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Preface and Acknowledgement

“A fanatic is one who can’t change his mind and won’t change the
subject.”

Winston Churchill (1874 - 1965)

This thesis is an important milestone for me towards a scientific career, and enables
a long cherished dream of mine to come true. Ever since September 1983, even
before my M.Sc. graduation, I have aspired to work in an environment that either
provides me ample opportunities to perform research myself or allows me to main-
tain close contacts with researchers. During the past twentyone years, I was blessed
by being able to realize that aspiration; I have worked at universities and industrial
research organizations for almost thirteen years, and in (research and) development
organizations for eight years. Since the start of my professional career in January
1984, I have considered topics at the edge of the unexplored as attractive and chal-
lenging. One way or another, such topics always seem to present themselves, or,
alternatively, I may just be sensitive to be attracted by such topics. Concerning
the attraction of those topics, the chance of eventually taking my doctoral degree
based on results achieved as part of (or closely related with) my (research) work
may very well have played an important role; after all, a scientific career can hardly
be done without a doctoral degree. It therefore gave me much satisfaction when
Prof.dr. Emile H.J. Aarts adopted me as a Ph.D. student in January 2003, based on
the results achieved in the preceding years.

Since April 1999, I have been employed at the Philips Research Laboratories
in Eindhoven and worked in the area of Quality-of-Service for consumer devices,
such as digital TV sets and set-top boxes, with a focus on dynamic resource man-
agement. Having worked as a software architect in the telecommunications domain
in a development organization in the preceding years, it was a challenge to start in
an entirely new domain, and a great opportunity to perform research myself. When
I started at Philips Research, I became a project member of the Quality-of-Service
Resource Management (QoS RM) project. That project was in its definition phase,
was meant to become the flagship of the Information Processing Architectures
group of the Information and Software Technology sector of Philips Research, and
received the special assignment of starting a stream of patents and papers. Due to
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the pressing needs within that project, I also soon became projectleader, which was
a blessing and turned out to be a curse as well.

It was clearly a challenge to set up a company research project in an excit-
ing new domain and to establish contacts and set up co-operations with experts
from different domains, both within Philips in the context of the so-called Video-
Quality-of-Service (V-QoS) program, as well as outside Philips, within the context
of European projects, such as ITEA1/EUROPA2, amongst others. Moreover, it was
an honor to be entrusted the co-responsibility of guiding the V-QoS program (to-
gether with Christian Hentschel) in general, and the responsibility of guiding the
QoS RM project in particular.

Conform the agreements made during my application for a job at Philips Re-
search, I reserved time for my own research. To perform research that would allow
me to take a doctoral degree and that could be done next to being a project leader,
I carefully selected a topic that fitted in the project, would not be on the critical
path of the project, matched my individual strength, and could be done in relative
isolation.

Due to the combination of my responsibilities as project leader, my aspirations
to perform research myself, and complications surrounding both the birth of my
son Wander in August 2001 and his subsequent development, I became overloaded
during the autumn of 2001 and dropped out in March 2002. I spent several months
with just my family and friends, and needed a year to recover. That eventful year
provided me with ample opportunities for reflection and reconsideration of priori-
ties, and changed my life irreversibly.

During my illness, management decided that although the topic of my research
was covered by the so-called long range technical objectives of the sector, it was
not of sufficient interest to the company to justify its further incorporation in the re-
search program of the group. However, given on the one hand the progress already
made (80% of the work towards a Ph.D. thesis was already completed according to
the adepts) and on the other hand my aspiration for a scientific career, I was deter-
mined and persisted to finish that work. This placed me for an interesting dilemma.
In order to complete the work in a surveyable time and to be able to perform similar
work in the future, I had to leave Philips and apply for a position at, for example,
a university. However, in order to qualify for a position at a university, such as the
TU/e, I should be in possession of a doctoral degree. I am grateful to both Philips
and the TU/e for granting me the opportunity to complete my thesis by means of
a secondment for a period of a year. Assuming successful, I will subsequently
make a transfer to the academic world, which allows me to stay at the edge of the

1ITEA is an acronym of Information Technology for European Advancement.
2EUROPA is an acronym of End-User Resident Open Platform Architecture.
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unexplored and continue to perform similar work.
In retrospect, I consider it worthwhile to describe the experience gained with

completing the work during my secondment in general, and the spin-offs of that
work in particular. During my secondment, a big gap between my analytical results
and the existing engineering practice at Philips Research became apparent, and I
spent a considerable amount of time closing that gap. The analysis revealed ample
opportunities to improve the existing practice, and turned out to have interesting
spin-offs from an intellectual property perspective as well; see Table 10.1 on page
187.

Acknowledgement
This thesis could not have been written without being granted the opportunity of
a secondment from Philips to the TU/e, and I am greatly indebted to the follow-
ing persons for making that happen, amongst others: Emile H.J. Aarts, my first
promoter, Jaap van der Heijden, head (a.i.) of the former sector Information and
Software Technology of Philips Research, Jean H.A. Gelissen, head of the group
Information Processing Architectures of Philips Research, Johan J. Lukkien, head
of the System Architecture and Networking group of the TU/e, and Suzanne Udo,
head of the Mathematics and Computer Science department of the TU/e. More-
over, I thank Philips Research and the TU/e for funding the printing costs of this
thesis. The work reported upon in this thesis has been partially funded by the
ITEA/EUROPA project [Gelissen, 2001].

Many people have supported my work or contributed to the results presented
in this thesis, and it is a privilege to express my gratitude in print.

First of all, I would like to thank my co-promoter Wim F.J. Verhaegh. He
accepted the role of supervisor as a matter of course long before the certainty of
being allowed to complete this thesis even came in sight. His warm and unique
way of supporting my research has given me the strength to continue and complete
this research. Moreover, he contributed to a considerable extent to this thesis. In
particular, various mathematical proofs would not have their current grace and rigor
without his support, and some lemmas and proofs would either not have existed in
their current form or not at all. He was always willing to discuss subjects, and read
every single letter I wrote.

I am very grateful to Emile H.J. Aarts for adopting me as a Ph.D. student,
and for his confidence in and support of my work, especially during the times my
work was under fire within Philips Research. Moreover, he played a vital role
concerning my secondment. Emile also prevented that I got astray in details and
always brought me back to basic ideas. It was both a pleasure and an honor to have
him as my promoter.



x Preface and Acknowledgement

I am grateful to Jean H.A. Gelissen for his continuous support, especially dur-
ing the eventful period after I dropped out, and the exceptional situation that sub-
sequently arose. He was simply there when I needed him most. Peter D.V. van
der Stok coached me during the period of time I was located at the premises of
Philips Research. Peter convinced me to provide a proper model for the schedu-
lability analysis complementing rate monotonic analysis [Bril & Verhaegh, 2003]
and suggested the usage of intervals. Moreover, he encouraged me to search for a
promoter and to write a thesis. He also pointed me at a vacancy at the TU/e, which
became an important element of the secondment.

I am also grateful to Christian Hentschel. We managed and carried the respon-
sibility of the V-QoS program together and closely co-operated. That co-operation
was not only motivating and inspiring, but also very pleasant. Christian taught
me how to write patents, and alternative ways to write papers and prepare presen-
tations. Moreover, I thank Christian for his constructive comments, support, and
above all his friendship.

I thank Gerhard Fohler, my second promoter, for his encouragements, and feed-
back, for all valuable suggestions for improvements of my thesis, and for introduc-
ing me into the real-time community. Johan J. Lukkien provided a pleasant work-
ing environment in which I could complete my work in peace and quiet. Moreover,
I thank him for the stimulating discussions concerning my research.

As mentioned before, the work described in this thesis has been initiated within
the context of the V-QoS program, being a close co-operation between the scalable
video algorithm (SVA) project and the QoS RM project. I thank all team-members
of that multi-disciplinary program for their co-operation. From Philips Research,
these are Christian Hentschel, Maria Gabrani, Ralph A.C. Braspenning, Rob H.M.
Wubben, Yingwei Chen, Tse-Hua Lan, Zhun Zhong, C. (Kees) C.A.M. van Zon,
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Pãpãlãu. I also thank the team-members from the Departamento de Ingenierı́a
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1
Introduction

This thesis is concerned with real-time scheduling for media processing in soft-
ware in high volume electronics (HVE) multimedia consumer terminals (MCTs),
such as digital TV sets, digitally enhanced analog TV sets, and set-top boxes
(STBs). Media processing in software is performed using powerful programmable
components. In order to be competitive with dedicated hardware solutions, these
programmable components have to be used very cost-effectively. Moreover, soft-
ware solutions should preserve existing qualities of these systems, such as robust-
ness, stability, and predictability. This challenge has been addressed within Philips
Research in a so-called Video-Quality-of-Service (V-QoS) program, and the work
presented in this thesis has been initiated within that context. In this chapter, we
describe the approach taken in that program. It is shown that the approach gives
rise to a problem related to user focus. To resolve this problem, this thesis presents
the novel concept of a conditionally guaranteed budget (CGB), its design and ac-
companying implementation, and complements it with novel and essential means
to analyze systems with CGBs.

1.1 Multimedia consumer terminals
HVE consumer terminals (CTs) are gradually evolving from straightforward termi-
nals of a video broadcast network (TV sets) and a communication network (tele-
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2 Introduction

phones) to interactive multimedia terminals, and beyond that to elements in an
in-home network, or even an ambient intelligent environment [Aarts, Harwig &
Schuurmans, 2001]. In this section, we describe the evolution of CTs to multi-
media consumer terminals (MCTs), and the trend from analog systems to digital
systems, and beyond that to systems where significant parts of the media process-
ing are expected to move from dedicated hardware to software.

In the past four decades, mid-range and high-end TV sets have evolved from
stand-alone, analog hardware systems to digital systems containing megabytes of
embedded software. Digitization of television started with, and to a large extent
still builds on, the digital enhancement of analog standards (e.g. 100 Hz TV). More
recently, the emergence of digital video broadcasting (DVB) gave rise to fully dig-
ital TV sets, and digital STBs that can be combined with existing analog sets. The
digitization of television has clear technical benefits, such as better image and au-
dio quality, more channels, and multi-window TV at moderate additional costs.
Most of the digital signal processing is still performed in hardware, however. The
embedded software in present-day TV sets is mainly in the area of control and
services. Control tasks determine which hardware devices will be on the signal
processing path, and what their settings will be, based on characteristics of the set
and the incoming signal, and, of course, on user inputs. Typical software-based ser-
vices include teletext, on-screen display, and menus. When combined with other
devices, such as a telephone, game console, or a video recorder, a TV set may
provide additional services, such as TV-commerce and personalized teletext (with
a telephone), games (with a game-console), and delayed viewing (with a video
recorder). Figure 1.1 shows an example of an MCT for high-quality video applica-
tions. The MCT may accept input from different types of input sources, and may
have a number of video outputs.

Recent developments aim at new kinds of interactive services that drastically
change the traditional role of a TV set. It is expected that a significant part of the
interactive multimedia services that have evolved on the Internet will be transacted
over the television in the near future [Brunheroto et al., 2000]. In addition, the
TV set (or STB) is expected to become a multimedia platform, which will serve
as a gateway to the Internet [Gran & Scheller, 2000], and may be integrated with
other consumer devices within a home network. New architectures for STBs [Lon-
czewski & Jaeger, 2000] and digital TV sets [Vuorimaa, 2000] explicitly address
support for interactive services. As an example, the ITEA1 project EUROPA2 [Ge-
lissen, 2001] aimed at defining an STB reference architecture based on the DVB-
MHP (multimedia home platform) model, with extended functionality to enable

1ITEA is an acronym of Information Technology for European Advancement.
2EUROPA is an acronym of End-User Resident Open Platform Architecture.



1.1 Multimedia consumer terminals 3

DVD CDx

front end

YC

interface

IEEE 1394

interface

DVB Tuner

Cable

modem

CVBS

interface

VGA

RF Tuner

DVD CDx

front end

YC

interface

IEEE 1394

interface

DVB Tuner

Cable

modem

CVBS

interface

VGA

RF Tuner

Figure 1.1. Multimedia consumer terminals for high-quality video applications
(by courtesy of Maria Gabrani).

next-generation services, such as secure online shopping and banking, based on
multi-modal interaction (MPEG-4, MPEG-21), and secure transactions (cryptogra-
phy). The project closely co-operated with standardization bodies (MPEG, DVB),
and is expected to contribute to the conception of a joint (European) STB architec-
ture that will strengthen the position of the European CE and IT industry. The new
interactive services require that STBs and TV sets, or with a general term multime-
dia consumer terminals (MCTs), become open and flexible, not only in the area of
control and services, but also in the area of media processing. Since openness and
flexibility are typical characteristics of software-based systems, significant parts
of the media processing are expected to move from dedicated hardware imple-
mentations to software implementations on programmable platforms. However,
software media processing is currently more expensive than equivalent processing
on dedicated hardware, and more error-prone. Fortunately, perception is key for
HVE MCTs, and we can therefore fruitfully apply the notion of Quality-of-Service
(QoS), as defined in [ITU-T, 1994].

“The collective effect of service performance which determine the de-
gree of satisfaction of a user of the service.”

System architects can exploit the QoS concept to design systems that make run-
time trade-offs between delivered QoS and consumed resources. Over time, ro-
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bustness has become a basic requirement for CTs. No one accepts a TV to stall
with the message “please reboot the system”. To meet the new challenges (open-
ness and flexibility) and the existing ones (cost-effectiveness and robustness), future
architectures must provide explicitly designed dynamic behavior, explicit manage-
ment of the available resources (including QoS), and stability under stress and fault
conditions.

In the future, the consumer electronics (CE) industry may gradually move in
the direction of ambient intelligence. That concept foresees a world in which the
CE devices are integrated into the background of people’s environment (walls,
clothing), and in which it is possible for any person to have access to any source of
information, communication and entertainment at any place and any time [Aarts,
Harwig & Schuurmans, 2001]. The CE devices that play a crucial role in the ambi-
ent intelligence environment will be based on product platform architectures, like
the ones that are currently being developed for MCTs.

1.2 Media processing in software
Media processing in software enables MCTs to become open and flexible, and
opens the way to use dynamically scalable media functions. Expected advantages
over dedicated single-function hardware solutions include versatile, future proof,
upgradable products, reduced time-to-market for new features, and reuse of hard-
ware and software modules to support product families. In this section, we will
illustrate the resulting business opportunities, briefly discuss the challenges, and
outline the co-operative QoS approach taken in the Video-Quality-of-Service (V-
QoS) research program within Philips Research.

1.2.1 Business opportunities
We will illustrate the business opportunities of media processing in software in
general and scalable media functions in particular by showing how they support
product families [Bril, Gabrani, Hentschel, Van Loo & Steffens, 2001] and how
they can overcome the inherent constraints of platforms for traditional systems
[Hentschel, Bril & Chen, 2002].

Figure 1.2 shows a programmable product family versus algorithm require-
ments. In this figure, the height of a platform illustrates the available resource
capacity, and the height of an algorithm illustrates the resource capacity needed for
operation. Programmable platforms with different resource capacities will exist in
parallel to suit different market segments. Current media processing algorithms
are designed for highest quality at given resource capacity, based on a worst-case
complexity of the media data to be processed. Their resource requirements and
output quality are usually fixed; see the left column of algorithms in Figure 1.2.
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algorithms.

Hence, the number of algorithms allowed to run in parallel is platform dependent
and very limited. As an example, only a subset of the algorithms can run on a low-
end platform simultaneously. A way to get beyond these limitations is to design
scalable video algorithms (SVAs). These may have a kernel, that is not scalable
(dark areas), and a part that is scalable to increase the quality of the output (light
areas); see the right column of algorithms in Figure 1.2. In this way larger subsets
of algorithms can simultaneously run on a low-end platform, albeit at lower quality.

Traditional systems are designed for a specific target functionality at a high
quality; see Figure 1.3. Going slightly beyond that target functionality increases

Cost

Functionality

target limit

traditional

scalable

Functionality

Quality

target limit

traditional

scalablescalable

Figure 1.3. Expected cost-effectiveness and quality trade-off of traditional sys-
tems compared with a scalable approach.

the cost of development or the bill of material significantly. As an example, the
memory or CPU needs of additional functionality may require either an expensive
optimization of the code in order to fit the available resources or an upgrade of
the platform. An approach based on scalable media functions has no such limits.
Instead, given the available resources, the quality depends on the functionality used
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at a given time. Even an upgrade of existing or later installed applications may run
at a very high quality. However, when multiple or complex applications are running
concurrently, the quality may drop depending on the available resources.

1.2.2 Challenges
Given their high volume, MCTs require a low bill of material, and these systems
must therefore be cost-effective. However, compared to dedicated hardware solu-
tions, software solutions are currently expensive in terms of both silicon area as
well as power consumption. Cost-effective media processing in software therefore
requires a high average resource utilization. Because the worst-case and average-
case resource needs of high-quality audio and video applications are typically far
apart, this leads to close-to-average-case resource allocation to applications. The
resulting system will therefore be heavily loaded, and run a high risk of becoming
unstable. Trashing in virtual memory systems is a well know example of unstable
behavior.

The load of an MCT varies dynamically, and on multiple time-scales. The two
main sources of load changes of an MCT are the user and the media data. For a TV
set, examples of the former include starting applications, such as switching from
one channel to another, and video conferencing when a call arrives. Examples of
the latter include changes of the characteristics of the media data, e.g. due to the
interruption of a movie (24 Hz film) by a commercial (50 Hz camera) initiated by
a service provider, and changing computational requirements, e.g. structural load
changes due to motion or shot changes and temporal load changes that happen
continuously. Figure 1.4 shows the decoding times for a sequence of MPEG-2
frames on a Trimedia 1300 (180 MHz) processor [Slavenburg, Rathnam & Dijkstra,
1996], illustrating both temporal and structural load fluctuations. The time-scale of
these load changes range from minutes for application changes (start/stop) to tens
of milliseconds for temporal load changes in computational requirements.

An application running on an MCT can be in a number of different modes.
Each application mode is determined by a set of mode parameters [Bril, Steffens,
Van Loo, Gabrani & Hentschel, 2001; Gabrani, Hentschel, Steffens & Bril, 2001].
Very often, mode parameters are characteristics of the media data. A typical mode
parameter is the video resolution available at the input, e.g. standard definition (SD)
or high definition (HD). These application modes change dynamically, e.g. due to
switching from one source or channel to another, and such a change may cause
major changes in the resource requirements and clear changes in output quality.

High-quality audio and video have stringent real-time requirements. As an ex-
ample, when a video processing application misses a deadline, a picture may not
become available in time, and can therefore not be presented in time. In such a
situation, the system will re-display the previous, i.e. ‘wrong’, picture. Deadline
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Figure 1.4. Decoding times for a sequence of MPEG-2 frames showing both
temporal and structural load fluctuations.

misses tend to come in bursts during periods of heavy load, and without precaution-
ary measures, valuable work may be lost, which is not cost-effective. Moreover,
because deadline misses are perceived as non-quality by a user, display of the‘right’
picture that is processed at a lower quality level is often preferred. Processing video
data at a lower quality when resource needs exceed the allocated resources is a QoS
issue, and we may therefore view real-time behavior as a QoS parameter.

As mentioned in the previous section, QoS is determined by the degree of user
satisfaction, which has to do with perception for high-quality video. As a con-
sequence, only video specialists can make the necessary trade-offs. This will be
illustrated by a number of examples. As mentioned above, the perceived quality
of a picture with a lower quality is often higher than that of a missed deadline.
Similarly, a stream of pictures of a constant lower quality typically has a higher
perceived quality than a stream of a slightly higher average quality but with quality
fluctuations. Moreover, upon a scene or shot change, the human brain typically
needs some time to adjust. A video application may take advantage of this char-
acteristic by temporarily dropping the quality level, e.g. to alleviate overload prob-
lems, without the user’s notice [Wubben & Hentschel, 2003]. Finally, most people
focus on one thing at a time (user focus), and that focus is normally at the center
of the screen. The output of an application with user focus is evaluated differently
by a user than the output of other applications, and thus the application with user
focus should be treated differently with respect to quality. Hence, user focus in-
duces a relative importance of the applications on MCTs. Stable output quality is
a primary quality requirement for the application with user focus.

Replacing dedicated single-function components by shared programmable me-
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dia processing components also introduces the inherent problems of programmable
platforms in the area of high-quality media processing. In particular, sharing of re-
sources is a potential source of interference, not only between media applications,
but also in combination with the overhead involved in control and interrupt pro-
cessing. Without precautionary measures, this interference leads to unpredictabil-
ity, and jeopardizes overall system robustness.

1.2.3 A co-operative QoS approach
Media processing in software for MCTs is required to be cost-effective, while pre-
serving typical qualities of HVE devices, such as robustness, predictability, and
stability. Cost-effectiveness requires that the resources are allocated, provided,
and used effectively, towards the goal of maximizing the overall QoS. Within
Philips Research, this challenge has been addressed by a co-operative QoS ap-
proach involving specialists with complementary expertise and responsibilities
[Bril, Gabrani, Hentschel, Van Loo & Steffens, 2001]. An overview of the ap-
proach is given by Bril, Hentschel, Steffens, Gabrani, Van Loo & Gelissen [2001],
and an extensive presentation is given by Steffens [2002]. The approach combines
application adaptation and QoS-based resource management.

As mentioned above, applications running on an MCT can be in a number
of different modes. Adaptive applications can operate at different quality levels
within an application mode, allowing run-time trade-offs between output qual-
ity and resource usage by controlling the operational quality. A resource esti-
mate is associated with each quality level in each application mode. The appli-
cations are responsible for both effective and efficient resource usage for media
processing. Examples of adaptive applications from the video domain are given by
Hentschel, Braspenning & Gabrani [2001] and from the 3D graphics domain by
Lafruit, Nachtergale, Denolf & Bormans [2000].

The basis of the QoS approach is constituted by a software framework for
QoS-based resource management, that has been developed in a combined re-
search effort by Philips Research and the Departamento de Ingenierı́a de sistemas
Telemáticos/Universidad Politécnica de Madrid (DiT/UPM) [Otero Pérez, Stef-
fens, Van der Stok, Van Loo, Alonso, Ruiz, Bril & Garcı́a Valls, 2003]. That
framework has been designed as a combination of a multi-layer control hierarchy
and a reservation-based resource manager.

The control hierarchy is responsible for effective, dynamically adjusted, re-
source allocation, and for effective use of the allocated resources. Overall effec-
tiveness is to a large extent realized by dynamically maximizing the overall QoS,
using a general (semantically neutral) notion of utility. The optimization is based
on the momentarily available mappings from quality levels to resource needs of the
applications, the utilities of the individual applications, and also takes the relative
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importance of applications into account, using a model similar to the one described
by Lee, Lehoczky, Rajkumar & Siewiorek [1999a]. By selecting a quality level for
an application, the control hierarchy determines the operational setting at which
that application is expected to run. In that respect, our approach differs from tra-
ditional approaches where applications are greedy, i.e. try to execute at the highest
quality as often as possible [Liu, 2000]. The control hierarchy addresses stability
by choosing appropriate time scales for the control layers.

The resource manager is responsible for efficient resource provision. The re-
source manager addresses robustness and predictability by providing guaranteed
resource budgets, which are based on resource reservation. Resource reserva-
tion is a well-known technique in operating systems research [Mercer, Savage &
Tokuda, 1994; Rajkumar, Juvva, Molano & Oikawa, 1998] to improve robustness
and predictability. Moreover, it is recognized as a basis for QoS management [Lee,
Lehoczky, Rajkumar & Siewiorek, 1999b]. It is based on four components: admis-
sion control, scheduling, accounting, and enforcement. When combined properly,
they provide guaranteed reservations. Resource budgets are allocated to so-called
resource consuming entities (RCEs), which are active components consisting of
one or more tasks. Applications consist of one or more RCEs. The resource man-
ager complements resource provision through budgets by mechanisms for spare-
capacity provision. Spare-capacity originates from unused (and reclaimed) reser-
vations (so-called gain time) and from time that has not been allocated by means
of resource reservation (so-called slack time); see also [Audsley, Davis & Burns,
1994].

Currently, only CPU budgets are provided by our resource manager, and only a
rudimentary mechanism for spare-capacity provision has been implemented. The
resource manager is built on top of a commercial-off-the-shelf real-time operat-
ing system (RTOS). The CPU resource reservation is based on the fixed-priority
scheduling (FPS) model used by that RTOS, and the admission test is based on
rate monotonic analysis (RMA). The inspiration for the implementation of budgets
was found in papers written by Audsley, Burns, Richardson & Wellings [1993] and
Sprunt, Sha & Lehoczky [1989]. Since we strive for a processor utilization that
exceeds existing utilization bounds as derived by Liu & Layland [1973] and Bini,
Buttazzo & Buttazzo [2001], the implementation of our admission test is based on
an exact schedulability test as described by Joseph & Pandya [1986] and Audsley,
Burns, Richardson & Wellings [1991]. The admission test assumes a basic real-
time scheduling model, as described by Liu & Layland [1973]. A CPU resource
reservation based on earliest deadline first (EDF) is currently under investigation.

The guaranteed CPU budgets provide temporal isolation between applications.
However, in order to obtain robustness, the applications have to contribute as well.
Due to the close-to-average-case resource allocation, and given the dynamic load
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fluctuations as depicted in Figure 1.4, applications will be faced with temporal (or
stochastic) and structural (or systematic) overloads. The resulting robustness prob-
lems have to be resolved by the applications themselves. Stated in other words,
the applications have to get by with their budget. To this end, an adaptive applica-
tion trades output quality and resource usage, by controlling its operational quality
level. Such application-specific control resides at the lowest layer of the control
hierarchy. Wüst, Steffens, Bril & Verhaegh [2004] describe QoS control strategies
for high-quality video processing. They assume a single-threaded, soft real-time,
asynchronous video processing task, that works ahead to even out the load [Sha,
Lehoczky & Rajkumar, 1986]. Lan, Chen & Zhong [2001] and Lafruit, Nachter-
gale, Denolf & Bormans [2000] describe methods to regulate varying computa-
tional load for high-quality video decoding and for 3D decoding and rendering,
respectively, assuming synchronous processing. A structural overload of an ap-
plication may require a re-optimization at a higher layer of the control hierarchy.

QoS-based resource management is semantically neutral, and the interface be-
tween the applications and QoS-based resource management is therefore also de-
fined in semantically neutral terms. The notions of utility, quality level, and RCE
are examples of such terms. Having a unified QoS measure for QoS-based re-
source management, such as utility, allows the integration of applications of dif-
ferent domains into a single system. On the other hand, the applications may use
application-domain specific measures for QoS adaptation. Obviously, specific re-
quirements of applications may result in dedicated mechanisms provided by QoS
resource management, but these mechanisms are not application-domain specific
and are sufficiently general to be applicable in other contexts as well. This is il-
lustrated by the conditionally guaranteed budgets (CGBs) presented in this thesis.
CGBs are implemented as a general mechanism at the level of the resource man-
ager. Although CGBs have been conceived to solve a user-focus problem, they can
also be applied in completely different contexts, as will be shown in this thesis.

The basic approach has been successfully applied to single processor systems
for scalable video [Hentschel, Bril & Chen, 2001; Hentschel, Bril, Chen, Braspen-
ning & Lan, 2003] and scalable 3D graphics [Van Raemdonck, Lafruit, Steffens,
Otero Pérez & Bril, 2002], and it is believed that extensions can be applied to
distributed systems.

Each of the basic ingredients of the approach is known, and the same holds for
the combination of some ingredients. As examples, the combination of applica-
tion adaptation and resource reservation has also been described in [Foster, Roy &
Sander, 2000; Hamann, Löser, Reuther, Schönberg, Wolter & Härtig, 2001], and
hierarchical control for multimedia may already be found in [Uykan, 1997]. How-
ever, it is believed that we were among the first to combine these ingredients into a
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single approach in general and for high-quality video processing in particular.

1.3 Informal problem statement
Multi-layer control combined with guaranteed CPU budgets, and close-to-average-
case resource allocation gives rise to a problem related with user focus. Because
structural load changes and temporal load changes have different time scales, they
are addressed at different layers in the control hierarchy. Upon a structural load
increase of an application and without precautionary measures, that application
has to face the overload. To get by with its budget, the application will decrease
its operational quality level, and the quality of its output will therefore decrease.
For stability reasons, the control layer that addresses structural load changes is
triggered when it is sufficiently certain that the overload was indeed the result of
a structural load increase. The trigger may subsequently result in a re-allocation
of budgets, and a request to the resource manager to perform a so-called budget
configuration change (BCC). When the application that suffered the load increase
had user focus, the system may aim at restoring its output quality at the cost of the
output quality of other applications. In summary, upon a structural load increase of
an application with user focus, its output quality has a dip. In the remainder of this
document, the problem of the temporary quality dip in the output of the user focus
application will be referred to as the user-focus problem.

Below, we will first describe the notion of user focus and the user-focus prob-
lem in more detail. Next, we show that the user-focus problem is a specialization
of a more general problem. Although we primarily aim at resolving the user-focus
problem in this thesis, we are inclined to believe that our solution equally well ap-
plies to its generalization. The section is concluded with a sketch of our solution.

1.3.1 User focus
A TV set may support a variable number of windows, such as a main window
(showing, for example, a movie) and one or more secondary windows, e.g. PiP,
videophone, or a web-browser. The user’s focus is (typically) on one thing at
a time, but changes dynamically from one window to another. Windows having
user focus are evaluated differently by a user than other windows, and thus the
applications with user focus should be treated differently with respect to quality.
Hence, user focus induces a relative importance of the applications of consumer
terminals. This relative importance is taken into account during the overall system
optimization, and a change of user focus requires a re-optimization. Stable output
quality is a primary quality requirement for the application with user focus.
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1.3.2 User-focus problem
Consider two applications that are running in a fully loaded system. The outputs of
both applications are visible to the user. The output of one application (identified
by UF) has user focus, whereas the output of the other application (identified by

� UF) does not have user focus. In addition to these two applications, there may be
other, so-called neutral, applications. For ease of presentation, we restrict ourselves
to UF and � UF in this section.

Problematic behavior
Figure 1.5 visualizes the user-focus problem by showing the load induced by the in-
put data (lines a and b) and the perceived output quality of both applications (lines
c and d) as a function of time. When a sudden increase of the induced load of
UF occurs (at time tI), UF faces a structural overload situation due to the average-
case resource allocation. The application-specific control of UF may detect the
structural overload and subsequently signal the problem to a system controller at a
higher layer in the control hierarchy. Next, the system determines the new optimal
quality levels at which UF and � UF will run. We assume that the quality level
for UF remains the same. Thus, after a certain reaction time (from tI to tA), a so-
called mode change is initiated. The quality and the budget of � UF are reduced,
in this order, and, subsequently, the budget of UF is increased. At time tS, a new
equilibrium is reached. In the mean time (from tI to tS), the perceived quality of
UF’s output is degraded, because UF’s resource budget is temporarily insufficient
to cope with the increased load, and UF has to get by on its budget, which neces-
sarily results in some form of quality reduction at the output. Thus, the perceived
quality at the output of UF is temporarily reduced, even though the set quality level
for UF remains the same.

time

Load

Quality

¬UF

tI tD tS
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d
¬UF

UF
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tA

Figure 1.5. Problematic behavior upon a structural load increase of the user-focus
application UF.
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Figure 1.6. Desired behavior upon a structural load increase of the user-focus
application UF.

Desired behavior
In Figure 1.6, the desired behavior is shown. UF’s perceived output quality is
not affected by the sudden load increase, whereas the quality of � UF is degraded
smoothly. There are two major difficulties in obtaining this desired behavior with
average-case resource allocation.

� Very quick reaction required � cuts through layers.
The desired stable output quality for UF can only be achieved if the addi-
tional resources become available instantaneously. However, detecting the
structural load change (from tI to tD), determining the new mode (from tD to
tA), and effectuating the new mode (from tA to tS) takes time. For stability
reasons, it is undesirable to react quickly upon a load increase without be-
ing sufficiently certain that the overload was indeed the result of a structural
load increase. Even when the detection can be done at the moment or before
the overload appears (i.e. when tD

�
tI), a sufficiently quick reaction to sup-

port the desired behavior for UF can only be achieved when the new mode
is anticipated and the BCC can be effectuated instantaneously. Hence, the
user-focus problem can be traced down to two main complementary causes.

1. UF is confronted with a structural resource shortage.
After the (structural) load increase, the UF has insufficient resource
capacity to meet the requirements of the set quality level. This results
in an overload situation in which UF has to get by on its budget, which
in turn results in a degradation of UF’s perceived output quality.

2. The reaction time is too long.
In addition to the time needed to detect the structural overload, the
system needs time too to determine the new mode and subsequently
effectuate it. The total reaction time is too long in the sense that it
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gives rise to the dip in the quality of the output of UF.
� Smooth degradation of � UF may not be feasible.

To achieve a smooth transition for � UF, the quality of � UF must be reduced
first, followed by a reduction of the budget of � UF. However, in order to
address the needs of UF, the resources allocated to � UF will be taken away
instantaneously, and the quality level of � UF will be adjusted after a certain
reaction time. In the mean time, � UF will have to get by on its remaining
resources, and the perceived quality very much depends on � UF’s ability to
do so. In particular situations, the behavior shown in Figure 1.6 may not be
feasible, and an overshoot of the perceived quality reduction of � UF cannot
be prevented; see Figure 1.7. The behavior as exhibited in Figure 1.7 is
nevertheless preferred above that of Figure 1.5, because a dip in the quality
of the output of � UF is presumed to be less problematic than a dip in the
quality of the output of UF.
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Figure 1.7. Quality degradation with overshoot for � UF (line d).

1.3.3 A generalization
The distinguishing characteristics of the problem described in this section are the
conflicting requirements of the need for a stable output quality of an application in
the presence of a structural load increase on the one hand and of a close-to-average
resource allocation for cost-effectiveness reasons on the other hand. The notion
of user focus specializes this general problem towards a problem of maintaining a
stable output for an application with user focus at the cost of the perceived quality
of another (visible) application without user focus. Obviously, visibility of the
outputs of applications is not an issue for the general problem. As an example, it
may be more important to maintain a stable output quality of an application that
records video on disk than to maintain a stable output quality of an application
providing visible, but highly volatile, output on a screen. Rather than using UF and

� UF, we will therefore use the more general terms MIA and LIA to denote a more
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important application and a less important application, respectively. Although the
term user-focus problem is too specific for the general problem addressed in this
thesis, we will remain using this term for ease of presentation and for historical
reasons.

1.3.4 A sketch of our solution
In essence, our solution anticipates a structural load increase for MIA. To this end,
MIA receives an additional budget, a so-called budget margin, to accommodate the
load increase. This budget margin of MIA can be accommodated by giving LIA a
lower budget. To gain back on the cost-effectiveness loss and to compensate LIA
for its budget loss, LIA receives an additional budget with a conditional guarantee.
This so-called conditionally guaranteed budget (CGB) is available to LIA when
MIA does not use its budget margin, and is based on that margin. To facilitate
an instantaneous BCC we present the concept of in-the-place-of CGB provision.
According to this concept, the CGB is provided to LIA at the period and phasing
of the budget of MIA and when that margin would have been provided to MIA.
In order to determine the worst-case amount of CGB that can be conditionally
guaranteed to LIA, we therefore need to know when that margin becomes available.
To this end, we need the novel notion of occupied times, amongst others. Our
solution is explained in more detail in Chapter 7, and the corresponding analysis is
the topic of Chapter 8.

1.4 Contributions
To resolve this user-focus problem, we refine the resource reservation technique
as currently supported by existing resource kernels. To this end, we present the
novel concept of a conditionally guaranteed budget (CGB). Unlike a normal bud-
get, which has an absolute guarantee, a CGB can only be allocated with a condi-
tional guarantee based on a conditional admission test. To distinguish a normal
budget from a CGB, we sometimes use the term absolutely guaranteed budget
(AGB). CGBs are a mechanism at the level of the resource manager. Because the
resource reservation of our existing resource manager is based on an FPS model,
so is the implementation of our CGBs, and we therefore present a conditional ad-
mission test based on RMA. For this admission test, we need various extensions
to RMA. In the remainder of this section, we describe the two main topics of this
thesis, CGBs and the extensions to RMA, in more detail. We conclude this section
with an overview of our results that have already been published.

1.4.1 Conditionally guaranteed budgets
CGBs are a mechanism at the level of the resource manager, that facilitate in-
stantaneous BCCs. Combined with load increase anticipation, CGBs can be ex-
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ploited by policies in the control hierarchy to improve the cost-effectiveness of the
reservation-based system using controlled quality improvements. Being a general
mechanism, CGBs can be used in other contexts as well.

This thesis presents two main variants of CGBs, weak CGBs and strong CGBs,
where the terms weak and strong refer to the conditional guarantee. Weak CGBs
are aimed at situations where a structural load increase can not be detected in time.
On the other hand, strong CGBs are aimed at situations with timely detection, in
which applications voluntarily restrain their budget use to a budget without a bud-
get margin and explicitly decide to use their budget margin when needed. More-
over, strong CGBs provide support for asynchronous applications to voluntarily
restrain their budget use, as explained in Chapter 7. That chapter also presents
the concept of in-the-place-of CGB provision, that enables an instantaneous BCC,
and can be applied for both variants of CGBs. Accompanying implementations for
CGBs for the CPU are described as extensions to the existing resource manager.
The presentation also covers budget accounting and budget enforcement for CGBs.

We sketch how our design and implementation of CGBs can be complemented
with in-the-place-of gain-time provision. The inspiration for in-the-place-of gain-
time provision was found in [Caccamo, Buttazzo & Sha, 2000].

1.4.2 Extensions to rate monotonic analysis
For the admission test for CGBs, we need various extensions to RMA. In particular,
we need best-case response times next to worst-case response times, and the novel
notion of (best-case and worst-case) occupied times. Best-case response times and
best-case occupied times are based on a notion of optimal instant.

The extensions to RMA can be applied in other contexts as well. In particu-
lar, it will be shown how best-case response times can be applied in the context
of jitter analysis, and how worst-case response times and occupied times derived
for fixed-priority preemptive scheduling (FPPS) can be applied to determine exact
worst-case response times for fixed-priority scheduling with deferred preemption
(FPDS).

Finally, we improve the efficiency of exact admission tests for situations where
response times and occupied times are needed. To this end, we analyze the effi-
ciency of determining best-case and worst-case response times and occupied times,
propose alternative initial values for the iterative procedures to determine the re-
sponse times and occupied times, and analyze their merits.

1.4.3 Published results
Various preliminary results of this work have already been published. The user-
focus problem and a solution in terms of weak CGBs has been presented by Bril &
Steffens [2001]. They also provide a description of a straightforward implementa-
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tion as an extension to the existing resource manager. An initial description of the
in-the-place-of design for CGBs has been given by Otero Pérez, Bril & Steffens
[2001]. They also describe a first implementation of that design for weak CGBs,
and initial analytical results based on best-case and worst-case analysis, including
the need for and an intuitive description of occupied times. Best-case response
times have been described by Bril, Steffens & Verhaegh [2001] and Bril, Steffens
& Verhaegh [2004], including their application in the context of jitter analysis. A
description how worst-case response times and occupied times derived for FPPS
can be applied to determine exact worst-case response times for FPDS is presented
by Bril, Verhaegh & Lukkien [2004]. Finally, efficient calculations of response
times and occupied times and alternative initial values for the iterative procedures
are the topic of papers written by Bril, Pol & Verhaegh [2002] and Bril, Verhaegh
& Pol [2003].

1.5 Related work
Our work aims at resolving the user-focus problem. The notions of user focus and
relative importance have also been recognized by others, e.g. [Mercer, Savage &
Tokuda, 1994; Ott, Michelitsch, Reininger & Welling, 1998; Lee, Lehoczky, Ra-
jkumar & Siewiorek, 1999a]. Huang, Wan & Du [1998] introduced the related
notion of criticality to capture the semantics of application importance in the con-
text of mission-critical multimedia applications. The period transformation method
described by Sha, Lehoczky & Rajkumar [1986] can be used to ensure that the pri-
ority of a task is also an accurate statement of its relative importance. That method
has been conceived to make RMS applicable to transient overloads. The extension
of the interpretation of relative importance with load increase anticipation has not
been addressed in the literature before.

Our work aims at maintaining a stable output quality for a more important
application upon a structural load increase, optionally at the cost of reducing the
output quality of a less important application, by dynamically changing resource
provisions. Conversely, the work reported upon by Wüst & Verhaegh [2004] aims
at maximizing the perceived quality for fixed resource budgets.

Our work started from an existing resource manager, the so-called budget
scheduler. This manager still assumes a basic real-time scheduling model as de-
scribed by Liu & Layland [1973]. Many restrictions of that basic model have
been lifted by subsequent work. Summaries of results are given by Burns [1991],
Lehoczky, Sha, Strosnider & Tokuda [1991], and Sha, Klein & Goodenough
[1991], and an historical perspective into the development of FPPS (up to the
end of 1993) is given by Audsley, Burns, Davis, Tindell & Wellings [1995]. Al-
though the budget scheduler could be enhanced to cover extensions of that basic
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model, there was no immediate cause justifying such enhancements. What’s more,
the support for aperiodic and sporadic tasks provided by a previous version of
the budget scheduler is not prolonged in the existing budget scheduler. Most of
the analysis presented in this thesis is therefore also confined to a basic real-time
scheduling model and excludes extensions, such as sporadic tasks [Mok, 1983], ar-
bitrary deadlines [Lehoczky, 1990; Tindell, 1992], aperiodic tasks [Sprunt, Sha &
Lehoczky, 1989], task interaction [Sha, Rajkumar & Lehoczky, 1990; Baker, 1991]
and blocking [Audsley, Burns, Richardson, Tindell & Wellings, 1993], precedence
constraints and tasks with varying priorities [González Harbour, Klein & Lehoczky,
1994; Groba, Alonso, Rodrı́ques & Garcı́a Valls, 2002], and time-offsets [Tindell,
1994; Palencia & González Harbour, 1998; Mäki-Turja & Nolin, 2004].

In the remainder of this section, we compare the two main topics of our work
with work presented in the literature.

1.5.1 Conditionally guaranteed budgets
We compare CGBs with related work along different axes. The first axis is the
general approach of AGBs and mechanisms for spare-capacity provision. Lipari
& Baruah [2000] present an algorithm to schedule reservations that is able to effi-
ciently reclaim gain time, and is, generally speaking, fair. The reservation model
described by Rajkumar et al. [1998] distinguishes three different types of reserva-
tions (i.e. hard, firm, and soft) based on the way they compete for spare capacity.
Budget sharing for overrun control, as described by Caccamo et al. [2000], is
another way to allocate spare capacity. The primary goal of their spare-capacity
allocation algorithm is to improve the robustness of a system. CGBs are (very) dif-
ferent from AGBs and mechanisms for spare-capacity provision. They differ from
AGBs by being inherently conditional as expressed in the (conditional) admission
test. They differ from mechanisms for spare-capacity provision by their very na-
ture of being budgets, having an admission test and being enforced. CGBs may be
viewed as a refinement of the reservation models currently supported by existing
resource kernels.

The second axis is mode change protocols. In existing mode change protocols,
such as described by Tindell, Burns & Wellings [1992], an ‘old’ mode version of
an application is allowed to terminate gracefully. Although a desirable property,
a smooth degradation of the quality of LIA is not a requirement for a solution to
the user-focus problem, and is not always feasible either. The work described by
Sha, Rajkumar, Lehoczky & Ramamritham [1989] and Tindell, Burns & Wellings
[1992], seeks to guarantee a priori the timing constraints of all tasks (or budgets)
across the change from one mode to another. Although the scheduling mechanism
for CGBs warrants the guarantees of AGBs, the timing constraints of CGBs are
only conditionally guaranteed. To accommodate a stable output quality of MIA as
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the primary requirement, CGBs facilitate instantaneous BCCs. Such changes can
be accommodated by applying the concept of in-the-place-of resource provision
for CGB provisioning. However, this can result in the withdrawal of a CGB in the
midst of its provision upon such a change, as described in Chapter 7.

The third axis is concerned with servers. The resources of existing servers
for fixed priority scheduling, such as those described by Sprunt, Sha & Lehoczky
[1989], either become available periodically or sporadically. In contrast, a CGB
becomes available with (absolute) jitter when in-the-place-of CGB provision is
applied, as explained in Chapter 7.

The notion of a CGB has not been addressed in the literature before.

