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Evidences of Bolgiano-Obhukhov scaling in three-dimensional Rayleigh-Be´nard convection
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We present different results from high-resolution high-statistics direct numerical simulations of a three-
dimensional convective cell. We test the fundamental physical picture of the presence of both a Bolgiano-
Obhukhov-like and a Kolmogorov-like regime. We find that the dimensional predictions for these two distinct
regimes~characterized, respectively, by an active and passive role of the temperature field! are consistent with
our analysis.
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Dimensional hypothesis for homogeneous and isotro
turbulence have been formulated in the works of Kolmo
orov @1# long time ago. On the other hand, a clear theoret
picture is still missing for the strong fluctuations in the e
ergy dissipation field that lead to intermittency effects~i.e.,
non-Gaussian behavior of probability distribution function!.
Phenomenological theories have been proposed@1# but no
systematic theory for computing experimentally measu
numbers has been successful so far. The situation of ‘‘n
ideal’’ turbulence is even more controversial, already at
level of dimensional expectations. A typical realization, t
one we will address in this paper, is the three-dimensio
~3D! Rayleigh-Bénard cell, described, in the Boussinesq a
proximation@2#, by the following set of equations:

] tv1~v•“ !v52“p1n“2v1agTẑ, ~1!

] tT1~v•¹!T5x¹2T ~2!

with isothermal boundary conditions on the upper and low
planes of a cell of height H:T(z50)51DT/2 and T(z
5H)52DT/2. As usual,v(x,t) is the velocity field and
T(x,t) the temperature field. Kinematic viscosity and th
mal diffusivity are, respectively,n andx, while the thermal
expansion coefficient isa and gravity acceleration isg. In
the following we will mainly focus on the longitudinal struc
ture functions ofv and T: Sp(r )5^$@v(x1r)2v(x)#• r̂ %p&
andTp(r )5^@T(x1r)2T(x)#p&.

In this work we present some tests of the predictions
the structure functions defined above that can be derive
the scenario proposed years ago by Bolgiano and Obhuk
@3# to describe convective turbulence.

Despite much research on the subject@4#, sound evidence
of the validity of the Bolgiano-Obhukhov scenario and t
recovery of Kolmogorov scaling at small scales is still mis
ing. Good quality confirmation of the dimensional Bolgian
Obhukhov scenario was recently shown in two-dimensio
numerical simulations@5#. This result cannot be directly re
lated to the 3D case because of the strong differences in
properties of the velocity field in 2D. Statistical properties
the velocity field were recently used with even simpler mo
els ~shell models for turbulence! @6#. This approach is even
less probing since these models were built precisely in o
1063-651X/2002/66~1!/016304~4!/$20.00 66 0163
ic
-
l

-

d
n-
e

al
-

r

-

r
in
ov

-

l

he
f
-

er

to implement Bolgiano-Obhukhov scaling. Finally, a rece
experiment even questioned the behavior of the Bolgia
length inside a convective cell@7#. Of course from an experi-
mental point of view it can be difficult, if possible at all, t
measure all relevant quantities and it can be even harde
have access to information at several~not just a few! posi-
tions inside the volume. The results presented in this pa
show good consistency with the idea of a Bolgian
Obhukhov regime~i.e., a range of length scales where tem
perature driven buoyancy effects are dominant! but, because
of the still limited resolution of ‘‘state of the art’’ numerica
simulations, we will have to resort to somehow indirect tes

This paper is organized as follows: a brief review of ph
nomenological expectations, details of our numerical sim
lations, data analysis and then concluding remarks.

Starting from Eqs.~1! and ~2!, if one uses dimensiona
analysis and assumes homogeneous scaling for velocity
temperature differences~inside the inertial range!, one ends
up with two distinct scaling regimes. At small scale
~Kolmogorov-like scenario!, r !LB ,

dv~r !;«1/3r 1/3, ~3!

dT~r !;N1/2«21/6r 1/3, ~4!

while at large scales~Bolgiano-Obhukhov-like scenario!, r
@LB ,

dv~r !;~ag!2/5N1/5r 3/5, ~5!

dT~r !;~ag!21/5N2/5r 1/5. ~6!

