
 

Relational catamorphisms

Citation for published version (APA):
Backhouse, R. C., Bruin, de, P. J., Malcolm, G. R., Voermans, T. S., & Woude, van der, J. C. S. P. (1991).
Relational catamorphisms. (Computing science notes; Vol. 9111). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/1991

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/ef2f58bd-bc6c-4bbc-bb57-b0283a29353f


Eindhoven University of Technology 

Department of Mathematics and Computing Science 

RELATIONAL CATAMORPHISMS 

by 

R.C.Backhouse P.J. de Bruin G.Malcolm 
E.Voermans J. van der Woude 

Computing Science Note 91/11 
Eindhoven, July 1991 



COMPUTING SCIENCE NOTES 

This is a series of notes of the Computing 
Science Section of the Depattment of 
Mathematics and Computing Science 
Eindhoven University of Technology. 
Since many of these notes are preliminary 
versions or may be published elsewhere, they 
have a limited distribution only and are not 
for review. 
Copies of these notes are available from the 
author or the editor. . 

Eindhoven University of Technology 
Department of Mathematics and Computing Science 
P.O. Box 513 
5600 MB EINDHOVEN 
The Netherlands 
ISSN 0926-4515 

All rights reserved 
Editors: prof.dr.M.Rem 

prof.dr.K.M. van Hee 



RELATIONAL CATAMORPHISMS 

Roland C. Backhouse* Peter J. de Bruin t Grant Malcolm! 
Ed Voermans* Jaa.p van der Woude*§ 

Abstrnct 
This paper reports ongoing resea.rch into a theory of datatypes based on the calculus 
of relations. A fundamental concept introduced here is the notion of "relator" which 
is an ada.ption of the categorical notion of functor. Relational catamorphisms are then 
introduced and shown to satisfy a unique extension property. Several further properties 
are discussed including so-called fusion properties. The paper is concluded by showing 
how new relators' ca.n be constructed by an appropriate choice of relational catamorphism. 

"Depart.ment of Mathematics and Computing Science, Eindhoven University of Technology, P.O. Dox 
513, 5600 MD Eindhoven, The Netherlands, 

tDepartmcnt of Computer Science, Rijksuniversiteit Groningen, P.O. Box 800, 9700 AV Groningen, 
The Netherlands, 

IComputing Laboratory, Programming Research Group, Oxford University, 8-11 Keble Road, Oxford 
OXI 3QD, United Kingdom. 

ICWI, 1',0, Dox 4079, 1009 AD Amst.erdam, The Netherlands, Sponsored by NWO (NF 62,518). 



1 Introduction 

Since the observation was first made (e.g. by Hoare [30]) that program structure is related 
to data structure the notion of type has pervaded many theories of program design, so 
much so that in our view such a notion has become indispensable. In line with its perceived 
importance there is now an abundance of type theories, each drawing substance from one 
or more established areas of mathematics - including category theory, intuitionism and 
the second order lambda calculus. This paper explores yet another type theory, this time 
based on an axiomatic presentation of the theory of binary relations. 

Our reasons for embarking on this exploration involved an element of satisfaction 
and an element of dissatisfaction with current programming research. The element of 
satisfaction comprises, first, the ever-growing knowledge and understanding of theories 
of type, second, the pioneering work of Bird and Meertens on economical notations for 
functional programming and, third, the now well-established literature on the calculation 
of imperative programs. The element of dissatisfaction arose from a growing frustration 
with the fundamental limitations of the functional programming paradigm within which 
almost all type theories have been developed up till now, and with the continuing disparity 
in scale between formal and informal program development. Let us begin with the element 
of satisfaction. 

Type Theory, Category Theory and the Bird-Meertens Formalism 

The history of research into type structure as it pertains to programming is something that 
we do not care or dare to trace. Our own understanding has, however, been substantially 
influenced in recent years from two directions: the work of the "intuitionists" , in particular 
Martin-Lof [40], the Goteborg group [46] and the NuPRL group [21] on a theory of types 
based on the notion of "propositions-as-types:' (this work now being known to have strong 
connections to the Automath project led by de Bruijn [18]), and the work of category 
theoreticians on algebraic approaches to program specification [28, 43]. 

Martin-L6£'s theory of types can be characterised as a theory of inductively-defined 
types. A major attraction of his theory is that there is an elegant scheme underlying the 
definition of individual types that encourages and facilitates the construction of new types. 
A contribution of members of the current consortium was to recognise and elaborate on 
this scheme, leading to the publication of [6]; similar ideas have also been pursued by 
Dybjer [27] and others. 

In the categorical approach to type structure so-called "unique extension properties" 
are used to characterise types as either the "initial" or "terminal" objects in a category. 
Hagino [29] proposed a method of type-definition based on this characterisation. Most 
researchers would concede that the two approaches are formally equivalent but would 
argue that in nature they are quite distinct, the intuitionistic approach being based on 
the natural-deduction style of proof development whereas the categorical approach is much 
more equational and often better suited to program development. On the other hand a 
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major innovation of Martin-Liif's theory was the notion of dependent type, which notion 
does not seem to be so readily expressible within category theory. 

Quite independently of the above work Bird and Meertens have been collaborating for 
many years in the development of an APL-like notation for functional programs which 
emphasises economy of expression and calculation. The importance of such economy to 
programming has been eloquently advocated by Meertens [41 J and it would not do justice 
to his work to try to summarise the arguments here. A significant outcome, however, of 
this collaboration has been an impressive, albeit limited, calculus of program construction 
based around the notion of homomorphism on a list structure. The calculus has been 
used to reformulate existing solutions and to develop ingenious new solutions to many 
list-programming and other problems [12, 13, 15, 14, 16J. 

Some few years ago, research began with the aim of extending Bird and Meertens' work 
on lists to arbitrary, inductively-defined, data types. The conjecture we made at that time 
and which has since been amply confirmed was that the basic concepts and calculational 
techniques propounded by Bird and Meertens would be equally relevant and powerful in a 
more general type-theoretic setting. In the process of conducting this research we became 
more and more familiar with the categorical approach to type definition, and began to 
appreciate and further the application of unique extension properties. For accounts of 
this work refer to [2, 37, 36J. 

SO much for the element of satisfaction. Now to the element of dissatisfaction. 

Indeterminacy and Notational Issues 

Although endowed with many mathematical niceties, there is, we believe, one overriding 
reason why purely-functional programming can only be a passing phase in the devel
opment of computing science: that is the lack of nondeterminism. Functions are by 
definition deterministic, but non determinism - the ability to postpone, sometimes indef
initely, decisions - has long been recognised as a vital component of any programming 
calculus. Indeed, the inclusion of non determinism is a major desideratum within calculi 
for imperative programming [25J. On the other hand, notions of type within imperative 
programming languages are grossly impoverished relative to the same notions in func
tional languages. Type theory has, until now, made the greatest advances within the 
functional programming paradigm. 