1.5.2 Extensions to rate monotonic analysis
Lower bounds for best-case response times have been presented by Palencia
Gutiérrez, Gutiérrez Garcı́a & González Harbour [1998] and Kim, Lee, Shin &
Chang [2000], and applied to reduce jitter estimations. Exact best-case response
times were conceived independently by Redell & Sanfridson [2002], including
their application in the context of jitter analysis. We are inclined to think that
the proofs presented in this thesis are more rigorous than those given by Redell
& Sanfridson [2002]. In particular, we uniquely arrive at the recursive equation
for best-case response times, whereas Redell & Sanfridson [2002] derive two, in
our view, essentially different equations and subsequently select the one with the
best characteristics. The intuition for worst-case occupied times may already be
found in a paper by Thuel & Lehoczky [1994]. However, the notion of worst-case
occupied time and a dedicated recursive equation with accompanying iterative pro-
cedure to determine its value are left implicit in that paper. Best-case occupied
times have not been addressed in the literature before. Moreover, we are not aware
of any publication showing that the duality of the various best-case and worst-case
notions is reflected in the lemmas and theorems and their proofs.

The efficiency of an exact schedulability test has been the topic of many pa-
pers, see [Bini & Buttazzo, 2002] for a recent example. Because we need response
times and occupied times for our analysis, we studied the efficiency of calculating
those values, and proposed alternative initial values for the iterative procedures.
Though conceived independently, the alternative initial value to determine worst-
case response times was already discovered much earlier and presented by Sjödin
& Hansson [1998] and Sjödin [2000]. Though similar in nature, the initial val-
ues for best-case response times have not been reported in the literature before.
Moreover, application of the initial values to determine occupied times is new.
Our analysis of the efficiency of determining response times and occupied times
presents novel insights, and refines earlier conclusions drawn in the papers men-
tioned above.
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This thesis provides a conjecture for the novel notion of an ε-critical instant
and presents equations to determine exact worst-case response times for FPDS and
arbitrary phasing. Worst-case response times for FPDS have been addressed by
Burns [1994], Burns & Wellings [1997], Burns [2001], and Lee et al. [1998]. We
show that existing approaches are either pessimistic or optimistic, hence not exact.

As mentioned before, we assume a basic real-time scheduling model, and our
extensions to RMA therefore only complement basic analysis.

1.6 Thesis outline
This thesis is organized as follows. Chapter 2 elaborates on the context of the work
presented in this thesis, by giving a circumstantial description of the QoS approach
to media processing in software.

Chapters 3 till 6 are concerned with FPPS. Chapter 3 introduces real-time
scheduling and presents our model for FPPS. The notions of optimal instant, best-
case response time, and best-case start time are also introduced in this chapter, and
shown to be duals of their worst-case equivalents. Worst-case analysis is the topic
of Chapter 4. It recapitulates the notion of critical instant and a recursive equation
for worst-case response times and an associated iterative procedure to determine
them. The notion of worst-case start time is also addressed in this chapter, and its
generalization worst-case occupied time. Best-case analysis is the topic of Chap-
ter 5. Together, these latter two chapters provide a basic set of recursive equations
with associated procedures for analysis. Chapter 6 addresses the efficiency of the
iterative procedures to determine response times and occupied times.

Chapters 7 and 8 concern CGBs. Chapter 7 presents the concept of CGBs,
and explains how CGBs solve the user-focus problem. Next, BCCs are analyzed,
and the concept of in-the-place-of resource provision is presented as a means to
accommodate instantaneous BCCs. Challenges for the design and implementation
of CGBs are illustrated by means of examples, and various options and alternative
solutions are presented as extensions of the existing budget scheduler. Given the
variety of different options, this chapter has an explorative character, and is more
engineering rather than mathematically oriented. Whereas Chapter 7 addresses the
mechanism for scheduling CGBs, Chapter 8 provides the analytical foundation for
the corresponding admission test of CGBs based on Chapters 3 till 5.

Chapter 9 presents two further case studies, showing how the techniques pre-
sented in Chapters 4 and 5 can be applied to analyze systems with jitter, and to
arrive at exact worst-case response times for FPDS.

Finally, we conclude this thesis in Chapter 10.



2
Media Processing in Software

In this chapter, we consider media processing in software for high-volume elec-
tronics (HVE) multimedia consumer terminals (MCTs), and elaborate on the co-
operative QoS approach taken within the V-QoS program in Philips Research.
Apart from elaborating on the context of the work presented in this thesis, this
chapter also provides a brief description of the existing resource manager, the so-
called budget scheduler, which serves as the basis for our implementation of CGBs,
and discusses the need for on-line calculations of exact schedulability tests.

We start with a comparison between media processing in present-day CTs and
media processing in software in Section 2.1. It is shown in that section how a
QoS approach can alleviate the problem of additional costs of media processing
in software. Section 2.2 presents a demonstrator that has been built within V-QoS
to show the feasibility of the QoS approach. The next sections describe the two
main pillars of our approach, being adaptive applications and QoS-based resource
management. This chapter is concluded with a brief description of the budget
scheduler, in Section 2.5. This latter section includes a discussion on the need for
on-line calculations of response times and occupied times as part of the evaluation
of an admission test.

21
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2.1 Dedicated components versus programmable components
As mentioned in Chapter 1, CTs are heavily resource-constrained, with a high
pressure on silicon cost and power consumption. Compared to dedicated single-
function components, programmable components are currently expensive, both in
cost and power consumption. In this section we will show that this problem can be
alleviated by sharing programmable components between functions, and by mak-
ing these functions dynamically scalable. Our comparison is kept simple, and only
meant for illustration purposes. The interested reader is referred to [Jaspers, 2003]
for an in-depth discussion of trade-offs to be made during architectural design of
video processing systems.

2.1.1 Dedicated single-function hardware components
Figure 2.1 shows the basic architecture of a high-end TV, with analog TV input,
a standard decoder for both PAL and NTSC, and a dedicated IC for picture im-
provement (PICNIC; see [De Haan, 2000] Section 2.2). Figure 2.2 shows the same
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Figure 2.1. Basic hardware architecture of a high-end TV (by courtesy of Egbert
G.T. Jaspers).

basic architecture, but extended with components for TXT, picture improvements
for PAL (see [Hentschel, 1998] Chapter 2), natural motion (based on the FALCON
IC; see [Lippens et al., 1996]), picture-in-picture (PiP) based on analog TV input
(CVBS), digital audio (NICAM), and digital TV input (MPEG). Note that each
additional feature requires additional, dedicated components.

2.1.2 Programmable components
Rather than requiring additional dedicated, single-function components for each
additional feature, media processing in software enables additional features by
means of sharing programmable components. In this section, we distinguish
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Figure 2.2. Hardware architecture of a high-end TV with extended functionality
(by courtesy of Egbert G.T. Jaspers).

three stages to provide more functionality and/or better quality using shared pro-
grammable components: flexibility, scalability, and QoS. Software flexibility al-
lows mid-range and low-end products to be in a number of different modes of
operation, with different functionality. Scalable media functions extend flexibil-
ity by enabling the provision of high-end functionality in mid-range and low-end
products, albeit at a lower quality. Scalability may be further enhanced by optimiz-
ing the overall perceptual quality at run-time and supporting seamless switching
between modes. The term QoS relates to this enhanced form of scalability.

We will consider these three stages in more detail below. This section is con-
cluded by relating these stages to the various kinds of diversity as supported by a
software component-based approach.
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Flexibility
With flexibility, a system can be in a number of different modes of operation, with
different functionality, e.g. NTSC with picture improvement, or ATSC (digital TV
input). Reconsidering Figure 1.2, not all fixed software algorithms can be run
simultaneously on the low-end platform. Figure 2.3 shows three different modes
of operation for the low-end platform, each providing a different subset of high-
quality functionality.
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Figure 2.3. Flexibility on a low-end platform, allowing different modes that each
provide a different subset of high-quality functionality.

Scalability
Whereas single-function hardware components are generally designed to provide
a fixed quality of the output, based on worst-case complexity of the media data
to be processed, software functions can be designed to provide different levels
of quality, matching the available resources. Scalable media functions make it
possible to provide high-end functionality on mid-range and low-end platforms,
albeit at a lower quality. With scalability, a system can allow for a combination of
functionalities on a platform that normally would not have sufficient resources. As
an example, the flexible TV set mentioned above can now show an ATSC input in
its main window, and an NTSC input in a small PiP window at the same time, by
reducing the resource usage, and hence the quality, for the main window. Given
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Figure 2.4. Scalability on a low-end platform.

the scalable versions of applications shown at the right-hand side of Figure 1.2, on
the low-end platform, for instance, algorithm 3 can be combined with high-quality
algorithm 1, or with low quality algorithms 1 and 4; see Figure 2.4.
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Figure 2.5. QoS on low-end platform.

Quality of Service
QoS enhances scalability, by optimizing the overall QoS of the system at run-time
and supporting seamless switching between different modes of operation. In the
previous example, when a user opens a PiP window, the selection of the qualities
for the main window and the PiP window is optimized towards overall QoS, and
the quality of the main window is reduced smoothly to free the necessary resources
for the PiP window. This is shown is shown in Figure 2.5. The admission of
algorithm 4 is requested in the initial situation. The system first determines the
optimal quality levels of the algorithms at which the new mix will be run. The
new quality levels are subsequently effectuated. Starting from the initial situation,
the quality of algorithm 1 is reduced smoothly. Once the necessary resources for
running algorithm 4 at low quality are freed (the transitory situation), algorithm
4 can be started at low quality as a next step (yielding the final situation). When
algorithm 4 is terminated at a later moment in time, the available resources may
again be allocated to algorithm 1, optimizing QoS and returning to the initial state.

To support seamless switching between modes for QoS, the adaptive appli-
cations and the software framework have to complement each other. The applica-
tions are responsible for smooth transitions between quality levels and the software
framework must ensure that the applications get the necessary resources to do so.

Relation to a software component-based approach
Up to now we considered platforms and applications with no reference to software
components. However, by viewing (subsets of) applications as components, we can
relate our examples to the various kinds of diversity as supported by, for example,
Koala [Van Ommering, 1998]. The different modes of operation as supported by
flexibility (see Figure 2.3) may be viewed as structural diversity. The additional
modes of operation as supported by scalability (see Figure 2.4) may be viewed
as internal diversity of applications 1 and 4. However, the run-time optimization
of the overall quality and the run-time requirements posed on the transitions be-
tween different modes as supported by QoS (see Figure 2.5) are complementary to
a component approach.
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Figure 2.6. Application execution model of the demonstrator.

2.2 Demonstrator
To show the feasibility of our QoS approach and to test the concept, a demonstrator
has been built within V-QoS, using a Trimedia 1300 (180 MHz) processor. The
demonstrator shows that an application can be added to a fully loaded terminal,
and illustrates basic stability during mode changes and robustness upon overloads.
We only briefly describe the demonstrator in this section, and refer the interested
reader to [Otero Pérez & Nitescu, 2002; Hentschel, Bril, Chen, Braspenning &
Lan, 2003] for more information.

2.2.1 Application execution model
Figure 2.6 depicts an application execution model of the demonstrator, taken from
[Otero Pérez et al., 2003] and first presented by Hentschel, Bril, Chen, Braspenning
& Lan [2002]. Remember that resource budgets are allocated to resource consum-
ing entitys (RCEs). Moreover, an application consists of one or more RCEs, and
an RCE consists of one or more tasks. The figure contains five RCEs constituting a
set of media applications; three single-RCE user-applications, main, pip, and disk,
and two independent RCEs, mixer and digitizer, that belong to the non-scalable
supporting infrastructure. Note that an RCE may contain multiple tasks, and that a
task may, but need not, be scalable.

The application main takes an MPEG-2 stream with standard resolution (SD,
i.e. 720 pixels by 576 lines) as input and provides an audio stream and an SD video
stream for a main window as output. The scalable MPEG-2 decoder of main is
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Figure 2.7. Main constituents of the demonstrator.

described by Peng [2001] and Zhong, Chen & Lan [2002], and details on the scal-
able sharpness enhancement algorithm are presented by Hentschel, Braspenning &
Gabrani [2001]. The analog video input stream from the camera, which also has
standard resolution, is digitized before being presented to the applications pip and
disk. The application pip provides a video stream in QCIF format (i.e. 180 pixels
by 144 lines) as output for a PiP window. The application disk scales the video in-
put down from SD-format to CIF format (i.e. 360 pixels by 288 lines), and records
video in MPEG-1 format on disk.

The demonstrator can run in a number of different modes. A first mode pro-
vides only main, a second mode provides main and pip, and a third mode provides
all three applications. In both the first and second mode, the scalable algorithms
can run at their highest quality levels for most of the time. In the third mode, the
applications are only able to provide smooth output when all scalable algorithms
are running at their lowest quality levels.

2.2.2 Main constituents
Figure 2.7 depicts the main constituents of the demonstrator. This diagram was
a result of discussions between experts from the high-quality video domain and
system software specialists, amongst others. A variant of this diagram that also
covers 3D graphics has been presented by Van Raemdonck, Lafruit, Steffens, Otero
Pérez & Bril [2002].

The application part consists of a strategy manager and a number of RCEs.
An application consists of a set of interconnected RCEs. As shown in Figure 2.6,
an RCE may contain multiple media processing components. The system part is
composed of a resource manager and a quality manager.

The strategy manager and quality manager cooperate to determine the preferred
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quality settings and the budgets for the RCEs. The strategy manager collects in-
formation about resource estimates for all quality levels and provides a strategy
for the overall quality optimization of a running application. The strategy manager
deals with application domain semantics. The quality manager, on the other hand,
works with a general (semantically neutral) notion of utility. The quality manager
optimizes the system utility based on the utilities of the individual applications, the
relative importance of these applications and their momentary available mapping
from quality level to resource needs. It also starts and stops applications. For il-
lustration purposes, the demonstrator contains a means to manually override the
settings of the quality manager.

In the demonstrator, the quality manager is implemented as a simple optimiza-
tion function that maximizes the system utility given the quality levels and the
resource estimates of the active RCEs. The strategy manager assumes a fixed set
of applications, and contains a look-up table that determines the quality settings of
the scalable tasks for each mode.

2.2.3 Evaluation
Mode 3 shows that an application (disk) can be added to a consumer terminal that
is already fully loaded (mode 2), albeit at a lower quality of all applications. The
stability of the system was illustrated not only during mode changes but also during
normal operation; none of the applications crashed or had to be terminated. Ro-
bustness upon overload was illustrated by means of a manual override in mode 3
of the quality setting of the application main. Although the visual quality of main
decreased due to the overload situation and interrupts of the audio were clearly
noticeable, main was able to get by with its budget. This was realized by de-
fault degradation techniques of the MPEG-2 decoder, such as skipping frames for
video. The other applications were not affected, illustrating the temporal isolation
between applications provided by the CPU budgets.

2.3 Application adaptation
In this section, we consider application adaptation, being one of the two pillars of
our co-operative QoS approach. Focus of our V-QoS program has been on the high-
quality video domain, and we start with a motivation for that focus in Section 2.3.1.
We subsequently describe QoS parameters for high-quality video in Section 2.3.2,
and compare them with those from other types of media processing. Section 2.3.3
presents an overview of scalable video processing. Finally, QoS control strategies
for high-quality video processing are briefly described in Section 2.3.4.
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2.3.1 Focus on high-quality video
The basic media in MCTs are high-quality audio and video. If the basic media
processing functions are scalable, other media processing functions can be added
at little or no extra cost. Scaling audio is less important than scaling video, for
two reasons. Firstly, combined with lower quality audio (e.g. mono), video is per-
ceived at lower quality. Hence, audio should not be scaled. Secondly, high-quality
audio (e.g. multichannel) consumes just a fraction of the resources compared to
high-quality video. Hence, scaling audio hardly contributes to cost-effectiveness.
The challenge for multimedia QoS for CTs is in finding a QoS approach that can
primarily be applied to high-quality video, and also supports other media, such as
3D graphics. The main focus of the V-QoS program has therefore been on QoS for
high-quality video.

2.3.2 QoS parameters for high-quality video processing in MCTs
High-quality video processing in MCTs has a number of distinctive characteris-
tics when compared to mainstream multimedia processing in, for example, a (net-
worked) workstation environment [Nahrstedt, Chu & Narayan, 1998]. In this sec-
tion, we compare QoS parameters for different types of media processing. These
QoS parameters are shown to be very application domain specific. Moreover, high-
quality video has very stringent timing requirements compared to other media pro-
cessing functions.

The mesh, texture, and screen resolution are used as QoS parameters for 3D
computational graceful degradation by Lafruit et al. [2000], while maintaining
a fixed frame rate. Frequently used QoS parameters for video applications in a
workstation environment are screen resolution, frame rate (with a maximum of
30 Hz), image size, color depth, bit rate and compression quality [Li & Nahrstedt,
1999; Morros & Marqués, 1999; Sabata, Chatterjee & Sydir, 1998]. Spatial (res-
olution) and temporal (bit rate and frame rate) scalabilities are exploited in great
detail in the field of image compression; see [Morros & Marqués, 1999]. In MCTs
with high-quality video requirements, these parameters are not generally applica-
ble. High-quality video has a fixed field/frame-rate of 24 – 60 Hz, no tolerance for
jitter (i.e. frame-rate fluctuations), and low tolerance for frame skips, i.e. very strin-
gent timing requirements. It is conceivable, however, that future users will expect
guaranteed timing behavior from multimedia applications on desktops and Internet
appliances as well [Rajkumar et al., 1998]. Moreover, the resolution of a TV screen
is fit to its standard (e.g. PAL, NTSC, ATSC), and the image (or window) size is
either fixed (e.g. main window or PiP window) or determined by the user. Finally,
receivers in a broadcast environment, and that is what MCTs currently are, do not
have the option to negotiate compression quality and bit-rate, although that may
change in the future for MCTs in an in-home digital network.
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Although the setting of many parameters are imposed by the environment
rather than adaptable by the system for optimization purposes, they do determine
the amount of processing required for a particular video output quality. As an ex-
ample, the window size determines the embedded resizing techniques [Zhong &
Chen, 2001] that can be applied without loss of visual output quality. Hence, al-
ternative parameters have to be used for high-quality video. These parameters are
typically video algorithm specific and may vary per algorithm. Optional param-
eters for high-quality video are number of filter coefficients (e.g. 0, 8, 32, . . . ),
reference objects (e.g. points, lines, . . . ), and type of processing (e.g. linear, non-
linear). Hentschel, Braspenning & Gabrani [2001] present a scalable sharpness
enhancement algorithm illustrating the exploitation of such parameters. Another
example is presented by Peng [2001] and Yanagihara, Sugano, Yoneyama & Naka-
jima [2000]. They describe scalable MPEG-2 video decoding by computing only
a few IDCT coefficients.

2.3.3 Scalable video processing
As illustrated by Figure 1.1 on page 3, an MCT may accept input from different
types of input sources, such as satellite, cable, storage devices, Internet and Ether-
net. The video input can be digital or analog. An MCT may have a number of video
outputs, such as a display, a storage device (such as a video recorder, DVD+RW,
or a hard disk), and an IEEE 1394 or Internet link. The outputs on a display may
be sub-divided into two (dynamically changing) groups based on user-focus. User
focus induces a relative importance on outputs.

Between these inputs and outputs, a number of processing paths may exist, con-
taining joins and forks in complex settings. Each processing path typically consists
of a number of functional processing parts, termed jobs, e.g. channel decoding,
picture enhancement, and rendering (for a display) or encoding (for a link). Jobs
inherit the relative importance of the output with the highest relative importance
to which they contribute. Whereas the functional description of a job is general
(e.g. enhancement), there may be a number of specific algorithms (processing vari-
ants) within a single job. One or more jobs constitute an RCE. The single-RCE
application main of our demonstrator in Figure 2.6 consists of multiple jobs.

The remainder of this section presents aspects of scalable media processing.
The first subsection presents the basic structure of a scalable algorithm (SA) for
media processing. Scalable video algorithms (SVAs) are a special class of SAs, as
exemplified above by their specific scalability parameters. The second subsection
considers jobs in more detail. Additional information may be found in [Gabrani,
Hentschel, Steffens & Bril, 2003].
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Figure 2.8. Example of the basic structure of a scalable algorithm.

Scalable algorithms
An SA basically consists of an algorithm for media processing and a quality control
block [Hentschel, Braspenning & Gabrani, 2001]; see Figure 2.8. The algorithm
can be split in a number of specific functions, some of which are scalable. The
quality of the output depends on the appropriate combination of the quality levels
of these functions.

Of these combinations, only a few provide acceptable quality levels for the
SA; see Figure 2.9. The optimal quality-resource combinations, which are termed
Pareto-optimal points, are connected by the curve with maximum quality at lowest
resources. The quality control block contains this information and the appropriate
settings for the functions.

Jobs
A job is a flexible set of SVAs. A unique combination of algorithms within a job
is termed a job mode. The job mode is selected dynamically, and a change of
job mode, e.g. due to a channel change or an exchange of the contents of the main
window and a PiP window, is termed a job-mode change (JMC). Figure 2.10 shows
eight examples of job modes for a video enhancement job based on four different
formats for the input stream and two different formats for the output stream (main
or PiP). A JMC may lead to a change in the specific functionality of the job, and
the number and order of its algorithms. When a job is realized in hardware, it
typically only has a single job mode, which provides the best approach for all
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Figure 2.9. Best choices of quality-resource combinations for functions of the
entire scalable algorithm.

Figure 2.10. Eight modes of a video enhancement job. The job modes depend on
the input stream format and the output window (main or PiP).
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cases. Media processing in software therefore provides an additional opportunity
for quality improvements.

For each job mode, a number of operational sets are defined. Each operational
set determines specific processing for each algorithm depending on characteristics
such as window size (determining the applicable embedded resizing techniques)
and user focus. An operational set is selected dynamically, and a change of opera-
tional set is termed operational-set change.

Just like a number of functions constitutes an SA (see Figure 2.8), a unique
combination of algorithms constitutes a job mode. Similar to SAs, jobs can be
scaled, giving rise to a set of discrete quality levels associated with each job mode.
Jobs provide (estimated) resource requirements for each quality level. In order to
allow system optimization by QoS RM the value of the result of a job is expressed,
in semantically neutral terms, as a job utility. Each operational set of a job mode
consists of a number of quality levels, and an associated quality mapping, which
determines resource requirements and a job utility for each quality level in the
operational set.

2.3.4 QoS control strategies for high-quality video
As mentioned above, applications have to get by with their budget. Frame skip-
ping is a basic degradation technique to control video processing with limited re-
sources that can also be applied to non-scalable video [Hamann, Löser, Reuther,
Schönberg, Wolter & Härtig, 2001; Isović, Fohler & Steffens, 2003], and is gener-
ally available in MPEG decoders implemented in software. Because high-quality
video has a low tolerance for frame skips, frame skipping alone is unacceptable to
reduce load upon overloads.

Lan, Chen & Zhong [2001] describe an extension of this basic degradation
technique of a scalable MPEG-2 decoder with a method to regulate varying com-
putational load. The method assumes strictly periodic budgets and synchronous
processing, i.e. during each budget period an entire frame must be decoded, and
only one frame is decoded per period. Before an MPEG-2 frame is decoded, the
required resources are estimated, and the decoding is subsequently scaled such
that it will not exceed its resource budget. A similar method has been described by
Lafruit et al. [2000] for adaptive control for 3D decoding and rendering.

Although this method prevents frame skips, it only optimizes the quality of
individual frames rather than a sequence of frames. Moreover, it does not exploit
the opportunity offered by buffering. With buffers, an application may work ahead
(or lag behind) compared to its budget consumption, and an MPEG decoder with a
strictly periodic budget can therefore process frames asynchronously. Wüst & Ver-
haegh [2001, 2002] present QoS control strategies for high-quality video process-
ing based on asynchronous processing that balance three aspects of user-perceived
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quality: picture quality, deadline misses, and quality changes. These strategies are
able to accommodate both temporal and structural load fluctuations, and allow a
close-to-average-case resource allocation to a single video processing task. The
interested reader is referred to those papers for further details. Specific control for
an RCE consisting of multiple (scalable and non-scalable) tasks, as shown in Fig-
ure 2.6, and for an application consisting of multiple RCEs has not been addressed
in the literature.

2.4 QoS-based resource management
In this section, we consider QoS-based resource management, being the second pil-
lar of our co-operative QoS approach. This section will be brief, and only describe
essential and necessary basics for the chapters to follow. Section 2.4.1 considers
the software framework, and Section 2.4.2 illustrates how the software framework
ensures seamless switching between modes by means of an example.

2.4.1 Software framework
For ease of presentation, we make the following assumptions. Our basic system
supports a set of adaptive applications, where each application consists of a single
RCE. The multi-layer control hierarchy consists of just two layers. The lower
layer contains the specific controllers of the applications, which reside within the
RCEs, and the higher layer contains a single controller, being the so-called ‘quality
manager’ (QM). Moreover, we assume a basic reservation-based resource manager,
that contains a so-called ‘budget scheduler’ (BS).

The QM selects quality levels at which the RCEs are executed and allocates
CPU budgets to RCEs in such a way that the overall (system) utility is maximized,
and the estimated resource requirements meet the resource availability. Next to
performing this global optimization, the QM maintains the quality mappings of the
running RCEs based on the actual resource needs measured by the BS. Changes
in the number of applications, relative importance of the applications, and quality
mappings of the RCEs require re-optimizations.

The BS provides CPU budgets to RCEs. These budgets are time-triggered and
strictly periodic. Budgets are implemented by means of priority manipulations.
Budget accounting and enforcement is based on timers. In Chapter 7, we describe
how the BS can be extended with CGBs. A concise description of the imple-
mentation of the BS is given by Bril & Steffens [2001], and will be provided in
Section 2.5.

The existing BS is based on RMS, therefore suffers from scheduling imperfec-
tions, and the system will typically have slack time. Moreover, it is conceivable
to explicitly reserve (slack) time for overload handling through judicious spare-
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Figure 2.11. An example of a mode change. At time tdec, the system instructs
application A to decrease its operational quality level. The decrease results in a
smooth degradation of the quality of A’s output (line a), and A informs the sys-
tem that it completed the quality change at time tbcr. The system subsequently
reallocates the resources by means of a budget configuration change (lines c and
d). At time tinc, the BCC has been completed, and the system instructs applica-
tion B to increase its operational quality level. The increase results in a smooth
improvement of the quality of B’s output (line b). At time tfin, B has completed
the quality change, and it may inform the system about this, which completes the
mode change.

capacity allocation. Although spare-capacity allocation is an essential part of any
approach that aims at optimizing systems with scarce resources, the existing imple-
mentation has no policy for spare-capacity allocation, only supports default spare-
capacity provisioning, and does not account for spare-capacity execution. In Chap-
ter 7, we sketch how our design and implementation of CGBs can be complemented
with mechanisms for spare-capacity provisioning.

2.4.2 Ensuring seamless switching between modes
Consider a system with two applications, A and B, that both have results that are
immediately visible (i.e. end results). Assume a change of user focus from A to B,
requiring a re-optimization of the system [Ott et al., 1998]. For ease of presenta-
tion, we assume that this change involves no application mode change for either
of the applications. When the system is notified about this change of user focus,
it first determines the new optimal quality levels at which the applications have to
run, and subsequently performs a mode change. The mode change is shown in Fig-
ure 2.11. Note that by allowing A to smoothly degrade its quality level, this mode
change is in the spirit of the mode change protocol described by Tindell, Burns &
Wellings [1992]. The budget configuration change (BCC) shown in Figure 2.11 is
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based on [Tindell & Alonso, 1996]. The system waits for an idle interval, i.e. a
time interval in which no RCE can execute based on its own budget, which ensures
that the BCC will not affect the guarantees of budgets.

2.5 Budget scheduler
This section describes the basic implementation of the budget scheduler (BS) and
the motivation for on-line calculations of an admission test. We start with a brief
description of a basic model for budgets.

2.5.1 A basic model for budgets
Budgets are periodic, and the budget period may be different for each RCE. The
budget for RCE ρi is denoted by a triple

�
Bi � Ti � ϕi � , where Ti is the budget period,

ϕi is the phasing, and Bi the budget per period for ρi.

2.5.2 Priority bands
In-budget execution is performed at high priority, and out-of-budget execution, i.e.
an execution based on spare capacity, is done at low priority. This gives rise to
two main priority bands, a high-priority band (HP) for in-budget executions and
a low-priority band (LP) for out-of-budget executions. An RCE that consists of
multiple tasks gives rise to a sub-priority band, so that tasks within the RCE can
be prioritized. Priority bands of RCEs are disjoint (i.e. they do not overlap). This
is illustrated in Figure 2.12, where RCE ρ1 consists of four tasks, hence ρ1 gives
rise to a sub-priority band containing four priority levels, and RCE ρ2 consists of a
single task.

.

.

.

ρ1

ρ2HP

.

.

.

ρ1

ρ2LP

Figure 2.12. Priority bands for implementation of budgets, a high-priority band
(HP) for in-budget executions and a low priority band (LP) for out-of-budget exe-
cutions.
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2.5.3 Priority manipulation
In both HP and LP, the RCEs are scheduled in rate-monotonic priority order, i.e.
RCEs with smaller budget periods get higher priorities. At the start of each new
period, the budget is replenished, and the priority of an RCE is raised to its rate-
monotonic priority within HP. When the budget is exhausted, the RCE’s priority
is lowered to LP. In case of a multi-task RCE, the complete sub-priority band is
raised or lowered, leaving the internal priority ordering intact.

Without appropriate precautionary measures, self-suspension of an RCE may
result in deferred execution, which may jeopardize budget guarantees. The existing
BS therefore withdraws the AGB of an RCE when the RCE releases the processor,
i.e. the priority of the RCE is lowered to LP. The remainder of the budget becomes
available as spare capacity, i.e. for out-of-budget execution.

Whereas a synchronous RCE releases the processor when it completes its work,
a streaming (i.e. asynchronous) RCE never completes. Instead, a streaming RCE
tries to work ahead as much as possible till it blocks on either input or output.
When either new data arrives at its input or space becomes available in its output,
the RCE becomes un-blocked again and resumes its execution. As a consequence,
this behavior may also result in a deferred execution. A streaming RCE typically
only blocks when it is ahead, and the existing BS therefore withdraws the AGB of
a streaming RCE upon blocking. An additional advantage of this implementation
is that frequent context switches due to blocking and un-blocking of a streaming
RCE, giving rise to unnecessary overhead, are prevented.

2.5.4 Admission tests
In this section, we briefly describe the motivation for on-line calculations of re-
sponse times and occupied times as part of the evaluation of an admission test.
Remember that the CPU resource reservation of the budget scheduler is based on
fixed-priority scheduling (FPS) and the admission test is based on an exact schedu-
lability test as derived by Joseph & Pandya [1986] and Audsley, Burns, Richardson
& Wellings [1991]. We start with the need for an online evaluation of a schedu-
lability test. We subsequently consider the need for efficient schedulability tests.
Finally,we describe the need for response time and occupied time calculations to
perform a schedulability test.

Need for online evaluation
Many real-time systems become increasingly dynamic, and may run in many dif-
ferent modes that are not predictable or known statically. As a consequence, these
systems demand for an on-line evaluation of schedulability tests. A special class
of such systems is given by high-volume electronics (HVE) consumer terminals,
such as digital TV sets, digitally improved analogue TV sets and set-top boxes
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(STBs), performing media processing in software using dedicated media proces-
sors. This class of systems and a Quality-of-Service approach for next generations
of HVE consumer products aiming at cost-effective media processing in software
has been described in this chapter. In that approach, multiple evaluations of the
schedulability test are typically required to maximize perceived quality.

Complexity versus effectiveness
Unfortunately, exact schedulability tests are complex, i.e. not efficient. Although
the complexity of a schedulability test is not a major issue when the test can be
evaluated statically, i.e. off-line, it may be prohibitive when it needs to be evalu-
ated on-line. Therefore, Bini et al. [2001] recommend the usage of pessimistic
tests, that have an O

�
n � complexity, when exact tests cannot be applied for effi-

ciency reasons. Many real-time systems performing an on-line schedulability test
require exact tests, and using pessimistic tests is therefore not appropriate. For
cost-effectiveness reasons, we strive for a processor utilization for next genera-
tions of HVE consumer terminals that exceeds the utilization bounds mentioned
by Bini et al. [2001], and therefore aim at reducing the cost of exact tests.

Need for response time and occupied time calculations
Scheduling algorithms and schedulability tests are indissolubly connected. Obvi-
ously, a schedulability test also depends on (the sophistication of) the real-time
scheduling model, e.g. whether or not blocking and jitter are taken into account
or arbitrary deadlines are covered. Moreover, the scheduling model influences
whether or not response times and occupied times have to be determined in order
to perform an exact test. This will be illustrated by a number of examples.

There exist exact tests for FPS under arbitrary phasing without the need to cal-
culate worst-case response times [Lehoczky, Sha & Ding, 1989; Bini & Buttazzo,
2002]. With arbitrary deadlines, we however do need to determine the worst-case
response times, i.e. the worst-case response times of all activations in a busy period
[Lehoczky, 1990]. When a model includes jitter, we also need best-case response
times, as illustrated in Chapter 9. Finally, in order to analyze a system with CGBs,
we need occupied times next to response times; see Chapter 8.

Because of this need for response times and occupied times to perform a
schedulability test, we consider the cost of calculating those values in Chapter 6.



3
Real-Time Scheduling Basics

This chapter presents the basic terminology and concepts of real-time scheduling
of a set of independent periodic tasks on a single processor. The focus will be on
preemptive scheduling, i.e. a form of scheduling where the execution of tasks can
be interrupted at any time. The order in which the tasks are executed by the proces-
sor is determined by a scheduling algorithm. The specific operation of allocating
the processor to a task selected by the scheduling algorithm is termed dispatching.
We assume dispatching to be based on priorities of tasks, and priority assignment
to tasks according to a scheduling algorithm. A scheduling algorithm is classified
to be static (or fixed), when the priority assignment is fixed before the execution of
the tasks. Otherwise the algorithm is classified to be dynamic.

This chapter has the following structure. We start with a real-time scheduling
model in Section 3.1. Most of the definitions and assumptions of this model orig-
inate from [Liu & Layland, 1973]. The processor utilization factor, which also
originates from [Liu & Layland, 1973], is introduced in Section 3.2. Examples
of static and dynamic priority scheduling algorithms are subsequently briefly de-
scribed in Section 3.3. In Section 3.4, we revisit the assumptions of the scheduling
model.

39
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3.1 A real-time scheduling model for tasks
We assume a single processor and a set � of n independent periodic tasks, denoted
by τ1 � τ2 ������� τn. At any moment in time, the processor is used to execute the highest
priority task that has work pending. So, when a task τi is being executed, and a
release occurs for a higher priority task τ j, then the execution of τi is preempted,
and will resume when the execution of τ j has ended, as well as all other releases of
tasks with a higher priority than τi that have taken place in the meanwhile.

A schedule is an assignment of the tasks to the processor. A schedule can be
defined as an integer step function σ : ����� 0 � 1 ������� � n � [Buttazzo, 2002]. Infor-
mally, σ

�
t �
	 k with k � 0 means that task τk is being executed at time t, while

σ
�
t ��	 0 means that the processor is idle. More formally, σ partitions the timeline

in a set of non-empty, right semi-open intervals �� t j � t j � 1 � � j ��� , such that σ
�
t � is

right-continuous and piece-wise continuous in each of those intervals, and discon-
tinuous at the ends. At times t j, the processor performs a context switch. Figure 3.1
shows an example of the execution of a set � of three periodic tasks and the cor-
responding value of the schedule σ

�
t � . The level-i schedule σi is an assignment of

the tasks τ1 till τi to the processor.

task τ3

time

task τ2

task τ1

t

σ(t)

preemptions by
higher priority tasks
execution

release

Legend:

Figure 3.1. An example of the execution of a set � of three independent periodic
tasks τ1, τ2, and τ3, where task τ1 has highest priority, and task τ3 has lowest
priority, and the corresponding value of σ � t � .

The remainder of this section is organized as follows. We start by describing
task characteristics in Section 3.1.1. In Section 3.1.2, we introduce scheduling
related terms denoting specific moments in time and intervals of time. We stick to
the terminology used by Buttazzo [2002]. Dual notions for worst-case and best-
case situations are presented in Sections 3.1.3 and 3.1.4, respectively. Finally, in
Section 3.1.5, we describe the assumptions we make on the environment.
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3.1.1 Task characteristics
Each task τi is characterized by a (release) period Ti � � � , a worst-case compu-
tation time WCi � � � , a best-case computation time BCi � � � , and a (relative)
deadline Di � � � , where BCi

�
WCi

�
min

�
Di � Ti � . The activation (release or

request) time is the time at which a task τi becomes ready for execution. An acti-
vation of a task is also termed a job. The job of task τi with activation time ϕi � � ,
serves as reference activation. Depending on the context, this job is referred to as
either job zero or job one. When referred to as job zero, the activation of job k of τ i

takes place at time aik 	 ϕi � kTi, k �
�

. The activation time ϕi is also termed the
phasing of task τi. The combination of phasings ϕi is termed the phasing ϕ of the
task set � . We assume that we do not have control over the phasing ϕ, for instance
since the tasks are released by external events, so we assume that any arbitrary
phasing may occur.

3.1.2 Times and intervals
The (absolute) deadline of job k of τi takes place at time dik 	 aik � Di. The begin
(or start) time bik and finalization (or completion) time fik of job k of τi is the time
at which τi actually starts and ends the execution of that job, respectively.

The start interval of job k of τi is defined as the time span between the activa-
tion time of the job and its begin, i.e.  aik � bik � . The length of the start interval is
denoted by sik, hence sik 	 bik � aik. The response interval of job k of τi is defined
as the time span between the activation time of that job and its completion, i.e.
 aik � fik � . The length of the response interval is denoted by rik, hence rik 	 fik � aik.
The execution interval of job k of τi is defined as the time span between the begin
time of the job and its completion, i.e.  bik � fik � . The length of the execution interval
is denoted by eik, hence eik 	 fik � bik. Note that rik 	 sik � eik.

Figure 3.2 illustrates the above basic notions for an example job k of task τ i.
In this figure, the job is preempted by higher priority tasks in the intervals corre-
sponding to the white boxes, i.e.  aik � bik � and  bik � x1 � fik � x2 � . The job executes
without interruption in the disjoint intervals corresponding to the grey boxes, i.e.
 bik � bik � x1 � and  fik � x2 � fik � . The actual execution time of the job, x1 � x2, sat-
isfies BCi

�
x1 � x2

�
WCi. Time bik � x1 is termed a preemption time of job k of

task τi and time fik � x2 is termed a resume time of job k of τi.
As mentioned above, a schedule σ partitions the timeline in a set of non-empty,

right semi-open intervals �� t j � t j � 1 � � j ��� . An idle interval is defined as a maximal
interval during which the processor is idle, i.e.  t j � t j � 1 � is an idle interval when
σ

�
t � 	 0 for t �  t j � t j � 1 � , limt � t j σ

�
t � �	 0, and σ

�
t j � 1 � �	 0. A level-i idle inter-

val is defined as a maximal interval during which the processor is idle in a level-i
schedule σi, i.e.  t j � t j � 1 � is a level-i idle interval when σi

�
t � 	 0 for t �  t j � t j � 1 � ,

limt � t j σi
�
t � �	 0, and σi

�
t j � 1 � �	 0. Similarly, a busy interval and a level-i busy
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Figure 3.2. Basic model for task τi.

interval are defined as a maximal interval during which the processor is non-idle
in a schedule σ and a level-i schedule σi, respectively. From a processor perspec-
tive, the timeline may be viewed to be constituted from alternating idle and busy
intervals.

3.1.3 Worst-case notions
Next, we present worst-case notions. A critical instant of a task is defined to be an
(hypothetical) instant that leads to the largest response interval for that task. The
largest response interval is termed the worst-case response interval. The length of
the worst-case response interval of task τi is denoted by WRi, i.e.

WRi 	 sup
ϕ � k

rik � (3.1)

It is common practice to use the term worst-case response time as a synonym for
the length of the worst-case response interval.

Similarly to the largest response interval, we define notions for the largest start
interval and the largest execution interval. These latter intervals are termed the
worst-case start interval and the worst-case execution interval, and their lengths
for task τi are denoted by WSi and WEi, respectively, i.e.

WSi 	 sup
ϕ � k

sik � (3.2)

WEi 	 sup
ϕ � k

eik � (3.3)

We will use use the terms worst-case start time and worst-case execution time as
a synonyms for the length of the worst-case start interval and the length of the
worst-case execution interval, respectively.

3.1.4 Best-case notions
The best-case notions are duals of the worst-case notions. An optimal instant of
a task is defined to be an (hypothetical) instant that leads to the shortest response
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interval. The shortest response interval is termed the best-case response interval.
The length of the best-case response interval of task τi is denoted by BRi, i.e.

BRi 	 inf
ϕ � k

rik � (3.4)

We will use the term best-case response time as a synonym for the length of the
best-case response interval.

Similarly, to the shortest response interval, we define notions for the shortest
start interval and the shortest execution interval. These latter intervals are termed
the best-case start interval and the best-case execution interval, and their lengths
for task τi are denoted by BSi and BEi, respectively, i.e.

BSi 	 inf
ϕ � k

sik � (3.5)

BEi 	 inf
ϕ � k

eik � (3.6)

We will use use the terms best-case start time and best-case execution time as a
synonyms for the length of the best-case start interval and the length of the best-
case execution interval, respectively.

3.1.5 Basic assumptions
The following basic assumptions are made on the environment. Most of these
basic assumptions originate from Liu & Layland [1973] and are common in the
literature.

1. Tasks have unique priorities.

2. Tasks will be preempted instantaneously when a higher priority task becomes
ready to run.

3. Tasks are ready to run at the start of each period and do not suspend them-
selves.

4. Tasks are independent, i.e. there is no task synchronization.

5. The overhead of context switching and task scheduling is ignored.

6. Job k � 1 of task τi does not start before the end of job k, i.e. fik
�

bi � k � 1.

7. No specific phasing of tasks at start-up is assumed.

Finally, we assume that the deadlines are hard, i.e. each job of a task must be
completed before its deadline. Hence, a set � of n periodic tasks can be scheduled
if and only if

WRi
�

Di (3.7)
for all i 	 1 ������� � n.

In most examples we use, the worst-case and best-case computation times are
chosen to be equal (WCi 	 BCi), and we simply use the term computation time Ci.
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To prevent verbosity, we typically use the phrase ‘the interval x’ rather than ‘the
length x of the interval’, and ‘the interval’ rather than ‘the length of the interval’,
e.g. ‘the worst-case response interval WRi’ rather than ‘the length WRi of the worst-
case response interval’. In many cases, we are not interested in the value of an
interval of a task for a particular computation time, but in the value as a function
of the computation time. We will therefore use a functional notation for intervals
when needed, e.g. WRi

�
Ci � .

3.2 Utilization factors
Given a set � of n periodic tasks, the (processor) utilization factor U is the fraction
of the processor time spent on the execution of the task set [Liu & Layland, 1973].
The fraction of processor time spent on executing task τi is Ci

�
Ti, and is termed the

utilization factor U τ
i of task τi, i.e.

U τ
i 	

Ci

Ti
� (3.8)

The cumulative utilization factor Ui for tasks τ1 till τi is the fraction of processor
time spent on executing these tasks, and is given by

Ui 	 ∑
j � i

U τ
j � (3.9)

Therefore, U is equal to the cumulative utilization factor Un for n tasks.

U 	 Un 	 ∑
j � n

U τ
j 	 ∑

j � n

C j

Tj
� (3.10)

When the best-case and worst-case computation times are different, we have best-
case and worst-case utilization factors in addition, i.e. the best-case utilization fac-
tor BU τ

i 	 BCi
�
Ti and the worst-case utilization factor WU τ

i 	 WCi
�
Ti of task τi,

the best-case cumulative utilization BUi 	 ∑ j � iBU τ
j and the worst-case cumulative

utilization WUi 	 ∑ j � iWU τ
j of tasks τ1 till τi, and the best-case (processor) utiliza-

tion factor BU 	 BUn and the worst-case (processor) utilization factor WU 	 WUn

of the task set � . Note that the cumulative utilization of an empty task set is zero,
i.e. BU0 	 U0 	 WU0 	 0.

3.3 Scheduling algorithms
Liu and Layland determined the following necessary condition for the schedulabil-
ity of a set � of n periodic tasks under any scheduling algorithm.

U
�

1 � (3.11)
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Unless explicitly stated otherwise, we assume in this thesis that task sets satisfy this
condition. Whether or not the condition is also sufficient depends on the particular
scheduling algorithm. Scheduling algorithms and schedulability tests for set of
tasks are indissolubly connected, i.e. every scheduling algorithm has a dedicated
schedulability test. Below, we will briefly describe examples of static and dynamic
scheduling algorithms with their accompanying schedulability tests.

3.3.1 Fixed-priority preemptive scheduling
We describe two basic algorithms for fixed-priority preemptive scheduling (FPPS)
in this section, being rate monotonic (RM) scheduling and deadline monotonic
(DM) scheduling. Moreover, we present three main classes of schedulability tests
for FPPS.

