

Relational catamorphisms

Citation for published version (APA):
Backhouse, R. C., Bruin, de, P. J., Malcolm, G. R., Voermans, T. S., & Woude, van der, J. C. S. P. (1991).
Relational catamorphisms. (Computing science notes; Vol. 9111). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/1991

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/ef2f58bd-bc6c-4bbc-bb57-b0283a29353f

Eindhoven University of Technology

Department of Mathematics and Computing Science

RELATIONAL CATAMORPHISMS

by

R.C.Backhouse P.J. de Bruin G.Malcolm
E.Voermans J. van der Woude

Computing Science Note 91/11
Eindhoven, July 1991

COMPUTING SCIENCE NOTES

This is a series of notes of the Computing
Science Section of the Depattment of
Mathematics and Computing Science
Eindhoven University of Technology.
Since many of these notes are preliminary
versions or may be published elsewhere, they
have a limited distribution only and are not
for review.
Copies of these notes are available from the
author or the editor. .

Eindhoven University of Technology
Department of Mathematics and Computing Science
P.O. Box 513
5600 MB EINDHOVEN
The Netherlands
ISSN 0926-4515

All rights reserved
Editors: prof.dr.M.Rem

prof.dr.K.M. van Hee

RELATIONAL CATAMORPHISMS

Roland C. Backhouse* Peter J. de Bruin t Grant Malcolm!
Ed Voermans* Jaa.p van der Woude*§

Abstrnct
This paper reports ongoing resea.rch into a theory of datatypes based on the calculus
of relations. A fundamental concept introduced here is the notion of "relator" which
is an ada.ption of the categorical notion of functor. Relational catamorphisms are then
introduced and shown to satisfy a unique extension property. Several further properties
are discussed including so-called fusion properties. The paper is concluded by showing
how new relators' ca.n be constructed by an appropriate choice of relational catamorphism.

"Depart.ment of Mathematics and Computing Science, Eindhoven University of Technology, P.O. Dox
513, 5600 MD Eindhoven, The Netherlands,

tDepartmcnt of Computer Science, Rijksuniversiteit Groningen, P.O. Box 800, 9700 AV Groningen,
The Netherlands,

IComputing Laboratory, Programming Research Group, Oxford University, 8-11 Keble Road, Oxford
OXI 3QD, United Kingdom.

ICWI, 1',0, Dox 4079, 1009 AD Amst.erdam, The Netherlands, Sponsored by NWO (NF 62,518).

1 Introduction

Since the observation was first made (e.g. by Hoare [30]) that program structure is related
to data structure the notion of type has pervaded many theories of program design, so
much so that in our view such a notion has become indispensable. In line with its perceived
importance there is now an abundance of type theories, each drawing substance from one
or more established areas of mathematics - including category theory, intuitionism and
the second order lambda calculus. This paper explores yet another type theory, this time
based on an axiomatic presentation of the theory of binary relations.

Our reasons for embarking on this exploration involved an element of satisfaction
and an element of dissatisfaction with current programming research. The element of
satisfaction comprises, first, the ever-growing knowledge and understanding of theories
of type, second, the pioneering work of Bird and Meertens on economical notations for
functional programming and, third, the now well-established literature on the calculation
of imperative programs. The element of dissatisfaction arose from a growing frustration
with the fundamental limitations of the functional programming paradigm within which
almost all type theories have been developed up till now, and with the continuing disparity
in scale between formal and informal program development. Let us begin with the element
of satisfaction.

Type Theory, Category Theory and the Bird-Meertens Formalism

The history of research into type structure as it pertains to programming is something that
we do not care or dare to trace. Our own understanding has, however, been substantially
influenced in recent years from two directions: the work of the "intuitionists" , in particular
Martin-Lof [40], the Goteborg group [46] and the NuPRL group [21] on a theory of types
based on the notion of "propositions-as-types:' (this work now being known to have strong
connections to the Automath project led by de Bruijn [18]), and the work of category
theoreticians on algebraic approaches to program specification [28, 43].

Martin-L6£'s theory of types can be characterised as a theory of inductively-defined
types. A major attraction of his theory is that there is an elegant scheme underlying the
definition of individual types that encourages and facilitates the construction of new types.
A contribution of members of the current consortium was to recognise and elaborate on
this scheme, leading to the publication of [6]; similar ideas have also been pursued by
Dybjer [27] and others.

In the categorical approach to type structure so-called "unique extension properties"
are used to characterise types as either the "initial" or "terminal" objects in a category.
Hagino [29] proposed a method of type-definition based on this characterisation. Most
researchers would concede that the two approaches are formally equivalent but would
argue that in nature they are quite distinct, the intuitionistic approach being based on
the natural-deduction style of proof development whereas the categorical approach is much
more equational and often better suited to program development. On the other hand a

1

major innovation of Martin-Liif's theory was the notion of dependent type, which notion
does not seem to be so readily expressible within category theory.

Quite independently of the above work Bird and Meertens have been collaborating for
many years in the development of an APL-like notation for functional programs which
emphasises economy of expression and calculation. The importance of such economy to
programming has been eloquently advocated by Meertens [41 J and it would not do justice
to his work to try to summarise the arguments here. A significant outcome, however, of
this collaboration has been an impressive, albeit limited, calculus of program construction
based around the notion of homomorphism on a list structure. The calculus has been
used to reformulate existing solutions and to develop ingenious new solutions to many
list-programming and other problems [12, 13, 15, 14, 16J.

Some few years ago, research began with the aim of extending Bird and Meertens' work
on lists to arbitrary, inductively-defined, data types. The conjecture we made at that time
and which has since been amply confirmed was that the basic concepts and calculational
techniques propounded by Bird and Meertens would be equally relevant and powerful in a
more general type-theoretic setting. In the process of conducting this research we became
more and more familiar with the categorical approach to type definition, and began to
appreciate and further the application of unique extension properties. For accounts of
this work refer to [2, 37, 36J.

SO much for the element of satisfaction. Now to the element of dissatisfaction.

Indeterminacy and Notational Issues

Although endowed with many mathematical niceties, there is, we believe, one overriding
reason why purely-functional programming can only be a passing phase in the devel
opment of computing science: that is the lack of nondeterminism. Functions are by
definition deterministic, but non determinism - the ability to postpone, sometimes indef
initely, decisions - has long been recognised as a vital component of any programming
calculus. Indeed, the inclusion of non determinism is a major desideratum within calculi
for imperative programming [25J. On the other hand, notions of type within imperative
programming languages are grossly impoverished relative to the same notions in func
tional languages. Type theory has, until now, made the greatest advances within the
functional programming paradigm.

In addition to our dissatisfaction with the determinism of functional programming and
the type-poverty of imperative programming, we are becoming more and more distressed
with what we perceive as a severe notational flaw that pervades the everyday practice
of both imperative and functional programming, namely the ubiquitous use of bound
variables. As a consequence formal manipulations become long and unwieldy and can
indeed obscure rather than elucidate an argument. The minimisation of bound variables
has, of course, long been advocated by category theory as well as being fundamental to the
Bird-Meertens formalism. However, mathematical practice and programming practice lag
far behind theoretical argument, and we continue to find scope for substantial economies
in calculation. For more explanation and discussion of our viewpoint see [3J.

SO much for the element of dissatisfaction.

2

The Need For a Relational Framework

The relational calculus has been explored in the past as a framework for programming, for
example in [9], [10], [23] and [49]. (This list is certainly by no means exhaustive.) Recently
Hoare and He [32] have strongly advocated the view of specifications as relations and
the programming process as that of refining a given relation into a (possibly functional)
implementation. So far as we know, however, none of this research has combined the
relational calculus with type theory.

The need to admit relations, rather than functions, in programming was also much in
evidence at a summer school held as recently as September, 1989. At this summer school
de Moor lectured on his work on applying a relational calculus to various optimisation
problems [44] (such problems being by nature nondeterministic since unique optima are
exceptional) and to program inversion [45] whilst Sheeran [50] and Jones [33] reported on
the use of relations to describe butterfly circuits and the Fast Fourier Transform.

