

Using local defect correction for laminar flame simulation

Citation for published version (APA):
Graziadei, M. V. (2004). Using local defect correction for laminar flame simulation. [Phd Thesis 1 (Research
TU/e / Graduation TU/e), Mathematics and Computer Science]. Technische Universiteit Eindhoven.
https://doi.org/10.6100/IR581573

DOI:
10.6100/IR581573

Document status and date:
Published: 01/01/2004

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://doi.org/10.6100/IR581573
https://doi.org/10.6100/IR581573
https://research.tue.nl/en/publications/d034d8c7-7364-41aa-9649-e5c18a938cf1

Using Local Defect Correction
for Laminar Flame Simulation

Marialuce Graziadei

Copyright c©2004 by Marialuce Graziadei, Helmond, The Netherlands.

All rights are reserved. No part of this publication may be reproduced, stored in a re-
trieval system, or transmitted, in any form or by any means, electronic, mechanical,
photocopying, recording or otherwise, without prior permission of the author.

Printed by Eindhoven University Press

CIP-DATA LIBRARY TECHNISCHE UNIVERSITEIT EINDHOVEN

Graziadei, Marialuce V.

Using Local Defect Correction for Laminar Flame Simulation
by Marialuce Valentina Graziadei. -
Eindhoven, Technische Universiteit Eindhoven, 2004.
Proefschrift. - ISBN 90-386-0962-0

NUR 919
Subject headings: boundary value problems; numerical methods /
elliptic differential equations; boundary value problems /
combustion; numerical methods
2000 Mathematics Subject Classification: 65N50, 65N55, 65N06, 80A25

Using Local Defect Correction
for Laminar Flame Simulation

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de
Technische Universiteit Eindhoven, op gezag van de
Rector Magnificus, prof.dr. R.A. van Santen, voor een

commissie aangewezen door het College
voor Promoties in het openbaar te verdedigen
op donderdag 9 december 2004 om 16.00 uur

door

Marialuce Valentina Graziadei

geboren te Pagani, Italië

Dit proefschrift is goedgekeurd door de promotoren:

prof.dr. R.M.M. Mattheij
en
prof.dr. L.P.H. de Goey

Copromotor:
dr.ir. J.H.M. ten Thije Boonkkamp

Acknowledgements

Many people contributed, in different ways, to the realisation of the research work that
resulted in this thesis. First, I would like to thank prof.dr. Robert Mattheij for the sup-
port, guidance and encouragement he offered me and for promoting the very nice and
enjoyable atmosphere in the Scientific Computing Group. Special thanks also to dr.ir.
Jan ten Thije Boonkkamp for the many fruitful discussions and advices, as well as for
the thorough and time consuming revisions of the thesis manuscript that allowed to
improve the quality of my work. I am also grateful to prof.dr.ir. Philip de Goey for his
useful comments to the draft of this thesis.

In scientific computing, programming and coding skills are essential to the successful
implementation of any numerical method. That is why the help and suggestions of dr.ir.
Bas van der Linden have been extremely valuable and appreciated. Moreover, I would
like to acknowledge dr.ir. Ronald Rook for the work performed on the Lamfla code.

Essential to research is also the possibility to work in a positive and lively environment,
therefore I want to say thanks to all the Scientific Computing Group fellows and in par-
ticular to Bratislav Tasic, Irina Lioulina, Martijn Anthonissen, Wienand Drenth, Luiza
Bondar. Special thanks are due to dr.ir. Paul de Haas and again to dr.ir. Bas van der Lin-
den, whose room was equipped with an espresso coffee machine, an essential appliance
for good working performance and for creating a very gezellige atmosphere.

Finally, I would like to mention the beloved ones. My parents Tina and Libero deserve
all my gratitude for their love and encouragement. Some of the results of this thesis
have been obtained while travelling between Eindhoven, Milan and London to reach
a person that means a lot for me. The love, support and sense of humour of Maurizio
made my life enjoyable and worth also in the difficult moments on the way to the end
of this thesis.

Contents

1 Introduction 1

1.1 Background . 1

1.2 Combustion theory in a nutshell . 2

1.3 Outline of the thesis . 4

2 Modeling laminar flames 11

2.1 Reacting gas flow . 11

2.2 General conservation law . 12

2.3 The conservation equations . 13

2.4 Chemistry in laminar flames . 16

2.5 The isobaric approximation . 17

2.6 The thermo-diffusive model . 18

3 LDC method: algorithm, properties and local grid refinement 21

3.1 Formulation of the LDC method . 22

3.2 Some convergence and accuracy properties 25

3.3 LDC and curvilinear grids . 29

3.3.1 Generating a solution-fitted orthogonal grid 30

4 LDC with orthogonal grids 37

4.1 LDC in combination with slanting grids . 37

4.2 Slanting grids: numerical results . 44

4.2.1 Example 1: straight centre line, no restriction error. 44

4.2.2 Example 2: straight centre line . 46

viii Contents

4.2.3 Example 3: curved centre line . 47

4.3 Complexity of the method . 49

4.4 Curvilinear refinement domains . 51

4.5 LDC applied to curvilinear grids: numerical results 53

4.6 Complexity analysis of LDC and curvilinear grids 58

5 Solving nonlinear systems via embedding methods 61

5.1 The Davidenko equation . 61

5.2 The mixed Euler method . 63

5.3 Implementation . 65

5.3.1 Step size control via the second derivative approximation 65

5.3.2 Step size control via a higher order method 67

5.3.3 Step size control via extrapolation 71

5.4 Numerical results . 73

6 Laminar flame simulation 83

6.1 The thermo-diffusive model . 83

6.1.1 Governing equations . 83

6.1.2 Solution strategy and numerical results 86

6.2 Bunsen flames . 90

6.2.1 Governing equations . 90

6.2.2 Discretisation . 92

6.2.3 Solution strategy . 96

6.2.4 Numerical experiments and pressure oscillations 100

6.2.5 Bunsen flame simulation . 103

7 Conclusions and recommendations 109

A Discretisation of the viscous terms 111

B Flame solver 113

B.1 Block Gauss-Seidel method . 113

B.2 Broyden iteration method . 114

B.3 Multigrid solver . 114

B.4 Least squares extrapolation in time . 115

Contents ix

Bibliography 117

Index 123

Summary 125

Samenvatting 127

Curriculum vitae 129

CHAPTER 1

Introduction

1.1 Background

Combustion was the first source of energy for human kind. It provided early men and
women with light, heat and, apart from changing radically their diet, it gave a definitive
impulse to the construction of more sophisticated and effective tools. Despite the fact
it witnessed and promoted the very early steps in technology, combustion still plays
a very important role in our life as it supplies, both in a direct and an indirect way,
90% of the energy demand [25]. Fields of application are many, ranging from domestic
appliances - combustion is primarily involved in heating and burning home devices -
to industrial equipment. Electricity generating capabilities heavily depend on combus-
tion, as do industrial energy needs. Moreover, combustion fuels are especially attractive
when an energy vector is required: it is therefore not surprising that they occupy a very
important position in the field of public and private transportation. Also at the very
end of the product life we often find incineration, a socially and politically very con-
troversial subject, to dispose of all sorts of waste and, sometimes, to recover energy
from them. Finally, it is worth to recall that combustion is fruitfully used to flare toxic
products coming from industrial applications.

The use of combustion in such a massive way implies the necessity to ensure that the
processes related to it are performed in the most efficient way. Several reasons lead
to consider this as a very high priority. First of all, the increase in energy demand, in
conjunction with the depletion of the cheapest fossil reserves, requires strong efforts to
minimise the waste of energy. Moreover, associated with combustion there is the impor-
tant issue of environmental pollution. The ever more strict requirements of national and
international authorities on allowed emissions are intended to put a limit on the inher-
ent polluting products of combustion. Amongst them, we have carbon oxides, CO and
CO2, with the latter being the main responsible for the so-called greenhouse effect. More-
over, combustion occurring in air inevitably leads to the formation of nitrogen oxides,
NO and NO2, also generally indicated with NOx. They constitute one of the main ingre-
dients involved in the formation of ground-level ozone and, together with sulphur oxides,

2 Chapter 1. Introduction

Figure 1.1: Bunsen burners

contribute to formation of acid rains. In addition, partially burned or unburned hydro-
carbons are detrimental to human and environmental health; they are, for instance, the
main cause of smog. Finally, the last problem worth to be mentioned is the safety of
combustion processes that has to be guaranteed for all applications, ranging from the
domestic to the industrial ones. All these issues make the study of combustion a field of
big importance to meet the requirements of society. In fact, the understanding of the un-
derlying mechanisms is essential for controlling the combustion processes and to make
them cleaner, safer and more efficient.

1.2 Combustion theory in a nutshell

While the basis of combustion relies on exothermic chemical reactions, the physical pro-
cesses involved are mainly energy and mass transport, such as heat diffusion, chemi-
cal species diffusion, convection and radiation. Two main components give rise to a
combustion reaction: the fuel and the oxidizer, in most cases air. Flames are classified
on the basis of their main features. A first distinction is made between premixed and
nonpremixed flames. While the former are characterised by the mixing of the fuel and
the oxidizer before combustion takes place, in the latter such components are mixed
and burned at the same time. Both premixed and nonpremixed are subdivided in laminar
and turbulent flames, depending on the laminar or turbulent character of the fluid flow.
Examples of nonpremixed laminar flames are candles and wood fire, while nonpremixed
turbulent combustion takes place in aircraft turbine engines. Spark-ignited gasoline en-
gines are, instead, typical applications of turbulent premixed combustion. In this thesis
we focus on the study of premixed laminar flames as occurring, for instance, in a Bunsen
burner, often used for domestic or laboratory applications, see Figure 1.1.

A very important parameter characterising the behaviour of premixed flames is the sto-
ichiometric ratio ϕ. If the proportion between fuel and oxidizer is such that they are
both completely consumed after combustion, then ϕ = 1 and the flame is said to be

1.2. Combustion theory in a nutshell 3

stoichiometric!flame. If there is an excess of fuel with respect to the oxidizer the system
is said fuel-rich and ϕ > 1. When the opposite occurs, then ϕ < 1 and the system is
said to be fuel-lean. The possibility of controlling the composition of the mixture before
burning is very important for combustion efficiency. In fact, a fuel-lean system leads
to complete combustion which implies low CO emissions and a relatively low temper-
ature. It is worth to remark that the lower the combustion temperature, the smaller is
the production of NOx. Too lean flames, on the other hand, are much more sensitive
to stability problems. Too lean flames, on the other hand, are much more sensitive to
stability problems.

The variety of phenomena involved and the large number of relevant variables (pres-
sure, gaseous mixture composition, flow velocity, etc.) make the study of combustion
a complex and interesting field. The fluid dynamics and the chemistry used to model
it give rise to highly non-linear systems of equations that do not admit analytical solu-
tions, unless in very special and simplified cases. Moreover, since combustion is caused
by phenomena that occur at different time and length scales, those systems are usually
very stiff. Combustion is therefore an interdisciplinary subject, that requires the com-
bined efforts of chemistry, physics, fluid mechanics and applied mathematics. Research
on numerical flame simulation has been directed, on the one hand, to the development
of reduced combustion models that, while retaining the predictive capabilities of the
more complex chemical networks, are able to decrease the complexity of the numerical
work. On the other hand, research deals with the development of more sophisticated
solution techniques aiming at solving the combustion equations efficiently.

Both research lines have quite a long history at Eindhoven University of Technology.
In [36], a theory to describe one-dimensional flames and to compute the related com-
bustion parameters is introduced. Moreover, in [36, 37], the authors present a numerical
method to solve the flow field using a stream function-vorticity description. The grid is
non-staggered and grid-refinement is used in regions where a given variable has high
gradients. In [56, 57] laminar flames stabilised on a premixed flat flame burner are sim-
ulated, with detailed and reduced chemical models. The authors focus their study on
the development of reduction techniques and apply the steady-state and partial equi-
librium assumptions to eliminate a number of species. The corresponding partial differ-
ential equations are then replaced by algebraic relations. This way the dimension of the
system of equations to be solved can be significantly reduced, with great advantages
not only for computational memory requirements, but also for the possibility to con-
sider more complex burner geometries. Comparisons are carried out between results
obtained with reduced and detailed models. Those are then improved via a sensitivity
analysis. Reduced chemical models are also treated in [17] and [18], with a particu-
lar emphasis on laminar flames. The starting point is to divide the reaction space into
two subspaces: one containing the slow and the other the fast processes. The latter
are then considered to be in a steady state. This research is mainly devoted to model
NOx formation in laminar methane/air flames, with the objective to perform detailed
NO computations with reduced reaction mechanisms. A new reduction method is pre-
sented in [45]. Traditional reduction techniques are based on the steady state assumption,
i.e. a large number of species react very fast and their chemistry is dominant with re-
spect to other processes. Actually, this holds only at high temperatures, since at lower

4 Chapter 1. Introduction

temperatures the number of slow chemical processes increases and also convection and
diffusion play an important role. The reduction technique presented by the author does
not only takes chemical reactions into account, but the contributions of convection and
diffusion processes as well.

The stabilisation of steady premixed laminar flames is influenced by several physical
processes related to the configuration of the burners. These phenomena are studied
in [40]. The author investigates problems as quenching, flash back and blow-off of two-
dimensional methane/air flames.

The acoustic behaviour of burner-stabilised methane/air flames is investigated in [48].
The analysis takes several different length and time scales into account. The most im-
portant two are the acoustic length scale, which characterises sound waves, and the
flame length scale, which is considered to be much smaller than the previous one.

Several numerical problems arising in laminar flame simulation are explained in [30]
and new numerical techniques are introduced. First of all, an improved Thiart’s scheme,
see [58, 59], for discretisation of convection-diffusion-reaction equations is studied. This
possesses the following three properties. First, the numerical fluxes are second order
accurate for all flow conditions, ranging from diffusion to convection dominated flows.
Secondly, no oscillations in the proximity of high gradients are produced for convection
dominated flows. Finally, only a three point coupling for each spatial direction is used,
see [31]. Moreover, in [30] the author discusses iterative solution methods. In fact, since
laminar combustion problems occur at low Mach numbers, the isobaric or combustion
approximation can be usually applied. Traditional pressure correction are reformulated
in [30, 32] to deal with such a situation. In particular, the correction step is no longer
based on the continuity equation but on the expansion equation.

Combustion problems are characterised by solutions that are very steep in a small part
of the computational domain. Therefore, they appear suitable to be solved with local
refinement techniques. In [2] the author studies several theoretical aspects of the Local
Defect Correction (LDC) method. First, a modified formulation for finite volume discreti-
sation is introduced. Its key feature is the possibility to keep the discrete conservation
property, which usually does not hold for composite grid approximation and which is
one of the most attractive characteristics of finite volume techniques. Then the author
analyses the iterative behaviour of the LDC method and introduces a new expression
for the iteration matrix. An upper bound for this is derived for a model problem that
consists of the Poisson equation solved on the unit square. Finally, the LDC method
is combined with the concepts of domain decomposition, regridding, multi-level refinement
and adaptivity; the application to the numerical simulation of a Bunsen laminar flame is
presented. In the following we will refer extensively to this work.

1.3 Outline of the thesis

In this thesis we investigate some numerical techniques for laminar flame simulation.
Although these are suitable to be applied to any problem having solutions that are steep
in a relatively small part of the computational domain, the focus is put on combustion

1.3. Outline of the thesis 5

applications. Moreover, we investigate some numerical techniques to solve nonlinear
algebraic systems.

A mathematical model for laminar flames is presented in Chapter 2. This is derived by
using the Reynolds’ Transport Theorem to write the energy, mass and momentum conserva-
tion equations. The constant pressure approximation, together with the asymptotic analysis
of the terms entering the combustion and the flow equations, allows us to neglect the
second order quantities and to make the equations simpler, see i.e.[48]. The last sec-
tion of Chapter 2 is dedicated to the thermo-diffusive model. Although it relies on a quite
crude, though reasonable, assumption, i.e. the constant density approximation, its simplic-
ity reveals to be extremely useful to gain insight in the structure and in the behaviour
of laminar flames. A nice survey of issues related to the thermo-diffusive model can be
found in [9]. Results about existence and uniqueness of the solution under quite mild
assumptions are shown in [8, 10].

Solutions of boundary value problems (BVPs) are often characterised by the presence
of regions where gradients are quite large compared to those in the rest of the domain,
where the solution can be considered relatively smooth. When solving such problems
numerically, this solution behaviour requires a much finer grid in such high activity re-
gions than in regions where the solution is fairly smooth. This is the case, for instance,
for the equations that describe laminar flames: most of the activity is concentrated in
the so-called flame front, a narrow area where the temperature rises steeply and chemi-
cal reactions take place. Other examples of such BVPs are mathematical models of shock
waves or semiconductor devices. Finite element methods can quite easily cope with this
by using meshes that are fine only where this is needed, but they give rise to compli-
cated data structures and to systems of equations whose matrices are not banded. Even
if one considers finite volume methods, the unstructured grids that are a consequence
of this non-uniform behaviour, are very complicated to handle. For the latter type of
methods, one may still obtain a simple data structure by using tensor product grids.
These should be such that they have smaller grid size in the high activity region. How-
ever, this most likely leads to too many grid points in other parts of the domain and thus
to low computational efficiency. In particular, this occurs when the front is not aligned
with either one of the coordinate axes and/or when its shape is far from being a straight
line, which is often the case.

In Chapter 3 we therefore introduce the so-called local defect correction (LDC) method
based on the use of tensor product grids on rectangular domains. Roughly speaking,
it goes as follows. First, an approximation on a coarse grid in the entire domain is
computed. Then, this is used to define a boundary value problem on a subdomain
where a different grid is employed. The thus found solution on the latter subdomain is
used to define a defect on the global domain, which, in turn, induces an updated global
domain problem. The local defect correction method is then used in an iterative way. It
converges very fast: typically one iteration suffices.

LDC was first introduced in [26]. Its convergence behaviour has been studied in [21, 2, 3]
using, as a model problem, the Poisson equation discretised with the finite difference
method. The main results of these studies are summarised in Section 3.3. In [4] the
authors combine the LDC method with the finite volume discretisation while retain-
ing the conservation properties characteristic of such technique. An application of LDC

6 Chapter 1. Introduction

−8 −6 −4 −2 0 2 4 6 8
0

1

2

3

4

Figure 1.2: Thermo-diffusive model. Coarse and fine grids.

with multi-level adaptive grid refinement to perform laminar flame simulation can be
found in [2]. In [43, 42] it is shown how different kinds of grids, namely a global rect-
angular and a local cylindrical, can be coupled by LDC and applied to the study of
viscous flows. Finally, the application of the LDC method in combination with finite
element discretisation has been studied in [64].

Since the high activity region can have an irregular shape, the boundaries of the refine-
ment area may not consist of straight lines. In such case the local BVP problem can
be solved efficiently by using curvilinear fine grids that tightly follow the shape of the
solution. This method shows one drawback: when transforming the local BVP from
a Cartesian to a curvilinear coordinate system, some more terms appear in the PDEs.
However, the problem can be partially overcome by using an orthogonal fine grid. This
requirement turns out to have also another advantage: the accuracy of numerical dif-
ferencing techniques turns out to be the highest. Clearly, the generation of the fine grid
is crucial for the efficiency of the method. In literature several ways to generate body
fitted or solution fitted orthogonal coordinate systems can be found. A good summary
is given in [61, 62]. One of the most well-known and widely used techniques is the
classical conformal mapping, but it allows little control on the line spacing and will there-
fore not be considered here. The remaining methods to generate an orthogonal grid
are basically of two types: trajectory and field methods. In the first approach, an existing
nonorthogonal grid is transformed into an orthogonal one. One set of lines of the origi-
nal nonorthogonal grid is retained; the other is displaced, through a marching process,
such that the intersection between the two sets of lines is orthogonal. The second ap-
proach is based on the solution of an elliptic or a hyperbolic PDE system. In this thesis
a method belonging to the first group has been chosen. The most attractive property is,
for us, the possibility to retain a family of coordinate lines. In fact, if this set is aligned
with the solution iso-contours, we can get a substantial reduction in the number of fine
grid points that are necessary to reach a certain level of accuracy. We use a method in-
troduced in [16], that actually turns out to be extremely simple and computationally not
expensive. Just a few changes are needed to be adapted to our purposes. As an exam-
ple, Figure 1.2 shows both a global coarse and a fine solution fitted grid used to solve the
thermo-diffusive model.

The algorithm presented in Chapter 3 is tested with a variety of benchmark problems
in Chapter 4. The first examples study the application of LDC in combination with
rectangular fine grids that are slanted with an angle α over the Cartesian axes of the

1.3. Outline of the thesis 7

global domain. A complexity analysis is then performed introducing a gain function
G that compares the LDC and the tensor product grid algorithms in terms of memory
requirements. Moreover, a nice feature of LDC is shown, i.e. once the desired accuracy
is fixed, the number of fine grid points in the direction orthogonal to the level curves
is independent of the steepness of the solution. The last problem deals with curvilinear
refinement domains. An application where a rectangular coarse and a cylindrical fine
grid have been combined is already presented in [43]. In this thesis such a concept is
extended to general solution fitted local grids that are generated with the methodology
presented in Chapter 3. Eventually, an asymptotic analysis is carried out to determine
the overall complexity of the LDC algorithm. In particular, we show that the possibility
to use the level curves of the coarse grid solution as a set of coordinate lines implies
that the leading term of the formula that expresses the complexity is determined by the
coarse grid problem. This certainly holds for a class of problems whose source term
can be expressed as an exponential function. For both slanting and curvilinear grids a
difficulty may arise if the solution iso-lines are not orthogonal to the boundary of the
global domain. In this case there can be some points of the local grid that do not belong
to the global domain itself. We show how to deal with such a situation.

Like many equations describing other physical phenomena, the combustion equations
contain some terms that are extremely nonlinear. Once discretised, they yield algebraic
systems that can be written as

F(x) = 0, (1.1)

and that are very hard to solve. The simplest and fastest method to deal with this kind
of problem is the Newton method. Unfortunately, Newton iterations only converge when
the initial guess is very close to the solution of this system. If this condition is not satis-
fied, i.e. if the initial guess does not belong to the convergence region, the algorithm will
fail. The robustness of the Newton method can be improved by embedding the original
nonlinear system into a time dependent problem making use of a (dummy) time vari-
able. The steady state solution of the new problem will then be a zero of the original
system. Early studies on this subject have been done, amongst others, in [27]. It is found
that the stability of the integration process, more than its accuracy, is an important re-
quirement to successfully obtain a root of the algebraic system. In [28] a class of iterative
methods is constructed by embedding an algebraic system into a time dependent prob-
lem. Time integration is performed by a Runge-Kutta method. Moreover, the concept
of radius of convergence for an iterative method is introduced. More recent studies have
investigated the behaviour of the equation

dx
dτ

= −V(x)F(x), (1.2)

where V(x) is a nonsingular matrix used to improve the scaling of the system. In [34] a
convergence analysis of system (1.2), integrated with a Rosenbroek method, is carried
out. The extension of this analysis to Differential Algebraic Equations (DAEs) of order
1 is performed in [15]. In Chapter 5 we consider the embedded system

dx
dτ

= −J(x)F(x), (1.3)

8 Chapter 1. Introduction

−6 −4 −2 0 2 4 6

1

2

3

Figure 1.3: Thermo-diffusive model. Temperature

also known as the Davidenko equation, where J(x) is the Jacobi matrix of F(x). We start
from the work carried out in [35]. There, system (1.3) is integrated with the so-called
mixed Euler method to improve stability of the solution time history. The time step is
determined trying to control the discretisation error over the integration interval: its es-
timate is given via a discrete approximation of the second derivative. Here we try to
achieve a better control over the discretisation error in order to make the path towards
the steady state solution more reliable and robust. We present two different alterna-
tives: one is based on the use of two integration formulae having different order, the
other is based on the possibility to control the time step by comparing two different so-
lution approximations obtained with the same integration formula and with different
time steps. We work out those two possibilities and derive two algorithms to imple-
ment them. A series of benchmark problems is presented to test their robustness and
to compare the computational work that they require with respect to the mixed Euler
method presented in [35].

Chapter 6 is devoted to the solution of two different 2D laminar flame models, and
consists of two main sections. The first one is dedicated to the thermo-diffusive model
introduced in Chapter 2. The computational domain is a part of an infinite channel
whose walls are adiabatic and inert. Moreover, at its left side we impose a nonuniform
flow that gives the flame a very peculiar shape and makes it suitable to be solved with
LDC and curvilinear fine grids. The equations are discretised by finite differences; the
resulting algebraic system is embedded in a time dependent problem and solved with
the Mixed Euler method. Then we determine the temperature distribution in the channel,
see Figure 1.3, as well as the velocity of the flame front. A similar problem is solved
in [39] in a finite element context with an adaptive grid procedure.

In the second section of Chapter 6 we present the simulation of a laminar flame in a
Bunsen burner whose chemistry consists of a five species reaction scheme. An applica-
tion of LDC to laminar flames is already proposed in [2]. The author solves a problem
previously presented in [6] and combines LDC with a procedure for adaptive gridding
introduced in [6, 7, 63]. The equations are based on a vorticity-velocity formulation. The
flame front region is covered with several overlapping rectangular patches that belong
to 3 different refinement levels. Finite difference discretisation is used.

Our aim is to combine the LDC algorithm with a curvilinear orthogonal fine grid built
on top of the flame front. The coarse grid problem is solved by an existing laminar

1.3. Outline of the thesis 9

flame simulation program that is mainly developed in [30]. Its characteristic features
are the finite volume discretisation technique and the multigrid method solver, see [66].
Since the program is designed for to flame computations in Cartesian geometries, we
are required to rewrite the combustion and Navier-Stokes equations in terms of general
coordinates. The choice of the velocity primary variables is an important issue. In fact,
one has the option to use the Cartesian, the contravariant or the covariant velocity com-
ponents. Several studies are available in literature. In [53] it is shown that the strong
conservation form can be completely satisfied when using the Cartesian velocity com-
ponents as primary variables. Moreover, we manage this way to retain the same form of
the equations as it was for the Cartesian domain. This is a big advantage when building
something on top of an already existing code. The effect of mesh skewness and metric
coefficients evaluation is studied, for instance, in [13, 52].

Since the equations modeling combustion are very stiff, only implicit time integration
methods can be used. However, they lead to algebraic systems that are very difficult
to solve and that require a big computational effort. A way to overcome those difficul-
ties is to use pressure correction methods. These are introduced in [33] and generalised
in [30, 32] to combustion problems. When using the combustion approximation in com-
bination with standard discretisation schemes, the pressure can show some spurious
solutions resulting in irregular wiggles. This can happen both in a finite element and
in a finite volume/finite difference context. Several methods have been developed to
prevent such behaviour. Since the pressure gradients only appear in the momentum
equations, a simple remedy is to approximate these on a finer grid. This approach is
typical for finite volume discretisation. This remedy, although widely used, gives in
some cases poor results. A detailed analysis of the problem can be found in [49, 50].
Another interesting approach is presented in [44] and is based on filtering the pressure
field at the beginning of each time step. A standard approach to get rid of pressure
wiggles when discretising with finite volumes/finite differences consists of using stag-
gered grids, see [46]. This is adopted in the laminar flame program used in this thesis.
Nevertheless, when translating the equations from Cartesian to curvilinear coordinates,
there are several cases in which the grid staggering can lose its effectiveness. Such a
situation is investigated in several papers. In [52, 51] a possible cause for this behaviour
is proposed. Another approach to get rid of pressure wiggles is based on the smoothing
of the pressure field, see i.e. [67].

Finally, in Chapter 7 conclusions are drawn and recommendations for future work are
given.

CHAPTER 2

Modeling laminar flames

Since this thesis mainly focuses on computational aspects of numerical flame simula-
tion, we omit discussing the several available mathematical models that have been de-
veloped so far to describe laminar flames. Instead, this chapter is devoted to present
the combustion model introduced in [55, 56, 60]. In Section 2.1 we define the variables
used to describe a reacting gas flow and we give the related thermodynamic relations.
In Section 2.2 we recall the Reynolds’ Transport Theorem that is used in Section 2.3 to de-
rive the conservation equations. There, also the models for both the stress tensor and the
diffusion velocities are presented. The laminar flame chemical production terms are intro-
duced in Section 2.4, while in Section 2.5 the constant pressure approximation is discussed.
This applies to flows characterised by a highly subsonic nature and helps to simplify
the resulting system of equations that is finally worked out in the same section. Since
the combustion equations represent a highly nonlinear system whose solution requires
big computational effort, in Section 2.6 we introduce a simplified model, the so called
thermo-diffusive model, derived on the basis of the constant density approximation.

2.1 Reacting gas flow

The way we derive the equations describing laminar flames is based on the continuum
mechanics approach coupled with the laws of chemical kinetics and thermodynam-
ics. Thus, we assume that the reacting flow is a continuum composed of Ns chemical
species. This means that every control volume that is small enough to be considered
punctiform still contains a big number of molecules of each distinct species. The state of
such a mixture is supposed to be completely determined by the following scalar quanti-
ties: pressure p, temperature T and density ρ, also referred to as state variables. If we assume
our mixture to be an ideal gas, the equation of state that couples density, pressure and
temperature, reads

p

ρ
=
RT

M
. (2.1)

Here R is the universal gas constant and M the weighted average molar mass of the
mixture. The latter can be expressed in terms of the molar masses Mi of the chemical

12 Chapter 2. Modeling laminar flames

species as

1

M
=
1

ρ

Ns∑

i=1

ρi

Mi

, (2.2)

with ρi the mass density of the i-th species. It is customary to describe the composition
of the mixture by the species mass fractions Y1, Y2, . . . , YNs

, defined as

Yi =
ρi

ρ
, (2.3)

and it is easy to see that they satisfy the relation

Ns∑

i=1

Yi = 1. (2.4)

Another scalar quantity reveals to be very useful for the description of a flame: the
total specific energy E. It is defined as the sum of the kinetic contribution and the total
internal energy e, i.e.

E =
1

2
|v|2 + e, (2.5)

with
e = h−

p

ρ
, (2.6)

where v is the velocity vector field, while h in (2.6) represents the specific enthalpy, i.e.
the weighted sum of the species specific enthalpies hi

h =

Ns∑

i=1

Yihi. (2.7)

Moreover, hi is given by

hi = h0i +

∫T

T0

cp,i(τ)dτ, (2.8)

where h0i is the enthalpy of formation of species i at a certain temperature T0 and pres-
sure p0 (usually the standard conditions) and cp,i is the specific heat of the i-th species
at constant pressure.

2.2 General conservation law

The derivation of the combustion model to be introduced in this chapter is based on a
Lagrangian formulation. Therefore, each control volume V(t) in the fluid is considered
as an individual entity that consists of the same particles and for which the conserva-
tion laws hold. These can be stated making use of Reynolds’ Transport Theorem. Let us
consider the material volume V(t) that moves with velocity v(x, t) and a scalar or vec-
tor function b(x, t), defined in V(t), which represents a density of a certain property

2.3. The conservation equations 13

per unit mass. The variable b(x, t) is also called the intensive value of the considered
property, while its extensive value is given by

B(t) =

∫

V(t)

ρbdV. (2.9)

According to the transport theorem, if b is a scalar field the material derivative of B(t)

can be computed as follows [60]

dB(t)

dt
=

∫

V(t)

∂ρb

∂t
dV +

∮

∂V(t)

ρbv ·ndS, (2.10)

where ∂V(t) is the surface that encloses V(t) and n is the outward unit vector normal
to ∂V(t). There are two ways for B(t) to change within V(t); viz. transport across the
boundary ∂V(t) and production mechanisms inside the control volume itself. If we
name f(x, t) the flux and s(x, t) the production term per unit volume and per unit time
of the property b(x, t), respectively, we can write

dB(t)

dt
=

∫

V(t)

s dV −

∮

∂V(t)

f ·ndS. (2.11)

The right-hand sides of equations (2.10) and (2.11) must be equal. By applying the Gauss
theorem to the boundary integrals in both (2.10) and (2.11), we obtain

∫

V(t)

(∂ρb

∂t
+ ∇ · (ρbv)

)

dV =

∫

V(t)

(

s − ∇ · f
)

dV. (2.12)

Relation (2.12) must hold for an arbitrary control volume V(t). This leads to the general
conservation law

∂ρb

∂t
+ ∇ · (ρbv) = s− ∇ · f. (2.13)

If b is a vector field, applying (2.13) componentwise we get

∂ρb
∂t

+ ∇ · (ρb ⊗ v) = s − ∇ · f, (2.14)

with (b ⊗ v)ij = bivj, [∇ · (b ⊗ v)]i = ∇ · (biv) and f a tensor.

