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Abstract

Successive Approximation (S.A.) methods, for solving discounted Markov

decision problems, have been developed to avoid the extensive computations

that are connected with linear programming and policy iteration techniques

for solving large scaled problems. Several authors give such an S.A. algo­

rithm.

In this paper we introduce some new algorithms while furthermore it will be

shown how the several S.A. algorithms may be combined. For each algorithm

converging sequences of upper and lower bounds for the optimal value will be

given.

§ 1. Introduction.

We consider a finite state, discrete time Markov system that is controlled

by a decisionmaker (see for example [4J). After each transition n = 0,1,2, •••

the system may be identified as being in one of N possible states. Let

S := {I,2, ••• ,N} represent the set of states. After observing state i E S

the decisionmaker selects an action k from a nonempty finite set K(i).

Now p~. is the probability of a transitio~ to state j E S, if the system is
1J

actually in state i E S, and action k E K(i) has been selected. An (expected)

reward qk(i) is then earned immediately, while future income is discounted by

a constant factor 0 ~ a < 1.

We suppose, which is permitted without loss of generality, that qk(i) ~ 0 for

all i E Sand k E K(i).

The problem is to choose a policy which maximizes the total expected dis­

counted return.

As known (e.g. [2J, [IOJ), it is permitted to restrict the considerations to

nonrandomized stationary strategies. A nonrandomized stationary strategy

will be denoted by f E K := K(l) x K(2) x ••• x K(N). The coordinates uf(i)

of the N x 1 vector uf give the total expected discounted return if the

system's initial state is i and the stationary strategy! E K is used.

The (stationary) strategy f* E K is called optimal if uf (i) ~ uf(i) for all

f E K and for all i E S. *
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Because S.A. algorithms are in some sense modifications of the standard

dynamic programming method this method will be discussed first.

As in Blackwell [IJ we define for each f E K the mapping Lb(f) (~N ~ ~N)

which maps an N x I column vector x into

Lb (f)x := qf + a Pf x ,

. . .. f(i)(.)where qf ~s the N x I column vector hav~ng as ~ts ~-th component q ~ ,

and Pf is the N x N Markov matrix with (i,j) element p~~i) •
~J

Lb(f) is monotone, i.e. if every coordinate of the N x 1 vector x is at

least as large as every coordinate of y E ~N (x ~ y), then:

Furthermore, we define for some map Le(f):

L~(f)X := x

d f · h . N NWe e ~ne t e mapp~ng Ub: ~ ~ R by:

:= max L
b

(f)x •
fEK

NIt is easily seen that for every x E ~ an f E K exists such that Lb(f)x ~s

maximal for each coordinate.

It may be proved

point u*. For an

strategy f which

[9J).

that Ub is a monotone a-contraction mapping with fixed

optimal strategy f we have u· = uf ' and a stationary
* * *

is optimal follows from Lb(f)u* := Ubu*(see for instance

This property legitimates the standard dynamic programming algorithm that

can be based on:

b b
Lb(f)x 1n n-

It ~s possible to take xb and fb as estimates for un n f
*

and f* as follows from:
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(1)

(2)

b bxn-I :5 x :5 u b :5 ufn
f *n

lim b lim Un bx = Xo = uf ,n bn-+<x> n-+<x> *
see [5J, [7J, [9J.

bAs starting vector we choose Xo = O. As appears from (I) and (2), this
bchoice guarantees monotone convergence of xn to uf •

*
As known, the convergence, depending on a, may be relatively slow. Macqueen

[5J constructed upper and more sophisticated lower bounds for u band uf •
f *n

The S.A. methods discussed in the following sections are based on contrac­

tion mappings (see Denardo [2J).

In section 2, S.A. methods based on mappings UO' U , U ) of the same type asa s
Ub will be given; Le. also these mappings are monotone contraction mappings

with fixed point uf *' Furthermore, combinations of these mappings which lead

to mappings (Uhs ' UhO ) with the same property will be discussed. In section

3 extension of the above algorithms will be given, while in section 4 upper

and lower bounds for several methods are discussed. This enables us to in­

corporate a test for the suboptimality of actions (see also [6J). Finally

(section 5) some examples are given to illustrate several methods.