"Needs", "wishes" or "wouldn't-it-be-nice lists" are all very well, but the art of doing
research is to recognise out of the great multitude of outstanding issues those few that
can be resolved elegantly and effectively using current knowledge and techniques. The
incentive for us to investigate a relational theory of types was the (re)discovery by de
Bruin of the notion of "naturality" of polymorphism [19]. (As it turns out, this notion
was already known to Reynolds [47] much earlier but its full relevance to program calcula
tion does not seem to have been envisaged. De Bruin's and, more or less simultaneously,
Wadler's [52] observation was that naturality of polymorphism explains and indeed pre
dicts several of the most fundamental laws in the Bird-Meertens formalism.) In order to
express the notion of "naturality" one is obliged to extend the definition of a type functor
(a type constructor and corresponding "map" operator) to a mapping from relations to
relations. In other words, relations are essential to meta-reasoning about polymorphic
type constructors but there seems to be no reason why their use should be restricted to
the meta-level. One is indeed encouraged to replace the categorical notion of "functor" by
a (seemingly) stronger notion of "relator". The ideas underlying, the goals of, and prelim
inary justification for, a type-oriented theory of relational programming were discussed
by Backhouse [1] at the above-mentioned summer school.

Relational Programming

The starting point for the present work is the (already-mentioned) notion of "relational
programming" as put forward by Hoare anq He [32]. In their view, specifications and
implementations are binary relations on input and output values. An implementation f
satisfies specification R if

fC;;R

(where a binary relation is regarded as a set of pairs). Programming is thus the process
of calculating an implementation satisfying a given specification.

Which binary relations count as specifications is quite unrestricted: the whole of the
language of mathematics may be used as specification language. Which binary relations
count as implementations is fluid: the more we discover about what can and what cannot
be efficiently automated the more "higher-level" our programming languages will become.

3

Thus the two notions of specification and implementation are deliberately left vague in
order to take account of future developments.

In spite of this vagueness there is still much that can be said about what might
constitute a "healthy" theory of relational programming. Monotonicity, for example,
of the operators in one's implementation language is desirable for "compositionality"
of programming: if <SI is a binary operator, say, on relations monotonicity of <SI is the
statement that

From a programming point of view this is the statement that a specification written in the
form U <SI V can be implemented by finding an implementation R of U and - separately
- an implementation S of V, and then composing them to form R <SI S.

Given the foregoing preamble, it will come as no surprise to the reader to learn that
our principal "healthiness" criterion is that the theory should support a theory of types
that encourages and facilitates the introduction of new type structures. Indeed, this whole
paper is devoted to the study of a general mechanism for defining a polymorphic type
constructor and associated "catamorphisms" within an axiomatic theory of relations.
The sort of type constructors that can be defined using this mechanism are familiar
constructors like List and Tree; in this sense the paper offers no surprises. On the other
hand, we do present a whole host of mathematical properties which, we argue, testify to
the theory's healthiness both from a theoretical and a practical viewpoint. Moreover, we
are particularly encouraged by the economy and clarity of our calculations, which is in
our view of paramount importance.

The current paper is a much-abridged version of the theory that we have developed
thus far [4, 7]. We begin the current paper in the following section with a summary of an
axiom system for binpy relations. (The system is not complete and is supplemented in [7]
with axioms characterising the unit type, cartesian product and disjoint sum.) With this
system as basis we build up in section 3 a vocabulary for discussing our theory. Most of
the concepts and laws introduced in sections 2 and 3 can be found in one place or another
in the mathematical literature and we claim no originality for their introduction. The
most important concept introduced in section 3, that of "relator", does, however, appear
to be novel and it is this concept that forms the backbone of our work. The main contri
bution of the paper begins in section 4 where we introduce and examine the properties of
(relational) "catamorphisms". A specific concern in this section is to compare the prop
erties of relational catamorphisms with functional catamorphisms (i.e. homomorphisms
with domain an initial algebra). Finally, section 5 shows how parameterised types are
defined and explores their junctivity properties.

We conclude this introduction with a short account of the style we use for presenting
calculations.

Proof Format

For the presentation of equational proofs we use the style introduced by W.H.J. Feijen in
[24]. That is, we write

4

R
= {p}

8
= {q}

T

R,8 and T are expressions containing one or more free variables. p and q are most often
semi-formal hints why (for all instantiations of the free variables) R = 8 and 8 = T,
respectively; in constructive proofs (discussed shortly) p and q have a formal status.

This format emphasises the transitivity of equality: all the expressions R, 8 and T
are equal, but in particular the first and the last. We use other transitive operators in
place of equality: == (equivalence), <= (follows from) =} (implies),;) and I; (the inclusion
operators defined in section 3). In such cases the connectives are used conjunctively; for
example R <= 8 <= T means (R <= 8) and (8 <= T).

2 The Algebraic Framework

A major component of our endeavour is the development of a calculus of programming that
permits and, indeed, encourages clear and economical calculation. For this we need an
elegant algebraic setting. Although from the mathematical point of view, there is nothing
wrong with a standard set-theoretic approach nor with the algebraically more attractive
predicate calculus, we are dissatisfied with the persistent appearance of arguments and
dummies in those systems. This invites us to look for a setting one abstraction level
higher that fits our manipulative needs.

In order to choose such an abstract setting ("syntax" for short) several design criteria
should be established. Here some of ours are mentioned, not as dictates but just for the
sake of clarifying our point of view.

• The syntax should reflect the structure of the everyday mathematical view of rela
tions as tightly as possible (excluding historical oddities, inelegancies and prejudice).

• The syntax should be built up in layers. If possible, those layers should be well
known syntactical unities with proven "elegance".

• The meta-language used for juggling with the syntax is the predicate calculus.

• There should be a clear distinction between terms in the meta-language and terms
in the syntax.

Fortunately we don't have to start from scratch. The road towards an "axiomatic
theory of relations" is already paved with the pioneering work of Tarski [51). Besides,
the above point of view is apparent in most of the curricula nowadays, be it not always
explicit. Without further ado we present the most basic part of the syntax.

5

2.0.1 Plat Calculus and the Knaster-Tarski Theorem

Let A be a set, the elements of which are to be called specs. On A we impose the structure
of a complete, completely distributive, complemented lattice

(A, n, u, ~, IT, lJ..)

where "n" and "u" are associative and idempotent, binary infix operators with unit
elements "IT" and "lJ..", respectively, an4 "-," is the unary prefix operator denoting
complement (or negation). We assume familiarity with the standard definition of a lattice
given, for example, by Birkhoff [17]. By "complete lattice" we mean that the extremums

U(i: i E I: R;)
and n(i: iEI: R;)

exist for all families of specs {i: i E I: R;}, where the index set I is completely
arbitrary. "Completely distributive lattice" means that

and
R n
R U

U(i: iEI: S;)
n(i:iEI:S;)

U(i: iEI: RnS;)
n(i: iEI: RUS;)

for all specs R and all families of specs {i: i E I: S;}. Finally, "complemented
lattice" means that -,R exists for all specs R and obeys de Morgan '5 laws and the double
negation rule. (Note: the definition of a Boolean algebra requires only the existence of
finite extremums and distributivity over such finite extremums. Our requirements are
thus stronger.) The ordering relation induced by the lattice structure will be denoted by
"~" .

This structure is well known from the predicate calculus: for "n" and "u" read con
junction and disjunction, respectively, for "IT" and "lJ.." read true and false, and for
";;)" read "~". We call such a structure a plat, the "p" standing for power set and "lat"
standing for lattice. Since the structure is so well known and well documented we shall
assume a high degree of familiarity with it.

Among the more significant properties of such a structure is the (well-known) "Knaster
Tarski fixpoint theorem". Since we shall use the theorem frequently we summarise it here
(to the extent and in the form appropriate to our own needs). Specifically, it says that,
for arbitrary monotonic function B, the equation

X.. X = B.X

has a smallest solution, which henceforth we denote by ,,0, characterised by the two
properties:

and, for all X,

Moreover, such an equation also has a largest solution, which henceforth we denote by
vO, characterised by the properties:

6

v() (). v()

and, for all X,

X I;;; v() .;= X I;;; ().X

For an excellent account of plat calculus (although that name is not used!), including
a modern proof of the Knaster-Tarski theorem and a clear and careful exposition of its
implications, we would recommend the reader to refer to [25].

2.0.2 Composition and Factors

The second layer is the monoid structure for composition:

(A, 0, I)

where 0 is an associative binary infix operator with unit element [.

The interface between these two layers is: 0 is coordinatewise universally "cup-junctive".
I.e. for V, W <;;; A,

(UV) 0 (UW) U(P,Q: PEV 1\ QEW: poQ)

In particular,

• lJ.. is a left and right zero for 0,

• 0 is monotonic with respect to ;2.

• Tr 0 Tr = Tr.

Another, less immediate and somewhat unfamiliar consequence of this interface, is the
existence of so-called "left" and "right factors" defined as follows.