In addition to our dissatisfaction with the determinism of functional programming and 
the type-poverty of imperative programming, we are becoming more and more distressed 
with what we perceive as a severe notational flaw that pervades the everyday practice 
of both imperative and functional programming, namely the ubiquitous use of bound 
variables. As a consequence formal manipulations become long and unwieldy and can 
indeed obscure rather than elucidate an argument. The minimisation of bound variables 
has, of course, long been advocated by category theory as well as being fundamental to the 
Bird-Meertens formalism. However, mathematical practice and programming practice lag 
far behind theoretical argument, and we continue to find scope for substantial economies 
in calculation. For more explanation and discussion of our viewpoint see [3J. 

SO much for the element of dissatisfaction. 
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The Need For a Relational Framework 

The relational calculus has been explored in the past as a framework for programming, for 
example in [9], [10], [23] and [49]. (This list is certainly by no means exhaustive.) Recently 
Hoare and He [32] have strongly advocated the view of specifications as relations and 
the programming process as that of refining a given relation into a (possibly functional) 
implementation. So far as we know, however, none of this research has combined the 
relational calculus with type theory. 

The need to admit relations, rather than functions, in programming was also much in 
evidence at a summer school held as recently as September, 1989. At this summer school 
de Moor lectured on his work on applying a relational calculus to various optimisation 
problems [44] (such problems being by nature nondeterministic since unique optima are 
exceptional) and to program inversion [45] whilst Sheeran [50] and Jones [33] reported on 
the use of relations to describe butterfly circuits and the Fast Fourier Transform. 

"Needs", "wishes" or "wouldn't-it-be-nice lists" are all very well, but the art of doing 
research is to recognise out of the great multitude of outstanding issues those few that 
can be resolved elegantly and effectively using current knowledge and techniques. The 
incentive for us to investigate a relational theory of types was the (re )discovery by de 
Bruin of the notion of "naturality" of polymorphism [19]. (As it turns out, this notion 
was already known to Reynolds [47] much earlier but its full relevance to program calcula
tion does not seem to have been envisaged. De Bruin's and, more or less simultaneously, 
Wadler's [52] observation was that naturality of polymorphism explains and indeed pre
dicts several of the most fundamental laws in the Bird-Meertens formalism.) In order to 
express the notion of "naturality" one is obliged to extend the definition of a type functor 
(a type constructor and corresponding "map" operator) to a mapping from relations to 
relations. In other words, relations are essential to meta-reasoning about polymorphic 
type constructors but there seems to be no reason why their use should be restricted to 
the meta-level. One is indeed encouraged to replace the categorical notion of "functor" by 
a (seemingly) stronger notion of "relator". The ideas underlying, the goals of, and prelim
inary justification for, a type-oriented theory of relational programming were discussed 
by Backhouse [1] at the above-mentioned summer school. 

Relational Programming 

The starting point for the present work is the (already-mentioned) notion of "relational 
programming" as put forward by Hoare anq He [32]. In their view, specifications and 
implementations are binary relations on input and output values. An implementation f 
satisfies specification R if 

fC;;R 

(where a binary relation is regarded as a set of pairs). Programming is thus the process 
of calculating an implementation satisfying a given specification. 

Which binary relations count as specifications is quite unrestricted: the whole of the 
language of mathematics may be used as specification language. Which binary relations 
count as implementations is fluid: the more we discover about what can and what cannot 
be efficiently automated the more "higher-level" our programming languages will become. 
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Thus the two notions of specification and implementation are deliberately left vague in 
order to take account of future developments. 

In spite of this vagueness there is still much that can be said about what might 
constitute a "healthy" theory of relational programming. Monotonicity, for example, 
of the operators in one's implementation language is desirable for "compositionality" 
of programming: if <SI is a binary operator, say, on relations monotonicity of <SI is the 
statement that 

From a programming point of view this is the statement that a specification written in the 
form U <SI V can be implemented by finding an implementation R of U and - separately 
- an implementation S of V, and then composing them to form R <SI S. 

Given the foregoing preamble, it will come as no surprise to the reader to learn that 
our principal "healthiness" criterion is that the theory should support a theory of types 
that encourages and facilitates the introduction of new type structures. Indeed, this whole 
paper is devoted to the study of a general mechanism for defining a polymorphic type 
constructor and associated "catamorphisms" within an axiomatic theory of relations. 
The sort of type constructors that can be defined using this mechanism are familiar 
constructors like List and Tree; in this sense the paper offers no surprises. On the other 
hand, we do present a whole host of mathematical properties which, we argue, testify to 
the theory's healthiness both from a theoretical and a practical viewpoint. Moreover, we 
are particularly encouraged by the economy and clarity of our calculations, which is in 
our view of paramount importance. 

The current paper is a much-abridged version of the theory that we have developed 
thus far [4, 7]. We begin the current paper in the following section with a summary of an 
axiom system for binpy relations. (The system is not complete and is supplemented in [7] 
with axioms characterising the unit type, cartesian product and disjoint sum.) With this 
system as basis we build up in section 3 a vocabulary for discussing our theory. Most of 
the concepts and laws introduced in sections 2 and 3 can be found in one place or another 
in the mathematical literature and we claim no originality for their introduction. The 
most important concept introduced in section 3, that of "relator", does, however, appear 
to be novel and it is this concept that forms the backbone of our work. The main contri
bution of the paper begins in section 4 where we introduce and examine the properties of 
(relational) "catamorphisms". A specific concern in this section is to compare the prop
erties of relational catamorphisms with functional catamorphisms (i.e. homomorphisms 
with domain an initial algebra). Finally, section 5 shows how parameterised types are 
defined and explores their junctivity properties. 

We conclude this introduction with a short account of the style we use for presenting 
calculations. 

Proof Format 

For the presentation of equational proofs we use the style introduced by W.H.J. Feijen in 
[24]. That is, we write 
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R 
= {p} 

8 
= {q} 

T 

R,8 and T are expressions containing one or more free variables. p and q are most often 
semi-formal hints why (for all instantiations of the free variables) R = 8 and 8 = T, 
respectively; in constructive proofs (discussed shortly) p and q have a formal status. 

This format emphasises the transitivity of equality: all the expressions R, 8 and T 
are equal, but in particular the first and the last. We use other transitive operators in 
place of equality: == (equivalence), <= (follows from) =} (implies),;) and I; (the inclusion 
operators defined in section 3). In such cases the connectives are used conjunctively; for 
example R <= 8 <= T means (R <= 8) and (8 <= T). 

2 The Algebraic Framework 

A major component of our endeavour is the development of a calculus of programming that 
permits and, indeed, encourages clear and economical calculation. For this we need an 
elegant algebraic setting. Although from the mathematical point of view, there is nothing 
wrong with a standard set-theoretic approach nor with the algebraically more attractive 
predicate calculus, we are dissatisfied with the persistent appearance of arguments and 
dummies in those systems. This invites us to look for a setting one abstraction level 
higher that fits our manipulative needs. 

