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Abstract

In this paper, we consider a single machine at which two types of orders with determinis-
tic processing times arrive according to independent Bernoulli processes. When the machine
switches from processing one type of order to another, fixed switch-over times are incurred.
For both types of orders, we determine the delivery-time distribution for a periodic switch-
ing strategy and for an exhaustive service policy. Using these delivery-time distributions,
we compare for these switching strategies both the average delivery time and the fraction
of orders that are processed in time. Numerical examples show that a periodic switching
strategy performs considerably worse than an exhaustive service policy. For the periodic
switching strategy, however, delivery times of orders can be guaranteed, which is not the
case for the exhaustive service policy. Hence, for this latter policy, we also determine the ex-
pected delivery times of orders if for each state upon arrival of an order the promised delivery
time has to be met with a certain probability. When this probability is high, the periodic
switching strategy might outperform the exhaustive service policy. Finally, we compute the
switching strategy that minimizes the number of orders at the machine, and compare it with
the aforementioned switching strategies.



1 Introduction

In production centers, machines usually have to (partly) manufacture different types of products.
Whenever such a machine switches from producing one type of product to another, switch-over
times are incurred, for instance, to clean and tune up the machine, or to replace tools. For
these production centers, important performance measures are the average delivery time of an
order and the fraction of orders that is handled in time. These performance measures obviously
depend on the switching strategy of the machine. In this paper, we consider two kinds of
switching strategies, which occur in a natural way in practice: a periodic and an exhaustive
strategy. Of course, other switching strategies are also possible, e.g., a strategy that optimizes
some objective function like the number of orders or the total amount of work at the machine.
In general, however, such optimal strategies are quite complex and therefore not suitable for
implementation in practice.

In a periodic switching strategy, the machine switches at predetermined and periodic time
epochs. So, for each type of order, time can be divided into a periodic pattern of intervals of
fixed length during which the machine is either available to this type of order (on-periods) or
not (off-periods). One such fixed periodic sequence of on- and off-periods will be called a cycle.
When implementing a periodic switching strategy, the production center has to define for each
type of order the number of on-periods in a cycle (of course at least one), the length of each of
these on-periods, and their order in the cycle.

In an exhaustive service policy, orders for each type of product are handled exhaustively
before the machine switches to handling orders for another type of product. For this kind of
switching strategy, the production center has to decide in which order the machine is available
to the different types of orders, and it has to define a rule which governs the behaviour of the
machine when there are no orders at all at the machine.

A periodic switching strategy has several important practical advantages with respect to an
exhaustive service policy. For instance, it is easier to control the inventory level of materials
and it is possible to give accurate estimates of the delivery times of orders. It may be expected,
however, that a periodic switching strategy performs worse with respect to the aforementioned
performance measures than an exhaustive service policy. The aim of this paper is to get some
insight in the change in performance when a periodic and more practical switching strategy is
preferred to an exhaustive service policy.

To simplify the analysis of these switching strategies, we consider a discrete-time queueing
system with two types of jobs or products, which are manufactured by a common machine. For
each type of job, orders arrive according to a Bernoulli process and have deterministic service
times. Whenever the machine switches from handling orders for one type of job to the other, fixed
switch-over times are incurred. It is natural to model these queueing systems as systems in which
each type of order has its own queue. Therefore, we will henceforth say that the server switches
between queues rather than between job types. For the periodic switching strategy, we assume
that a cycle consists of exactly one on-period for each type of job. For the exhaustive service
policy, we use the natural rule that, when there are no orders at the machine, the production
center waits for the next order before switching. For both switching strategies, we determine the
delivery-time distribution for each type of order, so that we are able to compute and compare the
aforementioned performance measures. Numerical results show that the average delivery time
of an order and the probability that an order is not served in time are in general considerably
larger for a periodic switching strategy than for the exhaustive service policy. Only when the



production center has to give delivery times based on the number of orders at the machine upon
arrival and these delivery times have to be met with a very high probability, it turns out that a
periodic switching strategy might outperform the exhaustive service policy. Finally, we compare
these two switching strategies with the switching policy that minimizes the number of orders at
the machine. Our numerical examples show that when the service times of the different type of
jobs do not differ much, the performance of the exhaustive service policy and the optimal one are
almost the same. In a forthcoming paper, we will focus on the rate at which the performance
of a periodic switching strategy can be improved when introducing opportunities to work in
overtime and to produce on stock.

Discrete-time queueing systems with a periodic switching strategy have been studied by
several authors. By using a generating function technique, Newell (cf. [11]) obtained approxi-
mations for the expected number of orders in a queue just before the machine switches to the
other queue. Darroch (cf. [3]) derived bounds on the same guantity. Van Eenige, Resing and
Van der Wal (cf. [4]) applied the matrix-geometric approach of Neuts [10] to this kind of queue-
ing system, and derived, for a special case, the sojourn-time distribution of an arbitrary arriving
order.

The queueing system with the exhaustive service policy considered here is usually called a
polling system with a dormant (also called stopping or patient) server. Most of the literature
on polling systems, however, is focussed on the case that the machine continuously switches
when there are no orders at this machine (see, e.g., Takagi [13] for a review). Continuous-time
polling systems with a dormant server were first analysed in Eisenberg [5] for the two queue case.
For each type of order, Eisenberg derived the Laplace-Stieltjes transform for the waiting-time
distribution. Only recently, this polling system again received some attention. Liu, Nain and
Towsley (cf. [9]) showed for the symmetric case that this exhaustive service policy is optimal in
the sense that for this policy the total amount of unfinished work in the system and the number
of orders in the system are minimal. Eisenberg [6], and Srinivasan and Gupta [12] extended,
among other things, the former results of [5] to the case of an arbitrary number of queues and to
other switching rules when the system is empty. Borst (cf. [2]), and Srinivasan and Gupta (cf.
[12]) derived a pseudo-conservation law for these polling systems. Finally, Blanc and Van der
Mei (cf. [1]) used the power-series algorithm for a numerical analysis of these queueing systems.