2.3 The conservation equations

In this section we use (2.13) and (2.14) to derive the conservation equation of mass for
the individual species and for mass, momentum and specific energy of the mixture.

• The continuity equation
It is also called mass conservation and states that, within the fluid, mass can neither be
created nor destroyed. If B(t) represents the mass contained in a control volume V(t),
the application of (2.13) with b = 1, f = 0 and s = 0 reads

∂ρ

∂t
+ ∇ · (ρv) = 0. (2.15)

14 Chapter 2. Modeling laminar flames

• The species conservation equations
The velocity vector field v that appears in (2.5) is a bulk mass-weighted quantity, related
to the velocities vi of the individual species by the relation

v :=

Ns∑

i=1

Yivi. (2.16)

It is customary to describe the motion of the Ns species using the molecular diffusion
velocities Vi. They are defined as

Vi = vi − v. (2.17)

Making use of (2.16), we see that, after weighting with the mass fractions, the molecular
diffusion velocities add to zero

Ns∑

i=1

YiVi =

Ns∑

i=1

Yivi − v = 0. (2.18)

The conservation law (2.13) applied to the mass fraction Yi contained in the control
volume V(t) reads

∂ρYi

∂t
+ ∇ ·

(

ρvYi
)

= si − ∇ · fi, i = 1, · · · , Ns, (2.19)

with
fi = ρiVi = YiρVi. (2.20)

An expression for the chemical production term si is introduced in the next section.
Here, let us consider the flux of the i-th chemical species through ∂V(t). A quite accurate
transfer model makes use of the generalized Fick’s law and reads

Vi = −Dim
∇Yi

Yi
. (2.21)

In (2.21) the mixture-averaged gas diffusion coefficient Dim is a measure of the diffu-
sivity of the i-th species in the gas mixture and it is given by

Dim =
(1 − Yi)
Ns∑

j=1, j6=i

Xj

Dij

, (2.22)

where Xj is the mole fraction of the j-th species and Dij are the binary diffusion co-
efficients. The model expressed by (2.22) is also called the trace species approximation
because, in a multi-component flow, it applies strictly only to the trace species. Since
in an atmospheric fuel mixture nitrogen, with its 80% in weight, constitutes by far the
most abundant species, we can consider this model quite reliable when used to describe
the behaviour of the other (Ns− 1) species in fuel/air flames. This implies that only the
first (Ns − 1) equations (2.19) must be solved, since the nitrogen mass fraction can be
determined by using relation (2.4).

2.3. The conservation equations 15

• The momentum equations
Now let B(t) be the momentum of the fluid contained in V(t). According to the Newton’s
second law, in an inertial system the following holds

dB(t)

dt
= F, (2.23)

where F is the resultant of all forces applied to the system. This vector can be expressed
as the sum of two contributions: the body force ρg, that corresponds to the volumetric
contribution in (2.12), with g the gravitational acceleration, and the divergence of the
surface forces, represented by the stress tensor P. The resulting equations are

∂ρv
∂t

+ ∇ · (ρv ⊗ v) = ρg − ∇ ·P. (2.24)

Surface forces depend on the nature of the fluid and on the assumptions made about the
relation between deformation and stresses within the fluid. If this is assumed to have
an isotropic Newtonian behaviour, the tensor P has the following form

P =
(

p +
2

3
µ
(

∇ · v
)

)

I − µ
(

(

∇ ⊗ v
)

+
(

∇ ⊗ v
)T
)

= pI + τ, (2.25)

with p the hydrostatic pressure, I the unit tensor, τ the viscous stress tensor and µ the
dynamic viscosity.

• The energy equation
This is obtained by applying (2.13) with b = E. The rate of change of the internal total
energy density is due to the heat flux and to the work done on the system by body and
surface forces. The resulting conservation law is

∂ρE

∂t
+ ∇ · (ρvE) = −∇ ·q − ∇ · (P v) + ρv · g. (2.26)

An alternative formulation for the energy equation can be obtained by subtracting from (2.26)
the inner product between the momentum equation (2.24) and v. This way we get

∂ρe

∂t
+ ∇ · (ρve) = −∇ ·q − P : ∇v, (2.27)

with
P : ∇v = ∇ · (Pv) − (∇ ·P) · v. (2.28)

The energy conservation equation can also be formulated in terms of the enthalpy h.
Substituting (2.6) into (2.27), we obtain

∂ρh

∂t
+ ∇ · (ρvh) = −∇ ·q +

Dp

Dt
+ τ : ∇v. (2.29)

The stress tensor has already been introduced, so, in order to complete the expression in
the right-hand side of (2.27), we need a model for the heat flux vector. We assume that
the only two mechanisms of importance to our purpose are the conductive heat transfer

16 Chapter 2. Modeling laminar flames

and the enthalpy transport due to species , leaving out both the radiative contribution
and the heat transfer due to mass diffusion (Dufour effect). By introducing the thermal
conductivity of the gas mixture λ, we get

q = −λ∇T + ρ

Ns∑

i=1

hiYiVi. (2.30)

Sometimes it is useful to write the energy equation in terms of temperature. Let us
introduce the specific heat at constant pressure of the mixture

cp =

Ns∑

i=1

cp,iYi. (2.31)

If we assume cp to be constant and all cp,i(i = 1, . . . Ns) to be equal, then (2.29) can be
transformed, see [2], into

cp
∂ρT

∂t
+ cp∇ · (ρvT) = ∇ · (λ∇T) +

Dp

Dt
+ τ : ∇v −

Ns−1∑

i=1

h∗isi, (2.32)

where h∗
i = hi − hNs

.

2.4 Chemistry in laminar flames

In Section 2.3 the species conservation equations are introduced. In order to complete
the model, we need to specify the form of the chemical production term si. We focus on
pure methane-air flames, whose combustion mechanisms are described in detail in [19]
as consisting of 210 reactions involving 36 chemical species. If ν′i,j and ν′′i,j are the
stoichiometric coefficients for the reactant and the product species Mi appearing in the
j-th reaction, respectively, a chemical mechanism can be described by the following

Ns∑

i=1

ν′i,jMi

Ns∑

i=1

ν′′i,jMi. (2.33)

The rate at which the concentration ci of the species i changes because of the reaction
j is proportional to the product of the concentration of reactants ck = ρYk/Mk with
k = 1, . . . , Ns, see [12]. Therefore, the chemical production term si is given by

si = Mi

M∑

j=1

(ν′′i,j − ν′i,j)

(

kf,j

Ns∏

k=1

c
ν′

k,j

k − kb,j

Ns∏

k=1

c
ν′′

k,j

k

)

. (2.34)

In (2.34), kf,j and kb,j are the specific reaction rate coefficients for the forward and back-
ward path in the j-th reaction, respectively. The specific reaction rate coefficients kf,j
depend on the temperature T and can be represented with an Arrhenius-like relation

kf,j = Af,j exp

(

−
Ef,j

RT

)

, (2.35)

2.5. The isobaric approximation 17

where Ef,j is the activation energy for the j-th forward reaction. The frequency factors
Af,j are given by

Af,j = Bf,jT
αf,j . (2.36)

The coefficients kf,j are strongly dependent on the absolute temperature T and can be
considered to be zero when T is below a certain threshold value. The backward reaction
equilibrium constant, see [68], is given by

kb,j =
kf,j

Kc,j
, (2.37)

with Kc,j the equilibrium constant of the j-th reaction.

The solution of a detailed chemical model, as the one described in [19], would require
a big computational effort. Therefore, the study of reduction strategies, aimed at sys-
tematically reducing the number of chemical species and reactions, plays a crucial role.
The skeletal mechanism, consisting of 25 reactions and 15 chemical species, is suitable
to predict the most important features of lean methane/air laminar flames. Those are
combustion processes that occur when the oxidizer, in this case oxygen, is in excess with
respect to the fuel, see [65]. The temperature, the species mass fractions and the burning
velocity of a lean laminar flame can be predicted in an even cheaper way with the one
step model, whereNs = 5 andM = 1. The latter is used for the computations presented
in this thesis. Furthermore, we also introduce the thermo-diffusive model for laminar
flames.

2.5 The isobaric approximation

Laminar flame propagation is a highly subsonic phenomenon. In fact, the characteristic
flow speeds do usually not exceed 3m/s and, since the speed of sound at atmospheric
pressure is about 300m/s, the representative Mach numbers Ma are the order of 10 −2.
This leads to the so-called combustion approximation [14]. By formally expanding the
pressure as a series of Ma, it can be shown that

p(x, t) = P(t) + p̃(x, t), with
p̃(x, t)
P(t)

= O(Ma2), (2.38)

i.e. the pressure is constant in space up to the second order, its leading term depending
only on time. This implies that the pressure gradient can be neglected in the energy
equation, see [48]. If combustion takes place at atmospheric pressure, P(t) = P0 is
constant and the ideal gas law becomes

ρ =
P0M

RT
. (2.39)

It has to be noticed that, although the pressure terms have disappeared from the energy
equation, their contribution cannot be ignored in the momentum equations, where they
constitute the flow driving forces. The subsonic behaviour of laminar flames helps to
further simplify (2.29). In fact, the viscous heating, represented by the last term in the

18 Chapter 2. Modeling laminar flames

right-hand side, can be shown to be proportional to Ma2 [48]. This implies that it is
small and can be neglected as well.

In this thesis we consider 2D geometries. The model so far developed consists finally of
the following Ns + 3 independent equations

∂ρ

∂t
+ ∇ · (ρv) = 0, (2.40a)

∂ρYi

∂t
+ ∇ · (ρvYi) = ∇ · (ρDim∇Yi) + si, i = 1, · · · , Ns − 1, (2.40b)

∂ρv
∂t

+ ∇ · (ρv ⊗ v) = −∇ ·P − ρg, (2.40c)

∂ρh

∂t
+ ∇ · (ρvh) = ∇ · (λ∇T) + ∇ ·

(

ρ

Ns∑

i=1

hiDim∇Yi
)

. (2.40d)

The independent variables are here ρ, p, T , h, v and Yi(i = 1, · · · , Ns − 1), thusNs + 5

in total. This means that the problem must be closed by adding two equations. These
are the equation of state (2.39) and the thermodynamic identities (2.7) and (2.8).

2.6 The thermo-diffusive model

Finding a numerical solution for the system that describes laminar flame propagation
is not an easy task. Therefore, some simplified models have been developed. These,
although with a loss of information details, help to gain a good understanding of the
flame behaviour with little numerical effort. Let us consider a single one-step chemical
model of a two component gaseous mixture

M1 → M2. (2.41)

It has been shown in [38] that, for a one-dimensional isobaric model, the introduction of
a mass-weighted Lagrangian coordinate allows to decouple the combustion variables Y,
the mass fraction of the reactant, and T from the flow variables v and p. Unfortunately,
this does not hold for two-dimensional geometries, where the same result can only be
achieved by considering the constant density approximation

ρ = Constant. (2.42)

Assuming that the flow is inviscid, the application of (2.42) to the equations describing
a two-components mixture leads to the two decoupled systems

∇ · v = 0, (2.43a)

ρ
∂v
∂t

+ ∇ · (ρv ⊗ v) = −∇p, (2.43b)

and

ρ
∂Y

∂t
+ ρ∇ · (vY) = ρ∇ · (D∇Y) −Mω(ρY, T), (2.44a)

ρcp
∂T

∂t
+ ρcp∇ · (vT) = ∇ · (λ∇T) +QMω(ρY, T), (2.44b)

2.6. The thermo-diffusive model 19

with

ω(ρY, T) =
ρY

M
B exp

(

−
E

RT

)

. (2.45)

In (2.43) the contribution of gravity has been omitted and the energy equation (2.44b)
has been written in terms of the temperature as independent variable. Moreover, Q is
the heat release per unit mass of fuel consumption. When making use of the thermo-
diffusive model, we consider also a slightly simpler model for the chemical production
term. In particular, the dependency of the frequency factor on the temperature is sup-
pressed.

We see that the combustion variables T and Y do not appear in (2.43) anymore: this system
describes only the hydrodynamic variables behaviour, i.e. v and p. On the other hand,
(2.42) is the new equation of state. System (2.44) can then be solved for the combustion
variables if the velocity field is supposed to be known and to satisfy (2.43). It has to
be remarked that, while the isobaric assumption finds its roots in the physics of the
combustion phenomena, the constant density approximation is in some way more difficult
to justify. In fact, it is based on qualitative considerations, see [54], that show how
hydrodynamic effects are less important than conduction and diffusion mechanisms
in determining the thermo-diffusive instabilities of laminar flames. This implies that
the first can be neglected such that thermal and hydrodynamic perturbations do not
influence each other. The way to achieve such a separation is to discard the density
fluctuations from the model.

CHAPTER 3

LDC method: algorithm,
properties and local grid
refinement

The discretisation of systems describing laminar flames requires a very high resolution
in only a small part of the domain. In fact, the activity is almost completely concen-
trated in the reaction layer, a narrow band where gradients are relatively high. Apart
from combustion processes, there are numerous physical phenomena described by PDE
equations that exhibit this behaviour, like shock waves or semiconductor devices. For
this kind of problems, composite grids turn out to be very attractive. The principle re-
lies on the possibility to cover the global domain with a relatively coarse grid and the
areas of interest with grids or patches of grids that are finer than the coarse one. This
chapter is devoted to explain the basics of the LDC method. Moreover, we show how
this can be used in combination with solution fitted grids. In the first section we consider
a general boundary value problem on a domain Ω with boundary conditions that can
be either of Dirichlet or Neumann type. Although both Ω and the refinement region
Ωl are represented as being rectangular, the notation and the LDC algorithm presented
there apply to more general configurations, whichever the shape of those domains is.
In the second section, besides the very important safety region concept, we present some
interesting convergence and accuracy property results that apply strictly only to Dirich-
let boundary value problems defined on a rectangular domain. Section 3 is dedicated
to broaden the LDC concepts: we use this technique coupling different grid types and
different discrete operators. The reason for this is to be found in the fact that the high
activity regions of the processes we want to describe have very often a shape that can
be better followed by a curvilinear grid, which allows to compute the solution with a
greater accuracy and much less grid points. Obviously, the system of equations has to
be mapped into the new computational domain. Since we aim to keep this mapping as
easy as possible, we consider only curvilinear orthogonal grids. Although several more
recent techniques are available to build such a solution fitted grid, we present one of the
easiest and computationally less expensive that we have found in literature. Since it has

22 Chapter 3. LDC method: algorithm, properties and local grid refinement

Figure 3.1: Global coarse and local fine grids. The circles represent the nodes of the coarse grid
ΩH; the stars the nodes of the fine gridΩ l

h. The dashed line is the interface Γ between the global
and the local grid.

originally been developed as a body fitted grid generation method, we adapt it to our
purposes to make it a useful tool to be used in combination with LDC.

3.1 Formulation of the LDC method

In this section the general formulation of the LDC method is introduced. Let us consider
the BVP

L[u] = f, x ∈ Ω, (3.1a)

B[u] = g, x ∈ ∂Ω, (3.1b)

where Ω ⊂ R2 is a simply connected domain, L a linear elliptic operator, f a source
term and g the value of u at the boundary ∂Ω. The boundary conditions, expressed by
the operator B, are either of Dirichlet or Neumann type. Let us define a discretisation
of (3.1) on a uniform (coarse) grid of size H covering Ω, viz.

LH[uH] = fH, (3.2)

where the right-hand side fH contains both the source term and the contribution of the
boundary conditions. In the iteration procedure below, we denote the solution of (3.2)
by u 0H.

Suppose now that u changes very rapidly in a small subdomain Ωl ⊂ Ω. In this high
activity region the grid size H is most likely too large to capture the behaviour of u, so
we formulate a new discrete BVP inΩ l by covering it with a gridΩ l

h, see Figure 3.1. For
the latter, h is either the actual grid size, if the fine grid is uniform, or a characteristic grid
size, otherwise. In order to define a discrete BVP on Ωl, let us introduce some notation.

3.1. Formulation of the LDC method 23

We split ∂Ω l in two parts: the interface Γ betweenΩ andΩl, i.e. Γ = ∂Ωl\(∂Ωl ∩ ∂Ω),
and ∂Ωl∩∂Ω. This last subset can also be empty. Furthermore, we define Γh := Γ ∩Ωlh,
ΩlH := ΩH ∩ Ωl and introduce the vector space of grid functions on ΩH, F(ΩH), and
the vector space of grid functions on Γh, F(Γh). We set B[u] = g on ∂Ωl ∩ ∂Ω and we
interpolate from u0H the boundary conditions on Γ using an interpolation operator that
maps grid functions on ΩH onto grid functions on Γh

P h,H : F(ΩH) → F(Γh). (3.3)

Note that when the global and local grids are chosen like in Figure 3.1, we can have, as
a special case of (3.3), P h,H : F(ΓH) → F(Γh), with ΓH := Γ ∩ΩH.

The discrete problem on Ω l now reads

Lh[uh] = fh − BhΓ Ph,H[uH]. (3.4)

Here the term fh contains the contribution of both the right-hand side f and the bound-
ary conditions on ∂Ω l∩∂Ω, while BhΓ is the part of Lh operating on Γh. By solving (3.4),
we obtain a fine grid solution u 0h . This is used to estimate the local discretisation error
of the coarse grid approximation, defined as

dH := LH[u] − fH, (3.5)

i.e. the residual found by substituting the exact solution of (3.1) into the coarse grid
scheme (3.2). To this end, we introduce the grid function w 0

H

w0H(x) :=

{
u0H(x), if x ∈ ΩH\ΩlH,

RH,h[u0h](x), if x ∈ ΩlH.
(3.6)

Here
RH,h : F(Ωlh) → F(ΩlH), (3.7)

is the restriction operator that maps grid functions on Ωlh onto grid functions on ΩlH.
Let SH(x) be the set of coarse grid points belonging to the stencil of LH at the grid point
x ∈ ΩlH; then we define the subset ΩSH ⊂ ΩlH by the relation

x ∈ ΩSH ⇐⇒ SH(x) ⊂ ΩlH. (3.8)

The approximation of dH is then given by

dH(x)
.
= d0H(x) := χΩS

H

((

LH[w0H] − fH
)(

x
))

, (3.9)

with χΩS
H

the characteristic function of ΩSH, i.e.

χΩS
H
(x) :=

{
1 if x ∈ ΩSH,
0 if x /∈ ΩSH.

(3.10)

Once d 0H has been calculated, it is possible to add it to the right-hand side of (3.2),
resulting in the equation

LH[u1H] = fH + d 0H. (3.11)

24 Chapter 3. LDC method: algorithm, properties and local grid refinement

By solving (3.11), we get a new approximation u 1H. Again, u 1H can be used to approxi-
mate the interface condition for the fine grid problem, giving rise to the following algo-
rithm

LDC Algorithm

- Initialisation

• Compute u0H from the basic coarse grid problem (3.2);

• Build a fine grid enclosing the high activity region;

• Define the fine grid boundary value problem, interpolating the boundary con-
ditions on Γ h;

• Compute u0h from the fine grid BVP (3.4).

- Iteration i = 1, 2, ...

• Compute the grid functions w i−1H using (3.6);

• Estimate the local discretisation error d i−1H using (3.9);

• Solve the new coarse grid problem

LH[u iH] = fH + d i−1H ;

• Define the new BVP on the fine grid, interpolating boundary conditions on Γ h;

• Compute uih from the fine grid BVP (3.4).

The i-th approximation of the solution of BVP (3.1) is the composite grid solution

uiH,h(x) :=

{
uiH(x) x ∈ ΩH\ΩlH,

uih(x) x ∈ Ωlh,
(3.12)

i.e. uiH,h is the fine grid solution inside Ωl and the coarse grid solution outside Ωl.

The following features of the LDC method are interesting to remark. The effectiveness
of the algorithm relies on a proper definition of the high activity area. In fact, the ac-
curacy of the composite grid solution cannot be bigger than the accuracy of the coarse
grid solution in the not refined area. Then, on the one hand Ωl has to be chosen broad
enough to cover the region where gradients are high, on the other hand too many fine
grid points would spoil the efficiency of the computations. A compromise between
these two conflicting requirements has to be reached. There are several algorithms de-
voted to adaptive grid refinement. In general, they are based on the evaluation of the
discrete derivatives on the coarse grid. In [2], for instance, some weight functions that
depend on the values of the coarse grid solution and of its first derivatives are intro-
duced. The refinement is then performed where the values of such function exceed a
certain threshold. An even easier criterion is based on the knowledge of the asymptotic
values of either the solution u−∞ and u∞ or of the source term s−∞ and s∞. In this
case Ωl can be defined such that in Ω\Ωl we either have |u−∞ − ε| < u < |u∞ + ε| or
|s−∞ − ε| < s < |s∞ + ε|, respectively.

3.2. Some convergence and accuracy properties 25

The situation of Figure (3.1), where Ω and Ωl are both square and only one local do-
main is represented, is not the most general. In the following sections we will discuss
the application of the LDC method in combination with several grid types that can be
differently shaped and also protrude the global domain.

The elliptic discrete operators LH and Lh have not been specified. In fact, they can be
different from each other and arbitrarily chosen, provided they are invertible. We can
also use different PDE on different local grids. This is the case, for instance, when the
set of equation have to be transformed in order to be adapted to a different coordinate
system.

3.2 Some convergence and accuracy properties

The following lemma and theorem have been introduced in [2]. They show some nice
properties relevant to the fixed point of LDC iteration. It has to be pointed out that the
lemma and theorems of this chapter refer to Dirichlet problems defined on a rectangular
domain, as in Figure 3.1. To present them, we need some more notation. The coarse
grid points can be partitioned as follows: ΩH := ΩlH ∪ ΓH ∪ΩcH with ΓH := ΩH ∩ Γ and
ΩcH := ΩH\(ΩlH ∪ ΓH). This induces the following corresponding partition of uH, viz.

uH :=

ulH

uΓH

ucH

, (3.13)

as well as for all other grid functions on F(ΩH). Assuming a 5-points stencil at each
grid point, i.e. there is no coupling between ΩlH and ΩcH, the discrete operator LH can
be symbolically written as

LH =

LlH Bl,ΓH 0

BΓ,lH LΓH BΓ,cH
0 Bc,ΓH LcH

, (3.14)

where Bl,ΓH : F(ΓH) → F(ΩlH). The other operators with double index in (3.14) have an
analogous meaning.

The next lemma states that the LDC algorithm has converged to a fixed point when the
coarse grid approximation does not change on the interface.

Lemma 3.1 If uΓ,kH = uΓ,k−1
H for a certain iteration index k, then the LDC Algorithm con-

verges and it has reached a fixed point, i.e.,

uiH = ukH, uih,l = ukh,l (3.15)

for all i = k, k + 1, . . .

The concept of safety region has now to be introduced. Numerical experiments presented
in [3, 20, 26] have shown that the convergence behaviour of the LDC algorithm is im-
proved if the correction term (3.9) is applied to only a subset ofΩSH, excluding the coarse

26 Chapter 3. LDC method: algorithm, properties and local grid refinement

Figure 3.2: Global and local domains. The circles represent the coarse grid ΩH; Ωl is the union
of the dark and the light grey regions. The dark grey area is the safety region; the light grey area
the part of ΩlH where the defect correction is applied. In the figure it reduces to the grid point
marked with the filled circle.

grid points adjacent to Γ , as shown in Figure 3.2. According to this, the approximation
of the defect reads

dH(x)
.
= d0H(x) := χΩdef

H

((

LH[w0H] − fH
)(

x
))

, (3.16)

with

χΩdef
H

(x) :=

{
1 if x ∈ Ω def

H ,

0 if x /∈ Ω def
H ,

(3.17)

andΩdef
H ⊂ ΩSH. The safety region is then defined as ΩSH\Ωdef

H .

We are now ready to introduce a theorem that states the properties of the fixed point
uH,h of the LDC algorithm.

Theorem 3.1 Consider the LDC iteration for the special case that there is no safety region, i.e.
Ωdef
H = ΩlH. Assume that the LDC iteration converges to a fixed point uH,h. Then uH,h has

the following two properties

• the restriction of uh on the local coarse grid equals ulH, viz.

RH,huh = ulH, (3.18)

• uh, uΓH and ucH satisfy the system of equations

Lh Bl,Γh Ph,H 0

BΓ,lH RH,h LΓH BΓ,cH
0 Bc,ΓH LcH

uh

uΓH

ucH

=

fh

fΓH

fcH

. (3.19)

3.2. Some convergence and accuracy properties 27

The behaviour of the discretisation error on the composite grid is studied in [21]. The
model problem consisting of the Poisson equation on the unit square has been considered,
i.e.

∇2u = f, in Ω = (0, 1) × (0, 1), (3.20a)
u = g, on ∂Ω, (3.20b)

with
Ωl = (0, γ1) × (0, γ2), 0 < γ1 < 1, 0 < γ2 < 1. (3.21)

The results, holding only for uniform grids where the standard finite difference discreti-
sation is used, are summarised in the following theorem that sets an upper bound for
the global discretisation error. We use the notation |u(n)(x, y)| = |∂nu/∂xn|+ |∂nu/∂yn|.

Theorem 3.2 Consider the LDC algorithm applied to the model problem (3.20) with g = 0. Let
Ωl be defined as in (3.21). Assume that there is no safety region. Then the fixed point uH,h of
the iteration satisfies

‖ u − uH,h ‖∞≤ 13

8
max{C1, C2}h

2 +
1

8
C3H

2 + 3D1H
j. (3.22)

The exponent j in (3.22) is 1 or 2 if piecewise linear or piecewise quadratic interpolation is used
on the interface, respectively. The constants C1, C2, C3 and D1 are defined by

C1 := c1max
{
|u(4)(x, y)|

∣

∣(x, y) ∈ (0, γ1 − h) × (0, γ2 − h)
}
, (3.23a)

C2 := c2max
{
|u(4)(x, y)|

∣

∣(x, y) ∈ Ωl\(0, γ1 − 2h) × (0, γ2 − 2h)
}
, (3.23b)

C3 := c3max
{
|u(4)(x, y)|

∣

∣(x, y) ∈ Ω\(0, γ1 −H) × (0, γ2 −H)
}
, (3.23c)

D1 := d1max
{
|u(1+j)(x, y)|

∣

∣(x, y) ∈ Γ
}
, (3.23d)

in which c1, c2, c3 and d1 are independent of H, h and u.

A close look at (3.22) shows that the discretisation error on the composite grid consists
of three different contributions: the first two terms on the right-hand side are the errors
on the high and the low activity region, respectively; the third is the error due to the
interpolation of the boundary conditions on the interface.

The constants C1, C2, on the one hand, and C3, on the other hand, are a measure of
the smoothness of the continuous function u, depending on the values of its fourth
derivatives in the high activity area, close to the interface and in the low activity area,
respectively. Since we have assumed u to have large gradient on Ωl, we expect the
constant C1 to be larger than the others.

The constant D1 depends either on the second or on the third derivatives of u. The
former case occurs if interface conditions are interpolated with a piecewise linear oper-
ator; the latter if they are interpolated with a piecewise quadratic operator. Numerical
experiments have been performed in [21] to study the influence of the interface condi-
tions interpolation on the composite grid discretisation error. In particular, it has been

28 Chapter 3. LDC method: algorithm, properties and local grid refinement

shown that for a non-smooth function the errors obtained by using linear and quadratic
interpolation are very close. This depends on the fact that the first two terms on the
right-hand side of (3.22) are usually dominant with respect to the third one and im-
plies that, in the most of the applications, the implementation of a linear interpolation
operator is suitable to satisfy the accuracy requirements. The choice of using linear in-
terpolation for the numerical experiments presented in the following chapters is based
on the former results.

A last important theorem has been presented in [3]. There, a new expression for the
iteration matrixM : F(ΓH) → F(ΓH) of the LDC iteration is introduced. It reads

M :=
(

0 I 0
)

(LH)−1

I

0

0

χΩS
H

[

Bl,ΓH − LlHRH,h(Lh)−1Bl,Γh Ph,H
]

, (3.24)

and gives a measure of the extent of the variation for the interface coarse grid function
values as consequence of one LDC iteration. Then an upper bound for the norm of M is
derived. The model problem considered is the Poisson equation (3.20) on the unit square
and with a single refinement area.

The chosen computational grid ΩH is uniform, with grid sizes ∆x = ∆y = H and
N := 1/H integer, i.e.

ΩH = {(lH, jH) | l = 1, 2, · · · , N− 1, j = 1, 2, · · · , N− 1}, (3.25)

as well as the local gridΩlh
Ωlh = {(lh, jh) | l = 1, 2, · · · , n − 1, j = 1, 2, · · · , n − 1}. (3.26)

Theorem 3.3 Consider the LDC algorithm for the Poisson problem (3.20) with the following
settings. Let LH be the standard five-point discretisation of the Laplacian on a uniform grid
with grid sizes ∆x = ∆y = H as in (3.25). Let Ωl = (0, γ) × (0, γ) with 0 < γ < 1 and γ a
multiple ofH. Let Lh be the standard five-point discretisation of the Laplacian on a uniform grid
with grid sizes ∆x = ∆y = h as in (3.26). Let Ph,H be trigonometric interpolation. Finally let

Ωdef
H = {(x, y) ∈ ΩlH|x < γ− ε∧ y < γ− ε}, (3.27)

for some ε > 0, ε independent ofH. Then the following upper bound for the norm of the iteration
matrix M of the LDC algorithm holds

‖M‖∞ ≤ CH2 +Dh2, (3.28)

with C, D independent of H and h.

We note that there are two important elements upon which the proof of this theorem
relies: the use of a safety region and the choice of a trigonometric operator to interpolate
boundary conditions on the interface between the coarse and the fine grid. Although
the first one is essential to determine the asymptotic behaviour of the iteration matrix,
numerical experiments have shown that convergence is very fast even when ε = 0.
Therefore, no safety region is considered to solve the BVP that are presented in this
thesis. The trigonometric interpolation, instead, is claimed to be an important tool for
the proof of the theorem, but not essential as far as practical results are concerned. This
assumption is confirmed in [3] by means of numerical experiments.

3.3. LDC and curvilinear grids 29

3.3 LDC and curvilinear grids

The results presented in the previous section, even though very important from a theo-
retical point of view, refer to a standard configuration consisting of a global and a local
grid that are both rectangular. In this section we broaden the use of the LDC method
showing why and how to couple different grid types.