For notational convenience, we assume for FPPS that in the set � of n tasks
under consideration, task τ j has a higher priority than task τi if and only if j � i.

Rate monotonic scheduling
For the RM scheduling algorithm, it is assumed that the deadlines D of all the n
tasks of the set � equal their periods, i.e. Di 	 Ti for i 	 1 ������� � n. According to the
RM scheduling algorithm, each task is assigned a priority inversely proportional
to its period, i.e. the tasks are sorted such that Ti

�
Ti � 1 for 1

�
i � n. Thus, at

any instant, the runnable task with the smallest period is executed. Since periods
are constant, application of the RM scheduling algorithm results in a static priority
assignment.

Figure 3.3 shows an example of a schedule with an RM priority assignment
to tasks. Characteristics of the example are given in Table 3.1. Because the ‘task
set’ of that table satisfies (3.7) under RM priority assignment of tasks, it can be
scheduled under RM scheduling.

task τ3

time

task τ2

task τ1

3 3 3 3 3 3 3 3

14 14 15 16

24

release time

39

Figure 3.3. An example of the effect of RM scheduling on the execution of
three periodic tasks τ1, τ2, and τ3, where task τ1 has highest priority, and task τ3
has lowest priority. The numbers to the top right corner of the boxes denote the
response times of the respective releases. Note that response time is counted from
the moment of release up to the corresponding completion.
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Table 3.1. Characteristics of the example of Figure 3.3, that are also used to il-
lustrate the calculation of worst-case response times in Figure 4.4 and best-case
response times in Figure 5.4. In this example, best-case computation times are
equal to worst-case computation times, and deadlines are equal to periods. More-
over, arbitrary phasings are assumed. Worst-case response times and best-case
response times under RM priority assignment are included.

task period computation utilization worst-case best-case
time factor response time response time

τ1 10 3 0.3 3 3
τ2 19 11 0.58 17 14
τ3 56 5 0.09 56 22

[Liu & Layland, 1973] showed that RM scheduling is optimal among all fixed-
priority assignments in the sense that no other fixed-priority algorithm can schedule
a task set that cannot be scheduled by RM, under the above assumption of D i 	 Ti.
They also determined the following sufficient (but not necessary) condition for the
schedulability of a set � of n periodic tasks under RM scheduling.

Un
�

n
�
21 � n � 1 � (3.12)

We will refer to this test as LL(n). The term n
�
21 � n � 1 � in (3.12) is strictly de-

creasing as a function of n from 0 � 83 when n 	 2, to ln2 � 0 � 693 as n � ∞. For
tasks τ1 and τ2 of our example, LL(2) fails, as U2 	 0 � 88 � 0 � 83. Because the term
n

�
21 � n � 1 � in LL(n) is strictly decreasing, LL(3) fails irrespective of the character-

istics of τ3.
Recently, a so-called hyperbolic bound HB(n) has been presented by Bini et al.

[2001] for the RM algorithm.

∏
j � n

�
U τ

j � 1 � �
2 (3.13)

HB(n) is less pessimistic than LL(n), but is also only a sufficient and not a necessary
schedulability test. For tasks τ1 and τ2 of our example, HB(2) fails, as ∏ j � 2

�
U τ

j �
1 � 	 2 � 054 � 2. Similarly to LL, HB(3) also fails, because the term ∏ j � n

�
U τ

j � 1 �
in HB(n) is strictly increasing when tasks are added.

Deadline monotonic scheduling
Leung & Whitehead [1982] proposed the DM scheduling algorithm as an exten-
sion to RM scheduling. Whereas RM scheduling assumes that the deadlines of
tasks equal their periods (Di 	 Ti), the DM scheduling algorithm assumes that the
deadlines of tasks are smaller than or equal to their periods (Di

�
Ti). According

to the DM scheduling algorithm, each task is assigned a priority inversely pro-
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portional to its deadline. Thus, at any instant, the runnable task with the shortest
(relative) deadline is executed. Since deadlines are constant, application of the
DM scheduling algorithm also results in a static priority assignment. Note that the
DM scheduling algorithm specializes to the RM scheduling algorithm when the
deadlines of tasks equal their periods.

Leung & Whitehead also showed that DM scheduling is optimal among all
fixed-priority assignments in the sense that no other fixed-priority algorithm can
schedule a task set with deadlines smaller than or equal to their periods that cannot
be scheduled by DM.

The following variant of (3.12) can be used as a sufficient (but not necessary)
condition for the schedulability of a set � of n periodic tasks under DM scheduling.

n

∑
i � 1

Ci

Di

�
n

�
21 � n � 1 � (3.14)

Schedulability tests
For FPPS, there are three main classes of schedulability tests:

� optimistic (i.e. necessary but insufficient) tests, such as the test based on the
processor utilization factor, e.g. (3.11);

� pessimistic (i.e. sufficient but not necessary) tests, such as those based on
pessimistic bounds, e.g. (3.12), (3.13), and (3.14); and

� exact (i.e. both sufficient and necessary) tests, such as those presented by
Audsley et al. [1991] and Joseph and Pandya [1986] that explicitly check
(3.7).

In this thesis, we will call these exact tests response-time analysis (RTA) tests. The
schedulability condition given by (3.7) is based on the worst-case response times of
the tasks of � , and can be used for any fixed priority assignment. There also exist
RTA tests for RM and DM scheduling under arbitrary phasing that do not calculate
worst-case response times; see [Lehoczky et al., 1989; Bini and Buttazzo, 2002].

Lehoczky et al. [1989] showed that it is not uncommon for large task sets with a
processor utilization factor around 0.90 to be schedulable with the RM algorithm.
We showed for our example that both pessimistic tests LL(n) and HB(n) for the
RM algorithm failed for only two tasks τ1 and τ2 with a processor utilization factor
U2 	 0 � 88. Hence, although both pessimistic tests are very efficient, i.e. have an
O

�
n � complexity, they are considerably less effective as RTA tests. Conversely,

RTA tests are effective, but are considerably less efficient than pessimistic tests.
We will return to the efficiency of RTA tests in Chapter 6.
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3.3.2 Dynamic priority scheduling
Liu & Layland [1973] also describe a dynamic scheduling algorithm which they
call deadline driven scheduling algorithm. According to that algorithm, each task
is assigned a priority inversely proportional to the deadline of its current request.
Thus, at any instant, the task with the earliest absolute deadline has the highest
priority, and therefore executes. The algorithm is also termed earliest deadline
first (EDF) scheduling algorithm.

Liu & Layland [1973] also showed that EDF is optimal in the sense of schedu-
lability, i.e. if there exists a feasible schedule for a set of periodic tasks, then EDF
can schedule that set. In particular, a set � of periodic tasks is schedulable by EDF
if and only if � satisfies (3.11).

3.4 Discussion
Below, we revisit the assumptions of the scheduling model as presented in Sec-
tion 3.1, and briefly discuss variants of and extensions to the scheduling model.
We conclude this section with a note on rate-monotonic analysis.

3.4.1 Assumptions revisited
As mentioned in Section 3.3, we assume that task sets satisfy the necessary
scheduling condition given by (3.11), i.e. U

�
1. We further assume that dead-

lines of tasks are smaller than or equal to their periods

Di
�

Ti � (3.15)

Cases where deadlines exceed periods fall outside the scope of this thesis. The
interested reader is referred to [Lehoczky, 1990], one of the first articles in which
the problem of FPPS of periodic tasks with arbitrary deadlines was considered.

As mentioned in Section 3.3.1, we assume for FPPS that in the set � of n tasks
under consideration, task τ j has a higher priority than task τi if and only if j � i.

3.4.2 Model variants
In this chapter, we made a number of assumptions about our model. In particular,
we assumed preemptive scheduling, and we introduced a model in which all task
parameters are reals. In Chapters 6 and 9 we will use two variants of our model.
These variants are briefly described below.

Preemptive and non-preemptive scheduling
In this thesis, we are primarily interested in preemptive schedules, i.e. schedules
in which a context switch may occur at an arbitrary moment during the execution
of a task, and instantaneous preemption is therefore one of the basic assumptions
given in Section 3.1.5. In Chapter 9, we also consider non-preemptive schedules,
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and schedules with deferred preemptions. For these kinds of schedules, a context
switch may only occur at specific moments during the execution of a task.

Continuous and discrete scheduling
In Section 3.1, we introduced a model in which all task parameters are reals, and
preemptions are allowed at any time. Alternatively, we may consider a model in
which all task parameters are integers, i.e. Ti � WCi � BCi � Di �

� � and ϕi �
�

for
1

�
i

�
n, and preemptions are restricted to integer time points. Conform the ter-

minology used by Baruah, Rosier & Howell [1990], we will term scheduling based
on the latter model discrete scheduling, and term scheduling based on models that
do not exclusively use integer values continuous scheduling. Baruah et al. argue
in favor of a discrete model. After ample discussion, they conclude that integer
task parameters are the proper abstraction of the underlying physical problem, and
that restricting preemptions to integer values is preferable. The reason for intro-
ducing and using the non-discrete model is that it eases the proofs of theorems and
lemmas, and that the results can equally well be applied for a discrete model.

In Chapter 6, where we consider the efficiency of calculating response times,
amongst others, we base our analysis on discrete scheduling.

3.4.3 Model extensions
In this chapter, we assumed that tasks are released strictly periodically. In Chap-
ter 9, we also consider jitter (i.e. variance from the periodicity). Rather than con-
sidering periodic tasks only, we can also extend our model with sporadic tasks
[Mok, 1983]. A sporadic task is characterized by a minimal interarrival time,
i.e. by a worst-case (release) period WT rather than a fixed (release) period T .
As discussed by Audsley, Burns, Richardson, Tindell & Wellings [1993], worst-
case analysis does not change by extending the basic real-time scheduling model
with sporadic tasks. Liu [2000] therefore defines a periodic task as a task with
a (bounded) minimal interarrival time. Though sufficient for worst-case analysis,
we need to revisit sporadic tasks for best-case analysis. In particular, we need the
dual notion of a maximal interarrival time for best-case analysis, i.e. a best-case
(release) period BT , where WT

�
BT . Given this notion, we can subsequently

use a similar argument as Audsley, Burns, Richardson, Tindell & Wellings [1993]
to show that best-case analysis does not change by extending the basic real-time
scheduling model with sporadic tasks. For ease of presentation, we exclude spo-
radic tasks from our model, however.

We also assumed that tasks are independent, i.e. do not interact. This restriction
from [Liu & Layland, 1973] has been removed by the priority ceiling protocol [Sha
et al., 1990] (and other similar protocols such as the stack resource protocol [Baker,
1991]). The interested reader is referred to [Audsley, Burns, Richardson, Tindell
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& Wellings, 1993], showing how blocking of a task by lower priority tasks can be
handled. We will use these results in Chapter 9 when we consider non-preemptive
schedules and schedules with deferred preemptions.

3.4.4 A note on rate-monotonic analysis
Rate-monotonic analysis (RMA) provides a set of analytical and synthetic methods
for building systems that meet hard real-time requirements (deadlines), using fixed-
priority preemptive scheduling (FPPS). FPPS is the de-facto standard for real-time
scheduling, and is supported by commercially available real-time operating sys-
tems. RMA has been adopted by leading companies and institutions world-wide
[Obenza, 1994]. It has been used in the entire range from simple control applica-
tions to large defense and aero-space applications. Carnegie Mellon University’s
Software Engineering Institute (SEI) has produced a Practitioner’s Handbook for
Real-Time Analysis [Klein et al., 1993], based on RMA, which is largely devoted
to the problem of casting a real-time system under investigation into the framework
of the theoretical model.



4
Worst-Case Analysis

This chapter presents theorems for the main worst-case notions introduced in
Chapter 3, i.e. critical instant in Section 4.1, worst-case response time in Sec-
tion 4.2, and worst-case start time and its generalization worst-case occupied time
in Section 4.3. Whereas the theorems for the notions of critical instant and worst-
case response time are known, the theorems for the other notions are novel. More-
over, the proofs for the existing theorems are novel. The main reason for providing
these existing theorems together with their novel proofs is to show the duality of
the worst-case notions and the best-case notions presented in the next chapter.

4.1 A critical instant
The next theorem introduces the notion of a critical instant, as depicted in Fig-
ure 4.1. The theorem states that if we want to determine the worst-case response
time under arbitrary phasings, it suffices to consider critical instants only. This
notion is used in the next section to determine the worst-case response time. The
worst-case response time analysis is based on worst-case computation times.

First, we prove the following two lemmas.

Lemma 4.1. If an execution of task τi, which is released (i.e. activated) at time a,
has maximal response time, then the following two properties hold.

51
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task τi

task τj

time
release time

task τl

f

worst-case response time
task τi

a

Figure 4.1. A critical instant for task τi, at time a, where releases for all higher
priority tasks (here τ j and τl) coincide with the release of an execution of τi.

(i) No higher priority task has a completion (i.e. finalization) at time a.
(ii) The release of the considered execution of τi is immediately preceded by a

non-empty sub interval of a level-(i � 1) idle interval.

Proof. (i) Let the release of the considered execution at time a coincide with the
completion of a higher priority task which is released at time a

�

. Then we know
that the processor is busy executing that higher priority task or another task with a
higher priority than τi in the interval  a � � a � . Hence, we can increase the response
time of the considered execution by an amount a � a

�

by shifting its release to the
left by an amount a � a

�

, i.e. by changing the phasing ϕ into a phasing ϕ
�

with
ϕ

�

i 	 ϕi � a
�

� a and ϕ
�

j 	 ϕ j for all j
�	 i. This, however, contradicts the fact that

the considered execution has maximal response time. Note that shifting the release
of task τi does not affect the higher priority tasks, and hence does not affect the
start of the considered execution of τi.

(ii) From property (i) we derive that the release of the considered execution falls
in either a level-(i � 1) busy interval  a � � f

� � or a level-(i � 1) idle interval  f � � a � �
with a

�	 f
�

, where f
�

and a
�

denote a completion time and a release time of higher
priority tasks, respectively. Let the release of the considered execution fall in a
level-(i � 1) busy interval. Similarly to the proof of property (i), we can prove by
means of a contradiction argument that a maximal response time can only be found
when a 	 a

�

, i.e. that the release coincides with the release of a higher priority task.
Hence, the release of the considered execution is immediately preceded by a non-
empty sub interval of a level-(i � 1) idle interval.

�

Lemma 4.2. If an execution of task τi, which is released at time a and completed
at time f , has maximal response time, then it is preempted only by releases of
higher priority tasks τ j that fall inside the interval  a � f � , and each of these releases
preempts the execution of τi by an amount WC j.
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Proof. Consider the preemption of the worst-case execution of τi by a higher
priority task τ j. Obviously, releases of τ j at or after time f are too late to cause
any preemption to the considered execution of τi. Next, releases of τ j before time
a do not cause any preemption of the considered execution of τi either. The reason
for this is the fact that a non-empty sub interval of a level-(i � 1) idle interval ends
at the release of τi, according to Lemma 4.1, so there cannot be any work pending
of previous releases of τ j. Hence we can conclude that only the releases at time a
and strictly between time a and time f cause preemptions to the considered worst-
case execution of τi. Furthermore, as these higher priority executions need to be
finished before task τi can be completed, we know that each of the releases of τ j

between a and f preempts τi for an amount WC j .
�

Theorem 4.1. In order to have a maximal response time for an execution k of
task τi, i.e. to have fik � aik 	 WRi, we may assume without loss of generality that
the phasing ϕ is such that ϕ j 	 aik for all j � i. In other words, the phasing of
the tasks’ release times is such that the release of the considered execution of τ i

coincides with the simultaneous release for all higher priority tasks. This latter
point in time is called a critical instant for task τi.

Proof. We first determine the amount of preemption of execution k of τi by higher
priority tasks. Execution k of τi is released at time aik and completed at time fik, as
indicated in Figure 4.2. Without loss of generality we assume that release number
one of each higher priority task τ j is the first release that takes place at or after time
aik , i.e. we assume aik

� ϕ j � aik � Tj. This is indicated in the figure, where we
numbered the releases of τ j.

task τi

task τj

timefikϕjaik

release time worst-case response time
task τi

3210

Figure 4.2. An execution k of τi with maximal response time, released at time
aik and completed at time fik, and a higher priority task τ j for which release one,
taking place at time a j1 � ϕ j, is the first release at or after time aik. The executions
of τ j are numbered for ease of reference.

According to Lemma 4.2, we can determine the amount of preemption of task
τi by task τ j, by counting the number of releases of τ j in the interval  aik � fik � .
Given the numbering of the releases of τ j as indicated before, this is given by the
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maximal number m �
�

for which

ϕ j �
�
m � 1 � Tj � fik �

or, equivalently,

m � 1 �
fik � ϕ j

Tj
�

The maximal number m �
�

satisfying this inequality is given by

m 	
�

fik � ϕ j

Tj � �
As mentioned in Lemma 4.2, each of these releases gives a preemption of WC j.
The total amount of preemption of the considered worst-case execution of τ i by
higher priority tasks is thus given by

∑
j � i

�
fik � ϕ j

Tj � WC j � (4.1)

in which, as assumed, each ϕ j is bounded by aik
� ϕ j � aik � Tj. Obviously, (4.1)

is maximal when each ϕ j is chosen minimally, i.e. ϕ j 	 aik , which exactly proves
the theorem.

�

We can draw the following conclusion from Theorem 4.1.

Corollary 4.1. The highest amount of preemption of a considered task is found
right after a simultaneous release of higher priority tasks.

�

4.2 Response times
Based on a critical instant, we first show how to determine the worst-case response
time by construction using a time line. Next, we derive a recursive equation for the
worst-case response times and present an iterative procedure to find its solution.
Finally, we illustrate the iterative procedure by an example. As example, we will
use the task set with the characteristics given in Table 3.1.

4.2.1 A time line
A task τi can execute if and only if no task with a higher priority is executing.
Hence, the execution of task τi fills the level-(i � 1) idle intervals. Given Theo-
rem 4.1, we therefore draw the following conclusion.

Corollary 4.2. The worst-case response time WRi of task τi can be determined by
construction using a time line with a simultaneous release of τi with all higher
priority tasks at time a by the following iterative procedure.
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(i) Draw a time line with releases of the highest priority task τ1, with a first
release at time a. For every release, task τ1 can start immediately and execute to
completion.

(ii) Given the responses of tasks τ1 till τi � 1, let task τi have a first release at time
a. The execution of task τi fills the level-(i � 1) idle intervals till τi has executed its
computation time.

The procedure is stopped when either the response time of a task τ j with j
�

i
exceeds its deadline D j, in which case the set of tasks is not schedulable, or when
τi completes. In the latter case, the worst-case response time WRi is found.

�

Figure 4.3 illustrates the procedure for our example. From the figure, we derive
that WR1 	 3, WR2 	 17, and WR3 	 56.

task τ3

time

task τ2

task τ1

WR3 = 56
a f

Figure 4.3. The constructed worst-case response time of task τ3.

4.2.2 A recursive equation
We first observe that when the response time of a job of a task exceeds the period,
that job also preempts the next job. As mentioned before, we only consider cases
in this thesis where the worst-case response times are less than or equal to periods.
This gives rise to a precondition in the following theorem.

Theorem 4.2. The worst-case response time WRi of a task τi is given by the small-
est x � � � that satisfies the following equation, provided that x is at most Ti.

x 	 WCi � ∑
j � i

�
x
Tj � WC j � (4.2)

Proof. The worst-case response time of τi consists of two parts: its computation
time WCi and its preemption by higher priority tasks. The latter is given by (4.1),
in which we may substitute ϕ j by aik according to Theorem 4.1. Together with the
fact that fik � aik 	 WRi, this shows that x 	 WRi indeed satisfies (4.2).

To show that WRi is the smallest positive value that satisfies the recursive equa-
tion, we show that any x � � � that satisfies it, is an upper bound on WRi. To this
end, consider an interval of length x that starts at time aik, the time at which the



56 Worst-Case Analysis

considered worst-case execution k of τi is released. Then we know that in this
interval at most an amount

∑
j � i

�
x
Tj � WC j

of preemption takes place by higher priority tasks. Therefore, at least an amount

x � ∑
j � i

�
x
Tj � WC j 	 WCi

remains for executing task τi, which is at worst just enough. Hence, the corre-
sponding completion of τi must take place at time aik � x or before, and hence x is
an upper bound on WRi.

�

We mention that there may be multiple values that satisfy (4.2), as is the case
for our example, where both the values x 	 56 and x 	 73 satisfy (4.2).

4.2.3 An iterative procedure
As mentioned before, we assume deadlines to be hard, i.e. WRi

�
Di (3.7). This

assumption is therefore also used as a termination criterion in the next theorem.

Theorem 4.3. The worst-case response time WRi of task τi can be found by the
following iterative procedure.

WR
�
0 �

i 	 WCi (4.3)

WR
�
l � 1 �

i 	 WCi � ∑
j � i

�
WR

�
l �

i

Tj � WC j � l 	 0 � 1 ������� (4.4)

The procedure is stopped when the same value is found for two successive iterations
of l, or when the deadline Di is exceeded.

Proof. We first prove termination of the procedure, by showing that the sequence
is non-decreasing and that it can only take on a finite number of values, and hence
eventually either two successive iterations must give the same value or the deadline
Di is exceeded. When the procedure stops because the same value is found for two
successive iterations, we know that we have a solution of (4.2). To show that the
found value is indeed WRi, i.e. the smallest positive solution of (4.2), we also show
that all values in the sequence WR

�
l �

i are lower bounds on WRi.
We first show that the sequence is non-decreasing, by induction. To this end,

we start by noting that WR
�
0 �

i 	 WCi � 0, and

WR
�
1 �

i 	 WCi � ∑
j � i

�
WR

�
0 �

i

Tj � WC j � WCi 	 WR
�
0 �

i �
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Next, if WR
�
l � 1 �

i � WR
�
l �

i , then we can conclude from (4.4) that also WR
�
l � 2 �

i �
WR

�
l � 1 �

i , as filling in a higher value in the right-hand side of (4.4) gives a higher or
equal result.

Next, we prove that the sequence can only take on a finite number of values.
To this end, we note that WR

�
l �

i is bounded from below by WCi and from above by
Di. This means that each factor �

WR
�
l �

i

Tj �
in (4.4) can only take on a finite number of values. Combining this for all higher
priority tasks τ j, we can conclude that the right-hand side of (4.4) can only take on
a finite number of values.

We finally prove WR
�
l �

i
�

WRi, for all l 	 0 � 1 ������� , by induction. Obviously,
WR

�
0 �

i 	 WCi
�

WRi. Next, if WR
�
l �

i is a lower bound on WRi, then

∑
j � i

�
WR

�
l �

i

Tj � WC j

is a lower bound on the amount of preemption of the worst-case execution of τ i by
higher priority tasks, and hence WR

�
l � 1 �

i is also a lower bound on WRi.
�

All tasks with a higher priority than τi preempt τi at least once. Therefore,
∑ j � i WC j is typically taken as the initial value for the iterative procedure to cal-
culate WRi [Audsley et al., 1991; Joseph and Pandya, 1986; Klein et al., 1993].
Without further elaboration we mention that for i � 1, WRi � 1 � WCi is also a lower
bound on the worst-case response time WRi, so we can use this value too for ini-
tialization.

4.2.4 An example
To illustrate the iterative procedure for worst-case response times, consider the ex-
ample of Figure 3.3, of which the characteristics are given in Table 3.1. Figure 4.4
shows the successive iterations of the computation of the worst-case response time
of task τ3, using ∑ j � 3 WC j as initial value, and yielding an eventual value of 56.

As we can see in this figure, the initial lower bound WR
�
0 �

3 	 19, indicated by a
dashed line, is also preempted by execution 2 of τ1. So the preemptions contain at
least executions 1 and 2 of τ1 and execution 1 of τ2. As a result, we can conclude
that this execution preempts a worst-case execution of τ3, resulting in a new upper
bound of WR

�
1 �

3 	 5 � 2 � 3 � 1 � 11 	 22.
Next, in iteration (ii), we see that WR

�
1 �

3 falls inside the period of execution
3 of τ1 and execution 2 of τ2, so the preemptions at least contain executions 1,
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(i)

(ii)

task τ3

time

task τ2

task τ1

19

1 2 3 4 5 6

22

task τ3

time

task τ2

task τ1 1 2 3 4 5 6

22 36

(iii)

task τ3

time

task τ2

task τ1 1 2 3 4 5 6

36 39

(iv)

task τ3

time

task τ2

task τ1 1 2 3 4 5 6

39 50

(v)

task τ3

time

task τ2

task τ1 1 2 3 4 5 6

50 53

(vi)

task τ3

time

task τ2

task τ1 1 2 3 4 5 6

53 56

1 2 3

1 2 3

1 2 3

1 2 3

1 32

1 32

Figure 4.4. Iterations to determine the worst-case response time of task τ3. Exe-
cutions are again numbered for ease of reference.
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2, and 3 of τ1 and executions 1 and 2 of τ2, resulting in a new upper bound of
WR

�
2 �

3 	 5 � 3 � 3 � 2 � 11 	 36.
This continues up to iteration (vi). There, we see that executions 1 ������� � 6 of

τ1 and executions 1 ������� � 3 of τ2 preempt the worst-case execution of τ3, resulting
in WR

�
6 �

3 	 5 � 6 � 3 � 3 � 11 	 56. As WR
�
6 �

3 	 WR
�
7 �

3 , the procedure stops. The
worst-case response time is therefore 56, of which the execution and preemptions
were already shown in Figure 4.3.

Note that time lines are an easy-to-understand graphical representation for the
recursive equation and its underlying notion of critical instant. However, the recur-
sive equation is more appropriate for calculation purposes.

4.3 Occupied times
In Figure 4.3, task τ3 is preempted at time 19 due to a release of τ2, and resumes
execution at time 36. The span of time from a task τ’s release till the moment in
time that τ can start or resume its execution after completion of a computation C
is termed the occupied time. The worst-case occupied time (WO) of a task τ is
the longest possible span of time from a release of τ till the moment in time that
τ can start or resume its execution after completion of a computation C. For a
computation time C � 0, that next moment is identical to the worst-case response
time WR if and only if no higher priority task is released at that moment. Other-
wise, executions of higher priority tasks aligned at WR will delay the resumption.

Figure 4.5 illustrates the worst-case response time WR3 and worst-case occu-
pied time WO3 of task tau3 as functions of the computation time C3. Note that the
difference between both notions is in the (open or closed) end-points of the line
fragments. Further note that WR3 is only defined for positive computation times,
whereas WO3 is also defined for a computation time of zero. For a computation
time C 	 0, the worst-case occupied time is equal to the worst-case start time, i.e.

WSi 	 WOi
�
0 � (4.5)

In the remainder of this document, we will therefore treat the worst-case start time
as a special case of the worst-case occupied time.

We will first determine the worst-case occupied time of a task τ by construction
using a time line with a critical instant for τ. A next theorem presents a recursive
equation for the worst-case occupied time of a task. That equation is derived from
the recursive equation (4.2) for the worst-case response time, and uses specific
properties of (4.2) and its solutions. We therefore revisit worst-case response times
before presenting the theorem.
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WR3(C3)

17

C3

36

55

WO3(C3)

17

C3

36

55

55

Figure 4.5. The worst-case response time WR3 and worst-case occupied time
WO3 of task τ3 as functions of the computation time C3.

4.3.1 A time line
Considering Figure 4.3, τ3 can start its execution at time 17, therefore WS3 	
WO3

�
0 � 	 17. As mentioned above, task τ3 is preempted by task τ2 at time 19

after an execution of a computation time of 2, and can resume its execution at time
36. Hence, WR3

�
2 � 	 19 � WO3

�
2 � 	 36. Task τ3 can continue its execution after

a computation time of 1 at time 18, and the worst-case occupied time and the worst-
case response time of τ3 are therefore the same for a computation time C3 	 1, i.e.
WO3

�
1 � 	 WR3

�
1 � 	 18.

4.3.2 Response time revisited
In Section 4.2, we did not determine under which conditions there actually exists a
positive solution for (4.2). Instead, we used the exact schedulability condition (3.7)
as a termination condition in Theorem 4.3 for the iterative procedure to determine
the worst-case response time. In this section, we will take a closer look at (4.2) and
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its solutions.
In general, there remains processor time for execution of τi when the cumula-

tive utilization factor Ui � 1 of the tasks with a higher priority than τi is less than one.
Hence, assuming only a single job for τi, there will eventually be sufficient time
for τi to execute any finite computation time Ci � 0. Strictly spoken, the smallest
positive solution of (4.2) is the response time ri of τi that is released simultaneously
with all higher priority periodic tasks taking only a single job of τi in consideration.
Intuitively, there therefore exists a smallest solution for (4.2) when Ui � 1 � 1.

A next lemma states that there exists a positive solution for (4.2) if and only if
Ui � 1 � 1. As a consequence, when the necessary condition for the schedulability
of a set � of n periodic tasks as expressed by (3.11) holds, then there exist positive
solutions for (4.2) for all tasks. For the proof of that lemma we use a variant of
Bolzano’s theorem for continuous functions (see, for example, [Harris & Stocker,
1998]).

Bolzano’s theorem. Let, for two real a and b, a � b, a function f be continuous
on a closed interval  a � b � such that f

�
a � and f

�
b � are of opposite signs. Then there

exists a number c �  a � b � such that f
�
c � 	 0.

�

For a continuous function f
�
x � , the next lemma can be easily proven by introducing

a new function g
�
x � 	 f

�
x � � x. In our variant, the function f

�
x � is assumed to be

defined and strictly non-decreasing, and we therefore need an alternative proof.

Lemma 4.3. Let f
�
x � be defined and strictly non-decreasing in an interval  a � b �

with f
�
a � � a and f

�
b � � b. Then there exists a value c �

�
a � b � such that f

�
c � 	 c.

Proof. Figure 4.6 illustrates the lemma. Let c be defined by

x

y

f(b)

f(c)

f(a)

a c b

x=y

Figure 4.6. A defined and strictly non-decreasing function f � x � on � a � b � .
c 	 sup � x � a � � t ��� a � x 	 f �

t � � t 
 �
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This supremum exists, because the set is bounded, i.e.

�
t � � a � x 	 f

�
t � � t � x � b

due to f
�
b � � b, and therefore c

�
b. We will now prove f

�
c � 	 c by means of a

contradiction argument, i.e. we show that both assumptions f
�
c � � c and f

�
c � � c

lead to contradictions.
Assume f

�
c � � c. Then choose x 	 c �

�
f

�
c � � c � �

2 	
�
f

�
c � � c � �

2 � c. For
t �  a � x

�
, we distinguish two cases. For t � c, f

�
t � � t by the definition of c. For

c
�

t
�

x, we get:

f
�
t � � � by definition of f � f

�
c �

� � by our assumption f
�
c � � c � �

f
�
c � � c � �

2

	 x � t �
Moreover, x is at most b. This is because c

�
b, as a result we get f

�
c � �

f
�
b � � b,

and therefore x 	
�
f

�
c � � c � �

2 �
�
b � b � �

2 	 b. Hence, for t �  a � x � we get f
�
t � � t.

From the definition of c, we now derive c � x, which contradicts the fact that x � c.
Hence, the assumption f

�
c � � c was wrong.

Assume f
�
c � � c. Then choose t 	

�
f

�
c � � c � �

2 � c. We now get:

f
�
t � � � by definition of f � f

�
c �

� � by our assumption f
�
c � � c � �

f
�
c � � c � �

2

	 t �
Moreover, this value for t is at least a. This is because c � a, as a result we get
f

�
c � � f

�
a � � a, and therefore t 	

�
f

�
c � � c � �

2 � �
a � a � �

2 	 a. Hence, when x
satisfies

�
t

� ��� a � x 	 f
�
t

�

� � t
�

�
x must be smaller than t, i.e. x �

�
f

�
c � � c � �

2. Given the definition of c (supre-
mum), we get

c 	 supx � a � � t
� ��� a � x 	 f �

t
�

� � t
�

�
supx � a � x �

�
f

�
c � � c � �

2

	 f
�
c � � c
2

� c �
which again gives a contradiction. Hence, our assumption f

�
c � � c was wrong.

We now have c � a, c
�

b, and f
�
c �
	 c. From f

�
a � � a and f

�
b � � b, we

conclude that c
�	 b and c

�	 a, i.e. c �
�
a � b � .

�

Lemma 4.4. There exists a positive solution for the recursive equation (4.2) for
the worst-case response time WRi of a task τi if and only if Ui � 1 � 1.
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Proof. For i 	 1, the lemma trivially holds. Assume i � 1, and let f be defined as

f
�
x � 	 WCi � ∑

j � i

�
x
Tj � WC j �

� only if Ui � 1 � 1 � The condition is necessary, as for its negation Ui � 1 � 1 we
can derive

f
�
x � � WCi � ∑

j � i

x
Tj

WC j 	 WCi � xUi � 1 � x

for all x � 0.
� if Ui � 1 � 1 � We will prove that the condition is sufficient by means of

Lemma 4.3. Let f
�
t � be as defined above. We choose a 	 0, hence f

�
a � 	 f

�
0 � 	

WCi � 0 	 a. In order to choose an appropriate b, we make a derivation similar to
the one given above.

f
�
x � � WCi � ∑

j � 1

�
x
Tj

� 1 � WC j 	 ∑
j � i

WC j � xUi � 1

The relation x � ∑ j � i WC j � xUi � 1 holds for x � ∑ j � i WC j
� �

1 � Ui � 1 � as Ui � 1 � 1.
We now choose b 	 ∑ j � i WC j

� �
1 � Ui � 1 � , and therefore get b � f

�
b � . Now the

conditions for Lemma 4.3 hold, i.e. the function f
�
x � is defined and strictly non-

decreasing in an interval  a � b � with f
�
a � � a and f

�
b � � b. Hence, there exists an

x �
�
0 � ∑ j � i WC j

� �
1 � Ui � 1 � � such that x 	 f

�
x � .

�

From the construction of the worst-case response time WRi of task τi using a
time line as described by Corollary 4.2 and the fact that time lines are a graphical
representation for the recursive equation (4.2) and its underlying notion of critical
instant, we draw the following intuitive conclusion.

Corollary 4.3. For Ui � 1 � 1 and Ci � 0, the smallest positive solution WRi
�
Ci � of

(4.2) has the following properties.
(i) WRi

�
Ci � is a defined and strictly increasing function of Ci.

(ii) WRi
�
Ci � is discontinuous at points Ci where WRi

�
Ci � 	 kTj, with k �

� �
and j � i.

(iii) WRi
�
Ci � is left-continuous, i.e.

lim
x � Ci

WRi
�
x � 	 WRi

�
Ci � � (4.6)

�
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4.3.3 A recursive equation
From the description of the worst-case occupied time WOi

�
Ci � of a task τi with

computation time Ci � 0 and its construction by means of a time line we derive

WOi
�
Ci � 	 lim

x � Ci

WRi
�
x � � (4.7)

We will use (4.7) as a starting point for the derivation of the recursive equation for
the worst-case occupied time. First we prove the following lemma.

Lemma 4.5. When limx � X f
�
x � is defined, and f

�
x � is strictly increasing in an in-

terval
�
X � X � γ � for sufficiently small γ � � � , then the following equation holds.

lim
x � X � f �

x ��� 	 �
lim
x � X f

�
x ��� � 1 (4.8)

Proof. The proof uses the definition of limit:

lim
x � X f

�
x � 	 Y � �

ε � 0 	δ � 0
�

x � �
X � X � δ � � f �

x � � Y � � ε �
We first prove the relation

�
X � x � X � γ

f
�
x � � Y �

and subsequently prove the lemma.
The proof of the relation is based on a contradiction argument. Because

limx � X f
�
x � is defined, we may write limx � X f

�
x �
	 Y . Assume f

�
x1 � �

Y for an
x1 �

�
X � X � γ � . Choose an x2 �

�
X � x1 � . Because f

�
x � is strictly increasing in�

X � X � γ � , f
�
x2 � � f

�
x1 � �

Y . Now choose ε 	 Y � f
�
x2 � , then

� x � �
X � x2 � f

�
x � � f

�
x2 � � Y

and hence
� f �

x � � Y � � � f �
x2 � � Y � 	 ε �

which contradicts the fact that limx � X f
�
x � 	 Y .

For the proof of the lemma, we consider two main cases: Y �
�

and Y
�

�
�

. Let
Y �

�
. According to the relation proven above, 0 � f

�
x � � Y for all x �

�
X � X � γ � .

Let ε �
�
0 � 1

�
. Now there exists a δ1 �

�
0 � γ � such that 0 � f

�
x � � Y � ε �

1 for all
x �

�
X � X � δ1 � , hence Y � f

�
x � � Y � 1, i.e.

�
f

�
x ��� 	 Y � 1 	�
 Y � � 1. So,

lim
x � X � f �

x ��� 	 lim
x � X � 
 Y � � 1 � 	
 Y � � 1 	

�
lim
x � X f

�
x ��� � 1 �

Next, let Y
�

�
�

. Let ε �
�
0 � � Y � � Y

�
. Now there exists a δ2 �

�
0 � γ � such that

for all x �
�
X � X � δ2 �

0 � f
�
x � � Y � ε � �

Y � � Y �
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hence
Y � f

�
x � � Y � ε �

�
Y � �

i.e. �
f

�
x ��� 	 �

Y � 	 
 Y � � 1 �
For this second main case we therefore also find

lim
x � X � f �

x ��� 	 lim
x � X � 
 Y � � 1 � 	
 Y � � 1 	

�
lim
x � X f

�
x � � � 1 �

which proves the lemma.
�

Theorem 4.4. When the smallest positive solution WRi of (4.2) for a computation
time WC

�

i is at most min
�
Di � Ti � , the worst-case occupied time WOi of a task τi with

a computation time WCi �  0 � WC
�

i

�
is given by the smallest non-negative x � � that

satisfies

x 	 WCi � ∑
j � i

� �
x
Tj
� � 1 � WC j � (4.9)

Proof. Given Lemma 4.5, we can make the following derivation starting from
(4.7).

WOi
�
WCi � 	 lim

x � WCi

WRi
�
x �

	 � (4.2) � lim
x � WCi

�
x � ∑

j � i

�
WRi

�
x �

Tj � WC j �
	 WCi � ∑

j � i
lim

x � WCi

�
WRi

�
x �

Tj � WC j

	 � Lemma 4.5 � WCi � ∑
j � i

� �
lim

x � WCi

WRi
�
x �

Tj
� � 1 � WC j

	 � (4.7) � WCi � ∑
j � i

� �
WOi

�
WCi �

Tj
� � 1 � WC j

Remember that the smallest positive solution of (4.2) only consider a single job of
the task under consideration. The same holds for the smallest non-negative solution
of (4.9). Hence, the worst-case occupied time WOi of task τi with a computation
time WCi �  0 � WC

�

i
�

is the smallest non-negative solution WOi satisfying (4.9),
when the smallest positive solution WRi of (4.2) for a computation time WC

�

i is at
most min

�
Di � Ti � .

�

Note that Theorem 4.4 has a precondition, similar to Theorem 4.2 for the worst-
case response time of a task.
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4.3.4 An iterative procedure
The next theorem describes how the smallest positive solution of (4.4) can be found
using an iterative procedure.

First, we prove the following lemma.

Lemma 4.6. There exists a non-negative solution for the recursive equation (4.9)
for the worst-case occupied time WOi of a task τi if Ui � 1 � 1.

Proof. For i 	 1, the lemma trivially holds. For i � 1, the proof is similar to
the � Ui � 1 � 1 � part of the proof of Lemma 4.4, i.e. we prove that the condition is
sufficient by means of Lemma 4.3.

�

Theorem 4.5. The worst-case occupied time WOi of task τi can be found by the
following iterative procedure.

WO
�
0 �

i 	 � ∑ j � i WC j for WCi 	 0
WRi for WCi � 0

(4.10)

WO
�
l � 1 �

i 	 WCi � ∑
j � i

���
WO

�
l �

i

Tj � � 1 � WC j � l 	 0 � 1 ������� (4.11)

The procedure is stopped when the same value is found for two successive iterations
of l.

Proof. The proof is similar to that of Theorem 4.3.
�

Note that by starting with WO
�
0 �

i 	 WRi, we have to determine WRi first. Given
Lemma 4.4, it is therefore guaranteed that when WRi exists, there also exists a
solution for (4.9). In such a situation, Theorem 4.5 yields the worst-case occupied
time WOi. On the other hand, existence of a solution of (4.9) does not necessarily
imply that it represents WOi. As an example, when the smallest positive solution
of (4.2) is larger than Ti the job under consideration also preempts the next job, and
that situation has been ignored in (4.9).

Without further elaboration we mention that for WCi 	 0 and i � 1, WOi � 1 is
also a lower bound on the worst-case occupied time WOi, so we can use this value
too for initialization.

4.4 Discussion
In this section, we consider worst-case execution times and initial values for the it-
erative procedure to determine the worst-case response time, present several prop-
erties of the worst-case occupied time, and finally introduce the notion of worst-
case induced load.
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4.4.1 Execution times
Given (3.1) and the definition of the execution interval eik 	 aik � sik , we immedi-
ately derive WEi

�
WRi. The next lemma states that the worst-case execution time

equals the worst-case response time.

Lemma 4.7. The worst-case execution time WEi of a task τi is equal to the worst-
case response time WRi of that task.

Proof. The proof is by construction. Consider a simultaneous release of task
τi and all its higher priority tasks (i.e. a critical instant of τi) at time t 	 0. Let
this release of τi be denoted by job k. There exists a resume time t � f ik , such
that all preemptions of tasks with a higher priority than τi are completed, and the
last part of job k lasting a time xω can be executed without preemptions between
time t and fik; see Figure 4.7. We now move the release of task τi an amount of

task τi

timeaik=0 bik fik

WRi

sik eik

x1 xω

Figure 4.7. Release of task τi at a critical instant at time t � 0.

time xω
�
2 backwards in time, i.e. a

�

ik 	 aik � xω
�
2 	 � xω

�
2. Because the response

time of job k already was the worst-case response time WRi, moving its release
backwards in time cannot increase its response time. Hence, job k can immediately
start executing at time � xω

�
2, and the length of the start interval becomes zero, i.e.

s
�

ik 	 b
�

ik � a
�

ik 	 0. The response time of k cannot decrease either, because an
amount xω

�
2 is still to be executed in the interval  fik � xω � fik � xω

�
2 � , i.e. job k

completes at f
�

ik 	 fik � xω
�
2. As a result, the length of the execution interval equals

the response time, i.e. e
�

ik 	 f
�

ik � b
�

ik 	 fik � xω
�
2 �

�
aik � xω

�
2 � 	 rik. By keeping

task τi

timea’ik f’ik

WRi

e’ik

x1 xω/2xω/2

0

Figure 4.8. Release of task τi at t ��� xω
�
2 and a simultaneous release of all

higher priority tasks at time t � 0.

the response time of job k the same, we therefore constructed an execution interval
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equal to the worst-case response time, so WEi � WRi; see Figure 4.8. Together
with the relation WEi

�
WRi this proves the lemma.

�

From Corollary 4.2, we know that the execution of τi may be viewed to fill level-
(i � 1) idle intervals. Assuming an arbitrary computation time Ci for τi, and there-
fore an xω with the length of an arbitrary level-(i � 1) idle interval, we may draw
the following conclusion from the proof of Lemma 4.7.

Corollary 4.4. A longest level-(i � 1) idle interval is found right before a simulta-
neous release of tasks τ1 till τi � 1.

�

Corollary 4.5. The worst-case execution time WEi of a task τi is not assumed when
that task is simultaneously released with all its higher priority tasks. Instead, it is
assumed when that task τi is released just before the simultaneous release of all its
higher priority tasks.

�

For a critical instant, it is possible to define a condition (i.e. the simultaneous re-
lease of a task with all its higher priority tasks; see Theorem 4.1) and subsequently
associate a single moment in time with that condition such that the worst-case re-
sponse of a task is assumed when that task starts at that moment in time. The term
instant in critical instant may therefore refer to both the condition as well as the
moment in time for which the condition holds. Similarly to the worst-case response
time, it is also possible to define a condition for the instant for which a worst-case
execution time of a task is assumed. Unlike the worst-case response time, two
moments of time are associated with that condition: the release of the task under
consideration and the simultaneous release of all its higher priority tasks.

4.4.2 Initial values
In this section, we first consider standard initial values for the iterative procedure
to determine the worst-case response time. Next, we present an alternative initial
value. Finally, we propose an initial value that combines standard and alternative
initial values.

Standard initial values
As mentioned before, ∑ j � i WC j is typically taken as the initial value for the itera-
tive procedure to calculate WRi. Moreover, WRi � 1 � WCi is an attractive alternative
when WRi � 1 is known. In both cases, the initial value is a constant plus WCi. We
will therefore use the term ιSW

i

�
WCi � to denote a standard initial value, which is

defined using a constant χW
i .

