

Linearization of hybrid Chi using program counters

Citation for published version (APA):
Khadim, U., Beek, van, D. A., & Cuijpers, P. J. L. (2007). Linearization of hybrid Chi using program counters.
(Computer science reports; Vol. 0718). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/2007

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/afdc9d13-34af-4eb4-931c-9591291e3b52

Linearization of Hybrid Chi Using Program

Counters

U.Khadim, D.A. van Beek, P.J.L. Cuijpers
Department of Mathematics and Computer Science

Department of Mechanical Engineering
Eindhoven University of Technology, P.O. Box 513

5600 MB Eindhoven, The Netherlands
{u.khadim, d.a.v.beek, p.j.l.cuijpers}@tue.nl

July 31, 2007

1 Introduction

The language χ was developed some years back as a modelling and simulation
language for industrial systems [1, 2]. Originally, the language χ included fea-
tures for modelling discrete event systems only. Later on it was extended with
features to model dynamic behavior of a system as well [3, 4]. Hybrid χ was
redesigned as a process algebra for hybrid systems and was given a formal seman-
tics in [5]. Recently, its syntax has been improved further and some complexities
from its semantics have been removed [6]. A number of tools for linearization
[8], simulation and verification of hybrid χ models [7] are available. This report
describes a method of linearizing hybrid χ process terms. By linearization, we
mean the procedure of rewriting a process term into a linear form. A linear
form consists of only basic operators of a process language. Linearization is
synonymous to elimination found in many ACP style process algebras such as
[9, 10, 11, 12, 13, 7]. In these process algebras we find elimination theorems that
state that any process specification in a given process algebra can be rewritten
into a simpler form, called a basic term. Each of these process algebras also con-
tains a set of basic terms into which all closed terms of that process algebra can
be rewritten. A basic term consists of only atomic actions, basic operators of
the given process algebra (like choice and sequential composition) and guarded
tail recursion. Elimination theorems are very useful in proving properties about
closed terms of a process algebra as with these theorems proofs by structural
induction become smaller. An important property of a basic term is that it does
not contain parallelism. Hence, the term elimination is often used for elimina-
tion of a parallel operator from a process term. In this report the words linear
term and basic term, linearization and elimination are used interchangeably.

1

Historically, µCRL [14], a process algebra with data, first used the term “lin-
ear process equation” (LPE) for its basic terms, and referred to the procedure
of rewriting a process specification into a basic term as linearization. The terms
linear and linearization refer to the fact that a linear process equation resembles
a right linear data parameterized grammar [14]. A linear process equation or
an LPE is a subclass of recursive process specifications that defines a complete
system specification in a single recursive equation. A Linear Process Equation
in µCRL has the following form:

X(d : D) =
∑

i∈I

∑
e∈Ei

ai ·X(gi(d, e)) C ci(d, e) B δ
+

∑
j∈I

∑
e∈Ej

aj C cj(d, e) B δ

where I and J are disjoint finite sets of indexes and d denotes a state vector.
Normally we are interested in a solution of the LPE in a particular initial state
d0. The equation is explained as follows. The process X being in a state d can,
for any e ∈ Ei that satisfy the condition ci(d, e), perform an action ai, and then
proceed to the state gi(d, e). Moreover, it can, for any e ∈ Ej that satisfy the
condition cj(d, e), perform an action aj , and then terminate successfully. The
actions in µCRL are parameterized. To simplify the definition of an LPE, we
omit parameters from actions. For a comprehensive definition of an LPE, please
refer to [14]. The format of an LPE is limited to basic operators of µCRL, a
single recursion variable and guarded tail recursion. Depending upon the value
of the parameter d and the guard conditions (i.e. ci(d, e) and cj(d, e)) different
options of an LPE are activated.

Advantages of rewriting a specification into a linear process equation are that
many tools and techniques for analysis and verification of specifications operate
only on linear terms [15]. Linearization / elimination in process algebra, can be
compared to flattening in state charts [17] and in automata theory [16].

Following the work on µCRL, linearization algorithms and tools for hybrid
process algebra [18] and hybrid χ [8] have also been developed. In [18], a similar
approach to that of µCRL has been adopted and the final linear form is a linear
process equation. For hybrid χ [8], the final linear form contains a set of linear
recursive equations.

A concern in linearization is the size of the resulting linear term. When
operators are removed from a specification its size may increase so much so that
it becomes impossible to automatically linearize specification of a large system
[14, 18]. Techniques like symbolic reasoning on data variables and variable ab-
straction [14, 18] have been developed to reduce the size of the resulting linear
term in linearization. In the process of linearization, a parallel composition
operator is eliminated from a specification. A parallel composition operator
represents the result of simultaneous execution of two processes. Its semantics
includes details such as synchronization, communication and interleaving of ac-
tions of the process terms executing in parallel. A linear form of the specification
of a multi-component system with components running in parallel models the
behaviour of the system using only basic operators. Hence the size of a linear
form of such a system specification could be very large. In [14, 18] are used stack

2

like data structures to model interleaving in the linear form of a parallel compo-
sition. It has been pointed out in [14] that in cases where process variables are
not parameterized by data, a counter with values in natural numbers can also
serve the same purpose. In this report, we give an algorithm for linearization
of hybrid χ specifications using such counters. We call these counters program
counters.

In hybrid χ language, a program counter is a new discrete variable defined
locally in the linear form of a process specification. Different values of a program
counter activate different atomic constructs of the specification. Using program
counters, a hybrid χ process term is linearized as follows:

Consider a parallel composition, (a; b ‖ d; e; f), where a, b, c, d, e, f are non-
communicating atomic actions. The symbol ; denotes sequential composition
in hybrid χ. Eliminating the parallel operator from (a; b ‖ d; e; f) results in
the following linear form:

Let R denote the linear form of (a; b ‖ d; e; f). Then,

R = a; (b; d; e; f 8 d; (b; e; f 8 e; (f ; b 8 b; f)))
8 d; (a; (b; e; f 8 e; (f ; b 8 b; f)))

The symbol 8 denotes choice or alternative composition in hybrid χ.
Using program counters, the linear form p̃ of (a; b ‖ d; e; f) is modelled as

follows:

p̃ = |[V {i1 7→ ⊥, i2 7→ ⊥}, ∅, ∅
:: |[R {X 7→ (i1 = 4) → a, i1 := 1; X

8 (i1 = 2) ∧ ¬Odd({i2}) → b, i1 := 2; X
8 (i1 = 2) ∧Odd({i2} → b, i1 := 0, i2 := 0
8 (i2 = 6) → d, i2 := 4; X
8 (i2 = 4) → e, i2 := 2; X
8 (i2 = 2) ∧ ¬Odd({i1}) → f, i2 := 1; X
8 (i2 = 2) ∧Odd({i1}) → f, i2 := 0, i1 := 0}

:: (i1 = 4 ∧ i2 = 6) y X
]|

]|

where |[V . . .]| represents a new variable scope in which two local discrete data
variables i1 and i2 are declared. |[R . . .]| represents a new recursion scope in
which a new recursion variable X is declared. The process definition of X is a
linear process term that defines the behaviour of (a; b ‖ d; e; f). i1 and i2 are
the program counters used in the linear process equation. The variables i1, i2
and X are not part of the original specification. To make them unobservable
to an outside observer, they are declared as local variables in new variable and
recursion scopes respectively.

An alternative of the process definition of X is explained as follows:

(i1 = 2) ∧Odd({i2}) → b, i1 := 1; X

3

The predicate i1 = 2 is the condition guarding the given alternative, a is an
action and i1 := 1 is an assignment updating the value of i1. If (i1 = 2) evaluates
to true, the action b is performed and the program counter i1 is set to 1. After
the action, the recursion variable X is called again.

The initialization operator y sets the values of i1 and i2 to 4 and 6 re-
spectively before the first call to variable X. In each recursive call, depending
upon the action performed, the value of one of the program counters i1 or i2
is updated. A requirement of the linearization is that the resulting linear form
must be bisimilar to the original process term. In the linearization of a process
term with parallel composition, a different program counter for each component
of parallel composition is used. The program counter of each component can
be updated independently of the other program counters. For example, during
the execution of X, the program counter i1 can have value 4 and the program
counter i2 can have value 2, indicating that only actions d and e have been exe-
cuted so far. By independently updating the two program counters, all possible
interleaving of actions of parallel components are modelled and we do not need
to explicitly include these interleavings in the linear form. In this way, the size
of the linear form of a parallel composition is approximately of the order of the
sum of the sizes of its components. An advantage of doing linearization this
way is that parallel components can still be recognized in the linear form.

The structure of the report is as follows: In Section 2, we define the set
of input process terms to our linearization algorithm. In Section 3, we define
the syntax of the linear form. Section 4 informally gives a visualization of
the linear form. The purpose of this visualization is to help in understanding
the essentials of the linearization procedure. Section 5 inductively defines the
linearization of a hybrid χ specification by giving a linearization algorithm for
atomic constructs of hybrid χ and for all the operators allowed in an input
process term. In Section 6, the Conclusion, we compare the new linearization
algorithm with the previous one for hybrid χ [8]. We also discuss its position
among other linearizations [14, 18].

2 Input to the algorithm

The set of hybrid χ process terms is defined in [6]. We impose some restrictions
on the set of process terms Ps which are allowed as input to the linearization
algorithm. The BNF definition below defines the grammar for the process terms
ps ∈ Ps.

4

ps ::= patom atomic actions
| pu invariant and

urgency conditions
| uy ps initialization
| ps ; ps sequential composition
| ps 8 ps alternative composition
| ps ‖ ps parallel composition
| ∂A(ps) Encapsulation

∂H (ps) Send and receive
action encapsulation

| υH (ps) urgent channel communication
| |[H H :: ps]| channel scope |[H]|
| pR restricted use of recursion
| |[V σ⊥, C, L :: ps]| variable scope |[V]|

where u is a predicate on a set of model variables V, A ∈ Alabel is a set of labels
of non-communicating actions and H is a set of channels. In |[V σ⊥, C, L :: ps]|,
C is a set of local continuous variables, L is a set of local algebraic variables
and σ⊥ is a valuation of local variables.

The set Patom consists of atomic actions. An atomic action process term
patom ∈ Patom is defined below:

patom ::= la,W : r action process term
| h ! en,W : r send process term
| h ?xn,W : r receive process term
| h !?xn := en, W : r communication process term

An atomic action consists of an action label, a set of non-jumping model vari-
ables W and a predicate r. We restrict the syntax of predicates on model
variables to the set R, defined as follows:

Let r ∈ R.
r ::= true

| false
| x+ opr c
| x− opr c
| r ∧ r

where x is a model variable, x− denotes the values of variable x before an action,
x+ denotes the values of x after an action, c is any value in the set Λ and opr

is the set of relational operators, i.e.

opr = {<,>, =,≥,≤}
The action labels can be labels of communication actions (as explained next),

or labels of non-communicating actions such as a, b, c. By means of a commu-
nication, values are communicated from one process to the other, i.e. synchro-
nization of send action h ! en and receive action h ? xn yields communication

5

h !? xn := en by which data en is transferred from the sender to the receiver.
The notation en denotes a vector of expressions whose values are sent and xn

is a vector of variables in which the received values are stored.
The set Pu consists of invariants and urgency conditions.

pu ::= inv u
| urg u

A recursion scope operator (denoted by |[R]|) is allowed only if no recursion
definition of a recursion variable defined within the scope, refers to a recursion
variable defined outside the scope. The syntax of the process terms defining a
recursion variable is also restricted. Furthermore, only tail recursion is allowed
and an occurrence of a recursion variable in a process definition must be guarded.