Definition 1 For specs Rand S we define the right factor R\S by

(a) R\S ;2 X

and the left factor S / R by

(b) S / R ::;;J X _ S::;;J X 0 R

o

Left and right factors are thus defined to be the largest solutions to inequations in a
variable X (the inequation to the right of the equivalence in their respective definitions).
Although we shall have no use for it here we mention that the operators "\" and "/"
associate with each other (i.e. P\(Q/R) = (P\Q)/R), thus justifying writing P\Q/R
and that such is a factor of Q.

Equations (la) and (lb) are instances of what are known as "Galois connections".
(See e.g. [35], in particular exercise 1 on p.15.). Our use of the word "factor" is intended
to suggest an analogy between composition and multiplication, and between factoring and
division. This analogy is further reinforced by the following easily derived cancellation
properties of factors.

7

Lemma 2

(a) S :::J R 0 (R\S)
(b) S ;;;1 (SIR) 0 R

o

Evidence for the claim that definitions (la) and (lb) and, in particular, the calcula
tional possibilities they admit are important but not well known is the fact that they have
surfaced in various guises and under various names over the last fifty years beginning, to
our knowledge, with [26J (under the names left and right "residuals") and involving di
verse application areas such as the structure of natural language [34J, regularity properties
of generalised-sequential machines [22J (under the name used here of left and right "fac
tors"), the well-known Knuth-Morris-Pratt string searching algorithm [8J, and program
specification [32J (under the names "weakest pre- and post-specification"). We prefer
Conway's [22J more anonymous terminology to that used by Hoare and He [32J. The term
"residual", which is also used by Birkhoff [17J, would have been equally acceptable. Note,
however, that of the above-referenced works, Hoare and He's calculational formulation of
the properties of "factors" is the single most significant contribution to the present work.

Remark In addition to the use of different terminology our choice of notation is exactly
opposite to Hoare and He's: they would write SIR where we write R\S, and vice-versa
R\S where we write SIR. Our own choice of notation is justified by the - for us very
important - property that in the use of (2a) and (2b) the "cancelled" expressions are
adjacent. We reject outright the notation adopted by Birkhoff [17J as unsystematic and
inappropriate to compact calculation. End of Remark

2.0.3 Reverse

The third layer is the "reverse structure",

(.A, u)

where "u" is a unary postfix operator such that it is its own inverse.

The interface with the first layer is that "u" is an isomorphism of plats. I.e. for all
P,Q Eo4,

P;;;1Q pu ;;;1 Qu

Consequently, for all P, Q E .A,

~(pu) (~P)u

(P u Q)u - pu U Qu

(P n Q)u pu n Qu
Tru - Tr
lJ..u - lJ..

8

Remark As a rule we shall write the names of unary functions as prefixes to their
arguments. A partial justification for making an exception of "u" is that it commutes
with ",", thus permitting us to write the syntactically ambiguous ",Ru". Later we shall
see that "u" also commutes (by definition) with so-called "relators". The latter is the
main reason for this choice of notation.
End of Remark

The interface with the second layer is formed by the two rules

(R 0 S)u = Su 0 Ru

and

/u /

2.0.4 Operator precedence

Some remarks on operator precedence are necessary to enable the reader to parse our
formulae. First, as always, operators in the metalanguage have lower precedence than
operators in the object language. The principle meta-operators we use are equivalence
("="), implication ("=}") and follows-from ("~") - these all having equal precedence
, together with conjunction ("A") and disjunction ("V") - which have equal precedence
higher than that of the other meta-operators. The precedence of the operators in the plat
structure follows the same pattern. That is, "=", ":::;)" and "I:;;" all have equal precedence;
so do "u" and "n"; and, the former is lower than the latter. Composition (" 0") has
a yet higher precedence than all of the operators mentioned thus far, whilst the two
factoring operators ("/" and "\") have the highest precedence of all the binary operators.
Finally, all unary operators in the object language, whether prefix or postfix, have the
same precedence which is the highest of all. Parentheses will be used to disambiguate
expressions where this is necessary.

2.0.5 The RS and Rotation Rules

To the above axioms we now add an axiom that acts as an interface between all three
layers.

The RS Rule

p 0 'x 0 Q x ::::J pu 0 y 0 Qu

The name "RS" is a mnemonic for "Rotation and Shunting". The "rotation rule" is
obtained by making the substitutions Y := Ru, P := S, X .- ,T and Q := / and
simplifying using the properties of /, reverse and complement.

Rotation Rule

,Ru ::::J SoT ,Tu ::::J R 0 S

(Note how the variables R, Sand T are rotated in going from the left to the right side
of the rule.) "Shunting" is the name given by Dijkstra and Scholten [25] to an important

9

rule in the predicate calculus. Specifically, by making the substitutions Y := U, P := I,
X := V, and Q := Wand simplifying we obtain the rule

~U :J ~V 0 W V :J U 0 Wu

Interpreting "0" as conjunction, "u" as the identity function, and "~" as follows-from
this is the afore-mentioned shunting rule.

It is our experience that the RS rule can meet with considerable resistance for one of
two reasons. First, for calculational purposes, a rule with four free variables is (rightly)
regarded as approaching, if not outwith, the limits of useability. Second, for those already
familiar with the relational calculus, there is resistance to the fact that we have chosen to
replace the better known "Schroder" rule which states that the following three statements
are all equivalent.

R 0 seT
Ru 0 ~T r:;;: ~s

~T 0 Su r:;;: ~R

(See, for example, [48J for historical references.) To counter these arguments we would
point out that the RS rule is more compact than the Schroder rule (two statements are
equivalent rather than three) and, more importantly, has a clean syntactic form that
makes it easy to remember and to apply. The rotation rule shares these advantages
as well as involving only three free variables, but suffers the disadvantage that in some
calculations two successive uses are required where only one use of the RS rule is necessary.
In combination with other laws both rules are equivalent to the Schroder rule. (The
Schroder rule can also be reduced to the equivalence of just two statements, making our
first argument void, but then it would suffer the same disadvantage as the rotation rule,
which is probably the reason why it is always stated in the way that it is.)

2.1 Models

Various models of the above aXIOms are discussed III [4J with regard to the following
questions:

(a) Are the layers and axioms independent?
(b) Are the successive extensions conservative?

(c) Does the axiomatisation characterise the set-theoretic relations
completely?

Here we shall content ourselves with a summary of the conclusions, namely: the set
theoretic relations do indeed form a model of the axiom system but the axiom system is
not complete for this model; the RS and cone rules are independent of the other axioms
but the reverse structure is not.

A final comment with regard to the idiosyncracies of our naming conventions. The
following sections must serve a dual purpose. The technical aim is to build up a theory
of types based upon the above syntax. To do this in a way that is evidently free from
logical inconsistencies necessitates making a clear distinction between the theory itself

10

and the metalanguage. For this reason we have chosen to call elements of A "specs"
rather than "relations" and to use the symbols "n" and "u" etc. rather than "n" and
"u" etc. To serve the second purpose we intersperse the development with references to
the relational model. The reader may prefer to construct their own proofs of the various
lemmas, theorems etc. in this one interpretation, but they do so at their own peril.

3 Foundations

The purpose of this (abridged) section is to build up a vocabulary for our later discussion
of the properties of catamorphisms. In order to avoid confusion with existing terminology
we make a complete reappraisal of what is meant by "type", "function", "type construc
tor" etc. Nevertheless, it should be emphasised that - with the important exception
of the notion of "relator" - the concepts defined here are amply documented in the
mathematical literature and we make no claim to originality.

3.1 Monotypes

We say that spec A is a monotype iff I ;;;) A.
In the relational model, for example, we may assume that the universe 1[J contains two

unequal values true and false. The monotype 18 of booleans is then defined to be the
relation

{(true, true), (false, false)}

Note that for monotypes A and B

(3)
(4)

A InA =

BoA

Au = AoA

AnB

Properties such as (3) and (4) stated here without proof are proven in [4].
We often write

RESrvT

as a synonym for

(5) SoR=R=RoT

Note that (5) defines SrvT to be a subset of A. Typically Sand T will be monotypes,
but we prefer not to complicate the definition by making such a restriction.

3.2 Imps and Co-imps

In this subsection we define "imps" and "co-imps" as special classes of specs. In the
relational model an "imp" is a function.

