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§o 

Pattern identification is a source of several iostructive programming exercises. We shall present 

one such exercise that is especially interesting for problems dealing with periodicity. In particu­

lar it enables US to treat preprocessing and search in the Knuth-Morris-Pratt pattern search 

algorithm as a unity. 

Some remarks on names and notations: 

Let L be a fixed alphabet. A word over L, i.e. an element of the free monoid (L* , A) generated 

by L, will be called a string. lC" \ (A) will be denoted by L'", the nonempty strings. (In the 

sequel, capitals refer to strings, lowercase letters to naturals (including 0) or functions, unless 

stated otherwise.) 

Let X be a string. In order to facilitate references to the length IX I of X and symbols occuring 

in X, we shall write X (i : 0,,;, i <N) . Then IX I = N and X (i) is the i + 1'· symbol of X. 

If n ,,;, N we shall write X J, n for X (i : 0,,;, i < n), the prefix of X withe length n. 

A string X is called periodic if X = pm for some PEL'" and m ;:, 2, where pm is the concate­

nation of m copies of P. In that case, P as well as I P I is called a period of X. The period 

of X is the smallest period (if any). 

For strings X and Y 

X ,,;, Y denotes "X is a prefix of Y" 

X<Ymeans X";'Y",X",y 

So much for general remarks on names and notations. 

First we shall state the basic problem (MPP) in its "historical" context, subsequently we shall 

give two applications 

Pattern-search (e.g. Knuth-Morris-Pratt) 

Periodicity-search (for all prefixes) 
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§ L The MPP problem 

The problem we would like to consider evolved from the exercise below. We shall give some 

heuristics for this program evolution. 

Exercise ("carn:check") 

A string X is a carre if X = p2 for some string P E l7 . Derive a program to find every prefix 

of X that is a carre. 

The formal specification: 

where 

(0) 

I [N : int ; (N ~ 1) 

]1 

X (i :OS:i <N): string; 

I[e (i :lS:iS:N): lI!ll!Yofboo1; 

CARRECHECK 

{(A i : l<:;iS:N : e(i) '" car (X .l.i»} 

]1 

car(X) " (EP :PEl7:X=PP). 

A standard feature in programming methodology is: weaken in the postcondition by replace­

ment of a constant by a variable. 

If we consider the term in definition (0) : X = PP we might think of P as being a constant. 

Symmetry tells us to replace P by a variable twice. So X = PP might be "generalized" to 

X = PE 1\ X = FP for variables E and F. 

I.e. P is a pre- and postfix of X . 
So for strings P and X we define 

(1) P lll1X " (EE.F :E.FEl7:X=PE I\x=FP) 

and note that P lll1 X 1\ IX I = 2 * IP I "" car(X) . 

The lack of reflexivity of lll1. created by the domain in (1). seems unnatural. but it results from 

the definition of periodicity. i.e. the domain in definition (0). 

Moreover. incorporating reflexivity of lll1 leads to additional non-triviality analysis (in !!!IlIl 

below for example). 

First we give a few properties of lll1. the simple proofs are omitted. Let H • P and X be strings 

and h • x E L. then 

(2) 

(3) 

(4) Hh lll1 Xx " Hh < Xx 1\ H lll1 X 1\ h = x 



- 2 -

Property 4 will be used for prefixes of a fixed string X: 

(4') X-I-k+!ooX-I-n+! "X-I-k ooX-I-n I\X(k)~X(n) 

(4") -'X h+! 00 X -I-n+! " -'X J.k 00 X -I-n Y X(k);<X(n) 

By 2, the transitivily of 00, we feel invited to consider maximal pre- and postfixes. So define: 

(5) P!!!Ill!X " P 00 X 1\ (AH: HooX: H~P Y HOOP) 

Note that the following are equivalent 

!l. P !!!Ill! X 
fl. P 00 X 1\ (A H : H ooX : IH I~ IP I) 

£ PooXI\(AH:HooX:H~P) 

In section 6 we show that, given P !!!Ill! X, we have 

car(X) " IX I mod(2*(IX I-IP I»~O 

So indeed the generalization (weakening of carre) is fruitful. The carrecheck problem has 

evolved to the MPP problem: 

Derive a program that calculates for every prefix of a given string its maximal pre- and postfix. 