The restricted recursion scope operator process term is defined by:

pR ::= |[R R :: Xi]| Complete(R) ∧Xi ∈ dom (R)
| |[R R :: p]| Complete(R) ∧ Recvars(p) ∈ dom (R)

where,

1. i ∈ N>0;

2. R ∈R, where R :X 7→ P is the set of all functions from recursion variables
to process terms. R is known as a recursion definition. Syntactically, a
recursion definition is denoted by a set of pairs {X1 7→ p1, . . . , Xm 7→
pm}, where Xi denotes a recursion variable and pi denotes a process term
defining Xi;

3. The set P of process terms includes the following process terms:

p ::= ps

| ps; Xi

| ps; p
| p 8 p

4. Another restriction on the set of possible process definitions of recursion
variables is as follows:

Recursion variables with process definitions that declare a variable scope
operator followed by self recursion are not allowed in the input to the
algorithm. For example the following recursion definition is not allowed:

{X1 7→ |[V σ⊥, C, L :: ps]| ; X1}

The reason for this restriction is explained in detail in sections 5.7 and
5.12.

6

5. The function Recvars : P ∪ (X × R) → 2X takes a process term of the
form p, or a recursion variable and a recursion definition. It returns the
recursion variables present in the given process term or in the defining
process term of the given recursion variable, respectively. We make sure
that whenever the function Recvars is called with a recursion variable and
a recursion definition, the recursion definition contains the definition of
the given recursion variable.

Recvars(ps) = ∅
Recvars(ps ; Xi) = {Xi}
Recvars(ps ; p) = Recvars(ps) ∪ Recvars(p)
Recvars(p 8 q) = Recvars(p) ∪ Recvars(q)

Recvars(Xi, {Xi 7→ p}) = Recvars(p)
Recvars(Xi, {Xj 7→ p})j 6=i = ∅
Recvars(Xi, R ∪R′) = Recvars(Xi, R) ∪ Recvars(Xi, R

′)

6. The function Complete : R → Bool takes a recursion definition R. It
collects the recursion variables that are mentioned in the defining process
terms of all recursion variables in the domain of R. If the set thus obtained
is a subset of the domain of R, then Complete returns true else it returns
false.

Complete(R) = true if
⋃

Xi∈dom(R) Recvars(Xi, R) ⊆ dom(R)
false otherwise

3 Output Form of the algorithm

The set of linearized process terms P̃, with p̃ ∈ P̃, is defined as:

p̃ ::= |[V σpc ∪ σ,C, L ::
|[R {X 7→ p} :: u ∧ upc y X]|

]|
We discuss the structure of the linear process term p̃ in the following sections:

3.1 Variable scope operator and program counters

1. The set of program counters is defined as follows:

I = {ik | k ∈ N>0}, such that I ∩ V = ∅

2. The valuation σpc : I 7→ {⊥} is a partial function which is syntactically
denoted as {i1 7→ ⊥, . . . ik 7→ ⊥}, k being the number of program counters
used in the definition of a linear form. The valuation σpc declares the
program counters used to describe a linear form as local discrete variables.
These are distinct from all other local discrete, algebraic or continuous
model variables.

7

3. The valuation σ : V 7→ {⊥} is syntactically denoted as {x 7→ ⊥, y 7→
⊥, . . . , z 7→ ⊥}, where x, y, z are local discrete or continuous model vari-
ables other than program counters.

4. C is the set of local continuous variables and L is the set of local algebraic
variables.

3.2 Recursion scope operator

The recursion scope operator |[R {X 7→ p} :: u∧ upc yX]|, where upc is a pred-
icate over program counters and u is a predicate over model variables, defines
a single recursion definition. The right hand side of the recursive definition is a
linear process term.

The BNF definition of the set of process terms P, with p ∈ P is as follows:

p ::= bpc → pu

| bpc → pact, update(Xi); X
| bpc → pact, appc ; X
| bpc → pact, appc

| p 8 p

where Xi for any natural number i denotes a recursion variable. The notation
update(Xi) occurs only in intermediate output forms as an intermediate result
of linearizing a recursion scope operator.

The set of action process terms Pact, with pact ∈ Pact, and the set of action
predicates AP, with ap ∈ AP, are defined as follows:

pact ::= patom

| patom, ap
ap ::= W : r

| ap, ap

where patom is an atomic action that has been defined in Section 2, W is a subset
of model variables and r ∈ R is a jump predicate containing model variables.

In the BNF definition of a process term p, the alternatives consisting of an
urgency condition or an invariant are never followed by the recursion variable
X, because an urgency condition and an invariant do not terminate. Some
alternatives with action process terms are also not followed by a recursive call
to X. These are the terminating actions. The process term p can terminate
by executing one of the terminating actions. When p terminates, all program
counters are set to zero.

The set of action predicatesAPpc that update program counters, with appc ∈
APpc and the set of predicates on program counters Rpc, with rpc ∈ Rpc, are
defined as follows:

appc ::= Wpc : rpc

| appc, appc

Wpc ⊆ I
rpc ::=

∧
ik∈Wpc

ik = ck

8

where ck ∈ N. We use the convention that
∧

ik∈∅ ik = ck evaluates to true.

3.3 Even and Odd values of program counters

Program counters in a linear form either have an odd or an even value. Even
values are reserved for the so called “active” program counters. Odd values are
reserved for the so called inactive program counters. This distinction between
active and inactive program counters is needed to be able to properly deal with
(partial) termination in parallel composition. In parallel composition, we need
two concepts of termination: local termination of a component of parallel com-
position, and global termination. Local termination refers to termination of a
component of a parallel composition, when the other components of the compo-
sition have not yet terminated. On local termination, the program counters of
the terminating component are set to an odd value. Global termination refers
to the final termination of the parallel composition, that takes place when the
last component of the parallel composition terminates. When performing a ter-
minating action of a component of a parallel composition, in order to determine
whether local or global termination should follow, we check the parity of pro-
gram counters of the other components. We do this by checking the parity of
the product of all program counters of other components.

The set of guards, Bpc, where bpc ∈ Bpc, is defined as follows:

bpc ::= beven

| beven ∧Odd(I)
| beven ∧ ¬Odd(I)

where,
beven ::= ik = e

| beven ∧ beven

where e is an even number, ik ∈ I, I ⊆ I and Odd(I) denotes ΠI mod 2 = 0
where ΠI denotes the product of the elements from set I.

The initialization predicate u is used to initialize model variables other than
program counters; u is any predicate including true.

The initialization predicate upc initializes the local program counters. The
initial value of a program counter is a natural number. An even value indicates
a program counter is active and an odd value indicates a program counter that
is inactive.

The set of initialization predicates Upc, with upc ∈ Upc, is defined as follows:

upc ::= ik = n
| upc ∧ upc

ik ∈ I and n ∈ N.
Initially inactive program counters in a process term indicate that the process

term consists of a sequential composition such that the number of program
counters of the second sequent is greater than the number of program counters

9

in the first sequent. The program counters that are only needed in the second
sequent are declared at the start, but they remain inactive (evaluate to an odd
value) while the process is in the first sequent.

Initial options or initial alternatives in a linear process equation of a given
process term are the alternatives of the LPE consisting of the first possible
actions or first possible urgency or invariant conditions of the given process
term. By convention, the highest values of program counters guard the initial
options of an LPE. In a linear process term p̃, with an initialization predicate
upc, an alternative guarded by a guard bpc is an initial option of p̃ only if
upc =⇒ bpc.

In the definition of a linear form, we observe the following:

1. An option of the LPE is never activated by odd values of program counters
alone. The guard predicate bpc always contains an atom that compares
the value of at least one program counter against an even value.

2. An odd value of a program counter ik (k ∈ N) in a linear form represents
one of the two cases:

(a) The linear form under consideration originates from a parallel com-
position and the parallel component that uses program counter ik in
the definition of its linear form has terminated;

(b) Or, the given linear form originates from a sequential composition.
The first sequent has less number of parallel components than k
whereas the second sequent has at least k parallel components. The
odd value of program counter ik indicates that the first sequent has
not terminated yet and therefore ik is inactive.

Instead of odd values, we could also have used a specific value (for example
⊥) to fulfill the purpose mentioned above. A program counter with that
value would indicate both local termination of a parallel component and
inactive program counter in a sequential composition. However, odd num-
bers possess some desirable properties. We are able to use these properties
to our advantage at several places in the linearization algorithm such as:

(a) We reuse program counters in the linearization of sequential, alter-
native and recursion scope operators. When reusing, we increment
all the used values of a given program counter by an even number to
allow for more values for representing all required guard conditions.
Incrementing an odd value by an even number gives an odd num-
ber. Therefore an inactive program counter remains inactive when
we reuse program counters. Hence we do not have to do any book
keeping for inactive program counters.

(b) For detecting termination of a component in a parallel composition,
we check the parity of all program counters used in the linear form
of that component. This is easily done by checking the parity of the
product of its program counters as the product of odd values is an
odd value.

10

� �
� �
� �
� �

� � � � � � � � � � �� � � � � � � � � �

Setzero

Setzero

p q

r

s

Linear form of (p ‖ q); (r 8 s)

Second Sequent

First Sequent

Global Termination

Figure 1: A graphical representation of a linear form

If a specific value is decided to be used instead of odd values, then the
properties of that specific value should be exploited in the linearization
algorithm.

4 Visualization of a linear form

The linearization algorithm turns out to be complicated and involves many
steps for linearization of each operator. To help understanding the basic steps
of the algorithm, we devise a visualization of the process term obtained after
linearization. As can be seen in the previous section, the linear form contains
many features. It is only possible to illustrate a subset of these features in a
two dimensional diagram. We focus on the number of program counters used
in a linear form, the program counters that are active in a particular segment
of a linear form, and the changes in the values of program counters as different
actions of a process term are executed.

Figure 1 shows a graphical representation of a linear process term. Features
such as lines and arrows are incorporated in the graphical representation dia-
gram to indicate jumps in the values of program counters or to indicate the end
of a parallel composition.

We discuss them below:

1. The width of the block (length along horizontal axis) indicates the total
number of program counters in a linear process term. The indices of
program counters increase as we move from left to right in a block.

2. The height of a block represents the highest of the maximum values of all
program counters in a process term. In our algorithm, we keep the conven-
tion that program counter i1 has the highest maximum value. Therefore,
in a parallel composition (see Section 5.5) we shift the program counters
of the process term that has the lower value for program counter i1. The
values of program counters decrease as we move down in a block.

11

3. A black line at the bottom of a block stretching the entire length of a
block indicates that all program counters have been set to zero.

4. A patterned horizontal line indicates the termination of a parallel compo-
sition. The value of a program counter can go below a patterned line only
if all the program counters have reached it.

5. A dot represents the root of an alternative composition. The number
of arrows originating from the dot indicates the total number of initially
available options in the operands of the alternative composition. The ar-
rows should end at appropriate places in alternatives. The exact place
where an arrow ends in a block is kept abstract in our diagrams to avoid
cluttering. In finding the linear form of an alternative composition, the
values of program counters that are common in the operands of the alter-
native composition should be made distinct. To do this, we increment the
values of program counters in one of the process terms. The zero values
of the program counters are not incremented since all program counters
must be set to zero at termination. In terms of our visualization, the block
of one of the operands of alternative composition is placed on top of the
other. A dashed arrow originates from the end of the block placed on the
top of the other and ends at the bottom of the alternative composition.

6. A vertical black line in a block divides two operands of a parallel compo-
sition.

7. In a recursion scope operator, the blocks representing the linear forms
of the process definitions of the recursion variables are placed on top of
one another. Each block contains the name of the recursion variable it
represents. The blocks may have arrows (mimicking a call to a recursion
variable) originating from their bottom surfaces and ending in the top
of other blocks. The pointer update(Xi) can be viewed as ports at the
bottom of a block from which arrows originate.