11

Definition 6

(a) A spec I is said to be an imp if and only if I:;;) 1 0 lu.
(b) A spec I is said to be a co-imp if and only if lu is an imp.

o

The intended interpretation is that an "imp" is an "imp"lementation. On the other
hand, it is not the intention that all implementations are "imps". Apart from their
interpretation imps have an important distributive property not enjoyed by arbitrary
specs, namely:

Theorem 7 If I is an imp then, for all non-empty sets of specs V,

n(P: P E V: P) 0 I = n (P: P E V: po f)

In particular, for all specs Rand S,

(RnS) 0 I (R 0 I) n (S 0 f)

o

Dually we have:

Theorem 8 If I is a co-imp then, for all non-empty sets of specs V,

Ion (P: P E V: P) n(P: PEV: loP)

In particular, for all specs Rand S,

I 0 (R n S) = (! 0 R) n (! 0 S)

o

In the relational model a monotype is the identity function on that type. More gen
erally, the requirement of being a function is the requirement of being single-valued on
some subset of 1[J, the so-called "domain" of the function. The domain and range are
made explicit in the following.

Definition 9 For monotypes A and B we define the set A+--B by I E A+--B whenever

(a)
(b)
(c)

loB = I
lu 0 I ::J B,
A ::J lo/u

and

The nomenclature "I E A+--B" is verbalised by saying that" I is an imp to A lrom B".
o

12

In terms of the relational model, property (9a) expresses the statement that the domain
of definition of f is confined to B. Property (9b) expresses the statement that f is total
on domain B, i.e. for each x E B there is at least one y such that y (f) Xi finally, property
(9c) expresses the statement that f maps elements of B to A and that f is single-valued,
i.e. for each x E B there is at most one y such that y (f) x . . Their combination justifies
writing U f.x", for each x E B, denoting the unique object y in A such that y (f) x.

By including the above definition and not simultaneously including a dual notion
for co-imps we have introduced an asymmetry into our theory that until now has been
totally absent. This expresses a slight bias with an eye to the extension of the theory with
cartesian product and disjoint sum later in this section. We hasten to add, nonetheless,
that there is no such asymmetry in the theory at this instant and every property we state
for imps alone has a dual property for co-imps.

To avoid repeating assumptions and to assist the reader's understanding we continue
to use the conventions that capital letters A, B, C, ... at the beginning of the alphabet
denote monotypes, small letters f, g, h, . .. denote imps or co-imps, and capital letters
R, S, T, ... at the end of the alphabet denote arbitrary specs.

Finally, let us remark that the unconventional direction of the arrow in the statement
uf E A+--B" is entirely dictated by the choice to denote function application with
the function name to the left of its argument. (We owe the suggestion to deviate from
convention to Meertens [42J.)

3.3 Relators

In categorical approaches to type theory a parallel is drawn between the notion of type
constructor and the categorical notion of ufunctor", thereby emphasising that a type
constructor is not just a function from types to types but also comes equipped with a
function that maps arrows to arrows. For an informative account of this parallel see, for
example, [39J. In this subsection we propose a modest extension to the notion of functor
to which we give the name urelator".

Definition 10 A relator is a function, F, from specs to specs such that

(a) I ::::J F.I
(b) R-:;JS =} F.R -:;J F.S
(c) F.(RoS) F.R 0 F.S
(d) F.(Ru) (F.R)u

0

In view of (10d) we take the liberty of writing simply "F.Ru" without parentheses, thus
avoiding explicit use of the property.

The above ostensibly defines a unary relator but we also wish to allow it to serve
as the definition of a relator mapping an rn-ary vector of specs into an n-ary vector
of specs, for some natural numbers rn and n. (This is necessary in order to allow the
theory to encompass what are variously called Umutually recursive type definitions" and
"many-sorted algebras". More generally, there is no reason why urn" and un" may not be

13

some fixed but nevertheless arbitrary index sets. However, such a generalisation would
complicate the current discussion more than we deem justified.) The mechanism by which
we can do this is to assume that all the constants appearing in the definition ("=", ";)",
"/", "0" and "u") are silently "lifted" to operate on vectors. For example, if F maps
m-ary vectors into n-ary vectors, property (lOc) would be written out in the form

(F.(RtoSt, ... ,RmoSm))j = (F.(Rt, ... ,Rm))j 0 (F.(St, ... ,Sm))j

for all j, 1 ::; j ::; n, whereby the use of subscripts denotes projection of a vector onto one
of its components. It is, however, just such clumsy expressions that we want to avoid.

There are two cases that we make particular use of. The first case has to do with taking
fixed points of relators where an obvious requirement is that the arity of the domain vector
of the relator is identical to that of its range vector. We call such a relator an endorelator
in conformance with the terminology "endofunctor" used in category theory. The second
case is when F maps a pair of (vectors of) specs into a (vector of) spec(s). We refer to
such relators as binary relators and choose to denote them by infix operators. Thus, if 121
denotes a binary relator, its defining properties would be spelt out as follows.

1 ::::J 11211 (a)

(b)
(c)
(d)

R;)SAU;)V
(RoS) 121 (U 0 V)

~ RIZiU;)SIZiV

(Ru) 121 (Su) -
- (RIZi U) 0 (SIZi V)

(RIZi S)u

The notational advantage of writing "u" as a postfix to its argument is, of course, lost in
this case.

A property such as (c) we call an "abide" law; we also often refer to this law by saying
that binary relators "abide" with composition. The name was coined by Richard Bird (in
a different context). His motivation for the name was that it is short for "above/beside"
reflecting the following two-dimensional formulation of the law in which the relator and
composition are either above or beside each other.

R 0 S R S
121 = 121 0 121

U 0 V U V

(Our first encounter with a two-dimensional depiction of an abide law was in [31]. In the
category theory literature the term "interchange" rule (or law) is used.)

The following theorem allows a comparison to be made with our definition of "relator"
and the definition of "functor" (in the category of sets).

Theorem 11 If F is a relator then

(a) A is a monotype ~ F.A is a monotype
(b) I is an imp ~ F.I is an imp

(c) I is a co-imp ~ F.I is a co-imp
(d) IE A<--B ~ F.f E F.A<--F.B
(e) R E ArvB ~ F.R E F.ArvF.B

Proof
See the complete paper. 0

14

4 Initial Datatypes and Relational Catamorphisms

A fundamental argument for the use of type information in the design of large pro
grams is that the structure of the program is governed by the structure of the data. A
well-established example is the use of recursive descent to structure the parsing (and
compilation) of strings defined by a context-free grammar; here the structure of the data
is defined by its grammar and the structure of the parsing program is identical. The
idea is extended in the denotational description of programming languages where a fun
damental initial step is the definition of so-called domain equations; those familiar with
denotationaI semantics know that once this step has been taken the later steps are often
relatively mundane and straightforward. Users of strongly-typed languages like Pascal
will argue strongly that the effective use of type declarations is extremely important for
subsequent program development, and even users of untyped languages like Lisp will ad
mit that the programming errors that they make are often caused by type violations. A
fundamental goal of our research is therefore to develop calculi of program construction
that lay bare the oneness of program and data structure.

An example of a programming formalism in which this oneness plays the role of a
major design principle is the theory of types developed by Martin-Lo£. In this theory
each type is defined by four sets of rules one of which is the set of so-called introduction
rules and another is a singleton set containing the so-called elimination rule for the type.
(The remaining sets are not relevant to the present discussion.) The introduction rules
describe the structure of the elements of the type whereas the elimination rule says how to
construct functions over the elements of the type. As has been argued elsewhere [6], the
introduction rules completely define the type in the sense that all other rules (including
the elimination rule) are systematically derived from them. The elimination rule thus
expresses the notion that "nothing else" is in the type other than the elements that can
be constructed via the introduction rules by stating that the structure of functions on
elements of the type is completely governed by the structure of these rules.

In the algebraic approach that we are currently pursuing a different (although formally
equivalent) approach is taken to the definition of data types and in particular to expressing
the notion that "nothing else" is in the type other than the elements constructed via
its introduction rules. Nevertheless, the underlying principle is that a data type is a
structured set of elements that is equipped with a mechanism governed by that structure
for defining functions on the elements of the type. For the benefit of readers who may not
be familiar with it we now outline this approach as it pertains to functional programming.
Other readers will probably wish to skip the next two paragraphs; all they need to know
is that we use the term "cat amorphism" to refer to F-homomorphisms whose domain is
an initial F-algebra. (We are currently in the process of extending our work to terminal
algebras but none of that work is reported here.)

