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Abstract: We consider an inventory control problem where it is possible to col-
lect some imperfect information on future demand. We refer to such information
as imperfect Advance Demand Information (ADI), which may occur in different
forms of applications. A simple example is a company that uses sales representa-
tives to market its products, in which case the collection of sales representatives’
information as to the number of customers interested in a product can generate
an indication about the future sales of that product, hence it constitutes imper-
fect ADI. Other applications include internet retailing, Vendor Managed Inventory
(VMI) applications and Collaborative Planning, Forecasting, and Replenishment
(CPFR) environments. We develop a model that incorporates imperfect ADI with
ordering decisions. Under our system settings, we show that the optimal policy is
of order-up-to type, where the order level is a function of imperfect ADI. We also
provide some characterizations of the optimal solution. We develop an expression
for the expected cost benefits of imperfect ADI for the myopic problem. Our ana-
lytical and empirical findings reveal the conditions under which imperfect ADI is
more valuable.

Keywords: Inventory/production; Advance Demand Information; Customer Re-
liability; Dynamic Base-Stock Policy; Periodic Review
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1 Introduction and Related Literature

There has been many improvements in supply chain management (SCM) and inventory
control, especially making use of developments in information technologies (IT) that
made information flow faster, easier, and cheaper. Along with benefits such as decreasing
demand variability by sharing information along supply chain members through means
like Electronic Data Interchange (EDI), or decreasing lead times through means like
faster and more accurate handling of demand information, there are also opportunities
for further improvements that make use of information. Such an opportunity may arise
if information on future demand is employed, which is the subject of this study.

Information on future demand is referred to as Advance Demand Information (ADI),
which is usually assumed to be perfect in the literature, that is customer orders that are
available prior to their materialization are considered. In this study we focus on imperfect

ADI, which means that early indication of prospective future orders are attempted to be
utilized.

The structure of imperfect ADI considered in this study covers a number of real life
cases, some of which we discuss below. In most of these cases imperfect ADI already
exists in the system of concern. As a consequence, it is easy and inexpensive to collect
imperfect ADI in most applications.

Consider a company that uses sales representatives to market its products. The
contact of a sales representative with a customer is prone to yield sales potential, unless
the offer is rejected at once. In some cases the sales representatives prepare sales vouchers
as means for quoting the customers showing willingness to buy. Since it usually takes
some time for a potential sale to be materialized, the collection of sales representatives’
information as to the number of customers interested in a product (such as the number
of outstanding sales vouchers) can generate an indication about the future sales of that
product, hence it constitutes imperfect ADI. In connection with this example, Easton
and Moodie [6] discuss how “outstanding bids” (that is, pending proposals at prospective
customers) can be employed in quoting the lead time and contract price for a new bid in
a single resource production environment.

Internet retailing, by its nature, allows collection of imperfect ADI. A visit to a
commercial web site is an indication of interest in one or more of the commodities (or
services) offered by the company. Making use of links to more specific sub-pages or
different forms of filtering are examples of tools that can be employed to differentiate
between the potential customers and the rest of the visitors. There are also other tools
that can help to obtain more accurate ADI through internet. Prospective (or actual)
customers can fill in lists that clearly state the specific commodities they are interested
in, or similarly they can prepare “wish lists” that can be used later for easier access to
their preferred commodities when they have the necessary funding and/or time to realize
the purchase. Alternatively, they can send the list to family and friends in birthdays
or other special occasions, such as wedding, to suggest gifts that can be purchased by
them. Incomplete “shopping carts” also provide an indication on a customer’s interests,
since a customer with an incomplete shopping cart may finalize her order some other
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time. Another option is to add the possibility of watching the price changes for the
commodities specified by the customer. The customer can be warned by e-mail (or by
some other means such as mobile phone short message service) whenever there is a change
in the price of a commodity she included in her list and/or whenever the price of the
commodity drops below her preferred (and stated) price level. Some retailers do have
such options in their web sites.

In business-to-business relations, retailers may share their forecasts with the supplier.
Consequently, this information may serve as an action to reserve capacity, and hence the
supplier can devise a probability structure to estimate their conversion into customer
orders. Vendor Managed Inventory (VMI) environments, in which the manufacturer is
responsible for maintaining the supplier inventory levels, is a typical example. Also, as
a complementing feature, consider “Collaborative Planning, Forecasting, and Replenish-
ment” (CPFR), which is becoming more common (see CPFR site at www.cpfr.org). The
CPFR Committee is a VICS (Voluntary Interindustry Commerce Standards) committee,
made up of retailers, manufacturers, and solution providers, who developed a set of busi-
ness processes that the entities taking place in a supply chain can use for collaboration.
The mission of this committee is to create collaborative relationships between buyers
and sellers through co-managed processes and shared information towards the aim of
increasing the overall efficiency in the supply chain.

In this study we investigate the impact of using imperfect ADI on inventory policies.
A decrease in uncertainty of future demand may allow the supplier to order in advance,
which would shorten the duration between the placement of the actual demand by the
customer and its delivery. Note that this time is shorter than the traditional lead time, as
the order is placed before the actual demand occurs. The way we utilize imperfect ADI is
through treating each individual ADI (e.g., each sales voucher) as a prospective demand,
and assigning it a probability, p, of being realized as demand in the next time period.
We note that the demand realization probability, p, may be referred to as “customer
reliability level”, as well. On the other hand, there is a probability, r, for which an
ADI will remain in the system without being converted into a demand realization. As we
discuss in Section 2.1 this model structure enables us to represent reasonably complicated
advance demand information environments. We consider periodic review ordering policies
and we model the situation in the following manner:

• The total size of imperfect ADI, denoted by k, is the prospective number of de-
mands available in a period (say yesterday), which includes both new customer
information that becomes available and those that has been collected previously
and still remains in the system.

• A portion of the prospective demands materializes and becomes actual demand
(each prospective demand with probability p) during the current period (say today).

• A portion of the prospective demands stays in the system for one or more num-
ber of periods (each prospective demand with probability r) before either being
materialized as demand or leaving the system.
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• We assume that the materialized demand is the actual (realized) demand, (that is,
there are no order cancellations) and is a function of k.

Note that there is a gap of one period between collecting ADI and receiving the actual
demand. In other words, there is an imperfect information about a period’s demand one
period before its realization. This study intends to explore the impact of this information.
We note that the number of customers that actually place orders may depend on ADI
through a more complicated probability model. However, the simple multinomial model
that we employ captures the partial realization of an ADI, and it can be estimated from
customer demand history. In section 4 we propose and analyze an extension to the
unique customer reliability level in which the ADI is analyzed according to the sources
that generate it and then segmented accordingly, each segment having its own customer
reliability level.

When a demand is materialized, the customer order for the unit is due l periods later.
We refer to l as “demand-lead-time” (as introduced by Hariharan and Zipkin [11]). While
in some cases l is indeed zero, positive l can be observed in many applications. This is
especially common in service systems or customized products. Purchase agreements also
constitute an example for a case of positive demand-lead-time. The time, L, that is
required to satisfy an order (that is the traditional “lead time”) will be referred to as
“supply-lead-time”. As we later demonstrate, the difference between L and l is what
matters in determining inventory policies, rather than individual values of L and l. Same
result also holds in Hariharan and Zipkin [11] for a different model. They conclude that
ADI improves system performance in the same way as a reduction in supply-lead-times,
under the situation of no order cancellation. Cheung and Zhang [3] model and analyze
customer order cancellations, which they consider as an addition to the list of sources
of “bullwhip effect”. Bullwhip effect is a term introduced by Lee, Padmanabhan, and
Whang [15], and it stands for the propagation of variance of demand along supply chain
members. Most of the authors define ADI the way Hariharan and Zipkin do; that is,
as perfect information on future demand. Our definition generalizes this concept to
imperfect information, for which perfect information becomes a special case with p = 1.