We do not give a visualization for the urgent action operator, the variable scope
operator, the encapsulation and the channel scope operator.

5 Linearization Algorithm

5.1 Notations

The following functions and notations are used in the linearization algorithm:

1. The notation x[a′k/ak]k∈S,P (ak) represents x with every occurrence of ak

that satisfies a certain property P replaced by a′k, for all k in a set S.

2. The notation x[a′/a]a∈S denotes x with every occurrence of a in x replaced
by a′, for all a in a set S.

12

3. The function Normalize : P → P̃ returns the linear form of a given process
term. In case a process term of the form ps is input to the algorithm, then
the linear process term returned does not contain pointers of the form
update(Xi).

4. The function rhs : P̃ → P takes a linear process term and returns the
righthand side of its single recursion definition.

rhs(|[V σpc ∪ σ,C, L :: |[R {X 7→ p} :: u ∧ upc y X]|]|) = p

5. The function U : P̃ →Predicate returns the predicate initializing the model
variables of the given linear form.

U(|[V σpc ∪ σ,C, L :: |[R {X 7→ p} :: u ∧ upc y X]|]|) = u

6. The function Upc : P̃ → Predicate returns the predicate initializing the
program counters of the given linear form.

Upc(|[V σpc ∪ σ,C, L :: |[R {X 7→ p} :: u ∧ upc y X]|]|) = upc

7. The function Sigma : P̃ → V 7→ Λ returns the valuation of local model
variables in a linear process term. The symbol Λ, denotes the set of all
possible values for model variables other than program counters.

Sigma(|[V σpc ∪ σ,C, L :: |[R {X 7→ p} :: u ∧ upc y X]|]|) = σ

8. The function pcs : (P ∪Bpc ∪Rpc ∪APpc)→I returns the set of program
counters used in its argument. The set of program counters in a linear
process term is the same as the set of program counters in the right hand
side defining its recursion variable.

pcs(p 8 q) = pcs(p) ∪ pcs(q),
pcs(bpc → pu) = pcs(bpc)
pcs(bpc → pact, update(Xi); X) = pcs(bpc)
pcs(bpc → pact, appc) = pcs(bpc) ∪ pcs(appc)
pcs(bpc → pact, appc ; X) = pcs(bpc) ∪ pcs(appc)
pcs(ik = n) = {ik}
pcs(Odd(S)) = S
pcs(¬Odd(S)) = S
pcs(bpc ∧ b′pc) = pcs(bpc) ∪ pcs(b′pc)

pcs(Wpc) = Wpc

pcs(rpc ∧ r′pc) = pcs(rpc) ∪ pcs(r′pcs)
pcs(Wpc : rpc) = pcs(Wpc) ∪ pcs(rpcs)
pcs(Wpc : rpc, appc) = pcs(Wpc : rpc) ∪ pcs(appc)

where bpc, b
′
pc are guard predicates in set Bpc , rpc, r

′
pc are action predi-

cates on program counters in set Rpc, S and Wpc are subsets of program
counters and k ∈ N>0, n ∈ N,

13

9. The function Count : P → N takes the linear process equation of a linear
form and returns number of program counters used in it.

Count(p) = |pcs(p)|

10. The function value : Upc×N→N takes a predicate of the form Upc and the
index of a program counter. It returns the value assigned to the program
counter with the given index in the given predicate. In our algorithm we
ensure that value(upc, k) is only called when the program counter with
index k is present in the predicate upc.

The predicate upc is a conjunction. The conjunctions are such that a
program counter with a particular index is used only in one atom of the
conjunction. The function value is a recursive function. It checks the
atoms of upc looking for the required program counter. When the program
counter with the given index is not in the current atom, it returns 0. The
function value applied to a conjunction of predicates is the maximum of
the values returned when applied to each predicate individually.

value(ik = n, k) = n
value(ik = n, l)l 6=k = 0
value(upc ∧ u′pc, k) = max(value(upc, k), value(u′pc, k))

where, k, l ∈ N>0, n ∈ N.

11. The function Alt : P → 2P returns the set of alternatives of a process term
of the form P.

Alt(bpc → pu) = {bpc → pu}
Alt(bpc → pact, update(Xi); X) = {bpc → pactupdate(Xi); X}
Alt(bpc → pact, appc) = {bpc → pact, appc}
Alt(bpc → pact, appc ; X) = {bpc → pact, appc ; X}
Alt(p 8 q) = Alt(p) ∪Alt(q)

12. The function
⌊⌉

: 2P → P takes a set of process terms of the form P as
its argument and returns the term obtained after alternatively composing
all the elements of the set. A special case is the empty set which returns
inv true, i.e.

⌊⌉
∅ = inv true.

13. The function Nonterm : P → P : takes a process term p and returns a
process term consisting of only the non-terminating alternatives of p. A
non-terminating alternative consists of either an action followed by a re-

14

cursive call to X, or an invariant or an urgency condition.

Nonterm(p) =
⌊⌉
{bpc → pact, appc ; X | bpc → pact, appc ; X ∈ Alt(p)}⌊⌉
{bpc → pu | bpc → pu ∈ Alt(p)}⌊⌉
{bpc → pact, update(Xi); X

| bpc → pact,update(Xi); X ∈ Alt(p)
}

14. The function Term : P → P : takes a process term p and returns a process
term consisting of only the terminating alternatives of p. A terminating
alternative consists of an action without a trailing call to the recursion
variable X.

Term(p) =
⌊⌉
{bpc → pact, appc | bpc → pact, appc ∈ Alt(p)}

In the following sections, we linearize different forms of the input process term
ps one by one.

5.2 Atomic actions

The linear form of an atomic action is defined by the Normalize function as
follows:

Normalize(patom)= |[V {i1 7→ ⊥}, ∅, ∅
:: |[R {X 7→ (i1 = 2) → patom, {i1} : i1 = 0}

:: true ∧ (i1 = 2) y X
]|

]|
It is represented by a square with a black bottom in Figure 2.

patom

Figure 2: An atomic action

5.3 Invariants or Urgency Conditions

An invariant or urgency condition, denoted by pu, is defined by the Normalize
function as follows:

Normalize(pu)= |[V {i1 7→ ⊥}, ∅, ∅
:: |[R {X 7→ (i1 = 2) → pu}

:: true ∧ (i1 = 2) y X
]|

]|

15

pu

Figure 3: An invariant or urgency condition

� � � � � � �� � � � � � �

� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �

Count(p) ≤ Count(q)
Count(p) ≥ Count(q)

Setzeroq

pp

q

(a) (b)

Global
Termination

Global
Termination

Figure 4: Sequential Composition

It is represented by a square without a black bottom in Figure 3.

5.4 Sequential Composition

A process p; q first behaves as p. After p has terminated, p; q continues behaving
as q.

Assume

Normalize(p) = p̃ = |[V σp
pc ∪ σp, Cp, Lp

:: |[R {X 7→ p} :: up ∧ up
pc y X]|

]|
and

Normalize(q) = q̃ = |[V σq
pc ∪ σq, Cq, Lq

:: |[R {X 7→ q} :: uq ∧ uq
pc y X]|

]|
The set of input process terms to the Normalize function is P. The case where
the second sequent in a given sequential composition is a recursion variable
(i.e. a process term ps ; Xi, is given as input to the algorithm) is dealt in the
linearization of the recursion scope operator (See Section 5.7).

In the linear form of a sequential composition, the values of program counters
that are common in the linear forms of the two sequents are made distinct by
incrementing the values of all program counters in the first sequent by the
maximum value of the program counter i1 in the second. Recall that in a linear
process term, i1 always has the greatest or one of the greatest values among all
program counters. In this way, no two guards where one is in the first sequent
and the other is in the second sequent can get activated by the same values
of program counters. Let p be the first sequent and q be the second sequent.

16

Instead of incrementing all program counters’ values in p by the maximum value
of i1 in q, we could also increment a program counter ik in p, by the maximum
value of ik in q or zero incase the total number of program counters in q is
less than k. This approach will also make the value of ik distinct in the two
operands of sequential composition. Adopting this approach would result in a
linear form best explained by modifying figure 4(b) as follows:

� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �

� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �

Count(p) ≥ Count(q)

p

q p

Figure 5: A different way of incrementing program counter values

The shaded area in the figure 5 represents the linear form of the first sequent
p. We adopt the first approach of incrementing all program counter values in the
first sequent by the maximum value of i1 in the second sequent as it is simpler.

The total number of program counters used in the linear form is the max-
imum of the numbers of program counters in the two sequents. Initially only
the initial options of the first sequent are enabled. Only when the first sequent
terminates, the options of the second sequent are activated.

If Term(p) = inv true, i.e. the first sequent does not terminate, then

Normalize(p; q) = p̃

else,

Normalize(p; q) = r̃ =
|[V σr

pc ∪ σp ∪ σq, Cp ∪ Cq, Lp ∪ Lq

:: |[R {X 7→ Setzero(FSequent(Incrpcs(p, value(uq
pc, 1)), q̃) 8 q)}

:: up ∧ ur
pc y X

]|
]|

where,

1. The valuation σr
pc defining program counters is given below:

σr
pc = {i1 7→ ⊥, . . . , imax(Count(p),Count(q)) 7→ ⊥}

The total number of program counters used in the linear form is thus the
maximum of the numbers of program counters in the two sequents.

2. The initialization predicate initializes the program counters according to
their initial values in the first sequent incremented by the initial value of

17

i1 in the second sequent.

ur
pc = Incrpcs(up

pc, value(uq
pc, 1))∧∧

ij∈pcs(q)\pcs(p) ij = value(up
pc, 1) + value(uq

pc, 1) + 1

When the number of program counters in the linear form of the second
sequent is greater than the number of program counters in that of the
first, the program counters that are not used initially are set to an odd
value.

3. The function Incrpcs : (Upc × N→ Upc) ∪ (P × N→ P) takes a predicate
on program counters or a process term as the first argument and a natural
number as the second argument. It increments the values assigned to the
program counters in the given predicate or in the given process term by
the given number.

Incrpcs(x, n) = x[ik = ck + n/ik = ck]k∈N

where ck is a natural number for all values of k .

4. The function FSequent : P × P̃ → P takes two process terms that are to
be joined in a sequential composition. The function FSequent removes
the action predicate appc from the terminating alternatives of the first
argument (which is the first sequent of the sequential composition) and
appends the following:

(a) An action predicate initializing the local model variables of the second
sequent according to its initialization predicate, uq. The jump set of
this action predicate consists of the local discrete and continuous
variables of the second sequent;

(b) An action predicate initializing the program counters according to
the initialization predicate uq

pc of the second sequent; and

(c) A deactivation of the program counters of p that are not used in q,
in case the first sequent has more program counters than the second
sequent; and

(d) Finally, a recursive call to X;

FSequent(p, q̃) =
Term(p) [bpc → pact,

{v | v ∈ dom(Sigma(q̃))} : U(q̃),
pcs(rhs(q̃)) : Upc(q̃),
pcs(q)\pcs(rhs(q̃)) :∧

id∈pcs(q)\pcs(rhs(q̃)) id = value(Upc(q̃), 1) + 1; X

/ bpc → pact, appc

]
8Nonterm(p)

18

� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �

Setzero

q̃p̃

Global Termination
Setzero

Figure 6: Parallel Composition

5. The function Setzero : P → P takes a process term of the form p. It sets
all the program counters of p to zero, in the terminating options of p.

