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Chapter 1

Introduction

We live in a three-dimensional world. It is not surprising, therefore, that in many areas
of computer science it is necessary to store, analyze, and create or manipulate geomet-
ric data. In a geographic information system(GIS), for instance, one may want to select
all topographic features within a rectangular query region. Or in robotics applications,
one may need to plan a collision-free path for a robot. Other examples of application
areas involving geometric data are computer graphics and virtual reality, computer-aided
design and manufacturing (CAD/CAM), and integrated circuit design. Computation ge-
ometry [42] is the field within algorithms research that deals with geometric problems.
The primary goal of research in computation geometry is to design and analyze efficient
algorithms and data structures for problems stated in terms of basic geometric objects:
points, lines, and other objects in 2-, 3-, or higher dimensional space.

Over the past decade, there has been a lot of interest in computational geometry in de-
veloping algorithms for mobile data, that is, data about moving objects. mobile data is
becoming more and more available in a variety of application areas—air-traffic control,
mobile communication, and geographic information systems, for instance—due to the in-
creased availability of GPS systems and to other technological advances. In many of these
areas, the data are moving points in 2- or higher-dimensional space. What is needed is to
store these points in such a way that either some queries—range queries, for instance, or
nearest-neighbor queries—can be answered efficiently, or some attributes—the convex
hull of moving objects, for instance, or the closest pair among moving points—can be
maintained efficiently. Within computational geometry, the common model for designing
and analyzing data structures for moving objects is the kinetic-data-structure framework
introduced by Basch et al. [23].

In other areas of computer science, a lot of work has been dedicated to mobile data as
well. A wide and increasing range of database applications has to deal with objects mov-
ing around such as taxis, airplanes, hurricanes or flood areas, to name but a few exam-
ples. Therefore, there has been a lot of work on extending the capabilities of existing
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database systems to handle continuously changing data such as the position of moving
objects. In traditional databases, in order to represent moving objects (e.g air planes)
and answer queries concerning their positions (e.g. ”retrieve all the airplanes that will
come within 30 miles of the airport in the next 10 minutes”) the air planes’ positions
and the indexes storing them must be updated continuously which is unsatisfactory. This
leads researchers in the database community to model and index moving objects (see e.g.
[26, 61, 89, 90, 93, 94, 98, 99, 100]) in order to efficiently update moving-object databases
(MOD) and quickly answer queries concerning moving objects. In the wireless-network
community, the study of mobile hosts has received a lot of attention. The hosts in a mobile
network move according to various patterns. Realistic models for the motion patterns are
needed in simulation in order to evaluate system and protocol performance. Mobility pat-
terns have been used in the study of various problems such handoff, location management,
paging, registration, calling time and traffic load. Mobility models have been explored in
both cellular networks [21, 80, 81, 82, 105] where communications are point to point
rather than among groups, and ad hoc networks [36, 76, 105] where communications are
among teams which tend to coordinate their movements (e.g. a firemen rescue team in a
disaster recovery situation). Object tracking is an important task within computer-vision
community, due to the increased availability of high quality and inexpensive video cam-
eras and the increased need for automated video analysis. What is needed in this area
of research is the detection of moving objects, tracking of such objects from frame to
frame and analysis of object trajectories to recognize their behavior—for more details see
[102] and references therein. In computer graphics, dealing with mobile data is unavoid-
able. Many applications in computer graphics require fast and robust collision detection
algorithms. The algorithm in this area can be grouped into four approaches: space-time
volume intersection [28], swept volume interference [46, 64], multiple interference detec-
tion [35, 50, 51] and trajectory parametrization [88, 92]. Rendering of moving objects [79]
is another example of work that has been dedicated to mobile data in computer graphics.
When one is designing algorithms for mobile data, an important issue is how to analyze
them in order that their efficiency can be compared. In many of the above-mentioned
areas, the analysis is often done experimentally. From an algorithmic-research perspec-
tive, however, one would like to do a theoretical analysis. The kinetic-data-structures
framework developed in computational geometry provides the tools for such a theoretical
analysis, and they form the topic of this thesis. Whether this framework provides the best
solution in practice will probably depend on the application at hand, and is a topic for
further research.

Kinetic data structures have been the major area of my research as a PhD student in
the algorithms group at the TU Eindhoven from 2004 to 2007. In the remainder of this
chapter I will first give a short introduction to kinetic data structures and then summarize
the results that we obtained. The next five chapters correspond to the papers resulting
from my research in this area: four chapter about kinetic data structures and one chapter
about streaming algorithms with applications to moving objects. The thesis is concluded
with a chapter discussing open problems and directions for future research.
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1.1 Kinetic data structures

Algorithms that deal with objects in motion traditionally discretize the time axis and com-
pute or update their structures based on the position of the objects at every time step. A
major problem with this approach is the choice of the prefect time interval. If the interval
is too large, important events will be missed and the data structure will be invalid for some
time. If, on the other hand, the interval is too small, a lot of computation time is wasted:
some objects may have moved only slightly, in such a way that the overall data structure is
not influenced. One would like to use the temporal coherence to speed up the process—to
know exactly at which point we need to take an action. In fact the location of an object
should require our attention if and only if it triggers an actual change in the data structure.
Kinetic Data Structures (KDS for short) introduced by Basch et al. [23] do exactly that:
they maintain not only the structure itself but also some additional information that helps
to find out when the structure will undergo a real combinatorial change.

A KDS is a structure that maintains a certain attribute of a set of continuously moving
objects—the convex hull of moving objects, for instance, or the closest distance among
moving objects. It consists of two parts: a combinatorial description of the attribute and a
set of certificates—elementary tests on the input objects—with the property that as long
as the outcomes of the certificates do not change, the attribute does not change. In other
words, the set of certificates forms a proof that the current combinatorial description of
the attribute is still correct. It is assumed that each object follows a known trajectory so
that one can compute the failure time of each certificate. Whenever a certificate fails—
we call this an event—the KDS must be updated. The KDS remains valid until the next
event. To know the next time any certificate fails, the failure time are stored in an event
queue. Note that a change in the set of certificates also means a change in the set of failure
times, so the event queue has to be updated at each event as well. An important aspect
of KDSs is their on-line character: although the positions and the motions (flight plans)
of the objects are known at all times, they are not known far in advance. In particular,
any object can change its flight plan at any time. The KDS has to be able to handle such
changes in flight plans efficiently.

As a concrete example, consider the kinetic priority queue: maintain the rightmost point
(that is, the point with maximum x-coordinate) of a set S of continuously moving points
on the real line. One simple possibility is to store S in a sorted array A[1..n]. The
rightmost point is now given by A[n]. For each 1 6 i < n there is a certificate

[
A[i] <

A[i + 1]
]
. Whenever A[j] = A[j + 1] for some j, we have a certificate failure. At

such an event we swap A[j] and A[j + 1]. Furthermore, at most three new certificates
arise:

[
A[j− 1] < A[j]

]
,
[
A[j] < A[j +1]

]
, and

[
A[j +1] < A[j +2]

]
. We compute the

failure time of each of them, based on our knowledge of their current motions, and insert
the failure times into the event queue Q. Some certificates may also disappear because
the two points involved are no longer neighbors; they have to be deleted from Q. Note
that any point is involved in at most two certificates: comparisons with its immediate
predecessor and its immediate successor. Hence, a change in flight plan involve the re-
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scheduling of at most two failure times, and can thus be handled efficiently.

The performance of a KDS is measured according to four criteria [54].

Responsiveness: One of the most important performance measure for a KDS is the time
needed to update it (as well as the event queue) when a certificate fails. This is
called the response time. If the response time is polylogarithmic, the KDS is called
responsive.

Compactness: The compactness of a KDS is the total number of certificates that are
stored. Note that this is not necessarily the same as the amount of storage the
entire structure needs. For example, it can happen that a certain structure on a set
of points in the plane is valid as long as the x- and y-orders of the points do not
change—hence, 2(n− 1) certificate suffice—but that the data structure itself needs
more than linear storage. This happens for instance when we want to maintain a 2-
dimensional range tree [24]. A KDS is called compact if its compactness is always
near-linear in the total number of objects.

Locality: The locality of a KDS is the maximum number of certificates any object is
involved in. This is an important measure, because when an object changes its
flight plan, one has to recompute the failure times of all certificates it is involved
in, and update the event queue accordingly. A KDS is called local if its locality is
polylogarithmic.

Efficiency: The notion of efficiency is slightly more complicated than the previous three
performance measures. It deals with the number of events that have to be processed.
A certificate failure does not automatically imply a change in the attribute being
maintained; it could also be that there is only an internal change in the KDS. In
the kinetic priority queue described above, for instance, an event occurs whenever
two points change order, but the attribute only changes when the rightmost point is
involved in the event. Events where the attribute changes are called external events,
other event are called internal event. The efficiency of a KDS can be defined as the
ratio of the maximum total number of internal and external events to the maximum
total number of external events. The main difficulty in designing KDSs is to make
sure that the efficiency is good: the worst-case number of events handled by the
data structure for a given motion is small compared to some worst-case number of
“external events” that must be handled for that motion. These worst-case number
of events are under certain assumptions on the trajectories of the objects. The most
common assumptions are that the motions are linear, or that they can be described
by bounded-degree polynomials. The KDS is called efficient if its efficiency is
polylogarithmic.

Let’s analyze the performance of our kinetic priority queue. It is clearly responsive, with
a response time of O(log n). It is also local—each point is involved in at most two
certificates—and, hence, compact. Unfortunately it is not efficient: if the points move
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linearly, for instance, then the worst-case total number of external events, which occur
when the rightmost point changes, is O(n), but the total number of internal events can be
Θ(n2). Hence, this is not a satisfactory solution.

Previous results

The paper by Basch et al. [23], which introduced the KDS framework, gives three ex-
amples of KDSs. The first KDS is for the problem that we gave above: maintain the
rightmost point of a set S of continuously moving points on the real line. The authors
present a kinetic priority queue, which they called a kinetic tournament, that is much
more efficient than the simple solution we sketched above. The KDS has size O(n), each
point is involved in O(log n) certificates, its response time is O(log2 n), and the total
number of events is O(λs(n) log n), where s is the number of times any pair of points
can swap and λs(n) is the maximum length of Davenport-Schinzel sequence of order s
on n symbols [16]. Another KDS presented by the authors maintains the convex hull
of moving points in the plane. They designed a KDS that needs to be updated O(n2+ε)
times, assuming the trajectories of the points are algebraic curves described by bounded
degree polynomials. Since the convex hull can change Ω(n2) times, the KDS is efficient.
The KDS is also compact, local, and responsive. Finally, they gave a compact, local, re-
sponsive and efficient KDS to maintain the closest pair of a set of moving points in the
plane.

The paper of Basch et al. sparked a great amount of research activity in the area of kinetic
data structures, resulting in many publications. In the following paragraphs we discuss a
large and representative sample of these papers.

There are some papers [11, 14, 32, 39] dealing with kinetic binary space partitions (BSPs).
That is, given a set S of moving objects in the plane—line segments, for instance—one
wants to maintain a BSP [42] on the set S: a recursive partitioning of the plane by lines
such that each cell of the final partitioning intersects at most one object. (Some of these
papers also have results on 3-dimensional BSPs [11, 32].) The proposed KDSs are local,
compact, and their expected [11, 14] or worst-case [39] response time is polylogarithmic.
Each of these kinetic BSPs has O(n2) certificates failures. Whether or not this is efficient
is a tricky question, because a BSP is not uniquely defined for a given set of objects.
Interestingly, Agarwal et al. [9] have shown that there are configuration of n moving
segments, such that any BSPs must undergo Ω(n

√
n) changes during the motions.

Several papers study the problem of maintaining the connected components in a set of
moving regions in the plane. This is motivated by ad hoc networks [70, 95]. The basic
question one wants to be able to answer is here: ”are region A and B currently in the
same connected component?” Hershberger and Suri [67] do this for the case where the
regions are rectangles, and Guibas et al. [55] for the case where the regions are unit
disks. In both cases the proposed KDS has near-linear size, and the amortized response
time is polylogarithmic. The time to answer a connectivity query is O(log n/ log log n).
Both KDSs have to process roughly a quadratic number of certificate failures; since the



6 Chapter 1 Introduction

connectivity can change Ω(n2) times in the worst case, this means that both KDSs are
efficient. Gao et al. [49] study the somewhat related problem of maintaining clusters
among a set of moving points in the plane.

In the context of kinetic data structure, an interesting open problem is to efficiently main-
tain a triangulation of n moving points, which was attacked in some papers [10, 18]. The
best result so far has been obtained by Agarwal et al. [18]. They propose a KDS that
processes O(n22

√
log n·log log n) events and almost matches the Ω(n2) lower bound [9].

Maintaining the Delaunay triangulation of a set of n moving points in the plane is sim-
ple: when four vertices of two adjacent triangles become co-circle, we can simply flip the
edge. How many events are processed in the worst case by this KDS is a longstanding
open problem. Although it is conjectured that the number of events is O(n2), the best
known upper bound is near-cubic, which is much more than the Ω(n2) lower bound.

There are also papers on KDSs for collision detection and range searching problems,
and papers dealing with other aspects of KDSs (e.g. how to reliably compare certificate
failure times, or how to trade off the number of events against the time needed to report
the maintained attribute). Since these are more closely related to the specific problems we
studied, we will discuss them more extensively in the corresponding chapters.

1.2 Results in this thesis

Our research in the area of kinetic data structures led to four papers: Kinetic sorting
and kinetic convex hulls [2], Out-of-order event processing in kinetic data structures[1],
Kinetic kd-trees and longest-side kd-trees [5], Kinetic collision detection for convex fat
objects [4]. These results are presented in chapters 2-5. We also studied a problem on
moving points in a different setting. In this setting the trajectories are not given to us
explicitly (as is the case in the KDS framework), but we received a stream of data points
describing the location of a moving object at consecutive time instances. The goal is to
maintain an approximation of the path traveled by the object, without using too much
storage. This research led to a paper Streaming algorithms for line simplification [3],
which is presented in Chapter 6. Below we give a brief overview of all our results.

In some applications of KDSs it may be necessary to maintain the attribute of interest
explicitly. If one uses a KDS for collision detection, for instance, any external event—
a collision in this case— must be reported. In other applications, however, explicitly
maintaining the attribute at all times may not be necessary; the attribute is only needed at
certain times. This leads us to view a KDS as a query structure in Chapter 2: we want to
maintain a set S of moving objects in such a way that we can reconstruct the attribute of
interest efficiently whenever this is called for. Thus, instead of maintaining the attribute
explicitly (which requires us to update the KDS whenever an external event happens) the
goal is to maintain some information that needs to be updated less frequently, while it
still allows us to reconstruct the attribute quickly. This makes it possible to reduce the
maintenance cost (number of events), as it is no longer necessary to update the KDS
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whenever the attribute changes. On the other hand, a reduction in maintenance cost will
have an impact on the query time, that is, the time needed to reconstruct the attribute.
Thus there is a trade-off between maintenance cost and query time, somewhat similar to
storage versus query time trade-offs for e.g. range-searching data structures. The main
goal of this chapter is to study such trade-offs for kinetic convex hulls. We first study the
simpler kinetic sorting problem: maintain a KDS on a set of n points moving on the real
line such that at any time we can quickly reconstruct a sorted list of the points. we show
a lower bound for this problem showing the following: with a subquadratic maintenance
cost one cannot obtain any significant speed-up on the time needed to generate the sorted
list (compared to the trivial O(n log n) time), even for linear motions. This negative
result gives a strong indication that good trade-offs are not possible for a large number
of geometric problems—Voronoi diagrams and Delaunay triangulations, for example, or
convex hulls—as the sorting problem can often be reduced to such problems. However,
we show that it is possible to get a good trade-off between maintenance and reconstruction
time when the number of points on the convex hull is small: For any Q with 1 6 Q 6 n
and any ε > 0 there is a KDS that processes O(n2+ε/Q1+1/δ) events such that one can
reconstruct the convex hull of S in O(hQ log n) time, where δ is the maximum degree of
the polynomials describing the motions of the points and h is the number of vertices of
the convex hull.

In traditional KDSs it is essential to process events in the correct order. Otherwise, major
inconsistencies may arise from which the KDS cannot recover. In Chapter 3, we study the
problem of designing KDSs when event times cannot be computed exactly and events may
be processed in a wrong order. Indeed, the goal of this chapter is to address the following
question: is it possible to do the event scheduling and processing in such a way that the
KDS is more robust under errors in the computation of event times? The KDS may pro-
cess the events in a wrong order and thus may maintain a wrong geometric attribute from
time to time, but we would like the KDS to detect these errors and fix them quickly. We
present KDSs that are robust against this out-of-order processing, including kinetic sort-
ing, kinetic tournaments and kinetic range searching. Our algorithms are quasi-robust in
the sense that the maintained attribute of the moving objects will be correct for most of the
time, and when it is incorrect, it will not be far from the correct attribute. As a by-product
of our approach, degeneracy problems (how to deal with multiple events occurring simul-
taneously) arising in traditional KDS algorithms naturally disappear, because our KDSs
no longer cares about in which order these simultaneous events are processed.

The range searching problem is the subject of Chapter 4: given a set S of n points, the
goal is to design a data structure such that we can quickly report all points inside any
given region. This is a fundamental problem in computational geometry that arises in
many applications. In practice, simple structures such as kd-trees are used. In this chapter
we show how to maintain kd-trees and longest-side kd-trees when the points move. We
present a new and simple variant of the standard kd-tree, called rank-based kd-trees, for a
set of n points in d-dimensional space. Our rank-based kd-tree supports orthogonal range
searching in time O(n1−1/d + k) and it uses O(n) storage—just like the original. But
additionally it can be kinetized efficiently. The rank-based kd-tree processes O(n2) events
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in the worst case if the points follow constant-degree algebraic trajectories and each event
can be handled in O(log n) worst-case time. Moreover, each point is involved only in a
constant number of certificates. We also propose the first kinetic variant of the longest-
side kd-tree, which we call the rank-based longest-side kd-tree (or RBLS kd-tree, for
short), for a set of n points in the plane. (We have been unable to generalize this result to
higher dimensions.) An RBLS kd-tree uses O(n) space and supports approximate nearest-
neighbor, approximate farthest-neighbor, and approximate range queries in the same time
as the original longest-side kd-tree does for stationary points, namely O((1/ε) log2 n)
(plus the time needed to report the answers in case of range searching). The kinetic RBLS
kd-tree maintains O(n) certificates, processes O(n3 log n) events if the points follow
constant-degree algebraic trajectories, each event can be handled in O(log2 n) time, and
each point is involved in O(log n) certificates.

Collision detection is a basic problem arising in all areas of computer science involving
objects in motion—motion planning, computer-simulated environments, animated figure
articulation, or virtual prototyping, to name a few. Therefore it is not surprising that
over the years it has attracted a great amount of interest. The main goal of Chapter 5
is to develop KDSs for 3D collision detection that have a near-linear number of cer-
tificates for multiple convex fat objects of varying sizes. We start with the special case
of n balls of arbitrary sizes rolling on a plane. Here we present an elegant and sim-
ple KDS that uses O(n log n) storage and processes O(n2) events; processing an event
takes O(log2 n) time. Then we turn our attention to free-flying convex objects that are
fat, that is, not very long and skinny. (See Section 5.3 for precise definition.) We first
study fat objects that have similar sizes. We give an almost trivial KDS that has O(n)
size and processes O(n2) events; handling an event takes O(log n) time. Next we con-
sider the much more difficult general case, where the fat objects can have vastly different
sizes. Here we present a KDS that uses O(n log6 n) storage and processes O(n2) events;
handling an event takes O(log7 n) time.

Chapter 2-5 all deal with scenarios where the trajectories of the objects are known in ad-
vance (at least in the near future) and are given to us explicitly. In Chapter 6, however,
we consider a different scenario: instead of getting an explicit description of a trajectory,
we are getting a (possible infinite) stream of points describing consecutive locations of
a moving object. As a concrete example, suppose we are tracking one, or maybe many,
moving objects. Each object is equipped with a device that is continuously transmitting its
position at certain times. Thus we are receiving a stream of data points that describes the
path along which the object moves. In this chapter, we study maintaining the path of an
object that we are tracking over a very long period of time, as happens for instance when
studying the migratory patterns of animals. In this situation it may be undesirable or even
impossible to store the complete stream of data points. Instead we have to maintain an ap-
proximation of the input path. Here, we present the first general algorithm for maintaining
a simplification of the trajectory of a moving object without using too much storage. We
analyze the competitive ratio of our algorithms, allowing resource augmentation: we let
our algorithm maintain a simplification with 2k (internal) points, and compare the error
of our simplification to the error of the optimal simplification with k points.



Chapter 2

Kinetic sorting and kinetic
convex hulls

Abstract. Let S be a set of n points moving on the real line. The kinetic sorting problem is to
maintain a data structure on the set S that makes it possible to quickly generate a sorted list of
the points in S, at any given time. We prove tight lower bounds for this problem, which show the
following: with a subquadratic maintenance cost one cannot obtain any significant speed-up on the
time needed to generate the sorted list (compared to the trivial O(n log n) time), even for linear
motions.

We also describe a kinetic data structure for so-called gift-wrapping queries on a set S of n moving
points in the plane: given a point q and a line ` through q such that all points from S lie on the
same side of `, report which point pi ∈ S is hit first when ` is rotated around q. Our KDS allows
a trade-off between the query time and the maintenance cost: for any Q with 1 6 Q 6 n, we
can achieve O(Q log n) query time with a KDS that processes O(n2+ε/Q1+1/δ) events, where δ

is the maximum degree of the polynomials describing the motions of the points. This allows us to
reconstruct the convex hull quickly when the number of points on the convex hull is small. The
structure also allows us to answer extreme-point queries (given a query direction

−→
d , what is the

point from S that is extreme in direction
−→
d ?) and convex-hull containment queries (given a query

point q, is q inside the current convex hull?).

An extended abstract of this chapter was previously published as: M. A. Abam and M. de Berg, Kinetic
sorting and kinetic convex hulls, In Proc. 21st ACM Symposium on Computational Geometry (SCG), pages
190–197, 2005. The full paper was published in Computational Geometry: Theory and Applications, 37:16–26,
2007. (Special issue on 21st ACM Symposium on Computational Geometry.)
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2.1 Introduction

Background. Computing the convex hull of a set of points in the plane is a classic
problem in computational geometry. It is therefore not surprising that the kinetic main-
tenance of the convex hull of a set of n moving points in the plane was already studied
by Basch et al. [23] in their seminal paper on kinetic data structures. They designed a
KDS that needs to be updated O(n2+ε) times, assuming the trajectories of the points are
algebraic curves described by bounded degree polynomials.

In some applications of KDSs it may be necessary to maintain the attribute of interest
explicitly. If one uses a KDS for collision detection, for instance, any external event—a
collision in this case— must be reported. In such cases, the number of changes to the
attribute is a lower bound on the number of events to be processed. Since the convex hull
of n linearly moving points can change Ω(n2) times [13], this means that any KDS that
maintains an explicit representation of the convex hull must process Ω(n2) events in the
worst case. Hence, the convex-hull KDS of Basch et al. [23], which indeed maintains the
convex hull explicitly, is close to optimal in the worst case.

In other applications, however, explicitly maintaining the attribute at all times may not be
necessary; the attribute is only needed at certain times. This is for instance the case when
a KDS is used as an auxiliary structure in another KDS. The auxiliary KDS is then used
to update the main KDS efficiently when a certificate of the main KDS fails. In this case,
even though the main KDS may have to be maintained explicitly, the attribute maintained
by the auxiliary KDS only needs to be available at certain times. This leads us to view a
KDS as a query structure: we want to maintain a set S of moving objects in such a way
that we can reconstruct the attribute of interest efficiently whenever this is called for. This
makes it possible to reduce the maintenance cost, as it is no longer necessary to update the
KDS whenever the attribute changes. On the other hand, a reduction in maintenance cost
will have an impact on the query time, that is, the time needed to reconstruct the attribute.
Thus there is a trade-off between maintenance cost and query time, somewhat similar to
storage versus query time trade-offs for e.g. range-searching data structures. Our main
goal is to study such trade-offs for kinetic convex hulls.

Our results. As just noted, our main interest lies in trade-offs between the maintenance
cost of a kinetic convex-hull structure and the time to reconstruct the convex hull at any
given time. To this end, we first study the simpler kinetic sorting problem: maintain a
KDS on a set of n points moving on the real line such that at any time we can quickly
reconstruct a sorted list of the points. We prove in Section 2.2 that already for the kinetic
sorting problem one cannot get good trade-offs: even for linear motions, the worst-case
maintenance cost is Ω(n2) if one wants to be able to do the reconstruction in o(n) time.
Note that with Ω(n2) maintenance cost, we can explicitly maintain the sorted list at all
times, so that the reconstruction cost is zero. Thus interesting trade-offs are only possible
in a very limited range of the spectrum, namely for reconstruction costs between Ω(n)
and O(n log n). For this range we also prove lower bounds: we roughly show that one
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needs Ω(n2/m) maintenance cost if one wants to achieve o(n log m) reconstruction cost,
for any m with 2 6 m 6 n. (See Section 2.2.1 for a definition of our lower-bound
model.) We also give a matching upper bound.

The negative results on the kinetic sorting problem make it quite unlikely that one can
obtain good trade-offs for the kinetic convex-hull problem. (The results do not give a
formal proof of this fact because the comparison-based model we use for the 1D sorting
problem does not apply in 2D.) However, we will show that it is possible to get a good
trade-off between maintenance and reconstruction time when the number of points on the
convex hull is small: For any Q with 1 6 Q 6 n and any ε > 0 there is a KDS that
processes O(n2+ε/Q1+1/δ) events such that one can reconstruct the convex hull of S
in O(hQ log n) time, where δ is the maximum degree of the polynomials describing the
motions of the points and h is the number of vertices of the convex hull. We obtain this
result by giving a KDS for gift-wrapping queries: given a point q and a line ` through q
such that all points from S lie on the same side of `, report the point pi ∈ S that is hit
first when ` is rotated (in counterclockwise direction, say) around q. Our KDS for this
problem has O(Q log n) query time and it processes O(n2+ε/Q1+1/δ) events. For linear
motions, this bound is very close to the lower bounds De Berg [38] proved for the kinetic
dictionary problem—see below—which seems an easier problem. Our KDS can also
answer extreme-point queries (given a query direction

−→
d , what is the point from S that

is extreme in direction
−→
d ?) and convex-hull containment queries (given a query point q,

is q inside the current convex hull?).

Related work. Some existing KDSs—the kinetic variants of various range-searching
data structures [6, 7, 8, 12, 67, 77, 78, 90], for instance—do not maintain a uniquely
defined attribute such as the convex hull, but they maintain a query data structure. In this
setting the KDS is, of course, a query structure as well. Our setting is different because we
are studying the maintenance of a single, uniquely defined, attribute such as the convex
hull. This is somewhat similar to the papers by Guibas et al. [55] and by Hershberger and
Suri [67], who study the kinetic maintenance of the connectivity of moving regions in the
plane. Their structures can answer queries of the form: “Are regions A and B in the same
connected component of the union of the regions?” However, their structure is updated
whenever the connectivity changes—they do not allow for trade-offs between the number
of events and the query time. Moreover, their goal is not to be able to quickly reconstruct
the entire connectivity information at any given time. Thus their KDS is essentially a
kinetic version of a structure for connectivity queries, rather than a kinetic query structure
for reconstructing a unique attribute.

One of our main results is a lower bound on the trade-offs between reconstruction time and
maintenance cost for the kinetic sorting problem. Lower bounds for trade-offs between
query time and maintenance cost were also given by De Berg [38], but he studied the
kinetic dictionary problem, where one wants to maintain a dictionary on a set S of n
points moving on the real line. He showed that any kinetic dictionary with worst-case
query time O(Q) must have a worst-case total maintenance cost of Ω(n2/Q2), even if the
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points move linearly. As already remarked, the upper bounds we obtain for gift-wrapping
and convex-hull containment queries on moving points in the plane—these problems seem
at least as hard as the kinetic dictionary problem—almost match these bounds for linear
motions.

A recent paper by Agarwal et al. [7] is closely related to Section 2.3, where we describe
a KDS for convex-hull containment queries. They describe, besides data structures for
various range searching and proximity queries on moving points, a structure for convex-
hull containment queries on moving points. Their structure is more powerful since it
can answer queries about past or future convex hulls. On the other hand, they only deal
with linear motions. Their structure uses O(n2+ε/Q2) storage to obtain a query time
of O(Q polylog n). Since the KDS is precomputed for the complete motions, there are
no events. Note that the number of events we process for linear motions is the same as
the amount of storage used by their structure. This means we can also obtain their result
(namely the ability to answer queries in the past and future as well, at the expense of
extra storage): during preprocessing, do a complete simulation based on the motions (that
are assumed to be given) and record the changes to the KDS using standard persistency
methods.