The possibility of using a local fine grid that follows the shape of the solution in the high
activity region has already been used in [43]. There, a rectangular global grid has been
combined with a local circular grid, see Figure 3.3, to capture the behaviour of a func-
tion that exhibits local rotational symmetry. This technique has several advantages. In

PSfrag replacements

ϑ

r

Figure 3.3: Global square and local circular grids.

particular, the concentration of grid lines can vary, being higher where the solution has
steep gradients. Looking at Figure 3.3, we see that the local grid consists of two sets of
curvilinear coordinates, r and ϑ, varying in the intervals [r1, r2] and [0, 2π], respectively.
If the origin of the two coordinate systems coincides, the relation between the Cartesian
and the curvilinear coordinates is given by

x(r, ϑ) = r cos ϑ, (3.29a)
y(r, ϑ) = r sin ϑ. (3.29b)

We notice that the coordinate ϑ is constant along the radii of the local domain, where
r varies monotonically. The opposite situation occurs along the concentric circles. The
curvilinear coordinates are thus independent of each other and can be represented as a
rectangular domain. This is a crucial point, implying that all discretisation techniques
used for rectangular grids can be applied also here. The coordinate system (r, ϑ) can
also be normalized by introducing a new system (ξ, η), such that the local BVP is then
solved in a computational domain where, unlike in the physical space, the step sizes ∆ξ
and ∆η are unitary, see Figure 3.4.

30 Chapter 3. LDC method: algorithm, properties and local grid refinement

PSfrag replacements
r

ϑ

η1

η2

ξ1 ξ2

Figure 3.4: Physical and computational domain.

Usually, the shape of a BVP solution has a more complex behaviour than rotational
symmetry. The general transformation between physical and computational space is
expressed by

T :

{
x = x(ξ, η),

y = y(ξ, η),
(3.30)

where T is a one-to-one mapping. This guarantees that only one (ξ, η)-point corre-
sponds to each (x, y)-point.

3.3.1 Generating a solution-fitted orthogonal grid

Now we consider the problem of numerically generating a local grid that fits the char-
acteristics of an unknown function. We also require the grid to be orthogonal. This
property turns out to be very beneficial for the accuracy of the solution. In fact, depar-
ture from orthogonality introduces truncation errors in the expression of the discretised
differential operators. Moreover, the transformation of the BVP from the physical to the
computational domain introduces some additional terms in the equations. Orthogonal
coordinate systems minimize this effect. In the following we show how to construct an
orthogonal fine grid, able to capture the detailed structure of the unknown function,
by exploiting the coarse grid solution. We employ the method that has been presented
in [16]. Let us briefly explain the main features of this technique and tailor it to our
purposes.

The starting point is a non-orthogonal curvilinear coordinate system: one family of non-
orthogonal coordinate lines will be kept, the other one will be transformed into a set of
lines orthogonal to the first set. We will restrict ourselves to 2D domains. Consider
the position vector r = r(ξ, η) = (x(ξ, η), y(ξ, η)) in a non-orthogonal coordinate sys-
tem. Let us introduce the covariant base vectors ∂r/∂η, ∂r/∂ξ, tangent to the ξ- and
η-lines, respectively, and the contravariant base vectors ∇ξ, ∇η perpendicular to the
ξ- and η-lines, respectively; see Figure 3.5. The relations between the covariant and the

3.3. LDC and curvilinear grids 31PSfrag replacements

η = 1

η = 2

η = 3

η = 4

ξ = 1
ξ = 2 ξ = 3

rη
∇η

∇ξ

rξ

Figure 3.5: Covariant and contravariant base vectors.

contravariant base vectors are given by

∇ξ =
1

J2

[

gηη
∂r
∂ξ

− gξη
∂r
∂η

]

, (3.31a)

∇η =
1

J2

[

− gξη
∂r
∂ξ

+ gξξ
∂r
∂η

]

, (3.31b)

where the Jacobian, J, is defined as

J :=

∣

∣

∣

∣

∣

∣

∣

∣

∂x

∂ξ

∂x

∂η

∂y

∂ξ

∂y

∂η

∣

∣

∣

∣

∣

∣

∣

∣

, (3.32)

and represents the ratio between the areas of an infinitesimal element evaluated in the
physical and in the computational space. The coefficients gηη, gξη and gξξ are given by

gηη :=
∣

∣

∣

∂r
∂η

∣

∣

∣

2

, gξη :=
(∂r
∂ξ
,
∂r
∂η

)

, gξξ :=
∣

∣

∣

∂r
∂ξ

∣

∣

∣

2

. (3.33)

Suppose that we want to retain the η-lines and that we want to build a family of coor-
dinate lines, say the ζ-lines, perpendicular to them. To do so, we introduce a function
k(ξ, η), constant along the new ζ-lines. Since the covariant base vector ∂r/∂ξ is tangent
to the η-lines, the orthogonality condition between the ζ-lines and the η-lines can be
expressed as

∇k×
∂r
∂ξ

= 0, (3.34)

where ∇k is related to the contravariant base vectors by

∇k =
∂k

∂ξ
∇ξ+

∂k

∂η
∇η. (3.35)

Using (3.31), we can express ∇k in terms of the covariant base vectors. If we subse-
quently insert (3.35) into (3.34), we get the hyperbolic equation

∂k

∂η
+ F(ξ, η)

∂k

∂ξ
= 0, (3.36a)

32 Chapter 3. LDC method: algorithm, properties and local grid refinement

with F(ξ, η) given by

F(ξ, η) = −

(∂r
∂ξ
,
∂r
∂η

)

∣

∣

∣

∂r
∂ξ

∣

∣

∣

2
= −

gξη

gξξ
. (3.36b)

The characteristics of (3.36a), i.e. the sought ζ-lines, satisfy the ODE system

dξ
dη

= F(ξ, η), (3.37a)

dk
dη

= 0. (3.37b)

To integrate equation (3.36a), we use a second order accurate scheme, centred around
the point (ξ, η + 1/2). This choice is based on the fact that the accuracy of the location
of the fine grid points affects the value of the coefficients ∂x/∂ξ, ∂y/∂ξ, etc. Since such
coefficients have to be used to discretise our BVP in curvilinear coordinates, too big a
deviation from orthogonality would spoil the local grid solution. If I is the number of
non-orthogonal ξ-lines, the derivatives of the function k are approximated as follows

∂k

∂ξ

(

ξ, η+ 1
2

) .
=
1

4

(

k
(

ξ+ 1, η + 1
)

− k
(

ξ − 1, η+ 1
)

+

k
(

ξ + 1, η
)

− k
(

ξ− 1, η
))

, ξ = 2, 3, ..., I − 1,

(3.38a)

∂k

∂η

(

ξ, η+ 1
2

) .
= k

(

ξ, η+ 1
)

− k
(

ξ, η
)

, ξ = 1, 2, 3, ..., I. (3.38b)

Note that (3.38) does not hold for ξ = 1 and ξ = I. In order to complete the equation
set, we have to consider the kind of grid we are going to generate. In this thesis we will
work with η-lines that are not closed, i.e. r(1, η) 6= r(I, η), so the derivative ∂k/∂ξ in
ξ = 1 and ξ = I has to be discretised by a one-sided formula that is at least second order
accurate, say

∂k

∂ξ

(

I, η+ 1
2

) .
=
1

4

(

3k
(

I, η+ 1
)

− 4k
(

I − 1, η+ 1
)

+ k
(

I− 2, η+ 1
)

+ 3k
(

I, η
)

− 4k
(

I − 1, η
)

+ k
(

I− 2, η
))

.

(3.39)

A similar expression holds for ξ = 1. If we substitute (3.38) and (3.39) into (3.36a), we

3.3. LDC and curvilinear grids 33

��

������ ���
�

����

	�	
 ���������
���

��
�������
�

������

������������
������

����

��

��
�
��
�

PSfrag replacements

η = 1

η = 2

η = 3

η = 4

ξ = 1

ξ = 2 ξ = 3

k = 1 k = 2

k = 3

k(2, 2)
ξ∗(2, 2)

ξ∗(2, 3)

Figure 3.6: Coordinate systems (ξ, η) (solid lines) and (ζ, η) (dashed lines).

obtain

−
F

4
k(ξ− 1, η+ 1) + k(ξ, η+ 1) +

F

4
k(ξ + 1, η+ 1) =

F

4
k(ξ − 1, η) + k(ξ, η) −

F

4
k(ξ + 1, η), ξ = 2, 3, ..., I − 1,

(3.40a)

(

1 +
3F

4

)

k(I, η+ 1) − F k(I − 1, η+ 1) +
F

4
k(I − 2, η+ 1) =

(

1 −
3F

4

)

k(I, η) + F k(I − 1, η) −
F

4
k(I − 2, η), ξ = I,

(3.40b)

(

1 −
3F

4

)

k(1, η + 1) + F k(2, η + 1) −
F

4
k(3, η+ 1) =

(

1 +
3F

4

)

k(1, η) − F k(2, η) +
F

4
k(3, η), ξ = 1,

(3.40c)

where F := F
(

ξ, η+ 1
2

)

. The derivatives that appear in (3.36b) are computed numerically,
using the same scheme. Let us now briefly describe the procedure to solve system (3.40).

We introduce and compute a function ξ∗(ξ, η). It represents the new ξ-value to which
the point (ξ, η) must be displaced on an η-line to get an orthogonal trajectory. Suppose
we know ξ ∗(ξ, η) and we want to determine ξ∗(ξ, η+1), see Figure 3.6, where the initial
conditions are

ξ∗(ξ, 1) = ξ, ξ = 1, 2, ..., I. (3.41)

We set
k(ξ, η+ 1) = ξ, ξ = 1, 2, ..., I, (3.42)

and solve system (3.40) by a backward step. This provides the values of k at all points
(ξ, η). Then we know

• k on the (ξ, η)-points from system (3.40);

34 Chapter 3. LDC method: algorithm, properties and local grid refinement

• ξ∗(ξ, η) from the previous solution step.

With these elements, the values of k(ξ∗, η) can be found by interpolation: supposing that
the point (ξ∗, η) lies between (ξ′, η) and (ξ′ + 1, η), the following four point Lagrangian
interpolation

k(ξ∗, η) = −
p(p− 1)(p − 2)

6
k(ξ′ − 1, η) +

(p2 − 1)(p − 2)

2
k(ξ′, η)

−
p(p+ 1)(p − 2)

2
k(ξ′ + 1, η) +

p(p2 − 1)

6
k(ξ′ + 2, η),

(3.43)

with p := ξ∗ − ξ′ is used. It has to be noticed that the intervals in ξ are uniform: this
guarantees the accuracy of the interpolation.

Since k is constant on the orthogonal trajectories, k(ξ∗(ξ, η), η) = k(ξ∗(ξ, η + 1), η + 1)

holds. Furthermore, because of (3.42), k(ξ, η+ 1) = ξ. This implies

ξ∗(ξ, η + 1) = k(ξ∗(ξ, η+ 1), η + 1) = k(ξ∗(ξ, η), η). (3.44)

By exploiting the knowledge of the Cartesian coordinates of the (ξ, η + 1)-points and
the values of k(ξ∗(ξ, η+ 1), η+ 1) and k(ξ, η+ 1), it is possible to compute the Cartesian
coordinates of the (ζ, η)-points. In fact, assuming that the point (ξ∗(ξ, η + 1), η + 1) is
between (ξ′, η+ 1) and (ξ′ + 1, η + 1), a formula similar to (3.43) leads to

x(ξ∗(ξ, η+ 1), η + 1) = −
q(q − 1)(q − 2)

6
x(ξ′ − 1, η+ 1) +

(q2 − 1)(q − 2)

2
x(ξ′, η+ 1)

−
q(q + 1)(q − 2)

2
x(ξ′ + 1, η+ 1) +

q(q2 − 1)

6
x(ξ′ + 2, η + 1),

(3.45)

where q := k(ξ∗(ξ, η+ 1), η+ 1) − k(ξ′, η+ 1). The y-coordinates of the (ζ, η+ 1) points
are computed in a similar way. The lines defined by the points (ξ∗, η) are the sought
ζ-lines. We denote with Nη the number of η-lines. Thus, the grid generation algorithm
reads

- Initialisation

• Define two sets of coordinate lines: the η-lines, that will be kept, and the ξ-lines,
that will be used as support;

• Compute the function F(ξ, η) as in (3.36b);

• Set the initial conditions on ξ∗ as in (3.41);

- Iteration i = 2, 3, · · · , Nη
• Set k(ξ, i) = ξ and, using system (3.40), compute k(ξ, i − 1);

• Compute k(ξ∗, i− 1) by interpolation with (3.43);

• Put ξ∗(ξ, i) = k(ξ∗, i − 1);

3.3. LDC and curvilinear grids 35

• Compute x(ξ∗(ξ, η+ 1), i) and y(ξ∗(ξ, η+ 1), i) by interpolation with (3.45).

The outlined algorithm can be applied to a special set of η-lines: the iso-curves of the
coarse grid solution. This approach offers the possibility to decrease the complexity of
the local BVP. There are two reasons for that. The first is that gradients along level curves
are almost equal to zero. Secondly, gradients decrease along the lines perpendicular to
the level curves when moving away from the high activity region. In both cases the
solution allows for a bigger grid size. This hold for all phenomena, e.g. combustion,
described by functions that have similar iso-contour patterns.

CHAPTER 4

LDC with orthogonal grids

The LDC technique introduced in the previous chapter is applied here to a variety of
convection-diffusion-reaction problems that involve local Cartesian or curvilinear grids.
In Section 4.1 we discuss the general form of the model problem that we deal with
throughout the whole chapter. The first numerical experiments make use of a rectangu-
lar fine grid that is slanted with respect to the direction of the global axes: this requires
a transformation of the PDEs. Special attention is given to the boundary conditions.
Furthermore, some results relating the steepness of the solution in the high activity area
to the features of the fine grid are given. In Section 4.2 numerical results for several
settings that differ either for the shape of the solution or for its orientation with respect
to the global domain are presented. The complexity of the LDC algorithm is addressed
in Section 4.3. Here two different solution strategies are compared in terms of memory
requirements: the tensor product grid approach and the LDC method in combination
with slanting grids. In Section 4.4 the issue of combining LDC with curvilinear or-
thogonal grids is introduced and the diffusion and convection differential operators are
expressed in terms of curvilinear coordinates. The relevant numerical experiments are
presented in Section 4.5. In Section 4.6 the complexity of LDC with curvilinear grid is
assessed.

4.1 LDC in combination with slanting grids

In this chapter we will focus on the application of LDC to a sample problem having a
solution characterised by a gradient across a line in the domain, which is not aligned
with any of the coordinate axes. This setting is quite general. In fact, it is representative
of a large class of real physical phenomena having the same behaviour: a high activity
region concentrated in a narrow strip along a line.

Consider the following two-dimensional convection-diffusion-reaction problem (see [7])

38 Chapter 4. LDC with orthogonal grids

Figure 4.1: Function u(x) in the domain Ω = (0, 1) × (0, 4), with β = 5, a = 4, b = 2, c = 3.

− ∇ 2u +
∂u

∂x
+
∂u

∂y
= f(x), x ∈ Ω := (0, l1) × (0, l2), (4.1a)

u = g(x) := 1− tanh[βs(x)], x ∈ ∂Ω, (4.1b)

where f is such that the exact solution of (4.1) is given by

u(x) = 1 − tanh[βs(x)]. (4.2)

In the first examples we use a function s(x) = ax+ by− c with a, b, c > 0. The function
u(x) is approximately equal to 2 in the lower left corner of the domain, where s(x) < 0,
and its value decreases steeply over the centre line s(x) = 0, becoming 0 in the rest of
the domain, where s(x) > 0, see Figure 4.1. The parameter β determines the steepness
of u(x) in the vicinity of the centre line. Our purpose is to apply LDC in combination
with a slanting local grid enclosing that line.

In order to apply LDC just across this area, two choices are possible. One is to use a few
overlapping rectangular fine grids, aligned with the coordinate axes and arranged in a
staircase shape. The drawback of this method is that redundant grid points are needed.
This makes the procedure quite expensive in terms of memory requirements and CPU
time. Moreover, since more than one local fine grid must be used, the convergence of
the LDC method might slow down, see [2]. Another possibility is to cover the high
activity region with one single fine grid, which is slanted with respect to the x-axis of
the global domain. The advantages of the method are that only one single fine grid is
needed and the number of fine grid points is considerably reduced. The only, though
small, disadvantage is that the fine grid is not aligned with the coarse grid: this makes
it more difficult to implement.

To compute the numerical solution of BVP (4.1) using LDC, we need to specify the fol-
lowing:

4.1. LDC in combination with slanting grids 39

xW b

xw xC

∂Ω

Figure 4.2: xW is the virtual grid point for the approximation of boundary conditions.

- The coarse grid and the discretisation of (4.1) on it;

- The fine grid and the discretisation of (4.1) on it;

- An interpolation operator to compute the interface conditions;

- A restriction operator.

Our first step will be the discretisation of (4.1a) in Ω. The finite volume method (FVM)
on a cell centred grid leads to a second order accurate scheme, that for a general coarse
grid point xC, reads

−
uE − 2uC + uW

H2
−
uN − 2uC + uS

H2
+
uE − uW

2H
+
uN − uS

2H
= fC. (4.3)

The fluxes are approximated by central differences. The subscripts indicate the loca-
tions where the terms are evaluated, i.e. uC is the approximation of the function value
u(xC), and N, S,W and E label the northern, southern, western and eastern neighbour-
ing points of the central point C, respectively. Moreover, fC = f(xC).

Let us now investigate how to impose the Dirichlet boundary conditions (4.1b). The
choice of a cell centred grid is such that it is not possible to assign a value on the bound-
ary of the domain, because it contains no grid points. This problem can be solved by
introducing virtual grid points, as in Figure 4.2. The Dirichlet boundary condition in
this example is approximated by

1

2
(uW + uC) = g(xw), (4.4)

from which uW can be expressed as a function of uC and g(xw). Using (4.3) in the
internal grid points of ΩH, we obtain a pentadiagonal algebraic system that can easily
be solved.

The next step is to define the local problem (3.4). Obviously, a tensor product fine grid
would cover a substantial part of the entire domain, resulting in almost a similar num-
ber of grid points as it would be obtained from the application of this type of grid on
the entire domain. Instead, we solve the local problem (3.4) by using a slanting fine grid

40 Chapter 4. LDC with orthogonal grids

PSfrag replacements

α

x

y

x′

y′

(n1, n2)

Figure 4.3: Frame of reference (x, y) and (x′, y′)

and thus trying to reduce the number of grid points needed to give a good representa-
tion of the unknown function. The domain Ωl is defined such that it has to contain the
line s(x) = 0 completely; furthermore some redundant points are needed to make the
data structure simpler, see Section 4.2. To do so, we have to carry out a coordinate trans-
formation. Suppose that the x′-axis of the frame of reference (x′, y′) is rotated over an
angle α with respect to the x-axis of the frame of reference (x, y) and that its origin co-
incides with the point having coordinates (n1, n2), see Figure. 4.3. The transformation
that relates (x, y) and (x ′, y ′) is clearly given by

(

x ′

y ′

)

= RT
[(

x

y

)

−

(

n1
n2

)]

, (4.5)

with R the orthogonal matrix

R =

(

cosα − sinα
sinα cosα

)

. (4.6)

From now on, we will use the single quotation mark to indicate differential operators in
(x ′, y ′). Let us introduce the chain rule for scalar and for vector quantities, viz.

∇u = R∇
′u, (4.7a)

∇ · v = R∇
′ · v. (4.7b)

Applying relations (4.7) to the Laplacian on the right-hand side of (4.1a), we get

∇2u = ∇ · (∇u) = (R∇
′) · (R∇

′u) = ∇
′ · (RTR∇

′u) = ∇
′ · (∇ ′u) = (∇2)′u, (4.8)

where (∇2)′u := ∂2u

∂x′
2 + ∂2u

∂y′
2 . The convection terms in (4.1a) can be written as

∂u

∂x
+
∂u

∂y
= (a ·∇)u, with a =

(

1

1

)

. (4.9)

4.1. LDC in combination with slanting grids 41

Expressing (4.9) in the new frame of reference, we get

(a ·∇)u = (a ·R∇
′)u = (RTa ·∇′)u = (b ·∇′)u, (4.10)

with

b =

(

cosα+ sinα
cosα− sinα

)

. (4.11)

Substitution of (4.8) and (4.11) into (4.1a) yields

−(∇′)2u + (b ·∇′)u = f. (4.12)

The method used to discretise the global problem on the coarse grid will be applied to
the discretisation of (4.12) on the fine grid as well. We will choose a step size equal to h
along the x ′-axis and a step size equal to mh along the y ′-axis, with m ≥ 1. Actually,
since ∂u/∂y ′ = 0, it is possible to use a coarser grid size along the y ′-axis without
spoiling the accuracy of the solution. The discretisation of (4.12) yields

−
uE − 2uC + uW

h2
−
uN − 2uC + uS

(mh)2
+ (cosα+ sinα)

uE − uW

2h

+ (cosα− sinα)
uN − uS

2mh
= fC,

(4.13)

where C is a general fine grid point andW,E,N and S are its neighbours.

One of the most important steps of the LDC algorithm is the interpolation of the inter-
face condition on Γh: this is done using a bi-linear interpolation operator. This choice
relies on the results of Theorem 3.2: the bi-linear interpolation has the same order of
accuracy as the discretisation operator used in the global and the local problems. This is
confirmed by the numerical experiments in the next section. Suppose that the interface
condition is needed at a virtual grid point V. Since we use cell centred discretisation
also for the local problem, V does not belong to the interface: it is the mirror point
with respect to Γ of a grid point belonging to Ωlh. The operator Ph,H determines uV
by interpolation from the four nearest neighbours on the coarse grid. With reference to
Figure 4.4, it has the following form

uV = αAuA + βBuB + γCuC + δDuD, (4.14)

with the coefficients αA, βB, γC and δD given by

αA =
1

h1h2
(xD − xV)(yV − yC), (4.15a)

βB =
1

h1h2
(xV − xC)(yV − yC), (4.15b)

γC =
1

h1h2
(xC − xV)(yA − yV), (4.15c)

δD =
1

h1h2
(xV − xC)(yV − yA), (4.15d)

42 Chapter 4. LDC with orthogonal grids

PSfrag replacements
A B

C D

V

Figure 4.4: At the virtual grid point V,
the interface condition is interpolated
from the coarse grid points A, B,C and
D. The slanting bold line represents the
interface between Ωl and Ω.

PSfrag replacements

Figure 4.5: Detail of the global domain
boundary (bold line) of the ×-, ∗-, �-
fine grid points.

and
h1 = xD − xC, h2 = yA − yC. (4.16)

The use of the slanting fine grid, as depicted in Figure 4.8, presents an additional dif-
ficulty in that there are some points belonging to Ωlh that do not belong to the com-
putational domain. As a consequence, Ωlh 6⊂ Ω. To overcome this problem we have
to recall that the solution at a point C is influenced by the four neighbouring points
N, S,W and E, only. This means that we can divide the fine grid points that fall outside
Ω in two groups: the points which affect the solution of the fine grid points inside Ω
and the points that do not. An arbitrary value of the grid function can be assigned to the
points belonging to the second group (points marked by ’�’ in Figure 4.5), since they
have no relation with the grid function in the interior of the computational domain. The
points in the first group (marked by ’∗’ in Figure 4.5) belong to the stencil of the points
inside the computational domain (marked by ’×’) and can be linked to them by using a
linear extrapolation of the boundary value function g. This allows to eliminate the ’∗’-
point values from the ’×’-point equations. The matrix that we obtain has a nice banded
pentadiagonal structure. In fact, if a ’∗’-point belongs to the stencil of two different ’×’-
points, two different extrapolating equations are used, each extrapolation involving the
boundary value g that lies at the intersection between the boundary and the segment
connecting the ’∗’-point with the considered ’×’-point. In addition, we include an equa-
tion of the form u∗ = c, where c is an arbitrary value, to preserve the pentadiagonal
structure of the matrix, see Figure 4.6.

Once the local BVP has been solved, the grid functions (3.6) can be calculated. To do
so, the restriction operator RH,h has to be specified: also in this case we choose bi-
linear interpolation because it is computationally inexpensive and, at the same time, it
guarantees a sufficient accuracy of the numerical results. Therefore, the operator RH,h
computes the function value u(x) with x ∈ ΩlH from the function values at the four

4.1. LDC in combination with slanting grids 43

250 300 350 400 450

250

300

350

400

450

nz = 1869

PSfrag replacements

Figure 4.6: Sparsity pattern of the matrix (lower corner) used to solves the local BVP. The matrix
has a banded pentadiagonal structure.

nearest fine grid points. It has the same form as Ph,H in (4.14), when the point V is
replaced by a point belonging toΩH andA, B, C andD by four points belonging toΩlh.
Obviously, the interpolation has now to be performed in the frame of reference (x′, y′).
The subsequent steps are straightforward: once we know wH we can compute, dH to
perform the last three steps of the LDC Algorithm.

In Chapter 3 the domain ΩSH is introduced: in Figure 4.7 its points are marked by ’•’,
while the grid points belonging to ΩlH\ΩSH are marked by ’∗’. They are defined in (3.8)
noticing that the central difference discretisation uses a five-point stencil.

The following features are interesting to note: under certain conditions we can adapt the
width of the local domain Ωl to the steepness of the solution and thus we can make the
number of fine grid points along the x ′-axis independent of β. Suppose that s(x) = ax+

by−c. We choose the frame of reference (x′, y′) such that u(x′, y′) = 1−tanh(βlx′), with
l =

√
a2 + b2. We first notice that the boundaries of the high activity area parallel to the

y′-axis can be determined by requiring the function u to differ from its asymptotic value
by more than a certain tolerance, say ε. Because the function value can be approximated
by 0, when ax+by > c, and by 2, when ax+by < c, then (x′, y′) ∈ Ωl if ε ≤ u(x′, y′) ≤
2 − ε. Since Artanh(z) = 1

2
ln
(

1+z
1−z

)

, this translates into

−
1

2lβ
ln

(

2 − ε

ε

)

≤ x′ ≤ 1

2lβ
ln

(

2 − ε

ε

)

. (4.17)

The domain Ωl is symmetric with respect to x′ and its width goes to zero when β in-
creases. If we consider the scaled coordinates

x′′ := βx′, (4.18a)
y′′ := βy′, (4.18b)

44 Chapter 4. LDC with orthogonal grids

the inequalities (4.17) transform into

−
1

2l
ln

(

2 − ε

ε

)

≤ x′′ ≤ 1

2l
ln

(

2 − ε

ε

)

. (4.19)

Scaling equation (4.12) by using the coordinate transformation (4.18), we get

−(∇′′)2u +
1

β
(b ·∇ ′′)u = f1(x

′′, y ′′) +
1

β
f2(x

′′, y ′′), (4.20)

where the double prime on the differential operators indicates derivatives with respect
to the variables x ′′ and y ′′. Furthermore u(x ′′, y ′′), unlike u(x, y) in (4.12), does not de-
pend explicitly on β anymore. The error that one makes discretising (4.20) is bounded
by the sum of the two terms

1

12

(∣

∣

∣

∂4u

∂x ′′4

∣

∣

∣+
∣

∣

∣

∂4u

∂y ′′4

∣

∣

∣

)

(h′′)2 and
1

6β

(∣

∣

∣

∂3u

∂x ′′3

∣

∣

∣ +
∣

∣

∣

∂3u

∂y ′′3

∣

∣

∣

)

(h′′)2, (4.21)

where h′′ is the step size in the frame of reference (x′′, y′′). Since the second term is
negligible compared to the first one, the error bound turns out to be independent of β
and proportional to (h′′)2 = (βh)2. From this follows h = C/β, where C is indepen-
dent of β. Let the number of the fine grid points along the x ′-axis be equal to M + 1.
Using (4.17), we get

M =
1

lβh
ln
(2 − ε

ε

)

=
1

lC
ln
(2 − ε

ε

)

. (4.22)

Therefore, if β varies, the domain Ωl can be stretched or compressed, according to
(4.18a), while the (x′′, y′′)-domain is kept constant, as well as the number of grid points
along the x ′-axis.

The elements that are used to show this are the fact that u is invertible, i.e. it is mono-
tonically increasing or decreasing with respect to x ′, and the fact that u(x, y) = u(βx ′).
Furthermore, we have assumed that the error bound of the convective term in (4.20) is
small, as β increases, with respect to the error bound of the diffusion term. These results
can thus be extended to other functions that satisfy the same requirements.

4.2 Slanting grids: numerical results

In this section we consider three examples.

4.2.1 Example 1: straight centre line, no restriction error.

We take s(x) = x + y − 1 and β = 20 on the square domain Ω = (0, 1) × (0, 1). We
note that the high activity region is centred around a straight line, inclined at an angle
equal to 3π

4
: therefore the most natural choice is to put α = π

4
and (n1, n2) = (1, 0)

Furthermore the vector b in (4.12) becomes

b =

(√
2

0

)

. (4.23)

4.2. Slanting grids: numerical results 45

α
x

x ’

yy ’

Figure 4.7: Slanting fine grids. The points belonging toΩSH are marked by ’•’; the points belonging
to ΩlH \ΩSH are marked by ’∗’.

We choose m = 1. Since α = π
4

, it is possible to arrange the fine grid in such a way that
each point of ΩlH coincides with a point of Ωlh. This happens when the line x + y = 1

coincides with a diagonal of the fine grid and h = H

k
√
2

, with k an integer. In this case
the restriction operator simplifies to

RH,huh(x, y) := uh(x, y), for x ∈ ΩlH. (4.24)

Table 4.1 shows the errors ||u∗ − uH,h||∞ of the composite grid solution, and the ratio
between the errors, for several values of H, u∗ being the exact solution of (4.1). It turns
out that convergence is achieved already after one iteration of the LDC algorithm. The
width of the fine grid, centred around the line x + y = 1, is kept almost constant and
equal to 0.39. Even if interface conditions are interpolated using a bi-linear operator,
the solution approximation is asymptotically second order accurate with respect to h,
provided that H is small enough. Note also that, for h fixed and H decreasing, the error
is approximately constant. In fact, in this situation, the effect of the discretisation errors
on the coarse grid are negligible compared to the local discretisation errors on the fine
grid. The results reported in Table 4.2 show that, when β varies, the number of fine grid

h H = 10−1 ratio H = 20−1 ratio H = 40−1 ratio
H

2
√
2

4.68 · 10−2 1.72 · 10−2 4.10 · 10−3

H

4
√
2

1.99 · 10−2 2.4 4.20 · 10−3 4.1 1.10 · 10−3 3.7

H

8
√
2

6.90 · 10−3 2.9 1.10 · 10−3 3.8 2.600 · 10−4 4.2

Table 4.1: Composite grid approximation error ||u∗ − uH,h||∞.

points along the x ′-axis can be kept constant without affecting the error of the fine grid

46 Chapter 4. LDC with orthogonal grids

−0.5 0 0.5 1 1.5

0

0.5

1

1.5

2

2.5

3

3.5

4

x

y

Figure 4.8: Coarse and slanting fine grids.

solution; see Section 3. The width of the local domain is computed using (4.17), with ε
approximately equal to 10−5. It turns out that, for a fixedH, the error is almost constant
when different values ofβ are considered and when the local domain is correspondingly
stretched. This approach fails for large values of H and β, because, in this case, the
domain ΩlH does not contain enough points to apply the correction.

H β = 10 β = 20 β = 40

10−1 1.81 · 10−2 1.99 · 10−2 7.10 · 10−1

20−1 4.30 · 10−3 4.20 · 10−3 6.70 · 10−3

40−1 1.10 · 10−3 1.10 · 10−3 1.10 · 10−3

Table 4.2: Error ||u∗ − uh||∞ for different values of H and β; h = 5H

β
√
2

.