§ 2. "Improved" successive approximation methods.

2.1. Hastings [3J introduced the following (Gauss-Seidel) idea to modify the

policy improvement procedure in Howard's policy iteration algorithm. Let uf
for a given strategy f E K be computed. Determine a better strategy g E K

with components g(i) as follows:

{qk(l)
N kg(l) follows from v (I) := max + a I p .. uf (j)}

g kEK(1 ) j=1 1.J

{qg(I)(1)
N g(l)

=: + a I p .. U f (j)} ,
j=1 1.J
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g(i) follows from v (i) {qk(i) I k v (j) + a I k
U f (j)}:= max + a p, . p, ,

g
kEK(i) j <i 1.J g

j~i
1.J

=: {qg(i) (i) + a I p~~i)v (j) + a /: p~~i)uf(j)} .
j <i 1.J g

j~i
1.J

This idea can also be used in an S.A. algorithm.

Let x E ~N. Define Lh(f) by:

L (f) ( ') f(i)(.) \' f(i)( (f) ('»h x 1. := q 1. + a ,L, Pij Lh x J
J<1.

Define the mapping Uh by:

+ a,/:.
J ~1.

f(i) (')p" x J1.J
i E S •

It is easily verified that Lh(f) and Uh are monotone a-contractions with

fixed point uf and uf ' respectively, so an S.A. algorithm might be based on
*

h h
Lh(f)x I •n n-

As in standard dynamic programming, the sequence {xh } will have the follow­
n

ing properties:

(3)

(4)

h hx < x =:; U h =:; ufn-l - n
f *n

lim hx := ufn
n+oo *

bFurthermore, a comparison with the xn of the dynamic programming algorithm

yields inductively

(5) h bx ~ x
n n
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2.2. Also "overrelaxation" (see [8J, [9J) may be used in success~ve approximation

algorithms. Where the overrelaxation factor appears, for instance, if we try

to find better estimates for uf by computing for certain paths the exact

contribution to the total expected discounted reward.

Let f E K be given, then

Another expression for uf(i) may be found by computing the contribution to

the expected reward until the time the sys tem leaves i explicitly (f (i) =: k) :

(6) uf(i) qk(i) + k qk(i) k 2 qk(i)= aPii + (ap .. ) + ...
~~

+ a L k uf (j)p ..
j;'i ~J

+ a 2 k L k uf (j)p .. p ..
~~ j;'i ~J

= -.......;.~k- qk(i) +

- aPii
a k L p~J' u f (j) .

J
·..li ...- aPii T

kLet w. := ---:--
~ k

- aPii
, then with k = f(i), (6) can be given as

(7) = k k(.) + kw. q ~ aw.
~ ~

L p~J' uf(j) •
j;'i ...

(7) can also be deduced from:

uf(i) = qk(i) + a L k uf (j)p .. ,
j ~J

which yields:

(l - ap~,)uf(i) qk(i) L k
uf(j)= + a p .. ,

~~
j;'i ~J

where (7) follows by dividing by (1 - ap~,).
~~

On the idea used in (7) we base for any f E K the mapping LO(f) defined by:
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Furthermore we define the mapping Uo by:

Uox = max {LO(f)x} •
fEK

Let

- (f) min {w~(i)}w :=
iES ~

w+(f) := max {w~(i)}

iES ~

y(w) := 1 - w(l - a.) .

k
p .. xU)
~J

with k = f(i) •

Then LO(f) is a monotone y(w-(f))-contraction with fixed point ufo It is

easily verified that y(w-(f)) ~ a..

Let w* := min {w~}, then U
o

is a monotone y(w*)-contraction with fixed point
. k ~
~,

uf (see [8J).
*We have the relation:

Hence a successive approximation method might be based on

III o 0
=: LO(f)x 1 'n n-

where the following inequalities are easily proved:

(8)

(9)
b 0x ~ x
n n

2.4. It is also possible to simplify algorithm III by using the fixed overrelaxa­

tion factor w*, which means that the contribution to the expected reward

until the system leaves state i is only estimated.



