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Abstract

It is important to choose such numerical methods in practice that mir-
ror the characteristic properties of the described procces beyond the stabil-
ity and convergence. The investigated qualitative property in this paper is
the conservation of the monotonicity in space of the initial heat distribution.
We prove some statements about the monotonicity conservation of one-step

vector-iterations.

Then, applying these results, we consider the numerical

solutions of the one-dimensional heat equation where the approximations of
the exact solution are generated by the so-called (o,6)-method ([1]). Our
main theorem formulates the necessary and sufficient condition of the uni-
form monotonicity conservation.

1 Introduction

The temperature changes of a homogeneous, isotropic rod can be described by the
one-dimensional heat equation, which has the form

2
g—;‘ = %x—?j, € (0,1), t>0, (1.1)
U(O,t) = M1 tZOa (1 2)
u(lt) = m, t>0, (1.3)
u(2,0) = uo(z), z€(0,1), (1.4)

where we have chosen constant boundary conditions and have used non-dimensional
variables ([2]). The sufficiently smooth function ug : (0,1) — IR describes the initial
temperature of the rod and the function u = u(z,t) denotes the temperature in the
point z € [0,1] and at the point of time ¢t > 0.

To solve the above problem numerically we define a uniform mesh on the set

Q=10,1] x
Qh,T = {(l‘i,tj) € l

[0, 00) with the parameters 7 > 0 and h = 1/(n+1) (n € IN) as follows
=1h

(=0,...,n+1), t;=jr (GEN)} (L5



We denote the approximation to the exact value u(ih, j7) by v and we set y) =
(y §’), ...,y9)T € IR™. In this paper the approximating values are generated by the
so-called (o, 8)-method ([1]), that is we generate the values y@ by the iteration

G+1) _ (&)

MY L ayon —(1-0) Loyt e e, =01,

(1.6)
Here e! = (1,0,...,0)7,e" = (0,...,1)" € R", Q = tridiag[—1,2, —1] € R™*" and
M =1-0Q € R™™" are tridiagonal matrices (I is the unit matrix), o € [0,1/4)
and 6 € [0, 1] are given parameters. The vector y© is a suitable approximation to
the initial function uy.

The (o, 8)-method unites a few remarkable numerical methods. For example,
the (0, #)-method gives the classical finite difference §-method (the (0,1/2)-method

“is the well-known Crank-Nicolson method) and the (1/6,6)-method results in the
finite element method with linear elements. In this sense the (o, 8)-method can be
considered as a generalization of the classical methods.

The condition of the convergence of the method can be found in [1]. Moreover, it
is known, that it is not enough to construct a convergent numerical method in prac-
tice, the method must be qualitatively adequate, too. This means that we have to re-
quire among others the nonnegativity and shape conservation of the initial function,
the sign-stability and maximum norm contractivity of the numerical solution (see
e.g. [3],[4],[5],[6],[71,[8],[9]). Let us execute the (c,6)-method with the parameters
o =0, 8 = 1/2 (this is the Crank-Nicolson method, which is unconditionally stable),
p1 =0, uy = 1, ¢ = 20 and with the initial vector y® = (0,1/2,1/2,1/2,1)7. This
method is stable, but it does not suit the qualitative requirements. Namely, the
initial vector describes a monotonically increasing heat distribution in space while
the first iterate y() = (0.32,0.17,0.5,0.82,0.68) does not. In this case we say that
the numerical method does not conserve the monotonicity. If the monotonicity is
not conserved, then the considered method does not describe a real physical process,
because this phenomenon contradicts the second law of Thermodynamics.

In this paper we determine the conditions of the monotonicity conservation of
the (o, 6)-method. Introducing the notations ¢ = 7/h?, z = ¢ — o, T; = I+ 2Q,
Ty =1-(g—2)Q and T = T{'T, the iteration (1.6) can be written in the one-step
vector-iteration form

_ 1 o 0 o
yUtl = | ¢I7'e! T qTile |39 =TyY, j=0,1,..., (L7)
0 o’ 1

where 9 = (u1, (yO)T,19)7 € R™? and T € R™*+2*(*+2) That is why we
investigate the one-step iterations from monotonicity conservation point of view in
Section 2. In Section 3 we apply the linear algebraic results of Section 2 for the
special iteration (1.7).