The Bolgiano lengthLB , is an estimate of the distance
which the dissipative and buoyancy terms on the right ha
side of Eq.~1! balance, valid under the assumption of a sc
ing behavior. In the following we will use thez-dependent
version ofLB(z) introduced in Ref.@8# that uses average
of « and N defined at a given heightz,«(z)5(n/
2)^( i j (] iv j )

2&z andN(z)5(x/2)^( i(] iT)2&z :

LB~z!5
«~z!5/4

N~z!3/4~ag!3/2. ~7!

Our analysis has been performed on data coming fr
direct numerical simulations~DNS! employing a standard
©2002 The American Physical Society04-1
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CALZAVARINI, TOSCHI, AND TRIPICCIONE PHYSICAL REVIEW E66, 016304 ~2002!
lattice Boltzmann scheme@9,14#, on a massively paralle
computer@10#. The resolution of the numerical simulatio
was 2403 and the Rayleigh number@Ra5agDTH3/(nx)#
was approximately 3.53107. The Prandtl number was equ
to unity and its precise value not relevant for our analys
We performed a stationary simulation extending over
proximately 500 recirculation times and stored nearly 4
independent configurations with complete information on
velocity components and the temperature field. Bound
conditions were periodic in thex andy directions~in order to
maintain homogeneity on horizontal planes! and isothermal
at the top and bottom planes of the cell (z50 andz5H).

Stress-free boundary conditions~i.e., free slip! were used
on the top/bottom planes for the velocity field. This choi
was made in an attempt to reduce the effects of a visc
boundary layer close to the horizontal walls. Indeed, a
will be clear from the following, thermal effects are dom
nant near the isothermal walls, so that using no-slip bou
ary conditions might produce effects on the velocity statis
interfering with the ones coming from pure buoyancy. Mo
details on this point will be given later on.

The most direct way to test the dimensional validity of t
Bolgiano-Obhukhov picture would be to measure struct
functions and to check whether they scale with expone
close~apart from intermittency corrections! to the ones pre-
dicted by the sets of equations~3!,~4! and ~5!,~6!.

Unfortunately this cannot be done directly because of
limited resolution of our DNS.

Figure 1 substantiates this comment, by plotting the
locity structure function of order 3,S3(z,r )5^@v(x1r ,z)
2v(x,z)&3# at two different positions: one very close to th
wall (z510), and the other at the center of the cellz
51205H/2).

As it can be seen from Fig. 1, no evident scaling ran
can be detected, even if a steepening ofS3(r ) is clearly
detected as one comes close to the walls.

Given this state of affairs, in order to test the consisten
with the Bolgiano-Obhukhov picture, we performed two d
tinct, albeit less direct, tests. The first test consists in che
ing that the Bolgiano length actually keeps track of the sca
at which the buoyancy term balances the dissipative term
Eq. ~1!.

First, we measureLB(z) in terms of«(z) and N(z) and

FIG. 1. Log-log plot of the structure functionS3(r ), defined in
the text, measured close to the end plates (1) and at the center o
the cell (3). The horizontal scale is in grid points, while the ver
cal scale is in arbitrary units.
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plot our results in Fig. 2. From a first look at the behavior
LB(z) we learn that Bolgiano effects should be measurab
if at all, near to the isothermal walls@whereLB(z) is of the
order of 101#.

Close to the center of the cell,LB is of the order of 102

and Kolmogorov-like behavior is expected to be measura
at almost all scales.

We then measure, directly and independently of the p
vious quantity, the scale at which dissipation and buoya
effects balance, i.e., we look for the scaleL̃B(z) such that

«~z!;ag^dv~ L̃B!dT~ L̃B!&z . ~8!

We provisionally considerL̃B a modified definition of the
Bolgiano length. In Fig. 2 we plotLB(z) andaL̃B(z) with a
constant which was tuned to bea;3.1.

As it can be seen, the two definitions yield the same
havior apart from the multiplicative factora. The reason for
the multiplicative factor~of order unity! is due to the fact
that the two definitions are dimensional estimates so they
miss a numerical prefactor. Considering this, the fact that
two definition behave in the same way after rescaling ha
be regarded an excellent agreement.

