan
ciele steun van de Nederlandse Organisatie voor Zuiver-Wetenschappelijk-Onder
zoek (ZWO} via de Stichting Scheikundig Onderzoek Nederland (SON). 



Levensbericht 

30 maart 1948 
1965 
1971 

1971-1975 

15 februari 1974 
1975-heden 

- 118 -

Geboren te Eindhoven. 
Eindexamen HBS-B, Gemeentelijk Lyceum Eindhoven. 
Ingenieursexamen Scheikundige Technologie T.H. te 
Eindhoven. 
Medewerker van de Nederlandse Organisatie voor Zuiver
Wetenschappelijk-Onderzoek (Stichting SON) bij de 
groep silicaatchemie (vakgroep anorganische chemie) T.H. 
te Eindhoven. 
Gehuwd met Letty Cras. 
Medewerker van het Natuurkundig Laboratorium van de 
N.V. Philips' Gloeilampenfabrieken te Waalre in de groep 
Magnetic Devices. 



STELLINGEN 

bij het proefschrift van 

T.W. Bril 

14 mei 1976 
Eindhoven 



1 

Het Ramanspectrum van glasachtig B20 3 , zoals weergegeven door Krishnan, 
is onjuist. 

R. S. Krishnan, Ind. J. pure appl. Phys. 9, 916, 1971. 

Il 

De toekenning van de vibratiefrequenties en de hierop gebaseerde normaal
coordinatenanalyse van het metaboraat anion door Kristiansen en Krogh-Moe 
zijn onjuist. 

L. A. Kristiansen en J. Krogh-Moe, Phys. Chem. Glasses 2, 96 
1968. 
Dit proefschrift paragraaf 4.3 

III 

De toekenning van de Raman aktieve piek bij 630 cm- 1 in borosilikaat glazen 
aan een z.g. deformatie trilling van de metaboraat ring wordt niet bevestigd 
door Raman experimenten met 10B en 11 B gesubstitueerde glazen. 

W. L. Konijnendijk, Philips Res. Repts Suppl. 1975, no. 1. 

IV 

De invloed van een magneetveld in de lengterichting van een dun langgerekt 
permalloy element - zoals de "bar" in bubble devices - op de domeinstruk
tuur is door O'Dell onzorgvuldig weergegeven. 

T.H. O'Dell, Magnetic bubbles, The Macmillan press Ltd. London, 
1974, p. 119. 

v 

Stoffen als b.v. rhodamine B worden vaak gebruikt als luminescentie staldaard 
vanwege het konstante kwantumrendement. Deze methode lijkt aantrekkelijker 
dan hij in de praktijk is. 

J. W. Eastman, Photochemistry and Photobiology 6, 55, 1967. 



VI 

De invloed van polarisatie-effecten op luminescentie-metingen, zoals beschreven 
door Cehelnik, Mielenz en Velapoldi is vrijwel te verwaarlozen bij metingen aan 
poedermonsters. 

E.D. Cehelnik, K. D. Mielenz en R. A. Velapoldi, J. Res. nat! 
Bur. Stand. 79A, 1, 1975. 

VII 

De berekening van Hempstead aan de stationaire temperatuurverdeling in een 
half-oneindige warmtegeleider bij een periodieke warmtestroom is niet con
sistent. 

R. D. Hempstead, IEEE Trans. on Magnetics MAG-11, 1224, 1975. 

VIII 

De constatering van Visser dat alkaliboraat glazen bij zeer hoge viscositeiten 
een Bingham gedrag vertonen wordt niet bevestigd door meting van het rheo
logisch gedrag als functie van de temperatuur. 

Th. J. M. Visser, Rheological properties of alkaliborate glasses, proef· 
schrift Technische Hogeschool Eindhoven, 1971. 

IX 

Bij de vaststelling van de hoogte van de z.g. Kalkarhefling had men vooraf 
rekening moeten houden met de inkomsten verkregen uit de 16% BTW op 
deze bijdrage. 

Consumentengids, 23, 501, 1975. 

x 

Het gewijzigd ontwerp van wet gewetensbezwaren militaire dienst ziet ten on
rechte het aantal beschikbare arbeidsplaatsen voor vervangende dienstplicht als 
limitering voor het aantal erkenningen. 

Wijziging van de wet gewetensbezwaren militaire dienst. 
Bijlagen tot de Handelingen Tweede Kamer der Staten-Generaal, 
1975/1976, 11155, nr. 9. 

XI 

Het verdient aanbeveling stoplichten zodanig af te stellen dat er voor fietsers 
een z.g. groene golf ontstaat. 