In order to choose such an abstract setting ("syntax" for short) several design criteria 
should be established. Here some of ours are mentioned, not as dictates but just for the 
sake of clarifying our point of view. 

• The syntax should reflect the structure of the everyday mathematical view of rela
tions as tightly as possible (excluding historical oddities, inelegancies and prejudice). 

• The syntax should be built up in layers. If possible, those layers should be well
known syntactical unities with proven "elegance". 

• The meta-language used for juggling with the syntax is the predicate calculus. 

• There should be a clear distinction between terms in the meta-language and terms 
in the syntax. 

Fortunately we don't have to start from scratch. The road towards an "axiomatic 
theory of relations" is already paved with the pioneering work of Tarski [51). Besides, 
the above point of view is apparent in most of the curricula nowadays, be it not always 
explicit. Without further ado we present the most basic part of the syntax. 
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2.0.1 Plat Calculus and the Knaster-Tarski Theorem 

Let A be a set, the elements of which are to be called specs. On A we impose the structure 
of a complete, completely distributive, complemented lattice 

(A, n, u, ~, IT, lJ..) 

where "n" and "u" are associative and idempotent, binary infix operators with unit 
elements "IT" and "lJ..", respectively, an4 "-," is the unary prefix operator denoting 
complement (or negation). We assume familiarity with the standard definition of a lattice 
given, for example, by Birkhoff [17]. By "complete lattice" we mean that the extremums 

U(i: i E I: R;) 
and n(i: iEI: R;) 

exist for all families of specs {i: i E I: R;}, where the index set I is completely 
arbitrary. "Completely distributive lattice" means that 

and 
R n 
R U 

U(i: iEI: S;) 
n(i:iEI:S;) 

U(i: iEI: RnS;) 
n(i: iEI: RUS;) 

for all specs R and all families of specs {i: i E I: S;}. Finally, "complemented 
lattice" means that -,R exists for all specs R and obeys de Morgan '5 laws and the double 
negation rule. (Note: the definition of a Boolean algebra requires only the existence of 
finite extremums and distributivity over such finite extremums. Our requirements are 
thus stronger.) The ordering relation induced by the lattice structure will be denoted by 
"~" . 

This structure is well known from the predicate calculus: for "n" and "u" read con
junction and disjunction, respectively, for "IT" and "lJ.." read true and false, and for 
";;)" read "~". We call such a structure a plat, the "p" standing for power set and "lat" 
standing for lattice. Since the structure is so well known and well documented we shall 
assume a high degree of familiarity with it. 

Among the more significant properties of such a structure is the (well-known) "Knaster
Tarski fixpoint theorem". Since we shall use the theorem frequently we summarise it here 
(to the extent and in the form appropriate to our own needs). Specifically, it says that, 
for arbitrary monotonic function B, the equation 

X.. X = B.X 

has a smallest solution, which henceforth we denote by ,,0, characterised by the two 
properties: 

and, for all X, 

Moreover, such an equation also has a largest solution, which henceforth we denote by 
vO, characterised by the properties: 
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v() (). v() 

and, for all X, 

X I;;; v() .;= X I;;; ().X 

For an excellent account of plat calculus (although that name is not used!), including 
a modern proof of the Knaster-Tarski theorem and a clear and careful exposition of its 
implications, we would recommend the reader to refer to [25]. 

2.0.2 Composition and Factors 

The second layer is the monoid structure for composition: 

(A, 0, I) 

where 0 is an associative binary infix operator with unit element [. 

The interface between these two layers is: 0 is coordinatewise universally "cup-junctive". 
I.e. for V, W <;;; A, 

(UV) 0 (UW) U(P,Q: PEV 1\ QEW: poQ) 

In particular, 

• lJ.. is a left and right zero for 0, 

• 0 is monotonic with respect to ;2. 

• Tr 0 Tr = Tr. 

Another, less immediate and somewhat unfamiliar consequence of this interface, is the 
existence of so-called "left" and "right factors" defined as follows. 

Definition 1 For specs Rand S we define the right factor R\S by 

(a) R\S ;2 X 

and the left factor S / R by 

(b) S / R ::;;J X _ S::;;J X 0 R 

o 

Left and right factors are thus defined to be the largest solutions to inequations in a 
variable X (the inequation to the right of the equivalence in their respective definitions). 
Although we shall have no use for it here we mention that the operators "\" and "/" 
associate with each other (i.e. P\(Q/R) = (P\Q)/R), thus justifying writing P\Q/R 
and that such is a factor of Q. 

Equations (la) and (lb) are instances of what are known as "Galois connections". 
(See e.g. [35], in particular exercise 1 on p.15.). Our use of the word "factor" is intended 
to suggest an analogy between composition and multiplication, and between factoring and 
division. This analogy is further reinforced by the following easily derived cancellation 
properties of factors. 
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Lemma 2 

(a) S :::J R 0 (R\S) 
(b) S ;;;1 (SIR) 0 R 

o 

Evidence for the claim that definitions (la) and (lb) and, in particular, the calcula
tional possibilities they admit are important but not well known is the fact that they have 
surfaced in various guises and under various names over the last fifty years beginning, to 
our knowledge, with [26J (under the names left and right "residuals") and involving di
verse application areas such as the structure of natural language [34J, regularity properties 
of generalised-sequential machines [22J (under the name used here of left and right "fac
tors"), the well-known Knuth-Morris-Pratt string searching algorithm [8J, and program 
specification [32J (under the names "weakest pre- and post-specification"). We prefer 
Conway's [22J more anonymous terminology to that used by Hoare and He [32J. The term 
"residual", which is also used by Birkhoff [17J, would have been equally acceptable. Note, 
however, that of the above-referenced works, Hoare and He's calculational formulation of 
the properties of "factors" is the single most significant contribution to the present work. 

Remark In addition to the use of different terminology our choice of notation is exactly 
opposite to Hoare and He's: they would write SIR where we write R\S, and vice-versa 
R\S where we write SIR. Our own choice of notation is justified by the - for us very 
important - property that in the use of (2a) and (2b) the "cancelled" expressions are 
adjacent. We reject outright the notation adopted by Birkhoff [17J as unsystematic and 
inappropriate to compact calculation. End of Remark 

2.0.3 Reverse 

The third layer is the "reverse structure", 

(.A, u) 

where "u" is a unary postfix operator such that it is its own inverse. 