4.2.2 Example 2: straight centre line

Consider problem (4.1) in the domain Ω = (0, 1) × (0, 4), with s(x) = 4x+ 2y− 3 and
β = 5. The high activity region lies across the straight line 4x + 2y = 3. In Figure 4.8
we depict the grids that are used to solve (4.1), when H = 10 −1 and h = 20−1. Suppose
that we want to compute the function uwithin an accuracy of 10 −3. Taking into account

4.2. Slanting grids: numerical results 47

that the discretisation error is approximately bounded by

1

12

(

C1 + C2
)

H2, with C1 = max
∣

∣

∣

∂4u

∂x4

∣

∣

∣ and C2 = max
∣

∣

∣

∂4u

∂y4

∣

∣

∣, (4.25)

we can try to give an estimate of this quantity in order to choose a suitable grid size. For
(x, y) ∈ Ω such that 4x + 2y < 1.6 and 4x+ 2y > 4.4, we find that

∣

∣

∣

∂4u

∂x4

∣

∣

∣+
∣

∣

∣

∂4u

∂y4

∣

∣

∣ < 4.5. (4.26)

Hence, we may defineΩl as the region bounded by the lines 4x+2y = 1.6, 4x+2y = 4.4

and by the two lines x − 2y = −4.4 and x − 2y = 1. If we choose H = 10 −1, the
discretisation error in Ω\Ωl will be of the order of 10−3. Actually, the dimensions of
the refined area are slightly different from the one defined above, in order to make it a
multiple of the chosen fine grid step size. The result of the computations performed by
LDC are presented in Table 4.3. This gives the error of the composite grid solution when
H = 10−1. Table 4.4 shows the results obtained by solving the same problem with a
uniformly refined grid. By comparing these two tables it is clear that the LDC algorithm
is much more efficient with respect to the memory usage, because it gives a comparable
accuracy with substantial less grid points. In fact, if we compare, for instance, the last
row of Table 4.3 and Table 4.4, we see that we manage to reach a reduction factor, i.e. a
ratio between number of points used by LDC and the uniform grid refinement, of circa
0.36.

Table 4.5 gives the error of the composite grid solution, for several values of H and
h. It appears that, once the asymptotic behaviour has been reached, the solution is
second order accurate with respect to h. The error for h fixed and H decreasing is again
approximately constant; see Example 1.

Until now we have uniformly refined the high activity region: this assumption can be
dropped if one realizes that the gradient of the continuous solution u is parallel to the
x ′-axis. This implies that a value m > 1 can be chosen. As a consequence, the number
of fine grid points can be strongly reduced, while the accuracy of the approximated
solution remains comparable. This is shown in Table 4.6, where the global errors of
the approximation and the total number of grid points are given. The comparison of
Table 4.6 and Table 4.3 shows that the solution on the non-uniform fine grid needs much
less grid points, while having roughly the same accuracy. Moreover, by comparing
the last row of Table 4.6 and Table 4.4, we see that the reduction factor is, in this case,
approximately equal to 0.088.

4.2.3 Example 3: curved centre line

The last example shows that the properties of the LDC method outlined so far also hold
when the function s(x) = 0 is not a straight line, see Figure 4.9. We have chosen the
shape of the high activity region such that it is similar to the shape of a Bunsen flame [7].
For the sake of simplicity, s(x) is given in the frame of reference (x ′, y ′), that is rotated

48 Chapter 4. LDC with orthogonal grids

h ||u∗
− uH,h||∞ Grid points

20−1 6.72 · 10−2 400 + 517

40−1 2.85 · 10−2 400 + 2162

80−1 7.7 · 10−3 400 + 8883

Table 4.3: Error of the composite grid
solution. The last column shows the
number of grid points. The global do-
main is discretised using 400 points
(H−1 = 10).

H ||u∗
− uH||∞ Grid points

10−1 4.839 · 10−1 400

20−1 8.06 · 10−2 1600

40−1 2.22 · 10−2 6400

80−1 5.70 · 10−3 25600

Table 4.4: Global error obtained with
uniform refinement. The last column
shows the number of the grid points.

h H = 10−1 ratio H = 20−1 ratio H = 40−1 ratio

H/2 6.72 · 10−2 2.95 · 10−2 7.00 · 10−3

H/4 2.85 · 10−2 2.36 7.0 · 10−3 4.2 1.70 · 10−3 4.1

H/8 7.7 · 10−3 3.6 1.70 · 10−3 4.1 4.32 · 10−4 3.9

Table 4.5: Composite grid approximation error ||u∗ − uH,h||∞ for different values of H and h.

h m ||u∗
− uH,h||∞ Grid points

20−1 2 6.71 · 10−2 400 + 231

40−1 4 2.73 · 10−2 400 + 483

80−1 4 8.20 · 10−3 400 + 1845

Table 4.6: Error of the composite grid solution and number of grid points as a function of m
(H = 10−1).

with respect to (x, y) over an angle α = arctan
(

1
2

)

and (n1, n2) = (0.75, 0), see Section 3,
and reads

s(x ′, y ′) = x ′ −
1

10
sin

2πy ′

1.677
. (4.27)

A fine grid similar to the one depicted in Figure 4.8 is used to solve the local problem. A
slightly bigger number of fine grid points along the x ′-axis is needed for low values ofH
in order to reproduce the interface conditions with the desired accuracy. Table 4.7 shows
the error of the composite grid solution after one LDC iteration. All considerations
about the accuracy of the solution made in the previous examples are still applicable.

4.3. Complexity of the method 49

0 0.5 1

0.5

1

1.5

2

2.5

3

3.5

x

y

Figure 4.9: Curved high activity region.

h H = 10−1 ration H = 20−1 ration H = 40−1 ratio

H/2 9.54 · 10−2 2.16 · 10−2 5.10 · 10−3

H/4 2.63 · 10−2 3.6 5.10 · 10−3 4.2 1.20 · 10−3 4.2

H/8 6.30 · 10−3 4.2 1.30 · 10−3 3.9 3.57 · 10−4 3.4

Table 4.7: Composite grid approximation error ||u∗ − uH,h||∞ for different values of H and h
(β = 20).

4.3 Complexity of the method

A way to assess the efficiency of a numerical method is to estimate its complexity. To
this end, we will compare LDC to the tensor-product grid refinement. Suppose we have
a rectangular domain Ω, as shown in Figure 4.10, covered with a uniform grid. Let N
and AN, with A positive, be the number of coarse grid points along the x-axis and the
y-axis, respectively. The high activity region, inclined by an angle δ = π

2
−αwith respect

to the x-axis, is covered by M×BM
m

fine grid points, with B > 1. The number of points
used by LDC will then be

NLDC := AN2 +
BM2

m
, (4.28)

where m is the ratio between the step size along the y ′-axis and the step size along the
x ′-axis; see Section 3.

50 Chapter 4. LDC with orthogonal grids

PSfrag replacements

M

N

AN

BM

δ

Figure 4.10: DomainΩ with the high activity region.

For the tensor-product grid refinement, we cover the part of Ω containing the high ac-
tivity area with a finer grid. We need approximately BM cos δ grid points on the x-axis
and BM sin δ grid points on the y-axis, in order to get a grid size comparable with the
grid size used in LDC. Thus, we need roughly Ntensor grid points, with

Ntensor := (BM cos δ+N)(BM sin δ+AN). (4.29)

Note that (4.29) is valid when the ordinate of the upper right corner of the fine grid is
smaller than the height of the global domain.

Let us define the gain G as the ratio between Ntensor and NLDC. Assuming N = γM, G
is found to be

G(γ) =
(B cos δ+ γ)(B sin δ+ γA)

Aγ2 + B
m

. (4.30)

We now assess G by letting γ vary. First suppose that γ� 1: in this case the number of
coarse grid points is far less than the number of fine grid points. Such a situation occurs
if one reduces the fine grid size h, while keeping constant all geometrical parameters
and the width of the local grid. Then the gain G becomes

G(γ)
.
=
mB sin(2δ)

2
, (4.31)

which is apparently independent of A.

Suppose now that γ � 1. This means that the number of fine grid points is much
less than the number of coarse grid points. This happens, for instance, when the high
activity area takes up just a small corner of the global domain. In such a case we obtain
that G does not depend on δ

G(γ)
.
=
Aγ2

Aγ2
= 1. (4.32)

4.4. Curvilinear refinement domains 51

1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

γ

PSfrag replacements

G
ai

n

γ

Figure 4.11: Dotted lines have been drawn with m = 1, solid lines with m = 4. Both sets are
parameterised with respect to the dimensions of the domain Ω, that have been assumed equal to
(0, 1)×(0, 4), (0, 2)×(0, 8), (0, 4)×(0, 16) and (0, 8)×(0, 32), respectively. The biggerΩ, the higher
is the gain-curve. On the first dotted line the values of the gain relevant to the second example are
reported by circles. They represent the ratio between the number of points that would have been
used with the tensor product grid refinement and the number of points reported in Table 4.3.

In the latter situation it is not worthwhile to use LDC because a comparable complexity
can be achieved with the tensor product grid refinement.

If γ = 1, we find

G(γ) =
(B cos δ+ 1)(B sin δ+A)

A+ B
m

. (4.33)

In Figure 4.11 the gain G is plotted versus γ. The geometrical parameters correspond to
the second example presented in Section 4: only the dimensions of the global domain are
varied to parameterise the curves. The coarse grid size is equal to 10 −1 and the fine grid
size is h = lγ

N
, where l is the width of the local domain. Of course we restrict the value

of γ such that mh ≤ H. In the previous section we have shown that, if a bigger grid
size along the y ′-axis is chosen, the total number of grid points reduces considerably.
Figure 4.11 gives an idea of the increase of the gainGwhen a factorm > 1 is considered.
The first set of curves (dotted lines) are computed with m = 1 and the second set (solid
lines) with m = 4. The asymptotic behaviour of the gain when γ increases is clearly
shown: once δ has been fixed, the curves tend to 1 when γ is much larger than one,
see (4.32).

4.4 Curvilinear refinement domains

Let us focus on the application of LDC with different grid types. In particular let us
consider the combination of a global rectangular and a local curvilinear domain. In this

52 Chapter 4. LDC with orthogonal grids

caseΩl is described in terms of the local (ξ, η)-coordinates. We recall that the one-to-one
relation between the physical space (x, y) and the computational space (ξ, η) reads

T :

{
x = x(ξ, η),

y = y(ξ, η).
(4.34)

We assume that the Jacobian of the transformation, as introduced in (3.32), is different
from 0 for all (ξ, η). This implies that T is invertible. In order to express the differential
operators in terms of the new curvilinear coordinates, we introduce the function v(ξ, η),
defined by

u(x, y) = u(x(ξ, η), y(ξ, η)) =: v(ξ, η). (4.35)

Then, the first partial derivatives and the Laplacian of u become [62]

∂u

∂x
=
1

J

(

∂y

∂η

∂v

∂ξ
−
∂y

∂ξ

∂v

∂η

)

, (4.36a)

∂u

∂y
=
1

J

(

∂x

∂ξ

∂v

∂η
−
∂x

∂η

∂v

∂ξ

)

, (4.36b)

∇2u =
1

J2

(

gηη
∂2v

∂ξ2
− 2gξη

∂2v

∂η∂ξ
+ gξξ

∂2v

∂η2

)

−
1

J3

[(

gηη
∂2x

∂ξ2
− 2gξη

∂2x

∂ξ∂η
+ gξξ

∂2x

∂η2

)(

∂y

∂η

∂v

∂ξ
−
∂y

∂ξ

∂v

∂η

)

+

(

gηη
∂2y

∂ξ2
− 2gξη

∂2y

∂ξ∂η
+ gξξ

∂2y

∂η2

)(

∂x

∂ξ

∂v

∂η
−
∂x

∂η

∂v

∂ξ

)]

,

(4.37)

with gηη, gξη and gξξ given in (3.33). The coefficients ∂x/∂ξ, ∂y/∂ξ, etc. can be com-
puted once transformation (4.34) is known. From (4.36) and (4.37) it appears that the
differential operators assume a more complex form in curvilinear coordinates. This ef-
fect can be minimized by using an orthogonal grid, i.e. a grid for which the relation

(

∂x
∂ξ
,
∂x
∂η

)

= gξη = 0, (4.38)

holds. This implies that the mixed second derivatives ∂2x
∂ξ∂η

, ∂
2y

∂ξ∂η
and ∂2v

∂ξ∂η
in (4.37) van-

ish. Orthogonal coordinate systems not only reduce the number of the additional terms
resulting from translating the BVP from the physical into the computational space, but
also prevent the introduction of truncation errors in the difference expression, see [62].
In the following we only consider orthogonal grids. Then, the convection-diffusion
equation (4.1a) becomes

−

(

gηη
∂2v

∂ξ2
+ gξξ

∂2v

∂η2

)

+
1

J

(

ϕ
∂v

∂ξ
+ψ

∂v

∂η

)

= J2f(x(ξ, η), y(ξ, η)), (4.39)

4.5. LDC applied to curvilinear grids: numerical results 53

with

ϕ = σ
∂y

∂η
− ι
∂x

∂η
+ J2(

∂y

∂η
−
∂x

∂η
), (4.40a)

ψ = −σ
∂y

∂ξ
+ ι
∂x

∂η
+ J2(

∂x

∂ξ
−
∂y

∂ξ
), (4.40b)

σ = gηη
∂2x

∂ξ2
+ gξξ

∂2x

∂η2
, (4.40c)

ι = gηη
∂2y

∂ξ2
+ gξξ

∂2y

∂η2
. (4.40d)

Once the coordinate transformation has been accomplished, the resulting BVP has to be
discretised in the local domain. The computational domain is built such that (ξ, η) can
be regarded as being a uniform rectangular grid, so that all the discretisation techniques
suitable for Cartesian grids can be used. Furthermore, since the grid sizes in (ξ, η) are
arbitrary and independent of the actual grid size in the physical space, they can be
thought of unitary length. Therefore it is not restrictive to take ξi = i and ηj = j, thus
simplifying the discretisation of the BVP. Moreover, while switching from a Cartesian to
a curvilinear coordinate representation, the order of accuracy of the discretised problem
is kept; see [62]. It must be pointed out that also the metric coefficients need to be
discretised in the curvilinear space. As it has been shown in [62], the truncation error is
reduced if they are evaluated numerically by the same finite difference scheme used for
the unknown function.

We close this section by specifying the interpolation operator, P h,H, and the restriction
operator, RH,h. As we have done for slanting grids, P h,H is the bi-linear interpolation
operator given by (4.14). The operator RH,h has to be reformulated, since it makes use
of points that do not lie anymore on the vertices of a rectangle. Consider the situation
of Figure 4.12 and Figure 4.13, where A, B, C and D are fine grid points and V is now
a coarse grid point. The function value in V is thus determined in the following way.
First the quadrangle ABCD is split in the two triangles ABC and ACD, one of which
contains the point V . Then the function value there is computed as follows

uV =
1

S
(uCSABV + uBSACV + uASBCV), (4.41)

where SABV, SACV and SBCV are the areas of the triangles ABV, ACV and BCV, respec-
tively, and S is the area of the quadrangle ABCD.

4.5 LDC applied to curvilinear grids: numerical results

The performance of the LDC method in combination with a local curvilinear grid is
assessed by applying it to model problem (4.1), see [22]. In this case the function s(x) is
given by

s(x, y) = by + ax2 − r, (4.42)

with a = 1
2

, b = 1
3

and r = 1
2

. Let the global domain beΩ = (0, 1.5)× (0, 4) and β = 20.
The function u(x) has again the same behaviour that we have already described in Sec-
tion 1: it is approximately equal to 2 in the lower part of the domain, where s(x) < 0,

54 Chapter 4. LDC with orthogonal grids

PSfrag replacements

A

B

C
D

V

Figure 4.12: Four fine grid points form a
quadrangle that contains the coarse grid
point.

PSfrag replacements

A

B

C

V

Figure 4.13: The areas of the triangles ABV,
CAV and BCV are the coefficients of the in-
terpolation.

and its value decreases steeply over the centre line s(x) = 0, becoming 0 in the upper
part of the domain, where s(x) > 0; see Figure 4.14.

Figure 4.14: Function u(x): view from the top.

In order to discretise the global problem, the domain Ω is covered by a uniform rectan-
gular grid with grid size H. The central difference method is used both on the global
and on the local domain. Suppose that we want to compute the solution with an error
order of 10−3.

4.5. LDC applied to curvilinear grids: numerical results 55

0 0.5 1 1.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

(a) Auxiliary grid.

0 0.5 1 1.5

0

0.5

1

1.5

2

2.5

PSfrag replacements

hη
hξ

(b) Zoom on the new orthogonal grid.

Figure 4.15: Auxiliary and orthogonal grids.

The upper bound for the discretisation error has been given in (4.25). This implies that
if we choose the boundaries of Ωl coinciding with the parabolae by + ax2 − 0.87 = 0

and by + ax2 − 0.13 = 0 and set H = 10−1, we obtain the solution in Ω\Ωl with the
desired accuracy. The local grid is determined by applying the procedure explained in
the Section 3.3.1. The auxiliary grid consists of two sets of curves: the η-lines, parallel
to the level curves, and the ξ-lines, that are vertical, see Figure 4.15(a). The η-lines have
been obtained as follows: by using the coarse grid solution the centre line of the high
activity region, corresponding to u = 1, is computed by using a least square interpo-
lation polynomial; then this is translated vertically by a certain distance hη to generate
a number of curves sufficient to cover entirely the area to be refined. The orthogonal
grid is created starting from the upper curve, where the distance between two consec-
utive grid points in the physical space is set equal to hξ. Both hη and hξ can thus be
considered as a measure of the high activity region refinement; see Figure 4.15(b).

The same figure shows that, as already seen with slanting grid, some fine grid points
fall outside the global domain. This is unavoidable if the level curves, and then the η-
lines, are not perpendicular to its boundaries and we require the to be orthogonal. If
such a situation arises, the technique we have used with the Cartesian fine grids is here
straightforwardly applicable.

In Table 4.8 we show the infinity norm of the error of the composite grid solution, com-
puted for several values of hξ, hη and H. From these results it can be noticed that
the method is still asymptotically second order accurate with respect to hξ and hη, as
already shown for local Cartesian grids, see [23]. Furthermore, by comparing the sec-

56 Chapter 4. LDC with orthogonal grids

ond and the fourth columns of Table 4.8, it appears that for constant hη and hξ, errors
obtained with H = 10−1 are quite close to the errors obtained with H = 20 −1. This
behaviour suggests that, for the H-values considered here, the discretisation errors on
the fine grid are dominant. The only value that does not comply with this remark is the
last one in the third column. This is due to the fact that the discretisation error on the
coarse grid is now of the same order of magnitude as the one on the fine grid. Further
refinement of the high activity region will thus not produce any improvement on the
composite grid approximation error.

hη H = 10−1 ratio H = 20−1 ratio

1 · 10−1 4.34 · 10−2 3.28 · 10−2

5 · 10−2 8.01 · 10−3 5.4 7.70 · 10−3 4.3

2.5 · 10−2 2.20 · 10−3 3.6 1.90 · 10−3 4.1

1.25 · 10−2 1.30 · 10−3 1.7 4.76 · 10−4 4.0

Table 4.8: Composite grid approximation error ||u∗ − uH,h||∞ (hξ = hη).

Numerical experiments show that the behaviour of the LDC method in combination
with Cartesian or with curvilinear local grids is essentially the same. Furthermore, in
the latter case, one can always benefit from the fact that choosing the η-lines coincident
with the level curves implies that, along those, gradients are equal to zero or very small.
As a consequence, the grid size in this direction can be increased without spoiling the
accuracy of the solution. Table 4.9 presents again the composite grid error relevant to
our last model problem. Although hξ is doubled compared to the values in Table 4.8, the
solution is approximated within almost the same accuracy. The last column of Table 4.9
shows the number of η-lines lines used to cover the high activity region.

hη H = 10−1 ratio H = 20−1 ratio η− lines

5 · 10−2 1.06 · 10−2 1.10 · 10−2 45

2.5 · 10−2 2.70 · 10−3 3.9 1.70 · 10−3 6.5 89

1.25 · 10−2 1.30 · 10−3 2.1 4.30 · 10−4 4.0 175

Table 4.9: Composite grid approximation error ||u∗ − uH,h||∞ (hξ = 2hη).

Another way to reduce the number of the fine grid points consists of thining out the
η-lines while moving away from the high activity region. This is done on the basis of
the second derivative ∂ 2u/∂y2, computed along the line x = 0. We start from the point
(x0 = 0, y0 = 1.5), placed on the central line of the high activity area. Suppose now

4.5. LDC applied to curvilinear grids: numerical results 57

we want to refine the region above this line starting with a certain grid size hη 0
that

increases as we move away from x 0. To do so, we evaluate (∂2u/∂y2)(0, yi−1 + hηi−1
)

and update hη in the following way

• hηi
= hηi−1

(

∂2u
∂y2

∣

∣

xi−1

/

∂2u
∂y2

∣

∣

xi

)

;

• if hηi
< hη0

, set hηi
= hη0

;

• if hηi > νhη0
for some ν > 1, set hηi

= hηi−1
,

where xi = (0, yi). To understand the meaning of the first if-statement, we must realise
that ∂ 2u/∂y2 is an odd function that is equal to zero just across the line from which we
start to refine and that reaches its maximum absolute values above and below this line.
Thus, without this statement, the first steps of the algorithm would lead to hηi

< hη0
.

Conversely, the second if-statement prevents a small second derivative from resulting
in a very big hη. We have used ν = 3. Since we know the analytical form of u on the
boundary x = 0, we can easily compute its second derivatives. In other cases it can
be evaluated numerically. The same procedure is used to refine the region below the
considered η-line. Results are reported in Table 4.10, wherehη0

is the grid size across the
central line of the high activity region. The approximation errors in Table 4.10 have to be
compared with those shown in the second column of Table 4.9 (H = 10 −1). It appears
that, when hη varies according to the procedure previously explained, the number of η-
lines is considerably reduced while the accuracy of the approximated solution is almost
the same. The last row of Table 4.10 shows a smaller error even with respect to the
corresponding value in Table 4.9. This is due to the fact that, by using a variable hη, we
cannot impose a priori the fine grid to be exactly as wide as the fine grid built with a
constant hη. Thus, in the former case, the fine grid turns out to be slightly wider and
this leads to a more accurate solution. The achievable contour-lines reduction depends,
in general, on the shape of the unknown function. Here we have managed to save, on
average, 30% of them. Let us now compare Table 4.8 and Table 4.9. We see that, for
equal values of hη, the reduction factor achievable by using a bigger h ξ is equal to 2.
On the other hand, by comparing the number of η-lines in Table 4.9 and Table 4.10, we
notice that the possibility to use a variable hη leads, on average, to a reduction factor
equal to 1.5. Then, the total reduction factor that can be obtained by using the level
curves as set of coordinate lines and without any loss in the accuracy of the solution is
roughly equal to 3.

hη0
hξ ||u∗

− uH,h||∞ ratio η− lines

5 · 10−2 1 · 10−1 9.80 · 10−3 33

2.5 · 10−2 5. · 10−2 2.70 · 10−3 3.63 58

1.25 · 10−2 2.5 · 10−2 7.42 · 10−4 3.64 111

Table 4.10: Composite grid approximation error with H = 10 −1 and hη variable.

58 Chapter 4. LDC with orthogonal grids

PSfrag replacements
b

N

AN

l

Mξ

Mη

ξ

η

Figure 4.16: Characteristics of the global and the local domain.

The results in Table 4.8, 4.9 and 4.10 are obtained with one complete LDC iteration, after
which convergence is achieved.

4.6 Complexity analysis of LDC and curvilinear grids

While the analysis performed in Section 4.3 aims to compare the memory usage of LDC
versus tensor product grid, here we try to assess the global complexity of the algorithm
that combines the LDC method with curvilinear orthogonal grids.

The setting is defined as follows (see Figure 4.16). The number of coarse grid points
along the x- and the y-axis are N and AN, respectively. We introduce a characteristic
length l of the fine grid: it can be, for instance, the length of the contour-line η0 where
the activity reaches its maximum value. Moreover, we name b the average width of the
fine grid. The grid sizes along l and b are h ξ and hη, respectively. Let NLDC be the
number of points used by the LDC algorithm. If Mξ andMη are the number of the fine
grid points along the ξ- and the η-axis, then

NLDC = AN2 +MξMη.

Suppose now that in the worst case, i.e. when the high activity region runs from the
bottom to the top of the global domain, l is comparable with the height of the global
domain Ω. Then, since the η-lines are level curves, the solution is slowly varying along
them and we can set h ξ = H. From that follows that Mξ = BN = O(N) and the
complexity of the LDC method becomes

NLDC = AN2 + BN ·Mη.

The order of magnitude of Mη is usually comparable with N. This implies that

NLDC = O(N2), (4.43)

i.e. a highly detailed solution can be obtained by solving two systems having the same
complexity of the coarse grid problem. However, we can try to reduce some more the

4.6. Complexity analysis of LDC and curvilinear grids 59

complexity of the fine grid BVP by adapting the number of the η-lines to the behaviour
of the solution. In fact, we can vary the step size hη according to

hηi
wi = hηi−1

wi−1 = const, or hηi
= ri−1hηi−1

. (4.44)

Here w is a given weight function that reflects, in some way, the shape of the so-
lution: it can be, for instance, the source term for a flame simulation. Furthermore
ri−1 = wi−1/wi. If we choose hη to vary according to (4.44) then, since r is variable,
it becomes very difficult to make predictions about the number of contour-lines to be
used. So, we take r constant and equal to the geometric average of the variable r i. This
way, we expect not to make a big error in the evaluation of Nη. We can split the area
to be refined in two parts: one on the left (η decreasing) and the other on the right (η
increasing) of η0. Let us consider what happen to the area on the left of η0. We introduce
the following quantities: bl, its average width, Nηl

, the number of contour-lines with
which it is covered, rl, the value that r assumes there. We then get

bl = hη0

(

1 + rl + ... + r
Nηl

−1

l

)

= hη0

1 − r
Nηl

l

1 − rl
. (4.45)

If Mηl
+ 1 is the number of η-lines that has to be used if b l is uniformly refined, (4.45)

can be written as
Mηl

(1 − rl) = 1 − r
Nηl

l , (4.46)

from which follows

Nηl
=

ln
(

1 +Mηl
(rl − 1)

)

ln rl
. (4.47)

A relation similar to (4.47) holds for the high activity area placed on the right of η 0. We
know that, by definition, rl > 1. Furthermore, since the grid sizes are not allowed to
change too rapidly where gradients are high, see [62], its value, as well as the values of
a single r i, must be limited. Suppose then to set 1 < rl < cl, with cl small and define
al = rl − 1. By expanding the denominator of (4.47) by a Taylor series, we get

Nηl
=

ln
(

1 +Mηl
al
)

al −
a2

l

2
+
a3

l

3
+ . . .

≈ ln
(

1+Mηl
al
)

al
. (4.48)

We see that the value of Nηl
in (4.48) tends to Mηl

when al goes to zero, as expected.
Eventually, the complexity of the LDC method can be expressed by the sum of three
terms

NLDC ≈ AN2 + BN · ln
(

1 +Mηl
al
)

al
+ BN · ln

(

1 +Mηr
ar
)

ar
, (4.49)

whereMηr
and ar are the analogues ofMηl

and al on the right of η0. The leading term
of the sum in (4.49) still remains the coarse grid contribution. Nevertheless, the second
and third term can be considerably smaller thanMηl

andMηr
, depending on the value

of a l and ar, respectively. In Figure 4.17 the behaviour of Nη = ln(1 +Mηa)/a versus
Mη and for several values of a is plotted. We see that the choice of a variable hη leads
to a considerable reduction of the computational efforts required to solve the local BVP.

60 Chapter 4. LDC with orthogonal grids

20 40 60 80 100 120 140 160 180 200
10

20

30

40

50

60

70

80

PSfrag replacements

N
η

Mη

Figure 4.17: The function Nη = ln(1 + Mηa)/a is plotted versus Mη. It is parameterised with
respect to a, assumed equal to 0.025 (dashed line), 0.05 (solid line), 0.075 (dotted line) and 0.1
(dashdot line).

CHAPTER 5

Solving nonlinear systems via
embedding methods

In this chapter we discuss some methods to efficiently solve nonlinear algebraic sys-
tems. In Chapter 2 we have already pointed out that the combustion equations are
highly nonlinear. After discretisation then, they yield algebraic systems that pose big
problems when computing a solution. These difficulties, however, are not only charac-
teristic of the equations that describe combustion, but concern many other phenomena,
therefore the methods presented in this chapter are thus generally applicable. The sim-
plest and most widely used iterative method, the Newton method, often fails when the
initial guess happens not to be close to the sought solution. The goal of this chapter is
then to investigate alternative algorithms able to improve its robustness. We do that by
embedding the considered nonlinear system into a time dependent problem. This pro-
cedure is outlined in Section 5.1. The integration of the resulting system is introduced in
Section 5.2, while the implementation of the method is presented in Section 5.3. Finally,
Section 5.4 is devoted to numerical experiments.

5.1 The Davidenko equation

We focus on the solution of the following nonlinear algebraic system

F(x) = 0, (5.1)

where F : Rn → Rn, with a zero at x = x∗, say. The simplest approach is given by
Newton’s method. Let us linearise (5.1) about a given point xi, see [5], i.e.

F(x)
.
= F(xi) + J(xi)(x − xi), (5.2)

where J(xi) is the Jacobi matrix of F(x) evaluated at the point xi. If J(xi) is non-singular,
(5.2) gives rise to a series of successive approximations of x∗, defined as

xi+1 = xi − J−1(xi)F(xi), i = 0, 1, 2, . . . (5.3)

62 Chapter 5. Solving nonlinear systems via embedding methods

given an initial guess x0. The vector −J−1(xi)F(xi) defined by (5.3) is known as the
Newton update vector. In order to move from the xi-iterate to the successive xi+1, a unit
step size is taken in the direction −J−1(xi)F(xi). Newton’s method is known to give
local second order convergence, i.e.

‖ x∗ − xi+1 ‖ = O
(

‖ x∗ − xi ‖2
)

, i → ∞. (5.4)

In spite of its simplicity and its good convergence properties, direct application of New-
ton’s method often does not work with highly nonlinear problems. In fact, its conver-
gence region, i.e. that part of the domain of F to which x0 has to belong to achieve
global convergence, can be very small. Therefore, the main focus is on how to obtain
x0 such that global convergence is possible. The robustness of Newton’s method can be
improved by introducing a damping factor 0 < λi ≤ 1, that yields the iteration

xi+1 = xi − λiJ−1(xi)F(xi), i = 0, 1, 2, (5.5)

Such a procedure relies on the observation that, given an objective function g(x) : Rn → R,
defined as g(x) := 1

2
‖ F(x) ‖2, the Newton direction is a descent direction with respect to

g(x), i.e. J−1(xi)F(xi) ·∇g < 0, see [5]. For nonlinear systems obtained from discretisa-
tion of combustion problems, a good strategy to determine λi is not straightforward. A
different approach is then required.

Hence, we introduce a solution strategy that is based on embedding the original system
into an initial value problem. We can do that in two different ways. In fact we can
consider both

dx
dτ

= F(x), (5.6a)

x(0) = x0, (5.6b)

and

dx
dτ

= −J−1(x)F(x), (5.7a)

x(0) = x0, (5.7b)

with τ an artificial time.

Problem (5.6) is a reminiscence of a parabolic problem where F(x) is an elliptic (discrete)
operator. Although x∗ is a rest point of (5.6), it may not be a stable one. The other
option, i.e. the Davidenko equation, has a better potential, therefore we concentrate on
the solution of the IVP (5.7). It is worth to remark that the explicit Euler scheme applied
to (5.7) with a step size λi = τi+1 − τi gives exactly damped Newton. This implies that
improving robustness for the damped Newton method applied to the original nonlinear
system (5.1) translates into improving stability of the Euler forward scheme applied to
the system (5.7). In the following we will indicate with xi a numerical approximation of
x(τi).