2 Monotonicity conservation of one-step vector-
iterations

A vector x € IR" is said to be monotonically increasing (decreasing) if the relations
21 < x3 < ... <z (11 > 29 > ... > z,) hold. Let us consider the one-step
vector-iteration process

xU+H) = Ax0) 5 =0,1,..., (2.1)

where x(® is an arbitrary initial vector and A € IR™*" is an arbitrary matrix. We
say that the iteration (2.1) is monotonicity conserving if the monotone increase
(monotone decrease) of any initial vector x(® implies the same for the vector x(%).
These notions of the monotonicity of a vector and the monotonicity conservation of
an iteration can be handled only with difficulties, therefore we introduce an other
monotonicity notion, where we can use a matrix representation form. Let us denote
the matrix tridiag [-1,1,0] by D. Since D;} = 1ifi > j and D;} = 0if ¢ < j,
therefore D is a so-called inverse-positive matrix.

DEFINITION 2.1. The iteration (2.1) is called totally monotone if for any vector
x(© such that Dx@ > 0 (or D"x(® > 0) the relation Dx(® > 0 (or DTx® > 0)
holds.

REMARK 2.2. Since the relation Dx(® > 0 can be satisfied only for nonnegative
vectors, therefore, a totally monotone iteration produces nonnegative monotonically
increasing (decreasing) vectors from all nonnegative monotonically increasing (de-
creasing) vectors. However, a monotonicity conserving iteration produces monoton-
ically increasing (decreasing) vectors from all monotonically increasing (decreasing)
vectors. Later we will prove (Theorem 2.10) that in case of A > 0 these properties
are equivalent.

Theorem 2.3. The iteration (2.1) is totally monotone if and only if both of the
conditions DAD™! > 0 and DTAD™T > 0 are fulfilled.

Proof. Let x € IR™ be an arbitrary nonnegative vector. In this case for the
vector D™'x the condition D(D~!x) > 0 is valid. Thus, if the iteration is totally
monotone, then the relation DAD~!x > 0 holds for all nonnegative vectors x. So
we get the condition that the matrix DAD™! must be nonnegative. Conversely, if
DAD™! > 0, then assuming Dx(® > 0 follows (DAD~1)(Dx(®) = Dx( > 0. The
condition DTAD™T > 0 can be obtained considering the vectors D™ "x. m

REMARK 2.4. We would like to shed light on the conditions of Theorem 2.3.

Let us introduce the notations S], = ¥7_, A;; and S}, = k1 Aij. Then the
iteration (2.1) is totally monotone if and only if the relations
Tk 2 ST Siax <SS, (k=1,...,ni=1,...,n—1) (2.2)

3



hold and the numbers ST, S} , are nonnegative. Using the above consequences for
k =1 and k = n, respectively, we get a necessary condition of the total monotonicity:
the sum of the elements in the rows of the matrix A is some fixed nonnegative
constant.

REMARK 2.5. Multiplying the inequalities DAD™! > 0 and DTAD~" > 0
by the nonnegative matrices D! and D~ 7, respectively, we get that a necessary
condition of the total monotonicity is AD~! > 0 and AD~" > 0.

REMARK 2.6. We notice that the nonnegativity of the matrix A is not necessary
to the total monotonicity of the iteration. As one can see, with the not nonnegative
matrix

1 0 0
A=|1 -11 (2.3)
0 0 1

the iteration is a totally monotone one.

REMARK 2.7. Let I denote the matrix with the elements Ln-ivy = 1ifi =
1,...,n and ii,j = 0 otherwise. We call the matrix A doubly symmetric if the
relation IAT = A holds. If the matrix A is symmetric and it is also symmetric
for the secondary diagonal, then the matrix A is doubly symmetric. If the matrix
A is doubly symmetric, then the iteration (2.1) is totally monotone if and only if
DAD™! > 0. To see this we have to show that the condition DAD™! > 0 yields
the condition DTAD~T > 0. If DAD~! > 0, then IDAD™'T > 0. Hence

0<IDAD 'I=D'IAID " =DTAD™ " (2.4)

REMARK 2.8. If an iteration is totally monotone with the matrices A; and A,,
then it is that with the matrix A;A,, too.