The interface with the first layer is that "u" is an isomorphism of plats. I.e. for all 
P,Q Eo4, 

P;;;1Q pu ;;;1 Qu 

Consequently, for all P, Q E .A, 

~(pu) (~P)u 

(P u Q)u - pu U Qu 

(P n Q)u pu n Qu 
Tru - Tr 
lJ..u - lJ.. 
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Remark As a rule we shall write the names of unary functions as prefixes to their 
arguments. A partial justification for making an exception of "u" is that it commutes 
with ",", thus permitting us to write the syntactically ambiguous ",Ru". Later we shall 
see that "u" also commutes (by definition) with so-called "relators". The latter is the 
main reason for this choice of notation. 
End of Remark 

The interface with the second layer is formed by the two rules 

(R 0 S)u = Su 0 Ru 

and 

/u / 

2.0.4 Operator precedence 

Some remarks on operator precedence are necessary to enable the reader to parse our 
formulae. First, as always, operators in the metalanguage have lower precedence than 
operators in the object language. The principle meta-operators we use are equivalence 
("="), implication ("=}") and follows-from ("~") - these all having equal precedence
, together with conjunction ("A") and disjunction ("V") - which have equal precedence 
higher than that of the other meta-operators. The precedence of the operators in the plat 
structure follows the same pattern. That is, "=", ":::;)" and "I:;;" all have equal precedence; 
so do "u" and "n"; and, the former is lower than the latter. Composition (" 0") has 
a yet higher precedence than all of the operators mentioned thus far, whilst the two 
factoring operators ("/" and "\") have the highest precedence of all the binary operators. 
Finally, all unary operators in the object language, whether prefix or postfix, have the 
same precedence which is the highest of all. Parentheses will be used to disambiguate 
expressions where this is necessary. 

2.0.5 The RS and Rotation Rules 

To the above axioms we now add an axiom that acts as an interface between all three 
layers. 

The RS Rule 

p 0 'x 0 Q x ::::J pu 0 y 0 Qu 

The name "RS" is a mnemonic for "Rotation and Shunting". The "rotation rule" is 
obtained by making the substitutions Y := Ru, P := S, X .- ,T and Q := / and 
simplifying using the properties of /, reverse and complement. 

Rotation Rule 

,Ru ::::J SoT ,Tu ::::J R 0 S 

(Note how the variables R, Sand T are rotated in going from the left to the right side 
of the rule.) "Shunting" is the name given by Dijkstra and Scholten [25] to an important 
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rule in the predicate calculus. Specifically, by making the substitutions Y := U, P := I, 
X := V, and Q := Wand simplifying we obtain the rule 

~U :J ~V 0 W V :J U 0 Wu 

Interpreting "0" as conjunction, "u" as the identity function, and "~" as follows-from 
this is the afore-mentioned shunting rule. 

It is our experience that the RS rule can meet with considerable resistance for one of 
two reasons. First, for calculational purposes, a rule with four free variables is (rightly) 
regarded as approaching, if not outwith, the limits of useability. Second, for those already 
familiar with the relational calculus, there is resistance to the fact that we have chosen to 
replace the better known "Schroder" rule which states that the following three statements 
are all equivalent. 

R 0 seT 
Ru 0 ~T r:;;: ~s 

~T 0 Su r:;;: ~R 

(See, for example, [48J for historical references.) To counter these arguments we would 
point out that the RS rule is more compact than the Schroder rule (two statements are 
equivalent rather than three) and, more importantly, has a clean syntactic form that 
makes it easy to remember and to apply. The rotation rule shares these advantages 
as well as involving only three free variables, but suffers the disadvantage that in some 
calculations two successive uses are required where only one use of the RS rule is necessary. 
In combination with other laws both rules are equivalent to the Schroder rule. (The 
Schroder rule can also be reduced to the equivalence of just two statements, making our 
first argument void, but then it would suffer the same disadvantage as the rotation rule, 
which is probably the reason why it is always stated in the way that it is.) 

2.1 Models 

Various models of the above aXIOms are discussed III [4J with regard to the following 
questions: 

(a) Are the layers and axioms independent? 
(b) Are the successive extensions conservative? 

(c) Does the axiomatisation characterise the set-theoretic relations 
completely? 

Here we shall content ourselves with a summary of the conclusions, namely: the set
theoretic relations do indeed form a model of the axiom system but the axiom system is 
not complete for this model; the RS and cone rules are independent of the other axioms 
but the reverse structure is not. 

A final comment with regard to the idiosyncracies of our naming conventions. The 
following sections must serve a dual purpose. The technical aim is to build up a theory 
of types based upon the above syntax. To do this in a way that is evidently free from 
logical inconsistencies necessitates making a clear distinction between the theory itself 
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and the metalanguage. For this reason we have chosen to call elements of A "specs" 
rather than "relations" and to use the symbols "n" and "u" etc. rather than "n" and 
"u" etc. To serve the second purpose we intersperse the development with references to 
the relational model. The reader may prefer to construct their own proofs of the various 
lemmas, theorems etc. in this one interpretation, but they do so at their own peril. 

3 Foundations 

The purpose of this (abridged) section is to build up a vocabulary for our later discussion 
of the properties of catamorphisms. In order to avoid confusion with existing terminology 
we make a complete reappraisal of what is meant by "type", "function", "type construc
tor" etc. Nevertheless, it should be emphasised that - with the important exception 
of the notion of "relator" - the concepts defined here are amply documented in the 
mathematical literature and we make no claim to originality. 

3.1 Monotypes 

We say that spec A is a monotype iff I ;;;) A. 
In the relational model, for example, we may assume that the universe 1[J contains two 

unequal values true and false. The monotype 18 of booleans is then defined to be the 
relation 

{(true, true), (false, false)} 

Note that for monotypes A and B 

(3) 
(4) 

A InA = 

BoA 

Au = AoA 

AnB 

Properties such as (3) and (4) stated here without proof are proven in [4]. 
We often write 

RESrvT 

as a synonym for 

(5) SoR=R=RoT 

Note that (5) defines SrvT to be a subset of A. Typically Sand T will be monotypes, 
but we prefer not to complicate the definition by making such a restriction. 

3.2 Imps and Co-imps 

In this subsection we define "imps" and "co-imps" as special classes of specs. In the 
relational model an "imp" is a function. 
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Definition 6 

(a) A spec I is said to be an imp if and only if I:;;) 1 0 lu. 
(b) A spec I is said to be a co-imp if and only if lu is an imp. 

o 

The intended interpretation is that an "imp" is an "imp"lementation. On the other 
hand, it is not the intention that all implementations are "imps". Apart from their 
interpretation imps have an important distributive property not enjoyed by arbitrary 
specs, namely: 

Theorem 7 If I is an imp then, for all non-empty sets of specs V, 

n(P: P E V: P) 0 I = n (P: P E V: po f) 

In particular, for all specs Rand S, 

(RnS) 0 I (R 0 I) n (S 0 f) 

o 

Dually we have: 

Theorem 8 If I is a co-imp then, for all non-empty sets of specs V, 

Ion (P: P E V: P) n(P: PEV: loP) 

In particular, for all specs Rand S, 

I 0 (R n S) = (! 0 R) n (! 0 S) 

o 

In the relational model a monotype is the identity function on that type. More gen
erally, the requirement of being a function is the requirement of being single-valued on 
some subset of 1[J, the so-called "domain" of the function. The domain and range are 
made explicit in the following. 