Before we start looking for such a technique, we have to state the conditions under
which the ODE system (5.7) is asymptotically stable. In fact, only in this case the search

5.2. The mixed Euler method 63

for a zero of F(x) is meaningful. The following assumptions and lemma have been
presented in [35]. Here we introduce them in an adapted form suitable to be applied
to (5.7).

Assumption 5.1 Suppose there is a ball B(x∗, R), of centre x∗ and radius R, such that

(i) The functions F(x), J(x) and J−1(x) are bounded on B(x∗, R). Then

‖ F(x) ‖≤ CF, ‖ J(x) ‖≤ CJ, ‖ J−1(x) ‖≤ CM,
(

for all x ∈ B(x∗, R)
)

. (5.8)

(ii) The functions J(x) and J−1(x) are Lipschitz continuous on B(x∗, R) with Lipschitz con-
stants LJ and LM, respectively, i.e.

‖ J(x) − J(y) ‖≤ LJ ‖ x − y ‖ and ‖ J−1(x) − J−1(y) ‖≤ LM ‖ x − y ‖ . (5.9)

Based on Assumptions 5.1, it has been shown, see [35], that once the initial guess x0 is
chosen such that it belongs to a certain ball B(x∗, r), the function x(τ), solution of (5.7),
remains in B(x∗, r). We can formulate this more precisely. Let us introduce a constant
Ĉ = Ĉ(R) such that

Ĉ := max
x∈B(x∗,R)

< x − x∗,−J−1(x)(F(x) − J(x)(x − x∗)) >

‖ x − x∗ ‖3 , (5.10)

where < · , · > denotes the Euclidean inner product. Then the following lemma holds

Lemma 5.1 If r < min(Ĉ−1, R), then the solution x(τ) of (5.7) satisfies the following

∀x0 = x(0) ∈ B(x∗, r) : x(τ) ∈ B(x∗, r). (5.11)

Moreover
‖ x(τ) − x∗ ‖≤ exp((−1 + Ĉr)τ) ‖ x0 − x∗ ‖ . (5.12)

5.2 The mixed Euler method

In this section we look for an integration method that is able to enhance stability of the
forward Euler formula applied to (5.7). We must stress the fact that the final goal is not
to obtain an accurate temporal evolution of x(τ), but to reach a steady state solution
of the ODE system (5.7). This implies that we would prefer to have large time steps,
especially when xi approaches x∗. The only limitations that we have to impose to the
time stepping are those necessary not to jeopardize the stability of the process.

The simplest candidate that satisfies these requirements is the backward Euler formula.
If applied to (5.7a), it reads

xi+1 = xi − λiJ−1(xi+1)F(xi+1). (5.13)

64 Chapter 5. Solving nonlinear systems via embedding methods

Looking at (5.13), we realise that the Euler backward scheme has a major drawback
that makes its application unfeasible: it is fully implicit, i.e. in the left-hand side there
are two functions, F(x) and J−1(x) that have to be evaluated at the new time level. In
particular the term J−1(x) represents the most expensive part. In fact, this would re-
quire several iterations and a relatively big computational effort. The situation can be
improved if we consider a mixed Euler formula, i.e. a mix between an explicit and an
implicit scheme, as follows

xi+1 = xi − λiJ−1(xi)F(xi+1). (5.14)

The iteration method (5.14) is computationally less expensive than (5.13). Furthermore,
it can be shown, see [35], that it is consistent of order one and that its stability properties
are similar to those of the implicit Euler method.

System (5.14) is again nonlinear in z := xi+1. It can be symbolically written as

G(z) := z + λiJ−1(xi)F(z) − xi = 0, (5.15)

and solved iteratively by applying again Newton’s method. This results in

zl+1 = zl −
(

I + λiJ−1(xi)J(zl)
)−1G(zl). (5.16)

We notice that the solution of (5.16) requires the evaluation of the Jacobi matrix every
time a new approximation zl+1 is computed. Since this would heavily affect the com-
putational efficiency of the method, we simply replace J(zl) by J(xj), i.e. we freeze the
Jacobi matrix in the inner iteration. This way, (5.16) reduces to

zl+1 =
λi

1 + λi

(

zl − J−1(xi)F(zl)
)

+
1

1 + λi
xi. (5.17)

Thus, our method consists of two iteration levels: the external one given by (5.14) whose
iterations determine the temporal evolution of x, and the internal one, i.e. (5.17), due to
the nonlinearity contained in (5.14).

Some interesting findings relevant to the convergence of the mixed Euler method are
shown in [35]. We recall here a theorem that summarizes those results.

Theorem 5.1 Let r < min(Ĉ−1, R), let xi ∈ B(x∗; r) and suppose that λi is sufficiently small
to guarantee that also xi+1 ∈ B(x∗; r). If 1 − Ĉr− CJLM ‖ xi − xi+1 ‖> 0 then

‖ xi+1 − x∗ ‖≤ ‖ xi − x∗ ‖
bi

, (5.18)

with
bi := 1 + λi

(

1 − CJLM ‖ xi − xi+1 ‖ −Ĉ ‖ xi − x∗ ‖
)

> 1. (5.19)

Moreover, the vector xi+1 is in the sphere with centre
(

1 −
1

2bi

)

x∗ +
1

2bi
, (5.20)

and radius
‖ xi − x∗ ‖

2bi
. (5.21)

5.3. Implementation 65

From (5.18) and (5.19) we see that, as soon as ‖ xi − xi+1 ‖< (1 − Ĉr)/2CJLM, the
constant bi becomes bigger than 1, whichever is λi. Then the choice of a growing λi
with increasing i implies superlinear convergence.

5.3 Implementation

A crucial issue for the success of the method is the control of the step size λi. A reason-
able way to do this is to choose the time steps such that the discretisation error does not
exceed a certain fixed tolerance. Obviously, we would also like to build an algorithm
such that λi eventually becomes infinitely large. There are several ways to achieve this
objective. In the following subsection, we discuss the method presented in [35], which
is based on the possibility of giving a discrete estimate of the derivative of the func-
tion x = x(τ). Furthermore, we introduce two improvements in this technique: the first
one is based on the use of a second order backward difference formula, the second one on
extrapolation.

5.3.1 Step size control via the second derivative approximation

Consider the following generic integration scheme for problem (5.7), see [5]

xi+k = βk−1xi+k−1 + · · · + β0xi + λΦ(xi+k, · · · , xi; λ), i = 0, 1, 2, · · · , (5.22)

which holds for λ constant. Here, β0, β1, · · · , βk−1 are known constants and Φ is an
increment function depending on J(x)−1F(x). The local truncation or discretisation error
δi at τi is defined as

δi := λ−1
[

x(ti+k) −

k−1∑

j=0

x(τi+j)βj −Φ
(

x(τi+k), · · · , x(τi); λ
)

]

, (5.23)

and the scheme is said to be consistent of order p if δi = O(λp). For such schemes, δi can
be expressed as

δi(λ) = Cx(p+1)(τi)λ
p + O(λp+1), (5.24)

where C is a constant and x(p+1)(τi) the (p + 1)-order derivative of x with respect to τ
evaluated in τi.

Let us now come back to the mixed Euler method: in [35] it has been shown to be
consistent of order one. We would like to determine the step size such that the integral
of the discretisation error over a time interval remains approximately bounded. More
precisely, we require

∣

∣λδi(λ)
∣

∣ ≈ TOL, (5.25)

with TOL our desired tolerance. Applying (5.24) to the mixed Euler method, we can
give an estimate of the local truncation error trying to evaluate numerically the second
derivative of the function x(τ), where C = 1

2
. Then we obtain

EST := λ2i

∣

∣

∣

∣

∣

‖ xi − xi−1 ‖
λi−1

−
‖ xi−1 − xi−2 ‖

λi−2

∣

∣

∣

∣

∣

· 1

λi−1 + λi−2
≈
∣

∣λδi(λ)
∣

∣. (5.26)

66 Chapter 5. Solving nonlinear systems via embedding methods

In the following algorithm, EST is required to satisfy

EST ≤ ATOL + RTOL · ‖ xi ‖, (5.27)

where ATOL and RTOL are an absolute and a relative tolerance, respectively. When the
function to be integrated is smooth, the application of (5.25) implies that bigger step
sizes are allowed, while, for a more irregular behaviour, the step size is reduced to
enhance robustness. The values ATOL and RTOL determine the accuracy with which
the temporal evolution of the system is computed and are up to the user. Since we
are only interested in the steady state solution and not in the transient behaviour, we
like to keep these tolerances as large as possible, thus reducing the computational work
to achieve convergence. On the other hand, when very stiff nonlinear problems have
to be solved, it is possible to decrease the value of ATOL and RTOL such that a more
cautious, and thus slower, path towards the steady state can be followed. Based on
these considerations the following algorithm, similar to the one presented in [35], has
been developed

Mixed Euler Algorithm (MEA)

- Let x0 be given;

- For i = 0, 1

• Set λi = 1
1+‖F(xi)‖ ;

• Solve (5.14) for xi+1 using (5.17);

* If the Newton process (5.17) does not converge after l = m1 iterations, set
λi = 1

2
λi and continue iterating until either convergence or l = m2;

- For i = 2, 3, · · ·

• Set λi = λi−1;

• Solve (5.14) for xi+1

* If the Newton process (5.17) does not converge after l = m1 iterations, set
λi = 1

2
λi and continue iterating until either convergence or l = m2;

• Compute EST with (5.26);

• Evaluate the test function

TEST :=
EST

ATOL + RTOL · ‖ xi ‖ ; (5.28)

• If 1
ρ
≤ TEST ≤ ρ the solution xi+1 is accepted;

• If TEST > ρ the discretisation error is too big, the solution xi+1 is rejected
and a new solution is computed after updating λi according to

λi =: α
λi√

TEST
; (5.29)

5.3. Implementation 67

• If TEST < 1
ρ

the temporal evolution is being followed too accurately: the
new solution xi+1 is accepted and the step size is increased according to (5.29);

• If λi has not been changed for the last n iterations, set λi := 2λi;

• If TEST < ρ check the stopping criterion on ‖ J−1(xi)F(xi+1) ‖.

The values of n, m1, m2 and ρ can be arbitrarily chosen. In the numerical experiments
of Section 5.4 we usem1 = n = 3,m2 = 10 and ρ = 4. Expression (5.29) relies on the fact
that EST, according to (5.26), is proportional to λ2i . Moreover, α is a safety coefficient used
to deal with severe nonlinearities. Obviously, it has to satisfy the inequality 0 < α ≤ 1.
This coefficient is usually set equal to 0.9.

5.3.2 Step size control via a higher order method

In spite of its simplicity, the estimate of the discretisation error via the second derivative
it is not always reliable. In fact the numerical evaluation of d2x/dτ2 can be mislead-
ing, especially if there are regions where the solution pattern evolves irregularly. The
requirement to obtain a robust method induces to look for other kind of solutions. A
suitable alternative is to employ embedding in combination with a method presented
in [5]. Let us consider two different schemes: one of order p and the other of order q,
with q > p, applied to system (5.7). We denote by xi and x̂i its numerical solution com-
puted at the time τi by the first and the second scheme, respectively. Moreover, let x(τ)

be the exact solution of (5.7), subject to the condition x(τi) = xi. We want to determine
λi in order to compute xi+1. For the scheme of order p, we can write

λδ(x(τi+1), λ) = x(τi+1) − xi+1, with δ(x(τi+1), λ) = O(λp), (5.30)

and, for the scheme of order q

λδ̂(x(τi+1), λ) = x(τi+1) − x̂i+1, with δ̂(x(τi+1), λ) = O(λq), (5.31)

that hold for λ constant. Subtracting (5.31) from (5.30), we get

x̂i+1 − xi+1 = λ
(

δ(x(τi+1), λ) − δ̂(x(τi+1), λ)
)

= λδ(x(τi+1), λ) + O(λq+1).
(5.32)

From (5.32) it follows that

EST :=‖ x̂i+1 − xi+1 ‖ .=‖ λδ(x(τi+1), λ) ‖ . (5.33)

Let us then apply (5.33) in a variable step size context. Based on this last expression, the
relation between two successive time steps able to equidistribute the local error over the
time interval becomes

(

λnewi

λoldi

)p+1

=
TOL
EST

. (5.34)

The implementation of (5.33) requires then two schemes with different consistency or-
der. Obviously, our choice is determined by the requirement to save computational

68 Chapter 5. Solving nonlinear systems via embedding methods

work, thus we set p = 1 and q = 2. The mixed Euler method is the most natural
candidate when considering the order one scheme; it has now to be coupled with an
order two scheme. There are several possibilities for this. We choose the second order
backward difference formula

x̂i+1 =
4

3
x̂i −

2

3
λiJ−1(x̂i+1)F(x̂i+1) −

1

3
x̂i−1, (5.35)

that has stability properties similar to the first order Euler backward scheme. Again,
(5.35) is a fully implicit scheme, thus useless to our purposes if not adequately worked
out. We could be tempted to implement it in a mixed way, as already done for the first
order backward formula, and write

x̂i+1 =
4

3
x̂i −

2

3
λiJ−1(x̂i)F(x̂i+1) −

1

3
x̂i−1. (5.36)

But we notice that, in this case, (5.35) transforms irreparably into a first order formula.
In fact, while in [35] it is shown that the discretisation error corresponding to the mixed
Euler method is still bounded by the product of a certain constant and the time step λi,
now it is not possible to arrange (5.36) such that the upper bound of the local error is
proportional to λ2i .

To find out the accuracy of (5.36) we prefer to work with the equivalent scalar equation

x̂i+1 =
4

3
x̂i −

2

3
λif

′−1(x̂i)f(x̂i+1) −
1

3
x̂i−1. (5.37)

Results can be then easily generalised to the multidimensional case. Let us rearrange (5.37)
as follows

x̂i+1 −
4

3
x̂i+

2

3
λif

′−1(x̂i+1)f(x̂i+1) +
1

3
x̂i−1

=
2

3
λi
(

f ′−1(x̂i+1) − f ′−1(x̂i)
)

f(x̂i+1).

(5.38)

Moreover, we have that

f ′−1(x̂i+1) = f ′−1
(

x̂i + ˙̂xλi + O(λi)
2
)

, (5.39)

where ˙̂x indicates the time derivative of x̂. Using the Taylor expansion, it follows
from (5.39) that

f ′−1(x̂i+1) − f ′−1
(

x̂i) =
df ′−1(x̂i)

dx
˙̂xλi + O(λi)

2. (5.40)

The discretisation error bound for (5.38) then reads

‖ δ̂(x̂(τi+1), λi) ‖≤
2

3
λiLMCF max

τ∈(τi,τi+1)
| ˙̂x| + O(λ2i), (5.41)

where CF and LM have been introduced in Section 5.1.

5.3. Implementation 69

We can improve the accuracy of (5.36) in the following way. In order to simplify the
notation, we consider still the 1D problem. Let us set x̂i+1 − xi+1 = δxi+1. If expanded
in a Taylor series about the point xi+1, f ′−1 yields

f ′−1(x̂i+1) = f ′−1(xi+1) +
df ′−1(xi+1)

dx
δxi+1 + O((δxi+1)2). (5.42)

From (5.32) and considering that p = 1, we see that δxi+1 is a second order term in λi.
Bearing in mind that we use (5.35) after the new approximation xi+1 has become avail-
able, we can replace f ′−1(x̂i+1) by f ′−1(xi+1) up to O(λ2i). Finally, we are able to write
a mixed second order formula to integrate the Davidenko equation. In a multidimen-
sional setting it reads

x̂i+1 =
4

3
x̂i −

2

3
λiJ−1(xi+1)F(x̂i+1) −

1

3
x̂i−1. (5.43)

Note that (5.43) is not fully implicit anymore. Introducing again the function Ĝ(z) as
in (5.16) and setting J(zl) = J(x̂i), we get the iteration formula

zl+1 =
λi

1+ λi

(

zl − 2
3

J−1
(

xi+1
)

F
(

zl
)

)

+
1

1 + λi

(

4
3

x̂i − 1
3

x̂i−1
)

. (5.44)

When using (5.43) to evaluate the local discretisation error, its right-hand side has to be
slightly modified. In fact, our analysis is based on the assumption that xi+1 and x̂i+1 are
evaluated starting from the same local initial values, i.e. the x̂i = xi and x̂i−1 = xi−1.
This also prevents that the two solution curves evolve along two separate patterns. Thus
we can use the following formula

zl+1 =
λi

1+ λi

(

zl − 2
3

J−1
(

xi+1
)

F
(

zl
)

)

+
1

1 + λi

(

4
3

xi − 1
3

xi−1
)

. (5.45)

PSfrag replacements

λi−2 λi−1 λi

λi

τi−2 τi−1 τi τi+1

Figure 5.1: In order to get xi+1, xi−1 has to be recomputed at the time level indicated by the
triangle, such that λi−1 = λi. In this case λi+1 < λi−1, so (5.46a) is used for the interpolation.

Before introducing the new algorithm, another issue has to be addressed. In fact, equa-
tion (5.35) holds for uniform time intervals, i.e. λi−1 = λi. Since we rather wish that the
time step does change, even rapidly when the solution approaches the steady state, we
must find a way to update xi−1 such that λi−1 = λi still holds. Note that xi−1 and xi

in (5.45) are computed with a BDF1 formula. This implies that a linear approximation is
sufficient to get the new value of xi−1 with the desired accuracy, see Figure 5.1as follows

70 Chapter 5. Solving nonlinear systems via embedding methods

xi−1 = xi −
(

xi − xi−1
) λi

λi−1
, if λi ≤ λi−1, (5.46a)

xi−1 = xi−1 +
(

xi−1 − xi−2
)λi − λi−1

λi−2
, if λi ≥ λi−1. (5.46b)

In summary, we obtain the following new algorithm

BDF1-BDF2 Algorithm (BDF1/2A)

- Let x0 be given;

- For i = 0, 1

• Set λi = 1
1+‖F(xi)‖ ;

• Solve (5.14) for xi+1;

* If the Newton process (5.17) does not converge after l = m1 iterations, set
λi = 1

2
λi and continue iterating until either convergence or l = m2;

- For i = 2, 3, · · ·

• Set λi = λi−1;

• Solve (5.14) for xi+1

* If the Newton process (5.17) does not converge after l = m1 iterations, set
λi = 1

2
λi and continue iterating until either convergence or l = m2;

• Solve (5.43) for x̂i+1 using (5.45) and (5.46);

• Compute
EST =‖ x̂i+1 − xi+1 ‖; (5.47)

• Compute the test function

TEST :=
EST

ATOL + RTOL · ‖ xi+1 ‖ ; (5.48)

• If 1
ρ
≤ TEST ≤ ρ the solution xi+1 is accepted;

• If TEST > ρ the discretisation error is too big: the solution xi+1 is rejected.
Then

* Update λi according to

λi = α
λi√

TEST
; (5.49)

* Compute a new xi−1 according to (5.46);

• If TEST < 1
ρ

accept the new solution xi+1, increase the step size according
to (5.49) and recompute xi−1 with (5.46);

• If λ has not been changed for the last n; iterations, set λi := 2λi;

5.3. Implementation 71

• If TEST < ρ check the stopping criterion on ‖ J−1(xi)F(xi+1) ‖.

It is worthwhile to notice that, like for the MEA, the Jacobi matrix has to be computed
only once for each time step. In fact, unless the iteration is rejected, the matrix J(xi+1)
used by the BDF2 formula at the (i + 1)-th step is also employed by the BDF1 formula
at the (i + 2)-th step. Then the Jacobi matrix has to be recomputed only if the solution
at a certain time step is rejected.

5.3.3 Step size control via extrapolation

Whereas in the previous subsection the estimate of the discretisation error was obtained
by comparing two solutions at the same time level and computed by BDF formulae of
different order, we now introduce a method based on the opposite approach. In fact,
we try to approximate δ by comparing two solutions computed with the same scheme:
one that reaches τi+1 in one step of length λi = τi+1 − τi, the other that reaches τi+1 in
two steps equal to λi/2; see Figure 5.2. We denote by xi+1 the solution obtained with

PSfrag replacements

τi τi+ 1
2

τi+1

λi

2
λi

2

Figure 5.2: The solution of the ODE at the time τi+1 is computed first in one step of size λi and
then in two steps of size λi

2
.

the first procedure; by x̂i+1 the solution obtained with the second. The corresponding
discretisation error will be again δ and δ̂, respectively. The general expression for δ
when considering a first order method yields

δ(x(τi+1), λ) = c
(

τi, x(τi)
)

λ+ O(λ2). (5.50)

Using the Davidenko equation, the solution x̂i+1 reads

x̂i+1 = x̂i+
1
2 −

λ

2
J−1(x̂i+

1
2)F(x̂i+1)

= xi −
λ

2
J−1(xi)F(x̂i+

1
2) −

λ

2
J−1(x̂i+

1
2)F(x̂i+1).

(5.51)

72 Chapter 5. Solving nonlinear systems via embedding methods

Let us suppose that xi = x(τi). To evaluate the discretisation error associated with (5.51)
we use again the equivalent 1D equation

δ̂(x(τi+1), λ) = λ−1
[

x(τi+1) − x̂i+1
]

= λ−1
[

x(τi+1) − x(τi+ 1
2
) +

λ

2
f ′−1(x̂i+

1
2)f(x̂i+1)

+ x(τi+ 1
2
) − xi +

λ

2
f ′−1(xi)f(x̂i+

1
2)
]

= λ−1
[

c
(

τi + λ
2
, x(τi + λ

2
) + O(λ2)

)(λ

2

)2

+ c
(

τi, x(τi)
)(λ

2

)2]

+ O(λ2)

.
= c
(

τi, x(τi)
)(λ

2

)2

+ O(λ) =
1

2
δ(x(τi+1, λ)) + O(λ2).

(5.52)

From the relation

x(τi+1) = xi+1 + λδ(x(τi+1, λ)) = x̂i+1 + λδ̂(x(τi+1, λ)), (5.53)

it follows that
δ(x(τi+1, λ)) = 2

(

x̂i+1 − xi+1
)

+ O(λ2). (5.54)

The expression (5.54) is the estimate of the local error that we were looking for. To
improve the computational efficiency of this method, in (5.51) we replace J−1(x̂i+

1
2)

with J−1(xi). These results can be straightforwardly extended to the multidimensional
case. The new algorithm then reads

BDF1-Extrapolation Algorithm (BDF1/EA)

- Let x0 be given;

- For i = 0

• Set λi = 1
1+‖F(xi)‖ ;

• Solve (5.14) for xi+1 using (5.17);

* If the Newton processs (5.17) does not converge after l = m1 iterations, set
λi = 1

2
λi and continue iterating until either convergence or l = m2;

- For i = 1, 2, 3, · · ·

• Set λi = λi−1;

• Solve (5.14) for xi+1

* If the Newton process (5.17) does not converge after l = m1 iterations, set
λi = 1

2
λi and continue iterating until either convergence or l = m2;

• Set λ̂i = λi

2
and solve (5.14) for x̂i+

1
2 ;

• Solve again (5.14) for x̂i+1;

• Compute
EST = 2 ‖ x̂i+1 − xi+1 ‖; (5.55)

5.4. Numerical results 73

• Compute the test function

TEST :=
EST

ATOL + RTOL · ‖ xi+1 ‖ ; (5.56)

• If 1
ρ
≤ TEST ≤ ρ the solution xi+1 is accepted;

• If TEST > ρ the discretisation error is too big, the solution xi+1 is rejected
and a new solution is computed after updating λi according to

λi = α
λi√

TEST
; (5.57)

• If TEST < 1
ρ

accept the new solution xi+1 and increase the step size accord-
ing to (5.49);

• If λi has not been changed for the last n iterations, set λi := 2λi;

• If TEST < ρ check the stopping criterion on ‖ J−1(xi)F(xi+1) ‖.

5.4 Numerical results

In this section we use some benchmark problems to assess the performance of the meth-
ods introduced so far. Most of those have been introduced in [1] and then again in [35]
as test problems. When we consider a solution computed by the MEA, we refer to our
implementation and not to the results reported in [35]. In fact there are some discrep-
ancies in most of the cases. This may have several reasons. First of all, in [35] nothing
is said about the criterion to compute the time step corresponding to the first two it-
erations. Furthermore, the convergence criterion for the Newton solver (5.17) is not
specified. These two elements can of course have a strong influence on the transient be-
haviour of the system and then on the number of iterations necessary to reach the steady
state solution. Here, the considered stopping criterion is ‖ J−1(xi)F(xi) ‖∞≤ 10−6 for
all problems. Moreover, in (5.29), (5.49) and (5.57) we have set α = 1. We use the re-
sults obtained with MEA as a comparison to assess the characteristics of the other two
algorithms.

Example 1
Consider the function, see [11]

F(x) :=

(

x21 − x2 + 1

x1 − cos(πx2

2
)

)

. (5.58)

Its solution is x∗ = (0, 1)T . As initial guess we use

- Case 1: x0 = (1, 0)T ,

- Case 2: x0 = (−1,−1)T .

74 Chapter 5. Solving nonlinear systems via embedding methods

Figures 5.3 and 5.4 show the path of the solutions computed with the three different
algorithms for Case 1 and Case 2, respectively. We see that the solution curve of the of
Problem 2 runs very close to the curve

πx1 sin
(πx2

2

)

= −1, (5.59)

where the Jacobi matrix is singular. This implies that a very good control of the step size
is necessary for the success of the computation.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

PSfrag replacements

x1

x 2

(a) MEA.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

PSfrag replacements

x1

x 2

(b) BDF1/2A.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

PSfrag replacements

x1

x 2

(c) BDF1/EA

Figure 5.3: Example 1, Case 1. Transient behaviour from the initial guess x0 = (1, 0)T to the steady
state solution x∗ = (0, 1)T .

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

PSfrag replacements

x1

x 2

(a) MEA.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

PSfrag replacements

x1

x 2

(b) BDF1/2A.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

PSfrag replacements

x1

x 2

(c) BDF1/EA.

Figure 5.4: Example 1, Case 2. Transient behaviour from the initial guess x0 = (−1,−1)T to the
steady state solution x∗ = (0, 1)T (line with circles) and curve where the Jacobi matrix is singular.

Example 2
The second problem reads

F(x) :=

1

2
sin(x1x2) −

x2

4π
−
x1

2
(

1 −
1

4π

)

(e2x1 − e) +
ex2

π
− 2ex1

, (5.60)

5.4. Numerical results 75

0.48 0.5 0.52 0.54 0.56 0.58 0.6 0.62
3

3.02

3.04

3.06

3.08

3.1

3.12

3.14

a

b

(a) MEA

0.46 0.48 0.5 0.52 0.54 0.56 0.58 0.6 0.62 0.64
3

3.02

3.04

3.06

3.08

3.1

3.12

3.14

PSfrag replacements

x1

x 2

(b) BDF1/2A

0.46 0.48 0.5 0.52 0.54 0.56 0.58 0.6 0.62 0.64
3

3.05

3.1

3.15

PSfrag replacements

x1

x 2

(c) BDF1/EA

Figure 5.5: Example 2. Transient behaviour from the initial guess x0 = (0.6, 3)T to the steady state
solution x∗ = (0.5, π)T .

whose solution is x∗ = (0.5, π)T , see Figure 5.5. We start integrating from x0 = (0.6, 3)T .

Example 3
Our final 2D test problem is now

F(x) :=

(

400x1(x
2
1 − x2) + 2(x1 − 1)

−200(x21 − x2)

)

, (5.61)

whose solution is x0 = (1, 1)T , see Figure 5.6. We use as initial guess the following
values

- Case 1: x0 = (−1.2, 1.0)T ,

- Case 2: x0 = (6.0, 6.0)T ,

- Case 3: x0 = (20.0, 20.0)T .

From Figures 5.6, 5.7 and 5.8, we see that the solution, from whichever point we start,
moves toward the parabola x21 = x2 to which the exact solution belong and that lies very
close to the curve x21 = x2 − 0.005, where the Jacobi matrix is singular; see also [35].

76 Chapter 5. Solving nonlinear systems via embedding methods

−1 −0.5 0 0.5 1

0

0.5

1

1.5

PSfrag replacements

x1

x 2

(a) MEA

−1 −0.5 0 0.5 1

0

0.5

1

1.5

PSfrag replacements

x1

x 2

(b) BDF1/2A

−1 −0.5 0 0.5 1

0

0.5

1

1.5

PSfrag replacements

x1

x 2

(c) BDF1/EA

Figure 5.6: Example 3, Case 1. Transient behaviour from the initial guess x0 = (−1.2, 1)T to the
steady state solution x∗ = (1, 1)T (line with circles) and curve where the Jacobi matrix becomes
singular (solid line).

−15 −10 −5 0 5 10 15 20 25

5

10

15

20

25

30

35

PSfrag replacements

x1

x 2

(a) MEA

−15 −10 −5 0 5 10 15 20 25

5

10

15

20

25

30

35

PSfrag replacements

x1

x 2

(b) BDF1/2A

−15 −10 −5 0 5 10 15 20 25

5

10

15

20

25

30

35

PSfrag replacements

x1

x 2

(c) BDF1/EA

Figure 5.7: Example 3, Case 2. Transient behaviour from the initial guess x0 = (6, 6)T to the steady
state solution x∗ = (1, 1)T .

−200 −150 −100 −50 0 50 100 150 200 250

50

100

150

200

250

300

350

PSfrag replacements

x1

x 2

(a) BDF1/2A

−200 −150 −100 −50 0 50 100 150 200 250

50

100

150

200

250

300

350

PSfrag replacements

x1

x 2

(b) BDF1/EA

Figure 5.8: Example 3, Case 3. Transient behaviour from the initial guess x0 = (20, 20)T to the
steady state solution x∗ = (1, 1)T .

5.4. Numerical results 77

Example 4
We consider now the BVP

3u
∂2u

∂x2
+
(∂u

∂x

)2

= 0, 0 < x < 1, (5.62a)

u(0) = 0, (5.62b)
u(1) = 20. (5.62c)

see [35]. Equation (5.62a) is discretised by finite differences on a uniform grid using N
grid points. The exact solution is given by the curve u(x) = 20 x

2
3 . We have solved the

problem on two grids, viz.

- Case 1: N = 10,

- Case 2: N = 20.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12

14

16

18

20

PSfrag replacements

x

u

Figure 5.9: Solution of BVP (5.62). The curve here shown has been obtained by using the BDF1/2A
with N = 20 grid points.

For both tests, the constant initial guess u0 = 10 has been chosen. Figure 5.9 shows the
numerical solution computed with BDF1/2A when N = 20.

Example 5
Consider the BVP, see [27],

d

dx

(

x2
du

dx

)

= x2f(u), 0 < x < 1, (5.63a)

du

dx
(0) = 0, (5.63b)

u(1) = 1, (5.63c)

where
f(u) = ε−1 u

u + k
, (5.64)

with ε and k positive. We take k = 0.1 and consider the following three cases

78 Chapter 5. Solving nonlinear systems via embedding methods

- Case 1: ε = 10−3,

- Case 2: ε = 10−4,

- Case 3: ε = 10−5.

Discretisation of (5.63a) by finite differences yields

(u2 − u1)(x
2
3
2

− 1
3
x21

2

) = x21∆x
2f(x1), j = 1, (5.65a)

x2
j+ 1

2

(uj+1 − uj) − x2
j− 1

2

(uj − uj−1) = x2i∆x
2f(xj), j = 2, · · · , N − 2, (5.65b)

x2
N− 1

2

(1 − uN−1) − x2
N− 3

2

(uN−1 − uN−2) = x2N−1∆x
2f(xN−1), j = N − 1, (5.65c)

where ∆x = 1
N+1

. The derivation of (5.65b) and (5.65c) is straightforward. We have
derived equation (5.65a) in the following way. At the first point of the interval, x0, the
boundary condition (5.63b) is discretised by using the second order accurate one-sided
formula

−3u0 + 4u1 − u2

∆x
= 0. (5.66)

From (5.66), u0 can be expressed as a function of u1 and u2 and subsequently substi-
tuted in the difference scheme. For all test problems we take N = 200 and u0i as initial
guess, where u0i = (1−εk)x2i , for i = 1, · · · , N. Figure 5.10 shows the solution computed
with the BDF1/EA.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

PSfrag replacements

x

u

Figure 5.10: Solution of BVP (5.63). Dash-dot line: ε = 10−3; dashed line: ε = 10−4; solid line:
ε = 10−5.