Here we want to underline two points which, we believ
add relevance to this finding. First of all the two definitio
are of course linked but definitely different. The ‘‘trad
tional’’ definition of LB ~see also@8#!, as from definition~7!,
comes from supposing that the two scaling laws in Eq.~3!
and ~5! merge at LB , hence from solving the equatio
«(z)1/3LB(z)1/35(ag)2/5N(z)1/5LB(z)3/5. The second defini-
tion, L̃B(z) comes instead from adirect measurement of the
strength of the dissipative and forcing term in Eq.~1!.

The second important point consist in the fact that our c
is not homogeneous; this adds strength to the equality
tween the two different definitions ofLB(z).

As a consequence of this test, we can claim that
Bolgiano-Obhukhov scenario and the expected power
behavior are consistent with the value measured for the te
appearing on the right hand side of Eq.~1!. Furthermore we
fully confirm ~with higher accuracy! our former results for
LB @8#. We like to underline that extracting the behavior

FIG. 2. Plot of thez-dependent Bolgiano length as a function
the distance from the bottom wallz as given by the usual definition
of Eq. ~7! @LB(z),1# and as given by the procedure described

the text, following Eq. 8@aL̃B(z),3#. All dimensions are in grid
points anda53.1.
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EVIDENCES OF BOLGIANO-OBHUKHOV SCALING IN . . . PHYSICAL REVIEW E66, 016304 ~2002!
the Bolgiano length using measured quantities that are
those appearing in its definition could introduce large erro
For example, in Ref.@7# a Bolgiano length was extrapolate
as the scale at which there is a change of slope in a partic
structure function. In using such a procedure one is do
nated by strong finite size effects present on the struc
functions.

We now proceed to our second test. Under the hypoth
of validity of Bolgiano-Obhukhov scaling, and if enoug
resolution were available, one would expect to see power
behavior in the inertial range in Fig. 1 with two distin
slopes 1 and 9/5, corresponding to Kolmogorov a
Bolgiano-Obhukhov scaling, respectively. With availab
resolution, we are not able to detect a clear power law
havior from Fig. 1, although we see a clear steepening of
structure function as we come close to the wall. What we
going to do in the following is to try to quantify as well a
possible this change of slope.

We adopt the following procedure. We focus on the p
of S6(r ) vs S3(r ) and apply extended self similarity~ESS,
see@11#! in order to detect a trustable plateau in the lo
slopes. We found this plateau to correspond roughly to
tances in the intervalI v5@25,40# for the velocity structure
function andI T5@15,30# for the structure functions of the
temperature field. We then define two other intervals sligh
shifted to the leftI 2

v 5@20,35#,I 2
T 5@10,25# and to the right

I 1
v 5@30,45#,I 1

T 5@20,40#. These intervals were shifted b
a reasonable amount, i.e., were still possible highest or l
est estimate for the same plateau.

We finally perform a power law fit to extract a scalin
exponent on the structure functions for the velocity and
the temperature in the three intervals previously defined.

We define the scaling exponents for the structure fu
tions of interest as follows:

^dv~z,r !p&;r zp(z), ~9!

^dT~z,r !p&;r xp(z), ~10!

^@dv~z,r !dT~z,r !2#p/3&;r rp(z). ~11!

Our fits provide a central value for the exponents and tw
respectively, higher and lower estimates~corresponding to
the shifted intervals!. The procedure adopted in estimatin
the errors reflects the fact that the largest source of sys
atic error is connected with the choice of the fitting rang
and not with statistical accuracy.

In the Kolmogorov regime we expect the exponents
Eqs. ~9!–~11! to take the following dimensional values:zp
5p/3,xp5p/3, andrp5p/3. In the Bolgiano-Obhukhov re
gime, on the other hand, we expect the following dime
sional values:zp53p/5,xp5p/5, andrp5p/3.