- 7 -

Then we define L (f) by:s

L (f)x(i)s

U 1.S defined by:s

:= w* qk(i) + aw* L
jES

p~. x(j) + (l - w*)x(i) •
1.J

U x
s

:= max L (f)x
fEK s

L (f) and U are monotone y(w*)-contractions with fixed point uf and uf '
s s *

respectively. So it is possible to construct an S.A. algorithm based on:

{

x~ := 0

IV
sUsxn := sXn- 1 =:

Again we have:

s s
L (f)x I •s n n-

(10) x~_1 ~ x~ ~ u
fs

~ u f *
n

(11 )
b sx ~ x
n n

§ 3. Combinations of S.A. algorithms.

In this section it will be shown that combinations o~ the mappings Uh , UO'

Us lead to mappings UhO ' Uhs ' with the same properties as the original

mappings; i.e. UhO ' Uhs are monotone contractions with fixed point uf •

*
First we want to combine the transformations Uo and Uh as is done in a

modified form by Reetz [8J.

We define the transformation LhO(f) inductively by

:= w~ qk(i) + aw~ L p~. LhO(f)x(j) + aw~ L p~. x(j)
1. 1. j <i 1.J j>i 1.J

with k = f(i)

and UhO by:



- 8 -

Then, LhO(f) and UhO are monotone and y(w*)-contractions with fixed point uf
and uf ' respectively_

*So we have

with

(J 2) hO hOxn-! ~ x $ U hO ~ ufn f *n

lim hOx = ufnn-+o:> *

Furthermore,

(J 3) a
~

hOx xn n

(J 4) h
$

hOx xn n

The original Reetz [8J

formations U and Uh -s
Let Lhs(f) be given by

algorithm can be found as a combination of the trans-

Lhs(f)x(i) * k C ) * I k
Lhs(f)x(j):= w q ~ + ClW p ..

j<i ~J

* I k x(j) + (J - w*)x(i)+ ClW p ..
j;d ~J

and

Uhs(f)x = max Lhs (f) x ­
f

Lhs(f) and Uhs are

uf ' respectively_

*We have:

monotone and y(w*)-contractions with fixed point uf and

U x
hs =:hs n-!
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with

hs :::; hs
xn-l x :::; u :::; ufn fhs

*n

lim hsx = ufnn-t<x> *
s hsx :::; xn n

h hsx :::; xn n

§ 4. Extensions of S.A. algorithms.

A method to improve the estimations for uf can also be found by inserting a
*number of value determination iteration steps in the S.A. algorithm based on

Us where SET := {b,h,O,s,hs,hO}, see [7J.

This idea can also be introduced as the skipping of a number of policy im­

provement iteration steps in the S.A. algorithms.

We define for each x E R
N and for finite A E N and for SET the mapping

U(A) by:
S

where fSA indicates the strategy that is found by applying Us on x.

For A E N, A > 1, U~A) is neither necessarily a contraction mapping nor a

monotone mapping.

However, we may base an algorithm on such a mapping:

{ BA = 0 SETXo ,
VII-XII

x:A
= U(A)XSA =: LA(fSA)xSA , SET •S n-l S n n-l

The monotone convergence of X~A to uf ~s preserved (see [7J) as follows
*from the monotonicity of Us and LS(f S), i.e.
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lim 6A =x ufn
n~ *

6A
:5 x 13A

:5 :5xn- l n u 6A uff *n

A comparison of 6A with x6 yields:xn n

x6 :5
6A n E :N; 6 E T •xn n

§ 5. Upper and lower bounds for uf •
*

Successive approximation algorithms based on the ideas of the previous sec­

tions will converge. However, it will be necessary to construct upper and

lower bounds for the current and the optimal strategy. Upper and lower

bounds enable us to qualify the estimates for uf ' uf and f*, respectively,
n *see for instance Macqueen [5J.

Also upper and lower bounds enable us to incorporate a test for the sub­

optimality of decisions in an algorithm (see Macqueen [6J).

Let the upper bound x and the lower bound x for u* be given, then we can

state the following lemma:

Lemma 1. Strategy f is suboptimal if

6 E T •

Proof.

where the monotonicity property of U
6

and L
6

(f) is used.