Example 6
The last example is the following

d2u

dx2
= sinh(nu), 0 < x < 1, (5.67a)

u(0) = 0, u(1) = 1, (5.67b)

5.4. Numerical results 79

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

PSfrag replacements

x

u

Figure 5.11: Solution of BVP (5.67). Dotted line: n = 5; solid line: n = 20

where n is an integer. We consider the following two cases

- Case 1: n = 5 and N = 20,

- Case 3: n = 20 andN = 100.

The solution is shown in Figure 5.11. We start with the following initial guess

u0(x) = x. (5.68)

We compare now the three methods presented in terms of efficiency and robustness.
All problems are solved with ATOL = RTOL = 10−1, with the exception of Example 3,
where ATOL = RTOL = 10−2 are used. Tables 5.1 and 5.4 refers to the MEA. We indicate
with TotalIt the number of iterations, with nJ the number of Jacobi matrix evaluations,
with nF the number of function evaluations. It has to be noted that, for this algorithm,
the number of iterations is equal to or larger than the number of Jacobi matrix evalua-
tions. In fact, when a solution at a certain time step is rejected because the corresponding
test function does not comply with the condition TEST ≤ ρ, the Jacobi matrix can still
be used for a new iteration. The considered convergence criterion for the Newton pro-
cess (5.17) is ‖ zl+1 − zl ‖∞≤ TolInt. The value of TolInt is always equal to 10−1 except
that in Example 3, Case 1 for the MEA and the BDF1/2A where it is set equal to 10−2.

Tables 5.2 and 5.5 show the results obtained solving the benchmark problems with the
BDF1/2A. We have now to consider that the number of Jacobi matrix evaluations is
equal to the total number of iterations. In fact, J−1(xi+1) is computed after the (i + 1) -
th BDF1 step and is used both to compute the x̂i+1- and the xi+2-solutions. If xi+1 is
rejected, the J−1(xi+1) evaluation is useless. Although this could be seen as a drawback
of the BDF1/2A, both Tables 5.5 and 5.2 show that the number of iterations rejected is
quite low with respect to the total number. The row ValidIt refers then to the number of
iterations that have been accepted.

80 Chapter 5. Solving nonlinear systems via embedding methods

Finally, the solutions obtained with the BDF1/EA are shown in Table 5.3 and Table 5.6.
Here again the number of Jacobi matrix computations is equal to the number of accepted
iterations and the row TotalIt indicates the total number of iterations performed.

Let us now compare the results shown in the previous tables. The first thing to no-
tice is that in one case the MEA fails, i.e. it reveals to be not robust enough when the
initial guess is far from the zero of the system. This is a very important issue, since
our main goal was to build an algorithm that could improve robustness of the existing
ones. The better capability of BDF1/2A and BDF1/EA in dealing with more complex
problems appears also when considering, for instance, Example 6. There, the control of
the discretisation error leads to a much faster convergence compared with MEA. Fur-
thermore, if we look at the computational work, we see that both the BDF1/2A and the
BDF1/EA are very competitive compared to the MEA when considering the number of
Jacobi matrix evaluations. This is a quite important advantage, since the evaluation of
the Jacobi matrix is the most expensive and time consuming part of each iteration step.
The only point for which the MEA appears to be better than the other two is the number
of function evaluations. This is unavoidable, since both the BDF1/2A and the BDF1/EA
compute twice the solution at a certain time level τi+1.

5.4. Numerical results 81

Example 1 2 3

Case 1 2 1 1 2 3

TotalIt 14 19 8 52 97 FAIL
nJ 14 18 8 52 94 −

nF 23 31 10 173 315 −

Table 5.1: Examples 1 to 3 solved with the MEA. Tolerances and computational work.

Example 1 2 3

Case 1 2 1 1 2 3

ValidIt 10 14 5 45 79 234

nJ 10 14 5 45 84 244

nF 29 52 10 202 372 1585

Table 5.2: Examples 1 to 3 solved with the BDF1/2A. Tolerances and computational work.

Example 1 2 3

Case 1 2 1 1 2 3

TotalIt 9 17 5 49 83 185

nJ 9 17 5 43 83 185

nF 42 151 16 166 514 2126

Table 5.3: Problems 1 to 3 solved with the BDF1/EA. Tolerances and computational work.

82 Chapter 5. Solving nonlinear systems via embedding methods

Example 4 5 6

Case 1 2 1 2 3 1 2

TotalIt 23 23 23 29 22 11 39

nJ 21 21 22 28 23 11 31

nF 45 45 34 36 34 15 41

Table 5.4: Examples 4 and 5 and 6 solved with the MEA. Tolerances and computational work.

Example 4 5 6

Case 1 2 1 2 3 1 2

ValidIt 15 16 24 23 15 9 22

nJ 16 17 24 23 15 9 22

nF 121 116 56 56 41 26 44

Table 5.5: Problems 4 and 5 and 6 solved with the BDF1/2A. Tolerances and computational work.

Example 4 5 6

Case 1 2 1 2 3 1 2

ValidIt 14 14 25 25 16 7 22

nJ 14 14 25 25 16 7 22

nF 87 92 98 109 90 26 67

Table 5.6: Problems 4 and 5 and 6 solved with the BDF1/EA. Tolerances and computational work.

CHAPTER 6

Laminar flame simulation

In this chapter we apply the LDC technique with curvilinear local grid refinement to
simulate the two flame models described in Chapter 2. We have thus two main sections:
in the first one the thermo-diffusive model is discussed, in the second one the Bunsen
flame simulation is presented.

6.1 The thermo-diffusive model

The thermo-diffusive model introduced in Chapter 2 is here further elaborated. In
Section 6.1.1. some dimensionless quantities are introduced and equations are scaled.
Moreover, with the assumption that the Lewis number is equal to 1, they are transformed
into a single equation for the temperature whose steady state solution describes a trav-
elling wave, see [24]. Next, in Section 6.1.2 the solution strategy is outlined adapting the
LDC standard method to this specific problem. Finally, numerical results are presented.

6.1.1 Governing equations

We recall that the thermo-diffusive model is based on the following two main assump-
tions: the isobaric approximation, i.e. the pressure is considered constant in space, and the
constant density approximation. As a consequence, we can split the conservation laws in
the flow equations, to compute the velocity v and the pressure p, and the combustion
equations. The latter read

ρ
∂Y

∂t
+ ρv ·∇Y = ρ∇ · (D∇Y) −Mω(ρY, T), (6.1a)

ρcp
∂T

∂t
+ ρcpv ·∇T = ∇ · (λ∇T) +MQω(ρY, T), (6.1b)

where Y, T andQ are the reactant mass fraction, the temperature and the heat release per
unit mass of fuel consumption, respectively. Other parameters in (6.1) are the diffusion
coefficientD, the molar mass of the mixtureM, the specific heat at constant pressure cp,

84 Chapter 6. Laminar flame simulation

the thermal conductivity λ and the universal gas constant R. Moreover, the source term
in (6.1) is given by the Arrhenius expression

ω(ρY, T) =
ρY

M
B exp

(

−
E

RT

)

. (6.2)

Next, we apply the scaling introduced in [47] to system (6.1). Let the subscripts b and u
to denote the burnt and unburnt gases, respectively, then we define the variables

Θ :=
T − Tu

Tb − Tu
, Z :=

Y

Yu
, (6.3)

and the parameters

α :=
Tb − Tu

Tb
, β :=

E(Tb − Tu)

RT2b
. (6.4)

SoΘ andZ are the dimensionless temperature and the normalised mass fraction, respec-
tively. Moreover the coefficient α represents a nondimensional heat release parameter
and the coefficient β the dimensionless activation energy, also known as Zeldovich num-
ber, [68]. An additional dimensionless parameter that characterises the behaviour of the
thermo-diffusive model solution is the Lewis number, defined as

Le :=
λ

ρcpD
. (6.5)

It represents the ratio between thermal conduction and mass diffusion and is an impor-
tant measure of the stability of a flame, [47]. Substituting (6.3), (6.4) and (6.5) in (6.1),
we get

∂Θ

∂t
= ∇2Θ+w(Z,Θ), (6.6a)

∂Z

∂t
=
1

Le
∇2Z −w(Z,Θ), (6.6b)

with

w(Z,Θ) =
β2

2Le
Z exp

(

−
β(1 −Θ)

1 − α(1− Θ)

)

. (6.7)

In (6.6) the velocity field is set equal to 0 and Le and λ are assumed to be constant. The
treatment of a laminar flame by means of activation energy asymptotics allows us to
write the source term as in (6.7), see [47].

Our goal is to solve equations (6.6) in a channel with open ends whose walls are adia-
batic and inert, see Figure 6.1.

Let us now formulate the boundary conditions for such a problem. The value of the
temperature at the burn and unburnt gas sides, as well as the value for the reactant mass
fractions, are easily obtained when definitions (6.3) are considered. Since at x = −∞ we
have the completely unburnt gas and at x = ∞ the completely burnt gas, we get

Θ(−∞, y, t) = 0, Θ(∞, y, t) = 1, (6.8a)
Z(−∞, y, t) = 1, Z(∞, y, t) = 0. (6.8b)

6.1. The thermo-diffusive model 85

PSfrag replacements ΩL

x

y

Figure 6.1: Computational domain Ω.

Furthermore, on the horizontal walls we have

∂Θ(x, 0, t)

∂y
=
∂Θ(x, L, t)

∂y
= 0, (6.9a)

∂Z(x, 0, t)

∂y
=
∂Z(x, L, t)

∂y
= 0. (6.9b)

Condition (6.9a) is found from setting to zero the heat flux through the walls, whereas
condition (6.9b) expresses the absence of any mechanism able to enhance or inhibit any
chemical reaction. Moreover, the initial conditions for both the normalised temperature
and mass fraction, i.e. Θ(x, y, t) = Θ0(x, y), Z(x, y, t) = Z0(x, y), are needed and will be
specified later.

Let us now consider a 2D curved flame propagating in a nonuniform gas flow. We
assume Le = 1, i.e. thatΘ and Z are similar. This implies a stable flame, see [47]. Adding
both equations in (6.6) and considering the form of the boundary conditions, the choice
Le = 1 implies also that Θ + Z = 1. Thus we restrict ourselves to the Θ - equation.
Furthermore, we impose the nonuniform velocity field given by

v =

[

V cos
(

πy
2L

)

0

]

, (6.10)

that is parallel to the walls. It is easy to verify that the velocity field (6.10) is also
divergence-free, thus satisfying the continuity equation. Thus we have

∂Θ

∂t
+ V cos

(πy

2L

)∂Θ

∂x
= ∇2Θ +w(1 − Θ,Θ). (6.11)

In [8] it is shown that equation (6.11) allows for a travelling wave solution of the form
Θ(x + V 0t, y). In this context, V0 represents the velocity of the travelling wave (the
flame front) that is directed towards the unburnt gases, i.e. the left part of the computa-
tional domain. This implies that (6.11) reduces to the steady equation

−∇2Θ+
(

V0 + V cos
(πy

2L

))∂Θ

∂x
= w(1 −Θ,Θ), (6.12)

86 Chapter 6. Laminar flame simulation

subject to the following boundary conditions

Θ(−∞, y) = 0, Θ(∞, y) = 1, (6.13a)
∂Θ(x, 0)

∂y
=
∂Θ(x, L)

∂y
= 0. (6.13b)

The expression for the velocity V0 can be obtained by integrating (6.12) over the entire
computational domain Ω, giving

V0 =
1

L

∫∫

Ω

wdA −
2V

π
. (6.14)

It is worth noting that the integral of ∇2Θ is equal to zero: physically, this means that
there is no energy exchange between the fluid and the external environment.

Equation (6.12) expresses the balance between the diffusion, convection and reaction
contributions in a frame of reference attached to the flame front. In fact, while the gas
flow moves from left to right with a speed given by (6.10), the flame front moves at
velocity V0 from right to left. Thus, an observer travelling with this velocity, perceives
the gas flow approaching with speed V0 + V cos(yπ/2L).

Let us see what happens when we let V increase. Since we expect that increasing val-
ues of V do not lead to an equivalent growth of the reaction term, and therefore of
its integral over the domain Ω, expression (6.14) implies that V0 can assume negative
values. If V is large enough in absolute value, it may happen that in some parts of
the tube also the term V0 + V cos

(

πy/2L
)

becomes negative. This behaviour corre-
sponds to a non-classical, nevertheless physical, situation. In fact, while the gas velocity
V0+V cos(yπ/2L) is usually positive, pointing from the fresh mixture towards the burnt
gases, there are some parts of the domain where an inversion of the flow is produced.
Although this situation has never been reproduced by experiments dealing with a flame
in a tube, there are observations pertaining to diffusion flames, see [68], that confirm that
the velocity may be negative in proximity of the flame front. This is explained by as-
suming that local diffusion dominates the convective contribution. We will see that this
effect gives the flame front a very peculiar shape that makes it suitable for being studied
with a local defect correction approach in combination with curvilinear grids.

6.1.2 Solution strategy and numerical results

Our goal is now to solve (6.12) together with (6.14) both in the global and in a solution-
fitted local domain. The transformation from Cartesian to curvilinear coordinates for
the local BVP is performed by applying (4.36a) and (4.37).

To solve the thermo-diffusive model, we restrict the domain to a segment Ω of the infi-
nite tube, withΩ = (−8.1, 8.1)×(0, 4). In this case the expression of V0 given by (6.14) is
no longer exact as the computational domain has finite length and therefore the integral
of ∇2Θ over Ω is not exactly equal to zero. Nevertheless, if Ω is long enough, i.e. if
the boundaries are sufficiently far away from the flame front, the use of (6.14) allows to
obtain accurate results.

6.1. The thermo-diffusive model 87

−8 −6 −4 −2 0 2 4 6 8
0

1

2

3

4

Figure 6.2: Coarse and fine grids.

We choose β = 10, α = 0.84 and set V = 3 and use central difference discretisation for
both the global and the local problem. The coarse grid size is uniform and equal to H =

4.0 · 10−1. We build the local fine grid by using the following procedure. Considering
that the normalized temperature ranges between 0 and 1, three level curves are drawn
at Θa = εa, Θb and Θc = 1−εc, with εa = 2.0 · 10−1 and εc = 1.0 · 10−2. We choose the
level curve Θ = Θb at the location where w reaches its maximum value, which can be
computed analytically. Across the Θb iso-line, hξ0

= H/8 is set. Then the grid sizes on
the left and on the right of Θb are computed according to hi = ri−1hi−1, where we set

ri−1 = min

(

wi−1

wi
, 1.1

)

.

Furthermore, hη = H. The curves in the intervals (Θa, Θb) and (Θb, Θc) are not real iso-
lines, but are determined by spline interpolation from the aforementioned three lines,
see Figure 6.2.

Next, we consider relation (6.14). There, the integral of the source term w over the do-
mainΩ is computed by the Simpson formula for the 2-dimensional rectangular element,
i.e.

I ∼=
(xi+1 − xi)(yj+1 − yj)

36

[

w
(

i, j
)

+w
(

i + 1, j
)

+w
(

i, j+ 1
)

+w
(

i+ 1, j + 1
)

+ 4
(

w
(

i, j+ 1
2

)

+w
(

i+ 1, j + 1
2

)

+w
(

i + 1
2
, j
)

+w
(

i+ 1
2
, j+ 1

)

)

+ 16w
(

i+ 1
2
, j+ 1

2

)

]

.

(6.15)

We notice that the problems solved in the global and in the local domain are different.
The first one consists of both equation (6.12) for the temperature and relation (6.14) for
the velocity. In fact, V0 represents a part of the convection coefficient and it must be
updated at each iteration for the temperature field. Conversely, when solving the local
problem, V0 is not adapted after each iteration, since it is essentially a global variable.
Therefore, it is only updated after the restriction step. Both the local and the global
problems are solved using MEA, introduced in Chapter 5. As initial solution in the

88 Chapter 6. Laminar flame simulation

−2.5 −2 −1.5 −1 −0.5

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 6.3: Coarse grid solution and composite grid solution after one LDC iteration

global domain we consider the following

Θ(x, y) = 1 − tanh
(

− x+ cos
(πy

2L

)

)

, (6.16)

for the inizialisation step in LDC. The coarse grid solution is computed using continu-
ation in the parameter β. First, problem (6.12) is solved with β = 1, then its solution
is used as initial guess for an updated problem with β + δβ, until the value β = 10 is
reached.

It is worth noting that the solution of (6.12) is determined up to a translation. In order
to keep the flame front in a certain position, we fix the temperature in one single grid
point.

We have performed 2 LDC iterations. After one iteration we find a maximum difference
between the composite grid solution and the coarse grid solution of 7 · 10−2. After the
second iteration, we find a maximum difference of 1.3 · 10−3 between the new compos-
ite grid solution and the one at the previous step. This allows to state that after the first
iteration a very good approximation of the sought solution is already obtained. In Fig-
ure 6.3 we show the temperature profiles of the composite grid solution after one LDC
iteration and the coarse grid solution. They are taken at y = 3.7.

The speed V0 converges to −0.4150. While Figures 6.4 and 6.6 show the nondimen-
sional temperature and reaction rate in the coarse grid, Figure 6.5 and 6.7 show the
same functions computed in the fine grid after one LDC step. The two-norm of the fine
grid solution residual is found to be of the order of 10−9. We see that the solution shows
a curved flame front and the expected inversion of the flow. In fact, while in the lower
part of the channel the velocity relative to the flame front remains positive, it becomes
negative and equal to V0 for y = L. We notice also that, the boundary conditions for the
temperature at y = 0 and y = L imply that the isotherms are orthogonal to the walls, as
well as our local grid.

6.1. The thermo-diffusive model 89

−6 −4 −2 0 2 4 6 8

1

2

3

Figure 6.4: Normalised temperature. Coarse grid solution.

−2 −1 0 1 2 3 4
0

0.5

1

1.5

2

2.5

3

3.5

4

Figure 6.5: Normalised temperature. Fine grid solution.

−6 −4 −2 0 2 4 6 8

1

2

3

Figure 6.6: Normalised reaction rate. Coarse grid solution.

−3 −2 −1 0 1 2 3 4
0

0.5

1

1.5

2

2.5

3

3.5

4

Figure 6.7: Normalised reaction rate. Fine grid solution.

90 Chapter 6. Laminar flame simulation

6.2 Bunsen flames

The second section of the chapter is organised as follows. In Section 6.2.1 we recall the
mathematical model, discuss the choice of the primary velocity variables and transform
the governing equations from Cartesian to curvilinear coordinates. In Section 6.2.2 the
discretisation of the combustion system is presented and the Patankar-flux approxima-
tion introduced. There, we discuss also the discretisation of the viscous terms. Next,
in Section 6.2.3 we explain the used solution strategy. Moreover, the pressure correc-
tion method is introduced and adapted to general coordinates. Numerical experiments
to test the equations are presented in Section 6.2.4, where also the pressure wiggles is-
sue is addressed. Finally, Section 6.2.5 is devoted to show the results of Bunsen flame
simulations.

6.2.1 Governing equations

Let us recall the conservation equations of the laminar flame model derived in Chap-
ter 2. They read

∂ρ

∂t
+ ∇ · (ρv) = 0, (6.17a)

∂ρYi

∂t
+ ∇ · (ρvYi) = ∇ · (ρDim∇Yi) + si, i = 1, · · · , Ns − 1, (6.17b)

∂ρv
∂t

+ ∇ · (ρv ⊗ v) = −∇ ·P + ρg, (6.17c)

∂ρh

∂t
+ ∇ · (ρvh) = ∇ · (λ∇T) + ∇ ·

(

ρ

Ns∑

i=1

hiDim∇Yi

)

. (6.17d)

These equations have to be completed with the equation of state

p

ρ
= RT

Ns∑

i=1

Yi

Mi

, (6.18)

and the equations that specify h as a function of Yi and T

h =

Ns∑

i=1

Yihi, hi = h0i +

∫T

T0

cp,i(τ)dτ. (6.19)

We consider a one-step reaction mechanism where the number of species is Ns = 5, see
e.g. [30]. For the sake of completeness, we repeat the expression for the stress tensor P

P =
(

p+
2

3
µ
(

∇ · v
)

)

I − µ
(

(

∇ ⊗ v
)

+
(

∇ ⊗ v
)T
)

= pI + τ, (6.20)

where τ represents the contribution of the viscous stresses.

System (6.17) has to be solved first in the global domain representing the Bunsen burner
and then in the local domain defined by the shape of the flame front. This last prob-
lem requires the transformations of the combustion and flow equations from Cartesian

6.2. Bunsen flames 91

to curvilinear coordinates. While the combustion equations (6.17b) and (6.17d) can be
straightforwardly rewritten, the reformulation of the momentum equations (6.17c) is
more difficult. The reason for this is that we have to make the proper choice for the
primary velocity components. In fact, we have three possibilities: Cartesian, covari-
ant and contravariant components can be used. The latter are defined in (6.22). It has
been shown, see i.e. [53], that the use of the Cartesian velocity components implies that
the equations can be written in a strong conservative form. This is quite an interesting
feature for us, in that it not only leads to comparatively less complex equations, but
matches also well with the finite volume discretisation. Moreover, the form of the re-
sulting flow equations is such that it fits with the laminar flame code on top of which
we build our subroutines. Besides the Cartesian velocities, we also use the contravari-
ant velocity components in both the flow and the combustion equations to evaluate the
convective fluxes across the surfaces of the control volumes.

Let us then introduce the contravariant base vectors. If i and j are the unit vectors paral-
lel to the Cartesian x- and y-axis, respectively, and J the Jacobian of the transformation
from the Cartesian to the curvilinear coordinates, as introduced in (3.32), the contravari-
ant unit vectors are given by

ãξ =
1

J

[

i
∂y

∂η
− j
∂x

∂η

]

, (6.21a)

ãη =
1

J

[

− i
∂y

∂ξ
+ j
∂x

∂ξ

]

. (6.21b)

Both ãξ and ãη are orthogonal to the ξ-and the η-lines, respectively, with ∂x/∂ξ, ∂x/∂η,
∂y/∂ξ and ∂y/∂η the coefficients introduced in Section 4.4. Associated with the con-
travariant unit vectors is the contravariant velocity Ũ, whose components read

Ũ = v · ãξ =
u∂y
∂η

− v∂x
∂η

J
, (6.22a)

Ṽ = v · ãη =
−u∂y

∂ξ
+ v∂x

∂ξ

J
. (6.22b)

In the following we use aξ = Jãξ, aη = Jãη and the velocity components U = JŨ,
V = JṼ , rather than the ones defined in (6.22). This allows us to express the transformed
equations in a slightly lighter form.

We are now ready to restate the expressions for the differential operators in curvilinear
coordinates. We assume the grids to be orthogonal and consider the transformation
of (6.17) term by term. Let us start with the convective contribution. For a generic
variableA, see [62], the following holds

∇ · (Av) →
1

J

∂(AU)

∂ξ
+
1

J

∂(AV)

∂η
. (6.23)

The transformation of the gradient reads

∇A →
1

J

∂(aξA)

∂ξ
+
1

J

∂(aηA)

∂η
. (6.24)

92 Chapter 6. Laminar flame simulation

If we consider the diffusion term, we get

∇ · (µ∇A) →
1

J

∂

∂ξ

(µgηη

J

∂A

∂ξ

)

+
1

J

∂

∂η

(µgξξ

J

∂A

∂η

)

, (6.25)

with gηη and gξξ defined in (3.33).

Using transformations (6.23) and (6.25) it is easy to rewrite the (6.17) as follows

J
∂ρ

∂t
+
∂

∂ξ
(ρU) +

∂

∂η
(ρV) = 0, (6.26a)

J
∂ρYi

∂t
+
∂

∂ξ
(ρUYi) +

∂

∂η
(ρVYi) =

∂

∂ξ

(ρDimgηη

J

∂Yi

∂ξ

)

+
∂

∂η

(ρDimgξξ

J

∂Yi

∂η

)

+ Jsi, i = 1, · · · , Ns − 1,

(6.26b)

J
∂(ρu)

∂t
+
∂

∂ξ

(

ρUu
)

+
∂

∂η

(

ρVu
)

=
∂

∂ξ

(∂y

∂η
p
)

−
∂

∂η

(∂y

∂ξ
p
)

+ τ1 + Jρg · i, (6.26c)

J
∂(ρv)

∂t
+
∂

∂ξ

(

ρUv
)

+
∂

∂η

(

ρVv
)

=
∂

∂η

(∂x

∂ξ
p
)

−
∂

∂ξ

(∂x

∂η
p
)

+ τ2 + Jρg · j, (6.26d)

J
∂ρh

∂t
+
∂

∂ξ
(ρUh) +

∂

∂ξ
(ρVh) =

∂

∂ξ

(λgηη

J

∂T

∂ξ

)

+
∂

∂η

(λgξξ

J

∂T

∂η

)

+

∂

∂ξ

(ρgηη

J

Ns∑

i=1

hiDim
∂Yi

∂ξ

)

+
∂

∂η

(ρgξξ

J

Ns∑

i=1

hiDim
∂Yi

∂η

)

.

(6.26e)

To obtain the system above, the momentum equation (6.17c) has been split in its Carte-
sian components before transformation. The transformed viscous terms, represented by
τ1 and τ2, respectively, read as follows

τ1 =
∂

∂ξ

(∂y

∂η
τxx −

∂x

∂η
τxy

)

−
∂

∂η

(∂y

∂ξ
τxx −

∂x

∂ξ
τxy

)

= τξ1 + τ
η
1 , (6.27a)

τ2 =
∂

∂ξ

(∂y

∂η
τyx −

∂x

∂η
τyy

)

−
∂

∂η

(∂y

∂ξ
τyx −

∂x

∂ξ
τyy

)

= τξ2 + τ
η
2 , (6.27b)

where the components of the viscous stress tensor are given

τxx = µ
[

2
∂u

∂x
−
2

3

(∂u

∂x
+
∂v

∂y

)]

, (6.28a)

τxy = τyx = µ
[∂u

∂y
+
∂v

∂x

]

, (6.28b)

τyy = µ
[

2
∂v

∂y
−
2

3

(∂u

∂x
+
∂v

∂y

)]

. (6.28c)

6.2.2 Discretisation

System (6.17) has to be discretised both in space and time. For space discretisation we
use the finite volume method, see [29]. For any control volume Vc, the conservation law

6.2. Bunsen flames 93

���������
���������
���������
���������
���������

���������
���������
���������
���������
���������

�������������������
�������������������
�������������������
�������������������
�������������������

�������������������
�������������������
�������������������
�������������������
�������������������

��������������������������������������

�����
�����
�����

	�	�	
	�	�	
	�	�	

�
�
�
�

�
�
�
�

�
�
�
�

���������
���������
���������

PSfrag replacements

ξ

η

Control volume for scalars

Control volume for horizontal velocity

Control volume for vertical velocity

Figure 6.8: A patch of a staggered grid in the computational space.

in integral form reads
∫

Vc

∂ϕ

∂t
dA +

∮

∂Vc

f ·nds−

∫

Vc

s(ϕ)dA = 0, (6.29)

where ϕ is the quantity to be conserved, f the flux term that includes both the con-
vective and the diffusive contributions and s(ϕ) the source term. When the pressure
field is computed directly from either system (6.17) or (6.26) there is the possibility that
pressure oscillations occur. This issue is addressed in more detail in the next section.
Here we only anticipate a possible remedy for this problem, viz. staggered grids, where
the control volumes for the momentum equations are shifted with respect to the control
volumes for the combustion equations, see Figure 6.8. We use a cell centred setting, i.e.
the point where each variable is computed is located in the centre of the corresponding
control volume, see Figure 6.9. As a consequence of this staggering procedure density,
temperature and mass fractions are computed at the grid cell centres, while the Carte-
sian velocity components are computed at the middle of the cell faces of the control
volume of a scalar. In this same location, the contravariant velocity components have
to be evaluated as well using (6.22). This implies that both u and v have to be available
at each cell face. Bilinear interpolation is used to compute u in the centre of the control
volume corresponding to v and vice versa.

Conservation law (6.29) has to be approximated in each control volume. Applying the
midpoint rule to the integrals, see Figure 6.10, we get

∂ϕC(t)

∂t
+
F(xe, t) − F(xw, t)

∆ξ
+
G(xn, t) −G(xs, t)

∆η
− s(xC) = 0, (6.30)

with ϕC(t) the approximation of ϕ(xC, t) and F(xe, t) and F(xw, t) approximations of
the projection of the fluxes f(xe, t) and f(xw, t) along the direction orthogonal to the cell

94 Chapter 6. Laminar flame simulation

PSfrag replacements

u

v

U

V

Figure 6.9: Curvilinear cell for a scalar variable in the physical space.

faces in e and w, respectively. Similarly, G(xn, t) and G(xs, t) represent the approxima-
tions of the projection of the fluxes f(xn, t) and f(xs, t) along the direction orthogonal to
the cell faces in n and s. Here the neighbouring points of C are labelled N, E, S W. La-
bels n, e, s andw, instead, refers to the middle points of the northern, eastern, southern
and western faces of the considered control volume, respectively.

There are several possibilities to compute the fluxes F(x, t) andG(x, t) that appear in (6.30).
The simplest choice would be the central difference scheme. However, when convec-
tion is dominant, unphysical oscillations can occur. These convection wiggles can be
avoided using exponential schemes, which can be interpreted in terms of a modified diffu-
sion. To compute the numerical fluxes, let us consider the steady-state one-dimensional
convection-diffusion model equation

df

dξ
= 0, f(ξ) = mϕ −D

dϕ

dξ
, (6.31)

with m and D constant. The general solution of (6.31) is

ϕ(ξ) = C1e
mξ/D + C2. (6.32)

Let us define the Peclet number as Pe := m∆ξ/D, with ∆ξ = ξE − ξP. We note that the
solution (6.32) can be interpreted as the central difference numerical solution of

df

dξ
= 0, f(ξ) = mϕ −Dnew

dϕ

dξ
, (6.33)

with Dnew defined by

Dnew = D
(Pe
ePe − 1

+
Pe
2

)

. (6.34)

6.2. Bunsen flames 95

���
�

���
�

���
�

���
�

��	
	

�
�

��

�������
�

���
�

PSfrag replacements

s

n

w e

S

N

W E
C

∆ξ

∆η

Figure 6.10: Point C: control volume and neighbouring points in the computational space.

The new diffusion coefficient Dnew adds numerical diffusion for large Peclet numbers
to suppress oscillations. This scheme can be extended to two-dimensional problems,
see [31].

When applying this exponential scheme to the combustion equations in curvilinear coor-
dinates, the Peclet number (6.34) entering e.g. (6.26b) should be replaced by

Peξ =
UJ∆ξ

Dimgηη
, Peη =

V J∆η

Dimgξξ
. (6.35)

In a similar way we evaluate the Peclet numbers for equation (6.26e).