2.2 The kinetic sorting problem

Let S = {x1, · · · , xn} be a set of n point objects1 moving continuously on the real line.
In other words, the value of xi is a continuous function of time, which we denote by xi(t).
We define S(t) = {x1(t), · · · , xn(t)}. For simplicity, we write S and xi instead of S(t)
and xi(t), respectively, provided that no confusion arises. The kinetic sorting problem
asks to maintain a structure on S such that at any given time t we can quickly generate a
sorted list for S(t). We call such a structure a sorting KDS.

We focus on trade-offs between the sorting cost and the maintenance cost: what is the
worst-case maintenance cost if we want to guarantee a sorting cost of O(Q), where Q is
some parameter, under the assumption that the point objects follow trajectories that can
be described by bounded degree polynomials. (In fact, for our lower bounds we will only
use linear motions, whereas for our upper bounds we only need the restriction that any
pair of points swaps O(1) times.)

2.2.1 The lower-bound model

We shall prove our lower bounds for the kinetic sorting problem in the comparison-graph
model introduced by De Berg [38], which is defined as follows. A comparison graph
for a set S of numbers is defined as a directed graph G(S, A) such that if (xi, xj) ∈ A,

1We use “point objects” (or sometimes just “object”) for the points in S to distinguish them from other points
that play a role in our proofs.
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then xi < xj . The reverse is not true: the fact that xi < xj does not mean there must
be an arc in G. The idea is that the comparison graph represents the ordering information
encoded in a sorting KDS on the set S: if (xi, xj) ∈ A, then the fact that xi < xj

can be derived from the information stored in the KDS, without doing any additional
comparisons.

Maintenance cost. The operations we allow on the comparison graph are insertions and
deletions of arcs. For the maintenance cost, we only charge the algorithm for insertions of
arcs; deletions are free. Note that by doing a single comparison we can sometimes obtain
a lot of ordering information by transitivity. Therefore we only charge the algorithm for
a new arc in the transitive reduction of the graph, that is, a new arc that is not implied
by transitivity. Following De Berg [38], we therefore define the maintenance cost as the
total number of such non-redundant arcs ever inserted into the comparison graph, either
at initialization or during maintenance operations.

We say that the arc (xi, xj) ∈ A fails at time t if xi(t) = xj(t). The non-redundant arcs
in the comparison graph essentially act as certificates, and their failures trigger events at
which the KDS needs to be updated.

Query cost. A query at time t asks to construct a sorted list on the points in the current
set S (that is, S(t)). We shall consider two different measures for the query cost.

The comparison-graph sorting model: The first measure is in a very weak model, where
we only charge for the minimum number of comparisons needed to obtain a sorted
list, assuming we have an oracle at our disposal telling us exactly which compar-
isons to do. This is similar to the query cost used by De Berg when he proved lower
bounds for the kinetic dictionary. For the sorting problem this simply means that
the query cost is equal to the number of pairs xi, xj ∈ S that are adjacent in the
ordering and for which there is no arc in the comparison graph.

The algebraic decision-tree model: In this model we also count the number of compar-
isons needed to sort the set S, but this time we do not have an oracle telling us
which comparisons to do. We shall use the following basic fact: Suppose the num-
ber of different orderings of S that are compatible with the comparison graph at
some given time is N . Then the cost to sort S in the algebraic decision-tree model
is at least log N .

2.2.2 A lower bound in the comparison-graph sorting model

The point objects in our lower-bound instance will move with constant (but different)
velocities on the real line. Hence, if we view the line on which the point objects move
as the x-axis and time as the t-axis, then the trajectories of the point objects are straight
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lines in the tx-plane. We use ξi to denote the line in the tx-plane that is the trajectory
of xi. It is somewhat easier to describe the lower-bound instance in the dual plane. We
shall call the two axes in the dual plane the u-axis and the v-axis. We use the standard
duality transform [42], where a line ξ : x = at + b in the tx-plane is mapped to the
point ξ∗ : (a,−b) in the dual plane, and a point p : (a, b) in the primal plane is mapped to
the line p∗ : v = au− b in the dual plane.

Now let p1, . . . , pn be the vertices of a regular n-gon in the dual plane that is oriented such
that the diagonal pl−1pl+1 connecting the two neighbors of the leftmost vertex pl is almost
parallel to the v-axis and has negative slope—see Figure 2.1. The trajectories ξ1, · · · , ξn

in our lower-bound instance are the primals of the vertices pi, that is, ξ∗i = pi. In the
remainder of this section we will prove a lower bound on the maintenance cost of any
comparison graph for this instance whose sorting cost (in the comparison-graph sorting
model) is bounded by Q, where Q is a parameter with 0 6 Q < n.

For any pair of vertices pi, pj , let `ij denote the line passing through pi and pj . Since
the pi are the vertices of a regular n-gon, the lines `ij have only n distinct slopes. In-
deed, because the polygon is regular, the slope of edge pipi+1 is the same as the slope
of the diagonals pi−1pi+2, pi−2pi+3, etc. Note that `ij corresponds to the intersection
of ξi and ξj in the tx-plane, with the slope of `ij being equal to t-coordinate of the inter-
section. This implies that the intersection points of the trajectories in the tx-plane have
only n distinct t-values. Let t1, · · · , tn be the sorted sequence of these t-values. The
times t1, . . . , tn define n+1 open time intervals (−∞, t1), (t1, t2), · · · , (tn,+∞). Since
no two trajectories intersect inside any of these intervals, the order of the point objects is
the same throughout any interval. We say that xi is directly below xj in such an interval
if xi(t) < xj(t) for times t in the interval and there is no other point object xk in between
them in that interval. Furthermore, we call a vertex pi a lower vertex if it lies on the lower
part of the boundary of the n-gon, and we call pi an upper vertex if it lies on the upper
part of the boundary of the n-gon; the leftmost and rightmost vertices are neither upper
nor lower vertices.

Lemma 2.1

(i) The object xi is directly below each other point object xj in at least one time interval
and at most three time intervals.

(ii) There are dn/2e objects xi such that xi is directly below each other object xj in
exactly one time interval.

Proof.

(i) Consider two objects xi, xj . Since ξi and ξj intersect, there is at least one interval—
just before or just after the intersection—where xi is directly below xj . Since there
are n + 1 intervals, and xi is below each of the n − 1 other objects in at least one
interval, xi can be directly below xj in at most three time intervals.
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pl

Figure 2.1 The orientation of the regular n-gon.

(ii) First we show that if pi is a lower vertex or leftmost vertex, xi is directly below each
other object xj in exactly one time interval. Since there are n + 1 intervals, and xi

is below each of the n − 1 other objects in at least one interval, we need to prove
that xi is above all other objects in the two remaining intervals. To prove this,
we note that ξi appears on the upper envelope of the trajectories in the tx-plane,
since pi is a lower or leftmost vertex. Let pi be a lower vertex. Assume that ξi

appears on the upper hull at time t when it intersects ξj , and assume it disappears
at time t′ when it intersects ξj′ . Then ξj and ξj′ must cross between times t and t′,
showing that ξi is on the upper envelope during two time intervals.

Now consider the leftmost vertex pl. This vertex is on the upper envelope at
time t = −∞. Because of the orientation of the n-gon, the slope of the diago-
nal connecting the two neighbors of pl is smaller than the slope of any diagonal
(or edge) incident to pl—see Figure 2.1. This means that the two objects that are
initially below ξ∗l intersect before ξ∗l disappears from the envelope, which proves
xl is also above all other objects in the two remaining intervals.

When n is even, the number of vertices that are a lower or leftmost vertex is n/2,
and we are done. For odd n, we will argue that the object xr corresponding to the
rightmost vertex is also directly below each other object exactly once.

To show this, we will argue that ξr appears on the upper envelope during two time
intervals. Indeed, there are n + 1 time intervals and the bn/2c leftmost and lower
vertices correspond to trajectories appearing twice. Hence there are n+1−bn/2c =
2 time intervals where some other trajectory must appear on the upper envelope.
This must be ξr, because the trajectories of upper vertices will not show up on the
upper envelope.



16 Chapter 2 Kinetic sorting and kinetic convex hulls

2

We can now prove the lower bound. Suppose that we have a comparison graph on the
point objects whose sorting cost is Q during each of the time intervals defined above. This
implies that during each such time interval, there must be at least n−Q− 1 arcs (xi, xj)
in the comparison graph such that xi is directly below xj , because each of the n − 1
adjacent pairs must have an arc, and we are allowed to add only Q arcs to answer the
query. In total, (n + 1)(n −Q − 1) arcs are needed over all n + 1 time intervals. Some
arcs, however, can be used in more than one interval. For xi, let ki be the number of arcs
of the form (xi, xj) that are used. For any of the dn/2e objects xi for which case (ii) of
Lemma 2.1 applies, all these arcs are distinct. For the remaining bn/2c objects case (i)
applies and so at least ki − 2 arcs are distinct. Hence, the total number of arcs inserted
over time is at least (n+1)(n−Q− 1)− 2bn/2c > n(n−Q− 2). We get the following
theorem.

Theorem 2.2 For any n > 1, there is an instance of n point objects moving with constant
velocities on the real line, such that any comparison graph whose worst-case sorting cost
in the comparison-graph cost model is Q must have maintenance cost at least n(n−Q−2),
for any parameter Q with 0 6 Q < n.

2.2.3 A lower bound in the algebraic decision-tree model

In the previous section we gave a lower bound for the maintenance cost for a given sort-
ing cost Q in comparison-graph sorting model. Obviously, this is also a lower bound
for the algebraic decision-tree model. Hence, the results of the previous section imply
that for any sorting cost Q = o(n) in the algebraic decision-tree model, the worst-
case maintenance cost is Ω(n2). Since with O(n2) maintenance cost we can process all
swaps—assuming the trajectories are bounded-degree algebraic, so that any pair swaps
at most O(1) times—this bound is tight: with O(n2) maintenance cost we can achieve
sorting cost zero. What remains is to investigate the range where the sorting cost is Ω(n)
and o(n log m), where 1 < m 6 n.

Recall that the sorting cost of a given comparison graph in the algebraic decision-tree
model is at least log N , where N is the number of different orderings that are compatible
with the comparison graph. We use this to prove the following lemma.

Lemma 2.3 There is a positive constant c such that if the sorting cost of a comparison
graph is at most cn log m, then there is a path in the comparison graph whose length is at
least n/m1/3.

Proof. Let k be the length of the longest path in the comparison graph. We define the
level of the point object xi as the length of the longest path to xi in the comparison graph.
Let nj be the number of objects at level j. Since the order of the objects in the same level
is not determined by the information in the comparison graph, the number of permutations
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compatible with the comparison graph is at least n0!n1! · · ·nk!. Note that
∑k

i=0 ni = n,
so n0!n1! · · ·nk! is minimized when the ni’s are all equal to dn/(k + 1)e or bn/(k + 1)c.
Hence

n0!n1! · · ·nk! >

(
b n

k + 1
c!

)k+1

,

and the sorting cost in the algebraic decision-tree model is at least log((bn/(k+1)c!)k+1),
which is at least c1n log(n/k) for some constant c1. Since the sorting cost of the com-
parison graph is at most cn log m, we must have c1 log(n/k) 6 c log m, which implies
that n/k 6 mc/c1 . So for c = c1/3 we have k > n/m1/3, as claimed. 2

Next we describe the lower bound construction. As before, it will be convenient to de-
scribe the construction in the dual plane. To this end, let Ga := {0, 1, · · · , a − 1}2 be
the a × a grid. The trajectories of the point objects in our lower-bound instance will be
straight lines in the tx-plane, such that the duals of these lines are the grid points of G√

n.
(We assume for simplicity that n is a square number.) Before we proceed, we need the
following lemma.

Lemma 2.4 Let p = (px, py) be a grid point of G√
n and px, py 6 a, where a 6

√
n/2.

Let `p be the line through the origin and p. The number of different lines passing through
at least one point of G√

n and being parallel to `p is at most 4a
√

n.

Proof. Let B be the smallest box containing G√
n that has one edge (in fact, two) parallel

to `p. Thus B is a bounding box for G√
n whose orientation is defined by `p. Besides

the points from G√
n, the box B will contain more points with integer coordinates; in the

remainder of this proof we will call these points grid points as well. The number of grid
points inside B is at most 2n. Moreover, because px, py 6 a, any line passing through
a grid point and being parallel to `p contains at least b

√
n/ac >

√
n/(2a) grid points

inside B. Since two distinct lines parallel to `p cannot have any grid points in common,
this implies that the number of such lines containing at least one grid point is at most

2n√
n/(2a)

= 4a
√

n.

2

We are now ready to prove the main result of this section.

Theorem 2.5 For any n > 2, there are positive constants c and c′ such that there is an
instance of n point objects moving with constant velocities on the real line such that,
for any m with 1 < m 6 n, any comparison graph whose worst-case sorting cost in
the algebraic decision-tree model is Q 6 cn log m, must have maintenance cost at least
c′n2/m.
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slope= −px

py

p = (px, py)

`p

Figure 2.2 A long path uses many arcs parallel to `p.

Proof. As mentioned above, the trajectories ξi of the point objects xi that constitute our
lower-bound instance will be straight lines in the tx-plane, whose dual points ξ∗i form the
grid G√

n.

Let a :=
√

n/(8m1/3) and c be the constant of Lemma 2.3. Consider the comparison
graph at some time s + ε with s = py/px, where px, py 6 a and ε > 0 is sufficiently
small. Suppose the sorting cost at time s is at most cn log m. Then by Lemma 2.3 there
must be a path in the comparison graph of length at least n/m1/3. We claim (and will
prove below) that at least half of the arcs in this path are between point objects xi, xj

such that ξ∗i and ξ∗j lie on a common line of slope s—see Figure 2.2. The number of
distinct values for s is equal to the number of pairs (px, py) where px and py are integer
numbers between 0 and a − 1 (including 0 and a − 1) and GCD(px, py) = 1. Because
of symmetry, we count the number of pairs (px, py) with the property px 6 py . For a
nonnegative integer i, let ϕ(i) be the number of nonnegative integers that are less than i
and relatively prime to i. Then the number of pairs (px, py) with the desired properties
is

∑a−1
i=1 ϕ(i). It is known [97] that this summation is Θ(a2). Then, the total number of

arcs needed over all times of the form px/py + ε with px, py 6 a is at least

n/(2m1/3) ·Θ(a2) > c′n2/m for some constant c′,

which proves the theorem.

It remains to prove the claim that at least half of the arcs in the path are between point
objects xi, xj such that ξ∗i and ξ∗j lie on a common line of slope s. Note that the sorted
order of the point objects xi(s + ε) corresponds to the sorted order of the orthogonal
projections of the points ξ∗i onto a line with slope −1/(s + ε). If ε > 0 is sufficiently
small, then the projections of all the points lying on a common line of slope s will be
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adjacent in this order. Let’s group the point objects xi into subsets such that any two point
objects xi, xj for which ξ∗i and ξ∗j lie on a common line of slope s are in the same subset.
Then, at time s+ ε, any path in the comparison graph can enter and leave a subset at most
once. By Lemma 2.4 the number of subsets is at most 4a

√
n. Hence, the number of arcs

connecting point objects in the same subset is at least

n/m1/3 − 4a
√

n = n/m1/3 − 4(
√

n/(8m1/3))
√

n = n/(2m1/3),

as claimed. 2

2.2.4 Upper bounds for kinetic sorting

The following theorem shows the bounds in Theorem 2.5 are tight.

Theorem 2.6 Let S be a set of n point objects moving on the line, such that any pair of
points swaps O(1) times. For any m with 1 < m 6 n, there is a data structure whose
maintenance cost is O(n2/m) such that at any time a sorted list of the points in S can be
constructed in O(n log m) time.

Proof. Partition the set S into m subsets of size at most n/m in an arbitrary manner. For
each subset, maintain a sorted array of all its points. When two point objects in the same
subset swap, the array can be updated in O(1) time. Since each pair of objects changes
order O(1) times, the maintenance cost of each subset is O(n2/m2). Since there are m
subsets, the total maintenance cost is O(n2/m). To generate a sorted list of all the point
objects, we have to merge the m sorted arrays, which can be done in O(n log m) time. 2

2.3 Gift-wrapping and convex-hull containment queries

Let S = {p1, · · · , pn} be a set of point objects moving in the plane such that the position
of pi at time t is (xi(t), yi(t)), where xi and yi are polynomials of degree at most δ. Recall
that a gift-wrapping query is defined as follows: given a point q and a line ` through q
such that all points from S lie on the same side of `, report the point object pi ∈ S that
is hit first when ` is rotated (in counterclockwise direction, say) around q. We call a KDS
for such queries a gift-wrapping KDS. We want to find a gift-wrapping KDS of near-linear
size with good trade-offs between the maintenance cost and the query time. We also want
to answer extreme-point queries (given a query direction

−→
d , what is the point from S that

is extreme in direction
−→
d ?) and convex-hull containment queries (given a query point q,

is q inside the current convex hull?).
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One easy solution is the following: partition the set S into Q subsets of roughly size n/Q
and maintain each subset using the kinetic convex-hull structure of Basch et al. [23].
Since we can answer a gift-wrapping query on each subset in O(log n) time (if we have
the convex hull in a sorted array or balanced search tree), we can answer gift-wrapping
queries on S in O(Q log n) time. Extreme-point queries and convex-hull containment
queries can also be answered with this structure. The total maintenance cost will for this
KDS would be Q · (n/Q)2+ε = O(n2+ε/Q). Next we describe a KDS that can answer
all three types of queries as well, and is more efficient than the easy solution described
above.

The data structure. Consider the following transformation on (the trajectories of) the
point objects in S: the point object pi(t) = (xi(t), yi(t)), where xi(t) = xi,δt

δ+· · ·+xi,0

and yi(t) = yi,δt
δ + · · ·+yi,0, is mapped to the point p∗i = (xi,δ, · · · , xi,0, yi,δ, · · · , yi,0)

in 2(δ + 1)-dimensional space.

Lemma 2.7 If the point object pi(t) is more extreme than pj(t) in direction
−→
d = (dx, dy),

then p∗i is more extreme than p∗j in direction
−→
d∗ = (tδdx, · · · , tdx, dx, tδdy, · · · , tdy, dy).

Proof. If pi(t) is more extreme than pj(t) in direction
−→
d = (dx, dy), then pi(t) ·

−→
d >

pj(t) ·
−→
d . Plugging in the polynomials defining the coordinates of pi(t) we see that this

is equivalent to p∗i ·
−→
d∗ > p∗j ·

−→
d∗. Hence, p∗i is more extreme than p∗j in direction

−→
d∗. 2

Our gift-wrapping KDS is a combination of the data structure for half-space emptiness
queries (in 2(δ +1)-dimensional space) as described by Matousek and Schwarzkopf [85],
and the kinetic convex-hull structure (in the plane) of Basch et al. [23]. It is defined
recursively, as follows.

Let Sv ⊂ S be the subset of points for which we are constructing the KDS. Initially, Sv =
S.

• If |Sv| 6 n/Q1+1/δ , where n is the number of points in the original set S, then Sv

is stored in the kinetic convex-hull structure of Basch et al. [23].

• Otherwise we transform (the trajectories of) the points in Sv to obtain a static set S∗v
of points in 2(δ + 1)-dimensional space as described above, and we proceed as
Matousek and Schwarzkopf [85]: We construct a simplicial partition Ψv for S∗v—a
partitioning of S∗v into O(r) subsets S∗v,i for some suitably large constant r, each
of size between n/r and n/2r, and for each subset S∗v,i a simplex containing it—
using Matoušek’s partition theorem for shallow hyperplanes [84]. The simplicial
partitioning Ψv has the following property: any hyperplane h for which one of
its half-spaces has less than n/r points from S∗v crosses O(r1−1/bd/2c + log r)
simplices of Ψv . We also construct a (1/r)-net R∗

v of size O(r log r) for S∗v , that
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is, a subset of S∗v such that any halfspace containing at least n/r points of S∗v must
contain at least one point of R∗

v .

The structure now consists of a root node where we store the simplices of Ψv and
the (1/r)-net R∗

v . The root has a subtree for each of the subsets S∗v,i (or rather, the
set Sv,i of their pre-images), which is constructed recursively.

Gift-wrapping queries. A gift-wrapping query with a line ` rotating around a point q
can be answered as follows. Suppose we are at some node v of the structure. If |Sv| 6
n/Q1+1/δ , then we have the convex hull of Sv explicitly available, so we can answer
the query in O(log |Sv|) time. Otherwise, we find the point pi ∈ Rv (the set of point
objects that are the pre-images of the points in R∗

v) hit first by `, in a brute-force manner
in O(|Rv|) = O(r log r) time. Let `q(pi) be the line through q and pi. Note that all points
from Rv lie to the same side of, or on, `q(pi). Let

−→
d be the vector orthogonal to `q(pi)

and pointing in the direction where there are no points from Rv . Then the answer to the
query must either be the point pi, or it must be a point pj ∈ Sv \Rv that is more extreme
than pi in the direction

−→
d . Transform

−→
d into a vector

−→
d ∗ in 2(δ +1)-dimensional space,

as in Lemma 2.7, let h∗ be the hyperplane through p∗i and orthogonal to
−→
d ∗, and let (h∗)+

be the half-space defined by h∗ and the vector
−→
d ∗. By Lemma 2.7, any point pj that is

more extreme than pi in direction
−→
d is mapped to a point p∗j that lies in (h∗)+. Moreover,

none of the points in R∗
v lie in (h∗)+, which means that (h∗)+ contains less than n/r

points. It follows that no simplex of Ψv can lie completely inside (h∗)+. Hence, the
query can be answered by recursing only into the subtrees corresponding to intersected
simplices, and selecting from the answers found the first point hit.

Extreme-point queries. Extreme-point queries can be answered in a similar way: if we
are at a node v with |Sv| 6 n/Q1+1/δ , answer the query using the convex hull of Sv .
Otherwise, find the point pi ∈ Rv that is extreme in the direction

−→
d , and recurse into

subtree corresponding to simplices of Ψv that are intersected by h∗, where h∗ is the
hyperplane through p∗i and orthogonal to

−→
d∗.

Convex-hull containment queries. Let CH(S) denote the convex hull of a set S. The
query point q lies outside CH(S) if only if there are two half-lines with origin q and
tangent to CH(S). Our algorithm is recursive. Suppose we are at some node v of the
structure. The algorithm returns true when q ∈ CH(Sv) and it returns two tangent half-
lines for Sv otherwise.

If |Sv| 6 n/Q1+1/δ , we have CH(Sv) available. We test whether q ∈ CH(Sv) and
if so return true. Otherwise we return two tangent half-lines for CH(Sv). This takes
O(log |Sv|) time.

Now, assume v is an internal node. If q ∈ CH(Rv), then q ∈ CH(Sv) and we return true.
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Otherwise, two points pi, pj ∈ Rv are computed such that the lines `pi
and `pj

passing

through q and pi resp. pj are tangent to CH(Rv). Let
−→
dpi

(
−→
dpj

) be the vector orthogonal
to `pi

(`pj
) and pointing in the direction where there are no points from Rv . Let h∗pi

(h∗pj
)

be the hyperplane through p∗i (p∗j ) and orthogonal to
−→
dpi (
−→
dpj ). Using the same reasoning

as for gift-wrapping queries, we can argue that we only have to recurse into subtrees of
simplices intersected by h∗pi

or h∗pj
. If one of these calls returns true, we also return true.

Otherwise we collect all the tangent half-lines. If there is no line through q such that all
half-lines lie to the same side of the line, we return true. Otherwise, from these we can
easily select the two half-lines that are tangent to CH(Sv) and return them.

Theorem 2.8 Let S = {p1, . . . , pn} be a set of moving point objects in the plane such
that the position of pi(t) = (xi(t), yi(t)), where xi and yi are polynomials with de-
gree at most δ. For any Q with 1 6 Q 6 n and any ε > 0 there is a KDS that
handles O(n2+ε/Q1+1/δ) events such that gift-wrapping queries, extreme-point queries,
and convex-hull containment queries can be answered in O(Q log n) time. The KDS
uses O(n log n) storage, and events can be handled in O(log2 n) time.

Proof. The partition-tree part of our KDS is static—it stores the trajectories rather than the
current positions of the points—so events only occur in the kinetic convex-hull structures.
There are Q1+1/δ such structures, each of them storing at most n/Q1+1/δ point objects
and processing O((n/Q1+1/δ)2+ε) events [23]. In total, this gives O(n2+ε/Q1+1/δ)
events. The bounds on the storage and the time needed to handle an event follow directly
from the bounds on the kinetic convex-hull structure [23].

Next we bound the time for a gift-wrapping query; the analysis for extreme-point queries
and for convex-hull containment queries is similar. T (m), the query time on a subtree
storing m points, satisfies the following recurrence:

T (m) =


O(log m) if m 6 n

Q1+1/δ

O(r log r)+
O(r1−1/(δ+1) + log r) · T (2m/r) otherwise.

For any ε, we can choose r sufficiently large such that the solution of the recurrence is
O(Q1+ε log m). The factor Qε in the query time can be avoided by replacing Q by Q1−ε;
this gives an extra factor Qε(1+1/δ)) in the number of events, which is swallowed by the nε

factor that we already have in the number of events.

2

Remark: Instead of switching to the kinetic convex hull structure of Basch et al. when the
number of points becomes small, we could also dualize the points in S∗v and switch to a
structure based on cuttings in 2(δ + 1)-dimensional space. This would lead to a structure
with the same query time and no events to be processed, but with a much higher storage
cost.
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Using the gift-wrapping KDS we can easily reconstruct the convex hull:

Corollary 2.9 Let S = {p1, . . . , pn} be a set of moving point objects in the plane such
that the position of pi(t) = (xi(t), yi(t)), where xi and yi are polynomials with degree
at most δ. For any Q with 1 6 Q 6 n and any ε > 0 there is a kinetic data structure
that handles O(n2+ε/Q1+1/δ) events, such that we can reconstruct the convex hull of S
at any time in O(hQ log n) time, where h is the number of vertices of the convex hull.
The KDS uses O(n log n) storage, and each event can be handled in O(log2 n) time.

Proof. Maintain the gift-wrapping KDS of Theorem 2.8 on the points, and maintain a
kinetic tournament tree [23] on the y-coordinates of the points. Using the kinetic tour-
nament tree, we always have the lowest point of S available, which implies that we can
reconstruct the convex hull by O(h) gift-wrapping queries. The number of events in the
kinetic tournament tree is O(n log n), which is subsumed by the number of events in the
gift-wrapping KDS. 2

Note that the structure can not easily handle flight plan updates–see also the discussion of
the end of the conclusion.

2.4 Conclusions

We have studied trade-offs for the kinetic sorting problem, which is to maintain a KDS on
a set of points moving on the real line such that one can quickly generate a sorted list of
the points, at any given time. We have proved a lower bound for this problem showing the
following: with a subquadratic maintenance cost one cannot obtain any significant speed-
up on the time needed to generate the sorted list (compared to the trivial O(n log n) time),
even for linear motions.

This negative result gives a strong indication that good trade-offs are not possible for a
large number of geometric problems—Voronoi diagrams and Delaunay triangulations, for
example, or convex hulls—as the sorting problem can often be reduced to such problems
(This is not a formal proof, because our lower-bound model is not suitable for comput-
ing convex hulls or Voronoi diagrams). For the convex-hull problem, however, we have
shown that good trade-offs are possible if the number of vertices of the convex hull is
small. We obtained this result by developing a KDS for gift-wrapping queries, which is
of independent interest. Our structure can also answer extreme-point queries and convex-
hull containment queries. It would be interesting to see if we can develop a KDS with a
similar performance for line-intersection queries: report the intersection points of a query
line ` with the current convex hull?

Another open problem is to make the KDS less sensitive to changes in the motions of the
points. In our structure, a change in motion means we have to delete the point (or rather, its
trajectory) from the structure and reinsert the new trajectory. Using the dynamic version
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of the structure of Matoušek and Schwarzkopf [85] this might be possible, but it would be
nicer if we had a structure where no changes are needed (except for a recomputation of the
failure times) when a point changes its motion. Note, however, that with a small change
in the definition of our structure we can at least ensure that it will function correctly when
a point changes its motion. All we have to do is add at every node v one point from
each simplex in Ψv to the net Rv . With this change the KDS will always report the
correct answer, even if we keep the wrong trajectories in the top part of our structure (we
still have to update the kinetic convex-hull structures that we store at the “leaves” of our
structures, of course, using the update algorithm of Basch et al.). Now we no longer have
any guarantees on the query time, however.



Chapter 3

Out-of-order event processing

Abstract. We study the problem of designing kinetic data structures when event times cannot be
computed exactly and events may be processed in a wrong order. In traditional KDSs this can lead
to major inconsistencies from which the KDS cannot recover. We present more robust KDSs for the
maintenance of two fundamental structures, kinetic sorting and tournament trees, which overcome
the difficulty by employing a refined event scheduling and processing technique. We prove that the
new event scheduling mechanism leads to a KDS that is correct except for finitely many short time
intervals. We analyze the maximum delay of events and the maximum error in the structure, and
we experimentally compare our approach to the standard event scheduling mechanism.