The approach involves several stages building up to the definition of a "universal
object" in a category of algebras. First, in place of the introduction rules in Martin-LOf's
system the notion of endofunctor is of paramount importance. An endofunctor is (in this
context) a pair of functions, one from types: to types and the other from functions to
functions. Typically, both functions are denoted by the same symbol. Suppose F is an
endofunctor, A and B are types and f and 9 are functions of composable type. Let IA

15

denote the identity function on the type A. Then it is required that

F.I E F.A <-- F.B <= I E A <-- B
F.IA - IF.A

and F.(f 0 g) - FJ 0 F.g

Without seeing some examples it is difficult for the uninitiated to envisage the correspon
dence between a number of introduction rules and an endofunctor. For the moment let
us just remark that typically an endofunctor will take the form of a disjoint sum of other
more primitive functors, and that each term in such a sum corresponds to one introduc
tion rule. The next step is to define an F-algebra as a pair consisting of a type A and
a [unction I E A <-- F.A. (Note that if, indeed, the endofunctor F is a disjoint sum
of other functors then the function I can be broken down into distinct components each
being applicable to elements introduced by one of the corresponding introduction rules.)
The data type defined by the endofunctor F is then an F -algebra satisfying a so-called
"universal property", namely that there is a unique homomorphism from the data type to
each F -algebra. Such homomorphisms take the place of the eliminators in Martin-LOf's
theory. To emphasise their special role we shall give them the name "catamorphism".

An example would be the data type natural number. Roughly speaking, IN has the
property

IN {OJ + IN

where "+" denotes the disjoint sum of two types. (According to this definition the ele
ments of IN are '-->.0 and,.n where n ranges over IN and '--> and, denote the injection
functions associated with disjoint sum. You should interpret ",-->.0" as zero and "....,"
as the successor function. More formally, we recognise in this equation an endofunctor
"{O}+". This is a function that maps the type A to the type {OJ + A. But it may
also be extended to map functions to functions by defining {O} + I to be that function
9 such that go '--> is the constant function always returning '-->.0, and go...., =, 0 I.
(Moreover, it satisfies all the properties required of a functor, but that we leave to the
reader to verify.) A {O}+-algebra is a set together with a constant and a unary operator
(these being zero and the successor function in the case of the natural numbers), and a
{O}+-homomorphism is just what one would normally understand by a homomorphism
of an algebraic structure, in this case a function ¢, say, from one {O}+-algebra (A, a, 0-),
say, to another (B, b, T), say, that maps the constant of the first to the constant of the
second

I.e. ¢.a = b

and commutes with the unary operator of the first replacing it with that of the second

I.e. ¢ 0 0- T 0 ¢

That IN is "universal" in the class of {O}+-algebras just means that for any {O}+-algebra
(A, a, 0-), say, there is a unique homomorphism mapping IN to A. With a suitable definition
of the operators it is also easily shown that {OJ + IN is a {O}+-algebra satisfying the
universality property. Thus, IN is a fixed point of the endofunctor {O}+ in the sense that

16

there are homomorphisms mapping IN to {O} + IN and vice-versa which (on account of
their uniqueness) are each others' inverses.

To summarise this discussion: in the framework of functional programming datatypes
are fixed points of endofunctors on which are defined what we call "catamorphisms",
i.e. homomorphisms satisfying a uniqueness and universality property. This is not the
place to discuss the practicality of catamorphisms as a program structuring method, that
being something that we intend to address in future publications. We hope however that
we have provided sufficient background to motivate the calculations that follow in this
section. Specifically, we explore the extension ofthe notion of a (functional) catamorphism
to relations. For this we need the notion of endorelator instead of endofunctor. We begin
by discussing the least fixed point of an endorelator and then introduce our definition of
a (relational) catamorphism.

From now on we assume that F is an endorelator.

4.1 Initial Datatypes

Since endorelators are, by definition, monotonic the Knaster-Tarski theorem asserts the
existence of their fixed points, in particular least and greatest. We hope shortly to report
on our work on greatest fixed points but in the present paper we restrict our attention to
least fixed points. Specifically, the least fixed point of the endorelator F, here denoted by
I1F, has the defining properties

(12)

and, for all X,

(13) X :::J I1F {= X :::J F.X

We shall refer to (13) as the induction principle.
The following lemma is about all we can say about I1F at this stage. Nevertheless, it

is a necessary first step.

Lemma 14 I1F is a monotype.

Proof

I1F is a monotype
- { definition}

I :J I1F
{= { induction principle (13) }

I :J F.I
- { F is a relator (lOa) }

true
o

17

4.2 Catamorphisms Defined

Definition 15 For endorelator F we define a function, denoted by QF; _ D, by the
properties that, for all specs R,

(a) QF; RD R 0 F.QF; RD
and for all specs R and X,

(b) X ::::J QF; RD ¢= X ::::J R 0 F.X

o

In other words, QF; R D is the smallest solution to the equation

X·· X = R 0 F.X

Its well-defined ness is thus guaranteed by the Knaster-Tarski theorem.
We call specs of the form QF; RD catamorphisms (or F-catamorphisms when we

particularly wish to be explicit about F) and we verbalise QF; R D as "(F-)catamorphism
R", omitting the qualification "F" when there is no doubt about the relator in question.

For reasons that will only become clear later, we call (15a) the computation rule for
catamorphisms.

One may well raise one's eyebrows at the unconventional "banana brackets" we have
chosen to denote catamorphisms. The reasoning behind this choice is not evident in this
paper but is based on envisaged applications: typically, the relators one encounters in
programming problems are formed using the disjoint-sum operator. Consequently, the
cat amorphism constructor will be applied to a disjoint sum of specs having the same
number of components as that of the associated relator. It is our practice, therefore, to
separate the components using commas and to delimit the extent of the vector formed in
this way by the special brackets. For several examples of such applications see [36J and
[38J. .

The cat amorphism QF; I D is of particular importance since it is clearly the least fixed
point of F. Thus, we have:

(16) pF QF; ID
From now on we omit the argument "F" within the catamorphism brackets and write

just "QRD" instead of "QF; RD".

4.3 The Unique Extension Property

The definition of a catamorphism is clear enough but with its two distinct parts it is
not well-suited to calculational purposes. We proceed now to prove two properties that
predict a single-statement definition of catamorphism. The first is simple enough.

Theorem 17

18

Proof

o

URD QRD ° /IF
{ lemma 14 }

URD ° /IF ;;) URD
{ definition of catamorphism, specifically (15b) }

URD ° /IF ;;) R ° F·(URD ° /IF)
{ F is a relator (lOc), /IF is a fixed point of F }

URD ° /IF ;;) R ° F·URD ° /IF
{ definition of catamorphism, specifically (15a) }

true

We have now established that URD satisfies two equations, namely,

and
x··
x··

x - R ° F.x
X = X ° /IF

Obviously, therefore, it also satisfies the third equation

(18) X .. X = R ° F.x ° /IF

The important insight contained in the next theorem is that the set of specs simultaneously
solving the first two equations is identical to the set of solutions of the third equation.

Theorem 19

Proof

o

X = R ° F.X ° /IF - X = X ° /IF /I X - R ° F.X

X ° /IF = X /I X R ° F.X
{ substitution }

X ° /IF = X /I X - R ° F.(X ° /IF)
{ F is a relator (lDc), /IF is a fixed point of F }

XO/lF=X /I X=RoF.x0/lF
{ <= is obvious; =? by (14) and (3) }

X = R ° F.X ° /IF

More significantly, equation (18) has a unique solution, which we shall now prove. It
will come as no surprise that a goal in our proof is to invoke the induction principle (13).
How we do so is, in our view, particularly elegant and offers an excellent illustration of
the benefits to be gained from a systematic development of a theory taking account of
clearly stated calculational rules, in this case the Galois connection between factors and
composition.

19

Suppose P and Q are two solutions to (18). I.e.

(20) P - R 0 F.P 0 pF

(21) Q = R 0 F.Q 0 pF

Since P and Q are completely symmetrical our task reduces to showing that Q ~ P. We
use factor theory and the induction principle to prove this property as follows.