In Fig. 3 we plot the behavior of the measured cent
exponents and their errors as a function ofz for z3(z) and
x3(z). The behavior is qualitatively and quantitatively co
sistent with the expected scaling exponents: we observ
smooth transition from a Bolgiano-Obhukhov dominated
gime ~near to the wall, smallz) to a Kolmogorov regime
~approaching the center of the cell!.
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In Fig. 3 we have not shown the behavior ofr3(z) as it is
consistent~within error bars! with the constant value 1 an
plotting it on the same figure would have made it unreada

Once again we like to underline the consistency of o
findings. From the theoretical picture we expect to see
crossover to the Kolmogorov scaling whenLB(z)>H. This
is indeed the case asLB(z)>H for z>40 and indeed we se
that z3(z);1 in the same range ofz.

Another interesting question concerns the ‘‘real’’ statist
of the Bolgiano-Obhukhov regime. Very recently, interest
growing along this line of research in order to understand
differences between the statistical properties of an ac
with respect to a passive scalar@5,6#. In this work we fo-
cused on the gross features, i.e., on the dimensional beha
If we try to look at intermittency, by means of ESS we find
strong increase of intermittency for the velocity field a
proaching the isothermal walls.

Unfortunately we believe that with our simulation we a
not in a position to make any definite statements about in
mittency in the Bolgiano-Obhukhov dominated regime.

Indeed a study of intermittency in the Bolgiano
Obhukhov regime would involve positions nearby the is
thermal walls ~as only there the Bolgiano length scale
small enough to have an inertial range largely dominated
buoyancy effects!. Recently it was found that intermittenc
increases in the velocity structure functions inside a visc
boundary layer@12#. In an attempt to reduce the viscou
boundary layer thickness we decided to apply stress-free
locity boundary conditions to the isothermal walls. Th
choice helps only partially because of two reasons. First,
stress-free boundary conditions does not completely supp
the boundary layer~for the nature of the resulting boundar
layer, see, for example,@13#!. A boundary layer thickness ca
be defined, as in Ref.@13#, through an extrapolation o
^vz(z)2&. In our case, it turned out to be roughly 15 gr
spacings. Second, it was recently realized that mechan
turbulence in a stress-free~i.e., free-slip! channel also pre-
sents an enhancement of intermittency near to the walls@13#.

A procedure to disentangle buoyancy and planar effect
clearly needed to make any definite statement on interm
tency in the Bolgiano-Obhukhov regime. Otherwise one c
not decide whether a change of intermittency is related
Bolgiano-Obhukhov dynamics or to the increase occurr
nearby boundary layers.

In order to clarify this point it would be important to

FIG. 3. Behavior of the exponentsz3(z),x3(z) as a function of
z.
4-3
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CALZAVARINI, TOSCHI, AND TRIPICCIONE PHYSICAL REVIEW E66, 016304 ~2002!
perform a simulation of a Rayleigh-Be´nard-like system with
periodic boundary conditions in all directions~i.e., an homo-
geneous Rayleigh-Be´nard cell!. We suggest to extend to 3D
the study made in two dimensions in Ref.@5#.

In order to achieve this one could write the temperat
field as the sum of a linear profile plus a fluctuating pa
T(x,y,z)5Tlin(z)1T8(x,y,z), with Tlin5DT/23(1
22z/H) and obtain

] tv1~v•¹!v52¹p1n¹2v1agTẑ, ~12!

] tT81~v•¹!T85x¹2T81
DT

H
vz . ~13!

By choosing the parameters in order to have a Bolgia
length as small as possible, one would benefit of a w
.
,

la,

o

01630
e
,

o
e

range of scales where to study the buoyancy dominated fl
Further advantage of homogeneity would be the natural
crease of statistics and also the applicability of tools such
SO~3! decomposition, to disentangle anisotropic term
@15,16#. A study of this kind is in progress.

Concluding, we have performed a number of basic test
order to validate the scenario of Bolgiano-Kolmogorov sc
ing in a convective cell, within the limitations but also th
advantage of nonhomogeneity alongz of our cell. We were
able to confirm the transition between the two expec
scenarios.

We acknowledge useful discussions with R. Benzi,
Succi, and R. Verzicco. All numerical simulations were p
formed on the APEmille computer at INFN, Sezione di Pi
ett.
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