An extended abstract of this chapter was previously published as: M. A. Abam, P. K. Agarwal, M. de Berg,
and H. Yu, Out-of-order event processing in kinetic data structures, In Proc. European Symposium on Algorithms
(ESA), pages 624–635, 2006.
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3.1 Introduction

Background. In the KDS framework, to be able to process each event at the right time,
a global event queue Q is maintained to process the events in the right (chronological)
order. This is a priority queue on the events, with the priority of an event being its failure
time. Unfortunately, the event scheduling is not as easy as it seems. Suppose that a new
certificate arises due to some event. When the failure time of the certificate lies in the past
we should not schedule it, and when it lies in the future we should. But what if the event
time is equal to the current time tcurr? In such a degenerate situation one has to be very
careful to avoid an infinite loop. A more serious problem arises when the event times are
not computed exactly. This will indeed be the case if the trajectories are polynomials of
high degree or more complex curves. As a result, events may be processed in a wrong
order, or we may fail to schedule an event because we think it has already taken place.
This in turn may not only lead to serious errors in the geometric attribute the KDS is
maintaining but also cause the algorithm to crash.

t0 t0 +
1

2
ε t0 + ε

t

x1

x3

x2

x

tcurr List Certificates Failure Time

0 x1, x2, x3
[x1 < x2]
[x2 < x3]

t0
t0 + ε

t0 x2, x1, x3 [x1 < x3] t0 + 1
2 ε

t0 + 1
2 ε x2, x3, x1 [x2 < x3] t0 + ε

t0 + ε x3, x2, x1
(i) without error

tcurr List Certificates Failure Time

0 x1, x2, x3
[x1 < x2]
[x2 < x3]

t0 + ε
t0

t0 x1, x3, x2 [x1 < x3] t0 + 3
2 ε

t0 + 3
2 ε x3, x1, x2

(ii) with error

Figure 3.1 An example that numerical errors in the event times may cause fatal
errors in the KDS. (Left) the trajectories of the points. (Right) the
status of the KDS at various times of execution.

As a concrete example, consider the kinetic sorting problem: maintain the sorted order
of a set S of points moving on the real line. We store S in a sorted array A[1..n]. For
each 1 6 i < n there is a certificate

[
A[i] < A[i + 1]

]
. Whenever A[j] = A[j + 1]

for some j, we have a certificate failure. At such an event we swap A[j] and A[j + 1].
Furthermore, at most three new certificates arise:

[
A[j − 1] < A[j]

]
,
[
A[j] < A[j + 1]

]
,

and
[
A[j + 1] < A[j + 2]

]
. We compute the failure time of each of them, based on

our knowledge of their current motions, and insert the failure times that are not in the
past into the event queue Q. Some certificates may also disappear because the two points
involved are no longer neighbors; they have to be deleted from Q. Now suppose that due
to errors in the computed failure times the difference between the exact and the computed
failure time of each certificate can be as large as ε, for some ε > 0. Consider three moving
points x1, x2 and x3 whose trajectories in the tx-plane are depicted in Figure 3.1. Table (i)
shows what happens when we can compute the exact failure times. Table (ii) shows what
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happens when the computed failure times of the certificates
[
x1 < x2

]
,
[
x1 < x3

]
,

and
[
x2 < x3

]
are t0 + ε, t0 + 3

2ε, and t0 respectively: the KDS is not just temporarily
incorrect, but gets into an incorrect state from which it never recovers.

This is a serious problem for the applicability of the KDS framework in practice. The
goal of this chapter is to address this issue: is it possible to do the event scheduling and
processing in such a way that the KDS is more robust under errors in the computation of
event times? The KDS may process the events in a wrong order and thus may maintain a
wrong geometric attribute from time to time, but we would like the KDS to detect these
errors and fix them quickly.

Related work. There is a large body of work on robust computations in geometric algo-
rithms [47, 91, 101], including geometric software libraries [29, 34]. The goal there is to
implement various geometric primitives in a robust manner, including predicates, which
test the sign of an arithmetic expression (e.g., ORIENTATION and INCIRCLE predicates),
and constructions, which compute the value of an arithmetic expression (e.g., computing
the intersection of two lines). There are two broad paradigms. The first approach, exact
computation, performs computation with enough precision to ensure predicates can be
evaluated correctly. This has been the main paradigm in computational geometry. Many
methods have been proposed to remove degeneracies (e.g., simulation of simplicity) and
to speedup the computation by adaptively changing the precision (e.g., floating point fil-
ters). The second approach focuses on performing computation with finite precision and
computing an output as close to the correct one as possible.

Despite much work on robust geometric computation, little has been done on addressing
robustness issues in KDSs. One could use exact computation but, as noticed by several
researchers [57, 59], in practice a significant portion of the running time of a KDS is
spent on computing certificate failure times. Expensive exact root comparisons will only
make this worse and, hence, may lead to unacceptable performance in practice. See [58]
for a comparison of various exact root computation techniques in the context of kinetic
data structures. Guibas and Karavelas [57] described a method to speedup exact root
comparisons by grouping the roots into intervals that are refined adaptively. However, like
other exact methods, the performance of the algorithm deteriorates when many events are
very close to each other.

An alternative is to apply controlled perturbation [63] to the KDS. In this method, we
perturb the initial positions of the moving objects by some amount δ so that with high
probability the roots of all pertinent functions are at least ∆ far away from each other. This
means one can compare any two roots exactly as long as every root is computed within a
precision of ∆/2. While controlled perturbation has been successful on a number of static
problems [48, 63], it does not seem to work well on kinetic data structures because the
large number of events in the KDS makes the required perturbation bound δ fairly large.

Recently, Milenkovic and Sacks [87] studied the computation of arrangements of x-
monotone curves in the plane using a plane sweep algorithm, under the assumption that
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intersection points of curves cannot be computed exactly. For infinite curves this boils
down to the kinetic sorting problem, because one has to maintain the sorted order of the
curves along the sweep line. In fact, our KDS for the kinetic sorting problem is very sim-
ilar to their algorithm. The difference is in the subroutine to compute intersection points
of curves which we assume to have available; this subroutine is stronger than the sub-
routine they assume—see Section 3.2 for details. This allows us to ensure that we never
process more events than the number of actual crossings, whereas Milenkovic and Sacks
may process a quadratic number of events in the worst case even when there is only a
linear number of crossings. The main difference between our and their papers, however,
lies in the different view on the problem: since we are looking at the problem from a KDS
perspective, we are especially interested in the delay of events and the error in the output
for each snapshot of the motion, something that was not studied in [87]. Moreover, we
study other KDS problems as well.

Our results. The main problem we face when event times are not computed exactly is
that events may be processed in a wrong order. We present KDSs that are robust against
this out-of-order processing, including kinetic sorting and kinetic tournaments. Our al-
gorithms are quasi-robust in the sense that the maintained attribute of the moving objects
will be correct for most of the time, and when it is incorrect, it will not be far from the
correct attribute. For the kinetic sorting problem, we obtain the following results:

• We prove that the KDS can only be incorrect when the current time is close to an
event.

• We prove that an event may be processed too late, but not by more than O(nε) time.
This bound is tight in the worst case.

• We prove bounds on the geometric error of the structure—the maximum distance
between the i-th point in the maintained list and the i-th point in the correct list—
that depend on the velocities of the points.

We obtain similar results for kinetic tournaments and kinetic range trees. As a by-product
of our approach, degeneracy problems (how to deal with multiple events occurring simul-
taneously) arising in traditional KDS algorithms naturally disappear, because our KDS no
longer cares about in which order these simultaneous events are processed.

We have implemented the robust sorting and tournament KDS algorithms and tested them
on a number of inputs, including highly degenerate ones. Our sorting algorithm works
very well on these inputs: of course it does not get stuck and the final list is always
correct (after all, this is what we proved), but the maximum delay of an event is usually
much less than the worst-case bound suggests (namely O(ε) instead of Θ(nε)). This is
in contrast to the classical KDS, which either falls into an infinite loop or misses many
kinetic events along the way and maintains a list that deviates far from the true sorted list
both geometrically and combinatorially. Our kinetic tournament algorithm is also robust
and reduces the geometric error by orders of magnitude.
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3.2 Our model

In this section we describe our model for computing the event times of certificates. In a
standard KDS, each certificate c is a predicate, and there is a characteristic function χc :
R → {1, 0,−1} associated with c so that χc(t) = 1 if c is true at time t, −1 if c is
false at time t. The values of t at which χc is switching from 1 to −1 or vice vera are
the event times of c, and χc(t) = 0 at these event times. In our applications, χc(t)
can be derived from the sign of some continuous function ϕc(t). For example, if x(t)
and y(t) are two points, each moving in R1, then for the certificate c := [x < y] we have
χc(t) = 1 if and only if sign(ϕc, t) > 0 for ϕc(t) = y(t) − x(t). For simplicity, we
assume that sign(ϕc, t) = 0 for a finite number, s, of values of t.

We assume that the trajectory of each object is explicitly described by a function of time,
which means in our applications that the function ϕc is also explicitly described, and
that event times can be computed by computing the roots of the function ϕc. These are
standard assumptions in traditional KDS’s. In order to model the inaccuracy in computing
event times, we fix a parameter ε > 0, which will determine the accuracy of the root
computation. We assume there is a subroutine, denoted by CROP

(
f(t)

)
, to compute the

roots of a function f(t), whose output is as follows:

(A1) a set of disjoint, open intervals U1, . . . , Um, where |Ui| 6 ε for each i, that cover
all roots of f(t).

(A2) the sign of f(t) between any two consecutive intervals;

For polynomial functions, Descartes’ sign rule [31] and Sturm sequences [69] are standard
approaches to implement CROP. We also assume that

(A3) CROP is deterministic: it always returns the same result when run on the same
function.

Among the intervals returned by CROP
(
f(t)

)
, we call an interval whose two endpoints

have the same sign a turbulent interval, and an interval whose two endpoints have different
signs an event interval; see Figure 3.2. Let Rf denote the union of all the turbulent and
event intervals. In our applications, we can ignore turbulent intervals (intuitively, we
can pretend that the sign of f(t) does not change during a turbulent interval). We will
use I = 〈I1, . . . Ik〉 to denote the set of event intervals, and assume that

(A4) CROP only outputs the set I of event intervals.

Let λj (resp. ρj) denote the left (resp. right) endpoint of Ij , i.e., Ij = (λj , ρj). As we
will see below, we will always schedule events at the right endpoints of event intervals
(intuitively, we can pretend that the sign of f(t) within an event interval is the same
as at its left endpoint and that it changes at its right endpoint). Observe that if f(t)
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Figure 3.2 A function and the intervals computed by the CROP procedure. In-
tervals with filled (hollow) endpoints are event (turbulent) intervals;
solid arrow lines denote the intervals where the sign of the function
is known, and dashed arrow lines denote the signs pretended by the
KDS.

does not have any roots, then CROP
(
f(t)

)
does not return any intervals and no events

will be scheduled. This is where our subroutine is more powerful than the subroutine of
Milenkovic and Sacks [87], and this is why we can ensure that we only handle events if
there is a real crossing of trajectories.

We use tcurr to denote the current time of the KDS, which is the maximum computed
event time over all processed events. We assume that tests as to whether tcurr lies inside
an event interval computed by CROP are exact. In the actual implementation, this can be
achieved by enforcing all interval endpoints (and consequently, tcurr) to be rationals and
using exact arithmetic to compare between rationals. The pseudo-code for computing the
failure time of a certificate c at time tcurr is given below.

Algorithm EVENTTIME (c)
1. I := 〈I1 = (λ1, ρ1), . . . , Ik = (λk, ρk)〉 ← CROP (ϕc)
2. ρ0 ← −∞; ρk+1 ← +∞
3. last←# intervals in I to the left of tcurr

4. if χc(ρlast) = −1
5. then return ρlast

6. else return ρlast+1

Note that if χc(ρlast) = −1, then the event time returned by EVENTTIME(c) (i.e., ρlast) is
in the past. As we will see in the next section, when we handle an event in the past, we
do not reset tcurr: the time tcurr will always be the maximum of the computed event times
over all processed events. Finally, the above procedure has the following properties: If it
returns a finite value ρi, then

(I1) ρi is the right endpoint of an event interval;

(I2) the certificate c is valid at λi and invalid at ρi, i.e., χc(λi) = 1 and χc(ρi) = −1.
In fact, c is valid at all times in [ρi−1, ρi] \ Rχc , and is invalid at all times in
[ρi, ρi+1] \ Rχc

.
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Lemma 3.1 Suppose EVENTTIME(c) returns a finite value ρi. For any t ∈ R, if (i)
t ∈ [ρi−1, ρi] and c is invalid at time t, or (ii) t ∈ [ρi, ρi+1] and c is valid at time t, then
χc(γ) = 0 for some γ ∈ (t− ε, t).

Proof. We only prove case (i) as case (ii) is similar. By (A1) and (I2), it is clear
that t ∈ Rχc

. As such, a turbulent or event interval (λ, ρ) of c contains t. Note that
λ ∈ [ρi−1, ρi], and therefore c is valid at time λ by (I2). However, c is invalid at time t
by our assumption. This implies that there exists a value γ ∈ (λ, t) such that χc(γ) = 0.
Finally, observe that (λ, t) ⊆ (t− ε, t). 2

3.3 Kinetic sorting

Let S be a set of n points moving continuously on the real line. The value of a point x ∈ S
is a continuous function of time t, which we denote by x(t). Let S(t) = {x(t) : x ∈ S}
denote the configuration of S at time t. For simplicity, we write S and x instead of S(t)
and x(t), respectively, provided that no confusion arises. In the kinetic sorting problem,
we want to maintain the sorted order of S during the motion.

The algorithm. As in the standard algorithm, we maintain an array A that stores the
points in S. The events are stored in a priority queue Q, called global event queue. The
certificates are standard as well: the certificate c :=

[
x < y

]
belongs to the current

certificate set of the KDS if x = A[k] and y = A[k + 1] for some 1 6 k 6 n − 1. We
call these n − 1 certificates active. We need the following notation regarding the failure
times.

tcp(x, y) : the computed failure time1 of certificate
[
x < y

]
tpr(x, y) : the time at which the failure of

[
x < y

]
is actually processed

tex(x, y) : the exact time at which the certificate
[
x < y

]
fails

For the exact failure time, more formally,

tex(x, y) := arg max
t<tcp(x,y)

x(t) = y(t). (3.1)

Note that tex(x, y) < tcp(x, y) 6 tpr(x, y). Furthermore, we know by (I1) that tcp(x, y)
is the right endpoint of an event interval of c, and tex(x, y) lies inside that event interval
by (3.1). As such, tcp(x, y) < tex(x, y) + ε.

1This is a slight abuse of notation, because points can swap more than once, so the same certificates
can fail multiple times. It will be convenient to treat these certificates as different. Formally we should
write tcp((x, y), tcurr) for the failure time of the certificate

[
x < y

]
computed by the KDS at time tcurr.

Since this is always clear from the context we omit the time parameter.
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The new kinetic sorting algorithm is described below. The major difference with the
standard algorithm is that we use the algorithm EVENTTIME to compute the failure time
of a certificate.

Algorithm KINETICSORTING
1. tcurr ← −∞; Initialize A and Q.
2. while Q 6= ∅
3. do c :

[
x < y

]
← DELETEMIN(Q)

4. tcurr ← max{tcurr, tcp(x, y)}
5. Swap x and y (which are adjacent in A).
6. Remove from Q all certificates that become inactive.
7. C← set of new certificates that become active.
8. for each c :

[
a < b

]
∈ C

9. do tcp(a, b)← EVENTTIME (c)
10. if tcp(a, b) 6=∞
11. then Insert

[
a < b

]
into Q, with tcp(a, b) as failure time.

Note that in lines 10–11, even in the case tcp(a, b) < tcurr for some certificate
[
a < b

]
∈

C (i.e., the event lies in the past), we still insert this event into the queue because the
certificate

[
a < b

]
is not valid at tcurr and thus the combinatorial structure of the KDS is

not correct. Apparently we missed an event, which we must still handle. As such, unlike
the standard algorithm, our algorithm may process events in the past. Note that tcurr is not
affected when this happens (see line 4).

Basic properties. The status of the KDS at time t is defined as the status of the KDS
after all events whose processing times are at most t have been processed. In the kinetic
sorting problem, the status refers to the maintained array A. We say that a point x precedes
a point y in the maintained array A if x = A[k] and y = A[l] for some k < l. If k = l−1,
then x immediately precedes y.

Since events may be processed in a wrong order, the above KDS could perhaps get into
an infinite loop. However, if a certificate c is processed by the algorithm (line 5) at time t0
and c becomes active again at time t0, then EVENTTIME ensures that the failure time of c
is in the future. This implies that the algorithm does not get into an infinite loop. We next
show the KDS almost always maintains a correctly sorted list in A.

Lemma 3.2 If x immediately precedes y in A at time tcurr, then either (i) x(tcurr) 6
y(tcurr), which means the order is correct, or (ii) x(γ) = y(γ) for some γ ∈ (tcurr −
ε, tcurr).

Proof. Let t∗ be the last time less than or equal to tcurr at which x becomes a neighbor of y
such that x is immediately preceding y. (Note that t∗ may be equal to−∞, referring to the
time of initialization of the KDS; see lines 1 of KINETICSORTING.) Let c =

[
x < y

]
, and
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let tcp(x, y) be the time returned by EVENTTIME(c) at time t∗. Since x and y are always
adjacent between time t∗ and tcurr, either tcp(x, y) = ∞, in which case the certificate
failure is not scheduled (line 10), or tcurr < tcp(x, y) < ∞, in which case the certificate
failure is scheduled but not yet handled by the KDS. In either case, tcp(x, y) > tcurr. Now
assume case (i) is not true, i.e., the certificate c is invalid at time tcurr. By Lemma 3.1 (i),
there exists a value γ ∈ (tcurr − ε, tcurr) such that x(γ)− y(γ) = 0, which is case (ii), as
desired. 2

The following theorem shows when the ordering maintained by the kinetic sorting algo-
rithm is correct.

Theorem 3.3 (Correctness). The ordering maintained by the kinetic sorting algorithm is
correct except during at most µ time intervals of length at most ε, where µ is the number
of collisions of points in S over the entire motion.

Proof. Let t ∈ R be a time such that no two points of S collide within time (t− ε, t). We
claim that the ordering maintained by the KDS at time t must be correct. The theorem
then follows since there are only µ collisions of points in S.

Suppose at time t there exist two points x, y ∈ S that are adjacent in A but in incor-
rect order. By Lemma 3.2 applied to x and y at time t, we have x(γ) = y(γ) for
some γ ∈ (t − ε, t). But this contradicts with our assumption that no two points collide
within the time interval (t− ε, t). Therefore all adjacent pairs of points in the maintained
list A are in correct order, implying that the list A itself must also be correct. 2

Delay of events. Theorem 3.3 shows that the ordering may be incorrect only near col-
lision times, but many collisions may “cascade” and thus an event may not be processed
for a long time, thereby resulting in a wrong ordering in the KDS for a long time. Specifi-
cally, when the failure of a certificate

[
x < y

]
is handled by the KDS, we define its delay

by tpr(x, y)− tex(x, y). Next we bound the maximum delay of an event. The bound holds
when every pair of points swaps at most s times for some parameter s > 0.

Lemma 3.4 Let c =
[
x < y

]
be a certificate that fails at the exact time tex(x, y) and is

handled by the KDS at time tpr(x, y). Let τ be such that tex(x, y) 6 τ < tpr(x, y) − ε.
Then there is a point p ∈ S \ {x} such that x(t) = p(t) for some t ∈ (τ, τ + ε].

Proof. Suppose to the contrary that x(t) 6= p(t) for all p ∈ S \ {x} during the interval
(τ, τ + ε]. We first claim that y(t) < x(t) during this interval. Indeed, otherwise we
have y(t) > x(t) and hence the certificate c is always valid during the interval (τ, τ + ε].
However, by applying Lemma 3.1 (ii) with t = τ + ε, we know that χc(γ) = 0 for
some γ ∈ (τ, τ + ε), a contradiction. (Note that t = τ + ε satisfies the condition of
Lemma 3.1 (ii) because tcp(x, y) < t < tpr(x, y).)
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〈· · · , x, z1, · · · , zm−1, y, · · ·〉
tex(x, y)

x

y

tpr(x, y)

zi ∈ B

τ τ + ε

zi−1 /∈ B

Figure 3.3 Illustration for the proof of Theorem 3.5.

Next, let A[τ + ε], the list maintained by the algorithm at time τ + ε, be 〈. . . , x =
z0, z1, . . . , zm = y, . . .〉. Let B ⊆ {z1, . . . , zm} be the subset of points that are smaller
than x during the interval (τ, τ + ε]. Since no point collides with x during this interval,
B remains fixed during (τ, τ + ε]. Note that zm ∈ B. Let 1 6 i 6 m be the smallest
index such that zi ∈ B. Then zi(t) < x(t) 6 zi−1(t), for all t ∈ (τ, τ + ε], and zi−1

immediately precedes zi in A[τ + ε], which contradicts Lemma 3.2. This completes the
proof of the lemma. 2

Theorem 3.5 (Delay). Suppose that the trajectories of every pair of points in S intersect
at most s times. Then an event can be delayed by at most ns · ε time.

Proof. Consider a certificate c =
[
x < y

]
that fails at the exact time tex(x, y) and is

handled by the KDS at time tpr(x, y). Let t be a time such that tex(x, y) 6 t and t + ε <
tpr(x, y). By Lemma 3.4, there is a point p ∈ S \ {x} whose trajectory intersects the tra-
jectory of x during (t, t + ε]. Let k be an integer such that tpr(x, y)− tex(x, y) = kε + δ
where δ < ε. We split the interval [tex(x, y), tpr(x, y)] into k intervals, each of width ε,
and one interval (the last one) of width δ. Now we can charge each of the first k inter-
vals to an intersection point of the trajectory of x and the trajectory of a point p ∈ S.
Since any two trajectories intersect at most s times, k is at most (n − 1)s, implying
that tpr(x, y)− tex(x, y) 6 (n− 1)s · ε + δ < ns · ε. 2

The following theorem shows the above bound on the delay is almost tight in the worst
case.

Theorem 3.6 For any n, there is a set S of n points such that the trajectories of any
two points intersect at most s times and tpr(x, y) − tex(x, y) ≥ (n − 2)s · ε for some
pair x, y ∈ S.
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Figure 3.4 The lower-bound example.

Proof. We first describe a lower bound example for linear motions. Suppose that the set
S is {x, y, x1, . . . , xn−2}. The trajectories of x and y in the tz-plane are set to be z = 1
and z = at + 1 for a sufficiently small positive number a. The trajectory of the xi’s
in tz-plane is parallel lines such that iδ < tex(x, xi) < tex(y, xi) < iµ where δ and µ are
two numbers satisfying the following inequalities:

n− 1
n

ε < δ < µ <

(
n− 1

n
+

1
n2

)
ε.

Assume CROP (x(t)−y(t)) = ((µ−ε)/2, (µ+ε)/2), CROP (x(t)−xi(t)) = (iδ, iδ+ε)
and CROP (y(t)− xi(t)) = (iµ− ε, iµ) for any 1 6 i 6 n− 2 (see Figure 3.4(a)).

Using induction, we prove the status of the maintained list at time iµ (2 6 i 6 n− 2) is

〈xn−2, . . . , xi+1, y, xi, xi−1, x, xi−2, . . . x1〉.

Since the maintained list at time −∞ is 〈xn−2, . . . , x1, y, x〉 and the right endpoints
of all returned intervals by CROP are greater than zero, the maintained list at time 0
is 〈xn−2, . . . , x1, y, x〉. At time 0, the only certificate failures in the event queue are
tcp(x, y) = (µ + ε)/2 and tcp(y, x1) = µ. Since µ < (µ + ε)/2, the status of the KDS
at time µ is 〈xn−2, . . . , x2, y, x1, x〉 and the certificate failures in the event queue are
tcp(x, x1) = δ + ε, tcp(y, x2) = 2µ. Since we have 2µ < δ + ε (later we will prove
that (i + 1)µ < iδ + ε), the status of the KDS at time 2µ is 〈xn−2, . . . , x3, y, x2, x1, x〉,
which means the case i = 2 is clearly true. Now assume the maintained list at time iµ
is 〈xn−2, . . . , xi+1, y, xi, xi−1, x, xi−2, . . . x1〉. We have to show that the maintained list
at time (i + 1)µ is 〈xn−2, . . . , xi+2, y, xi+1, xi, x, xi−1, . . . x1〉.
The computed failure times of current certificates in the event queue are tcp(x, xi−1) =
(i−1)δ +ε, tcp(y, xi+1) = (i+1)µ. Since (i−1)δ +ε < (i+1)µ, the point xi−1 swaps
with the point x at time (i − 1)δ + ε and at the same time tcp(x, xi−1) is removed from
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the event queue and tcp(x, xi) = iδ + ε is inserted into the event queue. We know that

iδ + ε >
n− 1

n
· iε + ε >

(
n− 1

n
+

1
n2

)
(i + 1)ε > (i + 1)µ.

This implies at time (i + 1)µ the points xi+1 and y swap and tcp(y, xi+1) is removed
from the event queue and instead tcp(y, xi+2) = (i + 2)µ which is greater than (i + 1)µ
is inserted into the event queue. Therefore, the status of the KDS at time (i + 1)µ is

〈xn−2, . . . , xi+2, y, xi+1, xi, x, xi−1, . . . x1〉.

Now consider the time (n− 2)µ at which the maintained list is

〈y, xn−2, xn−3, x, xn−4, . . . , x1〉.

The only certificate failure scheduled in the KDS is for [xn−3 < x], with failure time
(n − 3)δ + ε. After processing this certificate failure, the only certificate failure in the
event queue is tcp(x, xn−2) = (n− 2)δ + ε. After processing [xn−2 < x], we realize that
the certificate [y < x] which fails in the past must be processed. Therefore,

tpr(x, y)− tex(x, y) = (n− 2)δ + ε > (n− 2)ε.

We use the above construction as a base component to construct a lower-bound example
for the general case where any two points can swap s times. To this end, we glue s base
components together such that the slopes of lines alternate between being positive and
negative, i.e., the slopes of lines in the first component is positive, in the second compo-
nent is negative, and so on as depicted in Fig. 3.4(b). Note that in the odd components,
certificates [xi < y] are roughly processed at the right time and certificates [xi < x] are
roughly processed with a delay of ε, but in the even components, certificates [x < xi] are
roughly processed at the right time and certificates [y < xi] are roughly processed with a
delay of ε (indeed we can imagine that x and y are exchanged). The main condition that
we need is (i + 1)µ < iδ + ε for any i = 1, . . . , s(n − 2). We can satisfy this condition
by choosing δ and µ such that

sn− 1
sn

ε < δ < µ <

(
sn− 1

sn
+

1
s2n2

)
ε.

Next we discuss what happens to the maintained list when two components are glued
together. Because of symmetry, we just consider the status of the KDS around the time at
which the first and the second component are glued together. Consider time (n − 2)µ in
which the KDS is

〈y, xn−2, xn−3, x, xn−4, . . . , x1〉.
As we explained above, at time (n − 3)δ + ε, the certificate [xn−3 < x] is processed
and x and xn−2 become adjacent, which means [xn−2 < x] must be scheduled. Be-
cause two intersections of x and xn−2 are at most ε far away from each other, we re-
place the previous assumption tcp(x, xn−2) = (n − 2)δ + ε with the assumption that
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the turbulent interval ((n − 2)δ, (n − 2)δ + ε) contains both intersections. Since CROP
ignores turbulent intervals, the order of x and xn−2 does not change. Moreover, since
tcp(xn−2, y) = (n − 1)δ + ε (recall that in the even components [y < xi] is processed
with a delay of ε), xn−2 and y do not swap before time (n − 1)δ + ε. This implies x
and y cannot get adjacent before (n − 1)δ + ε. On the other hand, xn−3 and x must
swap before this time—note that tcp(xn−3, x) = nµ. After time (n − 1)δ + ε, the same
scenario as the first component happens. Putting everything together we conclude that
tpr(x, y)− tex(x, y) ≥ (n− 2)s · ε in the above construction. 2

Error bounds. We turn our attention to the “error” in the array A. Combinatorially,
Lemma 3.2 implies that if there are k event intervals containing tcurr, then the array A at
time tcurr can be decomposed into at most k + 1 (contiguous) subarrays, each of which
is in sorted order. Next we discuss how far the maintained order can be from the correct
order geometrically. In particular, we present a bound on the maximum distance between
two points that are in the wrong order in the array and on how far away the k-th point in
the maintained order—that is, the point A[k]—can be from the true point of rank k.

Theorem 3.7 (Geometric error). Let 〈y1, . . . , yn〉 and 〈z1, . . . , zn〉 be the sequence main-
tained by the algorithm and the correctly sorted sequence at some given time tcurr, re-
spectively. Let Vmax be the maximum velocity of any point in S over the time inter-
val [tcurr − ε, tcurr]. Then for any 1 6 i < j 6 n,

(i) yi(tcurr)− yj(tcurr) 6 (j − i + 1)ε · Vmax, and

(ii) |yi(tcurr)− zi(tcurr)| 6 nε · Vmax.