The literature on different forms of advance demand information has been rapidly
increasing in recent years. Treharne and Sox [22] consider a non-stationary demand situ-
ation that can be partially observed, and hence producing partial information. Assuming
that the demand in any given period arises from one of a finite collection of probability
distributions, they model the demand as a composite-state, partially observed Markov
Decision Process. Accordingly, they show that a state-dependent base stock policy is
optimal for their problem environment. DeCroix and Mookerjee [4] consider a periodic-
review problem in which there is an option of purchasing advance demand information at
the beginning of each period. They consider two levels of demand information: Perfect
information allows the decision maker to know the exact demand of the coming period,
whereas the imperfect one identifies a particular posterior demand distribution. They
characterize the optimal policy for the perfect information case. Gallego and Özer [7]
model ADI through a vector of future demands and show the optimality of a state de-
pendent order-up-to policy. Van Donselaar, Kopczak, and Wouters [23] investigate the
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effect of sharing uncertain ADI between the installers of a project and the manufacturers,
in a project-based supply chain. The uncertainty in their setting arises from not having
accomplished the selection of installers and manufacturers. Thonemann [21] elaborates
further on a similar problem in which there is a single manufacturer and a number of
installers. He considers two types of ADI: Information on whether or not the installers
will place an order, and information on which product they will order. Zhu and Thone-
mann [24] consider a problem that consists of a number of customers that may provide
their demand forecasts. These forecasts are employed to improve the demand forecast
of the retailer through an additive Martingale model of forecast evolution. Assuming a
linear cost associated with the number of customers that share information, they inves-
tigate the relation between the optimal number of customers to contact and the problem
parameters.

Karaesmen, Buzacott, and Dallery [14] consider a capacitated problem under ADI
and stochastic lead times. They model the problem via a discrete time make-to-stock
queue. Dellaert and Melo [5] model partial ADI in a make-to-stock environment through
a Markov Decision Process in the existence of customer priorities and when the supply-
lead-time is negligible. ADI in this case is the currently committed demand on some
constant number of periods in the future (with the exception of next period’s demand
information being perfect); that is, it is possible to receive more orders in those periods
but not less, making the minimum demand known for these periods.

Our contributions in this study can be summarized as follows: (1) We present a fairly
general probability structure for modelling imperfect Advance Demand Information, (2)
we demonstrate useful structural properties of the optimal policy, (3) under myopic
policy we come up with an explicit expression for the expected cost benefits of employing
imperfect Advance Demand Information, (4) our computational results provide useful
managerial insight for parameter settings where imperfect ADI becomes most beneficial.

Our probability model for representing the evolution of ADI records and the dynamic
cost model are presented in Section 2. We characterize optimal policies in Section 3. We
cover an extension of the problem in Section 4 where the ADI is segmented based on the
sources that generate it. We investigate the value of ADI by elaborating on the myopic
problem in Section 5. We state our concluding remarks and possible extensions of this
study in Section 6.

2 Description of the Model

In this section our aim is twofold. We present our imperfect advance demand information
model in Section 2.1. Then, in Section 2.2 we present a dynamic model that enables us to
characterize optimal inventory policies under ADI and partial customer reliability. The
notation is introduced as need arises, but we summarize our major notation in Table 1
for the ease of reference. Subscripts are omitted for simplicity, whenever unnecessary.
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Table 1: Relevant Notation

N : Number of decision epochs in the planning horizon
l : Demand-lead-time

L : Supply-lead-time
τ : Effective lead time (= L − l)

mn : Size of advance demand information which is accumulated within period
n − 1 and available (observed) at the beginning of period n

M : Generic random variable denoting the size of an (unobserved) ADI
which is accumulated in a period

µM : Expected value of M
σ2

M : Variance of M
kn : Total size of advance demand information available at the beginning of

period n
K : Generic random variable denoting the total size of ADI available

at the beginning of a period
Dn+1(k) : Realized (actual) demand at the beginning of period n + 1, to be met at

the beginning of period n + l + 1 (which is a function of the observed
ADI, kn = k)

xc
n : Net inventory carried during period n

xn : Effective inventory position
Qn : Amount ordered at the beginning of period n
yn : Effective inventory position right after ordering Qn

fn(x, k) : Expected minimum cost of operating the system from the beginning of
period n until the end of the planning horizon when the effective
inventory position at the beginning of period n is x, and the size of
available ADI on next period’s demand is k

Wn(k) : Random variable that denotes the demand that is realized during
periods n + 1, n + 2, ..., n + τ ; that is, during the effective lead time,
given that k is the total size of ADI available in period n

Gk(w) : Distribution function of Wn(k)
b : penalty cost per unit of backorder per period
c : production (or procurement) cost per unit
h : inventory holding cost per unit per period
s : salvage cost per unit (which is negative if salvage value exists)
p : probability that an observed individual ADI record will be realized as

demand
r : probability that an observed individual ADI record waits in the system

one more period
α : discounting factor (0 < α ≤ 1)
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2.1 Modelling Imperfect Advance Demand Information

In our imperfect advance demand information model we let Mn as the random variable
denoting the size of advance demand information collected within period n − 1 which
becomes available at the beginning of period n, n = 1, 2 . . .. We denote the observed
realization of Mn as mn. We assume that {Mn, n = 1, 2, . . .} is an independent and
identically distributed sequence with µM = E[Mn] and σ2

M = V ar[Mn]. Customers who
indicate their willingness to materialize their demands place their orders in period n, and
the system observes the realized (actual) demand at the beginning of period n+1. Also let
Kn be the total number of prospective customers (total ADI size), who would be willing
to place orders in periods n, n + 1, . . .. That is, Kn is the number of potential customers
which has been recorded as ADI in periods t ≤ n− 1, but has neither materialized their
orders nor confirmed that they will not place any order. Let kn be the realization of
Kn. Note that kn also includes those customers whose advance demand information has
just been collected (mn) in period n − 1. Let Dn+1(k) be the demand observed at the
beginning of period n + 1 (that is, collected in period n), as a function of total size of
ADI available at the beginning of period n. We assume that there are no other sources
of demand; in other words, all of the demand is originated by the information generated
in advance.

Each ADI record available at the beginning of period n becomes a demand realization
in period n with probability p > 0 or waits in the system for one additional period with
probability r ≥ 0, independent of how long it has been in the system. We assume that
p + r ≤ 1. Therefore, the probability that an ADI record present in the system will ever
become a demand realization is given by:

Pr{an ADI record becomes a demand realization} =
∞
∑

i=1

pri−1 =
p

1 − r
≤ 1.

Therefore, q := 1− p
1−r

is the probability that an ADI record does not become a demand
realization and eventually leaves the system. For the special case r = 0, we have q = 1−p,
implying that each ADI record either becomes a demand realization in one period or leaves
the system. In this case, total ADI size available at the beginning of period n coincides
with mn (as in this case no ADI record remains in the system for longer than one period),
and hence kn = mn. Consequently, Kn and Mn are identical random variables when r = 0

We should note that the time each ADI record remains in the system until it becomes
a demand realization is a defective geometric random variable (unless p + r = 1), with
q being the probability that mass escapes infinity (indicating an ADI record does not
become demand realization). Using this observation one can device a maximum likelihood
estimation procedure for estimating r and p from the history of customer records. We
also note that E[K] = µM/(1 − r) at stationarity.

In Section 2.2, when we demonstrate how ADI records can be utilized in determining
optimal inventory policies, we will need the distribution of demand over a certain horizon
of length τ ≥ 1. Let k be the total size of ADI available at the beginning of period n,
and Mn+1,Mn+2, . . . ,Mn+τ−1 be random variables denoting advance demand information
collected in periods n, n+1, . . . , n+τ−2, respectively. Let Wn(k) be the random variable
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describing total demand over periods n + 1, n + 2, . . . , n + τ , for τ ≥ 1:

Wn(k) =
τ
∑

i=1

Dn+i.