Setzero(p) =
Term(p) [bpc → pact,

pcs(p) :
∧

id∈pcs(p) id = 0
/ bpc → pact, appc

]
8Nonterm(p)

5.5 Parallel Composition

Assume

Normalize(ps) = p̃ = |[V σp
pc ∪ σp, Cp, Lp

:: |[R {X 7→ p} :: up ∧ up
pc y X]|

]|

and
Normalize(qs) = q̃ = |[V σq

pc ∪ σq, Cq, Lq

:: |[R {X 7→ q} :: uq ∧ uq
pc y X]|

]| .
Only the linear form of a parallel composition of the form ps ‖ qs is given, as
parallel composition between process terms of the form p, q ∈ P that cannot
both be written as a term in Ps is not allowed in the input language of the
algorithm.

We do not reuse the program counters when joining the linear forms p̃ and q̃
in parallel composition. We differentiate between the program counters of p̃ and
q̃ by shifting the subscripts of all program counters in one of the process terms
by the number of program counters in the other. We shift the program counters
of that process term that has the smallest maximum value for i1. In this way,
in our visualization the first column of blocks has the maximum height. The
total number of program counters in a linear form of a parallel composition is
the sum of the program counters in the linear forms of the two operands.

19

Assume value(uq
pc, 1) ≤ value(up

pc, 1), then,

Normalize(ps ‖ qs) =
|[V σp

pc ∪ Shiftpcs(σq
pc, Count(p)) ∪ σp ∪ σq, Cp ∪ Cq, Lp ∪ Lq

:: |[R {X 7→ Setzero (Extend(p,Shiftpcs(q, Count(p))
8 Extend(Shiftpcs(q, Count(p)), p)⌊⌉
{COM(altp, altq) | altp ∈ Alt(p),
altq ∈ Alt(Shiftpcs(q, Count(p))),
match(altp, altq)
}

)
:: (up ∧ uq) ∧ (up

pc ∧ Shiftpcs(uq
pc, Count(p)))y X

]|

]|,
where,

1. The function Shiftpcs : ((V 7→ Λ) × N → (V 7→ Λ)) ∪ (Upc × N → Upc) ∪
(P ×N→P) takes as the first parameter a valuation (a set of mappings of
variables to values in some value set Λ), or a predicate, or a process term,
and as the second parameter a natural number. It shifts the subscripts of
all the program counters in the given valuation, predicate or the process
term by the given number.

Shiftpcs(x, d) = x[ik+d/ik]k∈N

2. The symmetric function match : P × P → Bool, takes as its parameters
two alternatives, one from the linear process equation of the linear form
of each operand of parallel composition. In case its parameters contain
matching send and receive actions, the function match returns true else it
returns false. The rules for the function match strip off the unnecessary
details from an alternative: the guards, calls to the recursive variable
X and all action predicates are removed. The following rules define the
function match:

(a) match((bpc → pact, update(Xi); X), p) = match(pact, p)
(b) match((bpc → pact, appc ; X), p) = match(pact, p)
(c) match((bpc → pact, appc), p) = match(pact, p)
(d) match(pact, (p′atom, ap)) = match(pact , p′atom)
(e) match(h ! en, W : r, h ?xn, W : r) = true, where W and W ′ are en-

vironment variable sets, r and r′ are predicates and h is a communi-
cation channel.

In situations, where none of the rules from above (possibly preceded by in-
terchanging of the arguments) can be applied , the function match returns
false.

20

3. The symmetric function COM : P ×P → P ∪ {⊥} takes as its parameters
two alternatives, one from the linear process equation of the linear form
of each operand of parallel composition. In case, its parameters contain
matching send and receive actions, the function COM returns the result
of communication between its parameters. It is a symmetric function.
Parallel composition is only defined for process terms of the form ps. The
linear form of a ps process term does not consist of any alternative with
a pointer (See Section 3 and Section 5.7). Therefore for a parameter con-
taining a pointer, of the form update(Xi), COM returns ⊥. The function
COM is defined below:

(a) COM((bpc → pact, update(Xi); X), p) = ⊥, where Xi is a recursion
variable.

(b) In case match(p, q)

COM((bpc → pact, appc), (b′pc → qact, ap′pc)) =
bpc ∧ b′pc → com(pact, qact), appc, ap′pc

COM((bpc → pact, appc ; X), (b′pc → qact, ap′pc)) =
bpc ∧ b′pc → com(pact, qact), appc, ap′pc[1/0]; X

COM((bpc → pact, appc ; X), (b′pc → qact, ap′pc ; X)) =
bpc ∧ b′pc → com(pact, qact), appc, ap′pc ; X,

(c) In case ¬match(p, q)

COM(p, q) = inv true,

where the notation appc[1/0] represents an action predicate appc with
all the predicates setting a program counter to value zero replaced by
predicates setting them to 1.

appc[1/0] = appc[ik = 1/ik = 0]k∈N

In a communication between two actions, where one of the actions is ter-
minating and the other is non-terminating, the resulting communication
cannot be a terminating action. A communication action may be a termi-
nating action of p ‖ q, only if it is a communication between terminating
actions of p̃ and q̃. In the communication between a terminating and a
non-terminating action, the program counters that are being set to zero
in the terminating action must be set to 1 instead. This is done through
appc[1/0].

4. The function com : Pact ×Pact →Pact takes two action process terms and
returns their communication.

com((h ! en, ap), (h ?xn, ap′)) = h !? xn := en, ap, ap′

com is a partial function. In our linearization algorithm, the function com
is only called with its parameters match according to the function match.

21

5. The semantics of parallel operator includes details of communication, syn-
chronization and interleaving of actions of parallel components. The com-
munication between parallel components was dealt in the function COM.
The interleaving of actions and synchronization of delays is dealt in the
function Extend. The function Extend : P ×P →P takes the linear process
equations of the parallel components. It returns the first argument with
some modifications in its alternatives containing terminating actions. Al-
ternatives containing non-final actions and invariant or urgency conditions
of are not modified by the function Extend. Termination of a component
needs to be specially handled as explained in the paragraph below.

We recall from section 3 the concepts of local and global termination. A
parallel composition terminates when all its components terminate. When
one component of a parallel composition terminates while the other com-
ponents have not terminated yet, then it is called local termination of the
terminated component. When the last component of a parallel compo-
sition terminates, it is called global termination. When a process term
terminates locally, its program counters are set to 1 (i.e. an odd value) in-
stead of a zero. On global termination, the program counters of all process
terms in parallel are set to zero.

In the function Extend, when a component of parallel composition per-
forms a terminating action, we check whether the process terms in parallel
have already terminated. This is done by checking the parity of the prod-
uct of all program counters of the process terms in parallel. If a program
counter of the process terms in parallel still has an even value, i.e. parity
of the calculated product is even, then one of the parallel components still
has to perform an action. In this case, all the program counters of the ter-
minating component are set to 1 and a recursive call to X is added. Else,
if the parity of the calculated product is odd, then the components in par-
allel have already locally terminated and the action under consideration
is indeed the terminating action of the parallel composition.

The linear form of a parallel composition or the linear form of a process
term with parallel composition in its last sequent can be identified by its
terminating options. The terminating actions of a linear form of such a
process term are guarded by predicates of the form beven ∧Odd(S), where
S is a set of program counters. In hybrid χ as is in other process algebras,
the parallel operator is defined as a binary operator. A process term
p ‖ q ‖ r is defined as (p ‖ q) ‖ r or p ‖ (q ‖ r). (The parallel operator is
associative.) While linearizing a process term (p ‖ q) ‖ r, in the function
Extend the terminating options of the linear form of (p ‖ q) are modified to
include the parity checking for the program counters of the linear form of
r. This restricts the number of new alternatives that will be added to the
linear form of (p ‖ q) to obtain the linear form of (p ‖ q) ‖ r to the size of r.
Otherwise not distinguishing that one component of a parallel composition
is itself a parallel composition or contains a parallel composition in its last
sequent results in an increase in size which is equal to the size of r plus

22

the number of parallel components in the last sequent.

In case one of the process terms does not terminate, then the terminat-
ing alternatives of the process term that terminates are appended with a
recursive call to X, because in that case, p ‖ q is non-terminating.

The function Extend : P × P → (P ∪ {⊥}) is defined as follows:

(1) Extend(p 8 p′, q) = Extend(p, q) 8 Extend(p′, q)

(2) Extend(bpc → pu, q) = bpc → pu

(3) Extend((bpc → pact, update(Xi); X), q) = ⊥
For the remaining alternatives, two cases for the second parameter are
distinguished:

If Term(q) = inv true,

(1) Extend((bpc → pact, appc ; X), q) = bpc → pact, appc ; X

(2) Extend((bpc → pact, appc), q) = bpc → pact, appc[1/0]; X

Else if Term(q) 6= inv true

(1) Extend((beven → pact, appc ; X), q)
= beven → pact, appc ; X

(2) Extend((beven ∧ ¬Odd(S) → pact, appc ; X), q)
= beven ∧ ¬Odd(S) → pact, appc ; X

where allone(appc) 6= true.
The function allone : APpc → Bool returns true if all the program
counters in appc are being set to 1. The function allone is defined
below:

allone(Wpc :
∧

id∈Wpc
id = 1) = true

allone(Wpc : rpc, appc) = allone(Wpc : rpc) ∧ allone(appc)

(3) Extend((beven ∧Odd(S) → pact, appc), q)
= beven ∧Odd(S ∪ pcs(q)) → pact, appc

(4) Extend((beven ∧ ¬Odd(S) → pact, appc ; X), q)
= beven ∧ ¬Odd(S ∪ pcs(q)) → pact, appc ; X,

where allone(appc) = true.

(5) Extend((beven → pact, appc), q)
= Extend((beven ∧Odd(pcs(q)) → pact, appc), q)
8Extend((beven∧¬Odd(pcs(q))→ pact,appc[1/0]; X), q)

In the last three items, parity checking of the program counters of q is
added to the terminating options of p. The last item is applicable when
p is a linear form of a process term whose last sequent does not contain

23

a parallel composition. Examples of process terms with their last sequent
without a parallel composition are:

a; b; c a 8 b (p1 ‖ p2); a 8 b

When these process terms appear as a component in parallel composition,
the last item is applicable.

The two cases former to the last item are applicable when p contains a
parallel composition in its last sequent.

p1 ‖ p2 a; (p1 ‖ p2) (p1 ‖ p2) 8 b

Only when p contains a parallel composition in its last sequent, an al-
ternative guarded by a predicate beven ∧ ¬Odd(S) sets program counters
to values 1. If p is linear form of a term (p1 ‖ q1); p2, then an alterna-
tive guarded by beven ∧¬Odd(S) sets the program counters to some value
higher than 1.

5.6 Alternative Composition

The alternative composition of process terms provides a choice between them.
The choice is resolved as soon as an action is performed, in favor of the process
term the action of which has been executed. A graphical representation of two
process terms and their alternative composition is given in Figure 7. As shown
in the figure, there are two ways in which two process terms, p and q, can be
alternatively composed:

1. In Figure 7(b), the roots of the two process terms are merged to obtain
a root for their alternative composition. Transitions emerging from this
root are the same as the transitions emerging from the roots of p and q.

2. In Figure 7(c), a new root for the resulting alternative composition is cre-
ated, which is distinct from the roots of the given alternatives. Transitions
emerging from the new root end at proper places within the transition trees
of p and q. Note that the original roots of the alternatives are retained in
this way of alternative composition but these roots are no longer initial
states.

Merging two roots to obtain a new root for the alternative composition works
only if the operand process terms do not have self recursion and none of the
process terms have initial parallelism. To explain further, we present scenarios
of self recursion and initial parallelism in operands of an alternative composition
below:

In terms of transition systems, self recursion means that there is a transition
emerging from within the tree of a process term and ending at its root. When
roots of operands are merged to form the root of the alternative composition,
then a transition ending at the root of alternative composition activates both
operands which is not intended.