The outline of the paper is as follows. In Section 2, the two queueing systems will be
described in detail. The analysis of the queue-length processes of these models will be the topic
of Section 3, together with some remarks with respect to the determination of the switching
strategy that minimizes the number of orders at the machine. Numerical examples will be given
in Section 4, and the paper will be concluded with some final remarks in Section 5.

2 The models

In this section, we give a detailed description of the models. We first describe the common
characteristics of both models, and then for each of the models the specific ones.

We consider a discrete-time queueing system with two queues, which are attended by a
common server. Whenever the server switches from one queue to the other, switch-over times
are incurred. Time is divided into intervals of equal length, henceforth called slots. During each
slot, the server is either serving a customer, or idling at a queue, or switching from one queue
to the other.



At queue ¢, 1 = 1,2, customers arrive according to a Bernoulli process with parameter p;
(0 < p; < 1) with deterministic service times equal to b; slots. For each queue, customers are
served in order of arrival and the arrival processes are assumed to be mutually independent.
The switch-over times from queue 1 to queue 2 (from queue 2 to queue 1) are also deterministic,
and equal to s;; slots (sg; slots). Hence, for these queueing systems, only the arrival processes
are random.

We assume that all events, i.e., customer arrivals and service completions, occur at slot
boundaries. Since we want to determine the sojourn-time distribution of an arbitrary customer,
we are interested in the queue lengths at arrival instants. For convenience, we assume that
service completions occur just before a slot boundary, and customer arrivals just after a slot
boundary. In the sequel, we will say that a customer arriving (departing) at the slot boundary
between slot k —1 and slot k (i.e., the k-th slot boundary) is arriving in slot k£ (departing in slot
k —1). Also decisions whether to start service, to idle, or to switch are made at slot boundaries.
We assume that such decisions are taken at the instants immediately after a possible arrival.
For example, if a customer arrives at an empty queue which the server is attending, his service
starts in the same slot in which he arrived.

In the sequel, we denote the queueing model with a periodic switching strategy as the PER-
model, and the queueing model with the exhaustive service policy as the EXH-model.

2.1 The PER-model

In the PER-model, the server is assigned to the queues according to a predetermined (fixed)
periodic schedule. More specifically, the server is first assigned to queue 1 for a; consecutive
slots. Then, it switches from queue 1 to queue 2 (which takes s slots), after which the server
is available to customers of queue 2 for a; consecutive slots. Finally, it switches back to queue 1
(which takes s;; slots), after which the periodic switching pattern starts over again. If, due to
the periodic pattern, the server has to switch to the other queue during the service of a customer,
upon return of the server this service is resumed where it was interrupted.

The time interval between two successive departures of the server from queue 1 is called a
cycle. Clearly, the length of a cycle is equal to a; + $12 + a2 + s2; slots, and will be denoted by
N. The slots in a cycle are numbered 1,2,...,N.

2.2 The EXH-model

In the EXH-model, the server keeps serving customers of the attended queue as long as this
queue is not empty at instants immediately after possible customer arrivals (recall that customer
arrivals occur just after slot boundaries). If the attended queue is empty at this instant, then
the server only switches if the other queue is not empty. Otherwise, the server idles at the queue
it is attending until the next arrival at one of the queues.

3 The queue-length processes

In this section, we first analyse the queue-length processes of the PER-model and the EXH-
model. The analysis of these two models are completely different, since in the PER-model the
queue-length processes can be analysed separately, while in the EXH-model they have to be



analysed simultaneously. We conclude this section with describing a way to approximate the
switching policy that minimizes the number of customers in the system.

3.1 The PER-model

Since the queue-length processes do not affect each other, they can be analysed separately. In
the remaining part of this subsection, we will consider only one of the queues. For notational
convenience, we will simply write b for the service times of customers of the queue to be analysed,
a for the length of the on-period in a cycle for customers of this queue, and p for the arrival rate
of these customers, respectively. Furthermore, we will assume without loss of generality that
these a slots are the last a slots in the cycle.

Van Eenige, Resing and Van der Wal (cf. [4]) considered a more general model, and ap-
plied the matrix-geometric approach of Neuts to the analysis of the queue-length process. This
approach involves the determination of the rate matrix R (see [10]). For the present problem,
the dimension of R is Nb and can be very large, so that the matrix-geometric technique is of
limited value for numerical purposes. For this reason, we have sought an alternative (i.e., more
efficient) way to analyse the queue-length process.

3.1.1 Analysing the queue embedded at the beginning of the cycle

Consider the queueing system embedded at the beginning of the cycle (i.e., at the beginning of
the off-period), and let Y; denote the total number of slots work in the queue at the beginning
of the k-th cycle. Then, the process {Yi}ren, is a discrete-time parameter Markov chain with
state space consisting of the nonnegative integers {j|j = 0,1,2,...}. We assume that this
chain is ergodic (i.e., Npb < a), and hence, that the stationary distribution {r;,5 =0,1,2,...}
exists. This stationary distribution is the unique normalized solution of the one-cycle equilibrium
equations

T = 90,370 + q1,;T1 + -+ Gita,jTitas  T=0,1,2,.., (1)
where ¢; ; denotes the one-cycle transition probability from state ¢ to state j, i.e.,
g¢;,; :=Pr{¥1 = j|Yo = i}.
We will first show that for j > Nb — a the transition probabilities ¢; ; satisfy

~_ ) Bm ifi=j—mb+aforsomem=0,12,...,N, @)
%i=1 o otherwise,

where f,, denotes the probability of m customers arriving in a cycle consisting of N slots, i.e.,

Bm = ( Z )p’"(l—p)N"", m=0,1,2,...,N.