Since Dn+i, i ≥ 1 depends on k, Wn is also a function of k. Obviously, Dn+1, Dn+2, . . . , Dn+τ

are not independent random variables, unless r = 0. Let X1 be the random variable
denoting the part of initial ADI size k that becomes demand realization in periods
n, n + 1, . . . , n + τ − 1. Similarly, let Xi be the part of Mn+i−1 that becomes demand
realization in periods n+i−1, n+i, . . . , n+τ−1, for i = 2, 3, . . . , τ . Notice that, by inde-
pendence of (k,Mn+1,Mn+2, . . . ,Mn+τ−1), (X1, X2, . . . , Xτ ) is an independent collection,
and

Wn(k) =
τ
∑

i=1

Dn+i =
τ
∑

i=1

Xi.

It can easily be verified that X1 has Binomial distribution with parameters k and p(1 +
r + r2 + . . . + rτ−1). That is:

X1 ∼ Binom(k, p(1 + r + r2 + . . . + rτ−1)).

Similarly,
Xi|Mn+i−1 ∼ Binom(Mn+i−1, p(1 + r + r2 + . . . + rτ−i)),

for i = 2, 3, . . . , τ . Therefore, conditioned on Mn+1, . . . ,Mn+τ−1, Wn(k) is distributed as
sum of τ independent but non-identical Binomial random variables. As a consequence,
Wn(k) does not depend on n, hence we drop the subscript. Let

ui = p
τ−i
∑

j=0

rj = p(1 − rτ−i+1)/(1 − r)

for i = 1, 2, . . . , τ . Then, by conditioning Xi on Mn+i−1, i = 2, 3, . . . , τ we can show that

E[W (k)] = ku1 + µM

τ
∑

i=2

ui (1)

V ar[W (k)] = ku1(1 − u1) +
τ
∑

i=2

{µMui(1 − ui) + u2
i σ

2
M}. (2)

We define Gk(w) as the distribution function of W (k),

Gk(w) = Pr{W (k) ≤ w}.
Evaluating the distribution of W (k) is generally difficult. However, given the moments
of the ADI generation model (µM and σ2

M) and customer reliability parameters (p and
r) one can use equations (1) and (2) to find the expected value and variance of W (k).

For the important special case r = 0 (this is a Bernoulli type imperfect ADI model,
where each ADI either becomes a demand realization or leaves the system), we have
ui = p for all i = 1, 2, . . . , τ and

E[W (k)] = kp + µM(τ − 1)p (3)

V ar[W (k)] = kp(1 − p) + (τ − 1){µMp(1 − p) + p2σ2
M}. (4)
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2.2 Development of the Dynamic Cost Model

In our dynamic model, the objective is to minimize the expected total discounted inventory-
related costs. All unmet demand is backlogged. We assume linear holding, backorder,
and unit production (or procurement) costs. We consider a finite horizon model, because
it is more likely that the products to collect ADI are those with short life cycles. We also
consider a discounting factor so that the time value of money can be regarded.

Let N be the number of decision epochs in the planning horizon. Let L and l be
the supply-lead-time and demand-lead-time, respectively. Consequently, we assume that
the number of periods in the planning horizon is N + L (the period at which the order
placed in period N is received). When the customer demand is realized, the system
commits itself to satisfy the demand after l periods. Let Qn be the quantity ordered at
the beginning of period n, and let xc

n be the net inventory carried during period n. The
problem can be illustrated as in Figure 1 for the whole planning horizon, and as in Figure
2 for a specific period n.

For each period n the following order of events take place:

• At the beginning of period n, Qn−L arrives

• Dn−l is met/backordered

• Dn is realized

• xc
n is updated

• mn is collected

• kn is updated

• Qn is ordered.

Figure 1: Finite Horizon Problem
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Figure 2: Illustration for Period n
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We first note that for L ≤ l the problem is trivial, as the value of advance demand
information is zero; because, the system can always match demand by appropriately
adjusting the times of orders. Hence we consider the more interesting case of L > l.

The first demand is assumed to be realized at the beginning of period 2. This demand
is the collection of the individual demands that occurred during period 1 for which
advance demand information is collected in the “initialization” phase (period 0). The
last demand is assumed to be realized at the beginning of period N +L− l which is asked
to be received at the beginning of period N +L, that is, the end of the planning horizon.

Since at the beginning of period n, right after ordering Qn, nothing can be done to
influence the net inventory until period n + L, inventory related costs associated with
period n + L can be accounted in period n as

cQn + αL
(

hE[xc
n+L]+ + bE[xc

n+L]−
)

, (5)

where c is the unit production (or procurement) cost, h and b are the per period holding
and backorder costs, respectively.

The usual net-inventory recursion can be noted as

xc
n+1 = xc

n + Qn+1−L − Dn+1−l. (6)

Successive substitution in (6) results in

xc
n =

n−L
∑

i=1

Qi −
n−l
∑

i=2

Di, (7)

for n ≥ L + 1, assuming that xc
1 is zero, without loss of generality. We do not consider

the costs that may be incurred before period L+1, as the first ordering possibility arises
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at the beginning of period 1 (which is received at the beginning of period L + 1), and
therefore there is no way to influence the costs in periods 1, 2, · · · , L. We also note that
by using (7)

xc
n+L = xc

n +
n
∑

i=n−L+1

Qi −
n+L−l
∑

i=n−l+1

Di. (8)

Rearranging the terms, equation (8) can also be expressed as

xc
n+L =



xc
n +

n−1
∑

i=n−L+1

Qi −
n
∑

i=n−l+1

Di



+ Qn −
n+L−l
∑

i=n+1

Di. (9)

The term in parenthesis in (9) is the traditional inventory position definition for period
n right before ordering, with the difference that the demand that has been realized as
of period n but not due yet is subtracted from it. We refer to this term as “effective
inventory position” and denote it as xn; that is,

xn = xc
n +

n−1
∑

i=n−L+1

Qi −
n
∑

i=n−l+1

Di.

The rightmost summation in (9) is the total demand that will be realized between periods
n+1 and n+L− l. This term is the demand during “effective lead time”, where effective
lead time, τ , is defined as the difference between the supply-lead-time and the demand-
lead-time:

τ = L − l.

Hence, (9) can be re-stated as

xc
n+L = xn + Qn −

τ
∑

i=1

Dn+i.

Let us denote the random variable that describes the total demand during effective lead
time as W (k), as introduced in Section 2.1, that is,

W (k) =
τ
∑

i=1

Dn+i.

Finally, xn + Qn can be viewed as the level that the system raises the effective inventory
position up-to. Let us denote this as yn, that is, yn = xn + Qn. Consequently,

xc
n+L = yn − W (k). (10)

At the beginning of period n, the system state that is available to decide on Qn is
made up of x (effective inventory position at the beginning of period n), and k (the size
of available ADI on next period’s demand). We define fn(x, k) as the expected minimum
cost of operating the system from the beginning of period n until the end of the planning
horizon; that is,

fn(x, k) = −cx + min
y≥x

{Jn(y, k)}, (11)
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where
Jn(y, k) = L(y, k) + αE[fn+1(y − D(k), K)], (12)

for 1 ≤ n ≤ N , and

L(y, k) = cy + αL

(

h
∫ y

0
(y − w)dGk(w) + b

∫ ∞

y
(w − y)dGk(w)

)

.

Note that K is a random variable, hence the expectation term in (12) is taken over K
and D(k), that is,

E[fn+1(y − D(k), K)] = EK

[

ED(k)[fn+1(y − D(k), K)|K]
]

.

We assume that the remaining inventory can be salvaged with a unit revenue of c and
outstanding backorders are satisfied with a unit cost of c at the end of the planning
horizon, that is, fN+1(x, k) = −cx.