24

p̃ q̃ p̃ q̃

p̃ q̃

(b)

(a)

p̃ 8 q̃ by merging roots (c)p̃ 8 q̃ by creating a new root

Figure 7: Two Techniques for alternative composition

In a linear form of p 8 q, the initial values of program counters activate the
initial options of both p and q. Consider the case where one of the operands,
has self recursion, for example let

q = |[R {X1 7→ a; b; X1} :: X1]|

In the linear form of q̃, after actions a and b, a program counter of q will be set
back to its initial value. In p 8 q obtained by merging the roots of operands, if
q is chosen, then resetting a program counter to its initial value activates the
initial options of p also. This problem does not arise when a new root is created
for the alternative composition. In alternative composition with a new root, the
initial values of program counters in p 8 q are distinct from their initial values in
p and q. The value to which a program counter is reset in case of self recursion
is not its initial value in the alternative composition, but its initial value in the
operand with self recursion.

To observe the initial parallelism in p 8 q, let q = a; b ‖ c; d. The term q can
start with either performing action a or b. In terms of our linear form, there are
two program counters i1 and i2 that are active initially in q̃. Therefore also in
the linear form of alternative composition p 8 q at least two program counters
are initially active. If process q is chosen from the alternative composition p 8 q,
then when the first action of q̃ is performed, one of its program counters is
decremented, whereas the other program counter is still at its initial value. If

25

i1 i2i1

i2

i2i1

i1

i1

i2

i2

i1

(c) p̃ 8 q̃ by creating a new root(b) p̃ 8 q̃ by merging roots(a) p̃ q̃

Figure 8: Alternative Composition with initial parallelism in q

the roots of p and q are merged to form the root of the alternative composition,
then in p 8 q, after doing an action of q, an action of p̃ is still possible. See Figure
8(b). If first the action of q̃ governed by program counter i2 is performed, then
after the action, i1 is still at its initial value and can activate an option of p̃.

When we create a new root for p 8 q, then after executing an action of
q, all program counters except the one governing the action executed, are reset
according to the root of q̃, i.e. according to the initial values of program counters
in the linear form of q. This shown by in the figure 8 (c).

The algorithm that creates a new root is a general purpose algorithm but it
yields unreachable states, incase there is no self-recursion or initial parallelism.
Therefore, we give in this section two algorithms for alternative composition, one
that merges the roots of operands to obtain the root of alternative composition
and the other that creates a new root for alternative composition. Depending
on the scenario at hand, different algorithm for alternative composition can be
adopted.

Assume

Normalize(p) = p̃ = |[V σp
pc ∪ σp, Cp, Lp

:: |[R {X 7→ p} :: up ∧ up
pc y X]|

]|
and

Normalize(q) = q̃ |[V σq
pc ∪ σq, Cq, Lq

:: |[R {X 7→ q} :: uq ∧ uq
pc y X]|

]|,

5.6.1 Alternative Composition without a new root

This algorithm is applicable if the linear forms of both p and q have one program
counter initially active and none of the operands have self recursion. The linear
forms p̃ and q̃ are tested for initial parallelism and self recursion as follows:

26

1. If only the value of i1 is even in the initialization predicate of a linear form,
then the linear form does not have initial parallelism. Thus for absence of
initial parallelism in p̃ and q̃, the following predicates should be true. :

value(up
pc, 1) mod 2 = 0 ∧Odd(pcs(p)\{i1})

and
value(uq

pc, 1) mod 2 = 0 ∧Odd(pcs(q)\{i1})

2. We look at the allowed syntax of the input language P to the algorithm.
Let p ∈ P, then:

p ::= ps

| ps; Xi

| ps; p
| p 8 p

The occurrence of a recursion variable is always guarded in an input pro-
cess term. An operand of alternative composition can have self recursion,
only if it is a recursion scope operator.

Consider the following example of a recursion scope operator:

|[R { X1 7→ a; X1,
X2 7→ b; X2,
X3 7→ a; X1 8 b; X2

}
:: X3

]|

Despite recursion in the process definition of X3, we use the algorithm
without a new root to linearize its process definition. Although semanti-
cally, X3 ↔ X1 8X2, but due to the syntactic difference, there is no loop
to the initial states of X1 and X2. The initial options of X3 are activated
by different values of program counters than those for the initial options
of X1 and X2. Thus a new root is always automatically created for the
alternative composition due to guarded occurrence of X2 and X3.

To test for self recursion in a linear form, we look at all the alternatives
of the linear process equation of a given linear form. In case one of the
alternatives sets a program counter to the value given in the initialization
predicate of the linear form, then the process term has self recursion.

Below we define a function TestforRec : P̃ → Bool that checks for self
recursion in a linear form:

TestforRec(p̃) =

true ∃bpc → pact, appc ; X ∈ Alt(rhs(p̃))
∧matchvalue(appc, Upc(p̃))

false otherwise

27

� � � � � � �� � � � � � �

� � � � � �
� � � � � �
� � � � � �
� � � � � �

Root of p̃ 8 q̃

q̃ without
root

p̃

Global Termination

Global Termination

Setzero

Only i1 is active initially

Setzero

Figure 9: Alternative Composition without a new root

where the function matchvalue :APpc×Upc →Bool takes an action pred-
icate and an initialization predicate of a linear form. It returns true if the
given action predicate is setting a program counter according to the value
of the program counter in the given initialization predicate.

matchvalue(Wpc : rpc, upc) =

true ∃id ∈ Wpc∧
rpc =⇒
(id = value(upc, d))

false otherwise
matchvalue((Wpc : rpc, appc), upc) = matchvalue(Wpc : rpc, upc)

∨matchvalue(appc, upc)

where Wpc is a set of program counters, rpc is a predicates on program
counters and appc is an action predicate on program counters.

Note that in the definition of TestforRec, we do not check the termi-
nating alternatives of a process term nor the alternatives with pointers
update(Xi). A terminating option does not have recursion. We know
that an operand of alternative composition has self recursion only when it
is a recursion scope operator. An alternative with a pointer update(Xi)
appears in an intermediate form during the linearization of a process term
of the form ps ; Xi (see Section 5.7). The pointers of the form update(Xi)
are not present in the final linear form of a recursion scope operator.

While joining two process terms in alternative composition, as is done in sequen-
tial composition, see Section 5.4, the values of the program counters common in
the linear forms of operands are made distinct from each other by incrementing
the values of program counters in one of the operands. For linearizing p 8 q,
we can without loss of generality, decide to increment the values of program
counters in p̃. In the algorithm for alternative composition without a new root,

28

we increment the values of all program counters in one operand by the maxi-
mum value of the program counter i1 in the other operand minus 2. The reason
for doing this is that in this algorithm, the root (i.e. initial options) of q̃ is
moved (i.e. incremented) to the same level (i.e. value of program counter i1) as
the root of p̃ after incrementing. This leaves behind a gap in the value of the
program counter i1 at the border of p̃ and q̃. (This is different from sequential
composition, where there is no such gap in the values of program counter i1).
Incrementing the program counter i1 in p̃ by maximum value of i1 in q̃ minus 2,
brings the alternative guarded by predicate i1 = 2 in p̃ to the same level as the
initial options of q̃. i.e. after incrementing, the predicate i2 = 2 in p̃ is replaced
by i1 = value(uq

pc, 1). But the value value(uq
pc, 1), will not be used to guard the

initial option of q in the linear form of p 8 q, because the root of q has to be
moved to the same level as that of p. Therefore, no overlap of program counter
values guarding the options of p̃ and q̃ occurs.

Normalize(p 8 q) = r̃ =
|[V σr

pc ∪ σp ∪ σq, Cp ∪ Cq, Lp ∪ Lq

:: |[R {X 7→ Setzero (Incrpcs>1(p, value(uq
pc, 1)− 2)

8 IncrInitialpcs(q̃, value(up
pc, 1)− 2)

)
}

:: up ∧ uq ∧ ur
pc y X

]|
]|,

where,

1. The valuation σr
pc defining program counters is given below:

σr
pc = {i1 7→ ⊥, . . . , imax(Count(p),Count(q)) 7→ ⊥}

The total number of program counters in the alternative composition is
the maximum of the numbers of program counters in the two operands.

2. The initialization predicate ur
pc initializing the program counters is as

follows:

ur
pc = (i1 = value(up

pc, 1) + value(uq
pc, 1)− 2)∧∧

1<k≤max(Count(p),Count(q)) ik = value(up
pc, 1) + value(uq

pc, 1)− 1

Initially only program counter i1 is active.

3. The function Incrpcs>1 : (predicate × N → predicate) ∪ (P × N → P) ∪
(P̃ × N→ P̃) takes a predicate or a process term as the first parameter,
and a natural number as the second parameter. It increments the values
(greater than 1) assigned to the program counters in the given predicate
or the given process term by the given number.

Incrpcs>1(x, n) = x[ik = ck + n/ik = ck]k∈N,ck>1

29

where ck > 1 for all values of k. The zero and 1 values of program counters
are not incremented, as they indicate the (final) terminating actions of an
operand.

In a linear form p̃, program counters are assigned values in the initializa-
tion predicate Upc(p̃) and in the right hand side of the recursion definition
of p̃, i.e. rhs(p̃). (See Section 5.1 for the definition of rhs). Incrpcs>1(p̃, n)
increments the non zero values assigned to program counters in both these
constructs of p̃.

4. The function IncrInitialpcs : P̃ ×N→ P takes a process term of the form
p̃ and a natural number. It increments the initial value of i1 in the right
hand side of the recursion definition of p̃ by the number given.

IncrInitialpcs(p̃, n) = rhs(p̃) [i1 = value(Upc(p̃), 1) + n
/ i1 = value(Upc(p̃), 1)
]

(See Section 5.1 for the definition of rhs).

This algorithm is used for linearizing alternative compositions with operands
lacking self recursion. As self recursion is excluded, therefore an initially
active program counter, particularly i1 (when there is no initial paral-
lelism), will never be reset back to its initial value. This means that the
initial value of i1 only occurs in the guards of the operand process terms.
We make use of this fact in the definition of the function IncrIntialpcs and
increment all occurrences of the initial value of i1.

The function IncrIntialpcs makes available the initial options of q̃ by set-
ting the value of i1 in q̃ to the initial value of i1 in Normalize(p 8 q).

5.6.2 Alternative Composition with a new root

This algorithm can be used to alternatively compose linear process terms with
initial parallelism and self recursion. We create a new root for the alternative
composition. Initially we only activate program counter i1 in the alternative
composition. The initial parallelism in the operands, if present, is captured by
options guarded by i1. In case of parallelism, more than one option is initially
available. For each initial option in the given operands p and q, an option
guarded by i1 = value(up

pc, 1) + value(uq
pc, 1) + 2, is added in the alternative

composition. Hence a new root is created by a new value for the program

30

� �
� �
� �
� �

� � � � � � �� � � � � � �

� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �

New root of p̃ 8 q̃

p̃

Setzero
q̃

Global Termination

Global Termination

Setzero

Figure 10: Alternative Composition with a new root

counter i1 which is equal to the sum of its maximum values in p̃ and q̃ plus 2.

Normalize(p 8 q) = r̃ =
|[V σr

pc ∪ σp ∪ σq, Cp ∪ Cq, Lp ∪ Lq

:: |[R {X 7→ Setzero (Incrpcs>1(p, value(uq
pc, 1))

8 q
8 Createnewroot(mupq , Incrpcs>1(p̃, value(uq

pc, 1)))
8 Createnewroot(mupq , q̃)

)
}

:: up ∧ uq ∧ ur
pc y X

]|
]|,

where,

1. The notation mupq is an abbreviation for value(up
pc, 1) + value(uq

pc, 1) + 2.