Hence, for j > Nb — a, the equilibrium equations (1) reduce to
Tj = BNTj—(Nb—a) + BN-1Tj_((N-1)p—a) T * ** + BoTj+a-

Later on, we will use the structure of these equations to determine the stationary distribution.
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To prove (2), let j > Nb—a. If the server is idle in a slot between N —a and N, then, at the
end of the cycle there would be no more than (¢ —1)(b— 1) < N(b—1) < Nb - a slots of work.
So, if at the end of the cycle the number of slots work equals j, the server cannot have been
idle in the cycle. Hence, ¢;; = 0for¢ # j —mb+ a for any m=0,1,...,N. Ifi=j—mb+a
for some m = 0,1,..., N, then there should have been exactly m arrivals in the cycle. Even
if these m arrivals take place in the last m slots, the server cannot become idle as there are
i=j—mb+a> (N -m)b> N - mslots of work at the beginning of the cycle. Thus, any
pattern of m arrivals prevents the server from becoming idle, and lead to j slots of work at the
end of the cycle. Hence, ¢;; = B, if i = j — mb+ a for some m =0,1,...,N.

So, the equilibrium equations (1) can be partitioned as follows

T; = qo,;%0 + 01,5T1 +---+ 9j+a,iTj4ay ] = Ov 17 2’ ceey Nb—a-— 1’ (3)
Tj = BNT;_(Nb—a) + BN-1Tj_(N-1)b—a) + - ="+ BoTj4a, J=Nb—a,Nb—a+1,..., (4)

Equations (4) are called inner conditions and equations (3) are called boundary conditions. In
the boundary conditions, for i > a, the transition probabilities ¢;; are also given by (2). For
t < a, the transition probabilities ¢;; can iteratively be obtained from the one-slot transition
probabilities. These one-slot transition probabilities can easily be determined, since in each slot
at most one customer can arrive at the queue and at most one slot of work can be handled.

As already mentioned, the stationary distribution is the unique normalized solution of the
equilibrium equations. We will seek solutions of the inner conditions of the form 7; = 27, and
use these solutions to construct a linear combination that also satisfies the boundary conditions
and the normalization, such that we finally obtain

Ti=Y &z, 1=0,1,2,...,
i

where the ¢;’s denot_e the coefficients of the linear combination.
Inserting 7; = 27 in the equations (4) and dividing by z/=(Vt-2) yields

2NV = BN 4 B (V-VE Ly B (%)

Clearly, we are only interested in solutions z with |z| < 1. The following lemmas state that
there are Nb — a solutions with |z| < 1, and that exactly one of these solutions is positive and
real, which is the largest solution in absolute value. The proofs of these lemmas can be found
in Appendix A.

Lemma 1 FEquation (5) has ezactly Nb — a roots inside the unit circle.
These Nb— a roots will be denoted by 2, 2,..., 2Np=q-

Lemma 2 There is eractly one root in the interval (0,1).

This root will be denoted by z,.

Lemma 3 If Nb— a is not @ multiple of b, then |z| < || for i =2,3,...,Nb—a. If Nb—a
is a multiple of b, there are b — 1 roots, z3,23,...,2, say, with |z;| = |z1|, and |z]| < |z| for

i=b+1,042,...,Nb—a.



For convenience, we assume that the Nb — a roots of equation (5) are distinct, so that we have
Nb — a basic solutions 2] satisfying the inner conditions. Now, we will try to represent 7; as a
linear combinations of these basic solutions

Nb-a .

Ti= Y, ¢z, j=0,1,2... (6)

i=1
The assumption that the roots of equation (5) are distinct is not restrictive, because if, for
instance, roots z; and z;y1 are identical, z] 1 should be replaced in (6) by jz], so that the
number of basic solutions is sufficient to represent the stationary distribution {r;,7 =0,1,2,...}.
Similarly, if there are more roots which are equal to z;, then higher powers of j should be used.
It remains to determine the Nb — a coefficients ¢; such that the boundary conditions and the
normalization equation are satisfied.

Since the equilibrium equations are dependent, one of the boundary conditions in (3) may be
omitted, the boundary condition for state j = 0, say. Substituting the form (6) with the unknown
coefficients ¢; into the reduced set of boundary conditions and the normalization equation leads
to a set of linear equations. The solution of this set of equations is unique and it yields the
desired coeflicients c;.

To use solution (6), we first have to find the Nb—a roots of equation (5), and then we have to
solve the boundary conditions and the normalization equation for the coefficients ¢;. The single
positive root, i.e., 21, can easily be determined numerically, e.g., by using bisection. Finding all
roots numerically, however, can be difficult. These difficulties especially occur when Nb— a is
large or when (some of) the roots are closely clustered inside the unit circle. Moreover, even
if we are able to compute all roots accurately, the set of equations consisting of the boundary
conditions (after omitting the equation for state j = 0) and the normalization equation is close
to singular if the roots are closely clustered (see, e.g., Section 1.6 in Neuts [10]). Therefore,
we will not use the exact solution (6) for numerical purposes. Instead, we will approximate
the stationary distribution numerically by exploiting the asymptotic behaviour of the stationary
probabilities. In the next subsection, it will be shown that this behaviour is determined by the
single positive root 2;.