3 Characterization of the Optimal Policy

In this section, we obtain structural results about the finite horizon model introduced
in Section 2 and its optimal solution. As we demonstrated in Section 2, at least one
ingredient of W (k), X1 is a discrete random variable. Therefore, Gk(w) is not continuous.
However, for the ease of exposition we assume Gk(w) is continuous and L(y, k) is twice
differentiable. Our results also hold for the discrete case. We first note that L(y, k) is
convex in y for all k ≥ 0, since it is the usual newsboy cost function.

Theorem 1 The following properties hold for n = 1, 2, . . . , N .

i. Jn(y, k) is convex in y, for all k ≥ 0

ii. fn(x, k) is convex in x, for all k ≥ 0

iii. Let yn(k) be the value of y that minimizes Jn(y, k). Then, the optimal ordering

policy at the beginning of period n is of order-up-to type which is defined by

Qn =

{

yn(k) − x if x < yn(k)
0 if x ≥ yn(k)

Proof : Proof is provided in Appendix A.

Theorem 1 reveals that, upon observing the system state (x, k) at the beginning of
period n, the optimal policy is to order an amount that will bring the effective inventory
position of the system to yn(k). Sethi and Cheng [18] (also Song and Zipkin [19], and
Chen and Song [2] for other similar cases) have shown the optimality of order-up-to type
policies (or (s,S) type policies under fixed ordering costs) when there exists a Markov-
modulated demand process. Our Theorem 1 follows Remark 4.5 of Sethi and Cheng
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[18], which claims that their optimality result can be extended to the case where there
are countably many states describing demand. We note that the demand process in our
problem can be pictured as a Markov-modulated process with countably many states
describing demand/information structure, because Mn is defined as an independent and
identically distributed (iid) sequence. This allows constructing a stationary probability
transition matrix between information states (ADI sizes) that describe demand during
effective lead time. Nevertheless, Theorem 1 can also be extended to the case where Mn

is not iid, that is when the Markovian structure does not hold. This requires redefining
the stationary and independent elements in our model that depend on total ADI size
only, but the general line of the proof remains the same. In that case total available
ADI size would not be enough for describing demand during lead time, because of the
dependence and non-stationarity of imperfect ADI’s. Therefore, the history of imperfect
ADI’s would need to be collected as well, and the state-dependent optimal order-up-to
point would also be a function of this history.

The following theorem states some monotonicity results.

Theorem 2 The following properties hold for n = 1, 2, . . . , N .

i. f ′
n(x, k) ≥ f ′

n+1(x, k) for all x, and k ≥ 0

ii. J ′
n(y, k) ≥ J ′

n+1(y, k) for all y, and k ≥ 0

iii. yn(k) ≤ yn+1(k) for all k ≥ 0

Proof : Proof is provided in Appendix B.

Note that each of the monotonicity results provided in Theorem 2 are valid when the
ADI sizes of the two consecutive periods of concern are the same. In other words, the
order-up-to point of period n + 1 can be less than that of period n when the size of ADI
available at the beginning of period n + 1 is less than that of period n.

An upper bound on order-up-to levels can directly be deduced from Theorem 2 as
follows.

Corollary 1 Optimal order-up-to level of the last period in the planning horizon for a

given ADI size, k, is an upper bound for the optimal order-up-to level of any period with

the same k.

This level can be derived as follows. We need to have J ′
N(y, k) = 0 for y = yN(k).

Therefore, J ′
N(y, k) = L′(y, k) − αc = 0, and then c + αL (−b + (b + h)Gk(y)) − αc = 0.

Consequently,

yN(k) = G−1
k (

b − c(1 − α)α−L

b + h
).

If the demand during effective lead time is taken to be approximately normal with
mean E[W (k)] and variance V ar[W (k)], as computed in equations (1) and (2), respec-
tively, then

yN(k) = E[W (k)] +
√

V ar[W (k)] · Φ−1

(

b − c(1 − α)α−L

b + h

)

. (13)

13



Note that this level can be calculated for any k; hence it may serve as a parametric
upper bound for any value of the ADI size, k, in any period.

The following theorem characterizes the behavior of the optimal order-up-to point as
related to the size of ADI. The relation is rather intuitive: the order-up-to point increases
as the size of ADI increases.

Theorem 3 The following properties hold for n = 1, 2, . . . , N , and for all k and η ≥ 0.

i. f ′
n(x, k) ≥ f ′

n(x, k + η) for all x,

ii. J ′
n(y, k) ≥ J ′

n(y, k + η) for all y,

iii. yn(k) ≤ yn(k + η).

Note that with the above properties, an efficient computational (search) algorithm to
find optimal order-up-to levels can be devised. However, in this paper we concentrate on
other relevant aspects of the problem in the consequent sections.

4 Source Segmentation

In this section we discuss an extension to our model. We refer to the internet retailing
example in our discussion for illustrative purposes, but we note that our results hold for
the general problem, as long as it is possible to identify categorical differences between
the distinct sources that generate imperfect ADI.

In the general internet customer framework, the least information that can be ob-
tained by each connection to a product’s website is the Internet Protocol (IP) address.
The information about the number of visits and the previous orders given from that IP
address alone can be evaluated to differentiate between those customers who tend to
realize order after providing an ADI and those who do not. The region or location of the
connection may be of use, as well. For example, if the manufacturer supplies only the
domestic market, then foreign connections can be disregarded.

There are also other information that can be gathered from potential customers, such
as gender, age, profession, education, etc. While these information can be gathered
through means like questionnaires, more reliable and practical information can be ob-
tained via means like membership status, for which the customers provide information
in the beginning. Upon availability of such information, ADI sources can be segmented
accordingly, each having their respective customer reliability levels (that is, the proba-
bility of an ADI turning into a realized demand for each segment). A factorial design
can be implemented to explore the main and interaction effects of the factors (such as
age, education, etc.) on the reliability level, depending on the level of detail for such a
segmentation. While it is possible to denote each factor separately on ADI, we consider
j = 1, 2, . . . , J different segments, combining all levels of all factors. For example, if
gender and five different age groups are of concern, then we have J = 10 in our model,
each j standing for a different combination of the levels of these two factors.
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We let each segment have a reliability level of pj. For simplicity of the exposition,
we let r = 0 without loss of generality. Advance information on demand is collected
separately for each segment, which we denote by kj. Similarly, the random variable
denoting the size of an (unobserved) ADI for segment j is M j. Once ADI is collected for
all segments, we have a vector k = (k1, k2, . . . , kJ) constituting all the available ADI for
the next period. Similarly, let M = (M 1,M2, . . . ,MJ) and p = (p1, p2, . . . , pJ).

Let us consider the demand during effective lead time, that is, W (k), at the beginning
of period n. The arguments to be raised are similar to those in Section 2, hence will be
skipped. If we assume independence between segments (and between each individual
ADI, as before), then we can evaluate the expected demand and the variance of demand
for period n + 1, conditioned on ADI as

E[Dn+1|k] =
J
∑

j=1

kjpj,

V ar[Dn+1|k] =
J
∑

j=1

kjpj(1 − pj).

For the other periods in the effective lead time, that is, for i = n + 2 to n + τ , we obtain

E[Di] = E[E[Di|M]] =
∑

j

pjE[M j],

V ar[Di] = V ar[E[Di|M]] + E[V ar[Di|M]]

= V ar[
∑

j

pjM j] + E[
∑

j

M jpj(1 − pj)]

=
∑

j

(pj)2V ar[M j] +
∑

j

pj(1 − pj)E[M j]

=
∑

j

{

(pj)2V ar[M j] + pj(1 − pj)E[M j]
}

.