When transforming the flow equations from Cartesian to curvilinear coordinates, spe-
cial care is needed when discretising the viscous terms, that become slightly more in-
volved. We discuss here the discretisation of the term τξ1 only and refer to Appendix 1
for both τη1 and τ2. Let us consider the momentum equation (6.26c) at the point e, see
Figure 6.10. The discretised τξ1 term reads

τξ1
∣

∣

e

.
=
(∂y

∂η
τxx −

∂x

∂η
τxy

)

E
−
(∂y

∂η
τxx −

∂x

∂η
τxy

)

C
. (6.36)

It is worth to recall that the grid line spacing in the computational space can be arbitrary,
so we set ∆ξ = ∆η = 1. We focus on the computation of the term (∂y

∂η
τxx − ∂x

∂η
τxy) at

a generic point C, with τxx and τxy defined in (6.28a) and (6.28b), respectively. Using
finite differences for the gradient transformations given in (6.24), we get

∂u

∂x

∣

∣

∣

C

.
=
1

JC

((∂y

∂η
u
)

e
−
(∂y

∂η
u
)

w

)

−
1

JC

((∂y

∂ξ
u
)

n
−
(∂y

∂ξ
u
)

s

)

, (6.37a)

∂u

∂y

∣

∣

∣

C

.
= −

1

JC

((∂x

∂η
u
)

e
−
(∂y

∂η
u
)

w

)

+
1

JC

((∂x

∂ξ
u
)

n
−
(∂x

∂ξ
u
)

s

)

. (6.37b)

96 Chapter 6. Laminar flame simulation

A similar expression can be used for the v-derivatives. The discretised viscous term
eventually becomes

(∂y

∂η
τxx −

∂x

∂η
τxy

)∣

∣

∣

C

.
=
µ

JC

[

2

3

(∂y

∂η

)

C

((

2u
∂y

∂η
+ v

∂x

∂η

)

e
−
(

2u
∂y

∂η
+ v

∂x

∂η

)

w

−
(

2v
∂y

∂ξ
+ v

∂x

∂ξ

)

n
+
(

2v
∂y

∂ξ
+ v

∂x

∂ξ

)

s

)

+
(∂x

∂η

)

C

((

u
∂x

∂η
− v

∂y

∂η

)

e
−
(

u
∂x

∂η
− v

∂y

∂η

)

w

−
(

u
∂x

∂ξ
− v

∂y

∂ξ

)

n
+
(

u
∂x

∂ξ
− v

∂y

∂ξ

)

s

)

]

.

(6.38)

It has to be noted that both the u-component in n and s and the v-component in e and
w are not directly available from the computations and have to be interpolated using its
four neighbouring values.

Finally, central differences are used to compute the coefficients ∂x
∂η

, ∂x
∂ξ

, ∂y
∂η

and ∂y
∂ξ

en-
tering both the flow and the combustion equations.

Once our system of equations has been discretised in space, numerical integration has
to be carried out. The discretised system can be written as

dψ

dt
= F(ψ), (6.39)

whereψ is the vector of all the unknowns. Since chemical reactions sometimes occur at
extremely small time scales, combustion problems are usually very stiff. Thus, if explicit
integration methods are to be used, the time step has to be chosen commensurate with
the smaller physical time scale. In order to avoid this, the backward Euler scheme is
used

ψ
n = ψn−1 + ∆tF(ψn), (6.40)

where ∆t is the time step.

6.2.3 Solution strategy

The solution of (6.40) is usually very difficult to obtain, also due to the isobaric nature
of the combustion process. Pressure correction methods allow for decoupling the com-
putation of the flow and combustion variables from the pressure. The scheme used
here is similar to the one presented in [33] and extensively studied in [30]. We derive
first the pressure correction algorithm for Cartesian coordinates, then we discuss the
modifications needed to formulate it in curvilinear coordinates.

We present the pressure correction algorithm by following the transverse method of
lines, i.e. we use continuous space derivatives such that, at a later stage, either Cartesian
or curvilinear coordinates can be used. We start by writing system (6.17) in the following

6.2. Bunsen flames 97

slightly different form

∂ρ

∂t
= −∇ · (ρv), (6.41a)

ρ
∂Yi

∂t
= Yi

[

∇ · (ρv)
]

− ∇ · (ρvYi) + ∇ · (ρDim∇Yi) + si, i = 1, · · · , Ns − 1, (6.41b)

ρ
∂v
∂t

= v
[

∇ · (ρv)
]

− ∇ · (ρv ⊗ v) − ∇p− ∇ · τ+ ρg, (6.41c)

ρ
∂h

∂t
= h

[

∇ · (ρv)
]

− ∇ · (ρvh) + ∇ · (λ∇T) + ∇ ·
(

ρ

Ns∑

i=1

hiDim∇Yi

)

. (6.41d)

Let us introduce the vector ϕ := [Y1, . . . YNS−1, h]T of the combustion variables and
express the density as a function ofϕ, i.e. ρ = Q(ϕ), via the equation of state (6.18) and
the relations for h (6.19). Then, equation (6.41a) can be rewritten as

∂Q

∂t
=

∑

i

∂Q

∂ϕi

∂ϕi

∂t
= −∇ · (ρv), (6.42)

where
∂Q

∂ϕ
= −ρ

[

· · · , M̄
(1

Mj

−
1

MNs

)

−
1

cpT
(hj − hNs

), · · · , 1

cpT

]T

, (6.43)

with M̄ the average molecular mass. Furthermore, the combustion equations (6.41b)
and (6.41d) and the flow equation (6.41c) can be symbolically written as

ρ
∂ϕ

∂t
= ϕ

[

∇ · (ρv)
]

− ∇ ·
(

ρvϕ
)

+ A(ϕ), (6.44a)

ρ
∂v
∂t

= B1(ϕ, v) − ∇p. (6.44b)

The continuity equation, with the help of (6.44a), can be rewritten as

−∇ · (ρv) −
∑

i

∂Q

∂ϕi

(ϕi

ρ
∇ · (ρv) −

1

ρ
∇ · (ρvϕi)

)

=
∑

i

∂Q

∂ϕi
Ai(ϕ). (6.45)

Using the identity

Ns−1∑

i=1

∂Q

∂Yi
Yi = −ρ

(

1 −
M̄

MNS

)

+
ρ

cpT
(h − hNS

), (6.46)

equation (6.45) can be rearranged as

∇ · (ρv) +
∑

i

αi∇ · (ρvϕi) =
∑

i

αiAi(ϕ), (6.47)

with the coefficient αi given by

αi =
1

ρ

∂Q

∂ϕi

(

M̄

MNS

−
hNS

cpT

)−1

. (6.48)

98 Chapter 6. Laminar flame simulation

Finally, equation (6.47) can be formally written as

P1(ϕ)v = P2(ϕ). (6.49)

The pressure correction scheme essentially consists of the following steps. At each time
step, predictor values for the velocity are computed first, then they are corrected such
that the constraint equation (6.49) is satisfied. The system then reads

P1(ϕn)vn = P2(ϕn), (6.50a)

ρn
ϕn −ϕn−1

∆t
= ϕn

[

∇ · (ρnv∗)
]

− ∇ · (ρv∗ϕn) + A(ϕn), (6.50b)

ρn
v∗ − vn−1

∆t
= B1(ϕn, v∗) − ∇pn−1, (6.50c)

ρn
vn − vn−1

∆t
= B1(ϕn, v∗) − ∇pn, (6.50d)

where v∗ is the predicted velocity field and the superscript n refers to the quantities
computed at the time tn.

It is useful to remark that system (6.50) presents a peculiarity in that it uses the constraint
equation (6.50a) instead of the usual continuity equation. The reason for this is explained
in [30] and is related to instabilities that can occur when (6.41a) is used instead of (6.50a).
We should emphasize that system (6.50) is much easier to solve than (6.40) since the
pressure is decoupled from the other variables.

Subtracting (6.50c) from (6.50d), we get

ρn

∆t
(vn − v∗) = −∇q, (6.51)

with q = pn − pn−1. From this follows

vn = v∗ −
∆t

ρn
∇q. (6.52)

Combining (6.50a) and (6.52), we get the Poisson equation for pressure update

∆t

ρn
P1(ϕn)(∇pn − ∇pn−1) = −P2(ϕn) + P1(ϕn)v∗. (6.53)

The final algorithm consists of the following steps

• Compute ϕn and v∗ from (6.50b) and (6.50c);

• Compute pn from (6.53);

• Update vn using (6.52).

6.2. Bunsen flames 99

Let us now go one step further and consider curvilinear coordinates. First, we refor-
mulate the constraint equation, then we obtain the new Poisson equation. In this case
the (6.47) transforms into

1

J

[∂

∂ξ
(ρU) +

∂

∂η
(ρV)

]

+
1

J

∑

i

αi
[∂

∂ξ
(ρUϕi) +

∂

∂η
(ρVϕi)

]

= P2(ϕ). (6.54)

Omitting the superscript n, the discretisation of (6.54) yields

[

− 1 +
∑

i

αi(ϕC)ϕi(xe)
]

(ρU)e −
[

− 1+
∑

i

αi(ϕC)ϕi(xw)
]

(ρU)w+

[

− 1 +
∑

i

αi(ϕC)ϕi(xn)
]

(ρV)n −
[

− 1 +
∑

i

αi(ϕC)ϕi(xs)
]

(ρV)s = JCP2(ϕ).
(6.55)

Taking the inner product subsequently by aξ and aη, (6.51) becomes

ρn

∆t
(Un −U∗) = −aξ ·∇q, (6.56a)

ρn

∆t
(Vn − V∗) = −aη ·∇q, (6.56b)

while ∇q in curvilinear coordinates transforms according to (6.24).

Let us consider the right-hand side of (6.56a). We find

aξ ·∇q =
1

J

(

aξ · aξ
∂q

∂ξ
+ aξ · ∂aξ

∂ξ
q + aξ · aη

∂q

∂η
+ aξ · ∂aη

∂η
q
)

, (6.57)

where the four terms in the right-hand side of (6.57) read

aξ · aξ =
(∂x

∂η

)2

+
(∂y

∂η

)2

= gηη, (6.58a)

aξ · ∂aξ

∂ξ
=
∂y

∂η

∂2y

∂η∂ξ
+
∂x

∂η

∂2x

∂η∂ξ
, (6.58b)

aξ · aη = 0, (6.58c)

aξ · ∂aη

∂η
= −

∂y

∂η

∂2y

∂ξ∂η
−
∂x

∂η

∂2x

∂ξ∂η
. (6.58d)

Using the relations above we obtain for the right-hand side of (6.57) the final form

aξ ·∇q =
1

J
gηη

∂q

∂ξ
. (6.59)

The same way we can show that

aη ·∇q =
1

J
gξξ

∂q

∂η
. (6.60)

100 Chapter 6. Laminar flame simulation

Finally, the relations between the contravariant velocities and the pressure gradients
become

ρn

∆t
(Un −U∗) = −

1

J
gηη

∂q

∂ξ
, (6.61a)

ρn

∆t
(Vn − V∗) = −

1

J
gξξ

∂q

∂η
. (6.61b)

To obtain the Poisson equation, we introduce (6.61) into (6.55), getting

[

− 1 +
∑

i

αi(ϕC)ϕi(xe)
]

∆t
(1

J
gηη

)

e
(qE − qC)−

[

− 1 +
∑

i

αi(ϕC)ϕi(xw)
]

∆t
(1

J
gηη

)

w
(qC − qW)+

[

− 1 +
∑

i

αi(ϕC)ϕi(xn)
]

∆t
(1

J
gξξ

)

n
(qN − qC)−

[

− 1 +
∑

i

αi(ϕC)ϕi(xs)
]

∆t
(1

J
gξξ

)

s
(qC − qS) = −JCP2(ϕn) + P1(ϕn)U∗.

(6.62)

In Appendix 2 we give details on the algorithm used to solve the combustion and the
flow equations together with the pressure correction method.

6.2.4 Numerical experiments and pressure oscillations

Some numerical experiments are presented here to test the model introduced so far. In
this section, we only consider the Euler equations, i.e. (6.17a) and (6.17c) where in the
stress tensor P the contribution of the viscous terms are omitted.

Example 1
We consider one eighth of a circle with inflow at the inner radius, outflow at the outer
radius and slip conditions at the other two sides, see Figure 6.11. The density is assumed
to be constant and the inflow velocity is orthogonal to the boundary and equal to 10.
The grid is composed of 20 radial lines and 20 circular lines. As initial guess we assume
u = 0 in the whole domain. Figure 6.11 shows the converged solution. As expected, the
velocity decreases from 10 at the inflow to 5 at the outflow while the pressure increases
monotonically.

Example 2
The behaviour of the solution changes if we consider a channel with similar boundary
conditions, whose angular coordinate ranges from 0 to π/2. As soon as the iterative
solver starts, pressure oscillations appear in the cells adjacent to the x-axis, see Fig-
ure 6.12. Nevertheless, after a few iterations, oscillations are damped away and the
solution evolves towards the steady state shown in Figure 6.13. In this case the inflow
velocity is set equal to 1.

Let us consider the so-called checkerboard or even-odd decoupling problem. Pressure os-
cillations can occur when the pressure gradient is discretised with second order central

6.2. Bunsen flames 101

PSfrag replacements

0.2 0.4 0.6

0.8

0.8

1

1

1.2

1.2

1.4

1.6

1.8

4

5

6

7

8

9

(a) Vertical velocity.

PSfrag replacements

0.2 0.4 0.6

0.8

0.8

1

1.2

1.2

1.4

1.4

1.6

1.8

4

5

6

7

3

2

1

1

1

(b) Horizontal velocity.

Figure 6.11: Cartesian velocities for Example 1.

PSfrag replacements

0

0.5

1

1.5

2

0.5

−3

−2

−1

Figure 6.12: Pressure field.

102 Chapter 6. Laminar flame simulation

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(a) Vertical velocity.

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) Horizontal velocity.

Figure 6.13: Cartesian velocities for Example 2.

differences on collocated Cartesian grids. The same problem arises if a cell centred fi-
nite volume discretisation is used and fluxes are computed using central differences. In
these cases, it can be shown that if pi,j is the pressure approximation at the grid point
labelled (i, j), also

p̃i,j = pi,j + βpch, with, (6.63a)

pch = 1, (−1)i, (−1)jor(−1)i+j, (6.63b)

satisfy the pressure field equations, see e.g. [30]. The solutions in (6.63b) are called spu-
rious modes and belong to the null space of the gradient operator. There are several ways
to avoid spurious modes. As introduced in the previous section, the use of staggered
grids is a common practice to achieve this.

Let us now consider the curvilinear BVP. In Example 2 we see that, although the flow
equations are discretised in a staggered fashion, spurious modes again appear in a small
part of the computational domain. This is caused by the 90 degrees turning of the grid
with respect to its original orientation. To understand what happens, we look at Fig-
ure 6.14. At position A, velocities are driven by the difference of the pressure in the cell
centres. In this case staggering is effective. When the coordinates lines are turned 90 de-
grees, i.e. at position B, velocities are driven by the average of the pressure taken in the
cell corners. We must then consider what happens to the momentum equations, and, in
particular, to the pressure gradients. In the following we assume that i and j increase
together with η and ξ, respectively. We consider the term ∂p/∂x. After transformation
from Cartesian to (ξ, η)-coordinates, we have

∂p

∂x

.
=
1

J

(∂

∂η

(∂y

∂ξ
p
)

−
∂

∂ξ

(∂y

∂η
p
))

. (6.64)

This term has to be computed in the point where u is stored. Let us consider the contri-

6.2. Bunsen flames 103

����

PSfrag replacements
A

B

x

y

η
ξ

u

u

v

v

Pi,j

Figure 6.14: Change in the grid orientation.

bution given by ∂(∂y
∂η
p)/∂ξ in (6.64). If we suppose that ∂y

∂η
is constant, we have

(∂p

∂ξ

)

i+
1
2
,j

=
(

pi,j + pi+1,j + pi,j+1 + pi+1,j+1
)

−
(

pi,j + pi−1,j + pi,j+1 + pi−1,j+1
)

= pi+1,j + pi+1,j+1 − pi−1,j − pi−1,j+1.

(6.65)

We notice that the right-hand side of (6.65) does not contain any contribution of the
pressure in i. Therefore, if also ∂y

∂ξ
= 0, i.e. if the η-lines are parallel to the x-axis,

decoupling in the i-direction occurs and it is not possible to avoid the spurious mode
to enter the solution. A similar argument holds for the momentum equation in the y-
direction.

Strictly speaking, spurious modes should only occur in the very few cases determined
by the conditions stated so far. For the momentum equation in x-direction they require
that ∂y

∂η
is constant and ∂y

∂ξ
= 0. This is also what is claimed, for instance, in [53].

Nevertheless, the grid of Example 2 does not belong to this category. Such behaviour
of the pressure field has already been observed by other authors, see e.g. [49] in a finite
element context. Even-odd decoupling occurs even if the metric coefficients appearing
in (6.64) do not comply exactly with the conditions that we have introduced. According
to the interpretation given in [49], a grid that does not support spurious pressure modes
can be seen as a (small) perturbation of a grid that does support them.

6.2.5 Bunsen flame simulation

Let us now present the results of our Bunsen flame simulation. First consider the global
problem. The burner geometry is shown in Figure 6.15. Boundary conditions are set as
follows. At the inflow we assign velocity, temperature and composition of the gaseous

104 Chapter 6. Laminar flame simulation

PSfrag replacements

0.2

0.3

0.6

1.8

0.1
in

wl

out

sm

Figure 6.15: Global Bunsen burner domain. Dimensions are in cm. Since the burner is symmet-
ric, only its right half is considered for computations. The inflow, outflow, wall and symmetry
boundaries are marked with ’in’, ’out’, ’wl’ and ’sm’, respectively.

mixture

v = 125, u = 0, T = 333, (6.66a)
Yj = Y0j, j = 1 · · ·Ns−1, (6.66b)

where the inflow mass fractions corresponds to a methane/air mixture with stoichio-
metric ratio equal to 0.8. At the walls, instead, we have

v = u = 0, T = 333, (6.67a)
∂Yj

∂n
= 0, j = 1 · · ·Ns−1, (6.67b)

where n is the outward unit vector normal to the boundary. Boundary conditions at the
symmetry axis read,

∂v

∂x
= u =

∂T

∂x
= 0, (6.68a)

∂Yj

∂x
= 0, j = 1 · · ·Ns−1. (6.68b)

Finally, at the outflow we have

∂v

∂y
= u =

∂T

∂y
= 0, (6.69a)

∂Yj

∂y
= 0, j = 1 · · ·Ns−1. (6.69b)

6.2. Bunsen flames 105

Pressure boundary conditions need to be specified as well. From (6.51), we see that if
the normal component of the velocity is given, at the boundary the condition

∂q

∂n
= 0, (6.70)

holds. However, a Dirichlet condition has to be imposed at least in one point to avoid
the Poisson equation to become singular. This can be done where no velocity is given,
i.e. at the outflow boundary. There, we impose the condition

q = 0, (6.71)

whereas at inflow walls and at the symmetry axis condition (6.70) holds. The reason
for (6.71) is that, because of the isobaric approximation, pressure is determined up to a
constant. This implies that differences, rather than pressure values, are important and
thus an arbitrary pressure level can be set in (6.71).

We now introduce the local problem to refine the flame front. Two types of grid are
used. The first one is shown in Figure 6.16(a), the second one in Figure 6.16(b), where
they are plotted over the flame front. From now on we refer to them as GRD1 and
GRD2, respectively. Both grids are built by using the procedure explained in Chapter 3
and choosing the methane level curves as set of coordinate lines to be retained. The
width of the grid is determined with the aim to cover completely the flame front and to
avoid unacceptably small grid cells. The number of grid points is 3192 for GRD1 and
4941 for GRD2. The bigger grid size along the level curves is chosen approximately
equal to the grid size of the finest coarse level. Where the grid lines deviate from the
solution iso-lines, the grid size is conveniently reduced. The grid size in the direction
orthogonal to the level curves is approximately one fourth of finest coarse level. For
both grids, boundary conditions (6.68) are applied at the symmetry axis and (6.67) at
the boundary of the local domain that coincides with the lower wall. At the interface
points, bilinear interpolation is used to map values from the coarse to the fine grid. The
coarse grid solution is computed with the multigrid method outlined in Appendix 2. We
use four refinement levels covering the global domain. The finest coarse level consists
of 6998 grid points.

When we try to solve the local problem on GRD1, pressure oscillations occur in the
lower part of the local domain. In this case they do not damp as the computation pro-
ceeds. Therefore, we get rid of the checkerboard oscillation by post-processing the com-
puted pressure with a simple averaging procedure. For each point C, with reference to
Figure 6.10, the smoothed pressure p̂C is given by

p̂C =
pC

2
+
pS + pN + pW + pE

8
. (6.72)

This way, we manage to damp completely the checkerboard oscillations in the areas
where they occur; in other parts of the local domain this results in an additional smooth-
ing of the pressure field.

In an attempt to completely avoid even-odd decoupling, we have used GRD2. In fact, in
this case no change occurs in control volumes orientation. The use of GRD2 implies one

106 Chapter 6. Laminar flame simulation

(a) GRD1. (b) GRD2.

Figure 6.16: Local fine grids.

drawback. In order to avoid the 90 degrees turning of the grid cells, the grid lines have
to deviate from the methane iso-curves. Together with this requirement, the necessity to
have a smooth grid pattern implies a quite bigger number of cells with respect to GRD1.

The results for the fine grid computations are shown in Figures 6.17-6.19 for GRD1 and
in Figures 6.20-6.22 for GRD2.

Finally, these fine grid solutions can be used to compute the defect needed to update
the coarse grid solution, applying a procedure similar to the one used for the thermo-
diffusive model.

6.2. Bunsen flames 107

(a) Methane mass fraction.

−0.3 −0.2 −0.1 0 0.1 0.2 0.3

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

400

600

800

1000

1200

1400

1600

1800

(b) Temperature.

Figure 6.17: GRD1. Temperature and methane mass fraction.

−0.3 −0.2 −0.1 0 0.1 0.2 0.3

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0

50

100

150

200

(a) Vertical velocity.

−0.3 −0.2 −0.1 0 0.1 0.2 0.3
0.2

0.3

0.4

0.5

0.6

0.7

0

20

40

60

80

100

(b) Horizontal velocity.

Figure 6.18: GRD1. Velocities.

Figure 6.19: GRD1. Pressure.

108 Chapter 6. Laminar flame simulation

(a) Methane mass fraction. (b) Temperature.

Figure 6.20: GRD2. Temperature and methane mass fraction.

(a) Vertical velocity. (b) Horizontal velocity.

Figure 6.21: GRD2. Velocities.

Figure 6.22: GRD2. Pressure.

CHAPTER 7

Conclusions and
recommendations

In this thesis we have studied the behaviour of the Local Defect Correction method
in combination with different grid types. The standard LDC method is meant to deal
with boundary value problems that present high gradients in limited parts of the global
domain. It constitutes a powerful tool that, while having the advantage of handling
simple data structures, allows to solve complex problem limiting the memory require-
ments. When LDC is combined with curvilinear grids, the number of grid points used
to solve the local problem can be further reduced. This is achieved by using solution-
fitted fine grids that tightly follow the shape of the solution. Moreover, we require the
fine grids to be orthogonal in order to reduce the complexity of the equations after trans-
formation from the Cartesian to the curvilinear coordinates and to increase the accuracy
of the difference approximation. A number of model problems has been used to assess
the properties of the method. We have shown that LDC can be used in combination
with both rectangular grids that are slanted with respect to the global domain and grids
in general coordinates. By performing a complexity asymptotic analysis we have seen
that LDC turns out to be very competitive with respect to tensor product grid methods,
especially when a set of grid lines is aligned with the solution iso-contours. Moreover, if
we consider solution-fitted fine grids and split the complexity of the method in the sum
of the global coarse and the local fine problem contributions, we see that the former
represents the leading term of the sum.

An important step in this method is the generation of a solution-fitted local grid. We
have chosen an algorithm that is both simple to implement and not expensive. Although
we have never experienced such kinds of problems, the method does not guarantee that
when the lines orthogonal to the level curves are generated, they do not cross each other
in regions of high convexity where the grid become denser in points. The use of more
robust grid generators can allow for improved performance of LDC in solving BVP that
show high activity areas with complex shape.

The LDC method based on the use of several refinement levels has already been suc-

110 Chapter 7. Conclusions and recommendations

cessfully applied, see [2], combining patches of rectangular grids. On the contrary, in
our approach we have used a single refinement level. In fact, since the fine grid is gen-
erated following the shape of the solution, the line set aligned with the iso-contours
can be made less dense as we get far from the high activity region, in areas where the
solution is less steep. Although the developed technique has demonstrated to be effec-
tive, a possible evolution is to use the LDC method by combining several grid types at
different levels.

The LDC method in combination with orthogonal curvilinear grids has then been used
to solve combustion problems. In the first application we have studied the thermo-
diffusive model. Although less involved with respect to other combustion models, it
allows to get a good insight in the flame structure and in the behaviour of the front in
some peculiar flow conditions. The second combustion problem that has been tackled
is the simulation of a Bunsen flame. This has been solved using an already existing
laminar flame simulation code that has been extended in order to solve the combus-
tion equations in general coordinates. Therefore, some of the features of the numerical
methods employed have been determined on the basis of the existing background. The
flow equations have been translated from to curvilinear coordinates, as well as the Pois-
son equation for the pressure. In particular, the latter requires special attention. In fact,
we have seen that the staggered grids, used to avoid pressure wiggles, lose their effec-
tiveness when used in combination with certain curvilinear grid configurations. This
phenomenon has shown to be more persistent with respect to what is usually outlined
in literature, even when filters purposely designed are applied. The causes and reme-
dies for this problem are certainly worth to be further investigated.

A part of this research has been devoted to the study of solution methods for nonlinear
systems. The interest for this subject arises from the difficulty in computing the solu-
tion of systems obtained from the discretisation of the equations modeling combustion.
Nevertheless, they are completely general and applicable to a large variety of problems.
The algorithms developed in this thesis have been tested with several benchmark prob-
lems, showing good convergence properties even when starting with initial guesses that
are far from the solution of the system. The obtained results encourage further research
in view of the application to more complex problems.

APPENDIX A

Discretisation of the viscous
terms

Here we present the discretisation of the viscous terms (6.27). The approximation of τξ1
has already been introduced in Section 6.2.2. Now we look at the terms τη1 , τξ2 and τη2 .
Let us start with τη1 . With reference to Figure A.1, we have

τ
η
1

∣

∣

e

.
=
(

−
∂y

∂ξ
τxx +

∂x

∂ξ
τxy

)

hn
−
(

−
∂y

∂ξ
τxx +

∂x

∂ξ
τxy

)

hs
. (A.1)

From (A.1) we see that now both the velocities and the metric coefficients have to be
evaluated in the upright corner of the control volume centred about C. The following
holds

(∂x

∂ξ
τxy −

∂y

∂ξ
τxx

)

hs

.
=

1

Jhn

[(∂x

∂ξ

)

hn

((

−
∂x

∂η
u+

∂y

∂η
v
)

nE
−
(

−
∂x

∂η
u+

∂y

∂η
v
)

n

+
(∂x

∂ξ
u−

∂y

∂ξ
v
)

eN
−
(∂x

∂ξ
u −

∂y

∂ξ
v
)

e

)

−
2

3

(∂y

∂ξ

)

hn

((

2
∂y

∂η
u +

∂x

∂η
v
)

nE

−
(

2
∂y

∂η
u +

∂x

∂η
v
)

n
+
(

2
∂y

∂ξ
u +

∂x

∂η
v
)

eN
−
(

2
∂y

∂ξ
u+

∂x

∂η
v)e

)]

.

(A.2)

We consider now the terms τη2 and τξ2 . It is worth to recall that they refer to the mo-
mentum equation for v, so the considered control volume is centred about the point n.
Then

τ
η
2

∣

∣

n

.
=
(∂x

∂ξ
τyy −

∂y

∂ξ
τyx

)

N
−
(∂x

∂ξ
τyy −

∂y

∂ξ
τyx

)

C
, (A.3)

112 Appendix A. Discretisation of the viscous terms

���
�

���
�

���
�

���
�

��	
	

�
�

��

���
�

���
�

PSfrag replacements

s

n

w e

S

N

W E
C

SESW

NENW

hnhnW

eN

nE

Figure A.1: Control points used for the computation of the viscous terms.

and
(∂x

∂ξ
τyy −

∂y

∂ξ
τyx

)

C

.
=
1

JC

[2

3

(∂x

∂ξ
)C

((

2
∂x

∂η
v+

∂y

∂η
u
)

e
−
(

2
∂x

∂η
v+

∂y

∂η
u
)

w

−
(

2
∂x

∂ξ
v +

∂y

∂ξ
u
)

n
+
(

2
∂x

∂ξ
v +

∂y

∂ξ
u
)

s

)

−
(∂y

∂ξ

)

C

((

−
∂x

∂η
u +

∂y

∂η
v
)

e

−
(

−
∂x

∂η
u +

∂y

∂η
v
)

w
+
(∂x

∂ξ
u −

∂x

∂ξ
v
)

n
−
(∂x

∂ξ
u −

∂x

∂ξ
v
)

s

)]

.

(A.4)

For the last term we have

τξ2
∣

∣

n

.
=
(∂y

∂η
τyx −

∂x

∂η
τyy

)

hn
−
(∂y

∂η
τyx −

∂x

∂η
τyy

)

hnW
, (A.5)

with
(∂y

∂η
τyx −

∂x

∂η
τyy

)

hn

.
=

1

Jhn

[(∂y

∂η

)

hn

((

−
∂x

∂η
u +

∂y

∂η
v
)

nE
−
(

−
∂x

∂η
u +

∂y

∂η
v
)

n

−
(∂x

∂ξ
u−

∂y

∂ξ
v
)

eN
+
(∂x

∂ξ
u −

∂y

∂ξ
v
)

e

)

−
2

3

(∂x

∂η

)

hn

((

2
∂x

∂η
v +

∂y

∂η
u
)

nE

−
(

2
∂x

∂η
v+

∂y

∂η
u
)

n
−
(

2
∂x

∂ξ
v+

∂y

∂ξ
u
)

eN
+
(

2
∂x

∂ξ
v+

∂y

∂ξ
u
)

e

]

.

(A.6)

APPENDIX B

Flame solver

In this appendix we present the details of the numerical methods used by the laminar
flame solver. A more exhaustive exposition can be found in [30].

B.1 Block Gauss-Seidel method

Let us suppose that our domain is covered with N grid cells. We define the vector ψi
as the combination of the vectors ϕ and v consisting of the combustion and the veloc-
ity unknowns, respectively, at a certain grid cell. After discretisation, system (6.50b)-
(6.50d) can be written in the following symbolic way

ψni −ψn−1
i

∆t
= Ani (ψni ,ψ

n
j), j ∈ N (i), i = 1, · · · , N. (B.1)

Here, the set N (i) contains the indices of the grid points that belong to the discretisation
stencil of i. Since we use staggered grids, the combustion and velocity variables are not
computed in the same location. Therefore, we associate to each cell of the basis grid the
staggered points laying just north and east. If the function F is defined as

Fi(ζi, ζj) :=
ζi −ψn−1

i

∆t
− Ani (ζi, ζj), j ∈ N (i), i = 1, · · · , N, (B.2)

system (B.1) can be written as
F(ψn) = 0. (B.3)

Equation (B.3) is solved with the multigrid method, see e.g. [66]. This can be seen as
a speed up of a simple solution method, here block Gauss-Seidel implemented in a
matrix free way, which is used as a smoother. Block Gauss-Seidel consists in solving (B.3)
sequentially using the modified Newton method: the function F is evaluated using the
updated values ψnj if the point j has already been visited, i.e. j < i, and using the old
values if the equations in j > i. This implies that, when modifying ψi, the equations in
the previous grid points are not satisfied anymore, thus more than one sweep for all the
grid points is necessary.

