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We present different results from high-resolution high-statistics direct numerical simulations of a three-
dimensional convective cell. We test the fundamental physical picture of the presence of both a Bolgiano-
Obhukhov-like and a Kolmogorov-like regime. We find that the dimensional predictions for these two distinct
regimes(characterized, respectively, by an active and passive role of the temperatyraretdnsistent with
our analysis.

DOI: 10.1103/PhysReVvE.66.016304 PACS nunierd7.27.Te, 47.27.Ak

Dimensional hypothesis for homogeneous and isotropi¢o implement Bolgiano-Obhukhov scaling. Finally, a recent
turbulence have been formulated in the works of Kolmog-experiment even questioned the behavior of the Bolgiano
orov[1] long time ago. On the other hand, a clear theoreticalength inside a convective céll']. Of course from an experi-
picture is still missing for the strong fluctuations in the en-mental point of view it can be difficult, if possible at all, to
ergy dissipation field that lead to intermittency effe@te.,  measure all relevant quantities and it can be even harder to
non-Gaussian behavior of probability distribution functipns have access to information at sevefiabt just a few posi-
Phenomenological theories have been propddédut no tions inside the volume. The results presented in this paper
systematic theory for computing experimentally measuregdhow good consistency with the idea of a Bolgiano-
numbers has been successful so far. The situation of “non©bhukhov regimdi.e., a range of length scales where tem-
ideal” turbulence is even more controversial, already at theperature driven buoyancy effects are domindmit, because
level of dimensional expectations. A typical realization, theof the still limited resolution of “state of the art” numerical
one we will address in this paper, is the three-dimensionasimulations, we will have to resort to somehow indirect tests.
(3D) Rayleigh-Bmard cell, described, in the Boussinesq ap-  This paper is organized as follows: a brief review of phe-

proximation[2], by the following set of equations: nomenological expectations, details of our numerical simu-
R lations, data analysis and then concluding remarks.
dv+(v-V)v=—Vp+vVv+agTz (1) Starting from Eqs(1) and (2), if one uses dimensional
analysis and assumes homogeneous scaling for velocity and
HT+(v-V)T=xV?T (2)  temperature difference@nside the inertial range one ends

o N up with two distinct scaling regimes. At small scales
with isothermal boundary conditions on the upper and lowefk oimogorov-like scenarig r<Lg

planes of a cell of height HT(z=0)=+AT/2 and T(z

=H)=—AT/2. As usual,v(x,t) is the velocity field and Sv(r)~e3 3 ©)
T(x,t) the temperature field. Kinematic viscosity and ther-
mal diffusivity are, respectivelyy and y, while the thermal ST(r)~NY2g 1613 (4)

expansion coefficient i& and gravity acceleration ig. In ) . . .
the following we will mainly focus on the longitudinal struc- While at large scalesBolgiano-Obhukhov-like scenasior

ture functions ofv and T: Sp(r)=({[v(x+r)—v(x)]-F}p> >Le,
and Ty (r) =([T(x+1)=T(x)]"). Su(r)~(ag)?>NVr3", &)
In this work we present some tests of the predictions for
the structure functions defined above that can be derived in ST(r)~(ag) YANZ/5 15, (6)
the scenario proposed years ago by Bolgiano and Obhukhov ) ) ) )
[3] to describe convective turbulence. The Bolgiano length_Lg, is an estimate of the distance at

Despite much research on the subjedt sound evidence Which the dissipative and buoyancy terms on the right hand
of the validity of the Bolgiano-Obhukhov scenario and theSide of Eq.(1) balance, valid under the assumption of a scal-
recovery of Kolmogorov scaling at small scales is still miss-iNg behavior. In the following we will use the-dependent
ing. Good quality confirmation of the dimensional Bolgiano- Version ofLg(2) introduced in Ref[8] that uses averages
Obhukhov scenario was recently shown in two-dimensionaPf & and N defined at a given heightz,z(z)=(v/
numerical simulationg5]. This result cannot be directly re- 2)(Zij(div})?); andN(2) = (x/2)(Zi(4T)?),:
lated to the 3D case because of the strong differences in the