Therefore,

E[W (k)] = E[Dn+1|k] +
τ
∑

i=2

E[Di]

=
∑

j

kjpj + (τ − 1)
∑

j

pjE[M j]

=
∑

j

(pj)
{

kj + (τ − 1)E[M j]
}

, (14)

and,

V ar[W (k)] = V ar[Dn+1|k] +
τ
∑

i=2

V ar[Di]

=
∑

j

kjpj(1 − pj) + (τ − 1)





∑

j

{

(pj)2V ar[M j] + pj(1 − pj)E[M j]
}





=
∑

j

{

kjpj(1 − pj) + (τ − 1)
{

(pj)2V ar[M j] + pj(1 − pj)E[M j]
}}

. (15)
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The results that are obtained for the single source model can be adjusted to the
source segmentation case by substituting the expected demand during effective lead time
obtained in (14) and the variance of demand during effective lead time obtained in (15),
when necessary. For example, the approximate upper bound derived in (13) turns out to
be

yN(k) = E[W (k)] +
√

V ar[W (k)] · Φ−1

(

b − c(1 − α)α−L

b + h

)

. (16)

We note that segmenting ADI sources and employing statistical tools for estimating
corresponding reliability levels may impose difficulties if the amount of raw data to an-
alyze is very large. In that case, it may be useful to apply an appropriate data mining
technique.

5 Value of Information

In this section our objective is to obtain explicit expressions that allow us to explore the
value of information aspect of ADI and customer reliability. Our exposition is based on
the myopic (single decision epoch) problem with r = 0. Myopic problem and its solution
is presented in Appendix D. We first obtain the expected total relevant cost (TRC) term
when ADI is utilized, and then compare it with the case where ADI is not utilized. We
make the comparison for α = 1.

The distribution of demand during effective lead time is the convolution of a binomial
distribution and (τ−1) distributions that depend on the distribution of M . For example,
in the current problem with r = 0, if M has Poisson distribution with rate λ, then W (k)
has a distribution which is the convolution of Binomial(k, p) and Poisson(λp(τ − 1)).
Normal approximation is used in both cases that are mentioned above. Apparently, the
precision of this approximation depends on the values of the parameters. For example,
the approximation is more precise for large values of min{kp, k(1−p)} (see, for example,
Hines and Montgomery [13]), or for large values of τ due to central limit theorem, and
it deteriorates for smaller values of those.

In order to make a meaningful comparison, the expected value and the variance of
M (or equivalently K) are assumed to be known. Throughout this section we assume
that p and σ2

M are both strictly positive. If p = 0, no matter what advance information
there is on demand, the actual demand would be zero. Similarly, if σ2

M = 0, then there
would be no uncertainty about M and in both of these cases the problem would not be
interesting in terms of advance demand information, and the value of information would
trivially be zero.

Advance demand information is utilized:

Here we consider the case in which the amount ordered, y∗, is based on the imper-
fect ADI size. Hence, we evaluate the expected cost term through conditioning on the
ADI size, that is,

E[TRC(y∗)] = E[E[TRC(y∗)|k]].
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From (28),

E[TRC(y∗)|k] = (b + s)E[W (k) − y∗]+ + s(y∗ − E[W (k)]) + y∗c.

We note that the cost penalty due to the unsold items is accounted through a unit salvage
cost, s, which is negative if salvage value exists. Here we replace h in the multi-period
model with s to take into account the end-of-horizon effect. Making use of E[W (k)] and
V ar[W (k)] terms derived in (3) and (4), and employing normal approximation, we obtain

E[TRC(y∗)|k] = (b + s)
∫ ∞

y∗

(w − y∗)dGk(w) + s(y∗ − p(k + (τ − 1)µM)) + y∗c

= (b + s)
√

kp(1 − p) + (τ − 1) · [p2σ2
M + p(1 − p)µM ]

·Ru





y∗ − p(k + (τ − 1)µM)
√

kp(1 − p) + (τ − 1) · [p2σ2
M + p(1 − p)µM ]





+y∗(c + s) − sp(k + (τ − 1)µM), (17)

where

Ru(r) =
∫ ∞

r
(t − r)

1√
2π

exp(−t2/2)dt

is the unit normal loss function.
Substituting y∗ derived in (27), that is,

y∗ = p(k + (τ − 1)µM) +
√

kp(1 − p) + (τ − 1) · [p2σ2
M + p(1 − p)µM ]Φ−1

(

b − c

b + s

)

into (17) yields

E[TRC(y∗)|k] =
√

kp(1 − p) + (τ − 1) · [p2σ2
M + p(1 − p)µM ]

·
[

(b + s)Ru

(

Φ−1

(

b − c

b + s

))

+(c + s)Φ−1

(

b − c

b + s

)]

+cp(k + (τ − 1)µM). (18)

Let us define an auxiliary constant, β, for simplification.

β =

[

(b + s)Ru

(

Φ−1

(

b − c

b + s

))

+ (c + s)Φ−1

(

b − c

b + s

)]

.

Then

E[TRC(y∗)] =
(

E
[

√

Mp(1 − p) + (τ − 1) · [p2σ2
M + p(1 − p)µM ]

])

β + τµMcp.

Let us refer to this term as E[TRCADI ].
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Advance demand information is not utilized:

In this case, the decision on how much to order is made by employing the mean and
the variance of M . The myopic problem results discussed in Appendix D still hold in
general, except for the mean and the variance of the demand during effective lead time
replacing E[W (k)] and V ar[W (k)] as follows.

E[W ] = τµMp, (19)

V ar[W ] = τ
[

p2σ2
M + p(1 − p)µM

]

. (20)

Therefore, following similar steps as in the ADI case, and defining the order-up-to level
in the no-ADI case as ỹ∗, we obtain the expected total relevant costs as

E[TRC(ỹ∗)] =
√

V ar[W ]β + cE[W ].

Substituting (19) and (20) in the above equation results in

E[TRC(ỹ∗)] =
(

√

τ [p2σ2
M + p(1 − p)µM ]

)

β + τµMcp. (21)

Let us refer to this term as E[TRCNO−ADI ].

The difference between these two expected cost terms, which is the reduction in expected
relevant costs obtained by employing ADI, is the value of imperfect ADI for the myopic
problem. Let us refer to this difference as ∆, that is,

∆ = E[TRCNO−ADI ] − E[TRCADI ].

Then,

∆ =
(

√

(τ [p2σ2
M + p(1 − p)µM ])

−E
[

√

Mp(1 − p) + (τ − 1) · [p2σ2
M + p(1 − p)µM ]

])

β. (22)

We show in Appendix E that ∆ > 0; hence, E[TRCNO−ADI ] > E[TRCADI ] and
consequently there is a positive value of ADI.

Note that, if p = 0, this would result in ∆ = 0. Similarly, if σ2
M = 0, then

√
µM =

E
√

M , and consequently ∆ = 0, both as expected. In the other extreme, if p = 1
then the advance demand becomes actual demand; that is, the advance information on
demand is indeed perfect. In this case we have ∆ = σM(

√
τ −

√
τ − 1)β. Hence, the

more variance M has, the more the value of advance demand information attains, for any
fixed effective lead time and a set of cost parameters. The intuition behind this result
is clear: Increased uncertainty makes information more valuable. Note that the variance
of total demand over the effective lead time and σ2

M have identical variability structures.
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In other words, the above discussion holds for the variance over the effective lead time
demand as well; that is, the larger variance associated with the demand, the larger the
value of ADI attains.

Another result that arises from the examination of (22) is that, when r = 0 the value
of imperfect ADI decreases as the effective lead time (τ) increases. Indeed,

limτ→∞∆ = 0.

The reason for this is the decreasing contribution (in proportion) of ADI in effective lead
time demand as τ increases, since ADI has impact on a single period when r = 0. In
other words, the value of imperfect ADI increases as the proportion of effective lead time
on which ADI is available increases. Therefore, ADI is the most valuable when τ = 1.
We note that in the case of r > 0 and τ > 1, the value of imperfect ADI would increase
as r increases, for a fixed value of p.