The formal specification 

I [N : int ; (N ;;, I) 

X (i : O~ i<N) : §l!:ing ; 

I[f (i :l$i~N): arrayQf[O .. N); 

MPP 

]1 

]1 . 

((Ai: l~i~N :x-I-f(i)!!!Ill!x-I-i)} 



§ 2. Solution to the MPP problem 

Forced by the postcondition of MPP : 

Ro (A i : l';;i,;;N : X .1j(i)!llIll!X .1 i), 

we choose the following invariants : 

Po (A i : I';;i';;n : X .1j(i)!llIll!x.1i) 

P, I,;; n';; N. 

Awroximation 0 (for MPP) 

n := 1 ; j : (I) = 0 (Po A P,) 

; do n *-N ..... So (x.1k !lli11!x.1n +I) 

·3 . 

;j :(n+I)=k {(PoAP,):+l) 

; n : = n + I (Po A P, ) 

od {Po A P, A n = N , hence Re} 

On cosmetical grounds, with 4' in mind, we consider a slightly different postcondition for So : 

R, X.1k + I !llIll! X.1n + I 

By definition of!lllll! (version 5b.) and by 4' ,R, equivales 

x.1k I!I2X.1n A X(k)=X(n) A (Aj :X.1jI!l2X.1n+1 :j';;k+l) 

This leads us to a repetition for So with guard X (k) *- X (n) and invariants : 

Qo (Aj :x.1jI!l2X.1n+1 :j';;k+l) 

Q, X.1k I!I2x.1n A k?: 0 

Approximation I (for Sol 

k :=f(n) (QoA Ql. see the note below) 

; do X (k) *- X (n) A k *- 0 

....... decrease k under invariance of Q (and P)" 

od {QoA Q, A (X(k)=X(n)Y k =0) } 

The second conjunct in the guard is forced upon us by the wish to decrease k, leaving k ?: 0 

invariant. 

note Po 

~ {instantiation at n ,def. mpp (5 b.)} 

X .1f(n) 1!12 x.1n A (A j : x.1j 1!12 x.1n : j';;f(n» 

~ {by 4' : X .1 j + I 1!12 X .1 n + I ;a. X .1 j 1!12 X .1 n} 

X .1f(n)I!I2X.1n A (Aj :X .1j+ll!l2X J.n+1 :j';;f(n» 

* (dummy change) 

X J. f (n) 1!12 X .1 n A (A j : X J. j I!I2X .1 n +1 : j';; f (n)+ I) 

= (def. Qo, Qd 

(Q, A Qo) j (n) 
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Under assumption of Qo 1\ Q, 1\ Po 1\ P, and the guard, we study reduction of k. First with 

respect to Qo : 

Let j > 0 then 

X J,j PllX J,n +1 

"> [Qo;by4" ,X(k);OX(n) ~~XJ,k+lPllXJ,n+l} 

X J,j PllX J,n+l I\jS k+l "j ;Ok+l 

"> [j ~ O,4'} 

XJ,j-1PllXJ,n I\j-l<k 

"> (Q,,3) 

X J,j -1 PllX J,k 

"> [Po, O;Ok < n , def. !!lllI! 5l!} 

j-ISf(k) 

For j = 0, certainly we have j S f (k) + 1. Hence Qo} (1) holds. 

With respect to Q, : 

Po I\Q, 

"> [k;O 0 : Po instantiated at k} 

X J,f(k) PllX J,k 1\ X J,k PllX J,n 

"> [2} 

X J,f(k) PllX J,n 

= (def. Q,.J(k)~ O} 

Q, j (k) 

This shows that "decrease k under invariance ..... is established by k := f (k). (Certainly Po" P, 

is not affected.) 

Because of the conjunct k ;0 0 in the guard, neither R, not the original postcondition of So are 

met, but a mixture is : 

and Qo 1\ Q," X(k) ;OX(n) 1\ k = 0 

"> (4") 

Qo 1\ Q, 1\ ~ X J.k + 1 Pll X J.n +1 1\ k = 0 

"> (X J. 0 Pll X J. n + 1 , def. !!lllI!J 

X J.k!!lllI!X J.n+l I\k =0 



This proves the following solution for MPP : 

n:= 1 ; f :(1) = 0 (Po /\ Pd 

; don;tN 

~I[k:int; 

k :=f(n) (Qo /\ Qd 

; do X(k) ;tX(n) /\ k ;t 0 

~ k :=f(k) 