5/4
properties of the velocity field in 2D. Statistical properties of Lg(z)= %. 7)
the velocity field were recently used with even simpler mod- N(2)**(ag)

els (shell models for turbulengd6]. This approach is even Our analysis has been performed on data coming from
less probing since these models were built precisely in ordedirect numerical simulation$DNS) employing a standard

1063-651X/2002/6@.)/0163044)/$20.00 66 016304-1 ©2002 The American Physical Society
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FIG. 1. Log-log plot of the structure functio(r), defined in FI_G. 2. Plot of thez-dependent Bolgiano length as a fun(_:ti_o_n of
the text, measured close to the end plateg and at the center of the distance from the bottom V\_/aﬂlas given by the usual deflr_utlon_
the cell (x). The horizontal scale is in grid points, while the verti- ©f EG- (7) [Le(2),+] and as given by the procedure described in
cal scale is in arbitrary units. the text, following Eq. § aLg(z),X]. All dimensions are in grid

points anda=3.1.
lattice Boltzmann schemg9,14], on a massively parallel
computer[10]. The resolution of the numerical simulation plot our results in Fig. 2. From a first look at the behavior of
was 246 and the Rayleigh numbdiRa= agATH3/(vy)] Lg(z) we learn that Bolgiano effects should be measurable,
was approximately 3:810’. The Prandtl number was equal if at all, near to the isothermal wal[svhereLg(z) is of the
to unity and its precise value not relevant for our analysisorder of 13].
We performed a stationary simulation extending over ap- Close to the center of the cellg is of the order of 19
proximately 500 recirculation times and stored nearly 400and Kolmogorov-like behavior is expected to be measurable
independent configurations with complete information on allat almost all scales.
velocity components and the temperature field. Boundary We then measure, directly and independently of the pre-
conditions were periodic in theandy directions(in order to  vious quantity, the scale at which dissipation and buoyancy
maintain homogeneity on horizontal plapesd isothermal  effects balance, i.e., we look for the schlg(z) such that
at the top and bottom planes of the celH0 andz=H).

Stress-free boundary conditiofise., frge ;Ilp were used. (2)~ag(sv(Lg) 6T(Lg)),. (8)
on the top/bottom planes for the velocity field. This choice
was made in an attempt to reduce the effects of a visco - L~ . I
boundary layer close to the horizontal walls. Indeed, as i € PrOV'S'Ona”y con'S|deLB a modified def~|n|t|0n (,)f the
will be clear from the following, thermal effects are domi- Bolgiano length. In Fig. 2 we pldtg(z) andalg(z) with a
nant near the isothermal walls, so that using no-slip boundconstant which was tuned to ke-3.1. _
ary conditions might produce effects on the velocity statistics AS it can be seen, the two definitions yield the same be-

interfering with the ones coming from pure buoyancy. Morehavior apart from the multiplicative factar. The reason for
details on this point will be given later on. the multiplicative factor(of order unity is due to the fact

The most direct way to test the dimensional validity of thethat the two definitions are dimensional estimates so they can
Bolgiano-Obhukhov picture would be to measure structureniss a numerical prefactor. Considering this, the fact that the
functions and to check whether they scale with exponentivo definition behave in the same way after rescaling has to
close(apart from intermittency correctionso the ones pre- be regarded an excellent agreement.

dicted by the sets of equatiof®),(4) and (5),(6). Here we want to underline two points which, we believe,
Unfortunately this cannot be done directly because of the&dd relevance to this finding. First of all the two definitions
limited resolution of our DNS. are of course linked but definitely different. The “tradi-