3.1.2 Numerical approach

The asymptotic behaviour of the stationary distribution (6) is obviously determined by the
root(s) with largest absolute value. By Lemma 3, this root (z1) is unique if Nb — a is not a
multiple of b, and there are b largest roots (z1, 22,...,2) if Nb — a is a multiple of b. In the

former case, we have
lim T g, (M
j—oo T
and hence, the tail behaviour of the stationary distribution is geometric. Since this limit does
not exist in the latter case, we consider in this case the quotient 7;43/7;, and, by using zf-’ =2

for i =2,3,...,b, we obtain

Nb—a ) b . Nb—e i+
Fratt Ay e+ > e
. Titd . == . =1 i=b+1
hm _Jt_ — hm _11— — hm ' L + = 22, (8)
Jj—oo T; j—o0 Nb—a . j—o0 b . Nb—a .
S T et Y
=1 1==1 i=b+1



So, the single positive root characterizes the asymptotic behaviour of the stationary distribution
completely. This behaviour will be exploited by using the numerical approach of Tijms and Van
de Coevering (cf. [15]).

In [15], the starting point is the assumption of the existence of limit (7). Since this limit does
not exist if b is a divisor of Nb— a, their approach is slightly adapted for the present problem by
exploiting the asymptotic behaviour of 7;44/7; instead of ;41 /7;. We choose a positive integer
J, and set

;= 211’71']'_(,, 12J+1L (9)

So, we implicitly assume that 2% is a (fairly) good approximation for the quotient x;4s/7; for
3 > J. The probabilities 7y, m;,...,7s are then obtained by solving the equilibrium equations
for j =0,1,2...,J (in which approximation (9) is substituted), and the normalization equation,

which reads as follows
J-b b 1
EWj+Z 5 TJI-b+i = L.
rd 1-2

i=1

The value of J (which obviously depends on the required accuracy) has to be determined ex-
perimentally. .

As suggested in [15] and confirmed by our numerical examples, the asymptotic behaviour
appears rather quickly, i.e., for already small values of J. In particular, for our examples, J is
much smaller than Nb — a, which is the number of boundary conditions needed to be solved
for the exact analysis, and consequently, J is also much smaller than the dimension of the rate
matrix Nb which has to be determined when using the matrix-geometric approach.

From this approximated stationary distribution, we can determine the sojourn-time distri-
bution of an arbitrary arriving customer as follows. Since in each slot at most one customer can
arrive and at most one slot work can be handled, the stationary distribution of the number of
slots work at the n-th slot boundary can easily be computed once the stationary distribution at
the (n — 1)-st slot boundary is known. So, from the stationary distribution {7;,7 =0,1,2...},
we can iteratively compute the stationary distribution of the number of slots work at the n-th
slot boundary, n = 2,3,..., N, in the cycle. Due to the strictly periodic switching pattern, the
number of slots work upon arrival, uniquely determines the slots in the cycle in which the service
of this customer is started, interrupted, and completed. Hence, given the slot of arrival and (by
using the Bernoulli-arrivals-see-time-average property (cf. Halfin [7])) the stationary distribu-
tion of the number of slots work upon arrival, we easily obtain the sojourn-time distribution of
this customer.

Finally, we remark that the above analysis does not depend on the number of job types
(or the number of queues). For this analysis, it is only important that for each queue a cycle
contains exactly one on-period of fixed length.

3.2 The EXH-model

In contrast to the PER-model, the queue-length processes of the EXH-model cannot be studied
separately. In order to fully characterize the latter model at slot boundaries, we need the
number of customers in queue 1 and queue 2, the position of the server (i.e., the server is at
one of the queues or is switching), and the residual number of slots service or switching at these
slot boundaries. Let X} denote the number of customers in queue %, ¢ = 1,2, at the k-th slot




boundary, Let Y} denote the position of the server during slot k — 1. More specifically, if the
server is at queue 1 (at queue 2) during slot k — 1, we set Yz := 1 (Y% := 2), and if the server is
switching from queue 1 to queue 2 (from queue 2 to queue 1) during slot k£ — 1, we set Y := 3
(Yr := 4). Let Zy denote the residual number of slots service of the customer in service (i.e,
if Y € {1,2}), or the residual number of slots switching (i.e., if Y; € {3,4}), at the k-th slot
boundary. If the queue, which is attended by the server at the k-th slot boundary, is empty, or if
a customer departure occurred in slot k — 1, we set Zi := 0. The process {(X}, X2, Yk, Zi) }ken
is an aperiodic and irreducible discrete-time parameter Markov chain with state space

S = {(0,l3,1,0)}l2 € No} U {(l1,12,1,n)|l; € N,l; € Ng,n=0,1,2...,b; - 1} U
{(11,0,2,0)|l; € No} U {(I1, 12,2, n)|l € No,lo € N,n = 0,1,2...,bg — 1} U
{(l,12,3,n)|l € N,n=0,1,...,812— 1,4 =0,1,...,82— 1 —n}U
{(l4,12,4,n)|ly e N,n = 0,1,...,801 — 1,I3=0,1,...,821 — 1 — n}.

A necessary and sufficient condition for positive recurrence is that the average number of slots
work brought to the system per slot is less than 1, i.e.,

p1b1 + p2b2 < 1.

Henceforth, we will assume that this condition is satisfied, so that this Markov chain has a
stationary distribution.

To our knowledge, so far only expressions for the generating function of the queue-length
process and the Laplace-Stieltjes transform of the waiting-time and sojourn-time distributions
are known for the continuous-time version of the EXH-model (see, e.g., Eisenberg [5] and [6], and
Srinivasan and Gupta [12]). Since we are mainly interested in tail probabilities of the sojourn-
time distribution, we use a numerical approach for approximating the stationary distribution of
the aforementioned Markov chain. Once this (approximated) stationary distribution is known,
we can give explicit expressions for the sojourn-time distribution of an arbitrary customer.