- 5 -

od (Qo /\ Q,/\ (X(k)=X(n)V k =0») 

; if X (k) = X (n)~ (X -I- k + 1 !!!Ill! X .J. n + I) k := k + 1 

11 X (k) ;t X (n)~ (X .J.k + 1 !!!Ill! X .J.n + I) skip 

fi (X .J. k !!!Ill! X -I- n + I) 

; f : (n + I) = k (Po /\ P,)':'+d 

JI 
n:=n+1 

od (Po /\ P, /\ n = N • hence R.,) 

For the complexity of the algorithm. consider k to exist outside the innerblock (P2: k = f (n» . 

A variant function that shows linearity is 2N - 2n + k . 
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§ 3. Pattern search 

Let P E Ie be fixed. the pattern. Suppose we are interested in (all) occurrences of P in a string 

Z. 
Put Y = PZ. then we are searching for numbers n. such that 

In this setting the pattern might be represented by its length only. 

Let X be a string. p a number 1 ~ p < I X I . 

As X J, p is a postfix of X J, n iff p = n Y X J, p l1I! X J, n • we define (the occurrence of the 

pattern as postfix of X J, n): 

(6) 

Let j be as in the MPP problem. It seems reasonable to hope for suitable O-information in the 

!!!llI!-knowledge recorded in j. Indeed. for strings H • P and X we have 

(7) 

Property 7. which is closely linked to 3. follows easily from 5g, • 2 . 

It relates O(n) to j (n) as follows : 

O(n) 

= (6) 
p =n Y XJ,p l1I!XJ,n 

= (X J, j (n) !!!llI! X J, n • 7 with H • P , X := X J, P ,X J, j (n), X J, n) 

p =n Y X J,p =X J,j(n)Y X J,p l1I!X J,j(n) 

= (X J,p =X J,j(n) '" p =j(n); 6) 

p =n Y o (J(n» 

As j (n) < n (nonrefiexivity of 1llV, O(n) depends only on j (n) and O(i: 1~ i <n). This senies 

pattern search as a simple extension of the MPP problem, by adding invariant 

P3 (A i : 1~ i ~ n : 0 (n) '" O(n» 

and initialization 0 : (1) = (p = 1) (P3) 

extra statement; 0 : (n + 1) = (p =n + 1) Y o(J(n + 1» (P3:+tl 
immediately following the innerblock. 
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§ 4. Knuth - Morris - Pratt 

The pattern search presented in the previous section has a serious drawback : storage linear in 

the length of the given string (concatenated with the pattern). Indeed, the algorithm needs 

f (i : I~ g n) to calculate f (n + I) and O{i: I~i ~ n) and fen + I) to calculate O{n+ I). 

As, for fixed p, we are interested in n such that X ! p 1111 X ! n (instead of !!!ill! !) the infonna­

tion recorded in f exceeds our needs : we might do with pre- and postfixes with lengths at 

most p. So we define : (P and p are not related ! ) 

(8) 

(9) 

PxxX ",PI1I1X"IPI<p 

P IJ..1m '" P 1U]; X" (A H : H xxX: H;P v H xxP) 

The reader is urged to convince himself of the truth of the 1m-versions of 2, 3 , 5"' b • C (i.e. 

only (m)11I1 replaced by (Ut) 1U!<). Property 4, however, has a slightly different xx-version. 

We shall only provide the 1U];-version of 4' : 

(lO') X!k 1U]; X!n "X{k); X{n) 

'" (X !k +11U]; X !n + I" k <p -I) V (X !k + 11111 X !n + 1 " k;p -I) 

The Jl1t1t problem is given by the postcondition 

Po (Ai: l~i~N : X !${i)wmX!i) 

For the solution of the Jl1t1t problem we define invariants, (the obvious adaptations of the 

invariants for MPP) 

1to (Ai:l~i~n:X!${i)wmX!i) 

'1'0 (A j : X ! j lillX ! n + 1 : j ~ k + I) 

'1'1 X! k 1m X ! n " k ~ 0 

Except from the obvious adaptations, Jl1t1t differs from MPP only in the case analysis in the 

innerblock : the drawback of 10' : 

Certainly, 

'1'0" '1'1" X{k); X{n)" k < p-I 

=> 110', def. u xx) 