ιSW
i

�
WCi � 	 χW

i � WCi (4.12)

In this document, we assume χW
i 	 WRi � 1.
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Alternative initial value
The definition of the alternative initial value ιAW

i

�
WCi � and its appropriateness as

initial value are given in Lemma 4.8.

Lemma 4.8. The value ιAW
i

�
WCi � defined by

ιAW
i

�
WCi � 	 WCi�

1 � WUi � 1 � � (4.13)

is an appropriate initial value for the iterative procedure to determine WRi
�
WCi � .

Proof. The worst-case response time WRi
�
WCi � is the smallest positive solution of

(4.2), and the iterative procedure therefore has to start with a lower bound. Hence,
we have to prove that ιAW

i

�
WCi � is a lower bound for WRi

�
WCi � . To this end, we

derive

WRi
�
WCi � 	 WCi � ∑

j � i

�
WRi

�
WCi �

Tj � WC j

� WCi � ∑
j � i

�
WRi

�
WCi �

Tj
� WC j 	 WCi � WRi

�
WCi � WUi � 1 �

Hence for WUi � 1 � 1, we get WRi
�
WCi � � WCi

� �
1 � WUi � 1 � .

�

Although we independently conceived this alternative initial value, the credits for
it should go to Mikael Sjödin who already conceived it in 1998 [Sjödin & Hansson,
1998]. The initial value presented in that paper also takes blocking and jitter into
account.

Combined initial value
The highest amount of preemptions in a schedule σi � 1 is found right after the
simultaneous release of tasks τ1 till τi � 1; see also Corollary 4.1. Whereas the
standard initial value ιSW

i

�
WCi � takes this aspect into account by having an offset

χi 	 WRi � 1, the alternative initial value ιAW
i

�
WCi � does not. As a consequence,

ιSW
i

�
WCi � may perform better for small computation times. We therefore propose

to use an initial value that combines ιSW
i

�
WCi � and ιAW

i

�
WCi � . This proposed initial

value ιCW
i

�
WCi � to calculate WRi

�
WCi � is defined by

ιCW
i

�
WCi � 	 max

�
ιSW
i

�
WCi � � ιAW

i
�
WCi � � � (4.14)

4.4.3 Properties of the worst-case occupied time
Lemma 4.9. The worst-case occupied time WOi of task τi is not a multiple of any
period Tj for j � i.

Proof. The proof is based on a contradiction argument. Assume the iterative
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procedure in Theorem 4.5 terminates with WO
�
l �

i 	 WO
�
l � 1 �

i 	 mTj and WO
�
l � 1 �

i �
mTj. Then at most m activations of task τ j are taken into account to determine
WO

�
l �

i . During the next step, when determining WO
�
l � 1 �

i , m � 1 activations will be
taken into account, hence WO

�
l � 1 �

i � WO
�
l �

i . This contradicts the assumption.
�

Lemma 4.10. The worst-case occupied time WOi of τi is a solution of the recursive
equation for the worst-case response time (4.2).

Proof. From the fact that the worst-case response time WRi is a strictly increasing
function of the computation time and from (4.7), we conclude that WOi � WRi.
Because WOi is not a multiple of any period Tj for j � i (see previous lemma),
WOi

�
Tj

�
�

�
for any j � i. As a consequence,�

WOi

Tj
� � 1 	

�
WOi

Tj � for j � i �
This proves that WOi is a solution of the recursive equation for worst-case response
time (4.2).

�

From the construction of the worst-case occupied time WOi of task τi using a
time line we draw the following intuitive conclusion.

Corollary 4.6. For Ui � 1 � 1 and Ci � 0, the smallest non-negative solution
WOi

�
Ci � of (4.9) has the following properties:

(i) WOi
�
Ci � is a defined and strictly increasing function of Ci;

(ii) WOi
�
Ci � is discontinuous at points Ci where WRi

�
Ci � is discontinuous;

(iii) WOi
�
Ci � is right-continuous, i.e.

lim
x � Ci

WOi
�
x � 	 WOi

�
Ci � � (4.15)

�

We observe that we may also express the worst-case response time WRi in terms of
the worst-case occupied time WOi, i.e.

WRi
�
Ci � 	 lim

x � Ci

WOi
�
x � � (4.16)

Note that (4.7) and (4.16) are similar, but not equivalent, i.e. one does not neces-
sarily imply the other. This is due to the fact that the functors limx � X and limx � X
are not injective.
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4.4.4 Induced load
The summation term in the recursive equation (4.2) for the worst-case response
time is also termed the worst-case induced load

WLi � 1
�
x � 	 ∑

j � i

�
x
Tj � WC j (4.17)

of tasks τ1 till τi � 1 in a right-open interval of length x, e.g.  t � t � x � . The worst-case
induced load is the maximal load induced by tasks with a higher priority than τ i.

Similarly, the summation term in (4.9) for the worst-case occupied time is the
worst-case induced load

WL �i � 1
�
x � 	 ∑

j � i

� �
x
Tj
� � 1 � WC j (4.18)

of tasks τ1 till τi � 1 in a closed interval of length x, e.g.  t � t � x
�
.

The notions of worst-case induced load WLi
�
x � and WL �i

�
x � can also be found

in [George et al., 1996; Hermant et al., 1996].





5
Best-Case Analysis

This chapter presents theorems for the main best-case notions introduced in Chap-
ter 3, i.e. optimal instant in Section 5.1, best-case response time in Section 5.2, and
best-case start time and its generalization best-case occupied time in Section 5.3.

To show the duality of the best-case notions and the worst-case notions, the
structure of this chapter closely follows that of Chapter 4, and even the text is at
many places similar. Moreover, for every Theorem 4.x in Chapter 4 we have a
similar Theorem 5.x in this chapter.

5.1 An optimal instant
Similar to the notion of a critical instant, which is used to derive worst-case re-
sponse times, the next theorem introduces the notion of an optimal instant, as de-
picted in Figure 5.1. The theorem states that if we want to determine the best-case
response time under arbitrary phasings, it suffices to consider optimal instants only.
This notion is used in the next section to derive a recursive equation for best-case
response times. The best-case response time analysis is based on best-case compu-
tation times BCi.

First, we prove the following two lemmas.

Lemma 5.1. If an execution of task τi, which is released at a time a, has minimal
response time, then the following two properties hold.

73
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task τi

task τj

time
release time

task τl

f

best-case response time
task τi

a

Figure 5.1. An optimal instant for task τi, at time f , where releases for all higher
priority tasks (here τ j and τl) coincide with the completion of an execution of τi.

(i) The execution starts right upon its release.
(ii) No higher priority task has a release at time a.

Proof. (i) If the considered execution starts at a time b � a, then we can decrease its
response time by an amount b � a by shifting its releases to the right by an amount
b � a, i.e. by changing the phasing ϕ into a phasing ϕ

�

with ϕ
�

i 	 ϕi � b � a and ϕ
�

j 	
ϕ j for all j

�	 i. This, however, contradicts the fact that the considered execution has
minimal response time. Note that shifting the releases of task τi does not affect the
higher priority tasks, and hence does not affect the start of the considered execution
of τi. Furthermore, note that the shifting cannot cause deadlines to be missed, as
we assumed that each task’s worst-case response time, i.e. the maximal response
time under any phasing, is at most equal to the corresponding deadline.

(ii) If a higher priority task also has a release at time a, then this task is executed
before task τi, and hence the considered execution of task τi starts at a time b � a.
This, however, contradicts property (i).

�

As a result of Lemma 5.1 and the notion of completion time, we know that
task τi is being executed at both ends of the time interval between the release a
and completion f of a best-case execution. This implies that all releases of higher
priority tasks must have been completed. We use this property in the proof of the
next lemma to determine the preemptions of a best-case execution.

Lemma 5.2. If an execution of task τi, which is released (and started) at a time
a and completed at time f , has minimal response time, then it is preempted only
by releases of higher priority tasks τ j that fall inside the open interval

�
a � f � , and

each of these releases preempts the execution of τi by an amount BC j.

Proof. Consider the preemption of the best-case execution of τi by a higher pri-
ority task τ j. Obviously, releases of τ j at or after time f are too late to cause any
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preemption to the considered execution of τi. Next, releases of τ j before time a do
not cause any preemption of the considered execution of τi either. The reason for
this is the fact that τi starts executing right upon its release at time a, according to
Lemma 5.1, so there cannot be any work pending of previous releases of τ j. Next,
Lemma 5.1 also tells us that there is no release of τ j at time a, hence we can con-
clude that only the releases strictly between time a and time f cause preemptions
to the considered best-case execution of τi. Furthermore, as these higher priority
executions need to be finished before task τi can be completed, we know that each
of the releases of τ j between a and f preempts τi for an amount BC j.

�

Theorem 5.1. In order to have a minimal response time for an execution k of task
τi, i.e. to have fik � aik 	 BRi, we may assume without loss of generality that the
phasing ϕ is such that ϕ j 	 fik for all j � i. In other words, the phasing of the tasks’
release times is such that the completion of the considered execution of τ i coincides
with a simultaneous release for all higher priority tasks. This latter point in time
is called an optimal instant for task τi.

Proof. We first determine the amount of preemption of execution k of τi by higher
priority tasks. Execution k of τi is released at time aik and completed at time fik, as
indicated in Figure 5.2. Without loss of generality we assume that release number
zero of each higher priority task τ j is the first release that takes place at or after
time fik, i.e. we assume fik

� ϕ j � fik � Tj. This is indicated in the figure, where
we numbered the releases of τ j.

task τi

task τj

timefik ϕjaik

release time best-case response time
task τi

0−1−2−3

Figure 5.2. An execution k of τi with minimal response time, released at time
aik and completed at time fik, and a higher priority task τ j for which release zero,
taking place at time a j0 � ϕ j, is the first release at or after time fik. The executions
of τ j are numbered for ease of reference.

According to Lemma 5.2, we can determine the amount of preemption of task
τi by task τ j, by counting the number of releases of τ j strictly between times aik

and fik. Given the numbering of the releases of τ j as indicated before, this is given
by the maximal number m �

�
for which

ϕ j � mTj � aik �
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or, equivalently,

m �
ϕ j � aik

Tj
�

The maximal number m �
�

satisfying this inequality is given by

m 	
�
ϕ j � aik

Tj � � 1 �
As mentioned in Lemma 5.2, each of these releases gives a preemption of BC j. The
total amount of preemption of the considered best-case execution of τi by higher
priority tasks is thus given by

∑
j � i

� �
ϕ j � aik

Tj � � 1 � BC j � (5.1)

in which, as assumed, each ϕ j is bounded by fik
� ϕ j � fik � Tj. Obviously, (5.1)

is minimal when each ϕ j is chosen minimally, i.e. ϕ j 	 fik , which exactly proves
the theorem.

�

We can draw the following conclusion from Theorem 5.1.

Corollary 5.1. The lowest amount of preemption of a considered task is found
right before a simultaneous release of higher priority tasks.

�

Remember that the notion of a critical instant tells us that right after such a moment
the highest amount of preemption is found; see Corollary 4.1.

Note that whereas a critical instant gives the worst-case situation for all tasks
simultaneously, an optimal instant gives the best case situation for one specific task.
This implies that one particular phasing ϕ may give a best-case response time for
one task, but another phasing ϕ

�

may have to be considered to obtain a best-case
response time for another task.

5.2 Response times
Based on an optimal instant, we first show how to determine the best-case response
time by construction using a time line. Next, we derive a recursive equation for
the best-case response time and present an iterative procedure to find its solution.
Finally, we illustrate the iterative procedure by an example.

5.2.1 A time line
The construction of the best-case response time BRi of a task τi is similar to that
of the worst-case response time WRi as described in Corollary 4.2. The main dif-
ferences being that (i) we have to make sure that the worst-case response time WR i

is smaller than the minimum of the deadline Di and the period Ti, (ii) we draw the
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releases of the higher priority tasks before their simultaneous release, and (iii) we
draw the response of τi backwards in time.

Corollary 5.2. When the smallest positive solution of (4.2) is at most min
�
D i � Ti � ,

the best-case response time BRi of task τi can be determined by construction using
a time line with a completion of τi that coincides with a simultaneous release for
all higher priority tasks at time f by the following iterative procedure.

(i) Draw a time line with releases of the highest priority task τ1, with compu-
tation times equal to BR1 and a last release at time f � T1 . For every release, task
τ1 can start immediately and execute to completion.

(ii) Given the responses of tasks τ1 till τi � 2, let task τi � 1 have a last release at
time f � Ti � 1. The first release of task τi � 1 should be after the first release of task
τi � 2 to guarantee that all preemptions of the latter are taken into account for the
response of task τi � 1. The execution of task τi � 1 fills the level-(i � 2) idle intervals
till τi � 1 has executed its best-case computation time.

(iii) The execution of task τi fills the level-(i � 1) idle interval starting from time
f backwards in time till τi has executed its best-case computation time.

The procedure is stopped when τi completes, in which case the best-case re-
sponse time BRi is found.

�

Figure 5.3 illustrates the procedure for our example. Note that the characteris-
tics of the example are given in Table 3.1. From the figure, we derive BR3 	 22.

task τ3

time
BR3 = 22

task τ2

task τ1

fa

Figure 5.3. The constructed best-case response time of task τ3.

5.2.2 A recursive equation
Next, we derive a recursive equation for the best-case response times, based on an
optimal instant. Note that the following theorem also has a precondition, just like
its dual Theorem 4.2 for the worst-case response time, to make sure that a previous
job of τi cannot preempt the response under consideration.

Theorem 5.2. When the smallest solution of (4.2) of a task τi is at most min
�
Di � Ti � ,
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the best-case response time BRi of τi is given by the largest x � � � that satisfies

x 	 BCi � ∑
j � i

� �
x
Tj � � 1 � BC j � (5.2)

Proof. The best-case response time of τi consists of two parts: its computation
time BCi and its preemption by higher priority tasks. The latter is given by (5.1),
in which we may substitute ϕ j by fik according to Theorem 5.1. Together with the
fact that fik � aik 	 BRi, this shows that x 	 BRi indeed satisfies (5.2).

To show that BRi is the largest value that satisfies the recursive equation, we
show that any x � � � that satisfies it, is a lower bound on BRi. To this end, consider
an interval of length x that ends at time fik, the time at which the considered best-
case execution k of τi completes. Then we know that in this interval at least an
amount

∑
j � i

� �
x
Tj � � 1 � BC j

of preemption takes place by higher priority tasks. Therefore, at most an amount

x � ∑
j � i

� �
x
Tj � � 1 � BC j 	 BCi

remains for executing task τi, which is at best just enough. Furthermore, the
counted preemptions are all due to releases of higher priority tasks strictly after
time fik � x, so τi can only be completed in the interval  fik � x � fik � if it is also
executed from time fik � x to the first preemption after fik � x. Hence, the corre-
sponding release of τi must take place at time fik � x or before, and hence x is a
lower bound on BRi.

�

We mention that there may be multiple values that satisfy (5.2), as is the case in
the example of Section 5.2.4, where both the values x 	 22 and x 	 5 satisfy (5.2).

5.2.3 An iterative procedure
Theorem 5.3. The best-case response time BRi of task τi can be found by the fol-
lowing iterative procedure, which stops when the same value is found for two suc-
cessive iterations of l.

BR
�
0 �

i 	 WRi (5.3)

BR
�
l � 1 �

i 	 BCi � ∑
j � i

� �
BR

�
l �

i

Tj � � 1 � BC j � l 	 0 � 1 ������� (5.4)

Proof. We first prove termination of the procedure, by showing that the sequence
is non-increasing and that it can only take on a finite number of values, and hence
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eventually two successive iterations must give the same value. Upon termination,
we know that we have a solution of (5.2). To show that the found value is indeed
BRi, i.e. the largest solution of (5.2), we show that all values in the sequence BR

�
l �

i
are upper bounds on BRi.

We first show that the sequence is non-increasing, by induction. To this end,
we start by noting that BR

�
0 �

i 	 WRi, and

BR
�
1 �

i 	 BCi � ∑
j � i

� �
BR

�
0 �

i

Tj � � 1 � BC j 	 BCi � ∑
j � i

� �
WRi

Tj � � 1 � BC j

�
WCi � ∑

j � i

�
WRi

Tj � WC j 	 WRi 	 BR
�
0 �

i �

Next, if BR
�
l � 1 �

i
�

BR
�
l �

i , then we can conclude from (5.4) that also BR
�
l � 2 �

i
�

BR
�
l � 1 �

i , as filling in a lower value in the right-hand side of (5.4) gives a lower or
equal result.

Next, we prove that the sequence can only take on a finite number of values.
To this end, we note that BR

�
l �

i is bounded from below by BCi and from above by
WRi. This means that each factor �

BR
�
l �

i

Tj � � 1

in (5.4) can only take on a finite number of values. Combining this for all higher
priority tasks τ j, we can conclude that the right-hand side of (5.4) can only take on
a finite number of values.

We finally prove BR
�
l �

i � BRi, for all l 	 0 � 1 ������� , by induction. Obviously,
BR

�
0 �

i 	 WRi � BRi. Next, if BR
�
l �

i is an upper bound on BRi, then

∑
j � i

� �
BR

�
l �

i

Tj � � 1 � BC j

is an upper bound on the amount of preemption of the best-case execution of τ i by
higher priority tasks, and hence BR

�
l � 1 �

i is also an upper bound on BRi.
�

In order to get a better initialization value in (5.3), we may replace the worst-case
response times based on worst-case computation times, by worst-case response
times based on best-case computation times. Without further elaboration we men-
tion that for i � 1, WRi � WRi � 1 is also an upper bound on the best-case response
time BRi, so we can use this value too for initialization.
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5.2.4 An example
To illustrate the iterative procedure for best-case response times, consider the ex-
ample of Figure 3.3, of which characteristics are given in Table 3.1. Figure 5.4
shows the successive iterations of the computation of the best-case response time
of task τ3, yielding an eventual value of 22. As we can see in this figure, the initial
upper bound BR

�
0 �

3 	 56, indicated by a dashed line, falls inside the period of exe-
cution � 6 of τ1 and the period of execution � 3 of τ2. As a result, we can conclude
that these executions do not preempt a best-case execution of τ3, so the preemp-
tions can at most contain executions � 5 ������� � � 1 of τ1 and executions � 2 and � 1
of τ2, resulting in a new upper bound of BR

�
1 �

3 	 5 � 5 � 3 � 2 � 11 	 42.
Next, in iteration (ii), we see that execution � 5 of τ1 does not preempt the

best-case execution of τ3 either, so the preemptions can at most contain executions
� 4 ������� � � 1 of τ1 and executions � 2 and � 1 of τ2, resulting in a new upper bound
of BR

�
2 �

3 	 5 � 4 � 3 � 2 � 11 	 39.
This continues up to iteration (vi). There, we see that executions � 2 and � 1

of τ1 and execution � 1 of τ2 preempt the best-case execution of τ3, resulting in
BR

�
6 �

3 	 5 � 2 � 3 � 1 � 11 	 22. As BR
�
6 �

3 	 BR
�
7 �

3 , the procedure stops. The best-
case response time is therefore 22, of which the execution and preemptions are
shown in Figure 5.3.

Using the techniques described by Palencia Gutiérrez, Gutiérrez Garcı́a &
González Harbour [1998] and Kim, Lee, Shin & Chang [2000] results in the same
value for the best-case response times of τ1 and τ2, but a lower bound of only 5 for
task τ3, which is quite far off the actual best-case response time of 22. The differ-
ence between these results may be explained as follows. First, a best-case execu-
tion of a task contains direct preemptions by higher priority tasks. Secondly, some
executions of higher priority tasks may themselves be preempted by even-higher
priority tasks, moving the former ones into the interval of the best-case execution
of the considered task. This happens in the above described example. In our ap-
proach, where we start with an upper bound on the best-case response time, that is
gradually reduced, these ‘preemption-caused preemptions’ are included, whereas
in the approaches by Palencia Gutiérrez et al. [1998] and Kim et al. [2000] they
may be missed. The techniques described by Redell & Sanfridson [2002] and Re-
dell [2003] are similar to ours.

5.3 Occupied times
The best-case occupied time is the dual of the worst-case occupied time. The best-
case occupied time (BO) of a task τ is the shortest possible span of time from a
release of τ till the moment in time that τ can start or resume its execution after
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task τ3

time

task τ2

task τ1

task τ3

time

task τ2

task τ1

task τ3

time

task τ2

task τ1

task τ3

time

task τ2

task τ1

task τ3

time

task τ2

task τ1

56 42

42 39

39 36

36 25

25 22

(i)

(ii)

(iii)

(iv)

(v)

−6 −5 −4 −3 −2 −1

task τ3

time

task τ2

task τ1

22

(vi)

−3 −1−2

−6 −5 −4 −3 −2 −1

−3 −1−2

−6 −5 −4 −3 −2 −1

−3 −1−2

−6 −5 −4 −3 −2 −1

−3 −1−2

−6 −5 −4 −3 −2 −1

−3 −1−2

−6 −5 −4 −3 −2 −1

−3 −1−2

Figure 5.4. Iterations to determine the best-case response time of task τ3. Execu-
tions are again numbered for ease of reference.



82 Best-Case Analysis

completion of a computation C.
Figure 5.5 illustrates the best-case response time BR3 and best-case occupied

time BO3 of task τ3 as functions of the computation time C3. Similarly to the
worst-case notions, the difference between both best-case notions is in the (open or
closed) end-points of the line fragments. Further note that BR3 is only defined for
positive computation times, whereas BO3 is also defined for a computation time of
zero.

BR3(C3)

20

C3

BO3(C3)

20

C3
5 5

Figure 5.5. The best-case response time BR3 and best-case occupied time BO3 of
task τ3 as functions of the computation time C3.

For a computation time C 	 0, the best-case occupied time is equal to the best-
case start time, i.e.

BSi 	 BOi
�
0 � � (5.5)

In the remainder of this document, we will therefore treat the best-case start time
as a special case of the best-case occupied time. Given Lemma 5.1, the best-case
start time of a task is equal to zero.

We will first determine the best-case occupied time of a task τ by construction
using a time line with an optimal instant for τ. A next theorem presents a recursive
equation for the best-case occupied time of a task. That equation is derived from
the recursive equation (5.2) for the best-case response time in a similar way as the
worst-case occupied time has been derived from the recursive equation (4.2) for
the worst-case response time. Similarly to the presentation of worst-case occupied
times in Section 4.3, we therefore revisit best-case response times before presenting
the theorem.

5.3.1 A time line
The best-case response time was constructed in Section 5.2.1 by drawing the re-
sponse of the considered task backwards in time. The best-case occupied time is
constructed similarly. Considering Figure 5.3, the response of task τ3 is preempted
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by higher priority tasks for a duration of 17 before τ3 completed its remaining com-
putation time of 3. Hence, the best-case occupied time BO3

�
3 � 	 20 � 3 	 BR3

�
3 � .

For a computation time C3 	 2, task τ3 can extend its best-case execution without
preemptions. The best-case occupied time and the best-case response time are
therefore the same for a computation time C3 	 2, i.e. BO3

�
2 ��	 BR3

�
2 � 	 2.

From the construction of the best-case occupied time by means of a time line,
we draw the following conclusion.

Corollary 5.3. Let task τ have minimal response time BR given a release at time a
and a completion at the simultaneous release of all task with a higher priority than
τ. In such a case, the best-case occupied time BO is identical to BR if and only if
no higher priority task completed its execution at time a.

�

5.3.2 Response time revisited
From Lemma 4.4 and the proof of Theorem 5.2, we draw the following conclusion.

Corollary 5.4. There exists a positive solution for the recursive equation (5.2) for
the best-case response time BRi of a task τi if Ui � 1 � 1.

�

Moreover, we draw the following conclusion from the construction of the best-
case response time by means of a time line, similar to Corollary 4.3.

Corollary 5.5. For Ui � 1 � 1 and Ci � 0, the smallest positive solution BRi
�
Ci � of

(5.2) has the following properties.
(i) BRi

�
Ci � is a defined and strictly increasing function of Ci.

(ii) BRi
�
Ci � is discontinuous at points Ci where BRi

�
Ci � 	 kTj, with k �

� � and
j � i.

(iii) BRi
�
Ci � is left-continuous, i.e.

lim
x � Ci

BRi
�
x � 	 BRi

�
Ci � � (5.6)

�

The best-case occupied time BOi
�
Ci � of task τi with computation time Ci � 0

is given by
BOi

�
Ci � 	 lim

x � Ci

BRi
�
x � � (5.7)

5.3.3 A recursive equation
Similarly to the derivation of the worst-case occupied time from the worst-case
response time, we will use (5.7) as a starting point for the derivation of the recursive
equation for the best-case occupied time from the best-case response time, and use
Lemma 4.5.
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Theorem 5.4. When the smallest positive solution of (4.2) for a computation time
BC

�

i is at most min
�
Di � Ti � , the best-case occupied time BOi of τi with a computation

time BCi �  0 � BC
�

i
�

is given by the largest non-negative x � � that satisfies

x 	 BCi � ∑
j � i

�
x
Tj
� BC j � (5.8)

Proof. Given Lemma 4.5, we can make the following derivation starting from
(5.7).

BOi
�
BCi � 	 lim

x � BCi

BRi
�
x �

	 � (5.2) � lim
x � BCi

�
x � ∑

j � i

� �
BRi

�
x �

Tj � � 1 � BC j �
	 BCi � ∑

j � i

lim
x � BCi

� �
BRi

�
x �

Tj � � 1 � BC j

	 � Lemma 4.5 � BCi � ∑
j � i

�
lim

x � BCi

BRi
�
x �

Tj
� BC j

	 � (5.7) � BCi � ∑
j � i

�
BOi

�
BCi �

Tj
� BC j

Remember that the largest positive solution of (5.2) only considers a single job of
the task under consideration. The same holds for the largest non-negative solution
of (5.8). Hence, the best-case occupied time BOi of task τi with a computation
time BCi �  0 � BC

�

i
�
is the largest non-negative x satisfying (5.8), when WRi

�
BC

�

i � �

min
�
Di � Ti � .

�

5.3.4 An iterative procedure
The next theorem describes how the largest positive solution of (5.4) can be found
using an iterative procedure.

First, we prove the following lemma providing an upper bound for the best-case
occupied time BOi of task τi.

Lemma 5.3. The value ιAB
i

�
BCi � defined by

ιAB
i

�
BCi � 	 BCi�

1 � BUi � 1 � � (5.9)

is an appropriate initial value for the iterative procedure to determine BOi
�
BCi � .

Proof. The best-case occupied time BOi
�
BCi � is the largest value of x satisfying

(5.8), and the iterative procedure therefore has to start with an upper bound. Hence,
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we have to prove that ιAB
i

�
BCi � is an upper bound for BOi

�
BCi � . To this end, we

derive

BOi
�
BCi � 	 BCi � ∑

j � i

�
BOi

�
BCi �

Tj
� BC j

�
BCi � ∑

j � i

�
BOi

�
BCi �

Tj
� BC j 	 Ci � BOi

�
BCi � BUi � 1 �

Hence for BUi � 1 � 1, we get BOi
�
BCi � �

BCi
� �

1 � BUi � 1 � .
�

Theorem 5.5. When the smallest positive solution of (4.2) is at most min
�
D i � Ti � ,

the best-case occupied time BOi of task τi can be found by the following iterative
procedure.

BO
�
0 �

i 	 ιAB
i

�
BCi � (5.10)

BO
�
l � 1 �

i 	 BCi � ∑
j � i

�
BO

�
l �

i

Tj � BC j � l 	 0 � 1 ������� (5.11)

The procedure is stopped when the same value is found for two successive iterations
of l.

Proof. The proof is similar to the proof of Theorem 5.3.
�

5.4 Discussion
In this section, we consider best-case execution times, initial values for the iterative
procedure to determine the best-case occupied time, present several properties of
the best-case occupied time, introduce the notion of best-case induced load, and
finally provide an overview of the equations for response times and occupied times,
and the induced load.

5.4.1 Execution times
Given (3.4) and the definition of the execution interval eik 	 rik � sik , we immedi-
ately derive the following conclusion.

Corollary 5.6. The best-case execution time BEi of a task τi is equal to the best-
case response time BRi of that task.

�

5.4.2 Initial values
In this section, we consider initial values for the iterative procedures to determine
the best-case response time and the best-case occupied time.
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Standard initial value
In Theorem 5.3, we used WRi

�
WCi � as the initial value for the iterative procedure

to calculate BRi. As mentioned before, WRi � WRi � 1 is also an upper bound on the
best-case response time BRi, and therefore an attractive alternative when WRi � 1 is
known. In both cases, the initial value is WRi minus a constant. We will therefore
use the term ιSB

i

�
WCi � to denote a standard initial value, which is defined using a

constant χB
i .

ιSB
i

�
WCi � 	 WRi

�
WCi � � χB

i (5.12)
In this document, we assume χB

i 	 WRi � 1 for the iterative procedure to calculate
BRi. Unfortunately, WRi � WRi � 1 is not an upper bound on the best-case occupied
time BOi in general. We therefore assume χB

i 	 0 for the iterative procedure to
calculate BOi.

Alternative initial value
The alternative initial value ιAB

i

�
BCi � , which is defined in Lemma 5.3, is an appro-

priate initial value for the iterative procedures to calculate both BRi and BOi. From
Lemma 5.3 and Lemma 4.8, which defines the alternative initial values ιAW

i

�
WCi � ,

we draw the following conclusion.

Corollary 5.7. The best-case occupied time BOi of a task τi is less than or equal
to the worst-case response time WRi of that task, i.e.

BOi
�

WRi � (5.13)
�

Moreover, in combination with (4.7), (5.7), and BC j
�

WC j for j
�

i we draw the
following conclusion.

Corollary 5.8. The following relation holds between response times and occupied
times of a task τi.

BRi
�
BCi � �

BOi
�
BCi � � BCi

1 � BUi � 1

� WCi

1 � WUi � 1

�
WRi

�
WCi � �

WOi
�
WCi �

(5.14)
�

As mentioned before, the worst-case and best-case computation times are chosen to
be equal (WCi 	 BCi) in most examples we use, and we simply use the computation
time Ci. For ease of presentation, we therefore introduce an alternative initial value
ιA
i

�
Ci � , which is defined as

ιA
i

�
Ci � 	 Ci�

1 � Ui � 1 � � (5.15)
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Combined initial value
Similar to worst-case analysis, we propose an initial value for best-case analysis
that combines standard and alternative initial values. This combined initial value
ιCB
i

�
BCi � is defined as

ιCB
i

�
BCi � 	 min

�
ιSB
i

�
WCi � � ιAB

i
�
BCi � � � (5.16)

5.4.3 Properties of the best-case occupied time
The following two lemmas are the best-case equivalents of Lemma 4.9 and
Lemma 4.10 from the worst-case analysis.

Lemma 5.4. The best-case response time BRi of task τi is not a multiple of any
period Tj for j � i.

Proof. Similar to the proof of Lemma 4.9.
�

Lemma 5.5. The best-case response time BRi of τi is a solution of the recursive
equation for the best-case occupied time (5.8).

Proof. Similar to the proof of Lemma 4.10 using Lemma 5.4.
�

From the time line as graphical representation of (5.8) we draw the following
conclusion.

Corollary 5.9. For Ui � 1 � 1 and Ci � 0, the smallest non-negative solution
BOi

�
Ci � of (5.8) has the following properties:

(i) BOi
�
Ci � is a defined and strictly increasing function of Ci;

(ii) BOi
�
Ci � is discontinuous at points Ci where BRi

�
Ci � is discontinuous;

(iii) BOi
�
Ci � is right-continuous, i.e.

lim
x � Ci

BOi
�
x � 	 BOi

�
Ci � � (5.17)

�

5.4.4 Induced load
The summation term in the recursive equation (5.2) for the best-case response time
is also termed the best-case induced load

BLi � 1
�
x � 	 ∑

j � i

� �
x
Tj � � 1 � BC j � (5.18)

of tasks τ1 till τi � 1 in an open interval of length x, e.g.
�
t � t � x � . The best-case

induced load is the minimal load induced by tasks with a higher priority than task
τi.
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Similarly, the summation term in (5.8) for the best-case occupied time is the
best-case induced load

BL �i � 1
�
x � 	 ∑

j � i

�
x
Tj
� BC j � (5.19)

of tasks τ1 till τi � 1 in a right-open interval of length x, e.g.  t � t � x � .

5.4.5 Overview of equations
Together with the previous chapter, this chapter presented a basic set of recursive
equations for best-case analysis and worst-case analysis. An overview of this set is
given in Table 5.1. Note that the recursive equations for best-case analysis closely
resemble those for worst-case analysis, apart from an additional term � 1 for the re-
sponse times and a lacking term � 1 for the occupied times. For best-case analysis,
the largest values satisfying the recursive equations yield the times we are looking
for, and the associated iterative procedures therefore start with an upper bound. For
worst-case analysis, we need the smallest values satisfying the recursive equations,
and the iterative procedures therefore start with a lower bound.

Table 5.1. Overview of recursive equations for response times and occupied
times.

response times occupied times

best-case x 	 BCi � ∑
j � i

� �
x
Tj � � 1 � BC j x 	 BCi � ∑

j � i

�
x
Tj
� BC j

worst-case x 	 WCi � ∑
j � i

�
x
Tj � WC j x 	 WCi � ∑

j � i

� �
x
Tj
� � 1 � WC j

An overview of the equations for the best-case and worst-case induced load is
given in Table 5.2. Note that WLi

�
x � is the maximal and BL �i

�
x � is the minimal

induced load in a right-open interval of length x, e.g.  t � t � x � .
Table 5.2. Overview of equations for exclusive induced load and inclusive in-
duced load.

induced load (exclusive) induced load (inclusive)

best-case BLi
�
x � 	 ∑

j � i

� �
x
Tj � � 1 � BC j BL �i

�
x � 	 ∑

j � i

�
x
Tj
� BC j

worst-case WLi
�
x � 	 ∑

j � i

�
x
Tj � WC j WL �i

�
x � 	 ∑

j � i

� �
x
Tj
� � 1 � WC j



6
Calculating Response Times and Occupied

Times

As discussed before, many real-time systems needing an online schedulability
test require exact schedulability analysis. For this analysis, we typically need to
calculate response times, and sometimes occupied times as well (see Chapter 8).
This chapter therefore evaluates initial values for the iterative procedures to calcu-
late response times and occupied times of periodic tasks under FPPS and arbitrary
phasing. We use a model based on discrete scheduling, i.e. all task parameters are
integers and preemptions are restricted to integer time values.

We show that the number of iterations needed to determine the worst-case re-
sponse time of a task using a standard initial value, such as (4.12), increases log-
arithmically for an increasing worst-case computation time of that task. We prove
that the number of iterations for the alternative initial value presented in Lemma 4.8
is periodic and bounded by a constant. The costs in terms of required execution
time to determine worst-case response times using a standard and the combined
initial value (4.14) are compared by means of an experiment.

In this chapter, we show that the number of iterations needed to determine the
best-case response time and the best-case occupied time of a task is periodic and
bounded by a constant for the alternative initial value presented in Lemma 5.3 as
well as for standard initial values. The case for worst-case occupied times is similar

89
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to the case for worst-case response times.

6.1 Discrete scheduling
As described in Section 3.4.2, discrete scheduling is based on a model in which
all task parameters are integers, i.e. Ti � Ci � Di �

� � and ϕi �
�

for 1
�

i
�

n, and
preemptions are restricted to integer time values. One of the advantages of discrete
scheduling is that it allows the usage of the notion of hyperperiod. We will describe
the notion of hyperperiod and present specific properties of response times and
occupied times related with that notion. We start with a presentation of dedicated
equations for discrete scheduling describing occupied times in terms of response
times.

6.1.1 Response times and occupied times
For continuous scheduling, the worst-case occupied time WOi of a task τi is de-
scribed in terms of the worst-case response time WRi using a limit; see (4.7). For
discrete scheduling, this description can be simplified as follows.

Theorem 6.1. For discrete scheduling, we can determine the worst-case occupied
time of a task τi by means of

WOi
�
Ci � 	 WRi

�
Ci � 1 � � 1 � (6.1)

given that WRi
�
Ci � �

min
�
Di � Ti � .

Proof. We consider two complementary cases in the proof, i.e. whether or not the
worst-case response time of task τi equals a multiple of the period of a task with a
higher priority than τi.

Let WRi
�
Ci � 	 mTj for some m �

� � and j � i. In such a case, task τ j is
released at WRi

�
Ci � , and therefore WOi

�
Ci � �	 WRi

�
Ci � . Because all task parame-

ters are integers and preemptions are restricted to integer time values for discrete
scheduling, task τi can execute an additional unit of time non-preemptively when
it can resume its execution at WOi

�
Ci � , hence, WOi

�
Ci � 	 WRi

�
Ci � 1 � � 1.

Let WRi
�
Ci � �	 mTj for all m �

� � and j � i. In such a case, task τi can continue
its execution at time WRi

�
Ci � , hence, WOi

�
Ci � 	 WRi

�
Ci � . Similar to the previous

case, τi can execute an additional unit of time non-preemptively when it completes
the execution of Ci at WRi

�
Ci � , hence, WOi

�
Ci � 	 WRi

�
Ci � 1 � � 1.

�

Similarly to Theorem 6.1 with an equation for the worst-case occupied time
for discrete scheduling, we have the following theorem with an equation for the
best-case occupied time for discrete scheduling.
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Theorem 6.2. For discrete scheduling, we can determine the best-case occupied
time of a task τi by means of

BOi
�
BCi � 	 BRi

�
Ci � 1 � � 1 � (6.2)

given that WRi
�
Ci � �

min
�
Di � Ti � .

Proof. Similar to the proof of Theorem 6.1.
�

6.1.2 Hyperperiod
The hyperperiod Hi � 1 of the tasks τ1 till τi � 1 is an interval corresponding to the
least common multiple of the periods of these tasks, i.e. Hi � 1 	 lcm

�
T1 ������� � Ti � 1 � .

Hence, Hi � 1 is an integer multiple of the periods of these tasks, i.e. for 1
�

j
�

i � 1
the hyperperiod Hi � 1 satisfies�

Hi � 1

Tj
� 	 �

Hi � 1

Tj � 	 Hi � 1

Tj
� (6.3)

The activation pattern of the tasks τ1 till τi � 1 recurs after the hyperperiod Hi � 1, and
a level-i � 1 schedule σi � 1 repeats itself every Hi � 1 units of time [Leung & Merrill,
1980]. Stated in other words, a level-i � 1 schedule σi � 1 is periodic with period
Hi � 1.

The amount of slack time Si � 1 produced by (i.e. the time that is not used for
executions of) tasks τ1 till τi � 1 in the hyperperiod Hi � 1 is given by

Si � 1 	 Hi � 1 � ∑
j � i

Hi � 1

Tj
C j

	 Hi � 1
�
1 � Ui � 1 � � (6.4)

When the computation time Ci of a task τi is a positive integral multiple of this
slack Si � 1, the worst-case response time WRi of τi also equals the same multiple of
the hyperperiod Hi � 1.

Lemma 6.1. For arbitrary k �
� � for which Ti � kHi � 1, the following equation

holds.

WRi
�
kSi � 1 � 	 kHi � 1 (6.5)

Proof. The lemma is proven by using ιA
i

�
kSi � 1 � (5.15) as initial value to calculate

WRi
�
kSi � 1 � .

WR
�
0 �

i

�
kSi � 1 � 	 � Lemma 4.8 and (5.15) � kSi � 1�

1 � Ui � 1 �
	 � (6.4) � kHi � 1
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WR
�
1 �

i

�
kSi � 1 � 	 � (4.4) � kSi � 1 � ∑

j � i

�
WR

�
0 �

i

�
kSi � 1 �

Tj � C j

	 � (6.4) � kHi � 1
�
1 � Ui � 1 � � ∑

j � i

�
kHi � 1

Tj � C j

	 � (6.3) � kHi � 1
�
1 � Ui � 1 � � kHi � 1 ∑

j � i

C j

Tj

	 � (3.8) and (3.9) � kHi � 1
�
1 � Ui � 1 � � kHi � 1Ui � 1

	 kHi � 1

Hence, the iterative procedure stops directly with WRi
�
kSi � 1 � 	 kHi � 1.

�

For the best-case occupied time, a similar lemma can be stated.

Lemma 6.2. For arbitrary k �
� � for which Ti � kHi � 1, the following equation

holds.

BOi
�
kSi � 1 � 	 kHi � 1 (6.6)

Proof. The proof of this lemma is similar to that of Lemma 6.1 using ιA
i

�
kSi � 1 � as

an initial value to calculate BOi
�
kSi � 1 � .

�

The following lemma expresses the best-case occupied time in terms of the
worst-case response time, and the best-case response time in terms of the worst-
case occupied time. The proof of the lemma is based on the construction of the re-
sponse times (see Sections 4.2.1 and 5.2.1) and occupied times (see Sections 4.3.1
and 5.3.1).

Lemma 6.3. For arbitrary k �
� � and Ti � kHi � 1, the following equations hold.

BOi
�
Ci � 	 kHi � 1 � WRi

�
kSi � 1 � Ci � for 0

�
Ci � kSi � 1 (6.7)

BRi
�
Ci � 	 kHi � 1 � WOi

�
kSi � 1 � Ci � for 0 � Ci

�
kSi � 1 (6.8)

Proof. Below, we will prove (6.8). The proof of (6.7) is similar.
Let all tasks τ j with j � i be released at time zero. The amount of slack in the

interval  0 � kHi � 1
�

is kSi � 1, as (6.5) indicates. For an appropriate phasing ϕi and
computation time Ci for task τi, time kHi � 1 becomes an optimal instant for τi. Let
0 � Ci

�
kSi � 1. The best-case response time BRi

�
Ci � for Ci of τi may be found by

going backwards in time from time kHi � 1, using Ci time units of the slack kSi � 1.
The remaining slack in the interval  0 � kHi � 1

�
equals kSi � 1 � Ci. For an appropriate

phasing ϕi and computation time kSi � 1 � Ci for task τi, time zero becomes a critical
instant of τi. Whenever task τi would execute an additional amount ε � 0 from
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time WRi
�
kSi � 1 � Ci � , this would therefore overlap with the start of the best-case

execution that starts at kHi � 1 � BRi
�
Ci � . Therefore, time kHi � 1 � BRi

�
Ci � is equal

to the worst-case occupied time WOi
�
kSi � 1 � Ci � , resulting in (6.8).

�

We mention that (6.7) can be derived from (6.8) using (6.1) and (6.2), and vice
versa.

6.2 Numbers of iterations
In this section, we will consider the number of iterations ωi

�
Ci � ιi

�
Ci � � needed to

calculate WRi
�
Ci � as a function of Ci for both the standard initial value ιSW

i

�
Ci � 	

χW
i � Ci (4.12) and the alternative initial value ιA

i

�
Ci � 	 Ci

� �
1 � Ui � 1 � (5.15). We

will use ωS
i

�
Ci � and ωA

i

�
Ci � as shorthands for ωi

�
Ci � ιSW

i

�
Ci � � and ωi

�
Ci � ιA

i

�
Ci � � ,

respectively. For illustration purposes, we use the example of Table 3.1, and use the
computation time C3, period T3, and deadline D3 of task τ3 as variables. We assume
T3 	 D3, T3 � T2, and D3 sufficiently large such that the worst-case response time
WR3

�
C3 � �

D3 for all C3 we use. For our example, we show that ωS
3

�
C3 � has the

shape of a logarithmic function, whereas ωA
3

�
C3 � is bounded by a constant (i.e. 5)

and periodic. In Section 6.2.2, we prove that ωA
i

�
Ci � is bounded by a constant and

periodic.

6.2.1 Standard initial value
Using (6.4), we get for the example of Table 3.1 a slack S2 	 H2

�
1 � U2 � 	 190

�
1 ��

3
�
10 � 11

�
19 � � 	 23. Figure 6.1 shows the number of iterations ωS

3
�
C3 � needed

to calculate WR3
�
C3 � as a function of C3 for C3 	 1 ������� � 2300 (i.e. 100 times the

slack S2). Note that the graph has the shape of a logarithmic function, but is not
strictly non-decreasing in C3.

500 1000 1500 2000
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35

40

45

50

Figure 6.1. The number of iterations ωS
3 � C3 � needed to calculate WR3 � C3 � as a

function of C3 for C3 � 1 ������� � 2300.
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Figure 6.2. The number of iterations ωS
3 � kS2 � needed to calculate WR3 � kS2 � using

the standard initial value ιSW
3 for k � 1 ������� � 100.