Q~P
{ P = {(20), theorem 19 } po pF }

Q ~ P 0 pF
{ (la) }

P\Q ~ pF
{ induction principle (13) }

P\Q ~ F.(P\Q)
{ (la) }

Q ~ P 0 F.(P\Q)
{ (20), (21), theorem 19 }

R 0 F.Q ~ R 0 F.P 0 F.(P\Q)
{ F is a relator, monotonicity of composition}

F.Q ~ F.(P 0 P\Q)
{ (2a), monotonicityof relators}

true

In conclusion we have:

Corollary 22 (Unique Extension Property)
For all specs X and R,

X = URD _ X - R 0 F.X 0 pF

o

4.4 Consequences of the UEP
Were we obliged to refer to one theorem in the paper that is the most important of all
then it would be the above unique extension property. It will be used so often below that
we will refer to it within proof hints simply as "uep". A first example is the simple but
nevertheless useful identity rule:

Theorem 23 (Identity Rule)

20

Proof

o

/IF = ~/lFD
{ uep }

/IF = /IF 0 F./lF 0 /IF
{ (12), (14) and (3) }

true

Also, the coincidence in ~RD of the least and greatest solutions of (18) together with the
Knaster-Tarski theorem gives:

Theorem 24

(a) X = ~RD {= X = R 0 F.x 0 /IF

(b) X;;;J ~RD {= X;;;J R 0 F.X 0 /IF

(c) X ~ ~RD {= X ~ R 0 F.X 0 /IF
o

A corollary of the above that figures very prominently in program calculations is

Corollary 25 (Fusion Properties)

(a) U 0 ~VD = ~RD {= u 0 V = R 0 F.U
(b) U 0 QVD ;;;J QRD {= U 0 V ;;;J R 0 F.U

(c) U 0 QVD ~ QRD {= U 0 V c: R 0 F.U

Proof Let::::J E {=,;;;J, ~}. Then

o

U 0 QVD <l QRD
{ (24) }

U 0 QVD <l R 0 F.(U 0 QVD) 0/lF
{ uepi (lOc) }

U 0 V 0 F.QVD 0/lF ::::J R 0 F.U 0 F.QVD 0 /IF
{ invariance of ::::J under composition}

U 0 V ::::J R 0 F.U

We call the above properties "fusion properties" because during their use as left
to-right rewrite rules a spec is "fused" with a catamorphism to form a catamorphism.
(Analogous to our fusion properties are so-called "loop fusion" properties.) Note, however,
that we do not always use the rules to "fuse" specs; just as often we use them to "defuse"
a spec into component parts. The reader should not allow the one-way character of the
name to prejudice their use of such rules.
Note: Previously (e.g. [5J and [37]) we used instead the term "promotion property" in
order to establish the connection with a technique used by Bird [11 J for improving the
efficiency of functional programs.

21

Theorem 26 (Monotonicity)

Proof

o

QRD ;;) QSD
{ fusion (25b), U := I }

loR ;;) S 0 F.I
{ (lOa) }

R;;)S

Theorem 27 (Imp and co-imp preservation)

The function a-D respects (a) imps and (b) co-imps

Proof

(a) I :::J aID 0 af Du
{ left factors (1 b) }

IIQfDu :::J afD
{ (24b) }

IlalDu :::J f 0 F.(IlafDu) °/IF
{ left factors (1 b) }

I ;;) f 0 F.(IlaIDu) 0 /IF 0 alDu
{ (3), reverse}

I :::J f 0 F.(IlafDu) 0 (aID o/lF)u
{ (17) }

I :::J f 0 F.(IIQIDu) 0 alDu
{ computation rule (15a), reverse}

I ;;) f 0 F.(IlaIDu) 0 F.aIDu 0 fu
{ relators (lOc) }

I :::J f 0 F.(IlalDu 0 aIDu) 0 fu
{ left factors (2b), monotonicity }

I :::J f 0 F.I 0 fu
{ (2a), monotonicity }

I :::J f 0 fu

The proof of (b), i.e.

I :::J afDu 0 aID {= I ;;) fu 0 f

is left as an entertaining exercise for the reader. One proof proceeds in the same way except
that right factors are used instead of left factors. There is, however, a much shorter proof
making use of the fusion properties. Part (cl is, of course, just the conjunction of (al and
(b).
o

22

5 Parameterised Types

5.1 New relators from old

The theorems in the earlier sections are all well and good but a major concern is to build
new parameterised type constructors from existing ones. Within the world of functions
the technique is now well-understood: consider a binary functor and abstract over one
of its arguments. That is, if @ is a binary functor and A is a monotype we consider the
unary functor A@ where for type B,

(A@).B

and, for function j,

This defines, as above, a monotype Jl(A@) that is parameterised by A. In other words,
a function'" has been identified from monotypes to monotypes, where"" A = Jl(A@). It
remains to show that", can be extended to map functions to functions in such a way that
it is a functor. To see how this is done we refer the reader to [38].

Our concern here is, however, not limited to functions. We wish to prove that", is a
relator: i.e. it can be extended to map specs to specs in such a way that it has all the
properties required of a relator. The achievement of this goal is delightfully simple. Within
the current algebraic setting the technique parallels that outlined above, but involves just
the one definition. Specifically, the following:

Definition 28
Suppose@isabinaryrelator. It is easy to verify that /@isarelator(where(/@).R - /@
R). Its catamorphisms therefore exist and we may define:

o

Note that ",R is the least solution of the equation X·· X = R @ X. (See the
remarks following definition 15).

In the following calculations we adopt the convention that composition has lower
precedence than "@". We also drop the argument "/@" within the catamorphism brackets
since our discussion will be confined to just this one relator.

For easy reference it is useful to instantiate the unique extension property, computation
rule and fusion properties of section 4.4 with F := /@ and the definition of "" R. After
some simplification, using in particular the assumed compositionality of @, these become:

(Unique extension property)

(29) X = ",R X = R@X 0 Jl(I@)

23

(Computation rules)

(30) um - R 0 10 URn = URD 0 fJ(10)
(31) ",R = R0",R = ",R 0 fJ(I0)

(Fusion laws)

(32) U 0 ",V :sJ ",R {= U 0 V01 Q R0U

where "~" is any of "=", "~", "~".

Recall also the defining property of fJ(10):

(33) fJ(10) = 10fJ(I0)

(34) X:::l fJ(I0) {= X:::l 10 X

As would be expected, the fixed-point operator is monotonic in the following sense:

Lemma 35

(Note: Up till now we have used the operator "fJ" only in the context of a relator. In
general R0 is not a relator (although 10 is), but it is monotonic and so the existence of
a least fixed point is guaranteed by the Knaster-Tarski theorem.)
Proof

o

J.L(R0) ;;) J.L(S0)
{ definition of fJ(S0) }

fJ(R0) ;;) S 0 fJ(R0)
{ definition of fJ(R0) }

R 0 fJ(R0) :::l S 0 fJ(R0)
{ monotonicity of relators}

R:::lS

By theorems lIla) and 14, fJ(I0) is a monotype. Applying lemma 35 we thus get the
slightly more general:

Corollary 36

o

which is the crucial ingredient in verifying the following:

Theorem 37 For all monotypes A

wA = fJ(A0)

24

Proof

o

Assume A is a monotype. Then,

JL(A0) = ",A
{ (29) }

JL(A0) = A 0 JL(A0) 0 1'(10)
{ (33) }

JL(A0) = JL(A0) 0 1'(10)
{ properties of monotypes, specifically (4) }

JL(A0) = JL(A0) n 1'(10)
{ corollary 36 }

true

It is a straightforward matter to verify that", is a relator. Here are the proofs of the
four properties.

Lemma 38

Proof Immediate from the conjunction of theorem 37 and corollary 36.
o

We interpose a small lemma which we have found is often useful in its own right.

Lemma 39

Proof

o

QRD 0 ",S = QR 0 S01D

QRD 0 ",S = QR 0 S01D
{ fusion - (25a) }

QRD 0 S01 = R 0 S01 0 10QRD
{ compositionality of relators}

QRDoS01 = Ro10QRDoS01
{ computation rule, (30) }

true

Lemma 40

",R 0 wS = ",(R 0 S)

25

Proof

=

=

o

wR ° wS
{ defn. of w }

UR0IDowS
{lemma 39 }

UR0Io S0ID
{ compositionality of relators}

U(RoS)0ID
{ defn. of w }

w(R ° S)

Lemma 41 (Monotonicity)

Proof
Immediate from the definition of wand the monotonicity of catamorphisms and relators.
o

Lemma 42 (Revertability)

Proof

o

(wR)u = w(Ru)

(wR)u = w(Ru)
{ uep (29) }

(wR)u = Ru 0 (wR)u ° /L(I0)
{ properties of reverse, 0 is a relator }

wR = /L(I0) ° R0 wR
{ theorem 36; computation rule (31) }

wR = wI ° wR
{ lemma 40, I is the unit of composition}

true

Theorem 43 w is a relator.