Proof.

(i) For simplicity we write t = tcurr. For any 1 6 k < n, if yk and yk+1 are in
the correct order in the maintained list, then yk(t) 6 yk+1(t). If they are in the
incorrect order, then by Lemma 3.2 (ii), there exists a time γ ∈ (t − ε, t) such
that yk(γ) = yk+1(γ). Hence,

yk(t)− yk+1(t) = (yk(t)− yk(γ)) + (yk(γ)− yk+1(γ))
+(yk+1(γ)− yk+1(t)) 6 2εVmax.

Therefore we always have yk(t) − yk+1(t) 6 2εVmax, which immediately implies
that yi(t)−yj(t) =

∑j−1
`=i (y`(t)−y`+1(t)) 6 2(j− i)ε ·Vmax for any 1 6 i < j 6

n. To further prove the promised upper bound, let us consider bounding yk(t) −
yk+2(t). If either yk(t) 6 yk+1(t) or yk+1(t) 6 yk+2(t), then we immediately
have

yk(t)− yk+2(t) = (yk(t)− yk+1(t)) + (yk+1(t)− yk+2(t)) 6 2εVmax.
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Now assume yk(t) > yk+1(t) and yk+1(t) > yk+2(t), which means that the rel-
ative order of yk and yk+1, as well as the relative order of yk+1 and yk+2 are
incorrect in the maintained list. As such, there exist γ1, γ2 ∈ (t − ε, t) such
that yk(γ1) = yk+1(γ1) and yk+1(γ2) = yk+2(γ2). It follows that

yk(t)− yk+2(t) = (yk(t)− yk(γ1)) + (yk(γ1)− yk+1(γ1))
+ (yk+1(γ1)− yk+1(γ2)) + (yk+1(γ2)− yk+2(γ2))
+ (yk+2(γ2)− yk+2(t))
6 |t− γ1| · Vmax + 0 + |γ1 − γ2| · Vmax + 0 + |t− γ2| · Vmax

6 2εVmax.

Hence we always have yk(t) − yk+2(t) 6 2εVmax. Now, for any 1 6 i < j 6 n,
one can prove yi(t)− yj(t) 6 (j − i + 1)εVmax by a simple induction on j − i (the
base case j − i = 1 has been proved above):

yi(t)− yj(t) = (yi(t)− yi+2(t)) + (yi+2(t)− yj(t))
6 2εVmax + (j − (i + 2) + 1)εVmax

6 (j − i + 1)εVmax.

(ii) We consier the case zi 6= yi; otherwise the claim is trivially true. Suppose zi = yj

for some j > i; the other case j < i is symmetric. Also suppose yi = zk for
some 1 6 k 6 n. We have two cases. If k > i, then since yj(tcurr) = zi(tcurr) 6
zk(tcurr) = yi(tcurr), we can write

|zi(tcurr)− yi(tcurr)| = yi(tcurr)− yj(tcurr) 6 nε · Vmax,

by (i). Otherwise if k < i, there must exist r and ` with r < i < `, such that
z` = yr. Then

|zi(tcurr)− yi(tcurr)| = zi(tcurr)− zk(tcurr) 6 z`(tcurr)− zk(tcurr)
= yr(tcurr)− yi(tcurr) 6 nε · Vmax,

by (i), thus proving the theorem.

2

3.4 Kinetic tournaments

A kinetic tournament [23] is a KDS that maintains the maximum of a set S of moving
points in R by maintaining a tournament tree T over S. Each interior node u of T has a
certificate of the form

[
x < y

]
, where x, y ∈ S are the two points stored at the children

of u, and y is also currently stored at u. To handle events, we need a subroutine that
compares two points at time tcurr in a way that is consistent with EVENTTIME.



3.4 Kinetic tournaments 39

Algorithm COMPUTEMAX(x, y)
1. I := 〈I1 = (λ1, ρ1), . . . , Ik = (λk, ρk)〉 ← CROP (x(t)− y(t))
2. ρ0 ← −∞
3. last←number of intervals in I to the left of tcurr

4. if sign(x(ρlast)− y(ρlast)) = 1
5. then return x
6. else return y

In the algorithm below, the point stored at a node u ∈ T is denoted by pu, and we assume
parent(root) = nil.

Algorithm KINETICTOURNAMENT
1. tcurr ← −∞; Initialize T and Q.
2. while Q 6= ∅
3. do c :

[
x < y

]
← DELETEMIN(Q)

4. tcurr ← tcp(x, y)
5. u← the node at which the certificate c fails.
6. while u 6= nil
7. do Let z1 and z2 be the points stored at u’s children.
8. pu ←COMPUTEMAX(z1, z2); u← parent(u)
9. Remove from Q all certificates that become inactive.
10. C← set of new certificates that become active.
11. for each c :

[
a < b

]
∈ C

12. do tcp(a, b)←EVENTTIME (c)
13. if tcp(a, b) 6=∞
14. then Insert

[
a < b

]
into Q, with tcp(a, b) as failure time.

The set C in line 10 consists of certificates that correspond the nodes along the path from
the node where the event occurs to the root. In lines 5–8, the algorithm has used COM-
PUTEMAX to make sure that each certificate c ∈ C is valid at the right endpoint of the
last event interval of c before time tcurr. Since COMPUTEMAX (line 8) and EVENTTIME
(line 12) base their decisions on the order at the same time, we obtain the following
lemma.

Lemma 3.8 In line 12, the computed event time tcp(a, b) is always in the future (i.e.,
tcp(a, b) > tcurr).

The lemma implies that we never schedule an event in the past and, in fact, never schedule
an event at the current time either. Hence, the algorithm does not get into an infinite loop.

Lemma 3.9 After an event has been processed at time tcurr, the point pu stored at any
internal node u of the tournament is always one of the points stored at its children. More-
over, either pu is the correct current maximum of the two children, or the trajectories of
points stored at the two children intersect during the period (tcurr − ε, tcurr).



40 Chapter 3 Out-of-order event processing

Proof. It is obvious that the first part of the lemma is true. The proof of the second part
is similar to Lemma 3.2. Assume there is a node u with children u1 and u2, and assume
without loss of generality that pu = pu1 while in fact pu2(tcurr) > pu1(tcurr). Let t∗

be the last time at which pu1 and pu2 were compared. Thus COMPUTEMAX(pu1 , pu2)
executed at time t∗ returns pu1 . But then, since pu2(tcurr) > pu1(tcurr), an event must
have been scheduled for the certificate c = [pu2 < pu1 ], and the failure time t′ of this
certificate must have satisfied t′ > t∗ by Lemma 3.8. We cannot have t′ < tcurr, because
that contradicts the definition of t∗. Hence t′ > tcurr. Since c is invalid at time tcurr, by
Lemma 3.1 (i), it follows that that the trajectories of pu1 and pu2 must intersect during the
period (tcurr − ε, tcurr). 2

Following standard KDS terminology, we call an event external if the attribute to be
maintained changes due to the event; for a kinetic tournament this means an event where
the maximum of S changes. Other events are internal.

Lemma 3.10 If there is no external event during the period (tcurr − ε, tcurr), then the
maximum maintained by the algorithm is correct at time tcurr.

Proof. By assumption, the true maximum of S during (tcurr−ε, tcurr) is a unique point, x.
In particular, x does not cross any other point in S during this time period. Suppose for the
sake of contradiction that x is not the maximum maintained by the algorithm at time tcurr.
Then at time tcurr, the algorithm stores x at an internal node v of the tournament tree, and
stores another point y ∈ S in the sibling and the parent u of v. Applying Lemma 3.9 to the
node u, we obtain that the trajectories of x and y intersect at some time in (tcurr−ε, tcurr),
a contradiction. 2

The following two results are immediate consequences of Lemma 3.10.

Theorem 3.11 (Correctness). The maximum maintained by the kinetic tournament is
correct except during at most µ time intervals of length at most ε, where µ is the number
of external events.

Theorem 3.12 (Delay). If a point x ∈ S becomes the true maximum at time t (i.e., an
external event at time t), then either x becomes the maintained maximum by time t + ε
(i.e., the external event is delayed by at most ε), or another external event occurs before
time t + ε (i.e., the old external event becomes obsolete).

We now turn our attention to the geometric error of our KDS—the difference in value be-
tween the point stored in the root of the kinetic tournament tree and the true maximum—as
a function of the maximum velocity. Interestingly, the geometric error is much smaller
than in the sorting KDS, because it now depends on the depth of the tournament tree,
which is dlog ne. The following theorem makes this precise.



3.5 Kinetic range trees 41

Theorem 3.13 (Geometric error). Let x denote the point stored in the root of the kinetic
tournament tree at some time tcurr, and let y denote the point with the maximum value at
time tcurr. Then x(tcurr) > y(tcurr)− (dlog ne+ 1)ε · Vmax, where Vmax is the maximum
velocity of any point in S over the time interval [tcurr − ε, tcurr].

Proof. Consider a node v (other than the root) and its parent u. We claim that

pv(tcurr)− pu(tcurr) 6 2εVmax. (3.2)

If pv(tcurr) 6 pu(tcurr), (3.2) is trivially true. Otherwise, by Lemma 3.9, the trajectories
of pv and pu intersect at some time in (tcurr − ε, tcurr). Arguing as in Theorem 3.7 (i), we
can then obtain (3.2). Summing up (3.2) for all consecutive nodes along the path from the
node storing the true maximum y to the root, we obtain y(tcurr)− x(tcurr) 6 2hε · Vmax,
where h 6 dlog ne is the length of the path. The inequality can be further improved to
y(tcurr) − x(tcurr) 6 (h + 1)ε · Vmax by using the same argument as in Theorem 3.7 (i),
thus completing the proof. 2

3.5 Kinetic range trees

Our robust kinetic sorting algorithm can be applied directly to maintaining the standard
kinetic range trees [24] of a set S of moving points in Rd for orthogonal range searching.
By the properties of the robust kinetic sorting algorithm, we immediately know that the
robust kinetic range tree is correct except for at most E time intervals of length at most
ε, where E is the total number of swaps of the input points along each axis, and that the
delay of each event is at most O(nε).

We can also prove bounds on the geometric error. For a d-dimensional (axis-aligned)
box R = Πd

i=1[ai, bi] and a parameter ∆ > 0, let R−
∆ = Πd

i=1[ai + ∆, bi − ∆] and
R+

∆ = Πd
i=1[ai −∆, bi + ∆]. We call a subset Q ⊆ S a ∆-approximation to S ∩R if

S ∩R−
∆ ⊆ Q ⊆ S ∩R+

∆.

In other words, points at L∞-distance at most ∆ to the boundary of R may or may not
be included in Q, but other points are in Q if and only if they are in R. The next the-
orem shows that the kinetic range tree, when using our robust kinetic sorting algorithm,
always returns a ∆-approximation to the true answer of an orthogonal range query, for
an appropriate value of ∆. This follows more or less from Theorem 3.7. (The fact that
the maintained tree is not necessarily a correct search tree does not impose any difficulty
upon performing a standard binary search on the tree.)

Theorem 3.14 For any time t and any d-dimensional (axis-aligned) box R ⊆ Rd, the
subset Q(t) ⊆ S(t) returned by querying R on the maintained kinetic range tree at time t
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is a ∆-approximation to S(t) ∩ R, where ∆ = nεVmax and Vmax is the maximum speed
of a point in S over the time interval [t− ε, t].

Proof. We proceed by induction on d. Let us first consider the one-dimensional case,
where a range tree of S is simply a binary search tree of S. Let 〈y1(t), y2(t), . . . , yn(t)〉
be the sequence maintained by the algorithm; also let y0 = −∞ and yn+1 = +∞. Sup-
pose for a query range R = [a, b] the maintained tree returns Q(t) = 〈yi, yi+1, . . . , yj〉.
Observe that although the maintained binary search tree is not necessarily correct, we
still have yi−1 < a 6 yi and yj 6 b < yj+1. By Theorem 3.7, for each i 6 ` 6 j,
y` > yi −∆ > a−∆ and y` 6 yj + ∆ 6 b + ∆. Thus Q(t) ⊆ S(t)∩R+

∆. On the other
hand, for each ` < i, y` 6 yi−1+∆ < a+∆, and for each ` > j, y` > yj+1−∆ > b−∆.
This implies S(t) ∩R−

∆ ⊆ Q(t). Hence Q(t) is a ∆-approximation to S(t) ∩ [a, b].

In Rd, to perform a query R = Πd
i=1[ai, bi] on the maintained d-dimensional range tree,

one first performs the query [a1, b1] on the primary range tree, and then performs the query
Πd

i=2[ai, bi] recursively into appropriate secondary range trees. Let S′ ⊆ S be the subset
of points stored in those queried secondary trees. It follows from the above analysis that

S(t)∩
(
[a1 +∆, b1−∆]×Rd−1

)
⊆ S′(t) ⊆ S(t)∩

(
[a1−∆, b1 +∆]×Rd−1

)
. (3.3)

Furthermore, by the induction hypothesis,

S′(t)∩
(
R×

d∏
i=2

[ai +∆, bi−∆]
)
⊆ Q(t) ⊆ S′(t)∩

(
R×

d∏
i=2

[ai−∆, bi +∆]
)
. (3.4)

Putting (3.3) and (3.4) together, we obtain S(t)∩R−
∆ ⊆ Q(t) ⊆ S(t)∩R+

∆, as desired. 2

3.6 Experiments

We have implemented our robust kinetic sorting and kinetic tournament algorithms to test
the effectiveness of our technique for handling out-of-order event processing. The pro-
grams are written in C++ and run in the Linux 2.4.20 environment. We also implemented
these two algorithms using the traditional KDS event-scheduling approach and compared
them with their robust counterparts by testing the errors in the output.

Input data. We used the following synthetic datasets in our experiments, as illustrated
in Figure 3.5. The inputs are low-degree motions because we have not yet implemented a
full-fledged CROP procedure, and it becomes easier for us to compute delays of the events.
Nonetheless, these inputs already cause trouble to traditional KDSs and are sufficient to
illustrate the effectiveness of our algorithms.
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GRIDS PARABOLA

RANDDC RANDCR

Figure 3.5 Datasets used in the experiments. The figures depict trajectories of
the moving points in tx-plane, after an appropriate scaling.

• GRIDS: a set of linear trajectories whose dual points form a uniform grid;

• PARABOLA: a set of congruent parabolic trajectories with apexes sitting on a grid
in tx-plane;

• RANDDC: a set of linear trajectories whose dual points are randomly distributed in
a disk;

• RANDCR: a set of linear trajectories whose dual points are randomly distributed on
a circle.

Kinetic sorting. We tested the kinetic sorting algorithms on the first three types of input
data. All experiments were run on inputs of size 900. We measure the error of the sorting
KDSs at time t by

err(t) = max
i
|yi(t)− zi(t)|,

where 〈y1, . . . , yn〉 and 〈z1, . . . , zn〉 are the sequence maintained by the KDS and the
correctly sorted sequence at time t respectively. In Figures 3.6-3.8 we plot err(t) as t
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Figure 3.6 Maximum error of kinetic sorting on a GRID input of size 900;
scales on the vertical axis are different.

varies, by measuring err(t) every other 10−7 seconds. Note the different scales on the
vertical axis in these figures.

We first discuss the behavior of the traditional kinetic sorting algorithm, which uses float-
ing point arithmetic. In a few instances, the algorithm went into an infinite loop because
of simultaneous events. Although this problem could be fixed in general, a more careful
implementation of the traditional KDS is required. As for the geometric error in the main-
tained structures, the traditional KDS was very fragile: it quickly ran into noticeable errors
and was unable to recover from these errors (see Figures 3.6 (1), 3.7 (1), and 3.8 (1)). The
reason is that some events that should have been scheduled into the global queue were
discarded by the KDS because their computed event times happened to lie in the past
because of numerical errors.

We now turn our attention to the geometric error in the structures maintained by our
robust kinetic sorting algorithm, under different precisions ε in the CROP procedure. As
can be seen, while the traditional KDS quickly ran into serious errors and was never able
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Figure 3.7 Maximum error of kinetic sorting on a PARABOLA input of size
900; scales on the vertical axis are different.

to recover, our robust KDS maintained a rather small error all the time. Observe that the
error of the robust KDS reduces as the precision of the CROP procedure increases. We
also tested the algorithm on a number of larger inputs, and the error remained roughly the
same.

We also studied how long an event could be delayed before it is eventually processed in the
robust kinetic sorting algorithm—see Table 3.1. It can be seen that the Root Mean Square
(RMS, for short) of the delays are always very small for all inputs. As for the maximum
delay, we only observed one instance in the first two types of inputs in which some events
are delayed by about 2ε; in all other cases, the maximum delay never exceeds ε, which is
far below the rather contrived worst-case bound in Theorem 3.6.

Kinetic tournament. We tested the kinetic tournament algorithms on the RANDCR data
as this input tends to have a large number of external events. The geometric error is
measured by err(t) = |y(t) − z(t)|, where y and z are the maximum maintained by the



46 Chapter 3 Out-of-order event processing

0 0.02 0.04 0.06 0.08 0.1
0

2

4

6

8
x 10

−4

Time

M
ax

im
um

 E
rr

or

0 0.02 0.04 0.06 0.08 0.1
0

0.2

0.4

0.6

0.8

1

1.2
x 10

−6

Time

M
ax

im
um

 E
rr

or

(1) traditional KDS (2) ε = 10−6

0 0.02 0.04 0.06 0.08 0.1
0

0.2

0.4

0.6

0.8

1

1.2

1.4
x 10

−7

Time

M
ax

im
um

 E
rr

or

0 0.02 0.04 0.06 0.08 0.1
0

0.2

0.4

0.6

0.8

1
x 10

−8

Time

M
ax

im
um

 E
rr

or

(3) ε = 10−7 (4) ε = 10−8

Figure 3.8 Maximum error of kinetic sorting on a RANDDC input of size 900;
scales on the vertical axis are different.

Precision GRIDS PARABOLA RANDDC
of CROP RMS Max RMS Max RMS Max
ε = 10−6 0.48× ε 2.00× ε 0.37× ε 1.00× ε 0.42× ε 1.00× ε
ε = 10−7 0.43× ε 1.00× ε 0.37× ε 1.00× ε 0.42× ε 1.00× ε
ε = 10−8 0.42× ε 1.00× ε 0.39× ε 1.00× ε 0.41× ε 1.00× ε

Table 3.1 Delay of events in kinetic sorting.

KDS and the true maximum at time t respectively. Since kinetic tournaments are less
sensitive to simultaneous events than kinetic sorting, we artificially lowered the precision
in computing the event times so as to cause noticeable geometric errors in the tested
algorithms. Specifically, in the traditional KDS we round the event times to the precision
of 10−5, and in the robust KDS we vary the precision ε in CROP from 10−3 to 10−5.

We first noticed that the traditional kinetic tournament algorithm did not go into an infinite
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Figure 3.9 Geometric error of the kinetic tournament on a RANDCR input of
size 10000; scales on the vertical axis are different.

loop; this is because events are always “pushed” up in the tournament tree. However, as
for the geometric error, one can see from Figure 3.9 (1) that the KDS maintains a rather
inaccurate maximum over time. In contrast, the geometric errors in our robust KDS are
smaller by orders of magnitudes, even though the event time computation is less precise
than in the traditional KDS.

3.7 Conclusions

In this chapter we studied the problem of designing kinetic data structures that are robust
against out-of-order event processing due to numerical errors in computing event times.
We showed that the proposed robust kinetic sorting and kinetic tournament algorithms
have several nice properties, including guaranteed correctness for all but a finite number
of small time intervals, short delays in event processing, and small geometric errors over
time. Combining the resulting kinetic range tree and kinetic tournament, we can also
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maintain the closest-pair of a set of moving points robustly [24]. It is interesting to see
whether similar results can be obtained for other more complex kinetic data structures
as well. In particular, so far we have been unable to extend our techniques to kinetic
Delaunay triangulations. The main difficulty is that we cannot argue the algorithm does
not get into an infinite loop of edge flips. We leave it as an interesting open question for
future research.



Chapter 4

Kinetic kd-trees and longest-side
kd-trees

Abstract. We propose a simple variant of kd-trees, called rank-based kd-trees, for sets of points
in Rd. We show that a rank-based kd-tree, like an ordinary kd-tree, supports range search queries
in O(n1−1/d + k) time, where k is the output size. The main advantage of rank-based kd-trees is
that they can be efficiently kinetized: the KDS processes O(n2) events in the worst case, assuming
that the points follow constant-degree algebraic trajectories, each event can be handled in O(log n)
time, and each point is involved in O(1) certificates.

We also propose a variant of longest-side kd-trees, called rank-based longest-side kd-trees (RBLS
kd-trees, for short), for sets of points in R2. RBLS kd-trees can be kinetized efficiently as well and
like longest-side kd-trees, RBLS kd-trees support nearest-neighbor, farthest-neighbor, and approx-
imate range search queries in O((1/ε) log2 n) time. The KDS processes O(n3 log n) events in the
worst case, assuming that the points follow constant-degree algebraic trajectories; each event can
be handled in O(log2 n) time, and each point is involved in O(log n) certificates.

An extended abstract of this chapter was previously published as: M. A. Abam and M. de Berg, and
B. Speckmann, Kinetic kd-tree and longest-side kd-tree, In Proc. ACM Symposium on Computational Geometry
(SCG), pages 364–372, 2007.
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4.1 Introduction

Background. Range searching is a fundamental problem that has been studied exten-
sively both in the database community as well as in the computational-geometry commu-
nity. Here, the goal is to construct a data structure for a set of n points such that for any
given range query, the points lying inside a query range can be reported quickly. Due
to the increased availability of motion data in a variety of application areas—air-traffic
control, mobile communication and geographic information systems, for instance—it is
not surprising a lot of work has been dedicated to developing range searching structures
for moving points in 2- or higher-dimensional space.

Related work. There are several papers that describe KDSs for the orthogonal range-
searching problem, where the query range is an axis-parallel box. Basch et al. [24] kine-
tized d-dimensional range trees. Their KDS supports range queries in O(logd n+k) time
and uses O(n logd−1 n) storage. If the points follow constant-degree algebraic trajecto-
ries then their KDS processes O(n2) events; each event can be handled in O(logd−1 n)
time. In the plane, Agarwal et al. [6] obtained an improved solution: their KDS supports
orthogonal range-searching queries in O(log n + k) time, it uses O(n log n/ log log n)
storage, and the amortized cost of processing an event is O(log2 n).

Although these results are nice from a theoretical perspective, their practical value is
limited for several reasons. First of all, they use super-linear storage, which is often
undesirable. Second, they can perform only orthogonal range queries; queries with other
types of ranges or nearest-neighbor queries (“Report the point that is currently closest to
a query point”) are not supported. Finally, especially the solution by Agarwal et al. [6]
is rather complicated. Indeed, in the setting where the points do not move, the static
counterparts of these structures are usually not used in practice. Instead, simpler structures
such as quadtrees, kd-trees, or bounding-volume hierarchies (R-trees, for instance) are
used. In this chapter we consider one of these structures, namely the kd-tree.

Kd-trees were initially introduced by Bentley [25]. A kd-tree for a set of points in the
plane is obtained recursively as follows. At each node of the tree, the current point set
is split into two equal-sized subsets with a line. When the depth of the node is even the
splitting line is orthogonal to the x-axis, and when it is odd the splitting line is orthog-
onal to the y-axis. In d-dimensional space, the orientations of the splitting planes cycle
through the d axes in a similar manner. Kd-trees use O(n) storage and support orthogonal
range searching queries in O(n1−1/d +k) time, where k is the number of reported points.
Maintaining a standard kd-tree kinetically is not efficient. The problem is that a single
event—two points swapping their order on x- or y-coordinate—can have a dramatic ef-
fect: a new point entering the region corresponding to a node could mean that almost the
entire subtree must be re-structured. Hence, a variant of the kd-tree is needed when the
points are moving.

Agarwal et al. [12] proposed two such variants for moving points in R2: the δ-pseudo
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kd-tree and the δ-overlapping kd-tree. In a δ-pseudo kd-tree each child of a node ν can be
associated with at most (1/2+δ)nν points, where nν is the number of points in the subtree
of ν. In a δ-overlapping kd-tree the regions corresponding to the children of ν can overlap
as long as the overlapping region contains at most δnν points. Both kd-trees support
orthogonal range queries in time O(n1/2+ε + k), where k is the number of reported
points. Here ε is a positive constant that can be made arbitrarily small by choosing δ
appropriately. These KDSs process O(n2) events if the points follow constant-degree
algebraic trajectories. Although it can take up to O(n) time to handle a single event, the
amortized cost is O(log n) time per event. Neither of these two solutions is completely
satisfactory: their query time is worse by a factor O(nε) than the query time in standard
kd-trees, there is only a good amortized bound on the time to process events, and only a
solution for the 2-dimensional case is given. Our goal is to developed a kinetic kd-tree
variant that does not have these drawbacks.

Even though a kd-tree can be used to search with any type of range, there are only per-
formance guarantees for orthogonal ranges. Longest-side kd-trees, introduced by Dicker-
son et al. [43], are better in this respect. In a longest-side kd-tree, the orientation of the
splitting line at a node is not determined by the level of the node, but by the shape of its
region: namely, the splitting line is orthogonal to the longest side of the region. Although
a longest-side kd-tree does not have performance guarantees for exact range searching,
it has very good worst-case performance for ε-approximate range queries, which can be
answered in O(ε1−d logd n + k) time. (In an ε-approximate range query, points that are
within distance ε·diameter(Q) of the query range Q may also be reported.) Moreover,
a longest-side kd-tree can answer ε-approximate nearest-neighbor queries (or: farthest-
neighbor queries) in O(ε1−d logd n) time. The second our goal is to develop a kinetic
variant of the longest-side kd-tree.

Our results. Our first contribution is a new and simple variant of the standard kd-tree
for a set of n points in d-dimensional space. Our rank-based kd-tree supports orthogonal
range searching in time O(n1−1/d + k) and it uses O(n) storage—just like the origi-
nal. But additionally it can be kinetized easily and efficiently. The rank-based kd-tree
processes O(n2) events in the worst case if the points follow constant-degree algebraic
trajectories1 and each event can be handled in O(log n) worst-case time. Moreover, each
point is involved only in a constant number of certificates. Thus we improve the both
the query time and the event-handling time as compared to the planar kd-tree variants of
Agarwal et al. [12], and in addition our results work in any fixed dimension.

Our second contribution is the first kinetic variant of the longest-side kd-tree, which we
call the rank-based longest-side kd-tree (or RBLS kd-tree, for short), for a set of n points
in the plane. (We have been unable to generalize this result to higher dimensions.) An
RBLS kd-tree uses O(n) space and supports approximate nearest-neighbor, approximate

1For the bound on the number of events in our rank-based kd-tree, it is sufficient that any pair of points swaps
x- or y-order O(1) times. For the bounds on the number of events in the RBLS kd-tree, we need that every two
pairs of points define the same x- or y-distance O(1) times.
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farthest-neighbor, and approximate range queries in the same time as the original longest-
side kd-tree does for stationary points, namely O((1/ε) log2 n) (plus the time needed to
report the answers in case of range searching). The kinetic RBLS kd-tree maintains O(n)
certificates, processes O(n3 log n) events if the points follow constant-degree algebraic
trajectories1, each event can be handled in O(log2 n) time, and each point is involved
in O(log n) certificates.

4.2 Rank-based kd-trees

Let P be a set of n points in Rd and let us denote the coordinate-axes with x1, . . . , xd.
To simplify the discussion we assume that no two points share any coordinate, that is, no
two points have the same x1-coordinate, or the same x2-coordinate, etc. (Of course co-
ordinates will temporarily be equal when two points swap their order, but the description
below refers to the time intervals in between such events.) In this section we describe
a variant of a kd-tree for P , the rank-based kd-tree. A rank-based kd-tree preserves all
main properties of a kd-tree and, additionally, it can be kinetized efficiently.

Before we describe the actual rank-based kd-tree for P , we first introduce another tree,
namely the skeleton of a rank-based kd-tree, denoted by S(P). Like a standard kd-
tree, S(P) uses axis-orthogonal splitting hyperplanes to divide the set of points associated
with a node. As usual, the orientation of the axis-orthogonal splitting hyperplanes is al-
ternated between the coordinate axes, that is, we first split with a hyperplane orthogonal
to the x1-axis, then with a hyperplane orthogonal to the x2-axis, and so on. Let ν be a
node of S(P). h(ν) is the splitting hyperplane stored at ν, axis(ν) is the coordinate-axis
to which h(ν) is orthogonal, and P(ν) is the set of points stored in the subtree rooted at ν.
A node ν is called an xi-node if axis(ν) = xi and a node ω is referred to as an xi-ancestor
of a node ν if ω is an ancestor of ν and axis(ω) = xi. The first xi-ancestor of a node ν
(that is, the xi-ancestor closest to ν) is the xi-parent(ν) of ν.