Definition 9 For monotypes A and B we define the set A+--B by I E A+--B whenever 

(a) 
(b) 
(c) 

loB = I 
lu 0 I ::J B, 
A ::J lo/u 

and 

The nomenclature "I E A+--B" is verbalised by saying that" I is an imp to A lrom B". 
o 

12 



In terms of the relational model, property (9a) expresses the statement that the domain 
of definition of f is confined to B. Property (9b) expresses the statement that f is total 
on domain B, i.e. for each x E B there is at least one y such that y (f) Xi finally, property 
(9c) expresses the statement that f maps elements of B to A and that f is single-valued, 
i.e. for each x E B there is at most one y such that y (f) x . . Their combination justifies 
writing U f.x", for each x E B, denoting the unique object y in A such that y (f) x. 

By including the above definition and not simultaneously including a dual notion 
for co-imps we have introduced an asymmetry into our theory that until now has been 
totally absent. This expresses a slight bias with an eye to the extension of the theory with 
cartesian product and disjoint sum later in this section. We hasten to add, nonetheless, 
that there is no such asymmetry in the theory at this instant and every property we state 
for imps alone has a dual property for co-imps. 

To avoid repeating assumptions and to assist the reader's understanding we continue 
to use the conventions that capital letters A, B, C, ... at the beginning of the alphabet 
denote monotypes, small letters f, g, h, . .. denote imps or co-imps, and capital letters 
R, S, T, ... at the end of the alphabet denote arbitrary specs. 

Finally, let us remark that the unconventional direction of the arrow in the statement 
uf E A+--B" is entirely dictated by the choice to denote function application with 
the function name to the left of its argument. (We owe the suggestion to deviate from 
convention to Meertens [42J.) 

3.3 Relators 

In categorical approaches to type theory a parallel is drawn between the notion of type 
constructor and the categorical notion of ufunctor", thereby emphasising that a type 
constructor is not just a function from types to types but also comes equipped with a 
function that maps arrows to arrows. For an informative account of this parallel see, for 
example, [39J. In this subsection we propose a modest extension to the notion of functor 
to which we give the name urelator". 

Definition 10 A relator is a function, F, from specs to specs such that 

(a) I ::::J F.I 
(b) R-:;JS =} F.R -:;J F.S 
(c) F.(RoS) F.R 0 F.S 
(d) F.(Ru) (F.R)u 

0 

In view of (10d) we take the liberty of writing simply "F.Ru" without parentheses, thus 
avoiding explicit use of the property. 

The above ostensibly defines a unary relator but we also wish to allow it to serve 
as the definition of a relator mapping an rn-ary vector of specs into an n-ary vector 
of specs, for some natural numbers rn and n. (This is necessary in order to allow the 
theory to encompass what are variously called Umutually recursive type definitions" and 
"many-sorted algebras". More generally, there is no reason why urn" and un" may not be 
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some fixed but nevertheless arbitrary index sets. However, such a generalisation would 
complicate the current discussion more than we deem justified.) The mechanism by which 
we can do this is to assume that all the constants appearing in the definition ("=", ";)", 
"/", "0" and "u") are silently "lifted" to operate on vectors. For example, if F maps 
m-ary vectors into n-ary vectors, property (lOc) would be written out in the form 

(F.(RtoSt, ... ,RmoSm))j = (F.(Rt, ... ,Rm))j 0 (F.(St, ... ,Sm))j 

for all j, 1 ::; j ::; n, whereby the use of subscripts denotes projection of a vector onto one 
of its components. It is, however, just such clumsy expressions that we want to avoid. 

There are two cases that we make particular use of. The first case has to do with taking 
fixed points of relators where an obvious requirement is that the arity of the domain vector 
of the relator is identical to that of its range vector. We call such a relator an endorelator 
in conformance with the terminology "endofunctor" used in category theory. The second 
case is when F maps a pair of (vectors of) specs into a (vector of) spec(s). We refer to 
such relators as binary relators and choose to denote them by infix operators. Thus, if 121 
denotes a binary relator, its defining properties would be spelt out as follows. 

1 ::::J 11211 (a) 

(b) 
(c) 
(d) 

R;)SAU;)V 
(RoS) 121 (U 0 V) 

~ RIZiU;)SIZiV 

(Ru) 121 (Su) -
- (RIZi U) 0 (SIZi V) 

(RIZi S)u 

The notational advantage of writing "u" as a postfix to its argument is, of course, lost in 
this case. 

A property such as (c) we call an "abide" law; we also often refer to this law by saying 
that binary relators "abide" with composition. The name was coined by Richard Bird (in 
a different context). His motivation for the name was that it is short for "above/beside" 
reflecting the following two-dimensional formulation of the law in which the relator and 
composition are either above or beside each other. 

R 0 S R S 
121 = 121 0 121 

U 0 V U V 

(Our first encounter with a two-dimensional depiction of an abide law was in [31]. In the 
category theory literature the term "interchange" rule (or law) is used.) 

The following theorem allows a comparison to be made with our definition of "relator" 
and the definition of "functor" (in the category of sets). 

Theorem 11 If F is a relator then 

(a) A is a monotype ~ F.A is a monotype 
(b) I is an imp ~ F.I is an imp 

(c) I is a co-imp ~ F.I is a co-imp 
(d) IE A<--B ~ F.f E F.A<--F.B 
(e) R E ArvB ~ F.R E F.ArvF.B 

Proof 
See the complete paper. 0 
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4 Initial Datatypes and Relational Catamorphisms 

A fundamental argument for the use of type information in the design of large pro
grams is that the structure of the program is governed by the structure of the data. A 
well-established example is the use of recursive descent to structure the parsing (and 
compilation) of strings defined by a context-free grammar; here the structure of the data 
is defined by its grammar and the structure of the parsing program is identical. The 
idea is extended in the denotational description of programming languages where a fun
damental initial step is the definition of so-called domain equations; those familiar with 
denotationaI semantics know that once this step has been taken the later steps are often 
relatively mundane and straightforward. Users of strongly-typed languages like Pascal 
will argue strongly that the effective use of type declarations is extremely important for 
subsequent program development, and even users of untyped languages like Lisp will ad
mit that the programming errors that they make are often caused by type violations. A 
fundamental goal of our research is therefore to develop calculi of program construction 
that lay bare the oneness of program and data structure. 