Proof Lemmas 38, 40, 41 and 42.
o

26

6 Conclusions

Although the relational calculus has now been around for quite a number of years it
has been disparaged as unworkable (in comparison to existing programming calculi). In
this paper we have provided elements of an argument to the contrary: that a useful
calculus can be built around a relational theory of datatypes. To this end we have been
particular conscious of the brevity and clarity of our definitions and calculations. No
doubt improvements can be made, but at the time of writing we feel that we have an
elegant and convincing theory that is indeed worth exploring further.

Of course, what we have presented here is only a beginning. The immediate cry will
undoubtedly be "let us see how you use the theory to develop some programs". Some
examples of program derivation that are problematic in the Bird-Meertens formalism but
are not so in the current relational framework are discussed in [38]. However, we would
be the first to admit that, as yet, we have little experience with the practical application
of the theory to program development.

In terms of theory development there also remains much to be done. The present
theory encompasses only the very simplest sorts of datatypes commonly occurring in
computer programs. We have not yet developed the tools to handle infinite data structures
(such as streams or game trees), types with laws (e.g. finite bags) or subtypes (e.g.
height-balanced binary trees). Some of this work is underway but it would be premature
to hazard a judgement on its chances of success. We hope, however, that some others
may have been sufficiently stimulated to join us in our endeavour.

Acknowledgement

In its later stages preparation of this paper was expedited by the use of the proof editor
developed by Paul Chisholm [20].

References

[1] R.C. Backhouse. Naturality of homomorphisms. Lecture notes, International Summer
School on Constructive Algorithmics, vol. 3, 1989.

[2] R.C. Backhouse. An exploration of the Bird-Meertens formalism. Technical Report
CS8810, Department of Mathematics and Computing Science, University of Gronin
gen, 1988.

[3] R.C. Backhouse. Making formality work for us. EATCS Bulletin, 38:219-249, June
1989.

[4] R.C. Backhouse, P. de Bruin, G. Malcohn, E. Voermans, and J. van der Woude. A
relational theory of datatypes. Eindhoven University of Technology and University
of Groningen, September 1990.

[5] R.C. Backhouse, P. Chisholm, and G. Malcolm. Do-it-yourself type theory, part l.
EATCS Bulletin, 34, February 1988.

27

[6] R.C. Backhouse, P.Chisholm, G. Malcolm, and E. Saaman. Do-it-yourself type
theory. Formal Aspects of Computing, 1:19-84, 1989.

[7] R.C. Backhouse, Bruin P. de, P. Hoogendijk, G. Malcolm, Voermans T.S., and
J. van der Woude. Polynomial relators. To appear: 2nd Conference on Algebraic
Methodology and Software Technology, May 22-25, 1991.

[8] R. C. Backhouse and R.K. Lutz. Factor graphs, failure functions and bi-trees. In
A. Salomaa and M. Steinby, editors, Fourth Colloquium on Automata, Languages
and Programming, pages 61-75. Springer-Verlag, LNCS 52, July 1977.

[9] J.W. de Bakker and W.P. de Roever. A calculus for recursive program schemes. In
M. Nivat, editor, Proc. IRIA Symp. on Automata, Formal Languages and Program
ming. North-Holland, Amsterdam, 1972.

[10] R. Berghammer and H. Zierer. Relational algebraic semantics of deterministic and
nondeterministic programs. Theoretical Computer Science, 43:123-147, 1986.

[11] R.S. Bird. The promotion and accumulation strategies in transformational program
mmg. ACM. Transactions on Programming Languages and Systems, 6(4):487-504,
1984.

[12] R.S. Bird. Transformational programming and the paragraph problem. Science of
Computing Programming, 6:159-189, 1986.

[13] R.S. Bird. An introduction to the theory of lists. In M. Broy, editor, Logic of
Programming and Calculi of Discrete Design. Springer-Verlag, 1987. NATO AS!
Series, vol. F36.

[14] R.S. Bird. A calculus of functions for program derivation. Technical report, Pro
gramming Research Group, Oxford University, 11, Keble Road, Oxford, OXI 3QD,
U.K., 1988.

[15J R.S. Bird, J. Gibbons, and G. Jones. Formal derivation of a pattern matching algo
rithm. Technical report, Programming Research Group, Oxford University, 11, Keble
Road, Oxford, OXI 3QD, U.K., 1988.

[16J R.S. Bird and L. Meertens. Two exercises found in a book on algorithmics. In
L.G.L.T. Meertens, editor, Program Specification and Transformations, pages 451-
457. Elsevier Science Publishers B.V., North Holland, 1987.

[17] Garrett Birkhoff. Lattice Theory, volume 25 of American Mathematical Society Col
loquium Publications. American Mathematical Society, Providence, Rhode Island,
3rd edition, 1948.

[18] N.G. de Bruijn. A survey of the project AUTOMATH. In J.P. Seldin and J.R.
Hindley, editors, To H.B. Curry: Essays in Combinatory Logic, Lambda Calculus,
and Formalism, pages 589-606. Academic Press, 1980.

28

[19J P.J. de Bruin. Naturalness of polymorphism. Technical Report CS8916, Department
of Mathematics and Computing Science, University of Groningen, 1989.

[20J P. Chisholm. Calculation by computer: Overview. Technical Report CS 9007, De
partment of Computing Science, University of Groningen, 1990.

[21J R.L. Constable, et al. Implementing Mathematics in the Nuprl Proof Development
System. Prentice-Hall, 1986.

[22J J.H. Conway. Regular algebra and finite machines. Chapman and Hall, London, 1971.

[23J J. Desharnais. Abstract Relational Semantics. PhD thesis, School of Computer
Science, McGill University, July 1989.

[24J E.W. Dijkstra and W.H.J. Feijen. Ben Methode van Programmeren. Academic Ser
vice, Den Haag, 1984. Also available as A Method of Programming, Addison-Wesley,
Reading, Mass., 1988.

[25J E.W. Dijkstra and C.S. Scholten. Predicate Calculus and Program Semantics.
Springer-Verlag, Berlin, 1990.

[26J R.P. Dilworth. Non-commutative residuated lattices. Transactions of the American
Mathematical Society, 46:426-444, 1939.

[27J P. Dybjer. An inversion principle for Martin-Lof's type theory. Dept. Compo Sci.,
Univ. Goteborg, 1989.

[28) J.A. Goguen, J.W. Thatcher, and E.G. Wagner. An initial algebra approach to the
specification, correctness and implementation of abstract data types. In R. T. Yeh,
editor, Current Trends in Programming Methodology, Volume 4: Data Structuring,
pages 80-149. Prentice-Hall, 1978.

[29J T. Hagino. A typed lambda calculus with categorical type constructors. In D.H. Pitt,
A. Poigne, and D.E. Rydeheard, editors, Category Theory and Computer Science,
pages 140-57. Springer-Verlag Lecture Notes in Computer Science 283,1988.

[30J C.A.R. Hoare. Notes on data structuring. In O.-J. Dahl, E.W. Dijkstra, and C.A.R.
Hoare, editors, Structured Programming. Academic Press, 1972.

[31 J C.A.R. Hoare. A couple of novelties in the propositional calculus. Zeitschr. fuer
Math. Logik und Grundlagen der Math., 31(2):173-178, 1985.

[32J C.A.R. Hoare and Jifeng He. The weakest prespecification. Fundamenta Informati
cae, 9:51-84, 217-252, 1986.

[33J G. Jones. Constructing the fast Fourier transform. Lecture notes, International
Summer School on Constructive Algorithmics, vol. 3, 1989.

[34J J. Lambek. The mathematics of sentence structure. The American Mathematical
Monthly, 65:154-170, 1958.

29

[35J J. Lambek and P.J. Scott. Introduction to Higher Order Categorical Logic, volume 7
of Studies in Advanced Mathematics. Cambridge University Press, 1986.

[36J G. Malcolm. Data structures and program transformation. To appear, Science of
Computer Programming, 1990.

[37J G. Malcolm. Homomorphisms and promotability. In J.1.A. van de Snepscheut,
editor, Conference on the Mathematics of Program Construction, pages 335-347.
Springer-Verlag LNCS 375, 1989.

[38J G. Malcolm. Algebraic data types and program transformation. PhD thesis, Gronin
gen University, 1990.

[39J E.G. Manes and M.A. Arbib. Algebraic Approaches to Program Semantics. Texts
and Monographs in Computer Science. Springer-Verlag, Berlin, 1986.

[40J P. Martin Lof. Constructive mathematics and computer programming. In 1.J. Cohen,
J. Los, H. Pfeiffer, and K.-P. Podewski, editors, Logic, Methodology and Philosophy
of Science, IV, pages 153-175. North-Holland, 1982.