Theorem 2.9. If the iteration (2.1) is totally monotone, then it conserves the mo-
notonicity, too.

Proof. For simplicity we can assume that x(¥ is a monotonically increasing
vector. Then x(® can be written in the form x(® = v — ce, where v > 0 is a
monotonically increasing vector, e = (1,...,1)T and c is a suitable real number.
Then Ax® = A(v —ce) = Av — cAe. Since the sum of the elements in the rows of
the matrix A is constant therefore the vector cAe is a constant vector. On the other



hand, the vector Av is monotonically increasing because of the total monotonicity.
Thus the vector Ax(® is also monotonically increasing. m

Theorem 2.10. Assume that A > 0. Then the iteration (2.1) is totally monotone
if and only if it conserves the monotonicity.

Proof. The necessity follows from the previous theorem. To see that the condi-
tion is also sufficient let us suppose that for a nonnegative monotonically increasing
vector x(¥ the condition Dx® > 0 is valid. Obviously, Ax(® is a nonnegative and
monotonically increasing vector. So the relation DAx(® > 0 is valid. For the case
of DTx(® > 0 the proof is similar. m

3 Monotonicity conservation of the (o, 8)-method

DEFINITION 3.1. We say that the (o, §)-method is monotonicity conserving (resp.
totally monotone) if the iteration (1.7) is the same. The (o, §)-method is said to be
uniformly monotonicity conserving (resp. uniformly totally monotone) for a fixed
value g if the iteration (1.7) is monotonicity conserving (resp. totally monotone) for
all step-sizes h = 1/(n + 1).

In this section we give the necessary and sufficient condition of the uniform mono-
tonicity conservation (resp. uniform total monotonicity) of the numerical solution.
Our results follow from the application of the theorems of the previous section for
the special iteration (1.7). Moreover, we apply the fact (see [8]) that the matrix T
can be expressed in the form

TZ-i—[-gG—(q—Z)I]ifZ7é0,T=I_QQifZZOa (3.1)

where the matrix G € IR™" is a symmetric, one-pair matrix defined as follows:
Gi;=T;if2>0and G;; = (-1)"*7!T; ; if 2 < 0, where & = arch|1+1/(22)| and

o {’Yi’j, ifi<y o sh(ia) sh((n +1 — j)a)
M\ #Hi>5 0 T T ghash((n+ Da)

Because of Theorem 2.9, if the iteration (1.7) is totally monotone then it conserves
the monotonicity, too. If (1.7) conserves the monotonicity, then it is totally mono-
tone, because 379) > 0 (resp. @7(122 > 0) implies gjgjﬂ) > 0 (resp. @,(;TQI) > 0) with
the matrix T. Taking into consideration Remark 2.7 and Theorem 2.3 the iteration

(1.7) is totally monotone if and only if the condition

(3.2)

DID ! >0 (3.3)
holds, where
1 0" 0
ﬁ — _el D 0 € R(n+2)x(n+2) (34)
0 —(em" 1

5



and D € IR™*™ is the matrix introduced in the previous section. Our next aim is to
express the condition (3.3) 3 with the parameters o,6 and g.
If 2 =0, then DTD is the matrix

[ 1 0 0 0 0
0 1—g¢ q 0 0
0 g 1-2¢ q 0 0
o~ 0 0 1-2 0 0
DIDt=|, . ¢ T T Tl 6y
0 ... 0 qg 1-2¢ q 0
0 q 1-2¢ ¢
K 0 g 1-gq|]

This matrix is nonnegative if and only if ¢ < 1/2 (if n = 1, then ¢ < 1). Let us
suppose now that z # 0. Then DTD-! can be written in the form

1 0" 0
DID!=|o0 DTD ! +¢DTi'e"e’ ¢DT7le” (3.6)
0 —(e™)T(TD 14 ¢T'e"e’)+e’ 1—g(e”) T7'e"