114 Appendix B. Flame solver

B.2 Broyden iteration method

The well known modified Newton method for the solution of (B.3) reads

ψ
k+1
i = ψki − J−1ij (ψk)Fj(ψk), (B.4)

where J is the Jacobi matrix of F

Jij :=
∂Fi
∂ψj

. (B.5)

The necessity to evaluate the Jacobi matrix is one of the weak points of the proce-
dure. This operation is in fact very expensive, especially when dealing with large sys-
tems. Moreover, it can be even impossible when F consists of library-type functions, i.e.
when no explicit formula is available. A very good alternative is the Broyden iteration
method, see [41]. This consist in iteratively finding an approximation B(ψk), also called
the Broyden matrix, for the inverse of the Jacobi matrix such that

ψ
k+1
i = ψki − λBki Fi(ψk), (B.6)

given an initial guess B0i . In (B.6) λ is a relaxation parameter while the updated Broyden
matrix is given by Bk+1

i = Bki + δB, with

δB = Bki
(λ− 1)Fi(ψk) + Fi(ψk+1)

‖ Fi(ψk) − Fi(ψk+1) ‖2
(Fi(ψk) − Fi(ψk+1))T . (B.7)

The matrix update is obtained by requiring that

(Bki + δB)(Fi(ψk) − Fi(ψk+1)) = ψki −ψk+1
i , (B.8)

i.e. Bk+1
i is a better approximation of the inverse of the Jacobi matrix. There are several

choices to construct the update δB for the Broyden Matrix. It can be shown that (B.7) is
the solution of (B.6) which minimises ‖ δB ‖2.

B.3 Multigrid solver

The multigrid method used in the code is described in [66]. We notice that, after a
few Gauss-Seidel iterations, the residual decreases very slowly. In fact, while the small
scale fluctuations are easily damped, the large scale fluctuations are somewhat more
persistent: this implies that the representation of the residual should be used on a much
coarser grid. Therefore, we define a series of increasingly coarser gridsΩM,ΩM−1, · · · ,Ω1.
Let us suppose that, after a relatively small number of iterations on the finest levelΩM,
a solution ψM of the system

F(ψM) = fM, (B.9)

is obtained (the dependence on the time is here omitted for the sake of simplicity). Then,
we can define the defect as

rM := fM − F(ψM). (B.10)

B.4. Least squares extrapolation in time 115

PSfrag replacements

Broyden

Broyden

Broyden

Broyden

BroydenBroyden

Broyden

Grid 4

Grid 3

Grid 2

Grid 1

ψn−1 ψnextr
extrapolation

P

P

P

R

R

R

V − cycle

ψn

Figure B.1: V-cycle.

If we define a restriction operator RM : F(ΩM) → F(ΩM−1), we can define and solve
a new problem on ΩM−1

FM−1(ψM−1) = FM−1RM[ψM] − σRM[rM], (B.11)

where σ is a relaxation parameter. The so found approximationψM−1 is used to correct
the solution on the finer grid

ψM := ψM + PM−1[ψM−1 − RM[ψM]], (B.12)

where PM−1 : F(ΩM−1) → F(ΩM) is a prolongation operator.

In the laminar flame code, the multigrid method is implemented by using four different
global grid levels. Both the restriction and the prolongation operators maps grid func-
tions by using bi-linear interpolation. The so-called V-cycle, see Figure B.1, is used to
solve both the prediction and the correction steps of (6.50).

B.4 Least squares extrapolation in time

Although the multigrid V-cycle is very efficient, convergence can still be improved by
using least squares extrapolation. In fact, the information at the previous time steps can
fruitfully help in finding a good approximation of ψn before entering the V-cycle. We
recursively define the search vectors as follows

sn1 := ψn−1 − ψn−2, sn2 := sn1 − sn−1
1 , · · · snNk

:= snNk−1
− sn−1

Nk−1
. (B.13)

Hence, nonlinear extrapolation yields

ψn = ψn−1 + (sn1 , · · · snk)α + O(∆tNk+1), (B.14)

116 Appendix B. Flame solver

where the vector α is chosen in such a way that the residual is minimised in the two-
norm. The approximation of α is given by the least squares solution of the linearisation
of problem (B.3). The residual function F from (B.3) can be used to compute the matrix
Mn as

Mn = [F(ψn−1 + sn1) − F(ψn−1), · · · , F(ψn−1 + snNk
) − F(ψn−1)]. (B.15)

The vector α is thus found as

α = ((Mn)TMn)−1(Mn)TF(ψn−1). (B.16)

We must point out that, if Nk is not small enough, the method becomes very inefficient
and suffers from round-off errors. According to the studies presented in [30], the choice
Nk = 3 used by the laminar flame program has not shown these drawbacks.

Bibliography

[1] ABBOTT, J.P. and R.P. BRENT: Fast local convergence with single and multistep methods
for nonlinear equations. J. Austral. Math. Soc., 19 (series B):173–199, 1975.

[2] ANTHONISSEN, M.G.H.: Local Defect Correction Techniques: Analysis and Application
to Combustion. PhD thesis, Eindhoven University of Technology, 2001.

[3] ANTHONISSEN, M.G.H., R.M.M. MATTHEIJ and J.H.M TEN THIJE BOONKKAMP:
Convergence Results for the Local Defect Correction Method as an Iterative Process. Nu-
merische Mathematik, 95:401–425, 2003.

[4] ANTHONISSEN, M.J.H., B. VAN ’T HOF and A.A. REUSKEN: A finite volume scheme
for solving elliptic boundary value problems on composite grids. Computing, 61:285–305,
1998.

[5] ASCHER, U.M., R.M.M. MATTHEIJ and R.D. RUSSEL: Numerical Solution of Bound-
ary Value Problems for Ordinary Differential Equations. Prentice Hall, 1988.

[6] BENNET, B.A.V. and M.D. SMOOKE: Local rectangular refinement with application to
axisymmetric laminar flames. Comb. Theory Modelling, 2:221–258, 1998.

[7] BENNET, B.A.V. and M.D. SMOOKE: Local Rectangular Refinement with Application
to Nonreacting and Reacting Fluid Flow Problems. J. Comp. Phys., 151:684–727, 1999.

[8] BERESTYCKI, H. and B. LARROUTUROU: A semilinear elliptic equation in a strip aris-
ing in a two-dimensional flame propagation model. J. fur Reine und Angewandte Math-
ematiek, 396:14–40, 1989.

[9] BERESTYCKI, H. and B. LARROUTUROU: Nonlinear partial differential equations and
their application. College de France Seminar. Volume X., chapter Quelques aspects
mathématiques de la propagation des flammes prémélangées, pages 65–129. H.
Brezis and J.L. Lions editors. Longman Scientific and Technical, 1991.

[10] BERESTYCKI, H., B. LARROUTUROU and P.L. LIONS: Multi-Dimensional Travelling-
Wave Solution of a Flame Propagation Model. Arch. Rat. Mech. Anal., 111:33–49, 1990.

[11] BOGGS, P.T.: The solution of non-linear systems of equations by A-stable integration
techniques. SIAM J.Numer.Analysis, 8:767–785, 1971.

118 Bibliography

[12] BOUMA, P. H.: Methane-Air Combustion on Ceramic Foam Surface Burners. PhD the-
sis, Eindhoven University of Technology, 1997.

[13] BRAATEN, M. and W. SHYY: A study of recirculating flow computation using body-
fitted coordinates: consistency aspects and mesh skewness. Numerical Heat Transfer,
9:559–574, 1986.

[14] BUCKMASTER, J.D. and G.S.S. LUDFORD: Theory of Laminar Flames. Cambrige
University Press, 1982.

[15] COFFEY, T.S., C.T. KELLEY and D.E. KEYES: Pseudo-transient continuation and
differential-algebraic equations. SIAM J. Sci. Comput., 25, No 2:553–569, 1998.

[16] DAVIES, C.W.: An initial value Approach to the production of Discrete Orthogonal Coor-
dinates. J. Comp. Phys., 59:164–178, 1981.

[17] EGGELS, R.L.G.M.: Modeling of Combustion Processes and NO Formation with Re-
duced Reaction Mechanism. PhD thesis, Eindhoven University of Technology, 1996.

[18] EGGELS, R.L.G.M. and L.P.H. DE GOEY: Post-Processing Method for Predicting NO
Formation in One- and Two-Dimensional Premixed Methane/air Flames. Combustion
and Flame, 107:65–71, 1996.

[19] EGOLFOPOULOS, F., D. ZHU and C. LAW: Experimental and numerical determination
of laminar flame speeds: Mixtures of C2-hydrocarbons with oxigen and nitrogen. Twenty-
Third symposium on combustion, 1990.

[20] FERKET, P.J.J.: Numerical Treatment of Coupled Systems. Notes on Numerical Fluid Me-
chanics. Volume 51., chapter Coupling of a global coarse grid discretization and local
fine discretization., pages 47–58. Hackbusch, W. and Wittum, G. editors. Braun-
schweig. Vieweg, 1995.

[21] FERKET, P.J.J. and A.A. REUSKEN: Further Analysis of the Local Defect Correction
Method. Computing, 56:117–139, 1996.

[22] GRAZIADEI, M., R.M.M. MATTHEIJ and J.H.M. TEN THIJE BOONKKAMP: Local
defect correction with curvilinear grids: algorithm and application to laminar flames. Sub-
mitted to Numerical Methods for Partial Differential Equations, 2003.

[23] GRAZIADEI, M., R.M.M. MATTHEIJ and J.H.M. TEN THIJE BOONKKAMP: Local de-
fect correction with slanting grids. Numerical Methods for Partial Differential Equa-
tions, 20, Issue 1:1–17, 2004.

[24] GRAZIADEI, M. and J. H. M. TEN THIJE BOONKKAMP: Local Defect Correction for
Laminar Flames Simulation. Submitted to Proceedings of the European Conference
on Mathematics for Industry, 2004.

[25] GRIFFITHS, J.F. and J.A. BARNARD: Flame and Combustion. Chapman and Hall,
1995.

[26] HACKBUSCH, W.: Local Defect Correction Method and Domain Decomposition Tech-
niques. Computing, Suppl. 5:89–113, 1984.

Bibliography 119

[27] HEIJER, C. DEN: Iterative methods for solving non-linear equations when no good ap-
proximation to the solution is available. Technical Report NW 46/77, Amsterdam,
Mathematisch Centrum, Afdeling Numerieke Wiskunde, 1977.

[28] HEIJER, C. DEN: Iterative solution of nonlinear equations by imbedding methods. Techni-
cal Report NW 46/77, Amsterdam, Mathematisch Centrum, Afdeling Numerieke
Wiskunde, 1977.

[29] HIRSCH, C.: Numerical Computation of Internal and External Flows. Volume 1. Chich-
ester: Wiley, 1988-1990.

[30] HOF, B. VAN ’T: Numerical Aspects of Laminar Flame Simulation. PhD thesis, Eind-
hoven University of Technology, 2002.

[31] HOF, B. VAN ’T, J.H.M. TEN THIJE BOONKKAMP and R.M.M. MATTHEIJ: Dis-
cretization of the stationary convection-diffusion-reaction equation. Numer. Meth. Part.
Diff. Eq., pages 608–625, 1998.

[32] HOF, B. VAN ’T, J.H.M. TEN THIJE BOONKKAMP and R.M.M. MATTHEIJ: Pressure
Correction for Laminar Combustion Simulation. Comb. Sci. and Tech., 149:201–223,
1999.

[33] ISSA, R.I.: Solution of the implicitly discretized fluid flow equations by operator-splitting.
J. Comp. Phys., 62:40–65, 1985.

[34] KELLEY, C.T. and D.E. KEYES: Convergence analysis of pseudo-transient continuation.
SIAM J. Numer. Anal., 35, No. 2:508–523, 1998.

[35] KRAMER, M.E.: Aspects of Solving Non-Linear Boundary Value Problems Numerically.
PhD thesis, Eindhoven University of Technology, 1992.

[36] LANGE, H.C. DE: Modelling of premixed laminar flames. PhD thesis, Eindhoven Uni-
versity of Technology, 1992.

[37] LANGE, H.C. DE and L.P.H DE GOEY: Numerical flow modeling in a locally refined
grid. International Journal for Numerical Methods in Engineering, 37:497–515,
1994.

[38] LARROUTUROU, B.: The equations of one-dimensional unsteady flame propagation: exis-
tence and uniqueness. SIAM J. Math. Anal., 244:32–59, 1988.

[39] LARROUTUROU, B.: Numerical Modeling in Combustion, chapter Adaptive numeri-
cal simulation of premixed flame propagation, pages 177–230. Taylor and Francis,
1993.

[40] MALLENS, R.M.M.: Stabilisation of Laminar Premixed Methane/Air Flames. PhD the-
sis, Eindhoven University of Technology, 1996.

[41] MOHAMED, J. and J. WALSH: Numerical algorithms. Clarendon, Oxford, 1986.

[42] NEFEDOV, V.: Numerical Analysis of Viscous Flow Using Composite Grids with Appli-
cation to Glass Furnaces. PhD thesis, Eindhoven University of Technology, 2001.

120 Bibliography

[43] NEFEDOV, V. and R.M.M. MATTHEIJ: Local defect correction with different grid types.
Technical Report RANA 01-11, Eindhoven University of Technology, Faculty of
Mathematics and Computing Science, 2001.

[44] NONINO, C.: A simple pressure stabilization for a simple-like equal-order FEM algorithm.
Numer. Heat Transfer, part B, 44:61–81, 2003.

[45] OIJEN, J. VAN: Flamelet-Generated Manifolds: Development and Application to Premixed
Laminar Flames. PhD thesis, Eindhoven University of Technology, 2002.

[46] PATANKAR, S.V.: Numerical Heat Transfer and Fluid Flow. McGraw-Hill, New York,
1980.

[47] PETERS, N. and J. WARNATZ: Numerical methods in laminar flames propagation, Notes
on Numerical Fluid Mechanics; Vol. 6. Braunschweig;Wiesbaden : Vieweg, 1982.

[48] ROOK, R.: Acoustics in Burner-Stabilised Flames. PhD thesis, Eindhoven University
of Technology, 2001.

[49] SANI, R.L., P.M. GRESHO, R.L. LEE and D.F. GRIFFITHS: The cause and cure
(?) of the spurious pressure generated by certain FEM solutions of the incompressible
Navier-Stokes equations: Part 1. Int. J. for Num. Meth. in Fluids, 1:17–43, 1981.

[50] SANI, R.L., P.M. GRESHO, R.L. LEE and D.F. GRIFFITHS: The cause and cure
(?) of the spurious pressure generated by certain FEM solutions of the incompressible
Navier-Stokes equations: Part 2. Int. J. for Num. Meth. in Fluids, 1:171–204, 1981.

[51] SHYY, W. and M.E. BRAATEN: Three dimensional analysis of the flow in a curved hy-
draulic turbine draft tube. Int. J. for Num. Meth. in Fluids, 6:861–882, 1986.

[52] SHYY, W., S.S. TONG and S.M. CORREA: Numerical recirculating flow calculation
using a body-fitted coordinate system. Numerical Heat Transfer, 8:99–113, 1985.

[53] SHYY, W. and T.C. VU: On the Adoption of Velocity Variable and Grid System for Fluid
Flow Computation in Curvilinear Coordinates. J. Comp. Phys., 92:82–105, 1991.

[54] SIVASHINSKY, G.I.: Instabilities, pattern formation and turbulence in flames. Ann. Rev.
Fluid Mech., 15:179–199, 1983.

[55] SMOOKE, M.D.: Lecture Notes in Physics, chapter Reduced Kinetics Mechanisms
and Asymptotic Approximations for Methane-Air Flames, pages 90–96. Springer-
Verlag, 1999.

[56] SOMERS, L.M.T.: The Simulation of Flat Flames with Detailed and Reduced Chemical
Models. PhD thesis, Eindhoven University of Technology, 1994.

[57] SOMERS, L.M.T. and L.P.H. DE GOEY: Analysis of a Systematical Reduction Tech-
nique. In Twenty-Fifth symposium on Combustion. The Combustion Institute, Pitts-
burg, 1994.

[58] THIART, G.D.: Finite difference scheme for the numerical solution of fluid flow and heat
transfer problems on nonstaggered grids. Numer. Heat Transfer, part B 17:41–62, 1990.

Bibliography 121

[59] THIART, G.D.: Improved finite-difference scheme for the solution of convection-diffusion
problems with the SIMPLEN algorithm. Numer. Heat Transfer, part B 18:81–95, 1990.

[60] THIJE BOONKKAMP, J.H.M. TEN: The conservation equations for reacting gas flow.
Technical Report 93-WSK-01, Eindhoven University of Technology, Faculty of
Mathematics and Computing Science, 1993.

[61] THOMPSON, J.F., B.K. SONI and N.P. WEATHERILL: Handbook of Grid Generation.
London: CRC Press LLC, 1999.

[62] THOMPSON, J.F., Z.U.A. WARSI and C.W. MASTIN: Numerical Grid Generation
(Foundations and Applications). Amsterdam: North Holland, 1985.

[63] VALDATI, B.A.: Solution-adaptive gridding methods with application to combustion
problems. PhD thesis, Yale University, New Haven, CT, 1997.

[64] WAPPLER, J.U.: Die lokale Defektkorrekturmethode zur adaptiven Diskretisierung ellip-
tischer Differentialgleichungen mit finiten Elementen. PhD thesis, Christin-Albrechts-
Universität, Kiel, 1999.

[65] WARNATZ, J., U. MAAS and R.W. DIBBLE: Combustion. Springer, 1996.

[66] WESSELING, P.: An Introduction to Multigrid Methods. Wiley, Chichester, 1992.

[67] WIJNGAART, R.F. VAN DER: Composite Grid Techniques and Adaptive Mesh Refinement
in Computational Fluid Dynamics. PhD thesis, Stanford University, 1990.

[68] WILLIAMS, FORMAN A.: Combustion Theory, The Fundamental Theory of Chemically
Reacting Flow Systems. Addison-Wesley Publishing Company, Redwood City, 1985.

Index

activation energy, 17, 86
adaptivity, 4
Arrhenius, 16, 86

Bunsen
burner, 2, 8, 92
flame, 4, 47, 85, 92, 105, 112

cell centred, 39, 95, 104
central difference, 39, 54, 89, 96, 98, 104
combustion

approximation, 4, 9, 17
equations, 3, 5, 7, 9, 11, 61, 85, 92, 93,

95, 97–99, 102, 112
mechanism, 16
model, 11, 12

reduced, 3
system, 92
variables, 18, 19, 98, 99

complexity, 7, 37, 49, 51, 58, 59
composite grid approximation, 4, 45, 48,

49, 56, 57
composite grid solution, 45, 48, 55
constant density approximation, 5, 11, 18,

19, 85
constraint equation, 100, 101
continuity equation, 4, 13, 87, 99, 100
contravariant

base vector, 93
unit vector, 93
velocity, 93, 102
velocity components, 9, 93, 95

coordinates
Cartesian, 6, 9, 53, 88, 92, 93, 97, 98,

104, 111, 112

curvilinear, 9, 37, 52, 53, 56, 88, 92, 93,
97, 98, 101, 111, 112

general, 9, 92, 111, 112
local, 52

correction step, 4, 117
covariant

velocity components, 9, 93

damping factor, 62
Davidenko equation, 8, 61, 62, 69, 72
defect, 5, 116
density, 11, 12, 19, 95, 99, 102
diffusion, 2, 4, 16, 19, 86, 88, 94

coefficient, 14, 85
equation, 4, 96
velocity, 11, 14

energy, 1, 2, 88
conservation equation, 5, 15–17
density, 15
specific, 12, 13
total internal, 12

enthalpy, 15, 16
of formation, 12
specific, 12

flow equations, 5, 85, 92, 93, 97, 102, 104,
112

grid
adaptive, 6, 8
Cartesian, 37, 53, 55, 56, 104
coarse, 5–7, 38, 39, 41, 45, 49–51, 53, 56,

58, 89, 90, 107
curvilinear, 7, 37, 53, 58, 88, 111, 112
fine, 6–8, 37–39, 41–45, 47–51, 53, 55–

58, 90, 107, 108, 111, 112

124 Index

local, 7, 38, 50, 55, 56, 85, 89, 90, 111
orthogonal, 6, 8, 37, 52, 55, 58, 93
tensor product, 5, 7, 37, 39, 51, 58, 111

heat
release, 19, 85, 86
specific, at constant pressure, 12, 16,

85

Jacobi matrix, 8, 61, 64, 71, 74–76, 80, 81,
116

LDC, 5, 8, 37, 38, 47, 49–51, 58, 90, 111
algorithm, 7, 8, 37, 41, 43, 45, 47
iteration, 48, 58, 90
method, 4–8, 37, 47, 53, 56, 58, 59, 85,

111, 112
with curvilinear grids, 8, 37, 53, 58, 85,

111
with rectangular grids, 6
with slanting grids, 37, 111

level curve, 35, 55–58, 89, 107, 111
Lewis number, 85, 86
local defect correction, 88

Mach number, 4, 17
mass fraction, 12, 14, 17, 18, 85, 86, 95, 106
mixed Euler method, 8, 63–65, 68
multigrid, 9, 115–117

Navier-Stokes equations, 9
Newton

damped, 62
direction, 62
method, 7, 61, 62, 64, 115, 116
process, 66, 71, 73, 80
second law, 15
solver, 74
update vector, 62

operator
prolongation, 117
restriction, 23, 39, 42, 44, 45, 53, 117

pressure
correction, 4, 9, 92, 98, 100, 102
oscillation, 95, 102

wiggles, 9, 92, 96, 112

reaction rate, 16, 91
Reynolds’ Transport Theorem, 5, 11, 12

safety region, 21, 25–28
spurious modes, 104, 105
stoichiometric, 3

coefficient, 16
ratio, 2, 106

stress tensor, 11, 15, 92, 102
viscous, 94

universal gas constant, 11, 86

Zeldovich number, 86

Summary

In this research we face some of the problems related to the simulation of laminar flames.
These, as well as many others BVPs representing natural phenomena (shock waves,
semiconductor devices, etc.), are characterised by the presence of regions where gradi-
ents are quite large compared to those in the rest of the domain, where the solution can
be considered relatively smooth. When solving such problems numerically, this solu-
tion behaviour requires a much finer grid in these high activity regions than in regions
where the solution is fairly smooth. This is the case, for instance, of the equations that
describe laminar flames: most of the activity is concentrated in the flame front, a nar-
row area where the temperature rises steeply and chemical reactions take place. In all
these cases, the Local Defect Correction (LDC) method reveals to be a quite powerful
tool. Roughly speaking, the method goes as follows. First, an approximation of the so-
lution on a coarse grid in the entire domain is computed. Then, this is used to define
a boundary value problem on a subdomain where a different grid is employed. The
thus found solution on the latter subdomain is used to define a defect on the global
domain, which, in turn, induces an updated global domain problem. This so-called lo-
cal defect correction (LDC) method is used in an iterative way. It converges very fast:
typically one iteration suffices. So far, the LDC method has been used in combination
with rectangular fine grids only. Since this is not a theoretical requirement, we combine
a global coarse grid with different types of fine grids, with the aim of minimizing the
total number of grid points.

First, we start with a rectangular fine grid that is slanted over a certain angle with re-
spect to the coarse one in order to better follow the shape of the high activity region.
The advantages of using a slanting grid are mainly that the implementation is simple,
i.e. the equations can be transformed just applying a rotation, and a signifivant reduc-
tion in the number of fine grid points can be achieved, as assessed by the complexity
analysis. The only drawback is represented by the fact that the fine grid sticks out of the
global domain. However, show that also this problem can be easily solved.

The next step is to combine LDC with curvilinear grids. Although the transformation
of the equations is, in this case, more involved, the use of a curvilinear grid reveals to
be necessary when the shape of the high activity region is more complex. A solution
fitted fine grid that tightly follows the shape of the solution is built by using a trajectory
method. This takes an existing nonorthogonal grid and transforms it into an orthog-
onal one. One set of lines of the original nonorthogonal grid is retained; the other is

126 Summary

displaced, through a marching process, such that the intersection between the two sets
of lines is orthogonal. The set of lines that is retaind is chosen coincident with the iso-
contours of the coarse grid solution. This allows to obtain a very accurate local solution
with a very limited amount of grid points. Also in this case, a complexity analysis sup-
ports our results. Both the algorithm that use slanting and curvilinear grids are tested
by computing the solution of some model problems.

Then, we use LDC in combination with curvilinear grids to solve two different 2D lam-
inar flame problems. The first one is the thermo-diffusive model. It is based on the
constant pressure and constant density assumptions, that allow to simplify the equa-
tions. Though being simple, the resulting model gives some insight in the structure
of the flame. The shape of the flame front makes it suitable to be solved with our al-
gorithm. Next, we study Bunsen flames. In this case the equations are much more
complicated. The fine grid problem, as well as the coarse one, is solved with a pressure
correction technique. To prevent pressure oscillations staggered grids are used. Nev-
ertheless, when a curvilinear grid turns 90 degrees, loss of staggering effectiveness can
occur. The remedy that we use here is to apply pressure smoothing.

The discretisation of the combustion equations gives rise to systems that are highly non-
linear and that pose several problems when being solved. In these cases the Newton
method reveals to be not robust enough. This has led us to another part of our research.
We consider embedding techniques to deal with nonlinear systems and we try to de-
velop alternative algorithms that improve their robustness. Those methods are tested
using benchmark problems found in literature.

Samenvatting

In dit onderzoek beschouwen we enkele van de vraagstukken met betrekking tot de
simulatie van laminaire vlammen. Zoals vele andere randwaardeproblemen, die natu-
urlijke fenomenen beschrijven (schokgolven, halfgeleider-apparaten, enzovoort), wor-
den deze gekenmerkt door de aanwezigheid van gebieden waar de gradiënten zeer
groot zijn ten opzichte van de rest van het domein, waar de oplossing relatief glad
is. Bij het numeriek oplossen van dergelijke problemen dient een veel fijner rooster
gebruikt te worden binnen deze zones met hoge activiteit dan waar de oplossing re-
delijk glad is. Dit is bijvoorbeeld het geval bij de vergelijkingen die laminaire vlammen
beschrijven. Het merendeel van de activiteit is geconcentreerd in het vlamfront, een
smal gebied, waar de temperatuur scherp stijgt en scheikundige reacties plaatsvinden.
In al deze gevallen blijkt de methode van lokaal tekort-correctie (Local Defect Correc-
tion, of kortweg LDC) een zeer krachtig gereedschap. Grofweg werkt de methode als
volgt. Eerst wordt een benaderende oplossing op het grove rooster in het hele domein
berekend. Deze wordt vervolgens gebruikt om een randwaardeprobleem op een sub-
domein te definiëren, waar een ander, fijner, rooster wordt ingezet. De oplossing op
het subdomein wordt gebruikt om een defect op het globale domein te definiëren, wat
dan weer leidt tot een aangepast probleem om het globale domein. LDC wordt iteratief
gebruikt, maar het convergeert doorgaans erg snel: meestal is één iteratieslag al toereik-
end. Voorheen is LDC alleen met rechthoekige fijne roosters gebruikt. Omdat dit echter
geen theoretische eis is, hebben we geprobeerd een globaal grof rooster te combineren
met verschillende types fijne rooster met als doel het totale aantal roosterpunten te min-
imaliseren.

We zijn begonnen met een rechthoekig fijn rooster, dat een bepaald aantal graden is
verdraaid ten opzichte van het globale rooster, om zo de vorm van de hoge activiteit-
szone beter te kunnen volgen. Een voordeel van het gebruik van zo’n schuin rooster
is, dat het eenvoudig is te implementeren, dat wil zeggen, de vergelijkingen hoeven
alleen aangepast te worden door een draaiing toe te passen. Een ander voordeel is, dat
het aantal fijne roosterpunten aanzienlijk wordt teruggebracht, zoals wordt vastgesteld
in een complexiteitsanalyse. Het enige nadeel wordt gegeven door het feit, dat het fi-
jne rooster buiten het globale domein uitsteekt. We tonen echter aan, dat dit probleem
eenvoudig kan worden opgelost.

De volgende stap was om LDC met curvilineaire roosters te combineren. Hoewel de
transformatie van de vergelijkingen in dit geval meer werk vereist, blijkt een curvilin-

128 Samenvatting

eair rooster noodzakelijk als de vorm van de hoge activiteitszone complexer is. Een aan
de oplossing aangepast rooster wordt hier opgebouwd met een baanmethode. Deze
neemt een bestaand niet-orthogonaal rooster en maakt dit orthogonaal. Eén lijnenset
van het oorspronkelijke niet-orthogonale rooster wordt hierbij behouden, terwijl het
andere wordt verplaatst door gebruik van een stapsgewijs proces, zodat de twee lij-
nensets uiteindelijk orthogonaal zijn. De lijnenset, die wordt behouden, wordt gekozen
om samen te vallen met de isocontouren van de oplossing op het grove rooster. Hier-
door kan een zeer nauwkeurige oplossing verkregen worden met slechts een beperkt
aantal roosterpunten. Ook in dit geval worden onze resultaten onderschreven door een
complexiteitsanalyse. De beide algoritmes voor schuine en curvilineaire roosters zijn
getest met enkele modelproblemen.

Daarna hebben we LDC tezamen met curvilineaire roosters toegepast om twee verschil-
lende laminaire vlamproblemen op te lossen. Het eerste is het zogenaamde thermo-
diffusief model. Het is gebaseerd op aannames van constante druk en constante dichtheid,
wat vereenvoudigingen in de vergelijkingen toelaat. Hoewel eenvoudig geeft het resul-
terende model ons inzicht in de structuur van de vlam. De vorm van het vlamfront
maakt het geschikt om met onze methode op te lossen. Vervolgens hebben we Bunsen-
vlammen bestudeerd. In dit geval zijn de vergelijkingen veel gecompliceerder. Zowel
het fijne als het grove rooster wordt met een drukcorrectie-techniek opgelost. Om os-
cillaties in de druk te verkomen worden alternerende roosters ingezet. Desalniettemin
kan de effectiviteit van het alterneren verloren gaan, als het curvilineaire rooster een
bocht van 90 graden maakt. De remedie die we er hier tegen gebruiken is de druk glad
te strijken.

De discretisatie van de verbrandingsvergelijkingen leidt tot stelsels, die zeer niet-lineair
zijn en een oplossing met verschillende problemen bemoeilijken. Hier blijkt de methode
van Newton niet robuust genoeg. Dit heeft tot een ander onderdeel van ons onderzoek
geleid. We kijken hierbij naar inbeddingstechnieken om met de niet-lineaire stelsels te
behandelen en ontwikkelen daarbij alternatieve methoden om hun robuustheid te ver-
beteren. Deze methoden zijn getest met maatstaf-problemen die in de literatuur gevon-
den kunnen worden.

129

C V R R I C V L V M V I T Æ
The author of this thesis was born in Pagani,
Italy, on April 28th 1970. After completing
pre-university schooling at the Liceo Scien-
tifico in Santa Maria Capua Vetere, Italy, in
1989 she moved to Rome, where she studied
Aeronautical Engineering at the University ’La
Sapienza’. During the last year of university,
she worked as design engineer at Umbra Cus-
cinetti, (Foligno, Italy), where she developed
her master thesis project. In November 1997,
she moved to GE/Nuovo Pignone (Florence,
Italy) to work as gas turbine engineer. She
came to The Netherlands in September 2000
and started the PhD research discussed in this
dissertation at the Scientific Computing Group of
the Eindhoven University of Technology. Since
October 2004 she works at the Mechanics, Design
& Heat Technology group at Philips Lighting.

	Acknowledgements
	Contents
	1. Introduction
	2. Modeling laminar flames
	3. LDC method: algorithm, properties and local grid refinement
	4. LDC with orthogonal grids
	5. Solving nonlinear systems via embedding methods
	6. Laminar flame simulation
	7. Conclusions and recommendations
	App. A. Discretisation of the viscous terms
	App. B. Flame solver
	Bibliography
	Index
	Summary
	Samenvatting
	Curriculum Vitae