2. The valuation σr
pc defining program counters is given below:

σr
pc = {i1 7→ ⊥, . . . , imax(Count(p),Count(q)) 7→ ⊥}

The total number of program counters in the alternative composition is
the maximum of the numbers of program counters in the two operands.

3. The initialization predicate ur
pc initializing the program counters is as

follows:

ur
pc = (i1 = value(up

pc, 1) + value(uq
pc, 1) + 2)∧∧

1<k≤max(Count(p),Count(q))

(ik = value(up
pc, 1) + value(uq

pc, 1) + 1)

Except for i1, all program counters are set to odd values.

31

4. The function Createnewroot : N × P̃ → P returns part of the new root
that is created for the alternative composition. The first parameter of
Createnewroot is mupq

, the sum of the initial values of i1 in p̃ and in q̃,
+2. The second parameter is linear form of one of the operands p or q.
This function makes available the initial options of the given operand in the
linear form of p 8 q. This is done by taking all the initially active options
in the given linear process term and replacing their guard predicates by
guards setting i1 to mupq

. After performing the first action, the program
counters are initialized according to the initialization predicate of the given
operand.

Createnewroot(m, p̃) =⌊⌉
{ i1 = m → pu | bpc → pu ∈ Alt(p) ∧ Upc(p̃) =⇒ bpc}⌊⌉
{ i1 = m → pact,update(Xi); X

| bpc → pact,update(Xi); X ∈ Alt(p) ∧ Upc(p̃) =⇒ bpc

}⌊⌉
{ i1 = m → pact, appc, (pcs(rhs(p̃))\pcs(appc)) :∧

id∈(pcs(rhs(p̃))\pcs(appc))
id = value(Upc(p̃, d)); X

| bpc → pact, appc ; X ∈ Alt(p) ∧ Upc(p̃) =⇒ bpc

}⌊⌉
{ i1 = m → pact, appc | bpc → pact, appc ∈ Alt(p)∧

Upc(p̃) =⇒ bpc

}

In an alternative composition, after doing an action of one alternative, it
is not possible to do an action of the other alternative. Therefore, after
performing the first action, program counters are reset according to the
initialization predicate of the given operand.

5.7 Recursion Scope operator

In the input language to the algorithm, recursion variables are only allowed in
a recursion scope operator. Only complete recursion definitions are allowed.
i.e. the top-level process term as well as any process definition of a recursion
variable may not mention any recursion variable not defined within the same
scope.

We mentioned in the section Output form of the algorithm (Section 3) that
the pointer update(Xi) appears only in the intermediate linear form during
linearization of a recursion scope operator. Recall from Section 2 the allowed
syntax for process definitions of recursion variables. The set of process defini-

32

tions P for recursion variables, with p ∈ P is defined as,

p ::= ps

| ps; Xi

| ps; p
| p 8 p

In sections 5.2 to 5.6, we have defined how to linearize different process terms
from the set P. The linearization of a process term of the form ps ; Xi was not
defined. It is defined later in this section. The pointer update(Xi) is intro-
duced during the linearization of a process definition of the form ps ; Xi. When
linearizing such a process definition, we come across recursion variables names
whose linear forms we may not know yet. For example consider the following
process term:

|[R {X1 7→ ps ; X2, X2 7→ qs ; X3, X3 7→ rs ; X1}
:: X1

]|
In linearization of such a recursion scope, as we may not yet know the linear
form of the recursion variable being referred to, we place a pointer update(Xi)
in the terminating options of the linear form of the process term referring to the
recursion variable Xi. The pointer update(Xi) is later replaced by some action
predicates according to the linear form of the process definition of variable
Xi, after all recursion variables in a given recursion scope operator have been
partially linearized.

Recall that the restricted form of the recursion scope operator process term
is defined by:

pR ::= |[R R :: Xi]| Complete(R) ∧Xi ∈ domR
| |[R R :: p]| Complete(R) ∧ Recvars(p) ∈ domR

In this section we give a linearization algorithm for a recursion scope of the form
|[R R :: Xi]| only. A recursion scope operator of the form |[R R :: p]| can always
be transformed into the recursion scope of the form |[R R :: Xi]| as follows:

• Introduce a new recursion variable in R and define its right hand side to
be equal to p;

• rewrite the recursion scope by adding the new definition to R and replacing
p by the new recursion variable

If a recursion scope operator of the form |[R R :: p]| is given in the input to
the algorithm, we first transform it and then linearize it. Therefore in the
linearization algorithm,

Normalize(|[R R :: p]|) = Normalize(|[R R ∪ {X|dom R|+1 7→ p} :: X|dom R|+1]|),

where | domR | denotes the number of recursion variables in dom R.

33

5.7.1 A restriction on process definitions of recursion variables

Consider the following recursion definition.

{X1 7→ |[V σ,C, L :: p]| ; X1}

We can view X1 as an infinite sequence of variable scopes |[V σ,C,L :: p]|, with
each scope having a new instance of local variables dom(σ), C and L. In the
linear form, (see section 3), a variable scope is only present at the top-level. All
local variable definitions and valuations of any variable scopes present in the
input to the linearization algorithm are moved to the top-level. It is not pos-
sible to linearize a process definition as that of X1 in the current linearization
algorithm since it requires infinite instances of local variables. See Section 5.12
for a detailed discussion of the problem. We disallow in the input to the algo-
rithm, recursion variables with definitions consisting of a variable scope operator
followed by self recursion.

5.7.2 Linearization of ps; Xi

Assume

Normalize(ps) = p̃ = |[V σpc ∪ σ⊥, C, L
:: |[R {X 7→ p} :: up ∧ upc y X]|
]|

The number of program counters and the initialization predicates of the linear
form of ps ; Xi, for some recursion variable Xi, are the same as for the linear
form of ps. The terminating options of ps are modified to include a pointer to
the recursion variable Xi.

Normalize(ps ; Xi) = |[V σpc ∪ σ,C, L
:: |[R {X 7→ RFSequent(p, Xi)} :: up ∧ upc y X]|
]|,

where the function RFSequent : P × X → PR takes a process term of the form
p and a recursion variable. It removes the action predicate updating program
counters from the terminating options of p and appends them by a pointer
update(Xi) and a recursive call to X.

RFSequent(p,Xi) = Term(p)[bpc → pact, update(Xi); X
/bpc → pact, appc

]
8Nonterm(p)

5.7.3 Linearization of |[R {X1 7→ p1, . . . , Xn 7→ pn} :: Xm]|
In the linearization of a recursion scope operator, we reuse program counters in
the linear form of process definitions of recursion variables. The total number

34

� � � � � �
� � � � � �
� � � � � �
� � � � � �

� � � � � � �� � � � � �

p̃1

X1

X2
p̃2

Global Termination

Global Termination

{X1 7→ p1 ; X2 , X2 7→ p2 ; X1}

Update(X2)

Update(X1)

Figure 11: A set of recursion definitions

of program counters is equal to the highest number of program counters used in
any process definition of a recursion variable. Since recursion variables can only
appear at the end of a process definition, therefore updating counters is easy.

We follow the following steps in the linearization of a recursion scope oper-
ator:

1. Linearize the righthand sides of the definitions of all recursion variables;

2. Make the values of program counters that are common among the linear
forms of recursion variables distinct from each other. This is done by
incrementing the values of all program counters in the linear form of a
recursion variable Xj , with j > 1, by the sum of maximum values of i1 in
linear forms of X1 to Xj−1. The linear form of X1 is not incremented;

3. Replace the expressions update(Xi) by action predicates setting program
counters and model variables according to the initialization predicates of
the linear form of Xi;

4. Alternatively compose the linear forms of the recursion definitions of all
recursion variables;

5. Finally set all the program counters to zero in the terminating options of
the alternative composition thus obtained.

Assume

Normalize(p1) = p̃1 = |[V σ1
pc ∪ σ1, C1, L1

:: |[R {X 7→ p1} :: u1 ∧ u1
pc y X]|

]|
. . .

Normalize(pn) = p̃n = |[V σn
pc ∪ σn, Cn, Ln

:: |[R {X 7→ pn} :: un ∧ un
pc y X]|

]|

35

Then,

Normalize(|[R {X1 7→ p1, . . . Xn 7→ pn} :: Xm]|) =

|[V σpc ∪
⋃

1≤j≤n σj ,
⋃

1≤j≤n Cj ,
⋃

1≤j≤n Lj

:: |[R {X 7→ Setzero(
⌊⌉

1≤j≤n
Update(j, [p̃1, . . . , p̃n]))}

:: um ∧ upc y X
]|

]|,
where

1. 1 ≤ m ≤ n

2. Let maxpc denote the highest number of program counters used in any of
the linear forms, p̃1 . . . p̃n. Then,

maxpc = max(
⋃

1≤j≤n

{Count(pj)})

The valuation σpc defining the program counters is as follows:

σpc = {i1 7→ ⊥, . . . , imaxpc 7→ ⊥}

3. The initialization predicate upc initializing the program counters is as
follows:

upc = Incrpcs>1(um
pc, Incrvalue(m, [p̃1, . . . , p̃n]))∧∧

d∈[1,...,maxpc]\[1,...,Count(pm)]

id = value(Incrpcs>1(un
pc, Incrvalue(n, [p̃1, . . . , p̃n])), 1) + 1

where the function Incrvalue : N × P̃
∗ → N takes a natural number and

a list of linear forms. The given natural number must be an index of the
given list. The function Incrvalue returns the sum of maximum values
of the program counter i1 in the linear forms appearing before the given
index in the given list. If the given index points to the first element of the
list, then the function Incrvalue returns 0.

Incrvalue(1, L) = 0
Incrvalue(j, L)j>1 = Σj−1

k=1value(Upc(L.k), 1),

where the notation L.k denotes the kth element of the list L.

We give a mathematical definition of the function Incrvalue. For imple-
mentation purpose, a recursive definition of the function can be adopted.

The initialization predicate of a recursion scope operator is the initial-
ization predicate of the linear form of the initial recursion variable, after
incrementing the program counters in the predicate by the sum of maxi-
mum values of i1 in linear forms of X1 until Xm−1.

36

The program counters that are not used in the linear form p̃m, are set
to an odd value which is equal the highest value of program counter i1
+1. The highest value of program counter i1 is used in the linear form
of the recursion variable Xi with the highest index i. It is given by the
expression, value(Incrpcs>1(un

pc, Incrvalue(n, [p̃1, . . . , p̃n])), 1).

4. The function Update : N × P̃
∗ → P takes a natural number and a list of

linear process terms. The natural number must point to an element of
the list, which consists of linear forms of recursion variables. The function
Update(j,L) increments the non zero values of all program counters in the
jth element of L, by the increment value Incrvalue(j, L) and replaces any
pointers update(Xi) by appropriate action predicates, where i, j ∈ [1, | L |
]. Thus the function Update covers two steps i.e. incrementing process
definitions of recursion variables and replacing a pointer update(Xi) by
the required action predicates in the linearization procedure.

A pointer update(Xi) in an alternative of rhs(L.j) is replaced by the fol-
lowing actin predicates:

(a) An action predicate setting the local environment variables of L.i
according to its initialization predicate ui. The jump set of this action
predicate consists of the local discrete and continuous variables of L.i;

(b) An action predicate initializing the program counters according to
their initial values in L.i, after incrementing the initial values by a
factor Incrvalue(i, L) ; and

(c) In case the program counters of L.j are more than the program coun-
ters in L.i, then the unused program counters are deactivated.