For the numerical approach, we assume that the buffers at both queues are finite. The size
of these buffers is chosen sufficiently large. Customers arriving at a queue with a full buffer
will be rejected. For the Markov chain, which corresponds to this model with finite buffers,
we use the iteration method of Van der Wal and Schweitzer (cf. [16]) to solve the finite set of
equilibrium equations and the normalization equation, so that we obtain an approximation for
the stationary distribution of the original model.

From this approximated stationary distribution, we can obtain performance measures like
the sojourn-time or waiting-time distribution of an arbitrary arriving customer. Here, we briefly
outline the basic idea of the derivation of the sojourn-time distribution. For more details, we
refer to Appendix B. We condition on the state of the system upon arrival, and determine the
conditional sojourn-time distribution. If the server is at or switching to the queue at which
the customer arrived, the sojourn time of this customer is completely known. Otherwise, the
sojourn time of this customer is the sum of the fixed time to switch and to serve customers of
his own queue, plus the random amount of time to serve customers of the other queue. The
latter amount of time is basically the distribution of a busy period starting with a known initial
number of slots work.



3.3 The optimal switching strategy

As mentioned in the Introduction, we also determine the switching strategy that minimizes the
number of customers in the system for comparing it with the periodic and exhaustive strategy.
To our knowledge, so far the structure of this policy is known for the (continuous-time) case
that the service-time distributions of both type of customers are identical. In this case Liu,
Nain and Towsley (cf. [9]), and Hofri and Ross (cf. [8]) show that each queue should be served
exhaustively, and furthermore, Hofri and Ross conjecture that the server should only switch
from an empty queue to the other queue if the number of customers in the latter queue exceeds
a certain number. The queueing system with the optimal switching policy will be denoted by
OPT-model. To find this optimal policy, we first model our problem as a Markov decision
problem.

The decision epochs are the instants immediately after possible customer arrivals. The state
of the system at these instants is characterized similarly as for the EXH-model. For all decision
epochs k, the set of all possible states is

S = {(0,15,1,0)[l € No} U{(l1,l5,1,n)|l; € N,l € Ng,n=0,1...,b, — 1}U
{(11,0,2,0)|l; € No} U {(l1,12,2,n)|l € No,l e N,n =0,1...,bp—-1}U
{(11,12, 3,'n)|11,12 € INo,n=0,1,...,8120 — 1} U
{(l1,12,4,n)|l,1; € No,n =0,1,...,89; — 1}.

Note that § differs slightly from &, because in the EXH-model, during a switch the number of
customers at the queue from which the server switches is smaller than the elapsed time of the
switch. If at a decision epoch the server is already switching, there is only one possible decision:
the server keeps switching. Otherwise, there are two possible ‘actions: the server switches to the
other queue or the server stays at the queue. If the server stays at the queue, it keeps serving
customers (if any) of this queue. For ease of notation, we denote a state in S by y or z instead of
(1,12, m,n). The set of all possible decisions when the state of the system is y will be denoted
by A(y). Since in each slot at most one customer can arrive at each queue and at most one
customer can leave the system, the transition probabilities py,z(a) can easily be deduced for all
states y,2 € S and actions a € A(y). Finally, the direct costs for the forthcoming slot are the
(expected) number of customers in that slot, i.e.,

cy(a) =hL+ 12’ y= (ll’l2vma n) € Sa

when the system is in state y upon a decision epoch and action a is taken.

Since the state space & is infinitely large, we will compute approximations for the optimal
switching strategy and the corresponding minimal costs, by solving the system with finite buffers
exactly. Here the capacity of the buffers is chosen sufficiently large to obtain good approxima-
tions for the minimal costs and the optimal switching strategy (at least, for states close to the
origin, i.e., states which are not too close to the states with one of the buffers full). Customers
who arrive at a full buffer are rejected. Let &’ be the (finite) state space of the finite buffer
model, and Vi(y) be the total expected costs with k slots left to the time horizon given ini-
tial state y. The value vectors Vi(y) can be computed recursively by using the value-iteration
method (see, e.g., Tijms [14]) for all y € &

Vin(y) = min {a:c,(a) + > pus(@)Vi(2),} (10)
z€S’



where Vp(z) = 0 for all z. Let fi41 denote the minimizing switching strategy obtained in the
(k + 1)-st iteration, and g(fr+1) denote the average costs of the stationary strategy fi+1. In
each iteration, the following bounds on g¢( fr+1) and the minimal average costs g* are obtained

min{Ve+1(2) ~ Vi(2)} < 9" < 9(fier) < max{Viya(2) - Vil2)}-
Under certain conditions, the difference

Vier1(y) = Vi(v)

converges for all y € §' to the minimal average number of customers in the system when k
goes to infinity. A sufficient condition for convergence is that each stationary policy satisfies
the unichain property and the corresponding Markov chain is aperiodic (see, e.g., Tijms [14]).
When the service times are larger than one, this condition is satisfied. As simple examples show,
for service times equal to one, this condition may not hold. We iterate relation (10) until for all
yeds’

max{Vi41(2) — Vi(2)} = min{Vi41(2) = Vi(2)} < €- min{Vi41(2) — Vi(2)},
z€8’ z€S’ 2€S8'

with € a prespecified accuracy level, so that the difference g( fr4+1)—g* is at most an e-percentage
of g(fe+1)-

4 Numerical results

In the Introduction, we already mentioned that delivery times of orders are an important per-
formance measure for a production center. In this section, we give numerical results for the
delivery times of orders of the different switching strategies, using the following basic example.
In a production center, a machine is used to produce two types of products. This production
center can run 8 hours a day for 5 days a week. In each of these hours (i.e., in each slot) at most
one order arrives for a product of type 1 and at most one order for a product of type 2. The
probability of an arrival of these orders is p; and p,, respectively. The time for producing one
product is equal to 2 hours for products of type 1, and 3 hours for products of type 2. When the
production center decides to change from handling orders of type 1 to orders of type 2 or vice
versa, the machine has to be cleaned thoroughly. The cleaning of the machine takes 6 hours.
Finally, we define p = 2p; + 3p», i.e., the average number of hours work arriving at the machine
per hour.