X !k+1 J,lII1iX !n+1 

but '1'0" '1'1" X{k) ;X{n)" k ; p-I 

=> 1100,k+l;p} 

X!p 1111 X !n +1 

=> Ilto, instantation at p ; 2) 

X!$(p)l!JmX!n+1 
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This shows that the alternative statement following the inner repetition should be changed (for 

the ~1t1t problem) to 

('1'01\ '1'1 1\ (X(k)=X(n)v k =o)} 

; ifX(k)=X(n)1\ k <p-I ~ (X J.k+1 UltltX J.n+l) k :=k+1 

o X(k) = X(n) 1\ k = P -I ~ (X J.<p<p) U1t1t X J.n + I} k := </l(P) 

o X(k)" X(n) ~ (k = 01\ X J.k U1t1t X J.n + I) skip 

fi 

(X J. k U It It X J. n +l) 

This and the change from f to </l make the solution of MPP to a solution of ~1t. The code 

will reappear in the Knuth-Monis-Pratt pattern search algorithm. so we shall leave it with this. 
Note that for calculation of </l(n + I) only </l(n) and </l (i : 15 i 5 p) are needed : </l{n) for initializ­

ing k. </l (i : 15 i 5 p) in the inner repetition. I.e. ~1t1t needs storage proportional to the "pattern 
length". 

Similar to § 3. we now transform ~1t1t to a pattern search algorithm: Knuth-Monis-Pratt. 
With respect to occurrence of X J.p as postfix of X J. n + I. note that 

0(0+ I) 

= (6) 
p =n+lvXJ.p Ill!XJ.n+1 

(4'; def. Itlt) 

P =n+IV (XJ.p-IzmXJ.n 1\ X(P-I)=X(n» 

= (def. of It It : '1'';-1 " true; def. 'I') 
p = n + I V <'1'01\ '1'11\ X(k) = X(n»:_l 

So calculation of 0(0 + I) depends only on the postcondition of the inner repetition and 

occurrence is to be signalled in the second alternative (the occurrence at n + 1 = p is not 
relevant of course). 

We are now ready for the Knuth-Monis-Pratt algorithm. 

As only </l(i : 15 i 5p) and </l(n) are needed to calculate </l(n + I) • we have to distinguish between 

preprocessing 

search 

- "filling ~" 

- IIsignalling occurrences'!. 

This seperation of the two parts is inevitable. but an earlier separation is unnecessary. 
1 

unelegant and confusing. In order to account for the reduced domain of </l we modify 1to to 1to• 

to "buffer" </l{n) we add 1tz 
1 

1to (Ai: 15i5pminn :XJ.</l(i)UltltXJ.i) 

1tz X J.k UItIt X J.n 

and we take k outside the inner repetition. 
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The Knuth-Moms-Pratt pattern search algorithm we derived : 
I[k:int; 

CP(i: l:5i:5p): array llf [O .. p-l); , 
n , k := 1 , 0 ; <I> :(1) = 0 {1to " 1t, " 11:,} 

; don "N , 
~ {1to " 1t, " 1to" n "N , so '1'0" 'I',} 

do X (k) "X (n) " k ,,0 
~k:=<I>(k) 

ad {'I'o" '1',,, (X(k)=X(n)v k =O)} 

; if X(k) =X(n)" k <p -l~ k :=k+l 

[) X(k) =X(n)" k =p -I~ k:= <I>(p); "MATCH' 

[) X(k)" X(n)~ skip 
• 

6 {X ik I!..lU!; X in + I, SO 1t,.+,} 

; if n < p~ <1>: (n + 1) = k 

[) n <: p~ skip , 
6 { (1to "1t,,, 1to>,:' +,) 

; n:== n +1 , 
ad {1to " 1t, " 11:, " n = N , so Po} 

]1 

The interested reader might want to tty a direct approach via Jl1t1t. 
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§ S. Further remarks on pattern search 

The second alternative statement in the algorithm above, distinguishing preprocessing and 

search, may also lead to a code with two (sequential) repetitions, one for each alternative. We 

chose for the form above to stress the uniformity: the difference between the parts is solely 

based upon coding, the genesis doesn't differentiate! 

Several people noticed the strong resemblance of those parts, but in the literature we searched 

in vain for a presentation or derivation (at all) of the algorithm that did justice to that resem­

blance. ([C 85] and [W 86] deserve some Credit). 