A standard kd-tree chooses h(ν) such that P(ν) is divided roughly in half. In con-
trast, S(P) chooses h(ν) based on a range of ranks associated with ν, which can have
the effect that the sizes of the children of ν are completely unbalanced. We now ex-
plain this construction in detail. We use d arrays A1, . . . ,Ad to store the points of P
in d sorted lists; the array Ai[1, n] stores the sorted list based on the xi-coordinate.
As mentioned above, we associate a range [r, r′] of ranks with each node ν, denoted
by range(ν), with 1 6 r 6 r′ 6 n. Let ν be an xi-node. If xi-parent(ν) does not
exist, then range(ν) is equal to [1, n]. Otherwise, if ν is contained in the left subtree
of xi-parent(ν), then range(ν) is equal to the first half of range(xi-parent(ν)), and if ν is
contained in the right subtree of xi-parent(ν), then range(ν) is equal to the second half
of range(xi-parent(ν)). If range(ν) = [r, r′] then P(ν) contains at most r′−r+1 points.
We explicitly ignore all nodes (both internal as well as leaf nodes) that do not contain any
points, they are not part of S(P), independent of their range of ranks. A node ν is a leaf
of S(P) if range(ν) = [j, j] for some j. Clearly a leaf contains exactly one point, but
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Figure 4.1 (a) The skeleton of a rank-based kd-tree and (b) the rank-based kd-
tree itself.

not every node that contains only one point is a leaf. (We could prune these nodes, which
always have a range [j, k] with j < k, but we chose to keep them in the skeleton for ease
of description.) If ν is not a leaf and axis(ν) = xi then h(ν) is defined by the point whose
rank in Ai is equal to the median of range(ν). (This is similar to the approach used in
the kinetic BSP of [39].) It is not hard to see that this choice of the splitting plane h(ν)
is equivalent to the following. Let region(ν) = [a1 : b1] × · · · × [ad : bd] and suppose
for example that ν is an x1-node. Then, instead of choosing h(ν) according to the me-
dian x1-coordinate of all points in region(ν), we choose h(ν) according to the median
x1-coordinate of all points in the slab [a1, b1]× [−∞ :∞]× · · · × [−∞ :∞].

We construct S(P) incrementally by inserting the points of P one by one. (Even though
we proceed incrementally, we still use the rank of each point with respect to the whole
point set, not with respect to the points inserted so far.) Let p be the point that we are
currently inserting into the tree and let ν be the last node visited by p; initially ν =
root(S(P)). Depending on which side of h(ν) contains p we select the appropriate child ω
of ν to be visited next. If ω does not exist, then we create it and compute range(ω) as
described above. We recurse with ν = ω until range(ν) = [j, j] for some j. We always
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reach such a node after d log n steps, because the length of range(ν) is a half of the
length of range(xi-parent(ν)) and depth(ν) = depth(xi-parent(ν)) + d for an xi-node ν.
Figure 4.1(a) illustrates S(P) for a set of eight points. Since each leaf of S(P) contains
exactly one point ofP and the depth of each leaf is d log n, the size of S(P) is O(n log n).

Lemma 4.1 The depth of S(P) is O(log n) and the size of S(P) is O(n log n) for any
fixed dimension d. S(P) can be constructed in O(n log n) time.

A node ν ∈ S(P) is active if and only if both its children exist, that is, both its children
contain points. A node ν is useful if it is either active, or a leaf, or its first d− 1 ancestors
contain an active node. Otherwise a node is useless. We derive the rank-based kd-tree
for P from the skeleton by pruning all useless nodes from S(P). The parent of a node ν
in the rank-based kd-tree is the first unpruned ancestor of ν in S(P). Roughly speaking,
in the pruning phase every long path whose nodes have only one child each is shrunk to
a path whose length is less than d. The rank-based kd-tree has exactly n leaves and each
contains exactly one point of P . Moreover, every node ν in the rank-based kd-tree is
either active or it has an active ancestor among its first d − 1 ancestors. The rank-based
kd-tree derived from Figure 4.1(a) is illustrated in Figure 4.1(b).

Lemma 4.2

(i) A rank-based kd-tree on a set of n points in Rd has depth O(log n) and size O(n).

(ii) Let ν be an xi-node in a rank-based kd-tree. In the subtree rooted at a child of ν,
there are at most 2d−1 xi-nodes ω such that xi-parent(ω) = ν.

(iii) Let ν be an xi-node in a rank-based kd-tree. On every path starting at ν and ending
at a descendant of ν and containing at least 2d − 1 nodes, there is an xi-node ω
such that xi-parent(ω) = ν.

Proof.

(i) A rank-based kd-tree is at most as deep as its skeleton S(P). Since the depth
of S(P) is O(log n) by Lemma 4.1, the depth of a rank-based kd-tree is also
O(log n). To prove the second claim, we charge every node that has only one
child to its first active ancestor. Recall that each active node has two children. We
charge at most 2(d−1) nodes to each active node, because after pruning there is no
path in the rank-based kd-tree whose length is at least d and in which all nodes have
one child. Therefore, to bound the size of the rank-based kd-tree it is sufficient to
bound the number of active nodes. Let T be a tree containing all active nodes and
all leaves of the rank-based kd-tree. A node ν is the parent of a node ω in T if and
only if ν is the first active ancestor of ω in the rank-based kd-tree. Obviously, T is
a binary tree with n leaves where each internal node has two children. Hence, the
size of T is O(n) and consequently the size of the rank-based kd-tree is O(n).
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Figure 4.2 Illustration for the proof of Lemma 4.2.

(ii) To simplify notation, let ω′ denote the node in S(P) that corresponds to a node ω
in the rank-based kd-tree. Let z be a child of ν and and let u be the first active node
in the subtree rooted at z as depicted in Fig. 4.2(a), that is, u is the highest active
node in the subtree rooted at z. Note that the definition of active node ensures that
u is unique, and note that u can be z. Now assume xi-parent(ω) = ν where ω is
an xi-node in the subtree rooted at z. If ω is not a node in the subtree rooted at u,
then there is just one node ω in the subtree rooted at z satisfying xi-parent(ω) = ν,
since every node between z and u has only one child. This means that we are
done. Otherwise, if ω is a node in the subtree rooted at u, then ω′ must be in the
subtree rooted at u′ of S(P). Let s′ be the first xi-node on the path from u′ to ω′.
Because one of any d consecutive nodes in S(P) uses a hyperplane orthogonal to
the xi-axis as a splitting plane, depth(s′) 6 depth(u′) + d − 1. Since u′ is active
and depth(s′) 6 depth(u′) + d − 1, the node s′ must appear as a node, s, in the
rank-based kd-tree. This and the assumption that xi-parent(ω) = ν imply ω = s
which means depth(ω′) 6 depth(u′) + d − 1. Hence the number of nodes ω is at
most 2d−1.

(iii) Let u be the first active node on the path starting at ν and ending at a descendant z
of ν and containing at least 2d−1 nodes as depicted in Fig. 4.2(b). Because there is
no path in the rank-based kd-tree that contains d nodes such that every node in the
path has only one child, depth(u) 6 depth(ν) + d − 1 which implies depth(z) >
depth(u) + d− 1—note that on the path from ν to z there are 2d− 1 nodes. Let ω′

be the first xi-node in the path starting at u′ and ending at z′ in S(P). Because one
of any d consecutive nodes in S(P) uses a hyperplane orthogonal to the xi-axis to
split points, and depth(z′) > depth(u′) + d − 1, the node ω′ exists. The node ω′

must appear as a node, ω, in the kd-tree, because either ω′ = u′ or among the first
d − 1 ancestor of ω′ there is an active ancestor, namely u′. Putting it all together
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we can conclude that depth(ω) 6 depth(ν) + 2d− 2 which implies the claim.

2

The region associated with a node ν, denoted by region(ν), is the maximal volume
bounded by the splitting hyperplanes stored at the ancestors of ν. More precisely, the
region associated with the root of a rank-based kd-tree is simply the whole region, and the
region corresponding to the right child of a node ν is the maximal subregion of region(ν)
on the right side of h(ν) and the region corresponds to the left child of ν is the rest
of region(ν) (for an appropriate definition of left and right in d dimensions). A point p is
contained in P(ν) if and only if p lies in region(ν). Like a kd-tree, a rank-based kd-tree
can be used to report all points inside a given orthogonal range search query—the report-
ing algorithm is exactly the same. At first sight, the fact that the splits in our rank-based
kd-tree can be very unbalanced may seem to have a big, negative impact on the query
time. Fortunately this is not the case. To prove this, we next bound the number of cells
intersected by an axis-parallel plane h. As for normal kd-trees, this is immediately gives
a bound on the total query time.

Lemma 4.3 Let h be a hyperplane orthogonal to the xi-axis for some i. The number of
nodes in a rank-based kd-tree whose regions are intersected by h is O(n1−1/d).

Proof. Imagine a dummy node µ with axis(µ) = xi as the parent of the root. We charge
every node ν whose region is intersected by h to xi-parent(ν). Thanks to µ, xi-parent(ν)
exists for every node of the tree and hence every node is indeed charged to an xi-node.
Lemma 4.2(iii) implies depth(ν) 6 depth(xi-parent(ν)) + 2d − 2 which implies that at
most 22d−2 nodes are charged to each xi-node. Therefore it is sufficient to bound the
number of xi-nodes whose regions are intersected by h.

Let T be the tree containing all xi-nodes in the rank-based kd-tree and let T ′ be the tree
containing all xi-nodes in the skeleton S(P). A node ν is the parent of a node ω in T
if and only if xi-parent(ω) = ν in the rank-based kd-tree; the equivalent definition holds
for T ′. According to Lemma 4.2(ii), every node ν in T has at most 2d children and each
side of h(ν) contains the regions corresponding to at most 2d−1 children of ν. Note that
the dummy node has at most 2d−1 children in total. Let T ∗ be yet another tree containing
all nodes in T whose regions are intersected by h. Since h is parallel to h(ν) for every
node ν of T , it can intersect only the regions that lie to one side of h(ν). Hence every
node of T ∗ has at most 2d−1 children. The idea behind the proof is to consider a top part
of T ∗ consisting of n1−1/d nodes of T ∗, and then argue that all subtree below this top
part together contain n1−1/d nodes as well. Next we make this idea precise.

Let TOP(T ∗) be a tree containing all nodes of T ∗ whose depths in T ∗ are at most
b(1/d) log nc, and let ν1, . . . , νc be the leaves of TOP(T ∗) whose depthes are exactly
b(1/d) log nc. Clearly c is at most (2d−1)(1/d) log n = n1−1/d and hence the size of
TOP(T ∗) is at most 2n1−1/d. Let ν′1, . . . , ν

′
c be the nodes corresponding to ν1, . . . , νc

in T ′. Furthermore, let u′1, . . . , u
′
m be the distinct nodes in T ′ at depth b(1/d) log nc

such that every u′k has at least one node ν′j as descendant and every ν′j has a node u′k as
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an ancestor—note that due to pruning the depth of ν′j can be larger than b(1/d) log nc.
Because the nodes ν′j are disjoint, we have

∑c
1 |P(ν′j)| 6

∑m
1 |P(u′k)|.

Let Uk be the set of splitting hyperplanes stored in the ancestors of u′k in T ′. Recall that
all nodes u′k are xi-nodes whose regions are intersected by h. Furthermore, all nodes u′k
have the same depth in T ′. Together this implies that Uk = Ul for all 1 6 k, l 6 m
because their xi-ranges must be the same. Let h1 be the last hyperplane in Uk on the left
side of region(u′1) and let h2 be the first hyperplane in Uk on the right side of region(u′1).
Because Uk = Ul for all 1 6 k, l 6 m, all regions u′k are bounded by h1 and h2. We know
that range(u′k) contains n/2(1/d) log n = n1−1/d ranks, hence there are at most n1−1/d

points inside the region bounded by h1 and h2. Since the nodes u′k are disjoint and the
region bounded by h1 and h2 contains n1−1/d points, we have

∑m
1 |P(u′k)| 6 n1−1/d

which implies
∑c

1 |P(νj)| =
∑c

1 |P(ν′j)| 6 n1−1/d.

Finally, let f(n) denote the number of xi-nodes whose regions are intersected by h. We
have f(n) = |TOP(T ∗)| +

∑c
1 f(|P(νj)|). Since f(|P(νj)|) 6 |P(νj)|,

∑c
1 |P(νj)| 6

n1−1/d, and |TOP(T ∗)| 6 2n1−1/d, we can conclude that f(n) = O(n1−1/d). 2

The following theorem summarizes our results.

Theorem 4.4 A rank-based kd-tree for a set P of n points in d dimensions uses O(n)
storage and can be built in O(n log n) time. An orthogonal range search query on a rank-
based kd-tree takes O(n1−1/d + k) time where k is the number of reported points.

The KDS. We now describe how to kinetize a rank-based kd-tree for a set of continu-
ously moving points P . The combinatorial structure of a rank-based kd-tree depends only
on the ranks of the points in the arrays Ai, that is, it does not change as long as the order
of the points in the arrays Ai remains the same. Hence it suffices to maintain a certificate
for each pair p and q of consecutive points in every array Ai, which fails when p and q
change their order. Now assume that a certificate, involving two points p and q and the
xi-axis, fails at time t. To handle the event, we simply delete p and q and re-insert them
in their new order. (During the deletion and re-insertion there is no need to change the
ranks of the other points.) These deletions and insertions do not change anything for the
other points, because their ranks are not influenced by the swap and the deletion and re-
insertion of p and q. Hence the rank-based kd-tree remains unchanged except for a small
part that involves p and q. A detailed description of this “small part” can be found below.

Deletion. Let ν be the first active ancestor of the leaf µ containing p—see Figure 4.3(a).
The leaf µ and all nodes on the path from µ to ν must be deleted, since they do not contain
any points anymore (they only contained p and p is now deleted). Furthermore, ν stops
being active. Let ω be the first active descendent of ν if it exists and otherwise let ω be
the leaf whose ancestor is ν. There are at most d nodes on the path from ν to ω. Since ν
is not active anymore, any of the nodes on this path might become useless and hence have
to be deleted.
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Figure 4.3 Deleting and inserting point p.

Insertion. Let ν be the highest node in the rank-based kd-tree such that its region con-
tains p and the region corresponding to its only child ω does not contain p—note that p
cannot reach a leaf when we re-insert p, because the range of a leaf is [j, j] for some j and
there cannot be two points in this range. Let ν′ and ω′ be the nodes in S(P ) correspond-
ing to ν and ω. Let u′ be the lowest node on the path from ν′ to ω′ whose region contains
both region(ω′) and p as illustrated in Figure 4.3(b)—note that we do not maintain S(P)
explicitly but with the information maintained in ν and ω the path between ν′ and ω′ can
be constructed temporarily. Because u′ will become an active node, it must be added to
the rank-based kd-tree and also every node on the path from u′ to ω′ must be added to the
rank-based kd-tree if they are useful. From u′, the point p follows a new path u′1, . . . , u

′
k

which is created during the insertion. All first d − 1 nodes in the list u′1, . . . , u
′
k and the

leaf u′k must be added to the rank-based kd-tree—note that range(u′k) = [j, j] for some j.

Theorem 4.5 A kinetic rank-based kd-tree for a setP of n moving points in d dimensions
uses O(n) storage and processes O(n2) events in the worst case, assuming that the points
follow constant-degree algebraic trajectories. Each event can be handled in O(log n) time
and each point is involved in O(1) certificates.

4.3 Rank-based longest-side kd-trees

Longest-side kd-trees are a variant of kd-trees that choose the orientation of the splitting
hyperplane for a node ν according to the shape of the region associated with ν, always
splitting the longest side first. Dickerson et al. [43] showed that a longest-side kd-tree can
be used to answer the following queries quickly:
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(1 + ε)-nearest neighbor query: For a set P of points in Rd, a query point q ∈ Rd,
and ε > 0, this query returns a point p ∈ P such that d(p, q) 6 (1 + ε)d(p∗, q),
where p∗ is the true nearest neighbor to q and d(·, ·) denotes the Euclidean distance.

(1− ε)-farthest neighbor query: For a set P of points in Rd, a query point q ∈ Rd,
and ε > 0, this query returns a point p ∈ P such that d(p, q) > (1 − ε)d(p∗, q),
where p∗ is the true farthest neighbor to q.

ε-approximate range search query: For a set P of points in Rd, a query region Q with
diameter DQ, and ε > 0, this query returns (or counts) a set P ′ such that P ∩Q ⊂
P ′ ⊂ P and for every point p ∈ P ′, d(p, Q) 6 εDQ.

The main property of a longest-side kd-tree—which is used to bound the query time—is
that the number of disjoint regions associated with its nodes and intersecting at least two
opposite sides of a hypercube C is bounded by O(logd−1 n). It seems difficult to directly
kinetize a longest-side kd-tree. Hence, using similar ideas as in the previous section,
we introduce a simple variation of 2-dimensional longest-side kd-trees, so called ranked-
based longest-side kd-trees (RBLS kd-trees, for short). An RBLS kd-tree does not only
preserve all main properties of a longest-side kd-tree but it can be kinetized easily and
efficiently. As in the previous section we first describe another tree, namely the skeleton
of an RBLS kd-tree denoted by S(P). We then show how to extract an RBLS kd-tree
from the skeleton S(P) by pruning.

We recursively construct S(P) as follows. We again use two arrays A1 and A2 to store
the points of P in two sorted lists; the arrayAi[1, n] stores the sorted list based on the xi-
coordinate. Let the points in P be inside a box, which is the region associated with the
root, and let ν be a node whose subtree must be constructed; initially ν = root(S(P)). If
P(ν) contains only one point, then the subtree is just a single leaf, i.e, ν is a leaf of S(P).
(Note that this is slightly different from the previous section.) If P(ν) contains more
than one point, then we have to determine the proper splitting line. Let the longest side
of region(ν) be parallel to the xi-axis. We set axis(ν) to be xi. If xi-parent(ν) does
not exist, then we set range(ν) = [1, n]. Otherwise, if ν is contained in the left subtree
of xi-parent(ν), then range(ν) is equal to the first half of range(xi-parent(ν)), and if ν is
contained in the right subtree of xi-parent(ν), then range(ν) is equal to the second half
of range(xi-parent(ν)). The splitting line of ν, denoted by l(ν), is orthogonal to axis(ν)
and specified by the point whose rank in Ai is the median of range(ν). If there is a point
of P(ν) on the left side of l(ν) (on the right side of l(ν) or on l(ν)), a node is created as
the left child (the right child) of ν. The points of P(ν) which are on the left side of l(ν)
are associated with the left child of ν, the remainder is associated with the right child of
ν. The region of the right child is the maximal subregion of region(ν) on the right side
of l(ν) and the region of the left child is the rest of region(ν).

Lemma 4.6 The depth of S(P) is O(log n), the size of S(P) is O(n log n), and S(P)
can be constructed in O(n log n) time.
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Proof. Assume for contradiction that the depth of a leaf ν is at least 2 log n + 1. Now
consider the path from the root to ν. Because there are only two distinct axes, there are at
least log n+1 nodes on this path whose axes are the same, for example xi. Let ν1, . . . , νk

be these nodes. Since |range(νj+1)| 6 d(1/2)|range(νj)|e (j = 1, . . . , k − 1) and k >
log n, νk must be empty, which is a contradiction. Hence the depth of S(P) is O(log n).

Since each leaf contains exactly one point and the depth of S(P) is O(log n), the size of
S(P) is O(n log n). Furthermore it is easy to see that it takes O(|P(ν)|) time to split the
points at a node ν. Hence we spend O(n) time at each level of S(P) during construction,
for a total construction time of O(n log n). 2

The following lemma shows that RBLS kd-trees preserve the main property of longest-
side kd-trees, which is used to bound the query time.

Lemma 4.7 Let C be any square, and let N be any set of nodes whose regions are pair-
wise disjoint and such that these regions all intersect two opposite sides of C. Then
|N | = O(log n).

Proof. Dickerson et al. [43] showed that a longest-side kd-tree on a set of points in R2

has this property. Their proof uses only two properties of a longest side kd-tree: (i) the
depth of a longest-side kd-tree is O(log n) and (ii) the longest side of a region is split
first. Since an RBLS kd-tree has these two properties, their proof simply applies. 2

As in the previous section, we obtain our structure by pruning useless nodes from S(P).
It will be convenient to alter the definition of useful nodes slightly, as follows. A node ν
is useful if ν is a leaf, or an active node, or l(ν) defines one of the sides of the boundary
of region(ω) where ω is an active descendant of ν. Otherwise ν is useless. An RBLS kd-
tree is obtained from S(P) by pruning useless nodes. The parent of a node ν in the RBLS
kd-tree is the first unpruned ancestor of ν in S(P). The following lemma shows that an
RBLS kd-tree has linear size and that it preserves the main property of a longest-side
kd-tree.

Theorem 4.8

(i) An RBLS longest-side kd-tree on a set of n points in R2 has depth O(log n) and
size O(n).

(ii) The number of nodes in an RBLS longest-side kd-tree whose regions are disjoint
and that intersect at least two opposite sides of a square C is O(log n).

Proof.

(i) An RBLS kd-tree is at most as deep as its skeleton S(P). Since the depth of S(P)
is O(log n) by Lemma 4.6, the depth of an RBLS kd-tree is also at most O(log n).
To prove the second claim, we first show that there is no path containing five nodes
such that every node on the path has only one child. Assume for contradiction that
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there is such a path from ν to one of its descendants ω. Because there are only two
distinct axes, there must be three nodes u1, u2, and u3 on this path using the same
axis. Clearly at most two of l(u1), l(u2), and l(u3) can define one of the sides of
the boundary of any region associated with a descendant of ω. Therefore, at least
one of u1, u2, and u3 must be useless, which is a contradiction. We now charge
every node that has only one child to its first active ancestor. Because there is no
path containing five nodes such that every node on the path has only one child, we
charge at most eight nodes to each active node. Since the number of active nodes is
linear, the size of an RBLS longest-side kd-tree is O(n).

(ii) Let L be a set of nodes in an RBLS kd-tree whose regions are disjoint and that
intersect at least two opposite sides of a square C. We define a set L′ of nodes as
follows. Consider a node ν ∈ L. If ν is active then we add ν to L′. If ν is not
active, then we consider the first active ancestor u of ν. We add the child w of u
to L′ that is on the path from u to ν (note that w could be ν). The regions in L′

are disjoint and we have |L| = |L′|. Since the region associated with a node is a
subregion of the region associated with its ancestor, the regions associated with the
nodes in L′ intersect at least two opposite sides of C. Let ν′ be the corresponding
node to ν in S(P). The definition of a useful node implies region(ν) = region(ν′)
for every active node ν—note that this may be false for other nodes. Thus, if
ν ∈ L′ is active, then region(ν) = region(ν′) and if ν is a child of an active
node ω, then region(ν) = region(u′) where u′ is the child of ω′ that is on the
path from ω′ to ν′. Thus, for every node ν in L′, there is a node ω′ in S(P) such
that region(ν) = region(ω′). This observation together with Lemma 4.7 shows
that |L′| = O(log n) which implies |L| = O(log n).

2

Using an RBLS kd-tree, similar algorithms to the algorithms of Dickerson et al. [43] can
be used to answer (1 + ε)-nearest neighbor, (1− ε)-farthest neighbor and ε-approximate
range search queries.

Theorem 4.9 An RBLS kd-tree for a set of n points in the plane supports (1+ ε)-nearest
or (1− ε)-farthest neighbor queries in O((1/ε) log2 n) time. Moreover, for any constant-
complexity convex region and any constant-complexity non-convex region a counting (or
reporting) ε-approximate range search query can be performed in time O((1/ε) log2 n)
and O((1/ε2) log2 n), respectively (plus the output size in the reporting case).

The KDS. We now describe how to kinetize a RBLS kd-tree for a set of continuously
moving points P . Clearly the combinatorial structure of an RBLS kd-tree changes only
when one of the following two events occurs.

Ordering event: Two points change their ordering on one of the coordinate-axes.

Longest-side event: A side of a region starts to be the longest side of that region.
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Figure 4.4 The status of the RBLS kd-tree before handling a longest-side event
and after handling the event.

We first describe how to detect these events, then we explain how to handle them. Or-
dering events can be easily detected. We maintain a certificate for each pair p and q of
consecutive points in the two arrays A1 and A2, which fails when p and q change their
order.

Longest-side events are a bit tricky to detect efficiently. An easy way would be to maintain
a certificate s1(ν) < s2(ν) (or s2(ν) < s1(ν)) for each node ν in S(P) where si(ν)
denotes the length of the xi-side of region(ν). Let xi(p) denote the xi-coordinate of p.
We have si(ν) = xi(p) − xi(q) where p and q are two points specifying two splitting
lines in the xi-ancestors of ν in S(P). More precisely, the splitting lines defined by p
and q are associated with the first left ancestor and the first right ancestor of ν in S(P),
that is, the first nodes u and w such that ν is a left child of u and a right child of w. The
problem with this approach lies in the fact that xi(p) − xi(q) can be the side length of
a linear number of regions and hence our KDS would not be local. It would also not be
responsive, because if two points change their ordering we might have to update a linear
number of longest-side certificates.

We avoid these problems by not maintaining a separate longest-side certificate for every
region of the RBLS kd-tree. Instead, we identify all pairs of points that can define either
the vertical or the horizontal side length of a region. We add all these pairs to one single
list, the so-called side-length list which is sorted on the length of the sides. A longest-
side event can happen only when two adjacent elements in the side-length list define the
same length. (More precisely, they also have to define both a vertical and a horizontal
side—nothing happens if two vertical sides have the same length. In fact, even when a
vertical side and a horizontal side get the same length, it is possible that nothing happens,
because they need not be sides of the same region.) So we have to maintain a certificate
for each pair of consecutive elements in the side-length list. It remains to explain which
sides precisely appear in the side-length list. To determine this, we construct two one-
dimensional rank-based kd-trees Ti on the xi-coordinates of the points in P . Since all
splitting lines for the nodes of Ti are orthogonal to the xi-axis, Ti is in fact a balanced
binary search tree. Let ν be a node in Ti and let νr and ν` be the first right and the first left
ancestors of ν in Ti. If p and q are the two points used in νr and ν` as splitting points, then
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xi(p)−xi(q) appears in the side-length list. Since the number of nodes in Ti is O(n) and
a node can be either the first left ancestor or the first right ancestor of at most O(log n)
nodes, the number of elements in the side-length list is O(n) and each point is involved in
O(log n) elements of the side-length list. Moreover, all sides of all regions in S(P) exist
in the side-length list.

Ordering event. When handling an ordering event that involves two points p and q and
the xi-axis, we have to update Ai, the side-length list and the RBLS kd-tree. We update
the arrayAi by swapping p and q and updating the at most three certificates in which p and
q are involved. We update the side-length list by replacing p by q and vice versa and com-
puting the failure times of all certificates affected by these replacements. To quickly find
in which elements of the side-length list a point p is involved we maintain for each rank i
a list of elements of the side-length list in which rank i is involved. Since the number of
elements in the side-length list is O(n) and two ranks are involved in each element, this
additional information uses O(n) space. Since each rank is involved in O(log n) elements
of the side-length list, updating the side-length list takes O(log n) time and inserting the
failures times of the new certificates into the event queue takes O(log2 n). To update the
RBLS kd-tree, we first delete p and q from the RBLS kd-tree and then we re-insert them
in their new order.

Deletion. Let ν be the lowest active node whose region contains p. The leaf containing
p is a child of ν. This leaf must be removed. Let ω be the first active ancestor of ν. All
nodes on the path from ω to ν must be checked whether they are useless. If so, they must
be removed from the RBLS kd-tree.

Insertion. Let ν be the highest node in the RBLS kd-tree whose region contains p and
such that the region corresponding to its only child ω does not contain p. Let ν′ and ω′ be
the nodes in S(P ) corresponding to ν and ω. Let u′ be the lowest node on the path from
ν′ to ω′ whose region contains both region(ω′) and p as illustrated in Figure 4.3(b)— note
that we do not explicitly maintain S(P) but the path between ν′ and ω′ can be constructed
temporarily in O(log n) time. Because u′ will become active, it must be added as a node,
u, to the RBLS kd-tree and also every node on the path from ν′ to u′ must be added to the
RBLS kd-tree if they are useful. The point p is maintained in a leaf whose parent is u.

Longest-side event. When handling a longest-side event that occurs at time t we first
update the side-length list and the certificates involved in the event. Then we update
the RBLS kd-tree as follows. Let p, q, p′, and q′ be the points involved in the event,
more precisely, let xi(p(t)) − xi(q(t)) = xj(p′(t)) − xj(q′(t)). If i = j, then there
is nothing to do, because the certificate failure can not correspond to a real longest-side
event. Otherwise, we need to determine which, if any, of the regions of S(P) corresponds
to the event. Because two sides of the region are given, we can follow a path from the
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root to some node while temporally constructing each node from S(P) on the path which
does not appear in the RBLS kd-tree. If there is no region with the two given sides, then
we delete the temporary nodes and stop handling the event.