Figure 6.2 shows ωS
3

�
kS2 � for k 	 1 ������� � 100, i.e. the same function, but with

parameters restricted to positive integral multiples of the slack S2.
For these restricted values of C3, ωS

3
�
C3 � is strictly non-decreasing, and the

resulting graph closely follows a logarithmic function. Below, we will derive that
ωS

i

�
kSi � 1 � , where k �

� � , can indeed be approximated by a logarithmic function
ω

�

i

�
kSi � 1 � that is defined as

ω
�

i
�
kSi � 1 � 	 Ui � 1 log

∆i � 1Ui � 1

kSi � 1Ui � 1 � ∆i � 1 � χW
i

�
1 � Ui � 1 � � (6.9)

Note that ω
�

i

�
kSi � 1 � is logarithmic in kSi � 1, rather than 1

� �
kSi � 1 � , because Ui � 1 �

1. The term ∆i � 1 in this equation is a constant, a so-called cumulative average
rounding-off value. For the derivation of (6.9), it is assumed that ∆i � 1 can be
used to approximate the value that is added to each iteration WR

�
l �

i

�
Ci � due to the

application of the ceiling function, i.e.

∑
j � i

�
WR

�
l �

i

�
Ci �

Tj � C j � WR
�
l �

i

�
Ci � Ui � 1 � ∆i � 1 � (6.10)

In order to arrive at a value for ∆i � 1, we assumed that we can use the average of
the fractions 0, 1

�
Tj till

�
Tj � 1 � �

Tj as average rounding-off value for the term
WR

�
l �

i

�
Ci � �

Tj for each j � i. Hence it is assumed that the average rounding-off

value ∆τ
j per iteration added to WR

�
l �

i due to rounding off in
�
WR

�
l �

i

�
Ci � �

Tj � C j is
given by

∆τ
j 	

C j
�
Tj � 1 �
2Tj

	 U j

�
Tj � 1 �

2 �
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Adding this up for tasks τ1 till τi � 1, ∆i � 1 is then given by

∆i � 1 	 ∑
j � i

∆τ
j 	 ∑

j � i

U τ
j

�
Tj � 1 �

2 � (6.11)

Given the assumption above, we first show by induction that

WR
�
l �

i

�
Ci � �

�
Ci � ∆i � 1 �

l

∑
k � 0

U k
i � 1 �

�
χW

i � ∆i � 1 � U l
i � 1 (6.12)

holds for l 	 0 ������� � λ � 1, where λ denotes the number of iterations after which
the iterative procedure stops. To this end, we assume an initial value of χW

i � Ci

for the first iteration, and note that WR
�
0 �

i

�
Ci � 	 χW

i � Ci. Hence, for l 	 0, the
approximation sign can be replaced by the equality sign. Next, for WR

�
1 �

i

�
Ci � we

get

WR
�
1 �

i

�
Ci � 	 Ci � ∑

j � i

�
WR

�
0 �

i

�
Ci �

Tj � C j

� � (6.10) � Ci � WR
�
0 �

i

�
Ci � Ui � 1 � ∆i � 1

	 Ci �
�
χW

i � Ci � Ui � 1 � ∆i � 1

	
�
Ci � ∆i � 1 � �

1 � Ui � 1 � �
�
χW

i � ∆i � 1 � Ui � 1

	
�
Ci � ∆i � 1 �

1

∑
k � 0

U k
i � 1 �

�
χW

i � ∆i � 1 � Ui � 1 �

Moreover, if WR
�
m � 1 �

i

�
Ci � satisfies (6.12) (induction hypothesis), we get

WR
�
m �

i

�
Ci � 	 Ci � ∑

j � i

�
WR

�
m � 1 �

i

�
Ci �

Tj � C j

� � (6.10) � Ci � WR
�
m � 1 �

i

�
Ci � Ui � 1 � ∆i � 1

� � induction hypothesis �

Ci �

�
�
Ci � ∆i � 1 �

m � 1

∑
k � 0

U k
i � 1 �

�
χW

i � ∆i � 1 � Um � 1
i � 1 � Ui � 1 � ∆i � 1

	
�
Ci � ∆i � 1 �

m

∑
k � 0

U k
i � 1 �

�
χW

i � ∆i � 1 � Um
i � 1 �

Hence, under assumption (6.10), we showed the validity of (6.12).
When the iterative procedure stops after λ iterations, i.e. WR

�
λ �

i

�
Ci � 	

WR
�
λ � 1 �

i

�
Ci � . WRi

�
Ci � is a multiple of Hi � 1 for Ci 	 kSi � 1 and k �

� � . Hence
for the last iteration the evaluation of the summation does not give rise to an addi-
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tional ∆i � 1 (see also (6.3)).

WR
�
λ �

i

�
kSi � 1 � 	 kSi � 1 � ∑

j � i

�
WR

�
λ � 1 �

i

�
kSi � 1 �

Tj � C j

	 kSi � 1 � WR
�
λ � 1 �

i

�
kSi � 1 � Ui � 1

	 kSi � 1 �

�
�
kSi � 1 � ∆i � 1 �

λ � 1

∑
k � 0

U k
i � 1 �

�
χW

i � ∆i � 1 � Uλ � 1
i � 1 � Ui � 1

The left-hand side of the latter equation may be re-written to kSi � 1
� �

1 � Ui � 1 � using
(6.4) and (6.5), and the term ∑λ � 1

k � 0 U k
i � 1 in the right-hand side may be rewritten to�

1 � Uλ
i � 1 � � �

1 � Ui � 1 � . By rewriting, we derive that the number of iterations λ can
be approximated by a logarithmic function.

kSi � 1�
1 � Ui � 1 � 	 kSi � 1 �

�
kSi � 1 � ∆i � 1 � Ui � 1

�
1 � Uλ

i � 1 ��
1 � Ui � 1 � �

�
χW

i � ∆i � 1 � Uλ
i � 1

� kSi � 1 	�� kSi � 1 �
�
χW

i � ∆i � 1 � Uλ
i � 1 � �

1 � Ui � 1 � �
�
kSi � 1 � ∆i � 1 � Ui � 1

�
1 � Uλ

i � 1 �� 0 	 ∆i � 1Ui � 1 � kSi � 1U
λ � 1
i � 1 � ∆i � 1U

λ
i � 1 � χW

i Uλ
i � 1

�
1 � Ui � 1 �� �

kSi � 1Ui � 1 � ∆i � 1 � χW
i

�
1 � Ui � 1 � � Uλ

i � 1 	 ∆i � 1Ui � 1� Uλ
i � 1 	

∆i � 1Ui � 1

kSi � 1Ui � 1 � ∆i � 1 � χW
i

�
1 � Ui � 1 �� λ 	 Ui � 1 log

∆i � 1Ui � 1

kSi � 1Ui � 1 � ∆i � 1 � χW
i

�
1 � Ui � 1 �

By replacing λ by ω
�

i

�
kSi � 1 � , we finally arrive at (6.9).

Figure 6.3 illustrates the validity of (6.9) for our example by showing the differ-
ence δ3

�
kS2 � 	 ω

�

3
�
kS2 � � ωS

3
�
kS2 � for k 	 1 ������� � 1000. Note that for this particular

example
1000
max
k � 1

δ3
�
kS2 � �

1000
min
k � 1

δ3
�
kS2 � � 1 �

The derivation of the function ω
�

i

�
kSi � 1 � is based on an unproven assumption about

∆i � 1. Therefore, we only made the logarithmic shape of the function ωS
i

�
Ci � plau-

sible.

6.2.2 Alternative initial value
We will first show that, unlike ωS

i

�
Ci � , ωA

i

�
Ci � does not have the shape of a log-

arithmic function. We subsequently consider the number of iterations needed for
our example using the alternative initial value, and present our main theorem.

Based on Lemma 6.1, we draw the following conclusion.
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Figure 6.3. The approximated number of iterations ω �3 � kS2 � minus the actual
number of iterations ωS

3 � kS2 � for k � 1 ������� � 1000.

Corollary 6.1. Only a single iteration is needed to calculate WRi
�
Ci � of a task τi

when ιA
i

�
Ci � is used as initial value for the iterative procedure and Ci is a multiple

of the slack Si � 1, i.e.

ωA
i

�
kSi � 1 � 	 1 for k �

� � �
�

Therefore, ωA
i

�
Ci � does not have the shape of a logarithmic function.

Figure 6.4 shows ωA
3

�
C3 � for C3 	 1 ������� � 230 (i.e. 10 times the slack S2). Note

that ωA
3

�
C3 � is bounded and periodic with period S2.

50 100 150 200

2

3

4

5

Figure 6.4. The number of iterations ωA
3 � C3 � needed to calculate WR3 � C3 � using

ιA
3 � C3 � as initial value for C3 � 1 ������� � 230.

Theorem 6.3 states that this behavior of ωA
3

�
C3 � can be generalized to ωA

i

�
Ci � .

Theorem 6.3. The function ωA
i

�
Ci � is bounded by a constant and periodic with

period Si � 1.
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Proof. For discrete scheduling and Ci in the interval
�
0 � Si � 1

�
, Ci can only assume

a finite number of values. For each of these values, the number of iterations needed
to calculate WRi

�
Ci � is finite. Let Mi be the maximum number of iterations needed

to calculate WRi
�
Ci � for Ci in the interval

�
0 � Si � 1

�
. We will prove that ωA

i

�
C

�

i ��	
ωA

i

�
Ci � for C

�

i 	 Ci � kSi � 1 where k �
�

, i.e. that ωA
i

�
Ci � is periodic with period

Si � 1. As a consequence, the number of iterations needed to calculate WRi
�
Ci � is

bounded by Mi.
The proof is given in two steps. In the first step, we prove that the equation

WR
�
l �

i

�
C

�

i � 	 WR
�
l �

i

�
Ci � � kHi � 1 holds for every iteration l by means of induction on

the number of iterations. In the second step, we prove that the smallest l such that
WR

�
l �

i

�
Ci � 	 WR

�
l � 1 �

i

�
Ci � equals the smallest l such that WR

�
l �

i

�
C

�

i � 	 WR
�
l � 1 �

i

�
C

�

i � .
For the proof of the first step, we first prove the equation for l 	 0, i.e.

WR
�
0 �

i

�
C

�

i � 	 � Lemma 4.8 � C
�

i

1 � Ui � 1

	 Ci � kSi � 1

1 � Ui � 1

	 WR
�
0 �

i

�
Ci � �

kSi � 1

1 � Ui � 1

	 � (6.4) � WR
�
0 �

i

�
Ci � � kHi � 1 �

Next, if we assume WR
�
l �

i

�
C

�

i � 	 WR
�
l �

i

�
Ci � � kHi � 1 (induction hypothesis), we get

WR
�
l � 1 �

i

�
C

�

i � 	 � (4.4) � C
�

i � ∑
j � i

�
WR

�
l �

i

�
C

�

i �
Tj � C j

	 � induction hypothesis �

Ci � kSi � 1 � ∑
j � i

�
WR

�
l �

i

�
Ci � � kHi � 1

Tj � C j

	 � Tj � Hi � 1 and (6.4) �

Ci � kHi � 1
�
1 � Ui � 1 � � ∑

j � i

�
WR

�
l �

i

�
Ci �

Tj � C j � kHi � 1Ui � 1

	 WR
�
l � 1 �

i

�
Ci � � kHi � 1 �

which completes the proof. The proof of the second step follows immediately by
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means of substitution in the equation proven in the first step, i.e.

WR
�
l �

i

�
C

�

i � 	 WR
�
l � 1 �

i

�
C

�

i �� WR
�
l �

i

�
Ci � � kHi � 1 	 WR

�
l � 1 �

i

�
Ci � � kHi � 1� WR

�
l �

i

�
Ci � 	 WR

�
l � 1 �

i

�
Ci � �

�

6.3 A quantitative analysis
We performed an experiment to compare the cost in terms of required execution
time to determine worst-case response times using the standard initial value ιSW

i
and the combined initial value ιCW

i 	 max
�
ιSW
i � ιAW

i � quantitatively. In this section,
we first define a cost function for an RTA test. Next, we define our experiment. We
then present results, and finally draw conclusions.

6.3.1 Cost of an exact test
The definition of the cost ξτ

i of calculating the response time of task τi is based on
the iterative procedure described in Section 4.2.3.

ξτ
i

�
Ci � ιi � 	 ξinit � ωi

�
Ci � ιi � �

ξ f ixed �
�
i � 1 � ξsum �

In this equation, ξinit is the cost of calculating WR
�
0 �

i , and
�
ξ f ixed �

�
i � 1 � ξsum � is

the cost of a single iteration including the evaluation of the termination condition.
The term ξsum is the cost of evaluating

�
WR

�
l �

i

�
Tj � C j, and ξ f ixed represents a fixed

part. The cumulative cost of tasks τ1 till τi is denoted by ξi
�
ι � , and defined as

ξi
�
ι � 	 ∑

j � i

ξτ
j

�
C j � ι j � �

The cost of evaluating the RTA test for task set � is denoted by ξ
�
ι � . When the

RTA test is performed for successive tasks in the set, ξ
�
ι � is defined as ξ

�
ι � 	 ξm

�
ι � ,

where m either identifies the first task τm for which the deadline Dm is exceeded or
m equals n.

6.3.2 Experiment definition
Given (6.9) and Corollary 6.1, we may construct cases such that
ωS

i

�
kSi � 1 � �

ωA
i

�
kSi � 1 � � κ for arbitrary κ �

� � . Similarly, we may con-
struct cases such that ξ

�
ιSW � �

ξ
�
ιCW � � κ for arbitrary κ �

� � , which suggests a
huge advantage for the usage of ιCW compared to ιSW for special cases.

As a starting hypothesis for our experiment, we assume the utilization factor
Un, the spread σn of the periods that is defined as σn 	 10log Tn

�
T1, and the number
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of tasks n to have a major influence on the cost. We therefore conducted experi-
ments with:

� Un ranging from 0.2 till 1 with a step size of 0.2, using a uniform distribution
for U τ

i ,
� σn ranging from 0.1 till 4 with a step size of 0.1, where T1 	 1, using a

uniform distribution for Ti with 1 � i � n, and sorting Ti conform the RM
algorithm (hence we assume Di 	 Ti), and

� n � � 3 � 4 � 6 � 10 � 20 � .
For every combination of Un, σn, and n, we performed 10,000 experiments. Based
on the initial results,similar experiments were subsequently conducted for Un rang-
ing from 0.8 till 1 with a step size of 0.05, and for Un ranging from 0.96 till 1 with
a step size of 0.01. Hence, we performed three main sets of experiments.

In the equation for the cost, the terms ξinit and ξ f ixed are negligible (i.e. assumed
to be zero), hence we approximate ξτ �

Ci � ιi � by.

ξτ
i

�
Ci � ιi � � ωi

�
Ci � ιi � �

i � 1 � ξsum �
With the variables mentioned above, we should parameterize our cost function,
i.e. ξ

�
ι � Un

�
e � � σn � Ti

�
e � � n � e � , where e denotes the experiment. To prevent exces-

sive verbosity, we will use ξ
�
ι � e � . The following values were determined by the

experiment, amongst others:
� average relative complexity, which is given by:

arc 	 ∑e ξ
�
ιSW � e �

∑e ξ
�
ιCW � e � ;

� maximum relative complexity, which is given by:

mrc 	 max
e

ξ
�
ιSW � e �

ξ
�
ιCW � e � �

6.3.3 Experimental results
Figure 6.5 shows the average relative complexity arc for Un 	 0 � 9 for all the differ-
ent values of n. Notably, the average advantage of the combined initial value ιCW

reduces for increasing n. The same observation holds for other values of Un. The
maximum relative complexity mrc is shown in Figure 6.6 for n 	 3. The value rises
steeply for σn � 1 � 3 from U3 	 0 � 95 to U3 	 1, illustrating a major advantage of the
usage of ιCW for high utilizations. There is a peak for U3 	 1 and σ3 	 3 � 6 with a
height of 1631, corresponding with ξ

�
ιSW � 	 4893ξsum, and hence ξ

�
ιCW � 	 3ξsum.

Just like the average relative complexity arc, the maximum relative complexity mrc
reduces for increasing n. As examples, for n 	 4, there is a peak for U4 	 1 with a
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Figure 6.5. Average relative complexity arc for Un � 0 � 9.
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Figure 6.6. Maximum relative complexity mrc for n � 3.

height of 70, for n 	 6, there is a peak for U6 	 1 with a height of approximately
8.5, and for n 	 20, mrc even stays below 1.2.

The maximum complexity mcCW for ιCW defined as mcCW 	 maxe ξ
�
ιCW � e � is

shown in Figure 6.7 for n 	 3. This figure shows that mcCW remains bounded, with
a maximum of 48ξsum (for U3 	 0 � 95 and σ3 	 3 � 9). Notably, mcCW drops steeply
from U3 	 0 � 95 to U3 	 1.

6.3.4 Conclusions
Figure 6.5 shows that the average advantage of using ιCW for a large number of
task sets is only minor. Considering the peak of Figure 6.6, the advantage may
however be substantial (a gain in cost of more than a factor 1000) for special cases.
Moreover, the maximum value ξ

�
ιSW � 	 4893ξsum for the peak of Figure 6.6 is
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Figure 6.7. Maximum complexity mc in terms of the number of times ξsum for
n � 3.

more than a factor 100 larger than the maximum ξ
�
ιCW � 	 48ξsum in Figure 6.7.

Hence, the main advantage of the usage of ιCW is the reduction of the worst-case
cost of performing an RTA test.

6.4 Discussion
6.4.1 Related work
Both initial values W Ri � 1 � Ci and ιA

i for determining worst-case response times
have already been presented by Sjödin & Hansson [1998]. They also evaluate the
benefits of these two values in the context of RTA tests for ATM networks, and
conclude that compared to using WRi � 1 � Ci only, the effect of its combination
with ιA

i is negligible. Based on our experiment, we refine their result. Although the
advantage of using the combination is only minor on average, our results show that
the main advantage is found in the reduction of the worst-case cost of performing
an RTA test.

Similar to our approach, the RTA test presented by Bini & Buttazzo [2002]
also requires only a bounded number of iterations per task. They show that their
test requires fewer iterations than a standard RTA test determining worst-case re-
sponse times by means of an iterative procedure using W Ri � 1 � Ci as initial value.
However, unlike our approach, the test in that paper does not determine worst-case
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response times, and is therefore only applicable in situations where worst-case re-
sponse times are not needed.

6.4.2 Calculating worst-case response times revisited

From the derivation of WR
�
l �

i

�
C

�

i � 	 WR
�
l �

i

�
Ci � � kHi � 1 in the proof of Theorem 6.3

we draw the following conclusion.

Corollary 6.2. For arbitrary Ci � 0 and k �
�

the following equation holds.

WRi
�
Ci � kSi � 1 � 	 WRi

�
Ci � � kHi � 1 (6.13)

�

There is an alternative approach based on Corollary 6.2 that also requires only
a bounded number of iterations to determine WRi

�
Ci � for arbitrary Ci. Let Mi be the

maximum number of iterations to calculate WRi
�
Ci � for Ci �

�
0 � Si � 1

�
. For arbitrary

Ci, we define C
�

i 	 Ci � kSi � 1, where k 	
�
Ci

�
Si � 1 � � 1, hence C

�

i �
�
0 � Si � 1

�
. By

calculating WRi
�
Ci � by means of WRi

�
Ci � 	 WRi

�
C

�

i � � kHi � 1, we therefore need
at most Mi iterations. Note that this alternative approach comes at the additional
cost of determining the hyperperiod Hi � 1 and the slack Si � 1.

6.4.3 Calculating best-case response times and occupied times
Similarly to WRi

�
Ci � , ιA

i

�
Ci � increases with Hi � 1 when Ci increases with Si � 1, as

shown in the derivation of WR
�
0 �

i

�
C

�

i � 	 WR
�
0 �

i

�
Ci � � kHi � 1 in the proof of Theo-

rem 6.3.

Corollary 6.3. For arbitrary Ci � 0 and k �
�

the following equation holds.

ιA
i

�
Ci � kSi � 1 � 	 ιA

i

�
Ci � � kHi � 1 (6.14)

�

This property of ιA
i

�
Ci � is the cornerstone of the proof that ωA

i

�
Ci � kSi � 1 � 	 ωA

i

�
Ci �

for k �
�

in the proof of Theorem 6.3.
Because the same property holds for standard initial values to determine

BRi
�
Ci � , such as WRi

�
Ci � (see Corollary 6.2) and WRi

�
Ci � � WRi � 1, usage of ιA

i

�
Ci �

does not give a similar advantage as for worst-case response times. The main ad-
vantage of ιA

i

�
Ci � compared to these standard initial values is that is allows the

calculation of BRi
�
Ci � without the need to calculate WRi

�
Ci � first.

Based on these observations, we state the following theorems for the number
of iterations to determine the best-case response time, the best-case occupied time,
and the worst-case occupied time. The proofs of these theorems are similar to the
proof of Theorem 6.3.
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Theorem 6.4. The number of iterations βi
�
Ci � needed to calculate the best-case

response time BRi
�
Ci � of task τi as a function of Ci for both a standard initial

value, such as WRi
�
Ci � or WRi

�
Ci � � WRi � 1, and the alternative initial value given

by (5.15) is bounded by a constant and periodic with period Si � 1.
�

Theorem 6.5. The number of iterations βi

�
Ci � needed to calculate the best-case

occupied time BOi
�
Ci � of task τi as a function of Ci for both a standard initial

value, such as WRi
�
Ci � , and the alternative initial value given by (5.15) is bounded

by a constant and periodic with period Si � 1.
�

Theorem 6.6. The number of iterations ωi
�
Ci � needed to calculate the worst-case

occupied time WOi
�
Ci � of task τi as a function of Ci for either an initial value such

as WRi
�
Ci � or the alternative initial value given by (5.15) is bounded by a constant

and periodic with period Si � 1.
�

We mention that the number of iterations ωi
�
Ci � needed to calculate the

WOi
�
Ci � of τi as a function of Ci for a standard initial value, such as given by

(4.12), also grows logarithmically.
Finally, we give a number of lemmas expressing similar properties for the

worst-case occupied time, the best-case response time, and the best-case occupied
time as the property given for the worst-case response time in Corollary 6.2. Note
that the proofs of these lemmas are based on Corollary 6.2 and the properties of
response times and occupied times for discrete scheduling.

Lemma 6.4. For arbitrary Ci � 0, k �
�

, and Ti sufficiently large, the following
equation holds.

WOi
�
Ci � kSi � 1 � 	 WOi

�
Ci � � kHi � 1 (6.15)

Proof. The proof uses (6.1) and (6.13).

WOi
�
Ci � kSi � 1 � 	 � (6.1) � WRi

�
Ci � kSi � 1 � 1 � � 1

	 � (6.13) � WRi
�
Ci � 1 � � kHi � 1 � 1

	 � (6.1) � WOi
�
Ci � � kHi � 1

�

Lemma 6.5. For arbitrary Ci � 0, k �
�

, and Ti sufficiently large, the following
equation holds.

BRi
�
Ci � kSi � 1 � 	 BRi

�
Ci � � kHi � 1 (6.16)

Proof. The proof uses (6.8) and Lemma 6.4. For l �
� � such that Ti � lHi � 1 and
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Ci � kHi � 1
�

lSi � 1, we can apply (6.8).

BRi
�
Ci � kSi � 1 � 	 � (6.8) � lHi � 1 � WOi

�
lSi � 1 �

�
Ci � kSi � 1 � �

	 lHi � 1 � WOi
�
lSi � 1 �

�
Ci � kSi � 1 � � � kHi � 1 � kHi � 1

	 � Lemma 6.4 � lHi � 1 � WOi
�
lSi � 1 � Ci � � kHi � 1

	 � (6.8) � BRi
�
Ci � � kHi � 1

�

Lemma 6.6. For arbitrary Ci � 0, k �
�

, and Ti sufficiently large, the following
equation holds.

BOi
�
Ci � kSi � 1 � 	 BOi

�
Ci � � kHi � 1 (6.17)

Proof. The proof is similar to the proof of Lemma 6.4 using (6.2) and (6.16).
�





7
A Resource Manager for Conditionally

Guaranteed Budgets

This chapter is concerned with CGBs (conditionally guaranteed budgets). It
presents the concept of a CGB, and an extension of the existing resource manager
with a mechanism to schedule CGBs. The additional admission test corresponding
with this mechanism is the topic of Chapter 8.

We start this chapter with a real-time scheduling model for budgets in Sec-
tion 7.1. This model is a simplified version of the task model presented in Sec-
tion 3.1. Next, in Section 7.2, we present the concept of a CGB. As described
before, a CGB facilitates an instantaneous budget configuration change. In order
to come to grips with the corresponding requirements for a mechanism to schedule
CGBs, we will first analyze budget configuration changes in Section 7.3. Next,
we present the concept of in-the-place-of resource provision in Section 7.4. That
concept provides the basis for a mechanism to schedule CGBs. The mechanism
is the topic of Section 7.5, and is described in terms of extensions to the existing
resource manager, the so-called budget scheduler. This chapter is concluded with
a discussion on existing work, enhancements, and future work in Section 7.6.

107
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7.1 A real-time scheduling model for budgets
In essence, a budget may simply be viewed as an artificial task, and all notions
introduced for tasks in Chapter 3 can be reused for budgets. Our budget model is
merely a simplified version of the task model presented in Section 3.1. The fact
that budgets are allocated and provided to RCEs, which consist of one or more
tasks, is irrelevant for the model. For explanatory purposes, we will first briefly
introduce budgets and their consumption by means of tasks.

Hence, we assume a single processor and a set
�

of n independent periodic
budgets, denoted by β1 � β2 ������� βn. At any moment in time, the processor is used
to ‘execute’ the highest priority budget that has not yet been depleted. Execution
of a budget means consumption of the budget by an RCE to which that budget
is provided. When a budget βi is consumed by an RCE, the highest priority task
that has work pending of that RCE is being executed by the processor, and that
execution is accounted to βi. When a budget βi is being consumed, and a release
occurs for a higher priority budget β j, then the consumption of βi is preempted, and
will resume when the consumption of β j has ended, as well as all other releases of
budgets with a higher priority than βi that have taken place in the meanwhile.

The introduction of budgets therefore gives rise to two levels of scheduling:
scheduling of budgets and scheduling of tasks consuming budgets. In principle,
the mechanisms used at each level can be chosen independently. In the existing
implementation, budgets and tasks are both scheduled using FPPS, and the analysis
presented in Chapter 8 also assumes FPPS of budgets.

Given the similarity between our task model and our budget model, we confine
ourselves in this section to a description of budget characteristics in Section 7.1.1,
and the assumptions we make on the environment in Section 7.1.2.

7.1.1 Budget characteristics
Each budget βi is characterized by a (release) period Ti � � � , an amount of time
Bi � � � (which we also term a budget), a (relative) deadline Di � � � , and a phas-
ing ϕi � � . The combination of phasings ϕi is termed the phasing ϕ of the budget
set

�
. Note that we do not differentiate between best-case budgets and worst-case

budgets. The activation (release or request) time is the time at which a budget β i

becomes ready for execution, i.e. when the budget is replenished.

7.1.2 Basic assumptions
The following basic assumptions are made on the environment, for which the an-
alytical results are obtained. Note that these assumptions are similar to those de-
scribed in Section 3.1.

1. Budgets have unique priorities.
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2. Consumption of a budget will be preempted instantaneously when a higher
priority budget becomes ready for consumption.

3. Budgets are ready for consumption, i.e. they are replenished, at the start of
each period and consumption is not suspended.

4. Budgets are independent, i.e. there is no budget synchronization.

5. The overhead of context switching and budget scheduling is ignored.

6. Activation k � 1 of budget βi does not start before the end of activation k.

7. No specific phasing of budgets at start-up is assumed.

Moreover, we assume that budgets are fixed and the deadlines are hard, i.e. when
a budget is replenished upon its activation, it must be depleted before the corre-
sponding deadline. Finally, we assume that deadlines of budgets are equal to their
periods.

The schedulability of a set
�

of n periodic budgets is, similarly to tasks, given
by (3.7).

7.2 The concept of a conditionally guaranteed budget
In this section, we present an outline of a solution for the user-focus problem in
terms of CGBs, and describe two variants of CGBs. In order to come to grips with
the problem, we will first analyze the reaction time in more detail. We subsequently
describe a general model for CGBs, and then present the variants of CGBs.

7.2.1 Analysis of the reaction time
The reaction time (from time tI to tS in Figure 1.5 on page 12) is based on three
succeeding actions: detecting the structural load increase (from tI to tD), determin-
ing the new mode (from tD to tA), and effectuating the new mode (from tA to tS).
We now consider each of these three activities in more detail.

Detecting the structural load increase
There are two main options for detecting the structural load increase, by means of
derivation from the data stream and through measurements during data processing.

As an example of the first option, the data stream may contain auxiliary data in-
cluding estimates of induced load for processing the data stream or characteristics
from which these estimates can be derived. Given such information, the structural
load increase may even be determined before it appears, i.e. tD may be smaller than
tI . Unfortunately, it is uncommon that media data in broadcast environments pro-
vide the necessary information to detect upcoming structural load changes timely.
Coded media streams, such as MPEG-2 [Haskell et al., 1997], typically provide
dedicated, so-called user data fields allowing the enhancements of those streams
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with proprietary information. For MPEG-2, information could be added to the
headers of the entire stream, of the group-of-pictures and of the individual pic-
tures. However, being based on proprietary information, such an approach only
has its merits in closed environments. Alternatively, an application may determine
the cause of the load change (like a scene or shot change, or a change from movie
towards video) by means of dedicated processing entities, such as film detectors
[De Haan, 1992]. Finally, an application may be triggered to change its mode of
operation, and may have higher resource demands for the new mode.

When the structural load increase cannot be derived from the data stream, it
may be detected through measurements during data processing. Local control al-
gorithms, such as those described by Lafruit et al. [2000] and Wüst & Verhaegh
[2002], perform this detection as a by-product of their normal activity. Detec-
tion by these algorithms can be fast, because they have semantic interpretation for
the resource usage measures. Alternatively, when the measurements are done by
another, semantically neutral entity, such as a wrapper or container component en-
capsulating the application [De Miguel, Ruiz & Garcı́a, 2002], detection of the
structural nature of the overload necessarily takes time. So, in that case we must
seek the solution in eliminating the structural resource shortage.

Determining the new mode
As mentioned before, determining the new mode takes quite some time, and the
load increase must therefore be anticipated. To this end, the QM needs to prede-
termine two modes of operation, a normal mode accommodating the normal load
of the more important application (MIA) and an anticipated mode accommodating
the anticipated load of MIA after the structural load increase. To accommodate the
load increase, MIA receives a higher budget in the anticipated mode than in the
normal mode. The higher budget of MIA can be accommodated by giving the less
important application (LIA) a lower budget. Conversely, the lower budget of MIA
in the normal mode allows for an additional budget for LIA in that mode compared
to the anticipated mode. Thus, the budgets allocated to MIA and LIA, and the cor-
responding quality settings, anticipate the load increase for MIA, and both MIA
and LIA are informed in advance about the existence of the two modes; see also
Table7.1.

Effectuating the new mode
Upon a structural load increase, the higher budget for MIA must become avail-
able instantaneously. Conversely, the additional budget ∆BLIA that LIA receives in
the normal mode will be withdrawn instantaneously, and LIA may be confronted
with a sudden reduction of its budget, rather than being informed timely. As a
consequence, the additional budget that LIA receives in the normal mode can only
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Table 7.1. An example of a normal mode and an anticipated mode for CGBs.
Note that LIA receives a quality setting Q �LIA for the normal mode and a quality
setting QLIA for the anticipated mode.

normal mode anticipated mode
(low load for MIA) (high load for MIA)

MIA QMIA � BMIA QMIA � BMIA � ∆BMIA
LIA Q

�

LIA � BLIA � ∆BLIA QLIA � BLIA

be allocated with a conditional guarantee, i.e. it is guaranteed (just like normal
budgets) under the condition that MIA does not need it. This additional budget is
therefore termed a conditionally guaranteed budget (CGB).

When the QM allocates both an absolutely guaranteed budget BLIA and a CGB
∆BLIA to LIA, it informs LIA that it can run on a quality level QLIA matching the
AGB, and that it may run on a quality level Q

�

LIA matching the combination of bud-
gets. In this way, the CGB provides an option for controlled quality improvement.

When confronted with a change in the availability of the CGB, LIA is assumed
to adjust to the new situation by selecting the appropriate quality level. Smooth
transitions may therefore not always feasible, and we have to revert to a best-effort
approach for LIA. Hence, the structural load increase causing the user-focus prob-
lem still takes its toll, but we shifted the resulting problem to a place where it is
less severe. Moreover, the application facing the problem may be selected for its
ability to handle it.

7.2.2 A model for CGBs
Although CGBs are conceived as a means to solve the user-focus problem, the no-
tion of user focus nor the notion of relative importance plays a role at the level of
the budget scheduler. Rather than using terms like MIA and LIA, we therefore pre-
fer terms that are independent of these notions. In the sequel, we use CGB provider
ρp (rather than MIA) for the RCE that provides the CGB and CGB consumer ρc

(rather than LIA) for the RCE that consumes the CGB.
Assume that ρp requires an AGB of Bp in normal mode, and an additional bud-

get ∆Bp in anticipated mode. This additional budget ∆Bp is also termed a budget
margin. Conversely, ρc requires an AGB of Bc in anticipated mode and is granted
an additional budget ∆Bc with a conditional guarantee in normal mode.

Because the budget margin must become available to ρp instantaneously, we re-
quire that a mode change from normal mode to anticipated mode can be performed
instantaneously. In a next section, we will present a mechanism that facilitates such
an instantaneous mode change.

In the following subsections, we consider the two variants of CGBs. So-called
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strong CGBs can be applied when the structural load increase can be detected
timely. Otherwise we have to eliminate the structural resource shortage, and we
can apply weak CGBs.

7.2.3 Weak CGBs
Without appropriate means for detection, we must seek the solution in eliminating
the structural resource shortage. Hence, rather than assigning an AGB B p to ρp in
the normal mode, we revert to the higher budget Bp � ∆Bp for ρp corresponding to
its AGB in the anticipated mode. When the anticipated load increase occurs, it thus
can be accommodated without delay. Due to the budget margin, ρp has a budget
surplus, and therefore generates gain time before the load increase. When ρ p con-
sistently generates gain time corresponding with its budget margin, ρc consistently
receives its CGB ∆Bc. Note that even when ρc consistently receives the CGB, peak
loads of ρp may still cause occasional unavailability of the CGB. This type of CGB
is therefore termed a weak CGB. To compensate ρc for the potential fluctuations
in the provision of the CGB, we assume that all gain time of ρp is provided to ρc.
Other alternatives are conceivable, but fall outside the scope of this document.

7.2.4 Strong CGBs
With appropriate means for detection, ρp can explicitly release and claim its bud-
get margin, thereby instructing the budget scheduler to switch between both budget
configurations. When ρp claims its budget margin in normal mode, ρc is informed
that its CGB will be withdrawn instantaneously, followed by an instantaneous
mode change. Between the release and subsequent claim of the budget margin,
the CGB consumer can therefore count on its CGB. This type of CGB is therefore
termed a strong CGB.

Note that a synchronous ρp will be able to restrain itself during every bud-
get period. An asynchronous ρp cannot do so, precisely because its behavior is
asynchronous with respect to its budget period. Without explicit help of the bud-
get scheduler, an asynchronous ρp will keep consuming its budget margin until it
blocks for lack of input.

Finally note that although the information about the withdrawal is provided
timely, ρc will typically not be ready to receive the information when it is process-
ing a unit of work. This may give rise to the quality degradation with overshoot
shown in Figure 1.7.

7.3 Instantaneous budget configuration changes
For weak CGBs, ρp is always in possession of its budget margin ∆Bp, and ρc only
receives its CGB ∆Bc when ρp consistently generates gain time corresponding with
that budget margin. For strong CGBs, ρp receives ∆Bp in anticipated mode only.



7.3 Instantaneous budget configuration changes 113

In normal mode, ρp only receives a budget Bp. In order for ρp to receive its bud-
get margin, a switch to anticipated mode is required, and to that end ρ p needs to
explicitly claim its budget margin. Upon its claim, that budget margin must be-
come available instantaneously, and the CGB will therefore be withdrawn instan-
taneously. Hence, a mechanism to schedule CGBs must facilitate an instantaneous
budget configuration change. However, that mechanism must not interfere with the
guarantees for AGBs. In this section, we analyze budget configuration changes to
come to grips with the requirements for a mechanism to schedule CGBs.

Figure 2.11 on page 35 shows a mode change involving two applications, in-
cluding a budget configuration change (BCC). In this section, we first illustrate a
BCC for FPPS in more detail. We subsequently show that an instantaneous BCC
may cause deadline misses of AGBs under both FPPS and EDF.

7.3.1 Budget configuration change
To illustrate a BCC under FPPS, consider Figure 7.1, of which the characteristics
are given in Table 7.2. Both budget configurations are schedulable under FPPS. We
assume that the RCEs may run asynchronously with respect to their budget periods.
The figure contains three time lines, denoted by (i) – (iii), each showing a particular
variant of a BCC. For all three time lines, all four RCEs have a simultaneous release
of their AGBs at time t 	 0. Moreover, it is assumed that ρp has released its budget
margin before time t 	 0, and re-claims it at time t 	 14, which gives rise to a
BCC request at tbcr 	 14. In time line (i), the system waits for an idle interval and

Table 7.2. An example ‘task set’ to illustrate budget configuration changes under
fixed-priority preemptive scheduling.

period AGB CGB
RCE Ti Bi ∆Bp ∆Bc

ρ1 8 2
ρp 12 3 1
ρc 48 1 4
ρ4 60 19

subsequently performs the BCC. As mentioned before, waiting for an idle interval
ensures that the BCC will not affect the guarantees of budgets [Tindell & Alonso,
1996]. The first idle interval occurs at time t 	 111; the CGB is withdrawn from ρc

and the budget margin is provided to ρp, i.e. tdec 	 tinc 	 111. The budget margin
becomes available to ρp for the first time at t 	 125, implying a delay of nine AGB
periods of ρp, which is too long.

In time line (ii), the CGB is withdrawn immediately from ρc upon ρp’s claim,
i.e. tdec 	 tbcr 	 14. The provision of the budget margin is once again delayed
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(i)

(ii)

RCE ρc

RCE ρp

RCE ρ1

(iii)

RCE ρ4

tbcr tdec=tinc

tinctbcr=tdec

tbcr=tdec=tinc

time0 12040 80

time0 12040 80

time0 12040 80

RCE ρc

RCE ρp

RCE ρ1

RCE ρ4

RCE ρc

RCE ρp

RCE ρ1

RCE ρ4

Figure 7.1. Three variants of BCCs for the ‘task set’ of Table 7.2. For all three,
RCE ρp re-claims its budget margin ∆Bp � 1 at time tbcr � 14. Time line (i)
shows a BCC with tbcr � tdec � tinc. In time line (ii), the CGB is withdrawn
immediately, and the AGB is increased later, i.e. tbcr � tdec � tinc. Time line (iii)
shows an instantaneous BCC, with tbcr � tdec � tinc.

till the first idle interval, which occurs at time t 	 54, i.e. tinc 	 54. The budget
margin becomes available to ρp for the first time at t 	 63, implying a delay of
four AGB periods of ρp. Although this is a considerable improvement, it is still a
substantial delay. Note that this variant gives rise to an additional transitory budget
configuration in which the CGB has already been withdrawn from ρc, but the AGB
of ρp has not been increased with the budget margin yet.

Time line (iii) shows that for this particular case the BCC can also be performed
instantaneously without causing a deadline miss for any budget. For this particular
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case tdec 	 tinc 	 tbcr 	 14, and the budget margin can be used by ρp at time t 	 15,
i.e. in the same budget period in which ρp claimed it. In other cases, an instan-
taneous BCC may give rise to budget interferences, as illustrated in the following
sections.

7.3.2 Budget interference under FPPS
Figure 7.2 shows an example of budget interference upon an instantaneous BCC
under FPPS. The characteristics of Figure 7.2 can be found in Table 7.3. Both
budget configurations are schedulable under FPPS. The budgets of all four RCEs

Table 7.3. An example ‘task set’ that gives budget interference under fixed-
priority preemptive scheduling.

period AGB CGB
RCE Ti Bi ∆Bp ∆Bc

ρ1 8 2
ρp 12 3 2
ρc 24 1 4
ρ4 30 6

are released simultaneously at time t 	 0, and ρp has released its budget margin
before that time. When ρp subsequently re-claims its budget margin at time tbcr 	
14, and the BCC is performed instantaneously, the AGB of ρ4 misses its deadline
at time t 	 30.

tbcr time0 20 40

RCE ρc

RCE ρp

RCE ρ1

RCE ρ4

Figure 7.2. Budget interference under FPPS for the ‘task set’ of Table 7.3. RCE
ρp re-claims its budget margin ∆Bp � 2 at time tbcr � 14. The budget margin is
provided instantaneously, causing a deadline miss of the AGB of ρ4 at t � 30.

For this particular example, the CGB of ρc corresponds to the budget margin
of two budget periods of ρp, i.e. ∆Bc 	 4 	 2∆Bp. Hence, the problem is caused
by the fact that the CGB is provided to ρc before the corresponding budget margins
would have been provided to ρp. Withdrawing the CGB of ρc at time tbcr 	 14
would yield an idle interval starting at time t 	 23. Hence, when the provision of
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the budget margin to ρp would be delayed by one period, ρ4 would not miss its
deadline.

7.3.3 Budget interference under EDF
Figure 7.3 shows a similar example of budget interference upon an instantaneous
BCC under EDF. The characteristics of Figure 7.3 can be found in Table 7.4. Both
budget configurations are schedulable under EDF. This particular example shows

Table 7.4. An example ‘task set’ that gives budget interference under earliest
deadline first.

period AGB CGB
RCE Ti Bi ∆Bp ∆Bc

ρc 16 4 8
ρp 20 5 10

that it is impossible to provide the entire budget margin in the same period as it is
claimed. Moreover, when the remaining time of the budget period of ρ p is provided
to ρp, a deadline miss of the AGB of ρc occurs at time t 	 80.

tbcr time0 40 80

RCE ρp

RCE ρc

Figure 7.3. Budget interference under EDF for the ‘task set’ of Table 7.4. RCE
ρp re-claims its budget margin ∆Bp � 10 at time tbcr � 14. The remaining time
till the end of ρp’s budget period is too short to provide the entire budget margin.
When the remaining time is provided to ρp, a deadline miss of the AGB of ρc

occurs at t � 80.

7.3.4 Analysis
Figures 7.2 and 7.3 illustrate deadline misses when the budget margin is provided
instantaneously to ρp upon its re-claim. In both cases the CGB has been provided
to RCE ρc before the budget margins on which the CGB is based would have
been provided to ρp. Hence, when the budget margin is re-claimed by ρp, it may
no longer be (completely) available during its current budget period. Note that
Figure 7.1 shows that there also exist situations where the CGB is provided before
the corresponding budget margins and this problem does not occur.
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7.4 The concept of in-the-place-of resource provision
The problem of interfering budgets can be solved by making sure that the CGB
is not provided to RCE ρc before the budget margin would have been provided to
ρp. This can be accomplished by applying the so-called concept of in-the-place-
of resource provision for CGB provisioning, i.e. the CGB is provided to ρc at the
period and phasing of the budget of ρp, and when the budget margin would have
been provided to ρp. This concept of in-the-place-of CGB provision generalizes
the so-called in-the-place-of design that was originally conceived for weak CGBs
[Otero Pérez, 2001], and applies to both FPPS and EDF.

In the following subsections we illustrate in-the-place-of CGB provision for
strong CGBs for both FPPS and EDF. The examples show the following three
characteristics of the concept. Firstly, the CGB may be withdrawn in the midst
of its provision during a budget period. Secondly, its application may result in
scheduling imperfections, even for EDF. Hence, immediateness of the availability
of the budget margin ∆Bp to ρp upon its re-claim may reduce the amount of CGB
∆Bc. Finally, the CGB may become available with absolute jitter [Klein, Ralya,
Pollak, Obenza & González Harbour, 1993].

7.4.1 Example for FPPS
To illustrate in-the-place-of CGB provision for FPPS, consider Figure 7.4, using
the characteristics of Table 7.3. The figure contains two time lines, denoted by (i)
and (ii). For both time lines, all four RCEs have a simultaneous release of their
AGBs at time t 	 0, and it is assumed that ρp has released its budget margin before
that time.

Time line (i) shows that the CGB is provided to ρc during the time intervals that
the budget margin would have been provided to ρp. Time line (i) also shows that
the budget margin ∆Bp becomes available with (absolute) jitter due to preemptions
by ρ1. In time line (ii), ρp re-claims its budget margin at time tbcr 	 14. The CGB
is withdrawn from ρc and the budget margin is provided to ρp during the current
budget period. Note that the CGB is withdrawn in the midst of its provision.