Update(j, L) =
Incrpcs>1(rhs(L.j), Incrvalue(j, L))
[{v | v ∈ dom(Sigma(L.i))} : U(L.i),

pcs(rhs(L.i)) : Incrpcs>1(Upc(L.i), Incrvalue(i, L)),
pcs(rhs(L.j))\pcs(rhs(L.i)) :∧

id∈pcs(rhs(L.j))\pcs(rhs(L.i))

id = value(Incrpcs>1(Upc(L.len(L)), Incrvalue(len(L), L)), 1) + 1
/ update(Xi)
],

where len(L) denotes the length of the list L. Inactive program counters
are set to an odd value equal to the highest value of i1 in any of the linear
forms in the list L +1. The linear form with the highest value of i1 is
the last element of the list. Therefore extra program counters are set to:
value(Incrpcs>1(Upc(L.len(L)), Incrvalue(len(L), L)), 1) + 1.

37

5.8 Initialization

An initialization predicate u is a predicate on the model variables. A process
term p with an initialization predicate u, denoted by uy p, behaves as p when-
ever the initialization predicate u holds. The linear form of uy p is calculated
by concatenating u with the initialization predicate initializing the model vari-
ables in the linear form of p.

Assume

Normalize(ps) = p̃ = |[V σpc ∪ σ,C, L
:: |[R {X 7→ p} :: up ∧ upc y X]|
]|

Then,

Normalize(u y ps) = |[V σpc ∪ σ,C, L
:: |[R {X 7→ p} :: u ∧ up ∧ upc y X]|
]|

The linear form of u y ps has been derived from the following property of the
semantics of hybrid χ.

u y (u′ y p) ↔ u ∧ u′ y (p)

5.9 Encapsulation

Two kinds of encapsulation operators are allowed in the input language:

1. ∂A(p) denotes the encapsulation of non communicating actions in the set
A. Actions from the set A are blocked.

2. ∂H (p) denotes the encapsulation of send and receive actions on channels
in the set H . ∂H (p) is defined as:

∂H (p) , ∂{h ! cs,h ? cs|h∈H ,cs∈Λ∗}(p)

In a channel encapsulation operator, ∂H (p) the blocking of send and re-
ceive actions is done on the basis of communication channels and not on
the basis of values sent or received.

Assume

Normalize(ps) = p̃ = |[V σpc ∪ σ,C, L
:: |[R {X 7→ p} :: up ∧ upc y X]|
]|

Then,

Normalize(∂L(ps)) = |[V σpc ∪ σ,C, L
:: |[R {X 7→ Encaps(p, L)} :: up ∧ upc y X]|
]|

38

where, the function Encaps : P × (2A ∪ 2H) → P takes as the first argument a
process term of the form p, and as the second argument, a set of action labels
from the set Alabel or a set of channels . It scans the given process term for any
actions from the given set of action labels or send or receive actions on a channel
in the given set of channels. If such an action is present in any alternative of
the given process term p, then that action is replaced by inv true. Any action
predicates, pointers or recursive call to X following such an action are removed.

The function Encaps is defined below.

1. Encaps(bpc → pu, L) = bpc → pu

2. In case label(patom) ∈ L ∨ Ch(patom) ∈ L, then

Encaps((bpc → patom, ap,update(Xi); X), L) = bpc → inv true
Encaps((bpc → patom, ap, appc), L) = bpc → inv true
Encaps((bpc → patom, ap, appc ; X), L) = bpc → inv true

3. In case label(patom) 6∈ L ∧ Ch(patom) 6∈ L, then

Encaps((bpc → patom, ap, update(Xi); X), L)
= bpc → patom, ap,update(Xi); X

Encaps((bpc → patom, ap, appc), L)
= bpc → patom, ap, appc

Encaps((bpc → patom, ap, appc ; X), L)
= bpc → patom, ap, appc ; X

4. Encaps(p 8 q, L) = Encaps(p, L) 8 Encaps(q, L)

where

1. The function label : Patom → Alabel ∪ Acom takes an atomic action and
returns its label.

label(la,W : r) = la
label(h ! en,W : r) = h ! cs
label(h ?xn,W : r) = h ? cs
label(h !?xn := en,W : r) = h !? cs

cs denotes a list of values.

2. The function Ch : Patom → H ∪ {⊥} takes an atomic action. If the given
action is a send, receive or communication action, it returns the channel
of communication else it returns ⊥.

Ch(la,W : r) = ⊥
Ch(h ! en,W : r) = h
Ch(h ?xn, W : r) = h
Ch(h !?xn := en,W : r) = h

39

5.10 Channel Scope Operator

Localizing a channel in |[H H :: ps]| has the following effects on the process term
ps:

1. It makes communication on a local channel invisible to outside observers.
An external observer only observes the silent action τ when communica-
tion on a local channel takes place.

2. Send and receive actions on local channels are no longer possible. Only
the synchronous execution of a send and receive action resulting in com-
munication is allowed on a local channel.

Assume

Normalize(ps) = p̃ = |[V σpc ∪ σ,C, L
:: |[R {X 7→ p} :: up ∧ upc y X]|
]|

Then

Normalize(|[H H :: ps]|) = |[V σpc ∪ σ,C, L
:: |[R {X 7→ localCh(p,H)} :: up ∧ upc y X]|
]|,

where the function localCh : P × 2H → P takes a process term of the form p
and a set of channels that are to made local to p. It does the following:

1. It replaces the communication action h !?xn := en with h in the given set
by the silent action τ .

2. It replaces the send and receive actions on a cannel in the given set by
inv true and removes any action predicates and recursive call to X following
such a send or receive action.

It is defined below:

1. localCh(bpc → pu,H) = bpc → pu

2. In case Ch(patom) 6∈ H, then,

localCh((bpc → patom, ap, update(Xi); X),H)
= bpc → patom, ap,update(Xi); X

localCh((bpc → patom, ap, appc),H)
= bpc → patom, ap, appc

localCh((bpc → patom, ap, appc ; X),H)
= bpc → patom, ap, appc ; X

40

3. In case Ch(patom) ∈ H and label(patom) = h !? cs, where cs ∈ Λ∗, then

localCh((bpc → patom, ap, update(Xi); X),H)
= bpc → patom[τ/h !?xn := en], ap, update(Xi); X

localCh((bpc → patom, ap, appc),H)
= bpc → patom[τ/h !?xn := en], ap, appc

localCh((bpc → patom, ap, appc ; X),H)
= bpc → patom[τ/h !?xn := en], ap, appc ; X

4. In case, Ch(patom) ∈ H and label(patom) 6= h !? cs, where cs ∈ Λ∗, then

localCh(bpc → patom, ap, update(Xi); X, H) = bpc → inv true
localCh(bpc → patom, ap, appc,H) = bpc → inv true
localCh(bpc → patom, ap, appc ; X, H) = bpc → inv true

5. localCh(p 8 q, H) = localCh(p,H) 8 localCh(q,H)

5.11 Urgent Channel Operator

Linearizing the urgent communication operator is allowed only for “well-posed
systems”. Definitions of well-posed dynamical systems found in literature [20,
21] imply existence and uniqueness of a solution for a given dynamical system.
We give a different meaning to well-posed systems. By well-posed systems we
mean systems that can be represented by reactive automata as defined in [19].
I.e., if a guard condition for a set of actions is true, then the invariants of
the target locations (subprocesses following the guard conditions) to the given
actions also hold. Thus invariants of target locations do not prevent actions
from taking place immediately.

The urgent communication operator makes communication on a given set of
channels urgent. In case communication on a channel h ∈ H is possible for a
process p, then the process υH (p) cannot do any time transitions.

Assume

Normalize(ps) = p̃ = |[V σpc ∪ σ,C, L
:: |[R {X 7→ p} :: up ∧ upc y X]|
]|

Then

Normalize(υH (ps)) = |[V σpc ∪ σ,C, L
:: |[R {X 7→ Urgent(p,H)} :: up ∧ upc y X]|
]|

where the function Urgent : P ×H→P takes a process term of the form p and a
set of channels. It scans the process term p searching for alternatives containing
communication actions h !? cs with h in the given channel set and cs a list of

41

values. If such an alternative is found, then the function Urgent adds another
alternative with an urgency condition on the “guard” of the action predicate
accompanying the communication action h !? cs. The new alternative is guarded
by the same predicate bpc as the found alternative. By “guard” of an action
predicate W : r, we mean the part of predicate r that imposes conditions on
values of model variables before an action takes place.

The function Precond : (AP ∪R)→R takes an action predicate or predicate
on model variables and returns the part of predicate imposing restrictions on
previous values of model variables. For the syntax of allowed predicates see
Section 2.

Precond(true) = true
Precond(false) = false
Precond(x− opr c) = x opr c
Precond(x+ opr c) = true
Precond(r ∧ r′) = Precond(r) ∧ Precond(r′)
Precond(W : r) = Precond(r)
Precond(W : r, ap) = Precond(r) ∧ Precond(ap)

where W is a subset of model variables, x is a model variable, c is a value and
opr denotes the set of relational operators.

The function Urgent is defined below:

1. Urgent(bpc → pu,H) = bpc → pu

2. In case Ch(patom) 6∈ H, then

Urgent((bpc → patom, ap,update(Xi); X), H)
= bpc → patom, ap,update(Xi); X

Urgent((bpc → patom, ap, appc), H)
= bpc → patom, ap, appc

Urgent((bpc → patom, ap, appc ; X),H)
= bpc → patom, ap, appc ; X

3. In case Ch(patom) ∈ H and label(patom) = h !? cs, where cs ∈ Λ∗, then

Urgent((bpc → patom, ap,update(Xi); X), H)
= bpc → patom, ap,update(Xi); X
8 bpc → urg Precond(ap)

Urgent((bpc → patom, ap, appc), H)
= bpc → patom, ap, appc

8 bpc → urg Precond(ap)
Urgent((bpc → patom, ap, appc ; X),H)

= bpc → patom, ap, appc ; X
8 bpc → urg Precond(ap)

4. Urgent(p 8 q,H) = Urgent(p, H) 8Urgent(q,H)

42

5.12 Variable Scope Operator

Assume

Normalize(ps) = p̃ = |[V σp
pc ∪ σp, Cp, Lp

:: |[R {X 7→ p} :: up ∧ up
pc y X]|

]|

Then assuming that p̃ and the variable scope operator |[V σ⊥, C,L :: ps]| do not
share any local environment variable names, i.e.

(L ∪ dom(σ⊥)) ∩ (dom(σp) ∪ Lp) = ∅,

we define the linear form of the variable scope operator as follows:

Normalize(|[V σ⊥, C, L :: ps]|) = |[V σp
pc ∪ σp ∪ σ′⊥, Cp ∪ C, Lp ∪ L

:: |[R {X 7→ p} :: u ∧ up
pc y X]|

]|
where,

1. The valuation σ′⊥ is defined as follows:

dom(σ′⊥) = dom(σ⊥)
∀x∈dom(σ′⊥)σ

′
⊥(x) = ⊥

2. The initialization predicate u is defined as follows:

u =

 ∧

x∈dom(σ⊥) s.t. σ⊥(x)6=⊥
x = σ⊥(x)

 ∧ up

All model variables defined in the variable scope operator are initialized
in the initialization predicate u. up includes the initialization of those
variables that are defined in σp and are initialized to ⊥.

In the output form of our linearization algorithm, we allow a variable scope only
at the top most level. Hence during linearization, the local valuations and local
variables of all variable scope operators present in a given input process term
are moved to the top level. We assume that all variable scope operators of an
input process term ps have distinct local variables.