An example of a programming formalism in which this oneness plays the role of a 
major design principle is the theory of types developed by Martin-Lo£. In this theory 
each type is defined by four sets of rules one of which is the set of so-called introduction 
rules and another is a singleton set containing the so-called elimination rule for the type. 
(The remaining sets are not relevant to the present discussion.) The introduction rules 
describe the structure of the elements of the type whereas the elimination rule says how to 
construct functions over the elements of the type. As has been argued elsewhere [6], the 
introduction rules completely define the type in the sense that all other rules (including 
the elimination rule) are systematically derived from them. The elimination rule thus 
expresses the notion that "nothing else" is in the type other than the elements that can 
be constructed via the introduction rules by stating that the structure of functions on 
elements of the type is completely governed by the structure of these rules. 

In the algebraic approach that we are currently pursuing a different (although formally 
equivalent) approach is taken to the definition of data types and in particular to expressing 
the notion that "nothing else" is in the type other than the elements constructed via 
its introduction rules. Nevertheless, the underlying principle is that a data type is a 
structured set of elements that is equipped with a mechanism governed by that structure 
for defining functions on the elements of the type. For the benefit of readers who may not 
be familiar with it we now outline this approach as it pertains to functional programming. 
Other readers will probably wish to skip the next two paragraphs; all they need to know 
is that we use the term "cat amorphism" to refer to F-homomorphisms whose domain is 
an initial F-algebra. (We are currently in the process of extending our work to terminal 
algebras but none of that work is reported here.) 

The approach involves several stages building up to the definition of a "universal 
object" in a category of algebras. First, in place of the introduction rules in Martin-LOf's 
system the notion of endofunctor is of paramount importance. An endofunctor is (in this 
context) a pair of functions, one from types: to types and the other from functions to 
functions. Typically, both functions are denoted by the same symbol. Suppose F is an 
endofunctor, A and B are types and f and 9 are functions of composable type. Let IA 
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denote the identity function on the type A. Then it is required that 

F.I E F.A <-- F.B <= I E A <-- B 
F.IA - IF.A 

and F.(f 0 g) - FJ 0 F.g 

Without seeing some examples it is difficult for the uninitiated to envisage the correspon
dence between a number of introduction rules and an endofunctor. For the moment let 
us just remark that typically an endofunctor will take the form of a disjoint sum of other 
more primitive functors, and that each term in such a sum corresponds to one introduc
tion rule. The next step is to define an F-algebra as a pair consisting of a type A and 
a [unction I E A <-- F.A. (Note that if, indeed, the endofunctor F is a disjoint sum 
of other functors then the function I can be broken down into distinct components each 
being applicable to elements introduced by one of the corresponding introduction rules.) 
The data type defined by the endofunctor F is then an F -algebra satisfying a so-called 
"universal property", namely that there is a unique homomorphism from the data type to 
each F -algebra. Such homomorphisms take the place of the eliminators in Martin-LOf's 
theory. To emphasise their special role we shall give them the name "catamorphism". 

An example would be the data type natural number. Roughly speaking, IN has the 
property 

IN {OJ + IN 

where "+" denotes the disjoint sum of two types. (According to this definition the ele
ments of IN are '-->.0 and ....,.n where n ranges over IN and '--> and ...., denote the injection 
functions associated with disjoint sum. You should interpret ",-->.0" as zero and "....," 
as the successor function. More formally, we recognise in this equation an endofunctor 
"{O}+". This is a function that maps the type A to the type {OJ + A. But it may 
also be extended to map functions to functions by defining {O} + I to be that function 
9 such that go '--> is the constant function always returning '-->.0, and go...., = ...., 0 I. 
(Moreover, it satisfies all the properties required of a functor, but that we leave to the 
reader to verify.) A {O}+-algebra is a set together with a constant and a unary operator 
(these being zero and the successor function in the case of the natural numbers), and a 
{O}+-homomorphism is just what one would normally understand by a homomorphism 
of an algebraic structure, in this case a function ¢, say, from one {O}+-algebra (A, a, 0-), 
say, to another (B, b, T), say, that maps the constant of the first to the constant of the 
second 

I.e. ¢.a = b 

and commutes with the unary operator of the first replacing it with that of the second 

I.e. ¢ 0 0- T 0 ¢ 

That IN is "universal" in the class of {O}+-algebras just means that for any {O}+-algebra 
(A, a, 0-), say, there is a unique homomorphism mapping IN to A. With a suitable definition 
of the operators it is also easily shown that {OJ + IN is a {O}+-algebra satisfying the 
universality property. Thus, IN is a fixed point of the endofunctor {O}+ in the sense that 
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there are homomorphisms mapping IN to {O} + IN and vice-versa which (on account of 
their uniqueness) are each others' inverses. 

To summarise this discussion: in the framework of functional programming datatypes 
are fixed points of endofunctors on which are defined what we call "catamorphisms", 
i.e. homomorphisms satisfying a uniqueness and universality property. This is not the 
place to discuss the practicality of catamorphisms as a program structuring method, that 
being something that we intend to address in future publications. We hope however that 
we have provided sufficient background to motivate the calculations that follow in this 
section. Specifically, we explore the extension ofthe notion of a (functional) catamorphism 
to relations. For this we need the notion of endorelator instead of endofunctor. We begin 
by discussing the least fixed point of an endorelator and then introduce our definition of 
a (relational) catamorphism. 

From now on we assume that F is an endorelator. 

4.1 Initial Datatypes 

Since endorelators are, by definition, monotonic the Knaster-Tarski theorem asserts the 
existence of their fixed points, in particular least and greatest. We hope shortly to report 
on our work on greatest fixed points but in the present paper we restrict our attention to 
least fixed points. Specifically, the least fixed point of the endorelator F, here denoted by 
I1F, has the defining properties 

(12) 

and, for all X, 

(13) X :::J I1F {= X :::J F.X 

We shall refer to (13) as the induction principle. 
The following lemma is about all we can say about I1F at this stage. Nevertheless, it 

is a necessary first step. 

Lemma 14 I1F is a monotype. 

Proof 

I1F is a monotype 
- { definition} 

I :J I1F 
{= { induction principle (13) } 

I :J F.I 
- { F is a relator (lOa) } 

true 
o 
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4.2 Catamorphisms Defined 

Definition 15 For endorelator F we define a function, denoted by QF; _ D, by the 
properties that, for all specs R, 

(a) QF; RD R 0 F.QF; RD 
and for all specs R and X, 

(b) X ::::J QF; RD ¢= X ::::J R 0 F.X 

o 

In other words, QF; R D is the smallest solution to the equation 

X·· X = R 0 F.X 

Its well-defined ness is thus guaranteed by the Knaster-Tarski theorem. 
We call specs of the form QF; RD catamorphisms (or F-catamorphisms when we 

particularly wish to be explicit about F) and we verbalise QF; R D as "(F-)catamorphism 
R", omitting the qualification "F" when there is no doubt about the relator in question. 

For reasons that will only become clear later, we call (15a) the computation rule for 
catamorphisms. 