Before giving numerical results concerning the delivery time of orders, we first make some
remarks about the length of the on-periods and how quick the geometric behaviour of the sta-
tionary queue-length distribution appears in the PER-model. Recall that we have not specified
yet the length of the on-periods (i.e., ¢; and @;). For the numerical examples, these lengths
are chosen such that the average number of orders at the machine is minimized, so that we can
make a fair comparison with the OPT-model. For several examples, the optimal values for a;
and a, are given in Table 1.

We see that balancing the load of the queues p; is often optimal and that the lengths of the
on-periods are mostly multiples of the service times. The corresponding cycle length N turns
out (of course) to depend on the load of the system, but seems rather insensitive for values of
the arrival rate of orders which give this load. In fact, N seems to be roughly O(1/(1 - p)).

10



Type 1 Type 2

P |pmp|| N| a1| p1| @a| p2
050 | 35 | 16 | 47 [ 14067 21]0.67
5|1l 48| 18067 18] 0.67

% 2 49) 10foe61] 27]0.68
0.75 | % | 55 || 92| 32(0.86| 48] 0.86
5 é 96 || 42| 0.86 | 42| 0.86

= | 102 24]080| 66| 0.87

090 | = | =5 [ 226 || 86| 0.95 || 128 | 0.95
725 % 228 || 108 | 0.95 || 108 | 0.95

35 | 25 11 238 || 581 0.92 | 168 | 0.96

Table 1: The cycle length and the length of the on-periods in hours, and the effective load of
the queues.

To obtain the numerical results of the PER-model, we make use of the asymptotic behaviour
of the stationary queue-length distribution. For very accurate results, this behaviour (cf. (8))
appears for type 1 orders for values of J which are about 60, 90 and 120, when p equals 0.50,
0.75 and 0.90, respectively. For orders of type 2, this behaviour appears for values of J which
are about 100, 130 and 200, when p is 0.50, 0.70 and 0.90, respectively, with an exceptional 300
for the first example of the case 0.90. However, results with an accuracy of about three or four
digits can already be obtained for much smaller values of J. Note that these values of J are much
smaller than Nb;, which is the dimension of the rate matrix R when using the matrix-geometric
approach, and consequently they are much smaller than the number of boundary conditions to
be solved when using the analytical approach in Section 3.1.1.

We now return to our performance measure of interest: the delivery times of orders. In Table
2, we give the average delivery time of both types of orders in the OPT-model, EXH-model, and
PER-model. Numerical results suggest that the optimal switching policy is a so-called threshold

Type 1 product Type 2 product
p | p|p:| OPT]EXH| PER|[ OPT | EXH| PER
0.50 | 55 | 35 | 11.60 | 11.60 [ 19.97 || 11.23 | 11.23 | 17.55
L4 1072 1072 | 17.02 |f 11.93 | 11.93 | 20.54
% %2 12.89 | 12.66 | 23.95| 9.68| 9.86 | 14.47
0.75 | 55 | =5 [| 22.05[22.05] 39.19 || 18.23 | 18.23 | 32.39
2| 4 || 1951 | 19.51 | 32.39 || 20.27 | 20.27 | 39.26
% 1% 26.65 | 26.24 | 46.76 || 14.95 | 15.23 | 25.90
0.90 | & | = [ 51.6251.62| 95421 37.87 | 37.87 | 82.59
o | 55 [ 43.69 | 43.69 | 80.00 (| 44.29 | 44.29 | 98.57
;% S ) 66.05 | 66.07 | 118.33 || 28.67 | 28.69 | 61.48

Table 2: Expected values for the delivery times of orders in hours.
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policy, i.e., the machine switches only if the number of orders at the other queue is at least equal
to a specific threshold. In most of these examples the thresholds for both queues are equal to
1, which implies that the optimal policy and exhaustive service policy coincide. Only for the
latter examples of p = 0.50, 0, 75,0.90 the thresholds are not equal to 1. When the machine is at
queue 2, the threshold is 2 for each of these latter examples, and when the machine is at queue
1, the threshold is 1 for p = 0.50 and zero for p = 0.75 and p = 0.90. However, the differences
between the average number of orders at the machine in the OPT-model and EXH-model are
quite small. One may expect, however, that when the difference in service times increases, the
optimal switching policy and the exhaustive service policy will differ more, and consequently,
the differences between the average number of orders at the machine for these policies.

Type 1 product Type 2 product
p | pi|p2| Model [: 0.70 0.80 0.90 0.95[ o: 0.70 0.80 0.90 0.95
0.50 | 55 | 55 | EXH 15 18 22 26 14 16 19 22
PER 28 31 35 39 24 28 30 35
050 ] § |55 | EXH 14 17 20 24 15 17 21 24
PER 24 28 31 33 28 32 35 42
050 | i | 5 | EXH 16 19 24 29 13 15 17 19
PER 33 37 41 47 20 23 26 29
0.75 | 55 | | EXH 27 34 43 53 23 27 33 39
PER 52 59 68 80 42 47 58 170
075 | = | § | EXH 24 30 38 45 25 30 37 44
PER 45 51 56 65 51 57 70 84
075 | & | & | EXH 32 40 53 66 19 22 26 31
PER 63 72 80 92 35 39 47 57
0.90 [ % | & | EXH 65 81 106 130 47 58 74 90
PER 124 139 165 192 101 119 151 182
090 | 5% | 55 | EXH 55 68 89 108 55 68 88 106
PER 105 118 138 161 121 141 178 214
090 | 55 | 5 | EXH 82 104 140 175 35 42 55 66
PER 155 174 203 235 75 89 115 141

Table 3: Percentiles for the delivery-time distribution of orders in hours.