While ∆ is an important measure to test the sensitivity of the impact of ADI with
respect to changes in the parameters, it lacks relativity. Therefore, we define another
measure to explore sensitivity further:

∆f =
∆

E[TRCADI ]
=

E[TRCNO−ADI ] − E[TRCADI ]

E[TRCADI ]
. (23)

∆f is the fractional penalty of not utilizing ADI.
We first consider the special case of p = 1, that is, ADI is perfect. Then,

∆f =

(√
τ −

√

(τ − 1)
)

β
(√

(τ − 1)
)

β + τc
(

µM

σM

) . (24)

Equation (24) reveals that, for any fixed effective lead time and set of cost parameters,
∆f increases as the coefficient of variation for M , σM/µM , increases. In specific, when
τ = 1,

∆f =
β

c

(

σM

µM

)

,

that is, the impact is linear with respect to the coefficient of variation.
Now let us consider the case of imperfect information, that is, 0 < p < 1. We first

state some analytical results on ∆f and then present our experimental findings.

Proposition 1 The following properties hold for the fractional penalty of not utilizing

ADI, ∆f , when c = 0.

i. For any given positive µM and σ2
M , ∆f is an increasing function of p.

ii. For any given positive µM and 0 < p < 1, ∆f is an increasing function of σ2
M .
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Proof : Proof is provided in Appendix F.
In the empirical tests we conducted, we verified that Proposition 1 holds for the case

of positive c as well.
Figure 3 depicts the percent penalty of not utilizing imperfect ADI, that is, 100∆f

versus p for different levels of τ . This figure is the result of the empirical tests in which
E[TRCADI ] is computed by Monte Carlo simulation, and E[TRCNO−ADI ] and ∆f are
calculated using equations (21) and (23), respectively, where µM = 200, σ2

M = 202,
the cost parameters being b = 10, s = 2, c = 1, for p ∈ (0.05, 0.1, 0.2, . . . , 1) and
τ ∈ (1, 2, 5, 10). E[TRCADI ] is computed as follows:

• An ADI size, k, is generated from a normal distribution with parameters µM and
σ2

M as above, a possible negative realization being truncated to zero.

• Using equation (18), E[TRC(y∗|k)] is calculated, the cost parameters being the
same.

The average of 5000 such realizations is taken as E[TRCADI ].
Figure 4 depicts the percent penalty of not utilizing imperfect ADI versus the coeffi-

cient of variation for different levels of τ . The methodology followed for generating this
graph was similar to that of the former one. We fixed p at 0.3 and µM at 200 in this
group of tests.

The results that can be deduced from the empirical tests are in accordance with the
analytical findings we had: The percent penalty of not utilizing imperfect ADI increases
as p increases, σ2

M increases, and τ decreases -the rest of the parameters being fixed-. In
other words, imperfect ADI becomes the most beneficial under

• increased customer reliability level, hence decreased level of imperfectness of ADI

• increased variability in ADI sizes, hence increased variability in demand, and

• increased proportion of effective lead time on which ADI is available.

Under the set of cost parameters we assumed, the penalty of not utilizing imperfect ADI
may be as high as 45.7%, when p = 1, τ = 1, µM = 200, and σ2

M = 502.

6 Conclusions and Future Research

In this paper we have developed a model that incorporates imperfect ADI with inven-
tory policies. We presented a fairly general probability structure for modelling imperfect
Advance Demand Information. Under our system settings, we have shown that the opti-
mal ordering policy is of order-up-to type, where the optimal order level is an increasing
function of the ADI size. The optimal order-up-to levels are shown to be non-decreasing
in time, for a given ADI size. Employing this idea, we generated an upper bound for the
order-up-to level of any period (which is tight for the last period), depending on the ADI
size. We have obtained some other useful structural properties of the optimal policy.
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Another contribution of this work is the derivation of the value of ADI for the myopic
problem. Although the expression that is developed is valid for the myopic problem, it
gives us clear ideas about the value of ADI in general. Combined with the analytical
findings, the empirical tests we conducted demonstrate that imperfect ADI becomes the
most beneficial under decreased level of imperfectness of ADI, increased variability in
demand, and increased proportion of effective lead time on which ADI is available.

An important extension to this study would be updating customer reliability param-
eters, p and r, in time. We currently assume them to be fixed; however, either due to
incorrect estimation or time dependence, p and r may need to be updated. This updating
scheme can be in various ways. A possible way is to use Bayesian updates. In related
literature this method is used by some authors in order to forecast the demand distri-
bution more accurately in inventory models with unknown demand. See, for example,
Azoury [1]. Other possible updating schemes may be time-series models as in Lovejoy
[16], forecast evolution methods as in Güllü [9], or developing new analytical models to
incorporate the information flow as in Gavirneni, Kapuscinski, and Tayur [8].

Incorporation of “regular” demand (which does not provide advance information) into
the structure handled in this study is also possible. If the regular demand is of equal
priority with the other stream of demand on which imperfect ADI is collectible, then it is
rather straightforward to extend the analysis in this study as long as the distribution of
the total demand during effective lead time can be correctly assessed. Nevertheless, the
problem becomes more interesting if these two demand classes have different priorities.
Tan [20] shows that dynamic rationing policies as a function of imperfect ADI size need
to be applied in that case; that is, some lower-priority demand might deliberately be
backlogged or lost while carrying inventory, with an expectation of future demand from
higher-priority customer class.

Developing some efficient algorithms to compute order-up-to levels would be another
contribution. We note that the results developed in this paper could be the base for such
algorithms.

Another interesting research could be the “configured demand” case in a multi-item
environment, that is, the customers providing ADI on some configuration of the com-
modities. Consider the case of PC sales, for example. A customer might provide ADI
on a specific setting of a PC (e.g. certain memory, hard-drive, monitor, CD-rom drive,
etc.). This ADI could be considered as an ADI on each of the components in its bill
of materials, some -or all- of which can be used to satisfy demands for some other PC
settings, in case this ADI is not materialized. Then, a special postponement strategy as
a function of ADI on components could be developed, resulting in reduced effective lead
times and relevant costs.
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APPENDIX A. PROOF OF THEOREM 1

For the proof we use induction. We first show that Theorem 1 holds for n = N :

JN (y, k) = L(y, k) + αE[fN+1(y − D(k), K)]

= L(y, k) + αE[−c(y − D(k))] = L(y, k) + αc(kp − y).

Part (i) follows since L(y, k) is convex in y for all k ≥ 0, and αc(kp−y) is linear -hence convex-
in y. Part (iii) directly follows from convexity. As for part (ii), we note that

fN (x, k) = −cx +

{

JN (yN (k), k) if x < yN (k)
JN (x, k) if x ≥ yN (k)

.

But then, because of convexity of JN and −cx, fN (x, k) is convex in x, which proves (ii).
Now let us assume that these results hold for period n + 1, where 1 ≤ n + 1 < N . Our

aim is to show that they hold for period n as well. We first note that fn+1(x, k) is convex
in x for all values of k, due to the induction hypothesis. Now consider E[fn+1(x, k)]. Since
expectations can be written as the limits of Riemann-Stieltjes sums, and the positive-weighted
sum of convex functions are convex -see, e.g. Heyman and Sobel [12]-, then E[fn+1(x, k)] is
convex too. Therefore, Jn(y, k) = L(y, k) + αE[fn+1(y − D(k), K)] is convex, since L(y, k) is
convex as well, which proves part (i). Part (iii) directly follows from part (i) again. And finally,
writing fn as

fn(x, k) = −cx +

{

Jn(yn(k), k) if x < yn(k)
Jn(x, k) if x ≥ yn(k)

results in part (ii), and this completes the proof.

APPENDIX B. PROOF OF THEOREM 2

For the proof we use induction. Let us start with n = N . We have fN+1(x, k) = −cx,
f ′

N+1(x, k) = −c.

fN (x, k) = −cx +

{

JN (yN (k), k) if x ≤ yN (k)
JN (x, k) if x > yN (k)

,

f ′
N (x, k) = −c +

{

0 if x ≤ yN (k)
J ′

N (x, k) if x > yN (k)
.

But,

JN (y, k) = L(y, k) + αE[fN+1(y − D(k), K)]

= L(y, k) + αc(kp − y),

J ′
N (y, k) = L′(y, k) − αc.