7.4.2 Example for EDF
To illustrate in-the-place-of CGB provision for EDF, consider Figure 7.5, using the
characteristics of Table 7.4. The figure contains five time lines, denoted by (i) –
(v). For all five time lines, both RCEs have a simultaneous release of their AGBs
at time t 	 0.

For time line (i), it is assumed that ρp has claimed its budget margin before
time t 	 0. Based on the in-the-place-of CGB provision, we derive from that time
line that ρc could consume 7 units of time in the first three periods, 9 units of time
in the fourth period, and 10 units of time in the fifth period. It is fairly easy to
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time0 20 40

tbcr time0 20 40

(ii)

(i)

RCE ρc

RCE ρp

RCE ρ1

RCE ρ4

RCE ρc

RCE ρp

RCE ρ1

RCE ρ4

Figure 7.4. Time lines with examples for in-the-place-of CGB provision under
FPPS for the ‘task set’ of Table 7.3. Time line (i) shows that the CGB becomes
available to ρc when the budget margin ∆Bp would have come available to ρp.
Time line (ii) shows that when ρp re-claims its budget margin at time tbcr � 14,
the CGB is withdrawn in the midst of its provision.

determine the amount ∆Bavg
c of CGB that can be conditionally given on average

based on the budget margin, because the utilization of the CGBc and the budget
margin are the same, i.e.

∆Bavg
c 	 Tc

∆Bp

Tp
� (7.1)

Note that ∆Bavg
c is also an upper bound for the amount that can be conditionally

guaranteed on a periodic basis. For this example, ∆Bavg
c 	 8. Hence, although 8

units of time can be provided as CGB to ρc on average, at most 7 units of time can
be guaranteed on a strictly periodic basis. Applying the in-the-place-of CGB pro-
vision for EDF therefore results in spare capacity due to scheduling imperfections.
Time line (i) also shows that the budget margin becomes available with jitter.

Assume ρc receives a CGB with a strictly periodic budget ∆Bc 	 7. Time lines
(ii) – (iv) illustrate different alternatives to deal with the gain time corresponding
to the remainder of the budget margin. For all three time lines, ρ p has released
its budget margin before t 	 0. In time line (ii), the entire budget margin ∆Bc

is provided as CGB to ρc. Hence, ρc is (implicitly) allowed to consume all gain
time corresponding to the remainder of the budget margin. In time line (iii), ρc
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is constrained to a periodic CGB of 7 units of time. The remainder of the budget
margin becomes available when both RCEs have consumed their budgets, i.e. as
late as possible. It is left to a spare-capacity manager to provide the slack to either
of the RCEs. ρc is also constrained to a strictly periodic CGB ∆Bc 	 7 in time
line (iv). In this case, the spare capacity becomes available when ρc has depleted
its CGB and there is still budget margin left, i.e. during the time intervals that it is
produced. Classification of this spare capacity as either slack time or gain time may
depend on the particular perspective taken. It may be classified as slack time from
a ‘scheduling imperfection’ point of view, and as gain time from a ‘remainder-of-
the-budget-margin’ point of view. Although one may prefer the former view for
strong CGBs and the latter for weak CGBs, we rather treat both on equal footing,
and therefore use the term gain time in the remainder. Note that the provision of
gain time at the time it is produced may be viewed as an application of the concept
of in-the-place-of resource provision for gain-time provisioning. We will denote
this specialization of this general concept by in-the-place-of gain-time provision.

For time line (v), it is assumed that ρp has released its budget margin before
time t 	 0. ρp re-claims its budget margin at time tbcr 	 26. The CGB is withdrawn
from ρc and the budget margin is provided to ρp during its current budget period.
Hence, the CGB is withdrawn in the midst of its provision, similarly to the example
for FPPS that was shown in time line (ii) in Figure 7.4.

7.5 A mechanism for scheduling conditionally guaranteed budgets
The implementation of CGBs strongly depends on the implementation of the bud-
get scheduler (BS). We therefore start with a concise description of the basic im-
plementation of the BS. More advanced implementation issues are addressed in
Section 7.6.1. We subsequently describe a conceivable extension of the BS with
in-the-place-of gain-time provision. Finally, we briefly describe a possible exten-
sion of the BS with in-the-place-of CGB provision for weak and strong CGBs.

We characterize specific aspects of the implementation of budgets by means of
invariants, in order to allow an easy comparison.

7.5.1 Budget scheduler
The basic implementation of the BS has been described in Section 2.5. Below, we
therefore only characterize the implementation by means of invariants.

Let Bvar
i denote the amount of AGB still available to RCE ρi in the current

budget period, hence 0
�

Bvar
i

�
Bi. Concerning priority manipulations, the imple-

mentation should maintain the following invariants. The phrase ‘ρi did not stop’
denotes that ρi neither blocked nor released the CPU. Similarly, the phrase ‘ρi
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tbcr time0 40 80

time0 40 80tbcr

(v)

tbcr time0 40 80

(ii)

(i)

time0 40 80

spare
capacity

(iii)

time0 40 80

(iv) RCE ρp

RCE ρc

RCE ρp

RCE ρc

RCE ρp

RCE ρc

RCE ρp

RCE ρc

RCE ρp
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Figure 7.5. Time lines with examples for the in-the-place-of CGB provision under
EDF for the ‘task set’ of Table 7.4. Time line (i) shows that in-the-place-of CGB
provision results in scheduling imperfections. Time lines (ii) till (iv) show three
variants for handling the resulting spare-time. In time line (v), ρp re-claims its
budget margin at time tbcr � 26. The instantaneous BCC causes a withdrawal of
the CGB in the midst of its provision.

stopped’ denotes that ρi either blocked or released the CPU.

ρi at AGB priority in HP � Bvar
i � 0 � ρi did not stop

ρi in LP � Bvar
i 	 0 � ρi stopped
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7.5.2 Extension with in-the-place-of gain-time provision
In the existing implementation, the gain time of RCEs only becomes available
for out-of-budget execution in LP, i.e. as late as possible. We therefore call this
mechanism latest gain-time provision. As mentioned before, the existing imple-
mentation does not facilitate policies for explicit allocation of spare capacity, nor
does it account out-of-budget executions.

Experience revealed the following problem caused by withdrawal of the budget
upon blocking as implemented in the BS. A streaming RCE, such as an MPEG-2
decoder, may privately use a dedicated hardware device, such as a variable length
decoder. After the RCE requests the device to perform an action, it has to wait
for (i.e. it blocks till) the completion of that device before it can resume its execu-
tion. Indiscriminately withdrawing a budget from a streaming RCE upon blocking
therefore gives rise to problems. For this thesis, we therefore argue in favor of a
less stringent implementation of gain-time production upon blocking. Upon block-
ing, only the time an RCE could have executed but is blocked is accounted to its
budget. Moreover, the priority of the RCE remains unaltered upon blocking. When
the RCE un-blocks and there is still AGB left, the RCE can resume its execution.
Other kinds of blocking are not supported by the BS, and also fall outside the scope
of this thesis. The interested reader is referred to [De Niz, Saewong, Rajkumar &
Abeni, 2001; De Niz, Abeni, Saewong & Rajkumar, 2001].

As a basis for our in-the-place-of gain-time mechanism, we view a budget as
a server, and associate a budget with a range of sub-priority bands in HP. A single
RCE owns the budget and performs in-budget execution at its sub-priority band in
HP. The sub-priority band of the RCE that owns the budget is the highest band
within the range of sub-priority bands of that budget. Apart from the RCE that
owns the budget, every RCE with a sub-priority band in the range of the budget
is allowed to run on that budget. An RCE therefore effectively shares its budget
with all RCEs having a sub-priority band in the range of its budget. This is illus-
trated in Figure 7.6. Hence, when the owning RCE blocks or releases the processor,

AGB1

AGB2 .
.
.

ρ1

ρ2

Figure 7.6. A budget as a server. RCE ρ1 owns AGB1, and shares it will all RCEs
with a lower sub-priority band in the priority range of AGB1.

the RCE with the highest priority lower than the owning RCE is allowed to exe-
cute on the owning RCE’s budget till either the latter releases the processor, the
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owning RCE un-blocks or the budget is exhausted. In summary, at any time the
execution of the RCE with the highest priority is accounted to the highest priority
(non-depleted) budget, where the system maintains an invariant guaranteeing that
the sub-priority band of the executing RCE falls inside the priority range of the ac-
counted budget. This basic mechanism only facilitates default (i.e. implicit) gain-
time provision, and is therefore called implicit in-the-place-of gain-time provision.
Note that the replacement of the latest gain-time provision mechanism by the im-
plicit in-the-place-of gain-time provision mechanism influences budget accounting
and influences priority manipulations of RCEs upon blocking The invariants for
in-the-place-of gain-time provision are

ρi at AGB priority in HP � Bvar
i � 0 � ρi did not release the CPU

ρi in LP � Bvar
i 	 0 � ρi released the CPU �

As a refinement, we may introduce a sub-priority band P
�

for gain-time provi-
sion for every sub-priority band P in HP, where P

�

is positioned immediately below
P. Whereas P corresponds with an RCE owning a budget, P

�

is exclusively meant
for gain-time provision. A spare capacity manager can subsequently explicitly allo-
cate the gain time of the owner of a budget associated with P to an RCE by raising
the priority of that RCE to P

�

. This mechanism is called explicit in-the-place-of
gain-time provision. We consider priority manipulations in more detail when we
discuss the extensions for CGBs in the next sections. Additional refinements and
more sophisticated mechanisms are conceivable, but fall outside the scope of this
thesis.

7.5.3 Extension with in-the-place-of CGB provision for weak CGBs
As mentioned before in Section 7.2.3, we assume that all gain time of the CGB
provider ρp will be provided to ρc for weak CGBs, i.e. gain time from both Bp as
well as ∆Bp. We therefore can apply the same approach as described for explicit in-
the-place-of gain-time provision to implement in-the-place-of CGB provision for
weak CGBs, i.e. reserve an additional sub-priority band in HP immediately below
the sub-priority band of the AGB of the CGB provider ρp, and executions of ρc at
CGB priority in HP are accounted to the AGB of ρp.

We now consider the required priority manipulations for ρc for this mecha-
nism. For ease of presentation, we assume implicit in-the-place-of gain-time pro-
vision and ignore the release of the CPU by ρc. To this end, we distinguish two
main cases, based on the priorities of the AGBs of ρp and ρc, and four situations,
corresponding with the start and depletion of the AGBs of ρp and ρc.

For the first case, the priority of the AGB of ρc is lower than the priority of the
AGB of ρp, i.e. in-budget executions of ρc are performed at a lower sub-priority
band in HP than of ρp.
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At the start of a new period of the AGB of ρp, Bvar
p is set to Bp � ∆Bp, and

the priority of ρc is raised to its CGB provision sub-priority level in HP. When the
AGB of ρp is exhausted (i.e. Bvar

p 	 0), the priority of ρc is lowered to its AGB
level when ρc has still AGB left (i.e. Bvar

c � 0) and otherwise to LP. At the start of a
new period of the AGB of ρc, Bvar

c is set to Bc, and the priority of ρc is raised to its
AGB provision sub-priority level in HP if and only if it had a priority in LP. When
the AGB of ρc is exhausted (i.e. Bvar

c 	 0), the priority of ρc is lowered to LP. Note
that because the AGB of ρc exhausted, it must have been the highest non-depleted
budget, and the priority of ρc could therefore not be higher than corresponding to
its AGB. We characterize this case for the priority of ρc by

ρc at CGB priority in HP � Bvar
p � 0

ρc at AGB priority in HP � Bvar
p 	 0 � Bvar

c � 0

ρc in LP � Bvar
p 	 0 � Bvar

c 	 0 �
For the second case, the priority of the AGB of ρc is higher than the priority of

the AGB of ρp. At the start of a new period of the AGB of ρp, the priority of ρc is
raised to its CGB provision sub-priority level in HP if and only if it had a priority
in LP. When the AGB of ρp is exhausted, the priority of ρc is returned to LP. Note
that because the AGB of ρp exhausted, it must have been the highest non-depleted
budget, and the priority of ρc could therefore not be higher than that of the AGB
of ρp. At the start of a new period of the AGB of ρc, the priority of ρc is raised to
its AGB provision sub-priority level in HP. When the AGB of ρc is exhausted, the
priority of ρc is lowered to the AGB of ρp when the latter has still budget left and
otherwise to LP. The characterizing invariants are

ρc at AGB priority in HP � Bvar
c � 0

ρc at CGB priority in HP � Bvar
c 	 0 � Bvar

p � 0

ρc in LP � Bvar
c 	 0 � Bvar

p 	 0 �
7.5.4 Extension with in-the-place-of CGB provision for strong CGBs
Unlike weak CGBs, the gain time of ρp is not the basis for strong CGBs. For strong
CGBs, a CGB is treated as a special kind of budget, giving rise to a dedicated
sub-priority band in HP with an accompanying sub-priority band for explicit gain-
time provision. That band is positioned immediately below the sub-priority band
of the AGB of ρp and its accompanying sub-priority band for explicit gain-time
provision. Unlike weak CGBs, executions of ρc at CGB in HP are accounted to
the CGB of ρc rather than the AGB of ρp. Hence, although weak CGBs and strong
CGBs are variants of the same concept, and although they share the application
of the concept of in-the-place-of CGB provision for their implementations, their
actual implementations differ. As mentioned above, the gain time of ρ p is not the
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basis for strong CGBs. Hence, the concepts strong CGBs and gain-time provision
are orthogonal, and although their implementations are both based on the general
concept of in-the-place-of resource provision, they are treated independently at the
level of implementation.

For the description of the implementation, we assume that the CGB has to be
provided at a periodic basis. Hence, ρc receives a CGB of at most ∆Bc in normal
mode, allowing the remainder of ∆Bp to become available for gain-time provision.
Let ∆Bvar

p denote the amount of the budget margin ∆Bp still available in the current
budget period of ρp, and ∆Bvar

c denote the amount of ∆Bc still available in the cur-
rent budget period of ρc. ρc is allowed in-budget executions at CGB priority in HP
if and only if both ∆Bvar

p and ∆Bvar
c are larger than zero, and those executions are

accounted to both ∆Bvar
p and ∆Bvar

c . Gain-time executions accounted to the CGB are
only feasible when ∆Bvar

p is larger than zero, are accounted to both ∆Bvar
p and ∆Bvar

c ,
and only decrease ∆Bvar

c as long as it is larger than zero. Other aspects of the imple-
mentation are similar to that of weak CGBs, and we therefore only briefly describe
the required priority manipulations and other additional changes for the four situa-
tions below for the case where the priority of the absolutely guaranteed budget of
ρc is lower than the priority of the absolutely guaranteed budget of ρ p. Moreover,
we also assume implicit in-the-place-of gain-time provision in our description for
ease of presentation.

We will now look at the two modes, anticipated and normal, and the changes
between both modes. In the anticipated mode, the CGB is not provided, priority
manipulations for CGB provision are therefore not needed, and the dedicated sub-
priority bands for the CGB remain unused. The invariants for the anticipated mode
are therefore the same as for the extension with in-the-place-of gain-time provision.

In the normal mode, the CGB is provided. As mentioned before, we only
consider the case where the priority of the absolutely guaranteed budget of ρc is
lower than the priority of the absolutely guaranteed budget of ρ p. At the start of a
new period of the AGB of ρp, the ∆Bvar

p of the CGB is set to ∆Bp, and the priority
of ρc is raised to its CGB provision sub-priority level in HP if and only if ∆Bvar

c is
larger than zero. Exhaustion of the AGB of ρp has no implications for the priority
of ρc. When either ∆Bvar

p or ∆Bvar
c of the CGB of ρc becomes zero, the priority of

ρc is lowered to its AGB level when there is still budget left and otherwise to LP.
At the start of a new period of the AGB of ρc, the ∆Bvar

c of the CGB is set to ∆Bc.
The priority of ρc is raised to its CGB provision sub-priority level in HP if ∆Bvar

p
is larger than zero and otherwise to its AGB level in HP. When the AGB of ρc is
exhausted, the priority of ρc is lowered to LP. Note that because the AGB of ρc

exhausted, it must have been the highest non-depleted budget, and the priority of
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ρc could therefore not be higher than its AGB. The characterizing invariants are

ρc at CGB priority in HP � �
∆Bvar

p � 0 � ∆Bvar
c � 0 �

ρc at AGB priority in HP � �
∆Bvar

p 	 0 � ∆Bvar
c 	 0 � � Bvar

c � 0

ρc in LP � �
∆Bvar

p 	 0 � ∆Bvar
c 	 0 � � Bvar

c 	 0 �
When ρp claims its budget margin, the remaining ∆Bvar

p is added to its AGB,
both ∆Bvar

p and ∆Bvar
c are set to zero, and the priority of ρc is lowered accordingly.

Note that the entire budget margin ∆Bp is only guaranteed for claims performed by
ρp during in-budget executions. This is because any execution is always accounted
to the AGB of ρp before it is accounted to the budget margin of ρp. As a result,
when ρp executes on spare capacity, its claim will not necessarily result in the
provision of the entire budget margin in its current budget period.

For simplicity, we assume that when ρp releases its budget margin, the BCC
from anticipated mode to normal mode will be effectuated at the start of a new
budget period of ρp.

7.6 Discussion
In this section, we will revisit the existing implementations, expand on CGBs and
their applicability, and describe subjects for further research.

7.6.1 Existing implementations revisited
Section 2.5 only described the basic implementation of the BS, and ignored prior
designs and implementations of weak CGBs. In this section, we will consider the
existing implementations in more detail and present a solution to an open problem.

Prior designs and implementations of weak CGBs
Bril & Steffens [2001] describe a first straightforward extension of the BS with
weak CGBs, where the CGB is provided as a special kind of budget in a so-called
middle-priority band MP between HP and LP. There are three drawbacks of that
solution, however. Firstly, and most importantly, the CGB is consumed at a non-
RM priority. Hence, no CGB can be guaranteed at ρc’s period Tc when the lowest
priority AGB in HP has a response time longer than Tc. Although the mechanism
to modify periods presented by Sha, Lehoczky & Rajkumar [1986] solves this
problem, this would add an undesired complexity to the system. Secondly, when
the budget margin ∆Bp is used by ρp, the CGB does not become available, and ρc

therefore claims spare capacity. This results in an undesired interference of CGB
provision and spare-capacity allocation. Finally, this solution relies heavily on the
use of RM priority assignment as a scheduling mechanism.

To circumvent the above drawbacks, the notion of in-place budget sharing was
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introduced in the context of FPPS by Otero Pérez, Bril & Steffens [2001]. In-the-
place-of provision of the CGB to ρc is described in that paper as an extension of
the existing implementation of the BS. Such a provision of CGB means that the
priority of ρc is changed to the AGB priority of ρp in HP, and that the remaining
AGB budget is transferred to the CGB of ρc. For a priority of the AGB of ρc lower
than the priority of the AGB of ρp, the implementation can be briefly described as
follows. When ρp releases the processor or blocks, its priority is lowered to LP.
If the remaining amount of AGB of ρp is larger than zero, it is made available to
the CGB of ρc, the AGB is depleted, and the priority of ρc is raised to ρp’s AGB
priority in HP. When the CGB is exhausted, the priority of ρc is lowered to its AGB
in HP when there is still budget left or to LP otherwise. The following invariants
incorporate this behavior.

ρc at CGB priority in HP � �
Bp � ∆Bp � var � 0 � ρp stopped

ρc at AGB priority in HP � � �
Bp � ∆Bp � var 	 0 � ρp did not stop

� Bvar
c � 0 � ρc did not stop

ρc in LP � � �
Bp � ∆Bp � var 	 0 � ρp did not stop �

�
�
Bvar

c 	 0 � ρc stopped �
The main drawback of this approach for weak CGBs is that it cannot properly

handle situations with blocking.

Gain-time production upon blocking, triggered CGBs, and time-offsets
Now consider a system with latest gain-time provision, and accounting for blocking
as described above. An inadvertent implementation of strong CGBs by means of
a dedicated sub-priority in HP as described in Section 7.5 would give rise to the
following problem in such a system.

Assume the CGB provider ρp becomes blocked. Moreover, assume the CGB
consumer ρc is at CGB in HP. In such a situation, ρc is allowed to execute de-
spite the fact that the AGB of ρp has not been exhausted yet. When ρp un-blocks,
is allowed to resume execution, and re-claims its budget margin, parts of the bud-
get margin have already been consumed by ρc. As a consequence, an instantaneous
BCC can no longer provide the entire budget margin without jeopardizing the guar-
antees of other AGBs.

This problem can be circumvented by so-called triggered strong CGBs, i.e. the
CGB is triggered (enabled) when the AGB of ρp is exhausted rather than when the
AGB of ρp is started. An alternative approach to solve this problem is to split the
AGB of the CGB provider ρp in two separate budgets: a budget βp for the normal
budget Bp and an additional budget β

�

p for the budget margin ∆Bp, where β
�

p has a
relative time-offset of at least WRp

�
Bp � with respect to βp. By basing the strong
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CGB on β
�

p only, it can never be consumed too early. Because we confine ourselves
in this thesis to a basic real-time scheduling model without time-offsets, we do not
consider this latter approach in more detail.

Note that this problem does not occur for in-the-place-of gain-time provision,
because the AGB of ρp is always depleted by either executions of ρp or gain-time
executions before ρc is allowed to consume its CGB.

7.6.2 CGB variants
This section presents various extensions to the basic concept and alternatives to its
mechanism.

Extensions of the concept
In this chapter, we presented a basic mechanism for CGBs, covering only a single
anticipated load increase, and pairs of a single CGB provider and a single CGB
consumer. Extensions of this basic mechanism for CGBs are conceivable, such as
covering multiple levels of anticipated load increases, and pairs of multiple CGB
providers and multiple CGB consumers.

Instantaneous and deferred budget configuration changes
In this chapter, we assumed the need for an instantaneous BCC. There also exist
situations where a BCC can be deferred, allowing the CGB consumer to smoothly
reduce its quality level. We will give two examples of options for a deferred BCC
in this section.

As a first example, a load increases may be announced, e.g. by means of pro-
prietary information embedded in the data stream in closed environments. As a
second example, consider a load increase due to a scene or shot change. As men-
tioned before, the quality level may be dropped temporarily upon such a change,
e.g. to alleviate an overload, because the human brain needs time to adjust. More-
over, when this time to adjust exceeds the lead-time to detect the load increase, the
BCC can be deferred with the time surplus.

7.6.3 Application in other contexts
In this chapter, CGBs have been presented as a solution to the so-called user-focus
problem. However, CGBs can be applied in other contexts as well, and the fact that
CGBs facilitate an instantaneous BCC allows other types of applications to become
a CGB provider as well. In this section, we show how an emergency application
and an input reader for video data can serve as CGB provider. We mention that
neither of these two applications is either scalable or adaptive, and that neither of
them has a dedicated local controller to detect a structural load increase.
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Emergency applications
Consider an emergency application, consisting of two main modes, emergency de-
tection and emergency handling. By nature, an emergency is expected to happen
infrequently, and the application is therefore expected to mainly run in emergency
detection mode, making it a candidate for CGB provision. When the resource needs
in both modes are known, and the mode change from detection to handling is re-
quired to be instantaneous, the load increase can be anticipated, and strong CGBs
can be applied. Note that for this particular example the application does not need
to be able to adjust its resource use to its budget, nor does it need a dedicated local
controller to detect the load increase. Moreover, emergency applications may not
need a normal budget in emergency detection mode, i.e. may have a normal budget
equal to zero. Depending on the type of emergency, either an instantaneous BCC
may actually be required for this type of application or a deferred BCC may be
possible as well.

Input reader for video data
Consider an input reader for video data. Such an application cannot afford to
miss input data, is typically neither adaptive nor scalable, and therefore requires
a worst-case budget. When the input reader consistently uses fewer resources than
its worst-case budget, its budget surplus can be exploited to improve the cost-
effectiveness using controlled quality improvements of other RCEs by means of
weak CGBs. Otherwise we have to revert to a mechanism for spare-capacity pro-
vision to exploit the budget surplus of the input reader.

7.6.4 Future work
Currently, there only exists an initial implementation for weak CGBs, and the ex-
isting implementation of the BS only supports latest gain-time provision.

Although we performed a number of initial experiments, the actual validation
of CGBs by media processing applications is still a subject of further research, to
be performed in close co-operation with our colleagues from the high-quality video
domain. Moreover, the focus of this chapter has been on CGBs as a mechanism.
The exploitation of this mechanism by policies residing in the controllers within the
control hierarchy requires future work. Policies for cost-effective spare-capacity
allocation are the topic of a pending patent publication.

Finally, in-the-place-of resource provision is considered to be a suitable ap-
proach to accommodate instantaneous BCCs under FPPS and an applicable ap-
proach under EDF. Other approaches are subject of future work, in particular for
EDF.



8
An Admission Test for Conditionally

Guaranteed Budgets

This chapter is concerned with the worst-case available amount ∆Bc that can be
conditionally guaranteed for strong CGBs on a strictly periodic basis under arbi-
trary phasing for in-the-place-of resource provision of CGBs and gain time for
FPPS. We present techniques to determine both optimistic and pessimistic bounds
as well as exact values for that amount ∆Bc. These techniques use the extensions
to RMA presented in Chapters 4 and 5.

We start this chapter with the notion of advancement in Section 8.1. This no-
tion, which may be viewed as the inverse of the response time, eases the formula-
tion of the techniques in subsequent sections. Next, in Section 8.2, we refine our
budget model for CGBs, and present an example that will be used in the remain-
der of the chapter. Bounds for ∆Bc are the topic of Section 8.3. A technique to
determine the exact amount of ∆Bc is described in Section 8.4, and an efficient al-
gorithm to calculate ∆Bc is presented in Section 8.5. We conclude the chapter with
a discussion in Section 8.6.

129
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8.1 Advancement
In this section, we present the notion of advancement. We start with an informal in-
troduction of the notion, and illustrate it by means of the example from Chapter 3.
Next, we define the best-case advancement and worst-case advancement, and ex-
press them in terms of the best-case and worst-case response time, respectively.
Both notions are also illustrated by the same example. Finally, we describe how to
determine the best-case advancement and worst-case advancement.

8.1.1 Introduction
The advancement Ai

�
t � of a task τi in an interval of time of length t starting at a

release of τi is the amount of time that τi has executed in that interval. We will use
an execution of task τ3 as shown in Figure 3.3 for illustration purposes. Figure 8.1
shows both an execution of τ3 and the advancement A3

�
t � for that execution. Note

that the graph of A3
�
t � consists of diagonal line segments with a gradient of one

and horizontal line segments. The diagonal line segment correspond to executions
of τ3, whereas the horizontal line segments correspond to preemptions of higher
priority tasks or the completion of τ3. Note that the advancement of a task τi may
be viewed as the inverse of the response time of that task.

task τ3

time

t

A3(t)
5

T3

Figure 8.1. An execution of τ3 and its advancement A3 � t � .

8.1.2 Best-case and worst-case advancement
The best-case advancement BAi

�
t � of a task τi in an interval of time of length t

starting at a release of τi is the maximal amount of time that τi can execute in that
interval. BAi

�
t � is given by

BAi
�
t � 	 � max � C � BRi

�
C � �

t � if t � 0
0 if t

�
0 � (8.1)

Similarly, the worst-case advancement WAi
�
t � of a task τi in an interval of time of

length t starting at a release of τi is the minimal amount of time that τi can execute
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in that interval. WAi
�
t � is given by

WAi
�
t � 	 � min � C � WRi

�
C � �

t � if t � WOi
�
0 �

0 if t
�

WOi
�
0 � � (8.2)

From these definitions, we immediately see that BAi
�
t � � WAi

�
t � for all t. More-

over, because BRi
�
C � and WRi

�
C � are monotonic increasing functions of C, BAi

�
t �

and WAi
�
t � are monotonic non-decreasing functions of t.

The best-case advancement BA3
�
t � and worst-case advancement WA3

�
t � of task

τ3 of our example are shown in Figure 8.2. Executions for the best-case response
times and worst-case response times of τ3 have been shown in Figures 5.3 and 4.3,
respectively. Note that the best-case execution has to be ‘reversed’ for the best-case
advancement. The horizontal line-segments of WA3

�
t � in Figure 8.2 correspond to

t

BA3(t)
5

WA3(t)

T3

WO3(2)WR3(2)

BR3(3) BO3(3)

10 30 40 5020

Figure 8.2. Best-case advancement BA3 � t � and worst-case advancement WA3 � t � .
computation times C for which WR3

�
C � differs from WO3

�
C � . As an example,

WR3
�
2 � 	 19 and WO3

�
2 ��	 46. Note that the start of such a line segment corre-

sponds to a worst-case response time and the end to a worst-case occupied time.
We therefore term the start point of a horizontal line segment of a WA-graph a
WO-bending point en the end point a WR-bending point.

Similar observations hold for the line segments of BA3
�
t � .

8.1.3 Determining advancement graphs
The graphs for BAi

�
t � and WAi

�
t � are characterized by their bending points, and we

can therefore determine an advancement graph by calculating its bending points.
We will illustrate how bending points in the graphs for BAi

�
t � and WAi

�
t � can be

calculated for the example given above.
We mention that the technique to determine bending points for WAi

�
t � is similar

to the technique to determine spare capacity as described by Klein et al. [1993]. We
start at t 	 0, and observe that WA3

�
0 � 	 0 by definition. The graph for WA3

�
t � has

a horizontal line-segment for 0
�

t
�

WO3
�
0 � . The first bending point of WA3

�
t �

is therefore found for t 	 WO3
�
0 � , and this bending point is termed a WO-bending

point. The next bending point of WA3
�
t � is a WR-bending point, which is found

at the end of a diagonal line-segment that starts at WO3
�
0 � , i.e. which is found at

t 	 WR3
�
2 � . This point can be determined using a so-called first scheduling point
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[Klein, Ralya, Pollak, Obenza & González Harbour, 1993]. Based on a critical
instant, the first scheduling point PFS

i

�
t � is the moment of the first release of any

task with a higher priority than τi at or after time t, and is given by

PFS
i

�
t � 	 min

j � i

�
t

�
Tj � Tj � (8.3)

Given a WO-bending point at time WOi
�
C � , the next WR-bending point

�
WRi

�
y � � y �

is found for t 	 WRi
�
y � 	 PFS

i

�
WOi

�
C � � , where y is given by

y 	 C � PFS
i

�
WOi

�
C � � � WOi

�
C � �

For our example, the WR-bending point after WO3
�
0 � is characterized by

PFS
i

�
WO3

�
0 � � 	 min � � WO3

�
0 � �

T1 � T1 � � WO3
�
0 � �

T2 � T2 �
	 min � � 17

�
10 � 10 � � 17

�
19 � 19 � 	 min � 20 � 19 � 	 19

y 	 0 � PFS
i

�
WO3

�
0 � � � WO3

�
0 � 	 0 � 19 � 17 	 2 �

Hence, we get a diagonal line segment of length 2. A horizontal line segment of
WAi

�
t � that starts at t 	 WRi

�
y � ends at t 	 WOi

�
y � . The latter value is determined

by means of a standard technique. For our example, we derive WO3
�
2 � 	 46, giving

a horizontal line segment of length 27.
The technique to calculate the bending points of a BA graph is similar to that

of a WA graph. The major differences being that it is based on a notion of next
scheduling point rather than first scheduling point, and that the bending points are
determined from above rather than from below. Based on an optimal instant, the
next scheduling point PNS

i

�
t � is the moment of the first release of any task with a

higher priority than τi at or before time t, and is given by

PNS
i

�
t � 	 max

j � i

 t �

Tj � Tj � (8.4)

Given a BR-bending point at time BRi
�
C � , the previous BO-bending point�

BOi
�
y � � y � is found for t 	 BOi

�
y � 	 PNS

i

�
BRi

�
C � � , where y is given by

y 	 C � PNS
i

�
BRi

�
C � � � BRi

�
C � �

For our example, the BO-bending point before BR3
�
5 � is characterized by

PNS
i

�
BR3

�
5 � � 	 max � 
 BR3

�
5 � �

T1 � T1 � 
 BR3
�
5 � �

T2 � T2 �
	 max � 
 22

�
10 � 10 � 
 22

�
19 � 19 � 	 max � 20 � 19 � 	 20

y 	 5 � PNS
i

�
BR3

�
5 � � � BR3

�
5 � 	 5 � 20 � 22 	 3 �

Hence, we get a diagonal line segment of length 2. The horizontal line segment that
ends at t 	 BOi

�
y � starts at t 	 BRi

�
y � . The latter value is determined by means of

a standard technique. For our example, we derive BR3
�
3 � 	 3, giving a horizontal

line segment of length 17.
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8.2 A refined budget model
As described in Section 7.1, our budget model is merely a simplified version of the
task model presented in Section 3.1. Because a budget may simply be viewed as
an artificial task, all the techniques presented in Chapters 4 and 5 can be reused for
the real-time analysis of budgets. Remember that budgets are fixed and deadlines
of budgets are hard, i.e. when a budget is replenished upon its activation, it must
be depleted before the corresponding deadline. This latter requirement conforms
to the in-the-place-of gain-time provision described in Section 7.4.

We will use a single example throughout the remainder of this chapter. Our
example has a single CGB provider ρp and a single CGB consumer ρc, and is based
on strong CGBs. In anticipated mode, an absolutely guaranteed budget AGB p is
provided to ρp, and that AGBp is characterized by a budget consisting of a normal
budget Bp plus the budget margin ∆Bp, a period Tp, and a phasing ϕp. Hence,
when AGBp is allocated to ρp, an amount of time Bp � ∆Bp will become available
to ρp for execution on a strictly periodic basis. Similarly, an absolutely guaranteed
budget AGBc is provided to the CGB consumer ρc, and the AGBc is characterized
by a normal budget Bc, a period Tc, and a phasing ϕc.

In normal mode, i.e. the CGB provider ρp did not claim the budget margin ∆Bp,
an absolutely guaranteed budget AGB

�

p is provided to ρp. AGB
�

p is characterized by
the normal budget Bp, a period Tp, and a phasing ϕp. In this mode, a conditionally
guaranteed budget CGBc is allocated to ρc in addition to the absolutely guaran-
teed budget AGBc. CGBc is characterized by an additional budget ∆Bc (which
we also term conditionally guaranteed budget), a period Tc, and a phasing ϕc. The
additional budget ∆Bc is based on the budget margin ∆Bp from the absolutely guar-
anteed budget AGBp. Note that CGBc has the same period Tc and phasing ϕc as
AGBc. In total, ρc therefore receives a budget Bc � ∆Bc at a period Tc and a phasing
ϕc in normal mode.

The relative phasing ϕR of AGBc with respect to AGBp is given by

ϕR 	
�
ϕc � ϕp � mod Tp � (8.5)

Note that 0
� ϕR � Tp. For harmonic periods, i.e. Tc 	 mTp for m �

� � , the
relative phasing of every activation of AGBc is equal to ϕR. Stated in other words,
the relative phasing is constant. For arbitrary periods, the relative phasing ϕR � q of a
particular activation q of AGBc differs for each activation. So, the relative phasing
of each activation of AGBc is equal to ϕR if and only if Tc is an integral multiple of
Tp.

The budget characteristics of AGBp, AGB
�

p and the higher priority AGBs of our
example are given in Table 8.1. Given this information, we want to determine the
highest lower bound of the amount that can be conditionally guaranteed to a CGB
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Table 8.1. Budget characteristics of AGBs allocated to RCEs. RCE ρp is CGB
provider.

period budget
RCE Ti Bi ∆Bp

ρ1 6 1
ρ2 14 2
ρp 29 9 7

consumer ρc. Note that ρc is not shown in Table 8.1.

8.3 Bounds for worst-case available budget margin
As mentioned before, the CGB allocated to a CGB consumer ρc is based on the
budget margin allocated to the CGB provider ρp. As illustrated by means of Fig-
ure 7.5 on page 120, the CGB that can be guaranteed on a periodic basis under
arbitrary phasings is generally smaller than the amount that can be conditionally
given on average (7.1) due to scheduling imperfections.

The worst-case CGB ∆Bc that can be conditionally guaranteed on a strictly
periodic basis and under arbitrary phasing is the highest lower bound of the amount
of budget margin ∆Bp that becomes available in an interval of length Tc with an
arbitrary phasing. We therefore consider ∆Bc as a function of Tc, and not of ϕR.
Note that ∆Bc is at least zero, and is a strictly non-decreasing function of Tc. In this
section, we determine optimistic and pessimistic bounds for ∆Bc

�
Tc � . Exact values

for ∆Bc
�
Tc � are the topic of the next section.

In order to arrive at bounds for ∆Bc, we sub-divide its domain into a number of
sub-domains. To this end, we first determine the maximum value for Tc for which
∆Bc

�
Tc � 	 0. This maximum value is termed the exact upper bound T EU

c
�
0 � . We

next consider values of Tc larger than T EU
c

�
0 � . For these values of Tc, we charac-

terize situations with worst-case availability of budget margin. We subsequently
show that the shape of the graph of ∆Bc

�
Tc � is periodic with period Tp, and present

initial bounds for ∆Bc
�
Tc � .

Next we tighten the bounds for ∆Bc
�
Tc � . We therefore first present the min-

imum value for Tc for which ∆Bc
�
Tc � 	 ∆Bp, which we term exact lower bound

T EL
c

�
∆Bp � . Because there is no simple algorithm to determine T EL

c
�
∆Bp � , we sub-

sequently present a pessimistic alternative for T EL
c

�
∆Bp � . Finally, we present im-

proved bounds for ∆Bc
�
Tc � .
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8.3.1 Exact upper bound
For x � � and x � 0, the function T EU

c
�
x � is defined as

T EU
c

�
x � 	 sup � Tc � ∆Bc

�
Tc � 	 x � � (8.6)

In the remainder of this document, the term T EU
c will be used as a shorthand for

T EU
c

�
0 � . The next lemma provides a means to determine T EU

c .

Lemma 8.1. The exact upper bound T EU
c is given by

T EU
c 	 Tp � WOp

�
Bp � � BRp

�
Bp � ∆Bp � � (8.7)

Proof. The proof consists of two parts. In the first part, we characterize a situation
in which we can find T EU

c . We subsequently derive (8.7) by construction.
T EU

c is the longest Tc-interval during which no budget margin becomes avail-
able. We therefore subdivide a period Tp, i.e. a Tp-interval, in three sub-intervals
with respect to the availability of ∆Bp: a sub-interval before, during, and after ∆Bp

becomes available. The length of the first sub-interval is at most the worst-case
occupied time of Bp, i.e. WOp

�
Bp � . Because WOp

�
Bp � is at least the worst-case

start-time, i.e. WOp
�
Bp � � WOp

�
0 � , the largest interval of joining preemptions of

higher priority budgets embedded in the second sub-interval (during ∆B p) is never
larger than the first sub-interval. The length of the last sub-interval is at most the
period Tp minus the best-case response time of Bp � ∆Bp, i.e. Tp � BRp

�
Bp � ∆Bp � .

The longest Tc-interval with no budget margin occurs when this last sub-interval in
one period Tp joins this first sub-interval in the next period Tp. Hence, a situation
with the longest Tc-interval in which no budget margin becomes available is char-
acterized by a best-case advancement of the AGBp in one period Tp immediately
followed by a worst-case advancement of the AGBp in the next period Tp.

We now derive (8.7) by construction. Consider two successive releases of
AGBp, and assume a best-case advancement BRp

�
Bp � ∆Bp � for the first release

immediately followed by a worst-case advancement of WOp
�
Bp � for the second

release; see for example Figure 8.3. The largest Tc for which no budget mar-
gin becomes available in a Tc-interval is found when that Tc-interval starts at
BRp

�
Bp � ∆Bp � and ends at Tp � WOp

�
Bp � . Hence, we find that T EU

c 	 Tp �
WOp

�
Bp � � BRp

�
Bp � ∆Bp � .

�

For our example, we find T EU
c 	 29 � 16 � 21 	 24. Note that T EU

c can be larger
than Tp, i.e. T EU

c � Tp for WOp
�
Bp � � BRp

�
Bp � ∆Bp � . This situation occurs for our

example when we assume a Bp of 3 and a ∆Bp of 2, i.e. BRp
�
5 � 	 5, WOp

�
3 � 	 7,

and therefore T EU
c 	 29 � 7 � 5 	 31, which is larger than Tp.
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Tp
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BRp(Bp+∆Bp) WRp(Bp+∆Bp)

WOp(Bp)

Bp+∆Bp

Bp

Tc
EUϕR

Figure 8.3. A best-case advancement of a budget in one period immediately
followed by a worst-case advancement of the budget in the next period.

8.3.2 Situations of worst-case provision
For arbitrary periods Tp and Tc, we are (only) interested in the worst-case available
conditionally guaranteed budget ∆Bc under arbitrary phasing. In that case, ∆Bc is
the minimum worst-case available budget margin in a Tc-interval over all possible
phasings of that interval. If we denote the amount of budget margin that becomes
available for the activation with a specific relative phasing ϕR by ∆Bc

�
ϕR � Tc � , then

we may derive ∆Bc
�
Tc � by means of

∆Bc
�
Tc � 	 inf

ϕR
∆Bc

�
ϕR � Tc � � (8.8)

A Tc-interval corresponding with the release of AGBc with relative phasing ϕR may
have an overlap with multiple Tp-intervals of budget AGBp. For periods Tp and Tc

and activations of AGBp and AGBc with a relative phasing ϕR, the number l of
Tp-intervals overlapping with a Tc-interval is given by

l 	
� �

ϕR � Tc � �
Tp � (8.9)

and the relative phasing ϕ
�

R of the next activation of AGBc is given by

ϕ
�

R 	 ϕR � Tc � 
 �
ϕR � Tc � �

Tp � Tp 	
�
ϕR � Tc � mod Tp � (8.10)
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Given an AGBp, we will describe a situation in which a minimal amount of budget
margin becomes available in a Tc-interval with a relative phasing ϕR with respect
to the activation of AGBp. Such a situation describes the minimal provision (or
availability) of the budget margin, and is therefore termed a situation of worst-case
provision. When the number of overlapping intervals l is at least 2, the character-
ization of the worst-case provision is independent of the specific relative phasing
ϕR, and the topic of the next lemma. We subsequently show that given arbitrary
periods Tp and Tc, l 	 1, and a particular phasing ϕR we can always construct a
situation with l 	 2 and phasing φ in which at most the same amount of budget
margin becomes available in Tc. Stated in other words, the case l 	 1 is dominated
by l 	 2 for the analysis of CGBs.

Lemma 8.2. For l � 2, a worst-case provision for a particular relative phasing ϕR
occurs when AGBp experiences a best-case advancement BAp in the first of those
l Tp-intervals, and when AGBp experiences a worst-case advancement WAp in the
last of those intervals.

Proof. First of all, note that a worst-case provision is characterized by the first
and last overlapping Tp-interval. Because the budget margin that becomes avail-
able in the remaining l � 2 intervals is always covered by Tc, both the number of
overlapping Tp-intervals and the exact time-intervals in which the budget margin
becomes availability are irrelevant for a worst-case provision. Now consider the
first of those overlapping Tp-intervals. The amount of budget margin ∆Bp that be-
comes available is minimal when ∆Bp becomes available as early as possible. This
is the case for a best-case advancement BAp of AGBp. Finally, consider the l-th
overlapping Tp-interval. The amount of budget margin ∆Bp that becomes available
is minimal when ∆Bp becomes available as late as possible. This is the case for a
worst-case advancement WAp of AGBp.

�

For l 	 1, we get ϕR � Tc
�

Tp, hence either Tc 	 Tp � ϕR 	 0 or Tc � Tp � ϕR �
0. Obviously, ∆Bc 	 ∆Bp for Tc 	 Tp � ϕR 	 0. Because we already covered
the case Tc

�
T EU

c in the previous section, we restrict ourselves to T EU
c � Tc �

Tp � ϕR � 0 here. Before presenting our lemma about domination, we first consider
the special case where BRp

�
Bp � ∆Bp � 	 Tp.

Lemma 8.3. For Tc � T EU
c , l 	 1, and BRp

�
Bp � ∆Bp � 	 Tp, the worst-case

available budget margin is found for a relative phasing ϕR 	 0, and equal to
WAp

�
Tc � � Bp 	 Tc � Bp.

Proof. Because we assume deadlines of budgets to be equal to their periods,
and that they are met, WRp

�
Bp � ∆Bp � �

Tp. By definition, BRp
�
Bp � ∆Bp � �
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WRp
�
Bp � ∆Bp � . From BRp

�
Bp � ∆Bp � 	 Tp, we therefore derive that ρp’s budget

is the highest priority budget. The highest priority budget is consumed without
preemptions, hence Bp � ∆Bp 	 Tp. For T EU

c � Tc
�

Tp and l 	 1, the worst-case
available budget margin for a relative phasing ϕR is therefore given by ϕR � Tc � Bp.
This value is minimal for ϕR 	 0.