[Note that even in 1983 the preprocessing was said to be "complicated and difficult to under­

stand" ([S 83] p. 242). As the two parts are almost identical such a statement is puzzling. Has 
it anything to do with the widespread chaotic algorithm presentation? (e.g. [KMP 77], [BM 

77])]. 

In our opinion, exploitation of pre- and postfixes simplified the "derivation" of the algorithm 

such that it becomes within reach of every freshmen course. 

We conclude the discussion of pattern search with a remark on the Boyer-Moore fast pattern 

search ([BM 77]). As this algorithm is slightly beyond the scope of this paper, we shall only 

hint at its relation with the MPP problem. 

Consider X E t* and pattern X J.p. In the Knuth-Morris-Pratt pattern search we decided to 

build up pre- and postfixes bit by bit, but we could have been greedier: 

To that end consider the (linear-search-like) invariant 

PBM (Ai :XJ.pI1llXJ.i :i>n) 

As X J.p I1ll X J.n + 1 ,.. (4'J X(p -1); X(n) we first check X(n) as a candidate for the end of 
a pattern occurrence. 

Let s ; (MAXj : O<:;j<:;p "X(n);XU): j)!!!M-1 

Then PBM.:'+p.s holds. 
In other words : the first candidate m to satisfy X J. p I1ll X J. m is m ; n + p - s. 

If s < p - 1 we can "leap further", if s ; p - 1 we check X(n -1) ,etcetera 

This requires knowledge of the occurrences of values and periodicities in the pattern. 
The reader is challenged to give a "derivation" of the Boyer-Moore fast pattern search based 

on this early deviation of the MPP problem. 
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§ 6. Periodicity search 

In section 1 we "generalized" the carrecheck exercise to the MPP problem, and we promised to 

show that a solution for carrecheck is found as soon as MPP is solved. 

We shall keep our promise in the following way : 

we give a variant of carrecheck 

we proclaim an enrichment of MPP that solves the (variant) exercise 

we perform some string-mathematics to prove that the exercise is solved by that enrich­

mentofMPP. 

For fixed m '" 2 consider the following postcondition 

R (Ai:lSiSN:c(i)=(EP:PeL'":X,J.i=pm
) 

" (A i : IS i S N : per (i) = i min (MIN p : p period of X ,J. i : p» 

In case m = 2, the first conjunct of R is just the postcondition of carrecheck. 

The second conjuct of R means : 

per (i) is the period of X ,J. i if X ,J. i is periodic, otherwise per (i) = i. 

Obviously we should extent iovariant P for the MPP problem with a conjunct p. to get an 

invariant for the new problem. 

Initialization of p. : ; c : (1) = false; per: (I) = 1. 

The outer repetition should contain an establishment of p.:+! . 

So, followiog "/: (n +1) = k (Po:+d" and before "n: = n +1", we proclaim the statement 

list: 

; c : (n + 1) = (n + 1) mod (m * (n + 1-/ (n + 1») = 0 

; if (n + \) mod (n + 1-/ (n + 1» = 0 ..... per: (n + 1) = n + 1 - / (n + 1) 

o (n + 1) mod (n + \-/ (n + 1» " 0 ..... per: (n + 1) = n + 1 

Ii (p.: +! , see corollary 5 to follow ) . 

Indeed a mioor adaptation, but it takes a proof! 

The string-mathematics to follow is quite elementary, and has nothing to do with programmiog 

and - methodology. So we adopt a more conventional mathematical style, but (for the conveni­

ence of non-mathematicians) we still take small steps in the proofs. 

The basic idea is to squeeze periodicity information out of 1!12 or ll!I!I2 knowledge. 

Let D , Y E I;+ with D 1!12 Y. Then there are E ,F e L'" such that Y = DE " Y = FD . 

Lemmata 1 and 2 tell us about (almost) periodicity of Y. (they are well-known, e.g. see (L 79) 

Ch. 11.5). Much more can be said if D !!!1!12 Y, some of which is done io 3,4,5. 
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Lemma 1 Let D E 1:* and E ,F E 17 such that DE ~ FD . 

Then there are L E 1:*, K E 17 and n '" 0 with 

Q D ~F"L andL <F (hence DE ~FD ~Fn+lL) 

1 E ~KL andF ~LK . 

Proof Certainly, there are L E 1:* and n '" 0 such that D ~ F" L and I L I < I Fl. 