So, f ′
N (x, k) = −c +

{

0 if x ≤ yN (k)
L′(x, k) − αc if x > yN (k)

.

Note that L′(x, k) − αc = J ′
N (x, k) ≥ 0 when x > yN (k). Consequently, f ′

N (x, k) ≥ f ′
N+1(x, k),

as stated in (i).
We have J ′

N−1(y, k) = L′(y, k) + αE[f ′
N (y − D(k), K)]. But, as shown above, f ′

N (x, k) ≥ −c

for all x and k. Therefore, E[f ′
N (y − D(k), K)] ≥ −c, and hence, J ′

N−1(y, k) ≥ L′(y, k) − αc =
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J ′
N (y, k). This proves (ii), which directly results in (iii).

Now let us assume that the induction hypotheses hold for period n (2 < n < N) as follows:
f ′

n(x, k) ≥ f ′
n+1(x, k),

J ′
n−1(y, k) ≥ J ′

n(y, k),
yn−1(k) ≤ yn(k).
As a result of the third item of this induction assumption, there can be three cases for the
effective inventory position:

• x ≤ yn(k) ≤ yn+1(k)
In this case, f ′

n−1(x, k) = −c = f ′
n(x, k)

• yn(k) < x ≤ yn+1(k)
Here, we have f ′

n−1(x, k) = −c + J ′
n−1(x, k), and f ′

n(x, k) = −c. But since J ′
n(x, k) is

nonnegative in this region, we obtain f ′
n−1(x, k) ≥ f ′

n(x, k)

• yn(k) ≤ yn+1(k) < x

Now, f ′
n−1(x, k) = −c+J ′

n−1(x, k), and f ′
n(x, k) = −c+J ′

n(x, k). But due to the induction
assumption, J ′

n−1(x, k) ≥ J ′
n(x, k), and hence f ′

n−1(x, k) ≥ f ′
n(x, k).

Consequently, (i) holds. We also have
J ′

n−2(y, k) = L′(y, k)+αE[f ′
n−1(y−D(k), K)], and J ′

n−1(y, k) = L′(y, k)+αE[f ′
n(y−D(k), K)].

But, due to (i), f ′
n−1(y−D(k), K) ≥ f ′

n(y−D(k), K) for all possible values of y−D(k) and K;
and then, as discussed in the proof of Theorem 1, E[f ′

n−1(y −D(k), K)] ≥ E[f ′
n(y −D(k), K)],

which results in J ′
n−2(y, k) ≥ J ′

n−1(y, k). This proves (ii); and (iii) directly follows from (ii),
which completes the proof.

APPENDIX C. PROOF OF THEOREM 3

For the proof we use induction. We start with n = N . f ′
N+1(x, k) = f ′

N+1(x, k + η) = −c,
which suffices for (i). As for (ii), we have J ′

N (y, k) = L′(y, k) − αc, and J ′
N (y, k + η) =

L′(y, k+η)−αc. We note that Gk(y) ≥ Gk+η(y) for all y, because X1 has Binomial distribution,
and X2, X3, . . .Xτ are independent of k and η. Since L′(y, k) = c + αL(−b + (h + b)Gk(y))
and L′(y, k + η) = c + αL(−b + (h + b)Gk+η(y)), we result in L′(y, k) ≥ L′(y, k + η), and hence
J ′

N (y, k) ≥ J ′
N (y, k + η), as desired. (iii) directly follows from (ii). Now let us assume that the

induction hypotheses hold for period n (2 < n < N) as follows:
f ′

n+1(x, k) ≥ f ′
n+1(x, k + η),

J ′
n(y, k) ≥ J ′

n(y, k + η),
yn(k) ≤ yn(k + η).
We note that

f ′
n(x, k) = −c +

{

0 if x ≤ yn(k)
J ′

n(x, k) if x > yn(k)

and f ′
n(x, k + η) = −c +

{

0 if x ≤ yn(k + η)
J ′

n(x, k + η) if x > yn(k + η)
. From the third item of the

induction assumption, there can be three cases for the effective inventory position:

• x ≤ yn(k) ≤ yn(k + η)
In this case, f ′

n(x, k) = −c = f ′
n(x, k + η)

23



• yn(k) < x ≤ yn(k + η)
Now we have f ′

n(x, k) = −c + J ′
n(x, k), and f ′

n(x, k + η) = −c. But since J ′
n(x, k) is

nonnegative in this region, we obtain f ′
n(x, k) ≥ f ′

n(x, k + η)

• yn(k) ≤ yn(k + η) < x

Here, we have f ′
n(x, k) = −c+J ′

n(x, k), and f ′
n(x, k+η) = −c+J ′

n(x, k+η). But due to the
second induction assumption, J ′

n(x, k) ≥ J ′
n(x, k + η), and hence f ′

n(x, k) ≥ f ′
n(x, k + η).

Consequently, (i) holds. As for (ii), J ′
n−1(y, k) = L′(y, k)+αE[f ′

n(y−D(k), K)], and J ′
n−1(y, k+

η) = L′(y, k + η) + αE[f ′
n(y − D(k + η), K)], so it suffices to show that E[f ′

n(y − D(k), K)] ≥
E[f ′

n(y−D(k +η), K)], since it is already shown that L′(y, k) ≥ L′(y, k +η). We first note that
D(k+η) is stochastically larger (denoted ≥st) than D(k), because X1 has Binomial distribution.
(The reader can refer to Ross [17] for a coverage of stochastic dominance relations.) Then,
since fn(x, k) is convex in x and therefore f ′

n(x, k) is non-decreasing in x, we have E[f ′
n(y −

D(k), K)] ≥ E[f ′
n(y−D(k + η), K)], as desired. This proves (ii); and (iii) directly follows from

(ii), which completes the proof.

APPENDIX D. MYOPIC PROBLEM

In the myopic problem, there is one decision epoch (the beginning of period 1) and we have the
initial ADI of size k, on the demand to be realized at the beginning of period 2. No information
is available on the rest of the demand that will be realized (if τ > 1), namely those that will
be realized in periods 3,4,. . . , τ + 1. In accordance with the assumptions stated in Section 2,
the last demand is realized at the beginning of period τ +1 and the costs that may be incurred
before period L+1 are not considered. Whatever is left at the end of the planning horizon will
be salvaged with a unit cost of s (which is negative if salvage value exists), and unmet demand
will be penalized with a unit cost of b. We also have a unit procurement (or production) cost, c.
Under these settings, the problem is a special case of the newsboy problem. Hence, the optimal
order-up-to point y∗ can be found as

y∗ = inf

{

y : Pr{W (k) ≥ y} ≤ c + s

b + s

}

. (25)

If the distribution of W (k) is approximated by normal distribution, then

y∗ = E[W (k)] +
√

V ar[W (k)]Φ−1
(

b − c

b + s

)

, (26)

with E[W (k)] and V ar[W (k)] are as derived in (3) and (4), respectively. Consequently,

y∗ = p(k + (τ − 1)µM ) +
√

kp(1 − p) + (τ − 1)[p2σ2
M + p(1 − p)µM ]Φ−1

(

b − c

b + s

)

. (27)

The expected total relevant cost term, conditioned on the ADI size, can be evaluated as follows.

E[TRC|k] = bE[W (k) − y]+ + sE[y − W (k)]+ + yc

= bE[W (k) − y]+ + s
(

E[y − W (k)] + E[W (k) − y]+
)

+ yc

= (b + s)E[W (k) − y]+ + s(y − E[W (k)]) + yc. (28)
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APPENDIX E. PROOF OF ∆ > 0

∆ =
(
√

(

τ
[

p2σ2
M + p(1 − p)µM

])

− E
[
√

Mp(1 − p) + (τ − 1) · [p2σ2
M + p(1 − p)µM ]

])

β

Let γ = p2σ2
M + p(1 − p)µM . Then,

∆ =
(

√

(τγ) − E
[

√

Mp(1 − p) + (τ − 1)γ
])

β

Also let ∆1 =
(

√

(τγ) − E
[

√

Mp(1 − p) + (τ − 1)γ
])

, that is, ∆ = ∆1β.