�

For this trivial case, we can easily construct a situation with l 	 2 and where the
worst-case available budget margin remains the same. This can be done by ap-
plying the same construction as applied in the proof of Lemma 4.7 for worst-case
execution times, i.e. move the Tc-interval from a situation where ϕR 	 0 backwards
by an amount z 	

�
Tc � Bp � �

2.

Corollary 8.1. The special case where Tc � T EU
c , l 	 1, and BRp

�
Bp � ∆Bp � 	 Tp

is dominated by a situation with l 	 2.
�

Lemma 8.4. For Tc � T EU
c and l 	 1, we can construct a situation with a relative

phasing φR and l 	 2 such that at most the same amount of budget margin becomes
available in Tc.

Proof. Let the amount of budget margin that becomes available in the Tc-interval
with a relative phasing ϕR be equal to B

�

. Because Tc � T EU
c , B

� � 0. Moreover,
because l 	 1, B

� � ∆Bp. Hence, we have three different situations to consider de-
pending on the relative phasings ϕR on the one hand and the occupied time Op

�
Bp �

and the response time Rp
�
Bp � ∆Bp � of the consumption of the normal budget Bp

and the total budget Bp � ∆Bp, respectively, in the period Tp on the other hand:

1. ϕR
�

Op
�
Bp � ;

2. ϕR � Op
�
Bp � and ϕR � Tc � Rp

�
Bp � ∆Bp � ;

3. ϕR � Op
�
Bp � and ϕR � Tc � Rp

�
Bp � ∆Bp � .

For all three cases, we will construct a situation with a relative phasing φ such that
l 	 2 and a worst-case available budget margin that is at most equal to B

�

.
Case 1 is illustrated in Figure 8.4. Now assume a worst-case advancement

of AGBp in the current period Tp. Such an advancement will yield an amount
of available budget margin in the interval Tc that is at most equal to B

�

, be-
cause B

�

	 Ap
�
ϕR � Tc � � Bp � WAp

�
ϕR � Tc � � Bp. Moreover, assume a best-

case advancement of AGBp in the previous period Tp. The trivial case where
BRp

�
Bp � ∆Bp � 	 Tp is covered by Corollary 8.1. Let BRp

�
Bp � ∆Bp � � Tp. By

moving the interval Tc backwards such that the relative phasing φ with respect to
that previous period Tp equals BRp

�
Bp � ∆Bp � , the amount of available budget

margin of the current period Tp remains at most the same, and the amount in the
previous period Tp is zero. Hence, for case 1 a phasing φ 	 BRp

�
Bp � ∆Bp � in a
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AGBp

time

ϕR

Op(Bp)

Rp(Bp+∆Bp)

AGBc

Tc

Rp(Bp)

Tp

Figure 8.4. A situation with l � 1, and ϕR � Op � Bp � .

situation with a worst-case provision yields at most B
�

. For this phasing φ, we have
l 	 2.

The reasoning for case 2 is similar. We first assume a best-case advancement of
AGBp in the current period Tp. This keeps the worst-case available budget margin at
most the same, i.e. B

�

	 Bp � ∆Bp � Ap
�
ϕR � � Bp � ∆Bp � BAp

�
ϕR � . In addition, we

assume a worst-case advancement in the next period, and finally move the interval
Tc forward such that the relative phasing φ

�

of the next activation of Tc becomes
equal to WOp

�
Bp � . For this phasing, we again have l 	 2.

Case 3 is slightly different from the other two cases. We first observe that

Tc
�

WOp
�
B

�

� �
WOp

�
Bp � B

�

� �
This is illustrated in Figure 8.5. The worst-case advancement in a Tc interval is

AGBp

time

Tc

xk xk+1 xk+2

Figure 8.5. A situation with l � 1, i.e. ϕR � Tc � Tp, and a budget margin provision
B � � xk � xk � 1 � xk � 2.

therefore at most Bp � B
�

, i.e.

WAp
�
Tc � �

WAp
�
WOp

�
Bp � B

�

� � 	 Bp � B
�

�
Hence, a worst-case advancement in the current period Tp combined with a relative
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phasing φ 	 0 yields at most an amount of budget margin B
�

, i.e.

∆Bc
�
0 � Tc � 	 WAp

�
Tc � � Bp

�
B

�

�
In addition, we assume a best-case advancement of AGBp in the previous period,
and move the interval Tc backwards such that φ becomes BRp

�
Bp � ∆Bp � . Dur-

ing the move, the available budget margin remains at most the same, and for this
phasing we again have l 	 2.

�

8.3.3 Periodicity
The proof of Lemma 8.1 is based on a construction argument using two successive
releases of AGBp. Using a similar argument for k � 2 successive releases of AGBp

with k �
� � , we derive ∆Bc

�
T EU

c � kTp � 	 k∆Bp. The next lemma concerning the
periodicity of ∆Bc

�
Tc � provides a generalization of the latter equation for arbitrary

Tc larger than or equal to T EU
c .

Lemma 8.5. For Tc � T EU
c , the shape of ∆Bc

�
Tc � is periodic with period Tp, i.e.

∆Bc
�
Tc � kTp � 	 ∆Bc

�
Tc � � k∆Bp for Tc � T EU

c � k �
� � � (8.11)

Proof. As mentioned above, the worst-case provision for a specific phasing ϕR
is characterized by the first and the last overlapping interval, irrespective of the
number of overlapping intervals. This forms the basis of our proof.

Consider a specific relative phasing ϕR and let Tc � T EU
c . Let l denote the

number of overlapping intervals for ϕR and Tc, and ϕ
�

R the relative phasing of the
next release of AGBc. Remember that we may restrict ourselves to the case where
l � 2. Now assume the same relative phasing ϕR for a period T

�

c where T
�

c 	
Tc � kTp with k �

� � . Below, we will first prove that the number of overlapping
intervals l

�

for ϕR and T
�

c is equal to l � k, and that the relative phasing ϕ
� �

R of the
next release is identical to ϕ

�

R. We now prove l
�

	 l � k, and ϕ
� �

R 	 ϕ
�

R.

l
�

	
� �

ϕR � T
�

c � �
Tp � 	 � �

ϕR � Tc � kTp � �
Tp �

	
� �

ϕR � Tc � �
Tp � � k 	 l � k

ϕ
� �

R 	
�
ϕR � T

�

c � mod Tp 	
�
ϕR � Tc � kTp � mod Tp

	
�
ϕR � Tc � mod Tp 	 ϕ

�

R

Hence, the worst-case situations for Tc and T
�

c only differ in the number of overlap-
ping intervals, being k. Each of these k intervals contributes an additional ∆B p to
∆Bc

�
Tc � kTp � compared to ∆Bc

�
Tc � . Because this argument holds for an arbitrary

relative phasing ϕR, this proves the lemma.
�

We will now summarize our findings and arrive at initial bounds for budget margin
provision. For values of Tc in the interval  0 � T EU

c
�
, no budget can be conditionally
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guaranteed under arbitrary phasings and on a strictly periodic basis, i.e. ∆Bc
�
Tc � 	

0. For Tc � T EU
c � Tp, we can apply Lemma 8.5, i.e. ∆Bc

�
Tc � 	 ∆Bc

�
Tc � Tp � � ∆Bp,

and possibly we can apply this lemma repeatedly. For the remaining interval, i.e.
Tc �

�
T EU

c � T EU
c � Tp � , ∆Bc

�
Tc � �

�
0 � ∆Bp

�
. Because the gradient of ∆Bc

�
Tc � is at

most one, this can be refined to

Tc �
�
T EU

c � T EU
c � Tp � � ∆Bc � lwb

�
Tc � � ∆Bc

�
Tc � � ∆Bc � upb

�
Tc � (8.12)

where

∆Bc � lwb
�
Tc � 	 max � 0 � Tc � ∆Bp � T EU

c � Tp � (8.13)

∆Bc � upb
�
Tc � 	 min � ∆Bp � Tc � T EU

c � � (8.14)

Figure 8.6 illustrates these initial bounds for budget margin provision for our ex-
ample. In the next subsections, we will tighten these initial bounds.

Tc
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Tp

∆Bp

Tp

2∆Bp

Tc
EU

Tc
EU+∆Bp

∆Bp

Tc
EU+Tp

Tc
EU+∆Bp+Tp

Tc
EU+Tp−∆Bp

Figure 8.6. Initial bounds for budget margin provision. The grey areas denote
where exact values for ∆Bc � Tc � can be found.

8.3.4 Exact lower bound
By means of (8.6) on page 135, we defined the exact upper bound T EU

c
�
x � . Simi-

larly, we can define an exact lower bound T EL
c

�
x � as the minimum Tc for which an

amount x can be conditionally guaranteed on a strictly periodic basis under arbi-
trary phasing, where x � � and x � 0, i.e.

T EL
c

�
x � 	 inf � Tc � ∆Bc

�
Tc � 	 x � � (8.15)

Obviously, T EL
c

�
0 � 	 0. Moreover, T EL

c
�
x � �

T EU
c

�
x � by definition. Because we are

primarily interested in the exact lower bound for which the entire budget margin
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∆Bp can be guaranteed conditionally, we will use T EL
c as a shorthand for T EL

c

�
∆Bp � .

As mentioned before, ∆Bavg
c (7.1) on page 118 is an upper bound on the amount that

can be conditionally guaranteed based on the budget margin on a periodic basis.
Because ∆Bavg

c 	 ∆Bp for Tc 	 Tp, we conclude that Tp
�

T EL
c .

Based on a construction argument, we proved in Lemma 8.1 that the exact up-
per bound T EU

c is given by (8.7). Using that equation, we can easily determine the
value of T EU

c . Unlike T EU
c , it is not clear how to derive a similar simple algorithm

to determine T EL
c , and such an algorithm may not even exist.

In Section 8.4, we will derive that for our example T EL
c 	 35, which is consid-

erably smaller than T EU
c � Tp 	 24 � 29 	 53.

8.3.5 Pessimistic upper bound and pessimistic lower bound
Although we have no simple algorithm to determine T EL

c , we can easily determine
a pessimistic lower bound1 T PL

c � T EL
c . This value is pessimistic in the sense that

there may (but need not) exist values Tc smaller than T PL
c for which the entire

budget margin ∆Bp can be provided. Moreover, T PL
c is typically smaller than T EU

c �
Tp, although it may also be larger for specific cases.

For ease of presentation, we define a pessimistic upper bound T PU
c � T EU

c .
This value is pessimistic in the sense that the amount of budget margin that can be
provided may (but need not) be larger than zero, i.e. ∆Bc

�
T PU

c � � 0.
To determine T PU

c and T PL
c , we make pessimistic assumptions about the pro-

vision of the budget margin ∆Bp, namely we assume that the budget margin ∆Bp

becomes available without preemptions. Moreover, we assume that ∆B p becomes
available as early as possible for the best-case advancement (i.e. immediately after
the best-case occupied time of the normal budget BOp

�
Bp � ) and as late as possible

for the worst-case advancement (i.e. just before the worst-case response time of the
combined budgets WRp

�
Bp � ∆Bp � ). The dotted lines in Figure 8.7 illustrate the

assumptions.
From Figure 8.7, we derive:

T PU
c 	 Tp � WRp

�
Bp � ∆Bp � � BOp

�
Bp � � 2∆Bp (8.16)

T PL
c 	 T PU

c � ∆Bp � (8.17)

For our example, we find T PU
c 	 29 and T PL

c 	 36. Because T EU
c 	 24 and T EL

c 	
35, both bounds are actually pessimistic, i.e. T EU

c � T PU
c and T EL

c � T PL
c .

For the highest priority AGB, the response times and occupied times are equal
1Be aware that the pessimistic lower bound is at least the exact lower bound. The usage of the

term lower bound may therefore be confusing.



8.3 Bounds for worst-case available budget margin 143

t

BAp(t) WAp(t−Tp)

Tp

10

10 20 30 40 50

15

60

Tp

BOp(Bp)

WRp(Bp+∆Bp)

Bp+∆Bp

Bp

Tc
PL

∆Bp ∆Bp

Tc
PU

Figure 8.7. Pessimistic assumptions about the availability of ∆Bp indicated by
the dotted lines.

to the budget, and we therefore find that T EU
c and T PU

c are equal, i.e.

T EU
c 	 � (8.7) � Tp � WOp

�
Bp � � BRp

�
Bp � ∆Bp �

	 � AGBp has highest priority � Tp � Bp �
�
Bp � ∆Bp �

	 Tp � ∆Bp

and

T PU
c 	 � (8.16) � Tp � WRp

�
Bp � ∆Bp � � BOp

�
Bp � � 2∆Bp

	 � AGBp has highest priority � Tp � Bp � ∆Bp � Bp � 2∆Bp

	 Tp � ∆Bp �
As mentioned above, ∆Bc

�
Tc � increases at most with a gradient of one, hence

T EU
c � ∆Bp

�
T EL

c . For the highest priority AGB we therefore find

T EU
c � ∆Bp

�
T EL

c
�

T PL
c

	 � (8.17) � T PU
c � ∆Bp

	 � AGBp has highest priority � T EU
c � ∆Bp �

i.e. T EL
c 	 T PL

c 	 T EU
c � ∆Bp.

The following lemma describes under which conditions ∆Bc
�
T PL

c � 	 ∆Bp. For
our example, T PL

c 	 36 � T EU
c � Tp 	 53, hence we can conclude ∆Bc

�
Tc � 	 ∆Bp

for Tc �  36 � 53
�
.
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Lemma 8.6. The following relation holds for T PL
c .

T PL
c

�
T EU

c � Tp � ∆Bc
�
T PL

c � 	 ∆Bp (8.18)

Proof.
� � � ∆Bc

�
Tc � is strictly non-decreasing. Hence, from T PL

c
�

T EU
c � Tp we

derive ∆Bc
�
T PL

c � � ∆Bc
�
T EU

c � Tp � . The left-hand side of this latter relation is
larger than or equal to ∆Bp by definition, i.e. ∆Bp

� ∆Bc
�
T PL

c � and the right-hand
side is equal to ∆Bp. Hence, the implication holds.

��� � T EU
c � Tp is the largest Tc for which ∆Bc

�
Tc � 	 ∆Bp. Hence, from

∆Bc
�
T PL

c � 	 ∆Bp we derive T PL
c

�
T EU

c � Tp.
�

Using T PL
c , we will now present improved bounds for ∆Bc

�
Tc � . When T PL

c � T EU
c �

Tp, the initial bounds given by (8.12) on page 140 can not be improved. For T PL
c �

T EU
c � Tp, we consider two intervals:

Tc �
�
T EU

c � T PL
c � � ∆Bc � lwb

�

�
Tc � � ∆Bc

�
Tc � � ∆Bc � upb

�

�
Tc � (8.19)

where

∆Bc � lwb
�

�
Tc � 	 max � 0 � Tc � ∆Bp � T PL

c � (8.20)

∆Bc � upb
�

�
Tc � 	 min � ∆Bp � Tc � T EU

c � (8.21)

and
Tc �  T PL

c � T EU
c � Tp � � ∆Bc

�
Tc � 	 ∆Bp � (8.22)

For our example, this is illustrated in Figure 8.8. Exact values for the worst-case
available budget margin for Tc �

�
T EU

c � min � T PL
c � T EU

c � Tp � � are determined in the
next section.

8.4 Exact amount of worst-case available budget margin
In this section, we will determine exact values for the worst-case available budget
margin for the remaining interval Tc �

�
T EU

c � min � T PL
c � T EU

c � Tp � � . To this end, we
first introduce the notions of best-case and worst-case CGB contribution functions,
being the contributions of the best-case and worst-case advancements of the budget
margin of AGBp to ∆Bc.

8.4.1 CGB contribution functions
Consider a period Tc 	 31 and a relative phasing ϕR 	 18 for our example. Ac-
cording to (8.9), the number l of overlapping intervals of length Tp is two. Fig-
ure 8.9 illustrates the worst-case available ∆Bc

�
ϕR � Tc � . For this phasing, only

parts of the best-case and worst-case advancement of the budget margin ∆B p be-
come available. Those parts are indicated by the vertical arrows and denoted by
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Figure 8.8. Improved bounds for budget margin provision. The grey areas denote
where exact values for ∆Bc � Tc � can be found.
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Figure 8.9. Available ∆Bc for Tc � 31 and ϕR � 18 for our example.

means of ∆BB
c

�
ϕR � and ∆BW

c
�
ϕR � Tc � Tp � , respectively. The term ∆BB

c
�
ϕR � repre-

sents the contribution from the best-case advancement to ∆Bc
�
ϕR � Tc � and the term

∆BW
c

�
ϕR � Tc � Tp � represents the contribution from the worst-case advancement

to ∆Bc
�
ϕR � Tc � . In the remainder, ∆BB

c and ∆BW
c will be termed the best-case CGB

contribution function and the worst-case CGB contribution function, respectively.
These functions are given by the following equations.

∆BB
c

�
t � 	 max � 0 � min � ∆Bp � Bp � ∆Bp � BAp

�
t � � � (8.23)

∆BW
c

�
t � 	 max � 0 � min � ∆Bp � WAp

�
t � � Bp � � (8.24)
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From these equations, we immediately derive that ∆BB
c

�
t � is a monotonic non-

increasing function of t, and ∆BW
c

�
t � is a monotonic non-decreasing function of t.

Figure 8.10 depicts ∆BB
c

�
t � and ∆BW

c
�
t � for our example. Both CGB contribution

t

5

Tp

10 20 30 10 20 30

Tp

BOp(Bp)

BRp(Bp+∆Bp) WRp(Bp+∆Bp)

WOp(Bp)

∆Bp

5

∆Bp

t

Figure 8.10. Best-case CGB contribution function ∆BB
c and worst-case CGB

contribution function ∆BW
c for our example.

functions bend at least twice (for ∆Bp � 0) and an even number of times. ∆BB
c

�
t �

bends from horizontal to diagonal for a so-called BO-bending point and from di-
agonal to horizontal for a so-called BR-bending point. Similarly, ∆BW

c

�
t � bends

from horizontal to diagonal for a so-called WO-bending point and from diagonal to
horizontal for a so-called WR-bending point. The worst-case available ∆Bc is now
given by the following equation for l 	 2.

∆Bc
�
ϕR � Tp � 	 ∆BB

c
�
ϕR � � ∆BW

c
�
ϕR � Tc � Tp � (8.25)

The amount of budget margin that becomes available during the activation with a
relative phasing ϕR 	 18 is for our example given by

∆Bc
�
18 � 31 � 	 ∆BB

c

�
18 � � ∆BW

c

�
18 � 31 � 29 � 	 3 � 3 	 6 �

Figure 8.11 shows the available ∆Bc as a function of the relative phasing ϕR for
Tc 	 31 using best-case and worst-case contribution functions ∆BB

c and ∆BW
c . From

Figure 8.11, we derive that the available ∆Bc for a period Tc equal to 31 has a
minimum for a relative phasing ϕR equal to 17. Hence, ∆Bc

�
31 � 	 ∆Bc

�
17 � 31 � 	 5.

8.4.2 Cognac-glass algorithm
In the previous section, we illustrated by means of Figure 8.11 how ∆Bc can be
determined for a particular period. In that figure, we moved the worst-case CGB
contribution function ∆BW

c an amount Tc � Tp to the left. In this section, we will use
an alternative drawing that can be used for arbitrary periods. In that drawing, the
function ∆BW

c is moved a fixed amount Tp to the right; see Figure 8.12. In order
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Figure 8.11. Construction of ∆Bc � ϕR � Tc � as a function of ϕR for Tc � 31 using
CGB contribution functions. ∆Bc � ϕR � Tc � is minimal for ϕR � 17.

to determine the amount of budget ∆Bc
�
Tc � that can be conditionally guaranteed

for a particular period Tc in the interval
�
T EU

c � min � T PL
c � T EU

c � Tp � � , we apply a
so-called cognac-glass algorithm (CGA). This algorithm takes a particular period
Tc and determines ∆Bc

�
Tc � by taking the minimum of ∆Bc

�
ϕR � Tc � for the values

of the relative phasing ϕR. The term ‘cognac-glass algorithm’ originates from the
observation that the slanted lines may be viewed as the shape of a glass, and the
minimal sum of the heights of the cognac at both sides of the glass when tilting
the glass determines the budget for a specific period2 . We will first show that we
only need to consider a particular range of values of ϕR to determine ∆Bc

�
Tc � . We

subsequently present the result of applying the algorithm, and finally describe the
complexity of the algorithm in terms of the number of times we need to evaluate
∆Bc

�
ϕR � Tc � for our example.

Lemma 8.7. For Tc �
�
T EU

c � min � T PL
c � T EU

c � Tp � � , a minimal (i.e. worst-case)
value for ∆Bc

�
ϕR � Tc � is found for ϕR � WOp

�
Bp � � Tp � Tc � BRp

�
Bp � ∆Bp � � .

Proof. We first prove that the interval is non-empty. We subsequently prove the
lemma.

From Tc � T EU
c and (8.7), we get

Tc � WOp
�
Bp � � Tp � BRp

�
Bp � ∆Bp �� BRp

�
Bp � ∆Bp � � WOp

�
Bp � � Tp � Tc �

2Strictly speaking, the term ‘cognac-glass algorithm’ is suggestive, because the projected length
of the surface of the cognac (i.e. Tc) in the glass is kept constant, rather than the amount of cognac
below the surface.
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Figure 8.12. An alternative drawing based on CGB contribution functions. Pes-
simistic assumptions about the availability of ∆Bp are indicated by the dashed
lines.

Hence, the interval is non-empty.
The earliest moment after the release of the AGBp that the entire budget margin

is completed is given by BRp
�
Bp � ∆Bp � . Similarly, the latest moment after the re-

lease of the AGBp that the budget margin becomes available is given by WOp
�
Bp � .

Let the start of the Tc-interval ϕR � BRp
�
Bp � ∆Bp � . When ϕR is decreased to

BRp
�
Bp � ∆Bp � , the total amount of budget margin that becomes available from the

overlapping intervals either remains the same or becomes less. Hence, when ϕR is
decreased to BRp

�
Bp � ∆Bp � , ∆Bc

�
ϕR � Tc � is strictly non-increasing. Similarly, let

the end of the Tc-interval ϕR � Tc � WOp
�
Bp � � Tp, i.e. ϕR � WOp

�
Bp � � Tp � Tc.

When ϕR is increased to WOp
�
Bp � � Tp � Tc, the total amount of budget margin that

becomes available from the overlapping intervals is also strictly non-increasing. A
minimal (i.e. worst-case) value for ∆Bc under arbitrary phasings is therefore found
when ϕR � WOp

�
Bp � � Tp � Tc � BRp

�
Bp � ∆Bp � � . �

Because we consider values of Tc in the interval
�
T EU

c � min � T PL
c � T EU

c � Tp � � , we
are only interested in values of ϕR for which ∆Bc

�
ϕR � Tc � � ∆Bp. Stated in terms

of our metaphor, we don’t want to spoil cognac across the rim when tilting the
glass too far. Hence, if ϕR � Tc � WRp

�
Bp � ∆Bp � � Tp for ϕR 	 BRp

�
Bp � ∆Bp � ,

we can decrease the upper bound of the interval for ϕR to WRp
�
Bp � ∆Bp � �

Tp � Tc. Similarly, if ϕR � BOp
�
Bp � for ϕR � Tc 	 WOp

�
Bp � � Tp, we can in-

crease the lower bound of the interval for ϕR to BOp
�
Bp � . In summary, for

Tc �
�
T EU

c � min � T PL
c � T EU

c � Tp � � we only need to consider values of ϕR in the range
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 ϕR � lwb
�
Tc � � ϕR � upb

�
Tc � � , where

ϕR � lwb
�
Tc � 	 max � BOp

�
Bp � � WOp

�
Bp � � Tp � Tc � (8.26)

ϕR � upb
�
Tc � 	 min � BRp

�
Bp � ∆Bp � � WRp

�
Bp � ∆Bp � � Tp � Tc � (8.27)

under the condition that we take the minimum of ∆Bp and the result found, i.e.

∆Bc
�
Tc � 	 min � ∆Bp � min � ∆Bc

�
ϕR � Tc � �ϕR � ϕR � lwb

�
Tc � � ϕR � upb

�
Tc � � � � � (8.28)

Figure 8.13 depicts the exact worst-case available ∆Bc
�
Tc � under arbitrary phasing

for our example. From this figure, we derive that T EL
c 	 35.

Tc

10

10 20 30 40 50
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Tp
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EU+Tp

Figure 8.13. Exact worst-case available ∆Bc � Tc � .
We will now briefly describe the complexity of determining the graph shown in
Figure 8.13 for this particular example. Because all budget characteristics are
natural numbers in this example, we may restrict ourselves to values of Tc as
well as ϕR belonging to the natural numbers. We start with determining ∆Bc

�
Tc �

for Tc 	 T EU
c � 1. We continue with increasing values for Tc till we either en-

counter ∆Bc
�
Tc � 	 ∆Bp, hence Tc 	 T EL

c , or Tc 	 min � T PL
c � T EU

c � Tp � � 1. For
a particular period Tc, we determine ∆Bc

�
ϕR � Tc � using (8.28). For our example,

T EL
c 	 T PL

c � 1 � T EU
c � Tp. The total number of times η that (8.25) needs to be

evaluated is therefore equal to

η 	
T PL

c � 1

∑
Tc � T EU

c � 1

�
ϕR � upb

�
Tc � � ϕR � lwb

�
Tc � � 1 �

	
T PL

c � 1

∑
Tc � T EU

c � 1

�
min � BRp

�
Bp � ∆Bp � � WRp

�
Bp � ∆Bp � � Tp � Tc �

� max � BOp
�
Bp � � WOp

�
Bp � � Tp � Tc � � 1 � �
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For our example, this yields

η 	
35

∑
Tc � 25

�
min � 21 � 24 � 29 � Tc � � max � 10 � 16 � 29 � Tc � � 1 �

	
35

∑
Tc � 25

�
min � 21 � 53 � Tc � �

�
45 � Tc � � 1 �

	 � i 	 Tc � 23 �
12

∑
i � 2

�
min � 21 � 30 � i � �

�
21 � i � �

	
9

∑
i � 2

i �
12

∑
i � 10

9 	 44 � 27 	 71 �

8.5 Efficient calculation of conditionally guaranteed budgets
This section presents an efficient algorithm to calculate CGBs, which uses
the ranges for Tc identified in Section 8.3. We first prove that for Tc ��
T EU

c � min � T PL
c � T EU

c � Tp � � we only need to consider a restricted set of values for
ϕR in order to determine ∆Bc

�
Tc � . We next present our algorithm to determine

∆Bc
�
Tc � .

8.5.1 Dominating values for ϕR

According to Lemma 8.7 and (8.28), we only need to consider values of ϕR in a
restricted domain in order to determine the minimum of ∆Bc

�
ϕR � Tc � for given Tc

from the interval
�
T EU

c � min � T PL
c � T EU

c � Tp � � . Considering Figure 8.11, we observe
that ∆Bc

�
ϕR � Tc � has a minimum for ϕR 	 17. This value for ϕR corresponds with a

BR-bending point of the CGB contribution function ∆BB
c

�
ϕR � , and a WO-bending

point of ∆BW
c

�
ϕR � Tc � Tp � . The next lemma states that given an interval w � z � ,

the boundaries w and z together with the BR-bending points of ∆BB
c

�
ϕ � in

�
w� z �

are dominating values for ϕR to determine the minimum of ∆Bc
�
ϕR � Tc � in w� z � . A

similar lemma is subsequently presented using WO-bending points. Both Lemmas
are illustrated by means of an example.

Lemma 8.8. For Tc �
�
T EU

c � min � T PL
c � T EU

c � Tp � � , a minimal (i.e. worst-case)
value for ∆Bc

�
ϕR � Tc � for given Tc and ϕR in the range w� z � is found by consid-

ering the boundaries w and z of the interval and all BR-bending points of ∆BB
c in�

w� z � .

Proof. We take (8.25) as a starting point, and base the proof on the shape of the
graphs of the CGB contribution functions.

The gradient of a line segment of ∆BB
c

�
ϕR � is either 0 or � 1. Similarly, the

gradient of a line segment of ∆BW
c

�
ϕR � is either 0 or � 1. Let f

�
ϕR � 	 ∆Bc

�
ϕR � Tc � .
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The function f
�
ϕR � therefore has a gradient of � 1, 0, or � 1. Apart from the

boundaries w and z, it is sufficient to consider the horizontal line segments in
�
w� z � ,

that are preceded by a line segment with a gradient � 1 and succeeded by a line
segment with a gradient � 1. For each of those horizontal line segments, it suffices
to consider only a single, arbitrary, point. As illustrated by Figure 8.11, such a
horizontal line segment may specialize to a single point. We will now prove that
by considering all BR-bending points in

�
w� z � , all horizontal line segments are

covered.
Consider a horizontal line segment  x � y

�
. Just before that line segment, the

gradient of the graph is � 1, i.e.

f
� �

x � � 	 � 1 � ∆BB
c

� �
x � � 	 � 1 �

Just after that line segment, the gradient is � 1, i.e.

f
� �

y � � 	 � 1 � ∆BB
c

� �
y � � 	 0 �

Hence, somewhere in the interval  x � y
�

we can find a value for which ∆BB
c bends

from from � 1 to 0, and for that value we have a BR-bending point. We therefore
conclude that  x � y � contains a BR-bending point. By considering all BR-bending
points in

�
w� z � , we therefore cover all horizontal line segments in

�
w� z � . The set

containing the BR-bending points in
�
w� z � together with the boundaries w and z

therefore dominates w� z � when determining the minimum of f
�
ϕR � in w� z � . �

We may formulate a similar lemma for WO-bending points.

Lemma 8.9. For Tc �
�
T EU

c � min � T PL
c � T EU

c � Tp � � , a minimal (i.e. worst-case)
value for ∆Bc

�
ϕR � Tc � for given Tc and ϕR in the range w� z � is found by consid-

ering the boundaries w and z of the interval and all WO-bending points of ∆BW
c in�

w� z � .

Proof. Similar to that of Lemma 8.8.
�

We will now illustrate these lemmas by means of an example. Figure 8.14 shows
∆Bc

�
ϕR � Tc � as a function of ϕR for Tc 	 T EL

c 	 35. Using (8.28), we only need to
consider values of ϕR in the interval  ϕR � lwb

�
35 � � ϕR � upb

�
35 � � 	  10 � 18

�
.

Note that the graph does not have any horizontal line-segment in the interval
 10 � 18

�
that is both preceded by a line segment with gradient � 1 and succeeded

by a line segment with gradient � 1. Hence, although the BR-bending points of
∆BB

c

�
ϕR � in  10 � 18

�
for ϕR 	 11 and ϕR 	 17 cover horizontal line-segments, they

do not correspond with a minimum for ∆BB
c

�
ϕR � . A similar observation holds for

the WO-bending point for ϕR 	 13.
In order to determine the minimum of ∆Bc

�
ϕ � 35 � using Lemma 8.8, we only

need to consider four values for ϕR, i.e. values in ΦB 	 � 10 � 11 � 17 � 18 � . Based
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Figure 8.14. Construction of ∆Bc � ϕR � Tc � as a function of ϕR for Tc � T EL
c using

CGB contribution functions for our example.

on Lemma 8.9, we find that we may also restrain ourselves to values in ΦW 	
� 10 � 13 � 18 � . We conclude this section with Figure 8.15, showing the complexity
of the use of Lemma 8.8 for our example.

5

30 Tc25 35

ΦΒ(Tc)

Figure 8.15. Number of times that (8.25) needs to be evaluated using Lemma 8.8
for our example for Tc � � T EU

c � min � T PL
c � T EU

c � Tp � � (i.e. the cardinality of
ΦB � Tc � ).

8.5.2 Complete algorithm
The algorithm consists of three steps, based on the ranges of Tc as described below.

Tc �  0 � T EU
c

� � ∆Bc
�
Tc � 	 0

Tc �
�
T EU

c � min � T PL
c � T EU

c � Tp � � � ∆Bc
�
Tc � �  ∆Bc � lwb

�

�
Tc � � ∆Bc � upb

�

�
Tc � �

Tc �  T PL
c � T EU

c � Tp
� � ∆Bc

�
Tc � 	 ∆Bp

Tc �  T EU
c � Tp � ∞ � � ∆Bc

�
Tc � 	 ∆Bc

�
Tc � Tp � � ∆Bp
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Step 1: Determine the range and optionally normalize Tc

We first determine T EU
c and T PL

c using (8.7) and (8.17), respectively. When Tc

belongs to the fourth range, we determine the k �
�

such that T EU
c � kTp

�
Tc �

T EU
c �

�
k � 1 � Tp, i.e. k 	 
 �

Tc � T EU
c � �

Tp � . Next, we determine the normalized
value T N

c 	 Tc � kTp of Tc, i.e. T EU
c

�
T N

c � T EU
c � Tp.

Step 2: Determine ∆Bc for first and third range
If Tc belongs to the first or third range, we can determine ∆Bc

�
Tc � immediately

from the formula, and we are done. If T N
c 	 T EU

c , we can find ∆Bc
�
Tc � by means of

∆Bc
�
Tc � 	 ∆Bc

�
T N

c � � k∆Bp 	 k∆Bp. Similarly, if T N
c belongs to the third range,

we can find ∆Bc
�
Tc � by means of ∆Bc

�
Tc � 	 ∆Bc

�
T N

c � � k∆Bp 	
�
k � 1 � ∆Bp. When

Tc or T N
c is in the second range, we determine ∆Bc using Lemma 8.8 and (8.28) in

step 3. Note that for Tc in the second range, we may also use T N
c 	 Tc and k 	 0 .

Step 3: Determine ∆Bc for second range
Let ΦB be the set of phasings ϕR consisting of ϕR � lwb

�
T N

c � (see (8.26)), ϕR � upb
�
T N

c �
(see (8.27)), and all BR-bending points of ∆BB

c
�
ϕ � in ϕR � lwb

�
T N

c � � ϕR � upb
�
T N

c � � . De-
termine ∆Bc

�
T N

c � using (8.28), i.e.

∆Bc
�
T N

c � 	 min � ∆Bp � min
ϕR � ΦB

∆Bc
�
ϕR � T N

c � �

	 � (8.25) � min � ∆Bp � min
ϕR � ΦB

�
∆BB

c

�
ϕR � � ∆BW

c

�
ϕR � T N

c � Tp � � � �
The value for ∆BB

c
�
ϕR � can either be found directly or determined easily by means

of interpolation from the BR-bending points. The value for ∆BW
c

�
ϕR � T N

c � Tp �
can be determined by means of interpolation from the WO-bending points. We
now find ∆Bc

�
Tc � by means of ∆Bc

�
Tc � 	 ∆Bc

�
T N

c � � k∆Bp.

8.6 Discussion
In this section, we will briefly discuss our results and the application of the tech-
niques presented in this chapter, and reconsider some of the assumptions made in
Section 7.1.

8.6.1 Results
In this chapter, we presented techniques to determine both optimistic and pes-
simistic bounds as well as exact values for the worst-case available amount ∆Bc

that can be conditionally guaranteed for strong CGBs on a periodic basis under ar-
bitrary phasing for in-the-place-of resource provision for CGBs and gain time. We
illustrated the techniques by means of a single example that we used throughout
the chapter.
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We will now consider the efficiency of the mechanism by comparing the exact
worst-case ∆Bc

�
Tc � with its theoretic least upper bound ∆Bavg

c
�
Tc � , i.e. the amount

that becomes available on average as described by (7.1) on page 118. To this end,
we distinguish two main cases, based on the periods of ρc and ρp and the relative
phasing ϕR.

For the first case, we assume harmonic periods, i.e. Tc 	 mTp for m �
� � , and a

relative phasing ϕR 	 0. For this case, ∆Bc
�
Tc � 	 ∆Bavg

c
�
Tc � 	 m∆Bp, because the

relative phasing of every activation of AGBc is equal to 0, and therefore exactly m
budget margins become available as conditionally guaranteed budget during every
period Tc in normal mode.

For the second case, we assume arbitrary periods and arbitrary phasings. Based
on Lemma 8.5 on page 140, which states the periodicity of ∆Bc

�
Tc � , we show

that the average (periodic) growth of ∆Bc
�
Tc � equals the gradient of ∆Bavg

c
�
Tc � , i.e.

∆Bp
�
Tp. Hence, the (absolute) difference ∆Bavg

c
�
Tc � � ∆Bc

�
Tc � is periodic and the

ratio ∆Bavg
c

�
Tc � �

∆Bc
�
Tc � goes to 1 for Tc to infinity. As a consequence, the relative

difference
�
∆Bavg

c
�
Tc � � ∆Bc

�
Tc � � �

∆Bc
�
Tc � is high for small values of Tc and goes

to 0 for Tc to infinity. We will now first show that ∆Bc
�
Tc � has an average (periodic)

growth of ∆Bp
�
Tp, and than illustrate the absolute difference for our example.

Let Tc 	 T
�

c � kTp, with T
�

c �  T EU
c � T EU

c � Tp � and k �
�

, hence Tc � T EU
c . Based

on Lemma 8.5 we derive

∆Bc
�
Tc � 	 � Lemma 8.5 � ∆Bc

�
T

�

c � � k∆Bp

	 ∆Bc
�
T

�

c � �
Tc � T

�

c

Tp
∆Bp

	 ∆Bc
�
T

�

c � � T
�

c
∆Bp

Tp
� Tc

∆Bp

Tp
�

Hence, ∆Bc
�
Tc � has an average (periodic) growth of ∆Bp

�
Tp.

For our example, ∆Bavg
c

�
Tc � increases linearly from 0 to T EU

c ∆Bp
�
Tp �

T EU
c

�
4 	 29

�
4 	 6 for Tc �  0 � T EU

c
�
, whereas ∆Bc

�
Tc � 	 0 by definition for

Tc �  0 � T EU
c

�
. For Tc 	 T EL

c , we get ∆Bavg
c

�
T EL

c � 	 7 35
29 � 8, whereas ∆Bc

�
T EL

c � 	 7
for our example. Hence, the quality improvement that can be achieved for the CGB
consumer ρc is much smaller than what could be achieved using AGBs for small
values of Tc. This is an immediate consequence of the restrictions imposed, i.e.

� we assumed an instantaneous budget configuration change implemented by
means of in-the-place-of resource provision, which gives rise to scheduling
imperfections;

� we assumed both arbitrary periods and arbitrary phasings;
� we required ∆Bc to become available on a periodic basis at the period and

phasing of the CGB consumer.
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As mentioned before ∆Bc
�
Tc � 	 ∆Bavg

c
�
Tc � for harmonic periods and a relative

phasing ϕR 	 0. The absolute difference between ∆Bc and ∆Bavg
c may become

smaller for arbitrary periods and arbitrary phasings with deferred budget configu-
ration changes or a CGB consumer that can also exploit budgets with other periods
and phasings.

8.6.2 Spare capacity
The gap between ∆Bc

�
Tc � and ∆Bavg

c
�
Tc � gives rise to contributions to the spare

capacity in normal mode, which can be provided to RCEs by the spare-capacity
manager. Conversely, the existing spare capacity in anticipated mode can be used
to increase the conditionally guaranteed budget. This will be illustrated below.

For our example, consider a CGB consumer ρc, a period Tc 	 42, and three
quality levels qc � 1 � qc � 2, and qc � 3 with resource requirements 2, 5, and 10, respec-
tively. The maximal amount of absolutely guaranteed budget that can be guaran-
teed to ρc on a periodic basis under arbitrary phasings in anticipated mode is equal
to 3. Given the resource requirements of ρc, only qc � 1 can be accommodated under
arbitrary phasings in anticipated mode, and therefore Bc becomes 2. Hence, the ex-
isting spare capacity in anticipated mode allows for an increase of ρc’s budget of 1.
The amount of ∆Bc that can be conditionally guaranteed to ρc based on the budget
margin Bp is 7; see Figure 8.13. This amount Bc � ∆Bc of 9 can accommodate the
resource requirements of 5 of quality level qc � 2, but is insufficient to to accommo-
date qc � 3. However, the existing spare capacity in anticipated mode can be used to
increase the conditionally guaranteed budget with 1 to 8, giving a total budget of
10 for ρc in normal mode, which accommodates the resource requirements of qc � 3.
In summary, the existing spare capacity in anticipated mode is another source for
the CGB ∆Bc next to the budget margin ∆Bp. Taking this additional source into
account requires a refinement of the analysis.

8.6.3 Using bounds rather than exact values
Just like it is not always required to perform an exact test to determine schedulabil-
ity, it is also not always required to determine the exact value for ∆Bc. Below, we
will give an example illustrating that it is sufficient to determine only the bounds
in particular situations.

Let the resource requirements of a first quality level of a CGB consumer ρc

be such that it can be accommodated given the pessimistic (i.e. lower) ∆Bc � lwb
�

�
Tc �

bound for ∆Bc given in (8.20). Moreover, let the resource requirements of a next
(higher) quality level of ρc be such that it cannot be accommodated given the op-
timistic (i.e. upper) bound ∆Bc � upb

�

�
Tc � for ∆Bc given in (8.21). In this case, the

CGBc can accommodate at most the first quality level, irrespective of the exact
value of ∆Bc, and we may therefore restrict ourselves to that pessimistic bound in
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an admission test.

8.6.4 Best-case and worst-case budgets
In this chapter, we assumed ‘in-the-place-of’ gain-time provision. As a result,
a budget is always depleted by either the RCE ‘owning’ the budget or another
RCE to which the gain time of the owning RCE is provided. Hence, we were
able to assume a fixed budget for our analysis. Without in-the-place-of gain-time
provision, we can no longer assume that a budget is depleted entirely. Hence, rather
than assuming a fixed budget, we have to distinguish best-case budgets and worst-
case budgets. In such a situation, best-case advancements are based on best-case
budgets, and worst-case advancements on worst-case budgets, which are equal to
the former fixed budgets. Because the best-case advancement BA

�

p
�
t � based on

best-case budgets is at least equal to the best-case advancement BAp
�
t � based on

the fixed budgets, the worst-case available ∆Bc
�
Tc � will at most remain the same,

and typically become less.

8.6.5 Time-offsets
In this chapter, we assumed that the CGB provider ρp receives an AGBp with a
budget Bp � ∆Bp. As described in Section 7.6.1, it is also possible to provide ∆B p

as a separate budget, with a relative time-offset of at least WRp
�
Bp � with respect

to the normal budget. The main advantage of such an approach is the reduction of
the jitter with which the budget margin becomes available, thereby increasing the
amount of budget that can be conditionally guaranteed. As discussed before, such
an approach and its analysis falls outside the scope of this thesis.

8.6.6 EDF
Although we assumed FPPS in this chapter, the approach presented to analyze
CGBs is independent of FPPS. The approach is based on response times and occu-
pied times, and therefore equally well applies to a system using EDF. Although a
technique to determine worst-case response times for EDF has been given by Spuri
[1996], techniques for the other notions do not exist yet for EDF.



9
Supplementary Analytical Case Studies

In this chapter, we present two supplementary case studies illustrating the appli-
cability of the extensions to RMA presented in Chapters 4 and 5.

In Section 9.1, we consider one of the applications of best-case response times,
being the analysis of the effect of jitter in a distributed multiprocessor system with
task dependencies. In Section 9.2, we present equations and associated procedures
to determine exact worst-case response times of periodic tasks under fixed-priority
scheduling with deferred preemption (FPDS) and arbitrary phasing. The worst-
case response times for FPDS are described in terms of the worst-case response
times and worst-case occupied times for FPPS presented in Chapter 4.

9.1 Jitter
In this section, we consider one of the applications of best-case response times, be-
ing the analysis of distributed multiprocessor systems. To this end, we first discuss
completion jitter and release jitter.

9.1.1 Completion jitter
A task τi is released strictly periodically, i.e. release number k �

�
takes place at

time aik 	 ϕi � kTi. If all executions of τi have the same response time, then also
the completion times are strictly periodic, i.e. the completion time of execution k

157
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can be written as fik 	 fi � kTi. In general, however, response times vary and, as
a consequence, there is variation in the completion times compared to a strictly
periodic pattern. The completion (or finalization) jitter FJi

�
ϕ � for a given task τi

and a particular phasing ϕ is now defined as the minimum difference y � x, for
variables x � y � � for which the completion times can be captured by

kTi � x
�

fik
�

kTi � y � for all k �
� �

In other words, the completion times can be captured in an interval of length FJ i
�
ϕ �

that is repeated with a period Ti. See Figure 9.1 for an example. The worst-case

time

14 15 16 17

Ti = 19

x y x+Ti y+Ti x+2Ti y+2Ti x+3Ti y+3Ti

0 1 2 3

jitter = 3

Figure 9.1. An example of completion jitter, due to variations in response times,
for task τ2 of Figure 3.3. The white areas indicate preemptions by task τ1. Here,
the completion jitter equals y � x � 3, i.e. the completion times of the executions
of the task are captured in an interval of length 3 that is repeated with a period of
Ti � 19. Note that for this phasing, both BR2 � 14 and WR2 � 17 are taken on.

completion jitter FJi of a task τi is defined as the maximum completion jitter of
any phasing, i.e.