Figure 1 substantiates this comment, by plotting the velional” definition of Lg (see alsd8]), as from definition(7),
locity structure function of order 3S(z,r)=([v(x+r,z) ~ comes from supposing that the two scaling laws in &3.
—v(x,2))%] at two different positions: one very close to the @nd (5) merge atLg, hence from solving the equation
wall (z=10), and the other at the center of the cetl ( &(2)"La(2)"*=(ag)?*N(2)"*Lg(2)**. The second defini-

=120=H/2). tion, Lz(z) comes instead from direct measurement of the
As it can be seen from Fig. 1, no evident scaling rangestrength of the dissipative and forcing term in Eg).

can be detected, even if a steepeningSgfr) is clearly The second important point consist in the fact that our cell

detected as one comes close to the walls. is not homogeneous; this adds strength to the equality be-

Given this state of affairs, in order to test the consistencytween the two different definitions dfg(z).
with the Bolgiano-Obhukhov picture, we performed two dis- As a consequence of this test, we can claim that the
tinct, albeit less direct, tests. The first test consists in checkBolgiano-Obhukhov scenario and the expected power law
ing that the Bolgiano length actually keeps track of the scalebehavior are consistent with the value measured for the terms
at which the buoyancy term balances the dissipative term imppearing on the right hand side of Edj). Furthermore we
Eqg. (1). fully confirm (with higher accuracyour former results for
First, we measuré&g(z) in terms ofe(z) andN(z) and Lg [8]. We like to underline that extracting the behavior of

016304-2
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the Bolgiano length using measured quantities that are not 2 . T . .
those appearing in its definition could introduce large errors. [T e
For example, in Ref.7] a Bolgiano length was extrapolated L5 4 -
as the scale at which there is a change of slope in a particular

structure function. In using such a procedure one is domi- 1
nated by strong finite size effects present on the structure :
functions.

We now proceed to our second test. Under the hypothesis -
of validity of Bolgiano-Obhukhov scaling, and if enough . g
resolution were available, one would expect to see power law 0 20 40 60 80 100 120
behavior in the inertial range in Fig. 1 with two distinct z
slopes 1 and 9/5, corresponding to Kolmogorov and
Bolgiano-Obhukhov scaling, respectively. With available,
resolution, we are not able to detect a clear power law be-
havior from Fig. 1, although we see a clear steepening of the |5 Fig. 3 we have not shown the behaviormfz) as it is
structure function as we come close to the wall. What we argonsistentwithin error bar with the constant value 1 and
going to do in the following is to try to quantify as well as piotting it on the same figure would have made it unreadable.
possible this change of slope. Once again we like to underline the consistency of our

We adopt the following procedure. We focus on the plotfindings. From the theoretical picture we expect to see the
of Sg(r) vs S(r) and apply extended self similariESS,  ¢rossover to the Kolmogorov scaling wheg(z)=H. This
see[11]) in order to detect a trustable plateau in the localis indeed the case as(z)=H for z=40 and indeed we see
slopes. We found this plateau to correspond roughly to disg4¢ {5(2)~1 in the same range af
tances in the interval® =[ 25,40 for the velocity structure  Angther interesting question concerns the “real” statistics
function andZ "=[15,3q for the structure functions of the of the Bolgiano-Obhukhov regime. Very recently, interest is
temperature field. We then define two other intervals slightlyyowing along this line of research in order to understand the
shifted to the lefZ” =[20,35,7" =[10,25 and to the right  gifferences between the statistical properties of an active
7% =[30,45,7% =[20,40. These intervals were shifted by with respect to a passive scal,6]. In this work we fo-

a reasonable amount, i.e., were still possible highest or loweused on the gross features, i.e., on the dimensional behavior.
est estimate for the same plateau. If we try to look at intermittency, by means of ESS we find a

We finally perform a power law fit to extract a scaling strong increase of intermittency for the velocity field ap-

exponent on the structure functions for the velocity and forproaching the isothermal walls.