This lemma enables us to determine for each i E S decisions which are sub­

optimal (see for instance [6J). *

* *Note that in the algorithms where U is used, w can be redefined if thes
decision that causes w* is suboptimal.

o
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If we want to compare two algorithms it will be necessary to compare the

corresponding sequences of upper and lower bounds. However, where the esti­

mates for uf found in the n-th iteration step of a specific algorithm may
*be better than those of another algorithm (as shown in the previous sec-

tions), this doesn't mean unfortunately that it is possible to construct

bounds that are "better" too.

We will illustrate this phenomenon with some examples (see section 6), How­

ever, we want to give without proof some general statements about upper and

lower bounds first.

Lemma 2. For U
8

, 8 E T, the sequence

~8 := x8 1 + 1 1(8) IlxS - xS 111n n- - c n n- 00
n E :N ,

yields monotone nonincreasing upper bounds for uf • Where c«(3) is the con­

*traction factor corresponding with Us and where

IIx - YII
00

Furthermore,

:= max
i

Ix(i) - y(i) I , N
x,y E JR

Lemma 3. For u~A), 8 E T, A E:N, the sequence

o

-sA SA 1 SA SA
m~n {xI' x 1 + 1 ( 13 ) II UQ X 1 - x 111n- n- - c I-' n- n- 00

yields monotone nonincreasing upper bounds for uf • Furthermore

*
-8Alim x

n
n~

It is also possible to construct a monotone nondecreasing sequence of lower

o

bounds for u and
fS

n
trivially by using

u SA' and so
f
n

the xS xSA
n' n'

for uf • Such a sequence can be formed

*
13 E T, respectively.
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We will now give sequences of lower bounds that might be used for the several

methods described in the previous sections.

Lemma 4. For Ue' e E T, the sequence

yields monotone nondecreasing lower bounds for u e and so for uf
f *n

and

where 6(b) = a; 6(h) =

6(hs) = (y(w*»N and

N
a , 6(0) + 0 *= yew (fn», 6(s) = yew ), 6(hO)

Lemma 5. For U~A), e E T, A E~, the sequence

D

yields monotone nondecreasing lower bounds for u SA and so for uf ; further-
f *more n

For all the bounds we have a monotone convergence to uf • So each number of

*the indicated set of algorithms can be used to estimate the optimal policy

f* and the corresponding value vector uf •

*
The examples in section 6 show that a choice for a specific algorithm may

depend on the problem under consideration.

D
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§ 6. Examples.

In this section we will give two simple examples to illustrate that the

decision which algorithm has to be chosen, might depend on the problem under

consideration.

Example I. In this example we compare the distance between the upper and

lower bounds in the n-th iteration step of algorithm I and this distance in

the n-th iteration step of algorithm IV.

Consider a two state problem with in each state only one possible decision.

Let the matrix of transition probabilities be given by:

P:= [ p I-P]
I-p p

and the reward vector r by: r := [:~]. (r l ' r 2), with discount factor a.

Then algorithm I yields

b
x =

n

so

n-I

l:
k=O

k pk
0. r

This yields:

1] [ 1
2 n-I 2
! r + (- 0. (I - 2p) ) _ ~

-~] r •
~

IIx
b

- x
b II - Ilx

b
- x

b
IIn n-l 00 n n-l-oo I I n-l

= (0. 1-2p) (r
1
-r

2
).

Using algorithm IV yields in a similar way

D
S

(n) : = Ilxn
s

- xns_lll~ - Ilxn
s - x S II

~ n-l -00

Let An be defined by:

0. (l - p) n-I I
= ( I - o.p ) 1 - o.p (r 1 - r 2) •

A
n

where c ~s a constant which is independent of n.
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Then

if

lim Qn o if

For this problem this leads to the conclusion that algorithm I is preferable

ifp<P I •

Example 2. Consider a two state problem with K(J) = {J }, K(2) {J,2},

a = 0,9, and

1 I
0 r l (J) 2P II = Pl2 = ,

I
0 I r 1(2) 2P21 = P22 =

2
I

2 = 0 r 2 (2) 1,9P22 = , P22 = .,

,The Hastings algorithm II will start in state 2 with the suboptimal decision

2, while (Macqueen) algorithm I starts with selecting the optimal decision I.

Furthermore, the upper and lower bounds corresponding to algorithm I are

equal, which means that the optimal values uf are known in one step.

*
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