(e =(1,...,1)7). Applying that zT]' = G the matrix is nonnegative if and only if
the conditions

(4) (¢/z)DGe" >0

(B) 1—(g/2)(e")"Ge" 20

(C) —(e")T(TD! + (¢/2)Ge"e") +e' >0
(D) DTD !+ (¢/2)DGe"" >0

(3.7)

are fulfilled. One can see that z must be positive (in this case G =T'), because for
negative values the matrix G would have ”chess-board like” sign distribution and
condition (A) could not be satisfied. For the term in condition (A) the estimation

(¢/2)DGe™ = (¢/2)D(y1n,- - - ,fyn,n)T = (3.8)

_ q
z-sh((n+1)a)

is valid because 0 < sh(a) < sh(2a) < ... < sh(na).
Condition (B) results in the relation

D(sh(a),sh(20),...,sh(na))T >0

1—9%n>0 (3.9)

This is fulfilled for all values of n if and only if 1 — (g/z)e™* > 0, because

h
lim v,, = lim sh(na)

N S S (3.10)



and the sequence is monotonically increasing. Due to the equalities e™® = cha —sha

and cha = 1+ 1/(2z) the condition (3.9) is valid for all values of n if and only if
V1+4z > 2(q — z) — 1. Considering the relation z = g — o we get the necessary

and sufficient condition
1-2(1-60)c++/1—-4(1—-0)o
< 3.11

7= 2(1— )2 (3.11)

(if 8 = 1, then there is no restriction for g).
The term in the condition (C) can be rewritten in the following manner

—(e")T(TD™! + (¢g/2)Ge"e") +e' = (3.12)

q q q q—2,~-
= eT - (z_QPn,ly ey ?Fn,n—ly Z_Q'Fn,n - 2 )D - (Q/Z)(7n,na vy ’Yn,n)-

Considering the equality (see [8])

n n
1

E |Gz7|:E Fi"= 1—’)/,7;—’)’1',) y (z’:l,...,n) (313)

o 7 =Y |(1/Z)‘*‘2|—2( ' "

this vector is nonnegative if and only if the condition

q—2z q q
- = = ~Yin > .14
~Tan = Vin 2 0 (3.14)

1-=- 1- n nn
= 2= = ma) +

is valid, which in turn means that the condition (C) is always satisfied.
For the left-hand side of the inequality in the condition (D) are true the following
transformations

1
DTD™! 4 (¢/2)DGe"e’ = -DG(T;D! +ge"e') =
z

1
= ~DG((T; ~ qQ)D™" +ge"e) =1 - —DGQD‘I gDGe"eT = (3.15)
=1- —DG(QD‘1 e"e') =1— ;DGDT.

We investigate the validity of the condition I — (¢/2z)DGDT' > 0. The offdiagonal
elements of the matrix are nonnegative, because the offdiagonal elements of the
matrix DGDT are negative. To see this let us consider the following relations for
the indices i < j setting G;; = 0 if i = 0 or j = 0 (because of the symmetricity it
is sufficient to consider only these index choices)

(DGDT)M = Gi,]' + Gi_1,j.~1 — Gi—l,j — Gi’j._l =Ygt Yi-1,5-1 = Yi-1,5 — Yijj-1 =

_sh(ia) sh((n+1—j)a) +sh((i — 1)a) sh((n+1—-j +1)a)
- sh(a) sh((n + 1)a) * (3.16)
+—sh((z’ — Da) sh((n+ 1 — j)a) —sh(ia) sh((n+1—j + 1))

sh(a) sh((n + 1))

7



(sh((n+1—f)a) —sh((n+1 -7+ 1)a)) - (sh(ta) — sh((z — 1)a))
sh(a) sh((n + 1))

The diagonal elements of the matrix DGDT are

< 0.