FIG. 3. Behavior of the exponents(z),x3(z) as a function of

the temperature in the three intervals previously defined. Unfortunately we believe that with our simulation we are
We define the scaling exponents for the structure funcnot in a position to make any definite statements about inter-
tions of interest as follows: mittency in the Bolgiano-Obhukhov dominated regime.
Indeed a study of intermittency in the Bolgiano-
(6v(z,r)P)~r5@, (9 Obhukhov regime would involve positions nearby the iso-
thermal walls(as only there the Bolgiano length scale is
(8T(z,r)P)~rxe®, (100 small enough to have an inertial range largely dominated by
buoyancy effects Recently it was found that intermittency
([5v(z,r)5T(z,r)2]p’3)~r”p(z). (11 increases in the velocity structure functions inside a viscous

boundary layer{12]. In an attempt to reduce the viscous

Our fits provide a central value for the exponents and twoboundary layer thickness we decided to apply stress-free ve-
respectively, higher and lower estimat@orresponding to locity boundary conditions to the isothermal walls. This
the shifted intervals The procedure adopted in estimating choice helps only partially because of two reasons. First, the
the errors reflects the fact that the largest source of systenatress-free boundary conditions does not completely suppress
atic error is connected with the choice of the fitting rangesthe boundary laye(for the nature of the resulting boundary
and not with statistical accuracy. layer, see, for exampl€l13]). A boundary layer thickness can

In the Kolmogorov regime we expect the exponents ofpe defined, as in Ref{13], through an extrapolation of
Egs. (9—(11) to take the following dimensional values,  (v,(z)?). In our case, it turned out to be roughly 15 grid
=p/3,xp=p/3, andp,=p/3. In the Bolgiano-Obhukhov re- spacings. Second, it was recently realized that mechanical
gime, on the other hand, we expect the following dimen-turbulence in a stress-frege., free-slip channel also pre-
sional valuesz,=3p/5,xp,=p/5, andp,=p/3. sents an enhancement of intermittency near to the Wkl

In Fig. 3 we plot the behavior of the measured central A procedure to disentangle buoyancy and planar effects is
exponents and their errors as a functionzdbr {3(z) and clearly needed to make any definite statement on intermit-
x3(2). The behavior is qualitatively and quantitatively con- tency in the Bolgiano-Obhukhov regime. Otherwise one can-
sistent with the expected scaling exponents: we observe @ot decide whether a change of intermittency is related to
smooth transition from a Bolgiano-Obhukhov dominated re-Bolgiano-Obhukhov dynamics or to the increase occurring
gime (near to the wall, smalk) to a Kolmogorov regime nearby boundary layers.
(approaching the center of the gell In order to clarify this point it would be important to
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perform a simulation of a Rayleigh-Bard-like system with range of scales where to study the buoyancy dominated flow.

periodic boundary conditions in all directiofise., an homo- Further advantage of homogeneity would be the natural in-

geneous Rayleigh-Bard cel). We suggest to extend to 3D crease of statistics and also the applicability of tools such as

the study made in two dimensions in RES]. SQ(3) decomposition, to disentangle anisotropic terms
In order to achieve this one could write the temperaturg 15,16]. A study of this kind is in progress.

field as the sum of a linear profile plus a fluctuating part, Concluding, we have performed a number of basic tests in

T(X,Y,2)=T)n(2) +T'(X,y,2), with Tin=AT/2X(1 order to validate the scenario of Bolgiano-Kolmogorov scal-
—2z/H) and obtain ing in a convective cell, within the limitations but also the
R advantage of nonhomogeneity alongf our cell. We were
do+(v-Vv=—Vp+vV2v+agTz (12 able to confirm the transition between the two expected
scenarios.
AT
atT’+(v~V)T’=XV2T’+WvZ. (13

We acknowledge useful discussions with R. Benzi, S.
By choosing the parameters in order to have a Bolgianducci, and R. Verzicco. All numerical simulations were per-
length as small as possible, one would benefit of a widdormed on the APEmille computer at INFN, Sezione di Pisa.
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