Otherwise there is exactly one region in S(P) that is specified by the two sides that
triggered the event. (Note that this is only true in two dimensions, in higher dimensions
the boundary of many regions can be defined by two sides—this is the only problem
when attempting to extend these results to higher dimensions.) Let ν be the node that is
associated with the event region. We add the two children νr and ν` of ν in S(P) to the
RBLS kd-tree provided that they do not already exist in the RBLS kd-tree. Let the xi-side
of region(ν) be bigger than the xj-side of region(ν) at the point in time just before t,
denoted by t−. At time t−, l(ν) must be orthogonal to the xi-axis and l(ν`) and l(νr)
must be orthogonal to the xj-axis as illustrated in Figure 4.4(a)—note that region(ν) is a
square at time t. Moreover, l(ν`) = l(νr), because the median of all points between the
two xi-sides of region(ν) is chosen to specify l(ν`) and l(νr). Let A, B, C, and D be the
four regions defined by l(ν), l(ν`) and l(νr) as illustrated in Figure 4.4(a). We now split
region(ν) with a line that is orthogonal to the xj-axis and region(νr) and region(ν`) with
a line that is orthogonal to the xi-axis. Clearly l(ν) at time t is equal to l(ν`) and l(νr) at
time t− and l(ν`) and l(νr) at time t are equal to l(ν) at time t−. The four subregion A,
B, C, and D do not change and we only have to put them in the correct positions in the
RBLS kd-tree as illustrated in Figure 4.4(b). Finally every node on the path from the root
to ν as well as νr and ν` must be checked whether they are useless. If so, they must be
removed from the RBLS kd-tree.

The number of events. Assume that the points in P follow constant-degree algebraic
trajectories. Clearly the number of ordering events is O(n2). To count the number of
longest-side events, we charge a longest-side event in which two sides s1 and s2 are
involved to the side (either s1 or s2) that appeared in the side-length list later. At any
point in time there are O(n) elements in the side-length list and elements are only added or
deleted whenever a ordering event occurs. During each ordering event, O(log n) elements
can be added to the side-length list. All longest-side events that involve one of these “new”
elements and one of the “old” elements are charged to one of the new elements, hence a
total of O(n log n) events is charged to the new elements that are created during one
ordering event. Since there are O(n2) ordering events, the number of longest-side events
is O(n3 log n). (This bound subsumes events that involve two new elements or two of the
initial elements of the side-length list.)

Theorem 4.10 A kinetic RBLS kd-tree for a set P of n moving points in R2 uses O(n)
storage and processes O(n3 log n) events in the worst case, assuming that the points fol-
low constant-degree algebraic trajectories. Each event can be handled in O(log2 n) time
and each point is involved in O(log n) certificates.
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4.4 Conclusions

We presented a variant of kd-tress, called rank-based kd-trees, for sets of points in Rd. We
showed that our rank-based kd-tree supports orthogonal range searching in O(n1−1/d+k)
time and it uses O(n) storage—just like the original. But additionally it can be kinetized
easily and efficiently. In the dynamic setting, either inserting or deleting a point affects
the ranks of points which may cause a dramatic change in the rank-based kd-tree. A
challenging problem is how to adapt the rank-based kd-tree to the insertion and deletion
of points such that the query time does not change asymptotically.

We also proposed a variant of longest-side kd-trees, called rank-based longest-side kd-
trees, for sets of points in R2. We showed RBLS kd-trees can be kinetized efficiently
as well and like longest-side kd-trees, RBLS kd-trees support nearest-neighbor, farthest-
neighbor, and approximate range search queries in O((1/ε) log2 n) time. Unfortunately
we have been unable to generalize this result to higher dimension. We leave it as an
interesting open problem for future research.
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Chapter 5

Kinetic collision detection for
convex fat objects

Abstract. We design compact and responsive kinetic data structures for detecting collisions be-
tween n convex fat objects in 3-dimensional space that can have arbitrary sizes. Our main results
are:

(i) If the objects are 3-dimensional balls that roll on a plane, then we can detect collisions with
a KDS of size O(n log n) that can handle events in O(log2 n) time. This structure processes
O(n2) events in the worst case, assuming that the objects follow constant-degree algebraic
trajectories.

(ii) If the objects are convex fat 3-dimensional objects of constant complexity that are free-flying
in R3, then we can detect collisions with a KDS of O(n log6 n) size that can handle events in
O(log7 n) time. This structure processes O(n2) events in the worst case, assuming that the
objects follow constant-degree algebraic trajectories. If the objects have similar sizes then
the size of the KDS becomes O(n) and events can be handled in O(log n) time.

An extended abstract of this chapter was previously published as: M. A. Abam and M. de Berg, S-H. Poon,
and B. Speckmann, Kinetic collision detection for convex fat objects, In Proc. European Symposium on Algo-
rithms (ESA), pages 4–15, 2006. The full paper will be published in Algorithmica.
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5.1 Introduction

Background. Collision detection is a basic problem arising in all areas of computer sci-
ence involving objects in motion—motion planning, animated figure articulation, computer-
simulated environments, or virtual prototyping, to name a few. Very often the problem of
detecting collisions is broken down into two phases: a broad phase and a narrow phase.
The broad phase determines pairs of objects that might possibly collide, frequently using
(hierarchies of) bounding volumes to speed up the process. The narrow phase then uses
specialized techniques to test each candidate pair, often by tracking closest features of the
objects in question, a process that can be sped up significantly by exploiting spatial and
temporal coherence. See [83] for a detailed overview of algorithms for such collision and
proximity queries.

Related work. One of the first papers on kinetic collision detection was published by
Basch et al. [22], who designed a KDS for collision detection between two simple poly-
gons in the plane. Their work was extended to an arbitrary number of polygons by Agar-
wal et al. [10]. Kirkpatrick et al. [74] and Kirkpatrick and Speckmann [75] also described
KDSs for kinetic collision detection between multiple polygons in the plane. These so-
lutions all maintain a decomposition of the free space between the polygons into “easy”
pieces (usually pseudo-triangles). Unfortunately it seems quite hard to define a suitable
decomposition of the free space for objects in 3D, let alone maintain it while the objects
move—the main problem being, that all standard decomposition schemes in 3D can have
quadratic complexity. Hence, even though collision detection is the obvious application
for kinetic data structures, there has hardly been any work on kinetic collision detection
in 3D.

There are only a few papers that deal directly with (specialized versions of) kinetic 3D
collision detection. Guibas et al. [60], extending work by Erickson et al. [45] in the plane,
show how to certify the separation of two convex polyhedra moving rigidly in 3D using
certain outer hierarchies. Basch et al. [24] describe a structure for collision detection
among multiple convex fat objects that have almost the same size. The structure of Basch
et al. uses O(n log2 n) storage and processes O(n2) events and events can be processed
in O(log3 n) time. Coming and Staadt [33] kinetize the sweep-and-prune approach to
find candidate pairs of objects that might collide. Their method has a quadratic worst-
case bound and they give only experimental evidence for its performance. If all objects
are spheres of similar sizes Kim et al. [72] present an event-driven approach that sub-
divides space into cells and processes events whenever a sphere enters or leaves a cell.
This approach was later extended [73] to accommodate spheres with unknown trajecto-
ries but still similar sizes. There is only experimental evidence for the performance of this
method. Finally, Guibas et al. [60] use the power diagram of a set of arbitrary balls in 3D
to kinetically maintain the closest pair among them. The worst-case complexity of this
structure is quadratic and it might undergo more than cubically many changes.
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Our results. Our main goal is to develop KDSs for 3D collision detection that have a
near-linear number of certificates for multiple convex fat objects of varying sizes. As
discussed above, none of the existing solutions achieves all these goals simultaneously.
Our KDSs can be viewed as structures that perform the broad phase of the global collision-
detection approach sketched above; one still has to detect collisions between the candidate
pairs of objects produced by the KDS. Assuming the objects have constant complexity,
this can trivially be done in constant time per pair; how to do this for complex objects
is beyond the scope of this chapter. Thus the challenge is to get a near-linear number of
certificates, so that the number of candidate pairs is reduced from quadratic to near-linear.

We start in Section 5.2 with the special case of n balls of arbitrary sizes rolling on a
plane. Here we present an elegant and simple KDS that uses O(n log n) storage and
processes O(n2) events in the worst case if the objects follow constant-degree algebraic1

trajectories. Processing an event takes O(log2 n) time.

In Section 5.3 we turn our attention to free-flying convex fat objects. Note that we do not
assume the objects to be polyhedral. We first study fat objects that have similar sizes. We
give an almost trivial KDS that has O(n) size and processes O(n2) events; handling an
event takes O(log n) time. This improves both the storage and the event-handling time of
the KDS of Basch et al. [24] by several logarithmic factors. Next we consider the much
more difficult general case, where the fat objects can have vastly different sizes. Here we
present a KDS that uses O(n log6 n) storage and processes O(n2) events; handling an
event takes O(log7 n) time. This is the first collision-detection KDS for multiple objects
in 3D that has a near-linear number of certificates and does not require the objects to have
similar sizes. Even though our KDS for this case uses O(n log6 n) storage, it maintains
only a linear number of candidate pairs of objects to test for collisions; the additional stor-
age is used in various supporting data structures. Our structure is based on the following
idea: we put a number of points—we call them guards—around each object in such a way
that if two objects collide, one must contain a guard from the other. Because the objects
are fat, we can show that a constant number of guards per object suffices. The idea of
reducing problems on fat objects to problems on suitably chosen points has been used
before—see e.g. [37, 40]. In our context, however, it is far from straightforward to apply
since detecting collisions between objects and guards is nearly as difficult as detecting
collisions between the objects themselves. Nevertheless, using several additional ideas,
we show how to make this approach work.

1In fact, the bound on the number of events holds in a more general setting: we maintain lists of certain
x- and y-coordinates—for instance the coordinates of the tangency points of the disks with the plane on which
they roll—whose values change according to the motions of the objects. The number of events is bounded by
the number of changes (swaps) in these sorted lists. The O(n2) bound thus holds if we assume that any pair of
coordinates swaps O(1) times (which is for example the case if the motions are constant-degree algebraic). A
similar remark holds for the other KDSs that we develop.
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5.2 Balls rolling on a plane

Assume that we are given a set B of n 3-dimensional balls which are rolling on a 2-
dimensional plane T , that is, the balls in B move continuously while remaining tangent to
T—see Figure 5.1(Left). In this section we describe a responsive and compact KDS that
detects collisions between the balls in B.

The basic idea behind our KDS is to construct a collision tree recursively as follows:

• If |B| = 1, then there are obviously no collisions and the collision tree is just a
single leaf.

• If |B| > 1, then we partition B into two subsets, BS and BL. The subset BS contains
the bn/2c smallest balls and the subset BL contains the dn/2e largest balls from B,
where ties are broken arbitrarily. The collision tree now consists of a root node
that has an associated structure to detect collisions between any ball from BS and
any ball from BL, and two subtrees that are collision trees for the sets BS and BL,
respectively.

To detect all collisions between the balls in B it suffices to detect collisions between the
two subsets maintained at every node of the collision tree. Let BS and BL denote the two
subsets maintained at a particular node. The remainder of this section focusses on detect-
ing collisions between the balls in BS and those in BL. In particular, we describe a KDS of
size O(|BS |+ |BL|) that can handle events in O(log n) time—see Lemma 5.5. The struc-
ture processes O((|BS |+ |BL|)2) events in the worst case, assuming that the balls follow
constant-degree algebraic trajectories. Since the same event can occur simultaneously at
O(log n) nodes of the collision tree, we obtain the following theorem:

Theorem 5.1 For any set B of n 3-dimensional balls that roll on a plane, there is a KDS
for collision detection that uses O(n log n) space and processes O(n2) events in the worst
case, assuming that the balls follow constant-degree algebraic trajectories. Each event can
be handled in O(log2 n) time.

5.2.1 Detecting collisions between small and large balls

As mentioned above, we can restrict ourselves to detecting collisions between balls from
two disjoint sets BS and BL where the balls in BL are at least as large as the balls in
BS . Recall that all balls are rolling on a plane T . Our basic strategy is the following: we
associate a region Di on T with each Bi ∈ BL such that if the point of tangency of a
ball Bj ∈ BS and T is not contained in Di, then Bj cannot collide with Bi. The regions
associated with the balls in BL need to have two important properties: (i) each point in T
is contained in a constant number of regions and (ii) we can efficiently detect whenever
a region starts or stops to contain a tangency point when the balls in BL and BS move.
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We first deal with the first requirement, that is, we consider BL to be static. For a ball Bi

let ri denote its radius and let ti be the point of tangency of Bi and T .

The threshold disk. We define the distance of a point q in the plane T to a ball Bi as
follows. Imagine that we place a ball B(q) of initial radius 0 at point q. We then inflate
B(q) while keeping it tangent to T at q, until it collides with Bi. We define the distance
of q and Bi, which we denote by dist(q, Bi), to be the radius of B(q). More precisely,
dist(q, Bi) is the radius of the unique ball that is tangent to T at q and tangent to Bi.
It is easy to show that dist(q, Bi) = d(q, ti)2/4ri where d(q, ti) denotes the Euclidean
distance between q and ti.

Since we have to detect collisions only with balls from BS and the balls in BL are at least
as large as those in BS , we can stop inflating when B(q) is as large as the smallest ball
in BL. Based on this, we define the threshold disk Di of a ball Bi ∈ BL as follows: a
point q ∈ T belongs to Di if and only if dist(q, Bi) 6 rmin where rmin is the radius of
the smallest ball in BL—see Figure 5.1(Right). Because dist(q, Bi) = d(q, ti)2/4ri, Di

is a disk whose radius is 2
√

ri · rmin and whose center is ti.

Clearly a ball Bj ∈ BS cannot collide with a ball Bi ∈ BL as long as tj is outside Di—
see Figure 5.2(Left). In the following, we prove that a point q ∈ T can be contained in
at most a constant number of threshold disks. We start by proving a more general result,
which we will need later when we replace the threshold disks by threshold boxes. For a
given constant c > 0, let c ·Di denote the disk with radius c · radius(Di) and center ti.

Lemma 5.2 The number of threshold disks Dj that are at least as large as a given thresh-
old disk Di and for which c ·Di ∩ c ·Dj 6= ∅, is at most (8 c2 + 2 c + 1)2 + 1.

Proof. Let D(i) be the set of all threshold disks Dj that are at least as large as Di and
for which c · Di ∩ c · Dj 6= ∅. First we prove that there are no two balls Bj and Bk

such that rk > rj > 16 c2 ri and Dj , Dk ∈ D(i). Assume, for contradiction, that there
are two balls Bj and Bk with this property. Since Bj and Bk are disjoint, we have
d(tj , tk) > ((ri + rj)2 − (ri − rj)2)1/2 = 2√rj · rk > 8 c

√
rk · ri . We also know that

radius = rmin

Figure 5.1 (Left) Balls rolling on a plane—balls in BS (BL) are light gray
(dark gray). (Right) The radius rmin of the smallest ball in BL

defines the threshold disks.
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d(tj , tk) 6 d(tj , ti) + d(ti, tk) 6 8 c
√

rk · ri which is a contradiction. Hence, there is at
most one ball Bj such that rj > 16 c2 ri and Dj ∈ D(i).

It remains to show that the number of balls Bj whose radii are not greater than 16 c2 ri

and for which Dj ∈ D(i) is at most (8 c2 + 2 c + 1)2. Let Bj be one of these balls and
let x be a point in c ·Dj ∩ c ·Di. Since

d(ti, tj) 6 d(ti, x) + d(tj , x) 6 2 c
√

ri · rmin + 2 c
√

rj · rmin 6 (2 c + 8 c2) ri ,

tj must lie in a disk whose center is ti and whose radius is (2 c + 8 c2) ri. We also
know that d(tj , tk) > 2√rj · rk > 2 ri for any two such balls Bj and Bk. Thus the set
D′(i) of disks centered at tj with radius ri for all Dj ∈ D(i) are disjoint. Note that any
disk in D′(i) lies inside the disk centered at ti with radius ((2 c + 8 c2) + 1) ri. Thus
|D′(i)| 6 (π(2 c + 8 c2 + 1)2r2

i )/(πr2
i ) = (2 c + 8 c2 + 1)2 which implies |D(i)| 6

(2 c + 8 c2 + 1)2 + 1. 2

Lemma 5.3 Each point q ∈ T is contained in at most a constant number of threshold
disks.

Proof. Let Di be the smallest threshold disk containing q. Lemma 5.2 with c = 1 implies
that the number of disks not smaller than Di and intersecting Di is constant. Hence the
number of threshold disks containing q is constant. 2

The threshold box. The threshold disks have the important property that each point in
T is contained in a constant number of disks. But unfortunately, as the balls in BL and
BS move, it is difficult to detect efficiently whenever a tangency point enters or leaves
a threshold disk. Hence we replace each threshold disk by its axis-aligned bounding
box—see Figure 5.2(Right). The bounding box of a threshold disk Di associated with
a Bi ∈ BL is called a threshold box and is denoted by TB(Bi). The following lemma
states that the threshold boxes retain the crucial property of the threshold disks, namely,

Figure 5.2 (Left) Detecting collisions with the threshold disks. (Right) Re-
placing threshold disks with threshold boxes.
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that each point q ∈ T is contained in at most a constant number of threshold boxes. It
follows fairly easily from Lemma 5.2.

Lemma 5.4 Each point q ∈ T is contained in at most a constant number of threshold
boxes.

Proof. Instead of considering the threshold boxes directly, we consider the disks defined
by the circumcircles D(TB(Bj)) of each threshold box TB(Bj) with Bj ∈ BL. We have
radius(D(TB(Bj))) =

√
2 · radius(Dj) for all Bj ∈ BL. Let TB(Bi) be the smallest

box containing q. Lemma 5.2 with c =
√

2 implies that the number of circumcircle disks
that are at least as large as D(TB(Bi)) and that intersect D(TB(Bi)) is constant. Hence
the number of threshold boxes that are not smaller than TB(Bi) and intersect TB(Bi) is
constant, and so is the number of threshold boxes containing q. 2

Kinetic maintenance. Recall that to detect collisions between BS and BL, for each
ball Bj ∈ BS we determine which threshold boxes of balls in BL contain the tangency
point tj . Note that according to Lemma 5.4, tj is contained in a constant number of
threshold boxes. For each Bj ∈ BS we maintain the set of threshold boxes that contain tj
and certificates that guarantee disjointness of Bj and the balls from BL whose threshold
boxes contain tj .

To maintain our structure we only need to detect when a tangency point tj enters or leaves
a threshold box. To do so, we maintain two sorted lists: one storing the x-coordinates of
the tangency points of BS and the minimum and maximum x-coordinates of the threshold
boxes associated with the balls in BL, the other storing the y-coordinates of the tangency
points of BS and the minimum and maximum y-coordinates of the threshold boxes. If the
objects follow constant-degree algebraic trajectories, the number of events processed by
our structure—that is, the number of swaps in these sorted lists—is quadratic in the size
of BS and BL. Moreover, each such event can be processed in O(log n) time: O(1) time
to swap the points, and O(log n) time to update the event queue.

Lemma 5.5 Let BS and BL be two disjoint sets of balls that roll on a plane where the
balls in BL are at least as large as the balls in BS . There is a KDS for collision detection
between the balls ofBS and those ofBL that uses O(|BS |+|BL|) space, and that processes
O((|BS |+ |BL|)2) events if the balls follow constant-degree algebraic trajectories. Each
event can be handled in O(log n) time.

Remark. Recall that we have a collision-detection KDS as in Lemma 5.5 for every
node of a collision tree, as described at the beginning of this section. Each such collision-
detection KDS generates events, but we do not maintain these events in separate event
queues. Instead we maintain a global event queue and we insert the failure time of each
certificate into the global event queue. It is easy to see that at any time there are O(n log n)
certificates in the global event queue. Hence, the asymptotic complexity of inserting
(deleting) certificates into (from) the global event queue remains O(log n).
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Remark. In the above KDS, we maintain two sorted lists for every node of the collision
tree. Thus an event may happen in O(log n) nodes on a path from the root to a leaf
simultaneously. This forces the KDS to insert (delete) O(log n) certificates into (from)
the event queue which takes O(log2 n) time. Another possibility is to maintain two global
sorted lists based on x- and y-coordinates, instead of having two sorted lists for each node.
This way an event can create or delete a constant number of certificates, which implies
the response time is O(log n). Since every ball is associated with O(log n) threshold
boxes, the size of the global sorted list is O(n log n), which means the number of events
is O(n2 log2 n). Hence, the decrease in response time comes at the cost of an increase in
the number of events to be processed.

5.3 Free-flying fat objects in 3-space

We now turn our attention to collision detection for a set K of n free-flying objects in
3-space. We will show how to obtain a compact and responsive KDS when K consists
of convex, constant-complexity fat objects. Note that we do not require the objects to be
polyhedral.

We will use the following definition of fatness [71]. An object K is called ρ-fat, for some
ρ > 1, if there are two concentric balls B−(K) and B+(K) such that B−(K) ⊂ K ⊂
B+(K) and

radius(B+(K))/ radius(B−(K)) 6 ρ .

Since we are dealing with convex objects, this definition is equivalent up to constant
factors to other definitions of fatness that have been used [41]. We call radius(B−(K))
and radius(B+(K)) the inner radius and outer radius of K, respectively, and we call the
common center of B−(K) and B+(K) the center of K. We say that an object K is larger
than another object K ′ if the inner radius of K is larger than the inner radius of K ′.

Unfortunately the approach of the previous section does not work for free-flying objects,
not even if we are dealing with balls. The problem is that the radius of the threshold ball
of a ball Bi will now be ri + rmin instead of 2

√
ri · rmin and this invalidates the proof of

Lemma 5.2 for c > 1 and thus invalidates Lemma 5.4.

5.3.1 Similarly sized objects

We first consider the case where the objects have similar sizes. More precisely, let σ be
the scale factor of the scene, that is, the ratio between the sizes of the largest and the
smallest inner ball:

σ =
maxK∈K radius(B−(K))
minK∈K radius(B−(K))

It follows from the results of Zhou and Suri [104] that the number of pairs of intersect-
ing bounding boxes of the objects in K is at most O(ρ

√
ρ3σ3n) = O(ρ2σ

√
ρσn). (A
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similar but slightly weaker result also follows directly from results in Van der Stappen’s
thesis [96].) Hence, if σ is a constant, we can simply maintain the set of pairs of inter-
secting bounding boxes, and for each such pair add a certificate to test for disjointness of
the corresponding objects.

To maintain the pairs of intersecting bounding boxes, we maintain three sorted lists: one
on the minimum and maximum x-coordinates of the boxes, one on the minimum and max-
imum y-coordinates of the boxes, and one on the minimum and maximum z-coordinates
of the boxes. Whenever there is a swap in one of these lists, two boxes may intersect or
become apart. If two boxes intersect, we add a certificate for the corresponding objects. If
they become apart, we remove the corresponding certificate. This leads to the following
theorem.

Theorem 5.6 For any set K of n convex, constant-complexity ρ-fat objects with scale
factor σ, there is a KDS for collision detection that uses O(ρ2σ

√
ρσn) storage and pro-

cesses O(n2) events in the worst case, assuming that the objects follow constant-degree
algebraic trajectories. Each event can be handled in O(log n) time.

5.3.2 Arbitrarily sized objects

When the sizes of the objects vary greatly, then there can be a quadratic number of in-
tersecting bounding boxes even when the objects are fat. Hence, a more sophisticated
approach is needed. Our global strategy for this case is as follows. We place a number of
so-called guarding points—or guards, for short—around each object K ∈ K. The guards
for K are defined in a local reference frame for K, so they follow the motion of K. More
precisely, they follow the motion of a fixed reference point of K. We choose the guards in
such a way that when two objects collide, the larger object must contain at least one guard
from the smaller object. This reduces the collision-detection problem to maintaining for
each guard which object contains it. The next lemma states that we can always find a
small guarding set because the objects are fat.

Lemma 5.7 For any ρ-fat object K, there is a set G(K) of O(ρ6) guarding points such
that any ρ-fat object K ′ that collides with K and is at least as large as K contains a point
from G(K).

Proof. Let r := radius(B−(K)). Let C be the cube whose center coincides with the
center of K, and whose side length is 2(ρ + 1)r. Draw a regular grid in C whose cells
have side length 2r/(

√
3(ρ + 1))—see Figure 5.3(i) for a (2-dimensional) illustration.

The grid points together form the set G(K). Clearly |G(K)| = O(ρ6). It remains to
argue that G(K) is a guarding set.

Let K ′ be an object colliding with K and at least as large as K, and let p be a point where
K and K ′ touch. Because K ′ is at least as large as K, the ball B−(K ′) ⊂ K ′ has radius
r′ at least r. Consider the line ` through p and center(B−(K ′)). Let d be the distance
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Figure 5.3 Illustrations for the proof of Lemma 5.7.

between p and center(B−(K ′)), and let q be the point in between p and center(B−(K ′))
at distance r/(ρ+1)

r′ · d from p. Finally, let B(q) be the ball centered at q and with radius
r/(ρ + 1)—see Figure 5.3(ii). Observe that B(q) can be obtained by scaling B−(K ′)
with respect to p by a factor of r/(ρ+1)

r′ . Since K ′ is convex, p ∈ K ′, and B−(K ′) ⊂ K ′,
this implies B(q) ⊂ K ′. We claim that B(q) ⊂ C. Since B(q) has radius r/(ρ + 1), this
means it must contain at least one point of G(K), which will prove the lemma.

It remains to prove the claim that B(q) ⊂ C. To this end note that d is at most ρ · r′,
because K ′ is ρ-fat. This implies that the distance of p to any point in B(q) is at most

r/(ρ + 1)
r′

· d +
r

ρ + 1
6 r.

On the other hand, the distance of p to the boundary of C is at least r. Hence, B(q) ⊂ C,
as claimed. 2

Our KDS for collision detection thus works as follows. For each object K ∈ K we
compute a set G(K) of guards according to Lemma 5.7. Our goal is now to maintain for
each g ∈ G(K) the object K(g) containing g (if such an object exists). Let Cand(K) :=
{K(g) : g ∈ G(K)}; the set Cand(K) contains the candidates with which we check for
collisions. More precisely, for each object K(g) ∈ Cand(K), our KDS has a certificate
testing for the disjointness of K and K(g).

Unfortunately, it seems difficult to maintain the set Cand(K) directly. This would re-
quire us to detect when an object K ′ starts to contain a guard g, which is difficult to do
efficiently. Hence, we replace the objects by their bounding boxes. Because the bounding
boxes are axis-aligned, it will be easier to check whether any of them starts (or stops) to
contain a guard of some other object. This introduces a new problem, however; a guard
can be contained in many bounding boxes—see Figure 5.4. Clearly, we cannot afford to
maintain for each guard g all the bounding boxes that contain it. Next we describe how to
deal with this problem.
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Figure 5.4 A guard can be contained in many bounding boxes.

Consider a guard g. As noted earlier, there can be many disjoint objects whose bounding
boxes contain g. When this happens, however, the objects must become larger and larger,
as shown in Figure 5.4, with the larger objects being “behind” the smaller ones. Thus the
objects that are closest to g in a some direction are the candidates for containing g. Hence,
the idea is to maintain for g not all objects whose bounding boxes contain g, but only the
closest objects around g.

To make this idea work, we first partition the space around g into cones, as follows. Let U
be the unit cube, centered at the origin. Draw a grid on each face of U , such that the grid
cells have edge length 1/(2

√
6ρ). Triangulate each grid cell. We have now partitioned

the surface of U into O(ρ2) triangles. Each triangle defines, together with the origin, an
(infinite) cone γ by taking the union of all rays emanating from the origin and passing
through the triangle. Since the grid cells have edge length 1/(2

√
6ρ) their diagonals have

length 1/(4
√

3ρ), which implies the following.

Lemma 5.8 Let `1 and `2 be two rays originating from the apex of a cone γ and being
inside the cone. Then the angle between `1 and `2 is at most arctan(1/(2

√
3ρ)).

The set of cones for a guard g is obtained by translating these cones such that their
apices—the origin in the construction—coincide with g. We denote this set by Γ(g).

Note that the motion of each cone is purely translational: even when an object K rotates,
its guards just follow the path of the reference point of K and so the cones for that guard
only translate. This means that any cone will always be a translated copy of one of the
“standard” cones defined for U . From now on, whenever we speak of a cone we refer to
a cone constructed for a guard, as described above.

Since it seems to be difficult to efficiently maintain the closest object to g, the apex of a
cone γ, we maintain the object whose center’s orthogonal projection onto a specific side
of γ is the closest one to g. More precisely, for each cone we defined for U we choose one
of its edges as its representative edge. This also gives us a representative edge for each
cone constructed for any guard g. From now on, whenever we are discussing a cone γ
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Figure 5.5 The intersection of cone γ and the plane orthogonal to the repre-
sentative edge of γ.

with apex g and we are talking about the object closest to g, we refer to the object whose
center’s orthogonal projection onto γ’s representative edge is closest to g.

The next lemma implies that we can indeed restrict our attention to the closest object to g
among those objects whose bounding boxes contain g. For an object K, let bb(K) denote
its (axis-aligned) bounding box.