One may well raise one's eyebrows at the unconventional "banana brackets" we have 
chosen to denote catamorphisms. The reasoning behind this choice is not evident in this 
paper but is based on envisaged applications: typically, the relators one encounters in 
programming problems are formed using the disjoint-sum operator. Consequently, the 
cat amorphism constructor will be applied to a disjoint sum of specs having the same 
number of components as that of the associated relator. It is our practice, therefore, to 
separate the components using commas and to delimit the extent of the vector formed in 
this way by the special brackets. For several examples of such applications see [36J and 
[38J. . 

The cat amorphism QF; I D is of particular importance since it is clearly the least fixed 
point of F. Thus, we have: 

(16) pF QF; ID 
From now on we omit the argument "F" within the catamorphism brackets and write 

just "QRD" instead of "QF; RD". 

4.3 The Unique Extension Property 

The definition of a catamorphism is clear enough but with its two distinct parts it is 
not well-suited to calculational purposes. We proceed now to prove two properties that 
predict a single-statement definition of catamorphism. The first is simple enough. 

Theorem 17 
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Proof 

o 

URD QRD ° /IF 
{ lemma 14 } 

URD ° /IF ;;) URD 
{ definition of catamorphism, specifically (15b) } 

URD ° /IF ;;) R ° F·(URD ° /IF) 
{ F is a relator (lOc), /IF is a fixed point of F } 

URD ° /IF ;;) R ° F·URD ° /IF 
{ definition of catamorphism, specifically (15a) } 

true 

We have now established that URD satisfies two equations, namely, 

and 
x·· 
x·· 

x - R ° F.x 
X = X ° /IF 

Obviously, therefore, it also satisfies the third equation 

(18) X .. X = R ° F.x ° /IF 

The important insight contained in the next theorem is that the set of specs simultaneously 
solving the first two equations is identical to the set of solutions of the third equation. 

Theorem 19 

Proof 

o 

X = R ° F.X ° /IF - X = X ° /IF /I X - R ° F.X 

X ° /IF = X /I X R ° F.X 
{ substitution } 

X ° /IF = X /I X - R ° F.(X ° /IF) 
{ F is a relator (lDc), /IF is a fixed point of F } 

XO/lF=X /I X=RoF.x0/lF 
{ <= is obvious; =? by (14) and (3) } 

X = R ° F.X ° /IF 

More significantly, equation (18) has a unique solution, which we shall now prove. It 
will come as no surprise that a goal in our proof is to invoke the induction principle (13). 
How we do so is, in our view, particularly elegant and offers an excellent illustration of 
the benefits to be gained from a systematic development of a theory taking account of 
clearly stated calculational rules, in this case the Galois connection between factors and 
composition. 
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Suppose P and Q are two solutions to (18). I.e. 

(20) P - R 0 F.P 0 pF 

(21) Q = R 0 F.Q 0 pF 

Since P and Q are completely symmetrical our task reduces to showing that Q ~ P. We 
use factor theory and the induction principle to prove this property as follows. 

Q~P 
{ P = {(20), theorem 19 } po pF } 

Q ~ P 0 pF 
{ (la) } 

P\Q ~ pF 
{ induction principle (13) } 

P\Q ~ F.(P\Q) 
{ (la) } 

Q ~ P 0 F.(P\Q) 
{ (20), (21), theorem 19 } 

R 0 F.Q ~ R 0 F.P 0 F.(P\Q) 
{ F is a relator, monotonicity of composition} 

F.Q ~ F.(P 0 P\Q) 
{ (2a), monotonicityof relators} 

true 

In conclusion we have: 

Corollary 22 (Unique Extension Property) 
For all specs X and R, 

X = URD _ X - R 0 F.X 0 pF 

o 

4.4 Consequences of the UEP 
Were we obliged to refer to one theorem in the paper that is the most important of all 
then it would be the above unique extension property. It will be used so often below that 
we will refer to it within proof hints simply as "uep". A first example is the simple but 
nevertheless useful identity rule: 

Theorem 23 (Identity Rule) 
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Proof 

o 

/IF = ~/lFD 
{ uep } 

/IF = /IF 0 F./lF 0 /IF 
{ (12), (14) and (3) } 

true 

Also, the coincidence in ~RD of the least and greatest solutions of (18) together with the 
Knaster-Tarski theorem gives: 

Theorem 24 

(a) X = ~RD {= X = R 0 F.x 0 /IF 

(b) X;;;J ~RD {= X;;;J R 0 F.X 0 /IF 

(c) X ~ ~RD {= X ~ R 0 F.X 0 /IF 
o 

A corollary of the above that figures very prominently in program calculations is 

Corollary 25 (Fusion Properties) 

(a) U 0 ~VD = ~RD {= u 0 V = R 0 F.U 
(b) U 0 QVD ;;;J QRD {= U 0 V ;;;J R 0 F.U 

(c) U 0 QVD ~ QRD {= U 0 V c: R 0 F.U 

Proof Let::::J E {=,;;;J, ~}. Then 

o 

U 0 QVD <l QRD 
{ (24) } 

U 0 QVD <l R 0 F.(U 0 QVD) 0/lF 
{ uepi (lOc) } 

U 0 V 0 F.QVD 0/lF ::::J R 0 F.U 0 F.QVD 0 /IF 
{ invariance of ::::J under composition} 

U 0 V ::::J R 0 F.U 

We call the above properties "fusion properties" because during their use as left
to-right rewrite rules a spec is "fused" with a catamorphism to form a catamorphism. 
(Analogous to our fusion properties are so-called "loop fusion" properties.) Note, however, 
that we do not always use the rules to "fuse" specs; just as often we use them to "defuse" 
a spec into component parts. The reader should not allow the one-way character of the 
name to prejudice their use of such rules. 
Note: Previously (e.g. [5J and [37]) we used instead the term "promotion property" in 
order to establish the connection with a technique used by Bird [11 J for improving the 
efficiency of functional programs. 
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Theorem 26 (Monotonicity) 

Proof 

o 

QRD ;;) QSD 
{ fusion (25b), U := I } 

loR ;;) S 0 F.I 
{ (lOa) } 

R;;)S 

Theorem 27 (Imp and co-imp preservation) 

The function a-D respects (a) imps and (b) co-imps 

Proof 

(a) I :::J aID 0 af Du 
{ left factors (1 b) } 

IIQfDu :::J afD 
{ (24b) } 

IlalDu :::J f 0 F.(IlafDu) °/IF 
{ left factors (1 b) } 

I ;;) f 0 F.(IlaIDu) 0 /IF 0 alDu 
{ (3), reverse} 

I :::J f 0 F.(IlafDu) 0 (aID o/lF)u 
{ (17) } 

I :::J f 0 F.(IIQIDu) 0 alDu 
{ computation rule (15a), reverse} 

I ;;) f 0 F.(IlaIDu) 0 F.aIDu 0 fu 
{ relators (lOc) } 

I :::J f 0 F.(IlalDu 0 aIDu) 0 fu 
{ left factors (2b), monotonicity } 

I :::J f 0 F.I 0 fu 
{ (2a), monotonicity } 

I :::J f 0 fu 

The proof of (b), i.e. 