Table 3 shows a-percentiles for the delivery times of both types of orders in the EXH-model
and PER-model. The a-percentile is defined as the smallest integer s satisfying Pr{S; < s} > a,
where S; denotes the delivery time of an arbitrary order for a product of type %, i = 1,2. As
expected, Table 2 and Table 3 show that the performance of the EXH-model is considerably
better than the performance of the PER-model. More precisely, the average delivery times in
the PER-model are roughly twice as large as in the EXH-model. For the a-percentiles of the
delivery-time distribution a similar remark can be made.

An advantage of the PER-model above the EXH-model is that, given the state of the system
upon arrival, the production center can guarantee delivery times (and the average guaranteed
delivery time is equal to E{S;} for orders of type 7). In the EXH-model, this center generally

12



cannot guarantee delivery times at all. Suppose that in the EXH-model, the production center
promises delivery times based on the state of the system upon arrival of an order, and this
delivery time has to be met at least with probability a. Let E{D;,} denote the expectation of
this promised delivery time for an arbitrary order of type ¢, that is,

E{Di,a} = Z Siy Ty,

y=(ll ’IZ’mvn) GS

with
8iy = min{s| Pr{S; < s|the state upon arrival is y} > a},

S; the delivery time of a type i order, and #, the stationary probability of state y. Table 4
shows this expectation for several values of a. Comparing Table 2 and Table 4 shows that the
differences between the promised delivery time in the EXH-model and the guaranteed delivery
time in the PER-model decreases when « increases. In fact, when the promised delivery times
have to be met with a very high probability the PER-model might outperform the EXH-model.

Type 1 product Type 2 product
p | p|p2|a: 090 095 099 a: 090 095 0.99
0.50 | 35 | 35 13.62 15.25 18.30 12.11 12.70 14.11
% = 1220 13.25 15.62 13.42 13.98 15.64
i | % 16.00 17.80  22.93 10.35 10.70 11.24
0.75 %% e 27.78  30.96  37.90 20.11 21.00 23.00
" % 23.22  25.19 29.75 23.25 24.69 27.73
= | = 36.75 4233 56.28 16.01 16.47 17.34
090 | &% | =5 63.97 69.67 82.74 41.31 42.70 45.72
% 35 51.19 54.61 61.98 50.08 52.51 57.59
= | = 92.67 105.79 136.94 30.00 30.54 31.66

Table 4: The promised delivery times in hours in the EXH-model for different values of a.

5 Conclusions and final remarks

In this paper, we considered a discrete-time queueing system with two types of jobs served by
a common server. Orders for these jobs arrive at their queue according to a Bernoulli process
with deterministic service times. Whenever the server changes from serving one type of order
to another, fixed switch-over times are incurred. For two switching strategies, we determined
the sojourn-time distribution of both types of orders. For the first strategy, the server switches
to a queue at predetermined and fixed periodic time epochs. For the second strategy, the server
serves each queue exhaustively. The periodic switching strategies has several advantages which
may be quite relevant in practice. However, the sojourn times of orders in the periodic switching
strategy are considerably larger than in the exhaustive service policy. Only, when the promised
delivery times have to be met with a very high probability, the periodic switching strategy might
outperform the exhaustive service policy. In a forthcoming paper, we will investigate the rate
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at which the performance of the periodic switching strategy is improved when incorporating
opportunities for working in overtime or producing on stock.

Further, numerical examples show that the exhaustive service policy practically minimizes
the average number of orders in the system when the service times do not differ much. However,
when the differences in service time between the types of orders become larger, one expects that
the difference between the exhaustive service policy and the policy that minimizes the number
of orders in the system (and hence, the difference in the average delivery time of an order for
these switching strategies) also increases.
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Appendix A
In this appendix, we prove Lemma 1, Lemma 2, and Lemma 3. Define
f(z):=2""" and g(z):= BozV + B2V -VP 4 ... 4 BN

A.1 Proof of Lemma 1

Lemma 1 Egquation f(z) = ¢(z), i.e., equation (5), has exactly Nb — a roots inside the unit
circle.

Proof. Since the Markov chain is ergodic, the average number of slots work arriving at the
queue per cycle (i.e., pNb) is less than the average service capacity of the server for this queue
per cycle (i.e., a), and thus

N
g'(1) =) (N —i)bBi= Nb—pNb> Nb—a = f'(1).
=0
However since f(1) = g(1), there exists a sufficiently small € > 0 such that
f1-¢)>g1-0. (11)
For all z with |z| = 1 — ¢, we have
lg(2) < Bl + Balz ™| -+ By

o(1 =N + fi(1 - NP . 4 By = g(1 - 6),
[Mo=e) = (1= N = f(1— ).

|7 (2l

Hence, together with inequality (11) we have

lg(2)| < |f(2)| for|z]=1-¢

Applying Rouchés Theorem to the circle |z| = 1 — € and letting € tend to zero, completes the
proof. O

A.2 Proof of Lemma 2
Lemma 2 There is ezactly one root in the interval (0,1).
Proof. In order to prove this lemma, we divide equation (5) by z2V%=2, to get
1= fo2® + f12° 4+ + Bvz~ V8-9) =: P(2). (12)

Since P”(z) > 0 for all z > 0, the polynomial P(z) is strictly convex on (0, c0). Hence, equation
(12) has at most two positive solutions. Since

]iﬂ)lP(z) = oo (because fy >0), P(1)=1, and P'(1)>0,
2
the result follows immediately. a

15



A.3 Proof of Lemma 3

Lemma 3 If Nb— a is not a multiple of b, then |%| < |zn| for 1 =2,3,...,Nb—a. If Nb~-a
is a multiple of b, there are b — 1 roots, z3,z23,...,2, say, with |z| = |z, and |z]| < |z1]| for
t=b+1,+2,...,Nb—a.