[41 J 1. Meertens. Algorithmics - towards programming as a mathematical activity. In
Proceedings of the CWI Symposium on Mathematics and Computer Science, pages
289-334. North-Holland, 1986.

[42J L. Meertens. Constructing a calculus of programs. In J.L.A. van de Snepscheut, edi
tor, Conference on the Mathematics of Program Construction, pages 66-90. Springer
Verlag LNCS 375, 1989.

[43J J. Meseguer and J .A. Goguen. Initiality, induction and computability. In M. Nivat
and J.C. Reynolds, editors, Algebraic Methods in Semantics, pages 459-542. Cam
bridge University Press, 1985.

[44J O. de Moor. Indeterminacy in optimization problems. Lecture Notes, International
Summer School on Constructive Algorithmics, vol. 2, 1989.

[45J O. de Moor. Inverses in program synthesis. Lecture Notes, International Summer
School on Constructive Algorithmics, vol. 2, 1989.

[46] B. Nordstrom, K. Petersson, and J. Smith. Programming in Martin-LoI's Type The
ory: An Introduction. Oxford University Press, 1990.

[47J J.C. Reynolds. Types, abstraction and parametric polymorphism. In R.E. Mason,
editor, IFIP '83, pages 513-523. Elsevier Science Publishers, 1983.

[48J G. Schmidt and T. Strohlein. Relation algebras: Concept of points and representabil
ity. Discrete Mathematics, 54:83-92, 1985.

[49J G. Schmidt and T. Strohlein. Relationen und Grafen. Springer-Verlag, 1988.

30

[50] M. Sheeran. Describing hardware algorithms in Ruby. In David et aI., editor, Proc.
IFIP TCI0/WGI0.1 Workshop on Concepts and Characteristics of Declarative Sys
tems. North-Holland, 1989.

[51] A. Tarski. On the calculus of relations. Journal of Symbolic Logic, 6(3):73-89, 1941.

[52] P. Wadler. Theorems for free! In 4'th Symposium on Functional Programming
Languages and Computer Architecture, ACM, London, September 1989.

31

In this series appeared:

89/1 E.Zs.Lepoeter-Molnar

89/2 R.H. Mak
P.Struik

89/3 H.M.M. Ten Eikelder
C. Hemerik

89/4 J.Zwiers
W.P. de Roever

89/5 Wei Chen
T.Verhoeff
J.T.Udding

89/6 T.Verhoeff

89n P.Struik

89/8 E.H.L.Aarts
A.E.Eiben
K.M. van Hee

89/9 K.M. van Hee
P.M.P. Rambags

89/10 S.Ramesh

89/11 S.Ramesh

89/12 A.T.M.Aerts
K.M. van Hee

89/13 A.T.M.Aerts
K.M. van Hee
M.W.H. Hescn

89/14 H.C.Haesen

89/15 J.S.C.P. van
der Woude

89/16 A.T.M.Aerts
K.M. van Hee

89/17 M.J. van Diepen
K.M. van Hee

Reconstruction of a 3-D surface from its normal vectors.

A systolic design for dynamic programming.

Some category theoretical properties related to
a model for a polymorphic lambda-calculus.

Compositionality and modularity in process
specification and design: A trace-state based
approach.

Networks of Communicating Processes and their
(De-)Composition.

Characterizations of Delay-Insensitive
Communication Prot0cols.

A systematic design of a parallel program for
Dirichlet convolution.

A general theory of genetic algorithms.

Discrete event syste:r.s: Dynamic versus static
topology.

A new efficient implementation of CSP with output
guards.

Algebraic specification and implementation of infinite
processes.

A concise formal framework for data modeling.

A program generator for simulated annealing
problems.

ELDA, data manipulatie taal.

Optimal segmentations.

Towards a framework for comparing data models.

A formal semantics for Z and the link between
Z and the rCIational algebra.

90/1 W.P.de Roever-
H.Barringer-
C.Courcoubetis-D.Gabbay
RGerth-B.Jonsson-A.PnueJi
M.Reed-J .Sifakis-J .Vytopil
P.Wolper

90/2 K.M. van Hee
P.M.P. Rambags

90/3 R. Gerth

90/4 A. Peeters

90/5 J.A. Brzozowski
J.C. Ebergen

90/6 A.J.J.M. Marcelis

90n A.J.J.M. Marcelis

90/8 M.B. Josephs

90/9 A.T.M. Aerts
P.M.E. De Bra
KM. van Hee

90/10 M.J. van Diepen
KM. van Hee

90/11 P. America
F.S. de Boer

90/12 P.America
F.S. de Boer

90/13 KR Apt
F.S. de Boer
E.R Oldcrog

90/14 F.S. de Boer

90/15 F.S. de Boer

90/16 F.S. de Boer
C. Palamidessi

90/17 F.S. de Boer
C. Palamidessi

Formal methods and \ools for the development of
distributed and real time systems, p. 17.

Dynamic process creation in high-level Petri nets,
pp. 19.

Foundations of Compositional Program Refinement
- safety properties - , p. 38.

DecompOSition of delay-insensitive circuits, p. 25.

On the delay-sensitivity of gate networks, p. 23.

Typed inference systems : a reference document, p. 17.

A logic for one-pass, one-attributed grammars, p. 14.

Receptive Process Theory, p. 16.

Combining the functional and the relational model,
p. 15.

A formal semantics for Z and the link between Z and the
relational algebra, j:. 30. (Revised version of CSNotes
89/17).

A proof system for process creation, p. 84.

A proof theory for a. sequential version of POOL, p. 110.

proving termination of Parallel Programs, p. 7.

A proof system for the language POOL, p. 70.

Compositionality in the temporal logic of concurrent
systems, p. 17.

A fully abstract model for concurrent logic languages, p.
p.23.

On the asynchronous nature of communication in logic
languages: a fully abstract model based on sequences, p.
29.

90/18 J.Coenen
E.v.d.Sluis
E.v.d.Velden

90/19 M.M. de Brouwer
P.A.C. Verkoulen

90/20 M.Rem

90/21 K.M. van Hee
P.A.C. Verkoulen

91/01 D. Alstein

91/02 R.P. Nederpelt
H.C.M. de Swart

91/03 J.P. Katoen
L.A.M. Schoenmakers

91/04 E. v.d. Sluis
A.F. v.d. Stappen

91/05 D. de Reus

91/06 K.M. van Hee

91/07 E.Poll

91/08 H. Schepers

91/09 W.M.P.v.d.Aalst

91/10 R.C.Backhouse
P.J. de Bruin
P. Hoogendijk
G. Malcolm
E. Voermans
I. v.d. Woude

91/11 R.C. Backhouse
P.I. de Bruin
G.Malcolm
E.Voermans
J. van der Woude

Design and implementation aspects of remote procedure
calls, p. IS.

Two Case Studies in ExSpect, p. 24.

The Nature of Delay··Insensitive Computing, p.18.

Data, Process and Behaviour Modelling in an integrated
specification framework, p. 37.

Dynamic Reconfiguration in Distributed Hard Real-Time
Systems, p. 14.

Implication. A survey of the different logical analyses
"if ... ,thcn ... ", p. 26.

Parallel Programs for the ReCOgnition of P-invariant
Segments, p. 16.

Performance Analysi$ of VLSI Programs, p. 31.

An Implementation Model for GOOD, p. 18.

SPECIFICATIEMETHODEN, een overzicht, p. 20.

CPO-models for second order lambda calculus with
recursive types and subtyping, p.

Terminology and Paradigms for Fault Tolerance, p. 25.

Interval Timed Petri Nets and their analysis, p.53.

POLYNOMIAL RELATORS, p. 52.

Relational Catamorpdsm, p. 31.

} ,

	Abstract
	1. Introduction
	2. The Algebraic Framework
	2.0.1 Plat Calculus and the Knaster-Tarski-Theorem
	2.0.2 Composition and Factors
	2.0.3 Reverse
	2.0.4 Operator precedence
	2.0.5 The RS and Rotation Rules
	2.1 Models
	3. Foundations
	3.1 Monotypes
	3.2 Imps and Co-imps
	3.3 Relators
	4. Initial Datatypes and Relational Catamorphisms
	4.1 Initial Datatypes
	4.2 Catamorphisms Defined
	4.3 The Unique Extension Property
	4.4 Consequences of the UEP
	5. Parameterised Types
	6. Conclusions
	Acknowledgement
	References