I :::J afDu 0 aID {= I ;;) fu 0 f 

is left as an entertaining exercise for the reader. One proof proceeds in the same way except 
that right factors are used instead of left factors. There is, however, a much shorter proof 
making use of the fusion properties. Part (cl is, of course, just the conjunction of (al and 
(b ). 
o 
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5 Parameterised Types 

5.1 New relators from old 

The theorems in the earlier sections are all well and good but a major concern is to build 
new parameterised type constructors from existing ones. Within the world of functions 
the technique is now well-understood: consider a binary functor and abstract over one 
of its arguments. That is, if @ is a binary functor and A is a monotype we consider the 
unary functor A@ where for type B, 

(A@).B 

and, for function j, 

This defines, as above, a monotype Jl( A@) that is parameterised by A. In other words, 
a function'" has been identified from monotypes to monotypes, where"" A = Jl( A@). It 
remains to show that", can be extended to map functions to functions in such a way that 
it is a functor. To see how this is done we refer the reader to [38]. 

Our concern here is, however, not limited to functions. We wish to prove that", is a 
relator: i.e. it can be extended to map specs to specs in such a way that it has all the 
properties required of a relator. The achievement of this goal is delightfully simple. Within 
the current algebraic setting the technique parallels that outlined above, but involves just 
the one definition. Specifically, the following: 

Definition 28 
Suppose@isabinaryrelator. It is easy to verify that /@isarelator(where(/@).R - /@ 
R). Its catamorphisms therefore exist and we may define: 

o 

Note that ",R is the least solution of the equation X·· X = R @ X. (See the 
remarks following definition 15). 

In the following calculations we adopt the convention that composition has lower 
precedence than "@". We also drop the argument "/@" within the catamorphism brackets 
since our discussion will be confined to just this one relator. 

For easy reference it is useful to instantiate the unique extension property, computation 
rule and fusion properties of section 4.4 with F := /@ and the definition of "" R. After 
some simplification, using in particular the assumed compositionality of @, these become: 

(Unique extension property) 

(29) X = ",R X = R@X 0 Jl(I@) 
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(Computation rules) 

(30) um - R 0 10 URn = URD 0 fJ(10) 
(31) ",R = R0",R = ",R 0 fJ(I0) 

(Fusion laws) 

(32) U 0 ",V :sJ ",R {= U 0 V01 Q R0U 

where "~" is any of "=", "~", "~". 

Recall also the defining property of fJ( 10): 

(33) fJ(10) = 10fJ(I0) 

(34) X:::l fJ(I0) {= X:::l 10 X 

As would be expected, the fixed-point operator is monotonic in the following sense: 

Lemma 35 

(Note: Up till now we have used the operator "fJ" only in the context of a relator. In 
general R0 is not a relator (although 10 is), but it is monotonic and so the existence of 
a least fixed point is guaranteed by the Knaster-Tarski theorem.) 
Proof 

o 

J.L(R0) ;;) J.L(S0) 
{ definition of fJ(S0) } 

fJ( R0) ;;) S 0 fJ( R0) 
{ definition of fJ(R0) } 

R 0 fJ(R0) :::l S 0 fJ(R0) 
{ monotonicity of relators} 

R:::lS 

By theorems lIla) and 14, fJ(I0) is a monotype. Applying lemma 35 we thus get the 
slightly more general: 

Corollary 36 

o 

which is the crucial ingredient in verifying the following: 

Theorem 37 For all monotypes A 

wA = fJ(A0) 
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Proof 

o 

Assume A is a monotype. Then, 

JL(A0) = ",A 
{ (29) } 

JL(A0) = A 0 JL(A0) 0 1'(10) 
{ (33) } 

JL(A0) = JL(A0) 0 1'(10) 
{ properties of monotypes, specifically (4) } 

JL(A0) = JL(A0) n 1'(10) 
{ corollary 36 } 

true 

It is a straightforward matter to verify that", is a relator. Here are the proofs of the 
four properties. 

Lemma 38 

Proof Immediate from the conjunction of theorem 37 and corollary 36. 
o 

We interpose a small lemma which we have found is often useful in its own right. 

Lemma 39 

Proof 

o 

QRD 0 ",S = QR 0 S01D 

QRD 0 ",S = QR 0 S01D 
{ fusion - (25a) } 

QRD 0 S01 = R 0 S01 0 10QRD 
{ compositionality of relators} 

QRDoS01 = Ro10QRDoS01 
{ computation rule, (30) } 

true 

Lemma 40 

",R 0 wS = ",(R 0 S) 

25 



Proof 

= 

= 

o 

wR ° wS 
{ defn. of w } 

UR0IDowS 
{lemma 39 } 

UR0Io S0ID 
{ compositionality of relators} 

U(RoS)0ID 
{ defn. of w } 

w(R ° S) 

Lemma 41 (Monotonicity) 

Proof 
Immediate from the definition of wand the monotonicity of catamorphisms and relators. 
o 

Lemma 42 (Revertability) 

Proof 

o 

(wR)u = w(Ru) 

(wR)u = w(Ru) 
{ uep (29) } 

(wR)u = Ru 0 (wR)u ° /L(I0) 
{ properties of reverse, 0 is a relator } 

wR = /L(I0) ° R0 wR 
{ theorem 36; computation rule (31) } 

wR = wI ° wR 
{ lemma 40, I is the unit of composition} 

true 

Theorem 43 w is a relator. 

Proof Lemmas 38, 40, 41 and 42. 
o 
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6 Conclusions 

Although the relational calculus has now been around for quite a number of years it 
has been disparaged as unworkable (in comparison to existing programming calculi). In 
this paper we have provided elements of an argument to the contrary: that a useful 
calculus can be built around a relational theory of datatypes. To this end we have been 
particular conscious of the brevity and clarity of our definitions and calculations. No 
doubt improvements can be made, but at the time of writing we feel that we have an 
elegant and convincing theory that is indeed worth exploring further. 

Of course, what we have presented here is only a beginning. The immediate cry will 
undoubtedly be "let us see how you use the theory to develop some programs". Some 
examples of program derivation that are problematic in the Bird-Meertens formalism but 
are not so in the current relational framework are discussed in [38]. However, we would 
be the first to admit that, as yet, we have little experience with the practical application 
of the theory to program development. 

In terms of theory development there also remains much to be done. The present 
theory encompasses only the very simplest sorts of datatypes commonly occurring in 
computer programs. We have not yet developed the tools to handle infinite data structures 
(such as streams or game trees), types with laws (e.g. finite bags) or subtypes (e.g. 
height-balanced binary trees). Some of this work is underway but it would be premature 
to hazard a judgement on its chances of success. We hope, however, that some others 
may have been sufficiently stimulated to join us in our endeavour. 
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