If β > 0 then we have ∆ > 0 whenever ∆1 > 0.
We show in the following steps that ∆1 > 0 starting from

V ar
[

√

Mp(1 − p) + (τ − 1)γ
]

> 0,

which holds due to our assumptions that σ2
M > 0 and p > 0. Then,

E2
[

√

Mp(1 − p) + (τ − 1)γ
]

+ V ar
[

√

Mp(1 − p) + (τ − 1)γ
]

− E2
[

√

Mp(1 − p) + (τ − 1)γ
]

> 0.

But since E2
[

√

Mp(1 − p) + (τ − 1)γ
]

+ V ar
[

√

Mp(1 − p) + (τ − 1)γ
]

= E

[

(

√

Mp(1 − p) + (τ − 1)γ
)2
]

= E [Mp(1 − p) + (τ − 1)γ], we have

E [Mp(1 − p) + (τ − 1)γ] > E2
[

√

Mp(1 − p) + (τ − 1)γ
]

(both > 0).

Then,

E

[

√

Mp(1 − p) + (τ − 1)γ

]

<
√

µMp(1 − p) + (τ − 1)γ

=
√

µMp(1 − p) + (τ − 1)p2σ2
M + (τ − 1)p(1 − p)µM

=
√

τµMp(1 − p) + (τ − 1)p2σ2
M

<
√

τµMp(1 − p) + (τ)p2σ2
M =

√
τγ.

Therefore, we have ∆1 > 0. Now let us show that β > 0. This proof is based on a similar one
by Güllü [10].

β = (b + s)Gu

(

Φ−1
(

b − c

b + s

))

+ (c + s)Φ−1
(

b − c

b + s

)

.

Let φ(r) denote the pdf of standard normal distribution. Then, since φ′(r) = −rφ(r), we have
∫ ∞

u
rφ(r)dr = φ(u).

Therefore, Gu(z) = φ(z) − z(1 − Φ(z)) ∀ z.

So,

Gu

(

Φ−1
(

b − c

b + s

))

= φ

(

Φ−1
(

b − c

b + s

))

− Φ−1
(

b − c

b + s

)[

1 − Φ

(

Φ−1
(

b − c

b + s

))]

= φ

(

Φ−1
(

b − c

b + s

))

− Φ−1
(

b − c

b + s

)[

s + c

b + s

]

.

Hence,

β = (b + s)

{

φ

(

Φ−1
(

b − c

b + s

))

−Φ−1
(

b − c

b + s

)(

s + c

b + s

)}

+ (s + c)Φ−1
(

b − c

b + s

)

= (b + s)φ

(

Φ−1
(

b − c

b + s

))

> 0.

25



Consequently, ∆ > 0.

APPENDIX F. PROOF OF PROPOSITION 1

Proof of (i):

∆f =

√
τγ

E
[

√

Mp(1 − p) + (τ − 1)γ
] − 1,

where γ = p2σ2
M + p(1− p)µM . In order to show that ∆f increases as p increases, it suffices to

show that
∂∆f

∂p
> 0 for all 0 < p < 1. We consider the cases of τ = 1 and τ > 1 separately.

Case 1. τ = 1:

∆f =
√

γ

E[
√

M]
√

p(1−p)
− 1. Then, we need to show that

∂∆f

∂p
=

1
2

γ′

√
γ
E[

√
M ]
√

p(1 − p) − 1
2

(1−2p)√
p(1−p)

E[
√

M ]
√

γ

(

E
[√

M
]

√

p(1 − p)
)2 > 0. (29)

Let us assume that (29) does not hold. Then,
1
2

γ′

√
γ
E[

√
M ]
√

p(1 − p) ≤ 1
2

(1−2p)√
p(1−p)

E[
√

M ]
√

γ, since
(

E
[√

M
]

√

p(1 − p)
)2

> 0.

Simplification yields γ′p(1 − p) ≤ γ(1 − 2p). Substituting γ and γ ′, we obtain

(2pσ2
M + (1 − 2p)µM )(p(1 − p)) ≤ (p2σ2

M + p(1 − p)µM )(1 − 2p).

Simplifying the above inequality results in σ2
M ≤ 0, which contradicts to σ2

M > 0. Hence, (29)
must hold.

Case 2. τ > 1:
We need to show that

∂∆f

∂p
=

1
2

τγ′

√
τγ

E
[

√

Mp(1 − p) + (τ − 1)γ
]

− E

[

1
2

M(1−2p)+(τ−1)γ′√
Mp(1−p)+(τ−1)γ

]√
τγ

(

E
[

√

Mp(1 − p) + (τ − 1)γ
])2 > 0,

which is equivalent to showing that

E

[

1

2

τγ′
√

τγ

√

Mp(1 − p) + (τ − 1)γ − 1

2

M(1 − 2p) + (τ − 1)γ ′
√

Mp(1 − p) + (τ − 1)γ

√
τγ

]

> 0, (30)

because
(

E
[

√

Mp(1 − p) + (τ − 1)γ
])2

> 0 and expectation is a linear operator. (Note that γ

and γ′ are constant for a given set of µM , σ2
M , and p.)

In order to show (30), we will show that

1

2

τγ′
√

τγ

√

Mp(1 − p) + (τ − 1)γ − 1

2

M(1 − 2p) + (τ − 1)γ ′
√

Mp(1 − p) + (τ − 1)γ

√
τγ > 0 (31)

for all M > 0, since the expectation term in (30) is a positive-weighted Riemann-Stieltjes sum

of the term in (31) for all values of M . When M = 0 (and remembering that τ > 1),
∂∆f

∂p

26



equals zero, which is intuitive, because there would be no impact of a change in p when ADI
size is zero. But since σ2

M > 0, we have Pr{M = 0} < 1, and the argument that “showing (31)
for all M > 0 is sufficient for showing (30)” holds.

For a given M > 0, let us assume that (31) does not hold. Then,

1

2

τγ′
√

τγ

√

Mp(1 − p) + (τ − 1)γ ≤ 1

2

M(1 − 2p) + (τ − 1)γ ′
√

Mp(1 − p) + (τ − 1)γ

√
τγ.

Simplification yields γ′p(1− p) ≤ γ(1− 2p) as in case 1, resulting in σ2
M ≤ 0, which contradicts

with σ2
M > 0. Hence, (31) must hold for all M > 0, which completes the proof of (i).

Proof of (ii):

Similarly, we need to show that
∂∆f

∂σ2

M

> 0 for all σ2
M > 0. We follow the same arguments as

in the proof of (i). For the case τ = 1,

∂∆f

∂σ2
M

=

1
2

p2

√
γ
E[

√
M ]
√

p(1 − p)
(

E
[√

M
]

√

p(1 − p)
)2 . (32)

Assuming that (32) is less than or equal to zero results in p2 ≤ 0, which contradicts to p > 0.
For the case τ > 1,

∂∆f

∂σ2
M

=

1
2

τp2

√
τγ

E
[

√

Mp(1 − p) + (τ − 1)γ
]

− E

[

1
2

(τ−1)p2√
Mp(1−p)+(τ−1)γ

]√
τγ

(

E
[

√

Mp(1 − p) + (τ − 1)γ
])2 .

It suffices to show that

1

2

τp2

√
τγ

√

Mp(1 − p) + (τ − 1)γ − 1

2

(τ − 1)p2

√

Mp(1 − p) + (τ − 1)γ

√
τγ > 0 (33)

for all M > 0. Assuming that (33) does not hold results in Mp(1 − p) ≤ 0, and this contradic-
tion completes the proof.
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Figure 3: Percent penalty of not utilizing imperfect ADI versus p
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Figure 4: Percent penalty of not utilizing imperfect ADI versus coefficient of variation
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