Lemma 5.9 Let K(γ) be the set of all objects K whose center lies in a cone γ and such
that bb(K) contains the apex g of the cone. Suppose that one of these objects, K(g),
contains g. Then K(g) must be the closest object to g in K(γ). Moreover, suppose the
objects in K(γ) move in such a way that their centers remain inside γ. Then the order
of the orthogonal projections of their centers onto the representative edge of γ remains
unchanged.

Proof. Let r and c be the inner radius and the center of an object K ∈ K(γ), respectively.
Consider a plane passing through c and being orthogonal to the representative edge of γ.
The intersection of γ and this plane is a triangle xyz—see Fig. 5.5. We claim (and will
prove later) that d(c, x), d(c, y), d(c, z) 6 r. Because K is convex, this implies that the
triangle xyz is inside the object K. Hence, the objects whose centers are inside the cone
cannot exchange order during the motion as long as their centers remain inside the cone.

Now let K = K(g). Then the tetrahedron gxyz is inside K(g) which means the centers
of the other objects must lie outside gxyz. This implies K(g) is the closest object to g.

It remains to prove the claim that d(c, x), d(c, y), d(c, z) 6 r. Assume (the extension of)
gy is the representative edge of γ. Since bb(K) contains g and ∠gyc is a right angle, we
have

d(g, y) 6 d(g, c) 6
√

3ρr.
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Moreover, we have

d(c, y) = d(g, y) · tan(∠cgy) 6 d(g, y) · tan(arctan(1/(2
√

3ρ)))
6 (

√
3ρr) · (1/(2

√
3ρ) 6 r/2.

Similarly, d(z, y) 6 r/2 and d(x, y) 6 r/2. It follows that

d(c, z) 6 d(c, y) + d(y, z) 6 r

and
d(c, x) 6 d(c, y) + d(y, x) 6 r.

2

To summarize, our KDS works as follows. For each object K ∈ K we compute a set
G(K) of guards according to Lemma 5.7. For each guard g we construct a collection
Γ(g) of infinite cones with apex g. For each cone γ ∈ Γ(g) we maintain the closest object
whose center is inside γ and whose bounding box contains g, and we have a certificate
testing for disjointness for this object with the object for which g is a guard. Next we
describe a KDS that maintains all this information efficiently.

Details of the KDS.

Let G(K) := {G(K) : K ∈ K} denote the set of all guards over all objects, let Γ(K) :=
{Γ(g) : g ∈ G(K)} denote the collection of all cones, and let bb(K) denote the set of
bounding boxes of the objects in K.

Detecting events. We wish to maintain for each γ ∈ Γ(g) the closest object K∗(γ) to g
whose center is inside γ and whose bounding box contains g. By Lemma 5.9 this object
can change only when one of the following two events happens:

Box event: a bounding box starts or stops to contain a guard.

Center event: a center moves into or out of a cone.

To detect box events, we maintain three sorted lists. The first list is sorted on x-coordinate
and contains the guards in G(K) as well as the bounding boxes, where each bounding box
occurs twice (according to its maximum and minimum x-coordinates). We have similar
lists sorted on y- and z-coordinates.

To detect center events, we observe that each cone is a translate of one of the O(ρ2)
cones defined for the unit cube. The cones are generated by six triangulated grids, one on
each facet of the unit cube, so the facets of the cones have only O(ρ) distinct orientations.
Hence, we can detect center events using O(ρ) sorted lists. Each sorted list corresponds to
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Figure 5.6 The cones corresponding to the shaded triangles all share a com-
mon plane defining one of their facets.

a possible orientation of a cone facet, and stores the object centers and the cones that have
a facet in the given orientation. More precisely, instead of storing the cones themselves,
we store the planes containing the facets of the cones. Notice that a plane bounds up to
O(ρ) cones—see Figure 5.6.

Lemma 5.10 The box and center events can be detected with a KDS that uses O(ρ7n)
storage and that processes O(ρ13n2) events in total, assuming the objects follow constant-
degree algebraic trajectories. At each event processed by this KDS, we spend O(log ρ)
time to test whether the event corresponds to an actual box or center event.

Proof. Recall that we have O(ρ6) guards per object, and O(ρ2) cones per guard.

For the box events we have three sorted lists, each storing O(n) boxes and O(ρ6n) guards.
Hence, their total size is O(ρ6n) and the total number of events is O(ρ12n2). Whenever
we have a swap in one of these lists, we just check in O(1) time whether it corresponds
to a guard entering or leaving a box.

For the center events we have O(ρ) sorted lists. For each guard, the cones are defined by
triangulated grids on the facets of a unit cube centered at the guard. This grid is induced
by O(ρ) lines on the facets. Hence, as remarked earlier, the O(ρ2) cones are generated
by O(ρ) planes—one plane for each grid line and one for each diagonal line inducing the
triangulation. Since we have O(ρ6) guards per object, we have in total O(ρ7) planes per
object. Each guard contributes one plane to each list. Hence, we have O(ρ) lists, each
containing O(ρ6n) planes. This means these lists together use O(ρ7n) storage and have
O(ρ13n2) events. Whenever we have an event in one of these lists we check whether it
corresponds to a center crossing a plane. If so, we must find out which of the O(ρ) cones
bounded by that plane, if any, are involved. Note that there can be two: the center could
enter one cone and leave another cone. Finding out the cones involved can easily be done
in O(log ρ) time. 2



5.3 Free-flying fat objects in 3-space 81

Handling events. When we have detected a center event, we may have to update the
object K∗(γ) of at most two cones. Next we describe how to handle the event involving
an object K and some cone γ defined for a guard g.

When bb(K) starts to contain g, or when the center of K moves into γ, things are easy:
IfK∗(γ) does not yet exist, K becomes the closest object to g and so we setK∗(γ) := K;
otherwise, we check whether K is closer to g than the current K∗(γ) and, if so, we set
K∗(γ) := K.

Handling the case where bb(K) stops to contain g, or when the center of K moves out
of γ, is more difficult. For this we need a supporting data structure that can answer the
following query:

Given a cone γ with apex g, report the closest object to g whose center is in
γ and whose bounding box contains g.

Recall that the set of cones can be partitioned into O(ρ2) subsets, where the cones in
each subset are translates of some “standard” cone. We construct a data structure for each
subset separately. Because the facets of the cones in a subset have only three distinct
orientations, we can find all centers inside a query cone in with a three-level range tree.
Finding the bounding boxes containing the apex of the query cone can be done with
a three-level segment tree, and filtering out the closest object requires a sorted list on
the orthogonal projections of the object centers onto the representative edge of the cone.
Hence, our total data structure will be have seven levels. Answering a query can be done
in O(log6 n) time—the query time is not O(log7 n) because in the last level we only
need to report the closest object—and the amount of storage is O(n log6 n). To kinetize
the structure, we use the kinetic variants of range trees [24] and segment trees [39] and
sorted lists (which are trivial to maintain). The number of events processed to maintain
our seven-level structure is O(n2) and each event can be handled in O(log7 n) time.

Lemma 5.11 When a center or box event occurs, we can update the closest object K∗(γ)
in O(log6 n) time, using a supporting KDS that uses O(ρ2n log6 n) storage. The sup-
porting KDS processes O(ρ2n2) events in the worst case, assuming the objects follow
constant-degree algebraic trajectories, and the response time is O(log7 n).

This leads to our main result.

Theorem 5.12 For any set K of n convex, constant-complexity ρ-fat objects, there is a
KDS for collision detection that uses O(ρ2n log6 n + ρ7n) storage and that processes
O(ρ13n2) events in the worst case, assuming the objects follow constant-degree algebraic
trajectories. Each event can be handled in O(log ρ + log7 n) time.

Our KDS is compact and responsive, but unfortunately it is not local: a large object K
with many small objects around can be involved in many certificates, because it may
contain guards for each of the small objects. However, we can show that the locality of
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our KDS depends on the ratio of the size of the biggest object and the smallest object in
K.

Theorem 5.13 Each object in the KDS of Theorem 5.12 is involved in O(ρ8 + ρ3σ3)
certificates, where σ is the ratio of the largest inner radius to the smallest inner radius of
the objects in K.

Proof. Consider an object K. There are two kinds of certificates in which K is involved:

Order certificates: these certificates arise from the sorted lists which we maintain.

Collision certificates: these certificates certify disjointness for all candidate pairs that
include K.

Since the number of sorted lists in the KDS is O(ρ) and there are O(ρ6) guards for each
object, the number of order certificates involving K is O(ρ7). It remains to count the
number of collision certificates. The number of such certificates involving K and a larger
object K ′ is O(ρ8), because the guarding set of K has O(ρ6) size and for each guarding
point we maintain O(ρ2) objects—one per cone defined for the guard. Now we have to
count the number of objects K ′ smaller than K such that bb(K) contains at least one
guard of K ′. Since the volume of K is less than O(ρ3σ3) times the volume of K ′, a
simple packing argument shows that the number of such objects K ′ is O(ρ3σ3)—note
that if bb(K) contain more than one guarding point of K ′, we just maintain one collision
certificate between K and K ′. Therefore, the total number of certificates involving K is
O(ρ8 + ρ3σ3). 2

5.4 Conclusions

We presented the first KDSs for collision detection between multiple convex fat 3D ob-
jects that use a near-linear number of certificates and do not require the objects to have
similar sizes. We believe that this is an important step forward in the theoretical inves-
tigation of KDSs for 3D collision detection. Our KDS for balls rolling on a plane is
simple, and may perform well in practice. Our general KDS for free-flying objects of
varying sizes, however, is complicated and the dependency on the fatness parameter ρ is
large. Thus our result should be seen as a proof that good bounds are possible in theory—
whether a simple and practical solution exists that achieves similar worst-case bounds is
still open.

As remarked above, our structures are not local: a single object can be involved in a linear
number of certificates. Unfortunately, this seems very hard (if not impossible) to avoid if
there is a single large object that is closely surrounded by many tiny objects. Thus we do
not expect to see a local KDS that can deal with arbitrarily sized objects. (We have shown
though that a local KDS is possible for convex fat objects when their sizes are similar.)



Chapter 6

Streaming algorithms for line
simplification

Abstract. We study the following variant of the well-known line-simplification problem: we are
getting a possibly infinite sequence of points p0, p1, p2, . . . in the plane defining a polygonal path,
and as we receive the points we wish to maintain a simplification of the path seen so far. We study
this problem in a streaming setting, where we only have a limited amount of storage so that we
cannot store all the points. We analyze the competitive ratio of our algorithms, allowing resource
augmentation: we let our algorithm maintain a simplification with 2k (internal) points, and compare
the error of our simplification to the error of the optimal simplification with k points. We obtain the
algorithms with O(1) competitive ratio for three cases: convex paths where the error is measured
using the Hausdorff distance (or Fréchet distance), xy-monotone paths where the error is measured
using the Hausdorff distance (or Fréchet distance), and general paths where the error is measured
using the Fréchet distance. In the first case the algorithm needs O(k) additional storage, and in the
latter two cases the algorithm needs O(k2) additional storage.

An extended abstract of this chapter was previously published as: M. A. Abam and M. de Berg, P. Hachen-
berger, and A. Zarei, Streaming algorithms for line simplification, In Proc. ACM Symposium on Computational
Geometry (SCG), pages 175–183, 2007.
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6.1 Introduction

Motivation. Suppose we are tracking one, or maybe many, moving objects. Each object
is equipped with a device that is continuously transmitting its position. Thus we are
receiving a stream of data points that describes the path along which the object moves.
The goal is to maintain this path for each object. We are interested in the scenario where
we are tracking the objects over a very long period of time, as happens for instance when
studying the migratory patterns of animals. In this situation it may be undesirable or even
impossible to store the complete stream of data points. Instead we have to maintain an
approximation of the input path. This leads us to the following problem: we are receiving
a (possibly infinite) stream p0, p1, p2, . . . of points in the plane, and we wish to maintain
a simplification (of the part of the path seen so far) that is as close to the original path as
possible, while using not more than a given (fixed) amount of available storage.

Related work. The problem described above is a streaming version of line simplifica-
tion, one of the basic problems in GIS. In a line simplification problem one is given a
polygonal path P := p0, p1, . . . , pn in the plane, and the goal is to find a path Q :=
q0, q1, . . . , qk with fewer vertices that approximates the path P well. In fact, this problem
arises whenever we want to perform data reduction on a polygonal shape in the plane, and
so it plays a role not only in GIS but also in areas like image processing and computer
graphics. Line simplification has been studied extensively both in these application areas
as well as in computational geometry. We study line simplification in a streaming setting,
where we only have a limited amount of storage so that we cannot store all the points.
A similar streaming model for geometric algorithms has been used by e.g. Agarwal and
Yu [19], and Zarrabi-Zadeh and Chan [103].

The line-simplification problem has many variants. For example, we can require the se-
quence of vertices of Q to be a subsequence of P (with q0 = p0 and qk = pn)—this
is sometimes called the restricted version—or we can allow arbitrary points as vertices.
Here, as in most other papers, we consider the restricted version, and we limit our discus-
sion to this version from now on; some results on the unrestricted version can be found
in [53, 56, 62]. In the restricted version, each link qlql+1 of the simplification corresponds
to a shortcut pipj (with j > i) of the original path, and the error of the link is defined as
the distance between pipj and the subpath pi, . . . , pj . To measure the distance between
pipj and pi, . . . , pj one often uses the Hausdorff distance, but the Fréchet distance can be
used as well—see below for definitions. The error of the simplification Q is now defined
as the maximum error of any of its links. Once the error measure has been defined, we
can consider two types of optimization problems: the min-k and the min-δ problem. In
the min-k problem, one is given the path P and a maximum error δ, and the goal is to find
a simplification Q with as few vertices as possible whose error is at most δ. In the min-δ
problem, one is given the path P and a maximum number of vertices k, and the goal is to
find a simplification with the smallest possible error that uses at most k vertices.

The oldest and most popular algorithm for line simplification under the Hausdorff distance
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is the Douglas-Peucker algorithm [44]. A basic implementation of this algorithm runs
in O(n2) time, but more careful implementations run in O(n log n) time [65] or even
O(n log∗ n) time [66]. However, the Douglas-Peucker algorithm is only a heuristic and
it is not guaranteed to be optimal (in terms of the number of vertices used, or the error
of the resulting simplification). Imai and Iri [68] showed how to solve both versions of
the problem optimally in O(n2 log n) time by modeling it as a shortest-path problem on
directed acyclic graphs. The running time of their method was improved to quadratic or
near quadratic by Chin and Chan [30], and Melkman and O’Rouke [86]. Finally, Agarwal
and Varadarajan [17] improved the running time to O(n4/3+ε), for any fixed ε > 0, for
the L1-metric and the so-called uniform metric—here d(p, q) = |py − qy| if px = qx and
d(p, q) =∞ otherwise—by implicitly representing the graph.

The line-simplification problem was first studied for the Fréchet distance by Godau [52].
Alt and Godau [20] proposed an algorithm to compute the Fréchet distance between two
polygonal paths in quadratic time; combined with the approach of Imai and Iri [68] this
can be used to compute an optimal solution to the min-δ or the min-k problem for the
Fréchet distance.

Since solving the line-simplification problem exactly is costly—the best known algo-
rithm for the Hausdorff distance (under the L2 metric) and for the Fréchet distance take
quadratic time or more—Agarwal et al. [15] consider approximation algorithms. In par-
ticular, they consider the min-k problem for both the Hausdorff distance for x-monotone
paths (in the plane) and the Fréchet distance for general paths (in d-dimensional space).
They give near-linear time algorithms that compute a simplification whose error is at most
δ and whose number of vertices is at most the minimum number of vertices of a simpli-
fication of error at most δ/2. Their algorithms are greedy and iterative. Because the
algorithms are iterative they can be used in an on-line setting, where the points are given
one by one and the simplification must be updated at each step. However, since they solve
the min-k problem, they cannot be used in a streaming setting, because the complexity of
the produced simplification for an input path of n points can be Θ(n). (Note that an itera-
tive greedy approach can be used in the min-k problem—try to go as far as possible with
each link, while staying within the error bound δ—but that for the min-δ problem this
does not work.) Moreover, their algorithm for the Hausdorff distance does not work when
the normal Euclidean distance is used in the definition of Hausdorff distance, but only
when the uniform distance is used. 1 The other existing algorithms for line simplification
cannot be used in a streaming setting either.

Definitions, notation, and problem statement. To be able to state the problem we wish
to solve and the results we obtain more precisely, we first introduce some terminology and
definitions. Let p0, p1, . . . be the given stream of input points. We use P (n) to denote

1The technical problem is the following. Consider the shortcut pipj . For each vertex pl, with i < l < j,
place a disk Dl centered at pl and of radius δ. Then they claim that pipj has an error of at most δ if and only
if pipj intersects the disks Di+1, . . . , Dj−1 in order. This is incorrect, as pipj has error at most δ even if it
intersects the disks in a different order, and such a situation can arise even if the input path is monotone. Thus
the greedy iterative approach they use does not work.
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the path defined by the points p0, p1, . . . , pn—that is, the path connecting those points
in order—and for any two points p, q on the path we use P (p, q) to denote the subpath
from p to q. For two vertices pi, pj we use P (i, j) as a shorthand for P (pi, pj). A
segment pipj with i < j is called a link or sometimes a shortcut. Thus P (n) consists
of the links pi−1pi for 0 < i 6 n. We assume a function error is given that assigns
a non-negative error to each link pipj . An `-simplification of P (n) is a polygonal path
Q := q0, q1, . . . , qk, qk+1 where k 6 ` and q0 = p0 and qk+1 = pn, and q1, . . . , qk is a
subsequence of p1, . . . , pn−1. The error of a simplification Q for a given function error ,
denoted error(Q), is defined as the maximum error of any of its links. We will consider
two specific error functions for our simplifications, one based on the Hausdorff distance,
and one based on the Fréchet distance, as defined next. For two objects o1 and o2, we use
d(o1, o2) to denote the Euclidean distance between o1 and o2. (For two points pi and pj ,
we sometimes also use |pipj | to denote the Euclidean distance between pi and pj , which
is equal to the length of the segment pipj .)

• In the Hausdorff error function errorH, the error of the link pipj is dH(pipj , P (i, j)),
the Hausdorff distance of the subpath P (i, j) to the segment pipj :

errorH(pipj) := dH(pipj , P (i, j)),

where dH(pipj , P (i, j)) = maxi<l<j d(pl, pipj).

• The Fréchet distance between two paths A and B, which we denote by dF (A,B),
is defined as follows. Consider a man with a dog on a leash, with the man standing
at the start point of A and the dog standing at the start point of B. Imagine that
the man walks to the end of A and the dog walks to the end of B. During the walk
they can stop every now and then, but they are not allowed to go back along their
paths. Now the Fréchet distance between A and B is the minimum length of the
leash needed for this walk, over all possible such walks. More formally, dF (A,B)
is defined as follows. Let A and B be specified by functions A : [0, 1] → R2 and
B : [0, 1] → R2. Any non-decreasing continuous function α : [0, 1] → [0, 1] with
α(0) = 0 and α(1) = 1 defines a re-parametrization Aα of A by setting Aα(t) =
A(α(t)). Similarly, any non-decreasing continuous function β : [0, 1]→ [0, 1] with
β(0) = 0 and β(1) = 1 defines a re-parametrization Bβ of B. The Fréchet distance
dF (A,B) between two paths A and B is now defined as

dF (A,B) := inf
α,β

max
06t61

d(Aα(t), Bβ(t))

where the infimum is taken over all re-parametrizations Aα of A and Bβ of B. In
the Fréchet error function errorF, the error of the link pipj is the Fréchet distance
of the subpath P (i, j) to the segment pipj :

errorF(pipj) := dF (P (i, j), pipj).

Now consider an algorithm A := A(`) that maintains an `-simplification for the input
stream p0, p1, . . ., for some given `. Let QA(n) denote the simplification that A pro-
duces for the path P (n). Let Opt(`) denote an optimal off-line algorithm that produces
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an `-simplification. Thus error(QOpt(`)(n)) is the minimum possible error of any `-
simplification of P (n). We define the quality of A using the competitive ratio, as is
standard for on-line algorithms. We also allow resource augmentation. More precisely,
we allow A to use a 2k-simplification, but we compare the error of this simplification to
QOpt(k)(n). (This is similar to Agarwal et al. [15] who compare the quality of their solu-
tion to the min-k problem for a given maximum error δ to the optimal value for maximum
error δ/2.) Thus we define the competitive ratio of an algorithm A(2k) as

competitive ratio of A(2k) := max
n>0

error(QA(2k)(n))
error(QOpt(k)(n))

,

where error(QA(2k)(n))

error(QOpt(k)(n)) is defined as 1 if error(QA(2k)(n)) = error(QOpt(k)(n)) = 0.
We say that an algorithm is c-competitive if its competitive ratio is at most c.

Our results. We present and analyze a simple general streaming algorithm for line sim-
plification. Our analysis shows that the algorithm has good competitive ratio under two
conditions: the error function that is used is monotone—see Section 6.2 for a definition—
and there is an oracle that can approximate the error of any candidate link considered by
the algorithm. We then continue to show that the Hausdorff error function is monotone
on convex paths and on xy-monotone paths. (It is not monotone on general paths.) The
Fréchet error function is monotone on general paths. Finally, we show how to implement
the error oracles for these three settings. Putting everything together leads to the following
results.

(i) For convex paths and the Hausdorff error function (or the Fréchet error function)
we obtain a 3-competitive streaming algorithm using O(k) additional storage that
processes an input point in O(log k) time.

(ii) For xy-monotone paths and the Hausdorff error function (or the Fréchet error func-
tion) we can, for any fixed ε > 0, obtain a (4 + ε)-competitive streaming algo-
rithm that uses O(k2/

√
ε) additional storage and processes each input point in

O(k log (1/ε)) amortized time.

(iii) For general paths and the Fréchet error function we can, for any fixed ε > 0,
obtain a (4

√
2+ε)-competitive streaming algorithm that uses O(k2/

√
ε) additional

storage and processes each input point in O(k log (1/ε)) amortized time.

Finally, we give a negative result in Section 6.5. We show that for the Hausdorff error
function it is not possible to have a streaming algorithm that maintains a path with less
than 2k points whose competitive ratio (with respect to Opt(k)) is bounded, unless the
algorithm uses Ω(n/k) additional storage.
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6.2 A general algorithm

In this section we describe a general strategy for maintaining an `-simplification of an
input stream p0, p1, . . . of points in the plane, and we will show that it has a good com-
petitive ratio under two conditions: the error function is monotone (as defined below),
and we have an error oracle at our disposal that computes or approximates the error of
a link. We denote the error computed by the oracle for a link pipj by error∗(pipj). In
later sections we will prove that the Hausdorff error metric is monotone on convex or
xy-monotone paths and that the Fréchet error function is monotone on general paths, and
we will show how to implement the oracles for these settings.

Our algorithm is quite simple. Suppose we have already handled the points p0, . . . , pn.
(We assume n > ` + 1; until that moment we can simply use all points and have zero
error.) Let Q := q0, q1, . . . , q`, q`+1 be the current simplification. Our algorithm will
maintain a priority queue Q that stores the points qi with 1 6 i 6 `, where the priority of
a point is the error (as computed by the oracle) of the link qi−1qi+1. In other words, the
priority of qi is (an approximation of) the error that is incurred when qi is removed from
the simplification. Now the next point pn+1 is handled as follows:

1. Set q`+2 := pn+1, thus obtaining an (` + 1)-simplification of P (n + 1).

2. Compute error∗(q`q`+2) and insert q`+1 into Q with this error as priority.

3. Extract the point qs with minimum priority fromQ; remove qs from the simplifica-
tion.

4. Update the priorities of qs−1 and qs+1 in Q.

Next we analyze the competitive ratio of our algorithm.

We say that a link pipj encloses a link plpm if i 6 l 6 m 6 j, and we say that error is
a c-monotone error function for a path P (n) if for any two links pipj and plpm such that
pipj encloses plpm we have

error(plpm) 6 c · error(pipj).

In other words, an error function is c-monotone if the error of a link cannot be worse than
c times the error of any link that encloses it.

Furthermore, we denote an error oracle as an e-approximate error oracle if

error(pipj) 6 error∗(pipj) 6 e · error(pipj)

for any link pipj for which the oracle is called by the algorithm above.

Theorem 6.1 Suppose that we use a c-monotone error function and that we have an e-
approximate error oracle at our disposal. Then the algorithm described above with ` = 2k
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is ce-competitive with respect to Opt(k). The time the algorithm needs to update the
simplification Q upon the arrival of a new point is O(log k) plus the time spent by the
error oracle. Besides the storage needed for the simplification Q, the algorithm uses O(k)
storage plus the storage needed by the error oracle.

Proof. Consider an arbitrary n > 0, and let Q(n) denote the 2k-simplification produced
by our algorithm. Since the error of Q(n) is the maximum error of any of its links, we just
need to show that error(σ) 6 c ·e ·error(QOpt(k)(n)) for any link σ in Q(n). Let m 6 n
be such that σ appears in the simplification when we receive point pm. If m 6 2k + 2,
then error(σ) = 0 and we are done. Otherwise, let Q(m − 1) := q0, . . . , q2k+1 be the
2k-simplification of P (m− 1). Upon the arrival of pm = q2k+2 we insert q2k+1 = pm−1

into Q. A simple counting argument shows that at least one of the shortcuts qt−1qt+1 for
1 6 t 6 2k + 1, let’s call it σ′, must be enclosed by one of the at most k + 1 links in
QOpt(k)(n). Since σ is the link with the smallest priority among all links in Q at that
time, its approximated error is smaller than that of σ′. Therefore,

error(QOpt(k)(n)) > 1
c error(σ′) > 1

c·e error∗(σ′)

> 1
c·e error∗(σ) > 1

c·e error(σ).

We conclude that our algorithm is ce-competitive with respect to Opt(k).

Besides the time and storage needed by the error oracle, the algorithm only needs O(k)
space to store the priority queue and O(log k) for each update of the priority queue. 2

6.3 The Hausdorff error function

The algorithm presented above has good competitive ratio if the error function being
used is monotone and can be approximated well. In this section we show that these
properties hold for the Hausdorff error function on convex and xy-monotone paths. (A
path is convex if by connecting the last point to the first point on the path we obtain a
convex polygon. A path is xy-monotone if any horizontal or vertical line intersects it in
at most one point.) Note that for these two case the Hausdorff distance between a link
pipj and the subpath P (i, j) is identical to the Frechet distance between them. Thus the
results from this section hold for the Frechet distance as well. They improve on the result
that will be given in the next section for the Fréchet distance on general curves. During
this section all results stated for the Hausdorff distance also hold for the Fréchet distance.

The following lemma gives results on the monotonicity of various types of paths under
the Hausdorff error function.

Lemma 6.2 The Hausdorff error function is 1-monotone on convex paths and 2-monotone
on xy-monotone paths. Moreover, there is no constant c such that the Hausdorff error
function is c-monotone on y-monotone paths.
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pi

pj

pl

pm

ps

Figure 6.1 The Hausdorff error function is 2-monotone on any xy-monotone
path.

Proof. It is easy to see that the Hausdorff error function is 1-monotone on convex paths. It
is also not difficult, given any constant c, to give an example of an y-monotone path such
that the Hausdorff error function is not c-monotone—a zigzag with four vertices such that
the first and third are very close together and the second and fourth are very close together
will do.

So now consider an xy-monotone path p0, . . . , pn. Let pipj and plpm be two links
such that pipj encloses plpm, and let ps be a point on the subpath P (l,m) such that
d(ps, plpm) = errorH(plpm). Consider the circles Cl, Cm and Cs of radius errorH(pipj)
centered at points pl, pm and ps—see Figure 6.1. Since the distance of the link pipj to the
points pl, ps, and pm is at most errorH(pipj), it must intersect these circles. Let p′s, p′l,
and p′m be the orthogonal projections of ps, pl, and pm onto the link pipj . Clearly, p′s, p′l
and p′m are inside Cs, Cl and Cm, respectively. Since P (i, j) is xy-monotone, p′s lies
between p′l and p′m, which implies

d(p′s, plpm) 6 max(d(p′l, pl), d(p′m, pm)) 6 errorH(pipj).

Therefore,

errorH(plpm) = errorH(ps, plpm)
6 d(ps, p

′
s) + d(p′s, plpm)

6 2 errorH(pipj).

Note that the link pipj can be tangent to Cs, Cl, and Cm, which shows that the mono-
tonicity factor 2 is tight. 2

The next step is to implement the error oracles for convex paths and for xy-monotone
paths. We start with the case of convex paths.
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pi

pj

Figure 6.2 The areas maintained by the error oracle for convex paths.

6.3.1 The error oracle for convex paths

The idea of the error oracle is to maintain an approximation of the area enclosed by pipj

and the path P (i, j) for each link pipj . Let area(i, j) denote this area. If the two angles
∠pi+1pipj and ∠pj−1pjpi are at most 90 degrees, we can deduce an approximation of
errorH(pipj) from area(i, j) and |pipj |. Indeed, if dH(pipj , P (i, j)) = d, then the
maximum area enclosed by pipj and P (i, j) is achieved by a rectangle with base pipj

and height d, and the minimum area is achieved by a triangle with base pipj and height d.
Hence,

dH(pipj , P (i, j)) 6 2 · area(i, j)/|pipj |

6 2 · dH(pipj , P (i, j)),

and so 2 · area(i, j)/|pipj | can be used as a 2-approximate error oracle. Unfortunately
this approach does not work if ∠pi+1pipj and/or ∠pj−1pjpi are bigger than 90 degrees.
We therefore proceed as follows.