Proof. First, we consider the case that Nb — a is not a multiple of b or that 6 = 1. From
f(0) =0 < By = g(0) and Lemma 2, we have

f(z)<g(z) for0< z2< 2,

f(2)>g(z) forzy<z<1. (13)
For z;,1=2,3,...,Nb— a, we have
- N-j)b Y (N—-5)b
(1= = £l = lg@)] = 1 3 B~ < 3 Bil=IN ) = g(Ja), (14)
j=0 j:O

and thus by (13)
|2i] £ 21| fori=2,3,...,Nb—a.

If equality holds in (14), then from (13) it follows that |2;| = z;. Since Sy > 0 and Bn-1 > 0,
equality in (14) holds if and only if 2} is real and z? > 0. Suppose that 22 > 0 and so |z| = 2.
Then, we have that z; = @z, for some ¢ with ¢* = 1. However, since Nb — a is not a multiple
of b, ¢z is not a root of the equation f(z) = g(z), and so the equality of (14) does not hold,
and hence we have proved that

|z;] < 27 fori=2,3,...,Nb—-a.

In case that Nb— a is a multiple of b (Nb — a = rb, say, for some positive integer r) but b is
not equal to 1, we can rewrite equation (5) by substituting y = 2% as

¥ =Boy™ + By + - + BN (15)
From Lemma 1 and Lemma 2, and the first part of Lemma 3,
lgsl < 91 fori=2,3,...,r.

The proof is completed by noting that (since z = ¥/g) with each root y of equation (15), b roots
z of equation (5) correspond, and these b roots have the same absolute value. a
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Appendix B

In this appendix, we derive the sojourn-time distribution of an arbitrary arriving customer at
one of the queues, queue 1, say. We condition the sojourn time of this customer on the state upon
arrival (we know the probability of finding a certain state upon arrival by using the Bernoulli-
arrivals-see-time-average (cf. Halfin {7])). If the server is at or switching to queue 1 upon arrival
of the customer, then the sojourn time of this customer is completely known. If, however, the
server is at or switching to queue 2, then the sojourn time of this customer consists of a fixed and
a random part. The fixed part is the sum of the switch-over time (including a possible residual
switch-over time to queue 2) and the time for serving customers in queue 1. The random part
is the number of slots to customers of queue 2. Clearly, this latter part is the length of a busy
period starting with a certain initial number of slots work. If the server was already at queue 2
upon arrival, this initial number of slots work is equal to the number of slots work in queue 2
upon arrival. Otherwise, the initial number of slots work is equal to the number of slots work
in queue 2 upon arrival, plus the number of slots work arriving at queue 2 during the residual
switch-over to queue 2.

Let V denote this initial number of slots work. We now determine the conditional probability
Pr{B = s|V = v} that the busy period, which starts at a slot boundary with v slots of work,
ends after s slots. In the sequel, we call the first slot the server is serving queue 2 after the
arrival of our customer slot 1. The consecutive slots are numbered consequently 2,3,....

Since the service times of customers of queue 2 are equal to bz, we have Pr{B = s|V = v} =0
if s— v # mby for any m = 0,1,2,.... Suppose s — v = mb, for some nonnegative integer m,
i.e., m customers arrive at queue 2 (since slot 1) before the ending of the busy period. We first
consider the case that v > 0 and then the case that v = 0.

Since m customers arrive at queue 2 before the end of the busy period, the busy period is
ended at the end of slot v+ mb,. Suppose, for the sake of the argument, that these m customers
arrive in the first m consecutive slots 1,2,...,m. Then, no customer will arrive at queue 2 in
slots m +1,m+2,...,v+ mbs. Furthermore, no customer may arrive in slot v + mb; + 1, since
the busy period would otherwise not be completed. Hence, the probability that m customers
arrive at queue 2 in the first m slots, and that the busy period ends at the end of slots v 4 mb;
is equal to

(1 — py)rtmez—mHt, (16)

There are, however, also other ways in which these m customers may arrive such that the busy
period lasts v 4 mb; slots. The probability of each of these feasible possibilities is given by (16).
So, it remains to determine the number of feasible possibilities.

Let comb(v, m) denote the number of possibilities that m customers arrive at queue 2 such
that the busy period, which starts with v slots of work, ends at the end of slot v + mb,. This
number can be determined recursively by conditioning on the number of the slot (using the
aforementioned numbering of slots) in which the first of these m customers arrive.

1. For all v, we obviously have comb(v,0) := 1, and set k := 1.

2. Compute for all v
v+l
comb(v, k) = E comb(v + by — i,k — 1),
i=1

stop if k = m, and otherwise set k := k + 1 and repeat this step.
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If, on the other hand, v = 0, then there are two possibilities. First, there is no arrival at
queue 2 in slot 1, so that the server switches immediately to queue 1. So, the conditional busy
period is equal to zero with probability 1 — p;. Second, there is an arrival at queue 2 in slot
1, which occurs with probability p,. Then, we consider the busy period which starts at the
beginning of slot 2 with b, — 1 number of slots work. Applying the same arguments as for the
case v > 0, we obtain the conditional probability distribution of the busy period which starts in
slot 2 with b2 — 1 number of slots work.
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