ThenF"LE ~DE ~FD ~F"+IL ,soLE ~FL. 

As I L I < I F I ~ I E I , there are K , Kl E 17 with LK ~ F and E ~ Kl L . 

Hence, L(KI L) ~ LE ~ FL ~ (LK)L and it follows that Kl ~ K . o 

Lemma 2 Let D, F E 1:* with DF ~ FD. Then there is aPE 1:* such that 

D ,F E (P'" 1m'" OJ. If D ,F E 17 it follows that DF is periodic with period at 

most gcd ( I D I , I F I ) . 

Proof By induction to the length of DF. 

If D ~ A or F ~ A the existence of P is obvious. 

Let D ,F E 17 . By 1, there are K , L , n such that D ~ F" L ,F ~ KL and F ~ LK . 

Hence KL ~ LK . 

As D ~ A, I KL I ~ I F I < I DF I , so by induction there is aPE 1:* (as K E 17 even PEl:'" ) 

such that K ,L E (P'" 1m", OJ . 
Consequently, D ,F E (P'" 1m", OJ which proves the first part. 

If D ,F E 17 then DF E (p",+2 1m", OJ while PEl:'" . 

Note that I P I divides I D I and I Fl. 

Lemma 3 Let Y ~ FD and D !llI!Il Y. Then F is not periodic. 

Proof By definition of (m)1lIl, F ~ A . So, by 1, there are L , n with D ~ F" L and L < F . 

Suppose F is periodic, say F ~ Q'" for some Q E 17, m '" 2 . 

o 

Then QF ~ FQ , hence QL < QF ~ FQ . As also L < F < FQ , it follows that FQ has both L 

and QL as prefix. Since I L I < I QL I we have L < QL and, equivalently, 
Q'" Q","-l L < Qm Q"'" L . 

As Y ~ FD ~ Q'" Q"'" L , it follows that Q'" Q","-l L IlIl Y. However, since 

m '" 2, I D I ~ I Q"'" L I < I Q'" Q","-l L I which contradicts D !llI!Il Y . This falsifies periodi­

city of F. 0 

"- -- -
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Lemma 4 Let Y ~ PD ,D !!!lm Y . Let P I!I! Y and I PI;;' I PI, then there is a k ;;, 0 such 

that D ~ p' P . (I.e. all pre-postfixes of Y With lenght;;, I P I are known). 

Proof As D !!!lm Y, P c# A, so there are n ;;, 0 and L < P with D ~ pn L . 

Because I L I < I P I $ I P I and P is a postfix of D ,L is a postfix of P. Hence there are a 

k: 0 $ k S n and H < P with D ~ pl HP . Let HG ~ P then P ~ Gp·-k - I L . 

As I H I + I G I ~ I PiS I P I ~ I G I + I pn-k-I L I , I H I $ I p ft - k- I L I . 

Since H < p.- k and p.-'-I L < p.-l it follows that H $ pft-.-I L , so GH S Gpft-l-I L ~ P . 

On the other hand HG ~ P $ P ,so GH ~ HG . 

As H < P ,and, by :i, p is not periodic it follows from 2< that H ~ A , which shows D ~ pl P . 

o 
Corollary 5 Let D !!!lm Y , say Y ~ PD . Let m ;;, 2 , then 

(EC ::y~cm) iff IY I mod(m* IPI)~O. 

In particular, Y is a carre iff I Y I !illl!!. 2 I P I ~ 0 , and Y is periodic iff 

D c#Aand IY I !illl!!.IP I ~O. 

Proof By I, Y ~ pn+1 L and L < P , so the if-part is obvious. 

Let Y ~cm; note that since m;;' 2, Cm-Il!l! Y. As ID I;;' I Cm-Il , IP I $ I C 1$ ICm-II, 

soby~, D ~plcm-I. 

Hence pl+1 Cm- I ~ Y ~ CCm- 1 and C ~ pHI, so Y ~ pm * (k+l) . 

The remaIic on Y being a carre is an instantation for m ~ 2 . 

Finally,asYc#p,IYlmodIPI~O" (Em:m;;'2:IYlmod(m*IPI)~O). 0 

Note that if Y is periodic, I Y I - I D I is the period. 
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