(DGD )i = Yig + Yicric1 — 2%ic14, 1=1,2,...,n. (3.17)
One can show with a tedious calculation that
(DGD )i < Vigns2,14n/2 + Yajzn/z — 2Vnfaitn/zy E=1,...,1 (3.18)

and if n is even, then this estimation cannot be improved. Thus the following
relations are true

(I-(g/z)DGD");; =1—(q/2)(DGD");; >

> 1= (g/2)(V14n/2,14n/2 + Fnj2n/2 — 2Yn/2104n/2) = (3.19)
_ 2sh(na/2)(sh((1 4+ n/2)a) — sh(na/2))
=1-(e/2) sha sh((n + 1)a) B
sh(na/2)

= 1=/ T a2 a(e)2) =

—af2

> 1= (0/2) gy =1 - (@/2)(1 = th(e/2).

Here we applied the fact that the numbers sh(na/2)/sh((n + 1)a/2) tend to e~*/2
if n approaches infinity and the convergence is monotonically increasing. It follows
from the estimations (3.19) that the condition (D) is fulfilled for all values of n if
and only if 1 —(¢/2)(1 —th(e/2)) > 0. From this condition we obtain the inequality
1/v/1+4z > 1 — z/q, which is fulfilled if and only if

8o(0—1)+2—-60+/(80(1 —0) —2+6)2 —16(1 — 0)%0(40 — 1
o 80D (o1 —0) ~ 2467 ~160 —0Poldo - 1)
6 8(1 — )2
(in case of # = 1 the condition is ¢ > o). We can easily verify the relation
8o(#—1)+2—-0+ \/(80(1 —0)-2+0)2—-16(1 — 6)%0(40 - 1) < (3.21)
8(1 — 6)2 - '
<1—2(1—9)0+\/1—4(1—9)U
- 2(1 — 6)? '

Comparing the conditions in the cases (A), (B), (C) and (D) we can formulate our
result in



Theorem 3.2. The (o, 6)-method is uniformly totally monotone and at the same
time it is uniformly monotonicity conserving if and only if the condition

80(6 — 1) +2— 0 +/(80(1 — 6) — 2+ 6)2 — 16(1 — 0)%0(do — 1)
8(1— 0)2

<q< (3.22)

g
0

(in case of @ =1 the condition is ¢ > o and if 6 = 0, then ¢ < 1/2) holds.

REMARK 3.3. Let us observe that the above condition corresponds with the con-
dition of the uniform maximum norm contractivity ([8]). That is the (o, §)-method
is uniformly totally monotone and at the same time it is uniformly monotonicity
conserving if and only if it is uniformly contractive in maximum norm.

4 Summary

Summarizing our result we can establish, that the requirement of the monotonicity
conservation entails stricter conditions for the step-size choice than the stability
bounds. If we would like to use a qualitatively adequate numerical method to solve
the heat equation, then we have to choose the mesh-parameters according to the
bounds (3.22). Let us calculate these bounds for two well-known methods. In the
case of o = 0 the finite difference method is uniformly monotonicity conserving if
and only if

0<q< 229
T 4(1-6)?
The choice § = 0 corresponds to the explicit Euler method (in this case the condition
is ¢ £ 0.5), 8 = 0.5 corresponds to the Crank-Nicolson method (in this case the
condition is ¢ < 1.5) and the choice § = 1 corresponds to the implicit Euler method
(in this case ¢ is optional).
The other special choice is ¢ = 1/6. Then the finite element method with lin-
ear elements is uniformly monotonicity conserving if and only if § > 1/3 and the
condition

(4.1)

1 0+2+/007 — 120 + 12
~<g< 4.2
60 = 1= 24(1— 0)? (42)

holds (if § = 1, then ¢ > 1/6).

In the numerical example in Introduction the parameter ¢ was too large. For the
Crank-Nicolson method the necessary and sufficient condition of the uniform mono-
tonicity conservation is 0 < ¢ < 1.5 (see condition (4.1)). This yields a sufficient
condition for the case n = 5. With the choice ¢ = 1.5 we obtain the iterates

vy = (0.2308,0.2692,0.5000, 0.7308, 0.7692),
y® = (0.1420,0.3580, 0.5000, 0.6420,0.8580),
y® = (0.1761,0.3239,0.5000,0.6761,0.8239) 7,

9



y@ = (0.1666,0.3333,0.5000, 0.6666,0.8333) ",

which are monotonically increasing vectors, indeed.

Acknowledgement. The author is very thankfull to Istvan Faragé for his fruitful
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