In a variable scope operator, the local variables can be initialized in two
ways. They are initialized either in the local valuation or in an initialization
predicate appearing at the start of the variable scope operator process term. In
the output form of our linearization algorithm, see Section 3, only initialization
predicates are allowed to initialize local variables. The top level valuation σ is
undefined for all local variables. In the linear form of an input process term p
containing a variable scope, the variables local to the variable scope must be
set to their initial values at the same time as when they are initialized in p. To

43

achieve this, we add an action predicate to the action preceding the variable
scope in p. This action predicate allows the local variables of the variable scope
operator to jump to their required initial values. This has been mentioned in
the linearization of a sequential composition (Section 5.4) and recursion scope
(Section 5.7.)

A problem may occur when linearizing a recursion variable with a process
definition consisting of a variable scope operator and self recursion. This prob-
lem was pointed out in [8].

Consider the following recursion definition:

X1 7→ |[V {n 7→ ⊥}, ∅, ∅ :: u y ps]| ; X1

Without linearization, we can view X1 as an infinite sequence of variable scopes
|[V {n 7→ ⊥}, ∅, ∅ :: u y ps]| with each member of the sequence having its own
instance of the local variable n. In our linearization algorithm, where a variable
scope is only allowed at the top level, this is not possible.

We would like to linearize the process definition of X1 by adding an action
predicate {n} : u to the last action of ps, where u is the initialization predicate
of the variable scope. But situations may arise where appending the last action
of ps with {n} : u results in a deadlock. For example,

X1 7→ |[V {n 7→ ⊥}, ∅, ∅ :: (n = 0) y τ, {n} : n = n− + 1]| ; X1

The process definition of X1 is capable of performing infinite number of τ ac-
tions. When we linearize X1, then an action predicate {n} : (n = 0) is appended
to the last action of the variable scope. In this case, the last action of the
variable scope, also updates n in its predicate. This leads to the predicate
n = n−+ 1∧n = 0 which equals false and therefore in the linear form of X1, the
action τ cannot take place. For this linearization algorithm, we simply disallow
recursion variables with process definitions consisting of variable scopes and self
recursion. Further research on this topic is left as a future work.

6 Conclusive Remarks

In this report a linearization of hybrid χ specifications using program counters is
presented. Linearization is the procedure of rewriting a process specification into
a linear form. A linear form consists of only basic operators of a process language
such as atomic actions,sequential composition and choice. Program counters are
fresh discrete variables introduced in a process specification that keep track of
next possible actions of the system. In the linear form of a parallel composition,
a separate program counter is introduced for each parallel component. Action
interleaving of components is modelled by updating of program counters which
greatly reduces the size of the resulting linear form.

A linearization algorithm and tool for the previous version of hybrid χ [7] is
already available in [8]. In [8] the linearization algorithm does not use any spe-
cial data structures to model interleaving in parallel composition or sequential

44

composition of processes. The linear form of a hybrid χ process PN as defined
in [8] appears to be similar to the linear form obtained in this report. The linear
form obtained by the algorithm in [8] is given below:

PN = |[V σ,C, L
:: |[H H

|[R Rn :: X]|
]|

]|
where Rn is a recursive definition and X ∈ dom(Rn).

Main differences in the linear forms of the two linearization algorithms are
as follows: In [8] the channel scope operator is not eliminated from the normal
form and the recursion definition Rn may contain more than one recursion vari-
ables. The channel scope operator can easily be removed from the linear form as
already mentioned in [8]. The righthand sides of all recursion variables defined
in Rn are linear process terms, i.e. they consist of only basic operators (such as
sequential and alternative composition) and tail recursion. The algorithm given
in [8] is for the previous syntax and semantics, therefore the recursive process
definitions also contain unary operators (not present in the new syntax) like
signal emissions and jump-enabling operators. It is not possible to eliminate
signal emission from these process terms.

We linearized the train gate controller specification (taken from [12]) mod-
elled in hybrid χ using the linearization tool of [8]. The linear term obtained
was very long with over a hundred and seventy recursion variables defined in the
recursion definition. Many of these recursion variables were not reachable from
the initial term. Based on the new linearization algorithm given in this report,
a tool in ASF+SDF environment [22] is being developed. The previous lin-
earization algorithm for hybrid χ [8] was also developed in the same language.
ASF+SDF is a term rewriting language that is suitable for defining domain-
specific languages, source code analysis, source code transformations, semantics
of programming languages, many-sorted algebras etc. It is supported by the
Meta-Environment [23] that provides an Integrated development environment
for application development in ASF+SDF.

Some restrictions have been imposed on the input process terms (more specif-
ically on the recursion scope operator) to the new linearization algorithm. These
restrictions are the same as were in [8]. They are as follows: only complete recur-
sion definitions, i.e. recursion definitions that do not refer to recursion variables
defined outside the recursion scope are allowed; an occurrence of a recursion vari-
able must be guarded; only tail recursion is permitted and a recursion variable
cannot occur in a parallel composition. Completeness of recursion definitions
makes the task of linearization easier and it does not pose any limitations on the
expressiveness of specifications. The restriction of guardedness is required for
uniqueness of solutions for recursion variables. Recursion over parallel compo-
sition is disallowed. This restriction prevents a possible infinite parallelism, e.g.
in X1 7→ a; X1 ‖ b; Y2. But parallel composition of recursion scopes is allowed
which can model parallelism among different components of a system.

45

As mentioned in Section 5.12, recursion variables with process definitions
consisting of variable scopes and self recursion are disallowed. The problem
arising in such self calling recursion variables could perhaps be avoided by in-
troducing a new identical recursion variable in the specification. However, in
retrospect, the usefulness of setting a local variable to some value in the last ac-
tion of a variable scope after which the variable ceases to exist is questionable.
Corresponding to the variable scope operator in hybrid χ is the abstraction
operator in HyPA [13]. In the linearization of HyPA process terms [18], an
abstraction operator is only allowed at the top most level in the input to the
linearization algorithm. The reason being the same as that for restricting vari-
able scope operator in recursion scopes that an abstraction operator cannot be
eliminated from recursive equations.

In comparison to the linearization algorithms for HyPA and µCRL, our lin-
earization algorithm is much simpler. No complex data structures (such as
stacks in HyPA and lists, multi-sets and stacks in µCRL) are used during
linearization. This makes the intermediate and final linear forms of our lin-
earization algorithm more readable than the linear forms obtained from other
linearization algorithms. On the other hand, the use of these data structures
would allow more flexibility in input process terms. Stacks are needed in the
linearization of a sequential composition of parameterized recursion variables.
In µCRL [14], recursive occurrences of parallel composition and of renaming
operators are linearized using lists of multi-sets. In our linearization algorithm,
the reuse of program counters turns out to be natural in linearizing a sequential
composition and recursion scope operator. For alternative composition with
new root (Section 5.6.2), the reuse of program counters gives a rather complex
algorithm. The algorithm for alternative composition with a new root is only
needed in cases where one of the alternative is a recursion scope with self re-
cursion. For modeling of most dynamical systems, the alternative composition
without a new root will be used which is simpler.

References

[1] Van der Mortel-Fronczak, J.M. and J.E. Rooda, “Application of Concurrent
Programming to Specification of Industrial Systems”, Proceedings of the
1995 IFAC Symposium on Information Control Problems in Manufacturing,
pp. 421-426.

[2] Van der Mortel-Fronczak, J.M., J.E. Rooda and N.J.M. van den Nieuwe-
laar, “ Specification of a Flexible Manufacturing System Using Concurrent
Programming”, The International Journal of Concurrent Engineering: Re-
search and Applications, Vol. 3, No. 3, 187-194, 1995.

[3] Fabian, G., “A Language and Simulator for Hybrid Systems”, IPA disser-
tation series 1999-11, Faculty of Mechanical Engineering, TU/e, 1999.

46

[4] D.A. van Beek and J.E. Rooda, “Languages and applications in hybrid
modelling and simulation: Positioning of χ”, Control Engineering Practice,
vol 8(1), 81-91, 2000.

[5] D.A. van Beek and K.L. Man and M.A. Reniers and J.E. Rooda and R.R.H.
Schiffelers, “ Syntax and Consistent Equation Semantics of Hybrid Chi”,
Journal of Logic and Algebraic Programming, 2006, vol 68, 1-2,129-210.

[6] D.A. van Beek M.A. Reniers R.R.H. Schiffelers J.E. Rooda, “Syntax and
Operational Semantics of Chi”, (To be published soon).

[7] K. L. Man, R.R.H. Schiffelers , “Formal specification and analysis of hy-
brid systems”, IPA dissertation series 2006-04, Faculty of Mathematics and
Computer Science and Faculty of Mechanical Engineering, TU/e, 2006.

[8] R.J.M Theunissen, “Process algebraic linearization of hybrid Chi”, Mas-
ter’s thesis, Department of Mechanical Engineering, SE 420479, Systems
Engineering Group, TU/e, June, 2006.

[9] J.C.M. Baeten, W.P. Weijland, “Process Algebra”, Cambridge Tracts n
Theoretical Computer Science, Cambridge University Press.

[10] J.C.M. Baeten, T. Basten, M.A. Reniers, “Algebra of Communiating Pro-
cesses”, Faculty of Mathematics and Computer Science, TU/e.

[11] J.C.M. Baeten, C.A.Middelburg, “Process Algebra with Timing”, Springer,
2002.

[12] J.A.Bergstra, C.A.Middelburg, “Process Algebra for Hybrid Systems”,
Theoretical Computer Science 335, (2005) 215-280.

[13] P. Cuijpers, M. Reniers, “ Hybrid process algebra”, Journal of Logic and
Algebraic Programming, 62(2):191-245, Februari 2005.

[14] Y. Usenko, “Linearization in µCRL”, PhD thesis TU/e, IPA dissertation
series 2002-16, 2002

[15] Arno Wouters ,“Manual for the µcrl Tool Set (version 2.8.2)”,Report Sen-
R0130 December 31,2001, CWI, Amsterdam.

[16] R. Alur. Marrying words and trees, 26th ACM Symposium on Principles
of Database Systems, 2007.

[17] Andrzej Wasowski, “Flattening statecharts without explosion ”, Language,
Compiler and Tool Support for Embedded Systems, Proceedings of the
2004 ACM SIGPLAN/SIGBED conference on Languages, compilers, and
tools for embedded systems, 2004.

[18] P.C.W. van den Brand, M.A. Reniers and P.J.L. Cuijpers, Linearization of
Hybrid Processes, Journal of Logic and Algebraic Programming, 68(1-2):54-
104, June-July 2006. Special issue on Process Theory for Hybrid Systems.

47

[19] D.A. van Beek, M.A. Reniers, R.R.H. Schiffelers, J.E. Rooda, “Foundations
of a compositional interchange format for hybrid systems”, 19, SE Report
2006-05, Internal Report (2006)

[20] J.-I. Imura and A.J. van der Schaft, “Characterization of well-posedness
of piecewise linear systems”, IEEE Transactions on Automatic Control,
45(9):1600-1619, 2000.

[21] A.Y. Pogromsky, W.P.M.H. Heemels, H. Nijmeijer, “On solution concepts
and well-posedness of linear relay systems”, Automatica, 39(12), 2139 -
2147, (2003)

[22] Mark van den Brand, Paul Klint, Jurgen Vinju, “The ASF+SDF Meta-
environment: A Component-Based Language Development Environment
”, in Compiler Construction : 10th International Conference, CC 2001:
Held as Part of the Joint European Conferences on Theory and Practice
of Software, ETAPS 2001, Genova, Italy, April 2-6, 2001, Proceedings ,
LNCS, Volume 2027/2001, 2001.

[23] The Meta Environment,

http://www.cwi.nl/htbin/sen1/twiki/bin/view/Meta-Environment

48