FJi 	 sup
ϕ

FJi
�
ϕ � �

If τi is released strictly periodically, then an upper bound on its worst-case comple-
tion jitter is given by

FJi
�

WRi � BRi � (9.1)
as we know that for all ϕ

ϕi � kTi � BRi
�

fik
� ϕi � kTi � WRi � for all k �

� �
and thus FJi

�
ϕ � �

WRi � BRi for all ϕ. Concerning completion jitter, we note
that situations exist in which an execution of a task τi having best-case response
time BRi may directly be followed by an execution with a worst-case response
time WRi, and vice versa. An example of this is given in Figure 9.2, where we
have two tasks, τ1 and τ2, with periods T1 	 8, T2 	 12, and computation times
WC1 	 BC1 	 WC2 	 BC2 	 4. For this example, the best-case and worst-case
response times of τ2 are BR2 	 4 and WR2 	 8, respectively, and the figure shows
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that they indeed can occur right after each other. In this case, the completion jitter
of τ2 equals FJ2

�
ϕ � 	 FJ2 	 8 � 4 	 4. In general, however, the bound in (9.1)

on FJi need not be tight, as BRi and WRi are not necessarily taken on for the same
phasing.

time

task τ1

BR2 = 4

task τ2

t s

WR2 = 8

r

BR2 = 4

Figure 9.2. A situation in which a best-case execution of τ2 is directly followed by
a worst-case execution, which in turn is directly followed by a best-case execution.
Note that times t and r indicate optimal instants for τ2, and time s indicates a
critical instant.

9.1.2 Release jitter
Next to completion jitter, there can also be activation (or release) jitter. In this
case, the releases of a task τi do not take place strictly periodically, with period
Ti, but we assume they take place somewhere in an interval of length AJi that is
repeated with period Ti. More specifically, the release times aik satisfy

kTi � x
�

aik
�

kTi � y � for all k �
� �

for certain x � y � � with y � x 	 AJi. We now assume Di
�

Ti � AJi, which bounds
the release jitter from above by AJi

�
Ti � Di, since otherwise there may be too

little time between two successive releases to complete the task.
In the case of release jitter, the analysis to derive worst-case and best-case

response times, as well as completion jitter, is slightly altered. For worst-case
response times, it changes as described by Audsley, Burns, Richardson, Tindell
& Wellings [1993], Joseph [1996], and Tindell, Burns & Wellings [1994]. The
critical instant for task τi, i.e. the situation in which an execution of task τi is
preempted most, is now as depicted in Figure 9.3. If we let execution 0 of task
τ j be the execution of which the release coincides with the release of a worst-case
execution of task τi at time a, then this worst-case execution is indeed preempted
most if release 0 of τ j takes place rightmost in its interval, and releases 1 and
further take place leftmost in their intervals. More precisely, release 0 takes place
at time a j0 	 y 	 a, and release k 	 1 � 2 ������� takes place at time a jk 	 x � kTj. As
x 	 y � AJ j and y 	 a, this gives a jk 	 a � AJ j � kTj for k 	 1 � 2 ������� . The number of
preemptions of the worst-case execution of τi by τ j is now given by the execution
number k of the first release of τ j at or after the completion of τi, which is given by
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time

AJj

task τi

task τj

WRi

Tj

0 1 2

a f

x y x+Tj y+Tj x+2Tj y+2Tj

Figure 9.3. A critical instant in the case of release jitter.

the smallest k for which a jk � f , i.e. for which

a � AJ j � kTj � a � WRi �
or, equivalently,

k � WRi � AJ j

Tj
�

The smallest value satisfying this inequality is given by

k 	
�
WRi � AJ j

Tj � �
The remainder of the worst-case analysis stays the same. As a result, the worst-case
response times in case of release jitter are computed as follows.

WR
�
0 �

i 	 WCi

WR
�
l � 1 �

i 	 WCi � ∑
j � i

�
WR

�
l �

i � AJ j

Tj � WC j � l 	 0 � 1 �������
For best-case response times, we can accommodate for the effect of release jitter
on the analysis in a quite similar way. Consider a best-case execution of task τ i,
which is released at time a and completed at time f . We first note that Lemmas 5.1
and 5.2 also hold in case of release jitter, as in the corresponding proofs we did
not use the fact that releases were strictly periodic. Hence, we can use the result
of Lemma 5.2, which states that we can determine the amount of preemption of a
best-case execution of τi by a higher priority task τ j, by determining the number of
releases of τ j strictly between times a and f . Releases outside this open interval do
not cause any preemption, and releases within this interval each cause a preemption
by an amount BC j. So, we only have to revisit the counting of the number of
releases of τ j (strictly) between times a and f .
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A situation in which τ j has a minimal number of releases (strictly) between
times a and f is given in Figure 9.4. If we again let release 0 of τ j be the first

time

AJj

task τi

task τj

BRi

Tj

−1−2 0

a f

x yx−Tj y−Tjx−2Tj y−2Tj

Figure 9.4. An optimal instant in the case of release jitter.

release of τ j at or after time f , as in the proof of Theorem 5.1, then we have a
minimal number of releases of τ j in the interval

�
a � f � if release 0 of τ j takes place

rightmost in its release interval, and at time f , and releases � 1 � � 2 ������� take place
leftmost in their release intervals. More precisely, the number of releases of τ j in
the interval

�
a � f � is minimal if a j0 	 y 	 f and a jk 	 x � kTj for k 	 � 1 � � 2 ������� .

As x 	 y � AJ j and y 	 f , this gives a jk 	 f � AJ j � kTj for k 	 � 1 � � 2 ������� . The
number of preemptions of the best-case execution of τi by τ j, i.e. the number of
releases of τ j in

�
a � f � is now given by the largest m � 0 for which a j � � m � a, i.e.

for which
f � AJ j �

�
� m � Tj � f � BRi �

or, equivalently,

m �
BRi � AJ j

Tj
�

The largest non-negative value satisfying this inequality is given by

m 	
� �

BRi � AJ j

Tj � � 1 � � �
Here, the notation w � stands for max � w � 0 � , which is used to indicate that the
number of preemptions cannot be negative. As a result, the best-case response
times in case of release jitter are computed as follows.

BR
�
0 �

i 	 WRi

BR
�
l � 1 �

i 	 BCi � ∑
j � i

� �
BR

�
l �

i � AJ j

Tj � � 1 � � BC j � l 	 0 � 1 �������
Similar results for best-case response times in case of release jitter are given by
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Redell & Sanfridson [2002] and Redell [2003].
Given the worst-case and best-case response times of a task τi including the

effect of release jitter of higher priority tasks, and given the release jitter of τ i

itself, its worst-case completion jitter is now bounded by

FJi
�

AJi � WRi � BRi � (9.2)

Furthermore, this bound is tight, as the example in Figure 9.5 shows.

time

AJ1 = 4

task τ2

task τ1

T1 = 9

AJ2 = 7T2 = 38

T2 = 38 FJ2 = 13

20 14

Figure 9.5. An example where equality in the completion jitter bound of (9.2) is
achieved for task τ2. Here, WR2 � 20 and BR2 � 14, and FJ2 � FJ2 � ϕ � � 13 �

7 � 20 � 14.

9.1.3 Distributed multiprocessor systems
In order to take the effect of jitter into account in a distributed multiprocessor sys-
tem with task dependencies [Palencia Gutiérrez et al., 1998; Kim et al., 2000],
where the completion of a task on one processor may trigger the release of a fol-
lowing task on another processor, we can use the following iterative procedure
[Palencia Gutiérrez et al., 1998]. We start with an estimated release jitter AJ j 	 0
for all tasks τ j, and do the above calculation of worst-case and best-case response
times on each processor. We then determine the completion jitter bound of each
task, as given by (9.2). Next, we update the estimate of the release jitter of each
task that is triggered by another task, by making it equal to the completion jitter
bound of the triggering task. With these new estimates, we then again determine
worst-case and best-case response times. We repeat this process until we obtain
stable values or until the computed response times exceed their deadlines.

During the above process, the jitter bounds and the worst-case response times
increase, and the best-case response times decrease, again causing the jitter bounds
to increase, etc. This monotonicity, together with the fact that the response times
are bounded, and that they can only take on a finite number of values, implies ter-
mination in a finite number of steps. Furthermore, this shows that if we redetermine
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the worst-case and best-case response times for new estimates of the release jitter,
we can use their final values of the previous iteration for initialization.

In general, the newly derived best-case response times lead to tighter bounds on
completion jitter and thus also on release jitter of following tasks, in turn resulting
in tighter worst-case response time bounds of other tasks. A final remark that we
would like to make is that we assumed arbitrary phasings in our analysis. If there
are dependencies between tasks on the same processor causing the phasings to have
a special structure, then the derived bounds on jitter and response times might still
be pessimistic.

9.2 Fixed priority scheduling with deferred preemption
In this section, we present equations and associated procedures to determine the
exact worst-case response times of periodic tasks under fixed-priority scheduling
with deferred preemption (FPDS) and arbitrary phasing. Our analysis is based on
a dedicated conjecture for an ε-critical instant of a task under FPDS and arbitrary
phasing. We start this section with a rationale for FPDS. Next we refine our model
of Section 3.1 for FPDS. We subsequently address worst-case response times. To
this end, we first describe our conjecture for an ε-critical instant. We subsequently
present equations for worst-case response times, and illustrate the equations by
means of an example. This section is concluded with a discussion, in which we
compare our results with related work.

9.2.1 Rationale
Based on the seminal paper of Liu and Layland [1973], many results have been
achieved in the area of worst-case analysis for FPPS. Arbitrary preemption of real-
time tasks has a number of drawbacks, though. In particular in systems using
cache memory, e.g. to bridge the speed gap between processors and main mem-
ory, arbitrary preemptions induce additional cache flushes and reloads. As a con-
sequence, system performance and predictability are degraded, complicating sys-
tem design, analysis and testing [Burns and Wellings, 1997; Gopalakrishnan and
Parulkar, 1996; Lee et al., 1998; Simonson and Patel, 1995]. Although fixed-
priority non-preemptive scheduling (FPNS) may resolve these problems, it gen-
erally leads to reduced schedulability compared to FPPS. Therefore, alternative
scheduling schemes have been proposed between the extremes of arbitrary preemp-
tion and no preemption. These schemes are also known as deferred preemption or
co-operative scheduling [Burns, 1994].

9.2.2 Model
For FPDS, we need to refine our basic model of Section 3.1. Each job of task τ i

is now assumed to consist of m
�
i � subjobs. Subjob l of τi is characterized by a
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best-case computation time BCi � l � � � , where BCi 	 ∑m
�
i �

l � 1 BCi � l , and a worst-case
computation time WCi � l � � � , where WCi 	 ∑m

�
i �

l � 1 WCi � l . We assume that subjobs
are non-preemptable. Hence, tasks can only be preempted at subjob boundaries,
i.e. at so-called preemption points. For convenience, we will use the term WFi to
denote the worst-case computation time WCi � m

�
i � of the final subjob of task τi. Note

that when m
�
i � 	 1 for all i, we have FPNS as special case.

In order to be able to relate the response times for different scheduling ap-
proaches, we use the superscript P to denote FPPS (similarly, we will use super-
scripts D and N later to denote FPDS and FPNS, respectively), and parameterize
the response times and occupied times of task τi with its computation time.

9.2.3 A critical instant
The non-preemptive nature of subjobs may cause blocking of a task by at most one
lower priority task under FPDS. The worst-case blocking time WBi of task τi by
a lower priority task is equal to the longest worst-case computation time of any
subjob of a task with a priority lower than task τi, which is given by

WBi 	 max
j � i

max
1 � l � m

�
j � WC j � l � (9.3)

In order to determine worst-case response times under arbitrary phasing, we have to
revisit critical instants. In this thesis, we merely postulate the following conjecture.

Conjecture 9.1. An ε-critical instant of a task τi under FPDS and arbitrary phas-
ing occurs when that task is released simultaneously with all tasks with a higher
priority than τi, and the subjob with the longest computation time of all lower
priority tasks starts an infinitesimal time ε � 0 before that simultaneous release.

�

From this conjecture we conclude that a critical instant for FPDS is a supremum
for all but the lowest priority task, i.e. that instant cannot be assumed.

9.2.4 Equations for worst-case response times
For the analysis, we consider three cases: the highest priority task τ1, the lowest
priority task τn, and a medium priority task τi (with 1 � i � n). The highest priority
task τ1 may be blocked, but is never preempted. The worst-case response time
WRD

1 of task τ1 therefore includes a term WB1, i.e.

WRD
1 	 WB1 � WC1 � (9.4)

Note that WB1 � WC1 is a supremum, i.e. that value cannot be assumed. Further
note that this latter equation may also be written as WRD

1 	 WRP
1

�
WB1 � WC1 � ,

or WRD
1 	 WRP

1
�
WB1 � WC1 � WF1 � � WF1. Because WRP

1 	 WOP
1 , the equation

may even be written as WRD
1 	 WOP

1
�
WB1 � WC1 � , or WRD

1 	 WOP
1

�
WB1 � WC1 �

WF1 � � WF1.
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The lowest priority task τn may be preempted (at subjob boundaries), but is
never blocked. The worst-case response time WRD

n of task τn can be found by
calculating the worst-case start time of the final subjob, and adding its computa-
tion time Fn. The non-preemptive nature of the other subjobs of τn may result in
deferred preemptions by higher priority tasks. Although that has an influence on
the order of the executions of the subjobs of tasks, it does not influence the total
amount of time spent on those executions. The amount of time spent on execu-
tions of all but the final subjob of τn including the (deferred) preemptions of higher
priority tasks is given by WRP

n
�
WCn � WFn � . The final subjob of τn may subse-

quently start after the aligning successive executions of higher priority tasks have
completed. Hence, the worst-case start time of the final subjob of task τn is given
by WOP

n

�
WCn � WFn � , and we arrive at

WRD
n 	 WOP

n
�
WCn � WFn � � WFn � (9.5)

Note that WOP
n

�
WCn � WFn � � WFn is a maximum, i.e. that value can be assumed.

Further note that for m
�
n � 	 1, we get WOP

n
�
WCn � WFn � 	 WOP

n
�
0 � , which is

equal to the worst-case start time of task τn.
A medium priority task τi with 1 � i � n, may be both preempted at subjob

boundaries by higher priority tasks and blocked by one lower priority task. Sim-
ilar to the lowest priority task, the worst-case response time of τi can be found
by calculating the worst-case start time of the final subjob, and by subsequently
adding its computation time WFi. Similarly to the lowest priority task, the non-
preemptive nature of the other subjobs of τi has no influence on the worst-case
start time of the final subjob. At first hand, it therefore looks as if the same
reasoning applies as for the lowest priority task, and that we can calculate the
worst-case start time by means of WOP

i
�
WBi � WCi � WFi � . However, the block-

ing subjob of the lower priority tasks has to start an infinitesimal time ε � 0 before
the simultaneous release of τi and its higher priority tasks. Hence, the amount
of time spent from the release of τi on executions of the blocking subjob and
all but the final subjob of τi including the (deferred) preemptions of higher pri-
ority tasks is given by WOP

i

�
Bi � ε � WCi � WFi � . This latter value is equal to

WRP
i

�
WBi � WCi � WFi � minus an infinitesimal time ε � 0. It is exactly this in-

finitesimal difference, which approaches zero, that allows the final subjob of τ i to
start executing, and defers potential additional preemptions from higher priority
tasks at time WRP

i

�
WBi � WCi � WFi � . The worst-case response time WRD

i of a
medium priority task τi is therefore given by

WRD
i 	 WRP

i
�
WBi � WCi � WFi � � WFi � (9.6)

Note that WRP
i

�
WBi � WCi � WFi � � WFi is also a supremum.

The impact of blocking and preemption on the worst-case response time of a
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Table 9.1. Impact on worst-case response time of a task τi under fixed-priority
scheduling with deferred preemption.

i 	 1 1 � i � n i 	 n
blocking yes yes no

preemption no yes yes

task τi for 1
�

i
�

n under FPDS and arbitrary phasing is summarized in Table 9.1.
Because this impact differs for i 	 1, 1 � i � n, and i 	 n, the equations for WRD

i
also differ. An overview of the equations is given below.

WRD
i 	

���� WB1 � WC1 for i 	 1
WRP

i

�
WBi � WCi � WFi � � WFi for 1 � i � n

WOP
n

�
WCn � WFn � � WFn for i 	 n

(9.7)

As mentioned above, WRP
1 	 WOP

1 , and we may therefore rewrite the equation for
i 	 1 to WRD

1 	 WRP
1

�
WB1 � WC1 � WF1 � � WF1 as well as to WRD

1 	 WOP
1

�
WB1 �

WC1 � WF1 � � WF1. Hence, the equation for i 	 1 is similar to the equation for
both 1 � i � n and i 	 n.

9.2.5 An example
To illustrate the equations, consider the task characteristics of Table 9.2. For FPNS,
the set is not schedulable because the worst-case response time WRN

1 of task τ1 is
equal to WB1 � WC1 	 4 � 2 	 6, which exceeds the task’s deadline. The worst-
case response time WRN

1 of task τ1 would become equal to the deadline D1 for
WB1 	 2. For FPDS, let m

�
1 � 	 1, m

�
2 � 	 2 with WC2 � 1 	 1 and WC2 � 2 	 2,

and m
�
3 � 	 2 with WC3 � 1 	 WC3 � 2 	 2; see Table 9.2. Using the equations above

Table 9.2. Task characteristics and worst-case response times under FPPS, FPDS,
and FPNS.

Ti Di WCi WRP
i WRD

i WRN
i

τ1 5 4 2 2 4 6
τ2 7 7 1 + 2 5 7 13
τ3 30 30 2 + 2 28 21 16

yields WRD
1 	 WB1 � WC1 	 2 � 2 	 4, WRD

2 	 WRP
2

�
WB2 � WC2 � WF2 � � WF2 	

WRP
2

�
2 � 3 � 2 � � 2 	 7, and WRD

3 	 WOP
3

�
C3 � WF3 � � WF3 	 WOP

3
�
2 � � 2 	 21.

Hence, by splitting both task τ2 and task τ3 into two non-preemptive subjobs, the
task set becomes schedulable under FPDS.

Note that FPDS has two opposite influences on the worst-case response time
WRi of a task τi when compared with FPPS. When τi itself is (partially) non-
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preemptive, WRi (possibly) decreases (in the example WRD
3 � WRP

3), because the
execution of the final subjob of the task is not preempted by higher priority tasks.
When a task τk with a lower priority than task τi is (partially) non-preemptive, WRi

increases due to the blocking nature of the non-preemptiveness of task τk, causing
WRD

1 � WRP
1 in the example. Similar observations hold for FPNS compared to

FPDS.

9.2.6 Discussion
We briefly compare our results for worst-case response times on FPDS with those
presented in the literature.

The schedulability test described by Gopalakrishnan & Parulkar [1996] is
based on utilization bounds, and is therefore typically pessimistic. The worst-case
response time analysis presented by Lee et al. [1998] is based on a single equation,
i.e. it is uniform for all tasks. The blocking effect of (partially) non-preemptive
lower priority tasks has been covered in that analysis, but the effect of the non-
preemptive nature of the final subjob is not taken into account. The analysis is
therefore pessimistic. Note that the main focus of [Lee et al., 1998] is on incorpo-
rating the effect of cache related preemption delays in worst-case response times,
an aspect we do not address in our analysis.

The results presented by Burns [1994], Burns [2001], and Burns & Wellings
[1997] are very similar to ours. Unlike our approach, their approach is uniform for
all tasks. Using our notation, the worst-case response time W̃RD

i under FPDS and
arbitrary phasing presented by Burns [1994] and Burns & Wellings [1997] is given

W̃RD
i 	 WRP

i
�
WBi � WCi �

�
WFi � ∆ � � �

�
WFi � ∆ � �

According to [Burns & Wellings, 1997], ∆ is an arbitrary small positive value
needed to ensure that the final subjob has actually started. Hence, when task τ i

has consumed WCi �
�
WFi � ∆ � , the final subjob has (just) started. When ∆ ap-

proaches to zero, we may rewrite the above equation to

W̃RD
i 	 WOP

i

�
WBi � WCi � WFi � � WFi �

This result is identical to ours for the highest and lowest priority tasks, but differs
from ours for intermediate tasks. For the example presented above, our analy-
sis yields WRD

2 	 7, whereas the analysis presented by Burns & Wellings [1997]
yields W̃RD

2 	 9. In the example, this latter result is too pessimistic; because
W̃R

D
2 exceeds the deadline of τ2, the task set would incorrectly be considered non-

schedulable. The difference between our analysis and the analysis presented in
[Burns & Wellings, 1997] can be traced back to Conjecture 9.1. In that conjecture,
we state that the subjob with the longest computation time of all lower priority
tasks starts an infinitesimal time ε � 0 before the simultaneous release of τ i and all
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tasks with a higher priority than τi. The analysis presented by Burns & Wellings
[1997] does not take into account that a task τi can only be blocked by a subjob
of a lower priority task if that subjob also starts an amount of time ∆ before the
simultaneous release of τi and all tasks with a higher priority than τi. When this
aspect is taken into account in the analysis presented by Burns & Wellings [1997],
e.g. when WBi is replaced by WBi � ∆ in the first equation for W̃R

D
i , their result

becomes identical to ours.
In the scheduling analysis review presented by Burns [2001], the worst-case

response time W̃RD
i ignores the term ∆, i.e.

W̃R
D
i 	 WRP

i
�
WBi � WCi � WFi � � WFi �

This result is identical to ours, except for the lowest priority task. For the example
presented above, this results in W̃RD

3 	 WRP
3

�
WC3 � WF3 � � WF3 	 16, which is

too optimistic.



10
Conclusion

In this thesis we studied real-time scheduling for cost-effective media process-
ing in software using conditionally guaranteed budgets (CGBs). Unlike a normal
budget, which has an absolute guarantee, a CGB can only be allocated with a con-
ditional guarantee based on a conditional admission test. CGBs may be viewed as
a refinement of the resource reservation technique as currently supported by ex-
isting resource kernels. We presented a design for CGBs, and an accompanying
implementation as an extension to an existing resource manager, the so-called bud-
get scheduler. Because the budget scheduler is based on a fixed-priority scheduling
(FPS) model, so is the implementation of our CGBs, and we therefore presented
a conditional admission test based on rate monotonic analysis (RMA). For this
admission test we conceived various extensions to RMA.

We presented the context of this work by giving a circumstantial description
of a co-operative QoS approach to media processing in software in high volume
electronics multimedia consumer terminals. This QoS approach combines appli-
cation adaptation, a multi-layer control hierarchy, and a reservation-based resource
manager that provides guaranteed CPU budgets. Moreover, the approach aims at
close-to-average resource allocation for reasons of cost-effectiveness. This combi-
nation gives rise to a problem related to user focus. Upon a structural load increase
of an application with user focus, its output quality has a dip. Because stable output
is a primary requirement for an application with user focus, this dip is referred to as

169
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the user-focus problem. CGBs have been conceived to resolve this problem. CGBs
are a mechanism at the level of the resource manager, that facilitate instantaneous
budget configuration changes for anticipated changes. Hence, when an applica-
tion with user focus claims additional, anticipated amounts of resources, those re-
sources can be provided instantaneously, and the output quality of that application
can therefore remain stable upon anticipated structural load increases. CGBs can
be exploited by policies in the control hierarchy to improve the cost-effectiveness
of the reservation-based system using controlled quality improvements. Being a
general mechanism, CGBs can be used in other contexts as well. This has been
illustrated by examples, such as emergency applications.

This thesis presents two main variants of CGBs: weak CGBs and strong CGBs.
A weak CGB is based on gain time of a CGB provider, and can therefore only
be weakly guaranteed, even when that gain time becomes available consistently.
Strong CGBs are based on the assumption that a structural load increase can
be detected timely, e.g. as a by-product of the normal behavior of application-
domain specific control. A strong CGB is based on restrained budget use of a
CGB provider, i.e. with appropriate means for detecting structural load increases,
a CGB provider can explicitly claim and release anticipated amounts of additional
resources. Those additional resources for a CGB provider are the basis for a CGB
that is provided to a CGB consumer, and the CGB consumer is explicitly informed
about the availability of its CGB. Because a CGB consumer can count on its CGB
between the release and subsequent re-claim of the CGB provider, this variant of
CGBs is termed a strong CGB.

We presented the so-called concept of in-the-place-of CGB provision that ac-
commodates instantaneous budget configuration changes, and covers both variants
of CGBs. We showed that this concept gives rise to scheduling imperfections, not
only for FPS, but also for the earliest deadline first (EDF) scheduling algorithm.
Accompanying implementations for CGBs have been described as extensions of
the budget scheduler. We also presented the concept of in-the-place-of gain-time
provision with an accompanying implementation. The mechanisms for weak CGBs
and in-the-place of gain-time provision are inherently similar. Conversely, strong
CGBs and in-the-place-of gain-time provision are orthogonal, and although the
mechanisms are similar, we showed that they can be applied independently.

As a basis for the analysis of CGBs, we presented various extensions to RMA,
in particular best-case response times next to worst-case response times, and best-
case and worst-case occupied times. For each of these notions, we derived a recur-
sive equation and presented an iterative procedure to find its solution. Moreover,
we studied the efficiency of these iterative procedures. We showed that the number
of iterations needed to determine worst-case response times using a standard initial
value increases logarithmically for increasing worst-case computation times. We
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proved that the number of iterations for an alternative initial value is periodic and
bounded by a constant.

For the admission test for CGBs, we determined the worst-case amount of
budget that can be conditionally guaranteed for CGBs on a periodic basis under
arbitrary phasings for in-the-place-of CGB provision for fixed-priority preemptive
scheduling (FPPS). We presented techniques to determine both optimistic and pes-
simistic bounds as well as exact values for that amount, and an efficient algorithm
to determine this exact amount.

Finally, we showed that the extensions to RMA can also be applied in other
contexts, such as jitter analysis and exact worst-case response time analysis for
fixed-priority scheduling with deferred preemption (FPDS).
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This appendix contains a list of papers of which the undersigned is an author,
and a list of patent publications of which the undersigned is an inventor; status June
30th, 2004. Moreover, the undersigned received personal invitations to present a
keynote at the ECRTS1 in 2002 and to join ARTIST2, which he both passed to his
project members. These results were achieved in a five years period, from April 1st

1999 till June 30th 2004 while the undersigned was employed at Philips Research.

Papers
This section is split in two subsection, corresponding with two completely different
topics of the publications. Whereas the first subsection contains papers related
with the topic of this thesis, the papers in the second subsection have architectural
maintenance as topic. The lists of papers contain a total of 25 accepted papers, of
which one has not been published yet.

The lists are given in reverse chronical order.

V-QoS: scalable video algorithms and QoS-based resource management
Published papers:

1. R.J. BRIL, W.F.J. VERHAEGH, AND J.J. LUKKIEN, Exact worst-case re-
sponse times of real-time tasks under fixed-priority scheduling with deferred
preemption, Proc. Work in Progress (WiP) session of the 16th Euromicro
Conference on Real-Time Systems (ECRTS), Technical Report from the Uni-
versity of Nebraska-Lincoln, Department of Computer Science and Engi-
neering (TR-UNL-CSE-2004-0010), pp. 57 – 60, June 2004.

2. C.C. WÜST, L. STEFFENS, R.J. BRIL, AND W.F.J. VERHAEGH, QoS
Control Strategies for High-Quality Video Processing, Proc. 16th Euromi-
cro Conference on Real-Time Systems (ECRTS), pp. 3 – 12, June 2004.3.

1ECRTS is an acronym of Euromicro Conference on Real-Time Systems.
2ARTIST is a project in the Information Society Technologies framework programme 6. ARTIST

is an acronym for Advanced Real-Time Systems.
3Received a best-paper award (as submitted)
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LAN, Video Quality-of-Service for consumer terminals - a novel system for
programmable components, IEEE Transactions on Consumer Electronics,
49(4): 1367–1377, November 2003.

5. R.J. BRIL, W.F.J. VERHAEGH, AND E.-J.D. POL, Initial values for on-line
response time calculations, Proc. 15th Euromicro Conference on Real-Time
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Ruiz, R.J. Bril, and M. Garcı́a-Valls, QoS-based resource management for
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for Programmable Components, Digest of technical papers International
Conference on Consumer Electronics (ICCE), pp. 28–29, June 2002.

10. W. VAN RAEMDONCK, G. LAFRUIT, E.F.M. STEFFENS, C.M. OTERO

PÉREZ, AND R.J. BRIL, Scalable 3D graphics processing in consumer
terminals, Proc. IEEE International Conference on Multimedia and Expo
(ICME), pp. 369–372, August 2002.

11. C.M. OTERO PÉREZ, R.J. BRIL, AND E.F.M. STEFFENS, Conditionally
guaranteed budgets: design and initial analysis, Proc. Work-in-Progress
(WiP) session of the 22nd IEEE Real-Time Systems Symposium (RTSS), Re-

4This paper is based on [Bril, Steffens & Verhaegh, 2001].
5This paper is based on [Bril, Pol & Verhaegh, 2002].
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port YCS 337, University of York, Department of Computer Science, UK,
pp. 49–52, December 2001.

12. R.J. BRIL, C. HENTSCHEL, E.F.M. STEFFENS, M. GABRANI, G.C. VAN

LOO, AND J.H.A. GELISSEN, Multimedia QoS in consumer terminals (in-
vited lecture), Proc. IEEE Workshop on Signal Processing Systems (SIPS),
pp. 332–343, September 2001.

13. C. HENTSCHEL, R.J. BRIL AND Y. CHEN, How to add video applications to
fully loaded consumer terminals, Handout at the International Broadcasting
Convent (IBC), September 2001.

14. R.J. BRIL, E.F.M. STEFFENS, G.C. VAN LOO, M. GABRANI, AND C.
HENTSCHEL, Dynamic behavior of consumer multimedia terminals: Sys-
tem aspects, Proc. IEEE International Conference on Multimedia and Expo
(ICME), pp. 597–600, August 2001.

15. M. GABRANI, C. HENTSCHEL, L. STEFFENS, AND R.J. BRIL, Dynamic
behavior of consumer multimedia terminals: Video processing aspects, Proc.
IEEE International Conference on Multimedia and Expo (ICME), pp. 1220–
1223, August 2001.

16. R.J. BRIL AND E.F.M. STEFFENS, User focus in consumer terminals
and conditionally guaranteed budgets, Proc. 9th International Workshop on
Quality of Service (IWQoS), Lecture Notes in Computer Science (LNCS)
2092, Springer-Verlag, pp. 107–120, June 2001.

17. C. HENTSCHEL, M. GABRANI, K. VAN ZON, R.J. BRIL, AND L. STEF-
FENS, Scalable Video Algorithms and Quality-of-Service Resource Man-
agement for Consumer Terminals, Digest of technical papers International
Conference on Consumer Electronics (ICCE), pp. 338-339, June 2001.

18. R.J. BRIL, M. GABRANI, C. HENTSCHEL, G.C. VAN LOO, AND E.F.M.
STEFFENS, QoS for consumer terminals and its support for product fami-
lies, Proc. International Conference on Media Futures (ICMF), pp. 299–302,
May 2001.

19. C. HENTSCHEL, R.J. BRIL, M. GABRANI, L. STEFFENS, K. VAN ZON,
AND S. VAN LOO, Scalable Video Algorithms and Dynamic Resource Man-
agement for Consumer Terminals (invited paper), Proc. International Con-
ference on Media Futures (ICMF), pp. 193–196”, May 2001.

Architectural Maintenance
Published papers:

20. R.J. BRIL, A. POSTMA, AND R.L. KRIKHAAR, Embedding architectural
support in industry, Proc. International Conference on Software Mainte-
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nance (ICSM), pp. 348–357, September 2003.6

21. R.J. BRIL AND A. POSTMA, An architectural connectivity metric and its
support for incremental re-architecting of large legacy systems, Proc. 9th

International Workshop on Program Comprehension (IWPC), pp. 269–280,
May 2001.

22. R.J. BRIL AND A. POSTMA, A new architectural metric and
its visualisation to support incremental re-architecting of large
legacy systems, Proc. 4th International Software Architecture
Workshop (ISAW), pp. 17–26, June 2000. Proceedings available
as: http://www.extra.research.philips.com/SAE/papers/W01 ISAW-
4 notes 1.1.pdf

23. R.J. BRIL, L.M.G. FEIJS, A. GLAS, R.L. KRIKHAAR, AND M.R.M.
WINTER, Hiding expressed using Relation Algebra with Multi-relations -
oblique lifting and lowering for unbalanced systems -, Proc. 4th European
Conference on Software Maintenance and Reengineering (CSMR), pp. 33–
43, March 2000.

24. R.J. BRIL, L.M.G. FEIJS, A. GLAS, R.L. KRIKHAAR, AND M.R.M.
WINTER, Maintaining a legacy: towards support at the architectural level,
Journal of Software Maintenance (JSM), 12(3): 143–170, May/June 2000.

Accepted papers:

i. R.J. BRIL, A. POSTMA, AND R.L. KRIKHAAR, Architectural support in
industry: A reflection using C-POSH, Accepted for publication by the Jour-
nal of Software Maintenance and Evolution: Research and Practice (invited
paper), April 2004.

Patents
Table 10.1 provides an overview of the accomplishments of the undersigned
over the past five years from an intellectual property perspective. A list
of patent publications is given below in reverse chronical order of (ear-
liest) priority number and date (see the Online European Patent Register:
http://register.epoline.org/espacenet/ep/en/srch-reg.htm).

1. C. HENTSCHEL AND R.J. BRIL (inventors), Method and system for allocat-
ing shared resources between applications, Koninklijke Philips Electronics
N.V. (applicant), Publ. Nr.: WO2004027613, Publ. date: 1 April 2004, Prio.
Nr.: EP20020078894, Prio. date: 20 September 2002.

6Received a best-paper award (as submitted).
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Table 10.1. Accomplishments of the undersigned as (co-) inventor over the past
five years. The first row summarizes the spin-offs of the work described in this the-
sis, and the second row provides the results achieved within the V-QoS program.
The published patents are actually registered as a patent. The pending patents are
filed and already received a priority number, but have not been published yet. The
pending invention disclosures have been submitted to Philips’ intellectual prop-
erty department, but have not been handled yet. The ‘*’ denotes accomplishments
during secondment from Philips Research to the TU/e.

published pending pending
patents patents invention disclosures total

PhD 3 7* 1* 11
V-QoS 10 1 3* 14
total 13 8 4 25

2. M. GABRANI, C. HENTSCHEL, R.J. BRIL, AND E.F.M. STEFFENS (in-
ventors), Processing a media signal in a media system to prevent overload,
Koninklijke Philips Electronics N.V. (applicant), Publ. Nr.: WO03103296,
Publ. date: 11 December 2003, Prio. Nr.: EP20020077135, Prio. date: 30
May 2002.

3. C. HENTSCHEL, M. GABRANI, R.J. BRIL, AND E.F.M. STEFFENS (in-
ventors), Image processing method and system to increase perceived visual
quality in case of lack of image data, Koninklijke Philips Electronics N.V.
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Samenvatting

In dit proefschrift behandelen we een planningsprobleem dat haar oorsprong vindt
in het kosteneffectief verwerken van verschillende media door software in con-
sumentenapparaten, zoals digitale televisies.

De laatste jaren zijn er trends gaande van analoge naar digitale systemen, en
van verwerking van digitale signalen door specifieke, toepassingsgerichte hard-
ware naar verwerking door software. Voor de verwerking van digitale media door
software wordt gebruik gemaakt van krachtige programmeerbare processoren. Om
te kunnen wedijveren met bestaande oplossingen is het van belang dat deze pro-
grameerbare hardware zeer kosteneffectief wordt gebruikt. Daarnaast dienen de
bestaande eigenschappen van deze consumenten apparaten, zoals robuustheid, sta-
biliteit, en voorspelbaarheid, behouden te blijven als er software wordt gebruikt.
Verder geldt dat er gelijktijdig meerdere media stromen door een consumenten ap-
paraat verwerkt moeten kunnen worden. Deze uitdaging is binnen de onderzoeks-
laboratoria van Philips aangegaan in het zogenoemde Video-Quality-of-Service
programma, en het werk dat in dit proefschrift beschreven wordt is binnen dat
programma ontstaan. De binnen dat programma gekozen aanpak is gebaseerd op
schaalbare algoritmen voor de verwerking van media, budgetten voor die algorit-
men, en software dat de instelling van die algoritmen en de grootte van de budget-
ten aanpast tijdens de verwerking van de media. Ten behoeve van het kosteneffec-
tief gebruik van de programmeerbare processoren zijn de budgetten krap bemeten.

Dit proefschrift geeft een uitvoerige beschrijving van die aanpak, en van een
model van een apparaat dat de haalbaarheid van die aanpak aantoont. Vervolgens
laten we zien dat die aanpak leidt tot een probleem wanneer er gelijktijdig meerdere
stromen worden verwerkt die verschillende relatieve relevanties hebben voor de
gebruiker van het apparaat. Om dit probleem op te lossen stellen we het nieuwe
concept van voorwaardelijk gegarandeerde budgetten voor, en beschrijven we hoe
dat concept kan worden gerealiseerd. De technieken voor het analyseren van het
planningprobleem voor budgetten zijn gebaseerd op bestaande technieken voor
slechtste-gevals-analyse voor periodieke real-time taken. We breiden die bestaande
technieken uit met technieken voor beste-gevals-analyse zodat we apparaten die
gebruik maken van dit nieuwe type budget kunnen analyseren.
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(two daughters and a son): Joëlla V. (1994), Marijn J. (1997), and Wander J. (2001).

He received his entire training in the Netherlands. In 1976, he finished sec-
ondary school (so-called ‘Atheneum-B’) at the Baudartius College in Zutphen, and
started at the University of Twente (UT) in Enschede. He performed his practical
work at the Centre for Educational Technology in Tel Aviv, Israel. He became fully
qualified to teach mathematics and mechanical engineering and received a B.Sc.
and a M.Sc. (both with honors) from the Department of Electrical Engineering of
the UT in January 1981 and January 1984, respectively.

Based on invitation, he started his professional career at the Delft University
of Technology in the Department of Electrical Engineering. Since May 1985, he
has been with Koninklijke Philips Electronics N.V.. He has worked in both Philips
Research as well as Philips Business Units, on various topics, including fault tol-
erance, formal specifications, and software architecture analysis, in different ap-
plication domains, and in a variety of roles, such as software engineer, software
architect, senior scientist, project leader, and consultant. In April 1999, he re-
turned to Philips Research in Eindhoven, to work in the area of Quality-of-Service
for consumer devices, with a focus on dynamic resource management in receivers
in broadcast environments (such as digital TV sets and set-top boxes).

In May 2003, he was sent on secondment for a period of a year by Philips to the
Technische Universiteit Eindhoven (TU/e), Department of Mathematics and Com-
puter Science, Group System Architecture and Networking with the prime goal to
finish his Ph.D. and this thesis. Assuming successful, he will make a transfer back
to the academic world after 19 years in industry.

202



“ ‘Tut, tut,’ hernam de professor. ‘Welk een beuzelpraat! Ik begin te
geloven dat ge toch een student zijt.’ ”

Marten Toonder, De killers, [5340], 1964.



Titles in the IPA Dissertation Series

J.O. Blanco. The State Operator in Process Al-
gebra. Faculty of Mathematics and Computing
Science, TUE. 1996-01

A.M. Geerling. Transformational Develop-
ment of Data-Parallel Algorithms. Faculty
of Mathematics and Computer Science, KUN.
1996-02

P.M. Achten. Interactive Functional Pro-
grams: Models, Methods, and Implementation.
Faculty of Mathematics and Computer Science,
KUN. 1996-03

M.G.A. Verhoeven. Parallel Local Search.
Faculty of Mathematics and Computing Sci-
ence, TUE. 1996-04

M.H.G.K. Kesseler. The Implementation of
Functional Languages on Parallel Machines
with Distrib. Memory. Faculty of Mathematics
and Computer Science, KUN. 1996-05

D. Alstein. Distributed Algorithms for Hard
Real-Time Systems. Faculty of Mathematics
and Computing Science, TUE. 1996-06

J.H. Hoepman. Communication, Synchroniza-
tion, and Fault-Tolerance. Faculty of Mathe-
matics and Computer Science, UvA. 1996-07

H. Doornbos. Reductivity Arguments and Pro-
gram Construction. Faculty of Mathematics
and Computing Science, TUE. 1996-08

D. Turi. Functorial Operational Semantics and
its Denotational Dual. Faculty of Mathematics
and Computer Science, VUA. 1996-09

A.M.G. Peeters. Single-Rail Handshake Cir-
cuits. Faculty of Mathematics and Computing
Science, TUE. 1996-10

N.W.A. Arends. A Systems Engineering Speci-
fication Formalism. Faculty of Mechanical En-
gineering, TUE. 1996-11

P. Severi de Santiago. Normalisation in
Lambda Calculus and its Relation to Type In-
ference. Faculty of Mathematics and Comput-
ing Science, TUE. 1996-12

D.R. Dams. Abstract Interpretation and Par-
tition Refinement for Model Checking. Faculty
of Mathematics and Computing Science, TUE.
1996-13

M.M. Bonsangue. Topological Dualities in Se-
mantics. Faculty of Mathematics and Computer
Science, VUA. 1996-14

B.L.E. de Fluiter. Algorithms for Graphs of
Small Treewidth. Faculty of Mathematics and
Computer Science, UU. 1997-01

W.T.M. Kars. Process-algebraic Transforma-
tions in Context. Faculty of Computer Science,
UT. 1997-02

P.F. Hoogendijk. A Generic Theory of Data
Types. Faculty of Mathematics and Computing
Science, TUE. 1997-03

T.D.L. Laan. The Evolution of Type Theory in
Logic and Mathematics. Faculty of Mathemat-
ics and Computing Science, TUE. 1997-04

C.J. Bloo. Preservation of Termination for Ex-
plicit Substitution. Faculty of Mathematics and
Computing Science, TUE. 1997-05

J.J. Vereijken. Discrete-Time Process Alge-
bra. Faculty of Mathematics and Computing
Science, TUE. 1997-06

F.A.M. van den Beuken. A Functional Ap-
proach to Syntax and Typing. Faculty of Math-
ematics and Informatics, KUN. 1997-07

A.W. Heerink. Ins and Outs in Refusal Testing.
Faculty of Computer Science, UT. 1998-01

G. Naumoski and W. Alberts. A Discrete-
Event Simulator for Systems Engineering. Fac-
ulty of Mechanical Engineering, TUE. 1998-02

J. Verriet. Scheduling with Communication for
Multiprocessor Computation. Faculty of Math-
ematics and Computer Science, UU. 1998-03

J.S.H. van Gageldonk. An Asynchronous
Low-Power 80C51 Microcontroller. Faculty
of Mathematics and Computing Science, TUE.
1998-04



A.A. Basten. In Terms of Nets: System Design
with Petri Nets and Process Algebra. Faculty
of Mathematics and Computing Science, TUE.
1998-05

E. Voermans. Inductive Datatypes with Laws
and Subtyping – A Relational Model. Faculty
of Mathematics and Computing Science, TUE.
1999-01

H. ter Doest. Towards Probabilistic
Unification-based Parsing. Faculty of Com-
puter Science, UT. 1999-02

J.P.L. Segers. Algorithms for the Simulation of
Surface Processes. Faculty of Mathematics and
Computing Science, TUE. 1999-03

C.H.M. van Kemenade. Recombinative Evo-
lutionary Search. Faculty of Mathematics and
Natural Sciences, UL. 1999-04

E.I. Barakova. Learning Reliability: a Study
on Indecisiveness in Sample Selection. Faculty
of Mathematics and Natural Sciences, RUG.
1999-05

M.P. Bodlaender. Schedulere Optimization
in Real-Time Distributed Databases. Faculty
of Mathematics and Computing Science, TUE.
1999-06

M.A. Reniers. Message Sequence Chart: Syn-
tax and Semantics. Faculty of Mathematics and
Computing Science, TUE. 1999-07

J.P. Warners. Nonlinear approaches to satis-
fiability problems. Faculty of Mathematics and
Computing Science, TUE. 1999-08

J.M.T. Romijn. Analysing Industrial Protocols
with Formal Methods. Faculty of Computer Sci-
ence, UT. 1999-09

P.R. D’Argenio. Algebras and Automata for
Timed and Stochastic Systems. Faculty of Com-
puter Science, UT. 1999-10
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