For each shortcut pipj used in the current approximation, partition the path P (i, j) into at
most five pieces by splitting it at each vertex that is extreme in x- or y-direction. (If, say,
there is more than one leftmost vertex on the path, we cut at the first such vertex.) The
information we maintain for pipj is the set of cut points as well as area enclosed by each
such piece P (l,m) and the corresponding shortcut plpm—see Figure 6.2. Notice that if
P (i, j) does not contain an extreme point we simply maintain area(i, j), as before.

As dH(pipj , P (i, j)) is the maximum of dH(pipj , P (l,m)) over all pieces P (l,m) into
which P (i, j) is cut, it is sufficient to approximate dH(pipj , P (l, m)) for each piece.
Note that both ∠pl+1plpm and ∠pm−1pmpl are at most 90 degrees. We approximate
dH(pipj , P (l, m)) by

(2 · area(l, m)/|plpm|) + dH(pipj , plpm).

We claim this gives us a 3-approximation. We have

dH(pipj , P (l, m)) 6 dH(plpm, P (l,m)) + dH(pipj , plpm)

6 2·area(l,m)
|plpm| + dH(pipj , plpm).

On the other hand,
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3 · dH(pipj , P (l,m)) > 3 ·max(dH(plpm, P (l,m)), dH(pipj , plpm))

> 2·area(l,m)
|plpm| + dH(pipj , plpm),

so (2 · area(l, m)/|plpm|) + dH(pipj , plpm) is a 3-approximation of dH(pipj , P (l, m)).

What remains is to show that we can maintain this information as more points are received
and the simplification changes. First consider step 2 of the algorithm, where we need to
compute error∗(q`q`+2). Since we have the information described above available for
q`q`+1, and q`+1 and q`+2 are consecutive points of the original path P , we can compute
the necessary information for q`q`+2 in O(1) time. Similarly, in step 4 we can update the
information in O(1) time. We omit the easy details.

Lemma 6.3 There is a 3-approximate error oracle for the Hausdorff error function on
convex paths that uses O(k) storage and can be updated in O(1) time.

Putting everything together we obtain the following theorem.

Theorem 6.4 There is a streaming algorithm that maintains a 2k-simplification for con-
vex planar paths under the Hausdorff error function (or the Fréchet error function) and
that is 3-competitive with respect to Opt(k). The algorithm uses O(k) additional storage
and each point is processed in O(log k) time.

6.3.2 The error oracle for xy-monotone paths

We use the notion of width for approximating errorH of an xy-monotone path. The width
of a set of points with respect to a given direction

−→
d is the minimum distance of two lines

being parallel to
−→
d that enclose the point set. Let w(i, j) be the width of the points in

subpath P (i, j) with respect to the direction −−→pipj . Since P (i, j) is xy-monotone, it is
contained inside the axis-parallel rectangle defined by pi and pj . Therefore,

w(i, j)/2 6 errorH(pipj) 6 w(i, j)

and w(i, j) can be used as a 2-approximate error oracle for errorH(pipj).

Agarwal and Yu [19] have described a streaming algorithm for maintaining a core-set that
can be used to approximate the width of a set in any direction. More precisely, given
a data stream p0, p1, . . ., they maintain an ε-core-set of size O(1/

√
ε) in O(log (1/ε))

amortized time per insertion. The width in a given direction can be efficiently computed
from the core-set if we additionally maintain the convex hull of the core-set using the
dynamic data structure by Brodal and Jacob [27]. This data structure uses linear space
and can be updated in logarithmic time. Also it supports queries for the extreme point in a
given direction in logarithmic time. Thus we can compute the extreme points that define
the width in a given direction in O(log (1/ε)) time. The core-set gives us an (2 + ε)-
approximate error oracle.
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Lemma 6.5 There is a (2 + ε)-approximate error oracle for the Hausdorff error function
on xy-monotone paths that uses O(k2/

√
ε) storage and has O(k log (1/ε)) amortized

update time.

Proof. Although our algorithm only needs the approximate errors of the links qi−1qi+1

to decide which point qs is erased next, we must maintain a core-set for each link that
might be needed at some later time in our simplification. These are the links qiqj , with
0 6 i < j− 1 < 2k +1. So we need to maintain a core-set for each of these O(k2) links.
Considering a new point q2k+2 = pn+1, we must create O(k) new core-sets, one for each
of the links qipn+1, with 0 6 i 6 2k. We create such core-sets for the links qipn+1, by
copying the core-sets qiq2k+1 and inserting point pn+1 to them using the algorithm by
Agarwal and Yu. When some point qs is removed from the simplification in Step 3 of our
algorithm and the link qs−1qs+1 is added, the core-sets for all links that start or end at qs

have become meaningless and are therefore deleted.

In total, O(k2/
√

ε) storage is needed for the O(k2) core-sets. The update of the ora-
cle involves creation of O(k) core-sets by duplicating current ones and therefore needs
O(k log (1/ε)) time. The new point is added to these core-sets in O(k log (1/ε)) amor-
tized time. Thus, the time the oracle needs to process a new point is O(k log (1/ε)). 2

Putting everything together we obtain the following theorem.

Theorem 6.6 There is a streaming algorithm that maintains a 2k-simplification for xy-
monotone planar paths under the Hausdorff error function (or the Fréchet error function)
and that is (4 + ε)-competitive with respect to Opt(k). The algorithm uses O(k2/

√
ε)

additional storage and each point is processed in O(k log (1/ε)) amortized time.

6.4 The Fréchet error function

We now turn our attention to the Fréchet error function. We will show that we can ob-
tain an O(1)-competitive algorithm for arbitrary paths. The first property we need is that
the Fréchet error function is monotone. This has in fact already been proven by Agar-
wal et al. [15].

Lemma 6.7 [15] The Fréchet error function is 2-monotone on arbitrary paths.

6.4.1 The error oracle

Next we turn our attention to the implementation of the error oracle for the Fréchet error
function. We use two parameters to approximate errorF(pipj). The first one is w(i, j),
the width of the points of P (i, j) in the direction of pipj , which we also used to ap-
proximate the Hausdorff error in the case of xy-monotone paths. The other parameter is
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Figure 6.3 Relation between Fréchet distance and back-paths.

the length of the largest back-path in the direction of pipj , which is defined as follows.
Assume without loss of generality that pipj is horizontal with pj to the right of pi. For
two points pl, pm on the path P (i, j) with l < m we define P (l,m) to be a back-path
on P (i, j) if (pm)x < (pl)x. In other words P (l,m) is a back-path if, relative to the
direction −−→pipj , we go back when we move from pl to pm—see Figure 6.3. The length of
a back-path P (l, m) on P (i, j) is defined to be the length of the projection of plpm onto a
line parallel to pipj , which is equal to (pl)x− (pm)x since we assumed pipj is horizontal.
We define b(i, j) to be the maximum length of any back-path on P (i, j).

Lemma 6.8 The Fréchet error of a shortcut pipj satisfies the following inequalities:

max(
w(i, j)

2
,
b(i, j)

2
) 6 errorF(pipj) 6 2

√
2 max(

w(i, j)
2

,
b(i, j)

2
)

Proof. As above we will without loss of generality assume that pipj is horizontal with pj

to the right of pi.

We observe that errorF(pipj) > errorH(pipj) > w(i, j)/2. Next we will show that
b(i, j)/2 6 errorF(pipj). Consider a back-path P (l,m) on P (i, j) determining b(i, j),
as shown in Figure 6.3. Let r be the point on the line through pipj midway between pl

and pm, that is, the point on the line through pipj with x-coordinate ((pl)x + (pm)x)/2.
Note that r does not necessarily lie on pipj . The Fréchet distance between pipj and P (i, j)
is determined by some optimal pair of parametrizations of pipj and P (i, j) that identi-
fies each point p of P (i, j) with a point p on pipj in such a way that if p comes be-
fore q along P (i, j) then p does not come later than q along pipj . Now consider the
images pl and pm. If pl lies to the left of r then |plpl| > b(i, j)/2. If, on the other
hand, pl lies on or to the right of r then pm lies on or to the right of r as well, and we
have |pmpm| > b(i, j)/2. We conclude that max(w(i, j)/2, b(i, j)/2) 6 errorF(pipj),
which proves the first part of the lemma.

For the second part we need to show that errorF(pipj) 6
√

2 max(w(i, j), b(i, j)). It
is convenient to think about the Fréchet distance in terms of the man-dog metaphor. In
these terms, we have to find a walking schedule where the man walks along pipj and the
dog walks along P (i, j) such that they never go back along their paths and their distance
is never more than

√
2 max(w(i, j), b(i, j)). We can find such a walk as follows. Denote

the position of the man by pman and the position of the dog by pdog. Initially pman =
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pdog = pi. Let ` be the vertical line through pi. Of all the intersection points of `
with P (i, j), let p be one furthest along P (i, j). (If ` does not intersect P (i, j) except
at pi, then p = pi.) We let the dog walk along P (pip), while the man waits at pi. Let q
be an arbitrary point on P (pip). Then there must be points pl, pm with l < m such
that (pl)x > (pi)x and (pm)x 6 (q)x. Hence, we have |(q)x− (pi)x| 6 (pl)x− (pm)x 6
b(i, j). Furthermore, |(q)y − (pi)y| 6 w(i, j). Hence, during this first phase we have
|pmanpdog| 6

√
2 max(w(i, j), b(i, j)).

We continue the walk as follows. Sweep ` to the right. Initially ` will intersect P (ppj)
in only one point. As long as this is the case, we set pman = ` ∩ pipj and we set pdog =
` ∩ P (ppj). During this part we clearly have |pmanpdog| 6 w(i, j). At some point ` may
intersect P (pdog, pj) in one (or more) point(s) other than pdog. When this happens we
take the intersection point p that is furthest along P (pdog, pj), and let the dog proceed
to p while the man waits at his current position. By the previous argument, |pmanpdog| 6√

2 max(w(i, j), b(i, j)) during this phase. Then we continue to sweep ` to the right
again, letting pman = ` ∩ pipj and pdog = ` ∩ P (ppj). The process ends when the
sweep line reaches pj . We have thus found a walking schedule with |pmanpdog| 6√

2 max(w(i, j), b(i, j)) at all times, finishing the proof of the lemma. 2

According to the above lemma, in order to approximate errorF(pipj) it suffices to ap-
proximate max(w(i, j), b(i, j)). In the previous section we already described how to ap-
proximate w(i, j), when we were studying the Hausdorff error function for xy-monotone
paths. Next we describe a method for approximating b(i, j), and show how to combine
these two methods to build the oracle for errorF(pipj). (Note that if there are no back-
paths, then the Fréchet error is equal to the Hausdorff error, so the case of xy-monotone
paths for Hausdorff error is a special case of our current setting.)

In the algorithm as presented in Section 6.2 we need to maintain (an approximation of)
the error of each shortcut qlql+2 in the current simplification. For this we need to know
the maximum length of a back-path on the path from ql to ql+2. The operations we must
do are to add a point q`+2 = pn+1 at the end of the simplification, and to remove a point
qs from the simplification. To this end we maintain the following information. For the
moment let’s assume that all we need is the maximum length of the back-path with respect
to the positive x-direction. Then we maintain for each link pipj of the simplification the
following values:

(i) b(i, j), the maximum length of a back-path (w.r.t. the positive x-direction) on P (i, j);

(ii) xmax (i, j), the maximum x-coordinate of any point on P (i, j);

(iii) xmin(i, j), the minimum x-coordinate of any point on P (i, j).

Now consider a shortcut qlql+2. Let ql = pi, ql+1 = pt and ql+2 = pj . Then b(i, j), the
maximum length of a back-path on P (ql, ql+2) = P (i, j), is given by

max ( b(i, t), b(t, j), xmax (i, t)− xmin(t, j) ).
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Adding a point q`+2 is easy, because we only have to compute the above three values
for q`+1q`+2, which is trivial since q`+1 and q`+2 are consecutive points on the original
path. Removing a point qs can also be done in O(1) time (let qs−1 = pi and qs+1 = pj):
above we have shown how to compute b(i, j) from the available information for qs−1qs

and qsqs+1, and computing xmax (i, j) and xmin(i, j) is even easier.

Thus we can maintain the maximum length of a back-path. There is one catch, however:
the procedure given above maintains the maximum length of a back-path with respect to
a fixed direction (the positive x-direction). But in fact we need to know for each qiqi+2

the maximum length of a back-path with respect to the direction −−−→qiqi+2. These direc-
tions are different for each of the links and, moreover, we do not know them in advance.
To overcome this problem we define 2π/α equally spaced canonical directions, for a
suitable α > 0, and we maintain, for every link pipj , the information described above
for each direction. Now suppose we need to know the maximum length of a back-path
for pipj with respect to the direction −−→pipj . Then we will use b−→

d
(pipj), the maximum

length of a back-path with respect to
−→
d instead, where

−→
d is the canonical direction clos-

est to −−→pipj in clockwise order. In general, using
−→
d may not give a good approximation of

the maximum length of a back-path in direction−−→pipj , even when α is small. However, the
approximation is only bad when w(i, j) is relatively large, which means that the Fréchet
distance can still be approximated well. This is made precise in the following lemmas.

Lemma 6.9 Let w be the width of P (i, j) in direction −−→pipj , let b be the maximum length
of a back-path on P (i, j) in direction −−→pipj , and let b∗ be the maximum length of a back-
path on P (i, j) in direction

−→
d , where

−→
d is the canonical direction closest to −−→pipj in

clockwise order. Then we have: b∗ − tan(α) · w 6 b 6 b∗ + tan(α) · (b∗ + w).

Proof. We first show that b 6 b∗ + tan(α) · (b∗ + w). Let the sub-path P (l,m) have
the maximum back-path length in the direction −−→pipj . Consider two half-lines originat-
ing from pm and being parallel to −−→pipj and

−→
d . Let β denote the angle between these

two half-lines. Because
−→
d is the canonical direction closest to −−→pipj in clockwise order,

clearly β 6 α. Let p and q be the orthogonal projections of pl onto the lines through pm in
direction −−→pipj and

−→
d , respectively. We distinguish four cases, depending on the relation

of direction −−→pmpl to −−→pipj and
−→
d . The direction −−→pmpl can be counterclockwise to −−→pipj ,

between −−→pipj and
−→
d , or clockwise to

−→
d . If −−→pmpl is counterclockwise to −−→pipj , we also

distinguish whether the angle between−−→pmpl and−−→pipj is less or more than 90−β degrees.
Note, that since plpm is a back-path, the angle between −−→pmpl and −−→pipj cannot be larger
than 90 degrees. All four cases are illustrated in Figure 6.4. The corresponding proof is
as follows.

(a) −−→pmpl is between 90 and 90− β degrees counterclockwise to −−→pipj .

b = |pmq| 6 |plq| tan(β)
6 w tan(α)
6 b∗ + tan(α) · (b∗ + w)
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Figure 6.4 Illustration for the proof of Lemma 6.9.

(b) −−→pmpl is less than 90− β degrees counterclockwise to −−→pipj .

b = |pmq| 6 |pmp|+ |pr|+ |rq|
6 |pmp|+ |pmp| tan(β) + |plq| tan(β)
6 b∗ + tan(α) · (b∗ + w)

(c) −−→pmpl is between −−→pipj and
−→
d .

b = |pmq| 6 |pmpl|
6 |pmp|+ |ppl|
6 |pmp|+ |pmp| tan(β)
6 b∗ + tan(α) · (b∗ + w)

(d) −−→pmpl is clockwise to
−→
d by at most 90− β degrees.
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b = |pmq| 6 |pmp|
6 b∗

6 b∗ + tan(α) · (b∗ + w)

The same elementary arguments can be used to show that b∗ − tan(α) · w 6 b. 2

The final oracle is now defined as follows. Let w∗ be the approximation of the width
of P (i, j) in direction−−→pipj as given by Agarwal and Yu’s ε-core-set method, and let b∗ be
the maximum length of a back-path on P (i, j) in direction

−→
d , where

−→
d is the canonical

direction closest to −−→pipj in clockwise order. Then we set

errorF
∗(pipj) :=

√
2 ·max(w∗, b∗ + tan(α) · (b∗ + w∗)).

Combing Lemma 6.8 with the observations above, we can prove the following lemma.

Lemma 6.10 errorF(pipj) 6 errorF
∗(pipj) 6 2

√
2(1+ε)(1+4 tan(α))·errorF(pipj)

Proof. Let w be the width of P (i, j) in direction −−→pipj , let b be the maximum length of
a back-path on P (i, j) in direction −−→pipj . Because w∗ is the width of an ε-core-set, we
have w 6 w∗ 6 (1 + ε)w. Using Lemma 6.8 we get

errorF(pipj) 6 2
√

2 ·max(w
2 , b

2 )
6
√

2 ·max(w∗, b∗ + tan(α) · (b∗ + w))
6
√

2 ·max(w∗, b∗ + tan(α) · (b∗ + w∗))
= errorF

∗(pipj).

On the other hand

errorF
∗(pipj) =

√
2 ·max(w∗, b∗ + tan(α) · (b∗ + w∗))

6
√

2 ·max((1 + ε)w, b + tan(α)w+
tan(α) · (b + tan(α)w + (1 + ε)w)

6
√

2(1 + ε) ·max(w, b + b tan(α) + 3w tan(α))
6
√

2(1 + ε)(1 + 4 tan(α)) ·max(w, b)
6 2

√
2(1 + ε)(1 + 4 tan(α)) ·max(w

2 , b
2 )

6 2
√

2(1 + ε)(1 + 4 tan(α)) · errorF(pipj)

2

Taking ε and α sufficiently small, we get our final result.

Theorem 6.11 There is a streaming algorithm that maintains a 2k-simplification for gen-
eral planar paths under the Fréchet error function and that is (4

√
2 + ε)-competitive with

respect to Opt(k). The algorithm uses O(k2/
√

ε) additional storage and each point is
processed in O(k log (1/ε)) amortized time.
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p0 pi−1 pi pi+1 pm−1

pm

pm+1

Figure 6.5 Base path component for Theorem 6.12.

6.5 The Hausdorff error function for general paths

In this section we show that for the Hausdorff error function it is not possible to have
a streaming algorithm that maintains a path with less than 2k points whose competitive
ratio (with respect to Opt(k)) is bounded, unless the algorithm uses Ω(n/k) additional
storage. In fact, this even holds when the input path is known to be y-monotone.

Theorem 6.12 Let A be a streaming algorithm that maintains a (2k − 1)-simplification
for a path P (n), and that is able to store at most m−1 of the input points, where 2k+2 6
m 6 n/k . For any c > 0 and n > km + 1, there is a y-monotone path p0, p1, . . . , pn

such that errorH(QA(2k−1)(n)) > c · errorH(QOpt(k)(n)).

Proof. Figure 6.5 shows the basic component of the path having the following properties.

(i) Points p0, · · · , pm−1 are collinear,

(ii) |pipi+1| > c · dH(pm−1, pipm+1) for all 0 6 i 6 m− 2,

(iii) dH(pm−1, pi−1pm+1) > c · dH(pm−1, pipm+1) for all 1 6 i 6 m− 1

To obtain a configuration with the above properties, we take a horizontal line ` and a
point pm−1 on `. We put pm+1 below ` and arbitrarily far from pm−1 to the right of pm−1

such that its distance to ` is greater than (c + ε)m−1 where ε > 0 is an arbitrarily small
number. We put pi (i = 0, · · · ,m−2) on ` to the left of pm−1 such that pipm+1 is tangent
to the circle whose radius is (c+ε)m−i−1 and whose center is pm−1. The point pi always
exists, because dH(pm+1, `) > (c + ε)m−i−1.

Let A be a simplification algorithm being able to store at most m − 1 points. Upon the
arrival of pm−1, the algorithm A is required to delete one of the past points, because
it cannot store m points. Let pi, with 1 6 i 6 m − 2, be the deleted point, and let
the next point, pm, be slightly below pi (i.e. |pipm| ≈ 0). Up to here, by choosing pm

in QA(1)(m), we have errorH(QA(1)(m)) = errorH(QOpt(1)(m)) = 0. Now consider
the next point pm+1, which lies on its position according to our construction. Obvi-
ously, QOpt(1)(m + 1) is p0, pi, pm+1, and its Hausdorff error is dH(pm−1, pipm+1).
SinceA has missed the point pi, QA(1)(m + 1) is p0, pj , pm+1 for some j 6= i. There are
three possibilities for j:
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Figure 6.6 A path that cannot be simplified within a bounded competitive ratio.

1. 0 6 j < i: using property (iii) we have:

errorH(QA(1)(m + 1)) = dH(pm−1, pjpm+1)
> c · dH(pm−1, pipm+1)
= c · errorH(QOpt(1)(m + 1))

2. i < j 6 m− 1: using property (ii) we have:

errorH(QA(1)(m + 1)) > dH(pm, pjpm+1) ≈ |pipj |
> c · dH(pm−1, pipm+1)
= c · errorH(QOpt(1)(m + 1))

3. j = m: using property (ii) we have:

errorH(QA(1)(m + 1)) = dH(pm−1, p0pm) ≈ |pipm−1|
> c · dH(pm−1, pipm+1)
= c · errorH(QOpt(1)(m + 1))

Therefore, in order to be within a bounded competitive ratio,Amust store at least the two
points pm−1 and pm, which leads to a 2-simplification.

We concatenate k of these components in such a way that for any two consecutive compo-
nents, the first two points of the latter lie on the last two points of the former as illustrated
in Figure 6.6. Other than the first and the last points, it is straightforward to show that A
has to store 2 points of each component to be within a bounded competitive ratio. This
implies errorH(QA(2k−1)) > c · errorH(QOpt(k)(n)). 2

6.6 Conclusions

We presented the first line-simplification algorithms in the streaming model, where we
want to maintain a simplification of a path described by a (possibly infinite) stream of
input points, while having only a limited amount of storage available. We obtained algo-
rithms with O(1) competitive ratio for convex planar paths and xy-monotone planar paths
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under the Hausdorff error function (or the Fréchet error function), and for general planar
paths under the Fréchet distance. Our results imply linear-time approximation when k is
a constant (where the approximation factor is with respect to the optimal solution using
half the number of links).

Our algorithms all use resource augmentation: they maintain a 2k-simplification but we
compare the error of our simplification to the error of an optimal k-simplification. One
obvious question is whether we can do with less, or maybe no, resource augmentation.
We have shown that this is not the case for general planar paths under the Hausdorff error
function, but note that we have not been able to give any O(1)-competitive algorithm for
this case, not even with resource augmentation. Thus there is a significant gap between
our positive and our negative results.

Another aspect where improvement may be possible is the implementation of the error or-
acles, which need O(k2) storage for xy-monotone paths under the Hausdorff error func-
tion and for general paths under the Fréchet distance. For instance, if we can maintain
core-sets in a streaming setting such that one can also merge two core-sets, then this will
reduce the dependency on k in the storage from quadratic to linear. (Note that we need to
be able to do an unbounded number of merges.)

Our general approach extends to higher dimensions (but the approximation factors and
running times will change).
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Chapter 7

Concluding remarks

In this thesis, we concentrated on the algorithmic study of moving objects. We mainly
focused on the kinetic-data-structure framework introduced by Basch et al. [23], which is
a common model for designing and analyzing algorithms and data structures for moving
objects within computational geometry. The kinetic-data-structure framework is based on
a scenario where the trajectories of moving objects are continuous and explicitly known in
advance (at least in the near future). We also studied another reasonable scenario, where
the trajectory of a object is not given explicitly and instead a (possible infinite) stream of
points describing consecutive locations of the moving object is received as an input.

Below we summarize our contributions in this domain, and discuss some directions for
further research. (Some other specific open problems were already mentioned in the pre-
vious chapters.)

One interesting research direction that we explored in Chapter 2 and that needs more
investigation is the following: instead of requiring that the KDS explicitly maintain the
attribute of interest, we wish to view KDSs as query structures, and study trade-offs be-
tween maintenance cost and query time. For the kinetic sorting problem, we proved a
lower bound for this problem showing the following: with a subquadratic maintenance
cost one cannot obtain any significant speed-up on the time needed to generate the sorted
list (compared to the trivial O(n log n) time), even for linear motions. This negative result
gives a strong indication that good trade-offs are not possible for a large number of geo-
metric problems—Voronoi diagrams and Delaunay triangulations, for example, or convex
hulls—as the sorting problem can often be reduced to such problems. But still there is
hope to find a good trade-off when the goal is not maintaining a uniquely defined attribute
such as the convex hull, but we want to answer some queries such as ”Which are the points
currently inside a query rectangle?”, for instance, or ”What is the nearest point to the given
query point?”. An example of such a good trade-off is given by Agarwal et al. [6]. They
designed a KDS for orthogonal range queries, which uses a super-linear storage and al-
lows a trade-off between the total number of events and the query time: they can achieve
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O(Q) query time by processing O(n2+ε/Q2) events. Unfortunately, their KDS heavily
uses its knowledge of the motions and only works for linear motions, which are rather
restrictive. A simple method to obtain a trade-off for this problem which does not use any
knowledge of the motions and works for any algebraic motions is to partition the point
set into Q subsets of size n/Q each, and maintain a kinetic range tree for each subset.
Then, we achieve O(Q) query time by processing O(n2/Q) events. This method is a
rather naive way of obtaining a trade-off. What would be the best trade-off we can get
for algebraic motions? The same question can be asked for other query structures such
as segment trees and kd-trees using a linear storage. As it was mentioned in the introduc-
tion, the performance of a KDS is measured according to four criteria. Obtaining good
trade-offs between those criteria is another interesting research direction. For example,
one may want to obtain a trade-off between the number of candidate pairs for collision
detections (compactness) and the number of events (efficiency).

Although the KDS framework is a beautiful and successful framework in theory, it has not
been established whether it is effective in practice. One important issue that threatens the
applicability of the KDS framework in practice is how to cope with the situation where
event times cannot be computed exactly and events may be processed in a wrong order. In
Chapter 3, we introduced a new event scheduling mechanism for the kinetic sorting and
the kinetic tournament to deal with the out-of-order events. But we do not know whether
we can extend our technique to other existing KDSs and in particular, kinetic collision
detections. In our event scheduling mechanism, some events may be processed late but
the delay in processing events may cause that we miss some collisions, which usually is
unsatisfactory. Then, it seems that in collision detection we are obliged to compute the
exact order of events. There are elegant and efficient KDSs for collision detections—our
KDS for multiple convex fat objects of varying sizes (Chapter 5), for instance—but only a
few attempts [33, 60] have been done to experimentally compare actual implementations
of KDSs with existing packages providing time-step approaches.

Due to the extensive research interest in KDSs over the pas few years, KDSs have been
developed for a variety of structures. But still there are some structures that have not been
investigated. For instance, although there are some papers [11, 14, 32, 39] dealing with
kinetic binary space partitions, no research has been dedicated to design a kinetic BSP for
fat objects. It would be interesting if we could apply our technique in Chapter 4 to De
Berg’s algorithm [37] which produces a linear-size BSP for static fat objects. Kinetizing
quadtrees and BAR trees are other examples which need more investigation.

In a practical setting, objects may not follow algebraic trajectories or the explicit de-
scriptions of their trajectories are not known in advance. For example, in Chapter 6,
we considered a model of motions in which, instead of getting an explicit description of
the trajectory, we are getting a (possible infinite) stream of points describing consecutive
locations of the moving object. We showed how to maintain an approximation of the
trajectory of an object, if only limited storage is available. However, it would be also be
interesting to study other problems in this model. For example, assume we are given a
pattern path P of size m and we are getting a stream of points describing consecutive
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locations of the moving object. The goal is to find the maximum sub-path of P matching
the received path so far under assumption that a limited amount of memory is available.
As an application, when studying the migratory patterns of animals, one may want to
know how much the migratory patterns of animals are close to a specific pattern. Another
natural problem in this model is to consider a different error measure than the Fréchet (or
Hausdorff) distance, namely one that also takes into account the time at which the object
is at a certain position.
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[61] R.H. Güting, M.H. Böhlen, M. Erwig, C.S. Jensen, N.A. Lorentzos, M. Schneider,
and M. Vazirgiannis. A foundation for representing and querying moving objects.
ACM Trans. Database Syst., 25(1):1–42, 2000.

[62] S.L. Hakimi and E.F. Schmeichel. Fitting polygonal functions to a set of points in
the plane. CVGIP: Graph. Models Image Process., 53:132–136, 1991.

[63] D. Halperin and C. Shelton. A perturbation scheme for spherical arrangements
with application to molecular modeling. Computational Geometry: Theory and
Applications, 10:273–287, 1998.

[64] M. Herman. Fast, three-dimensional, collision-free motion planning. In Proc. IEEE
International Conference on Robotics and Automation, pages 1056–1063, 1986.

[65] J. Hershberger and J. Snoeyink. An o(n log n) implementation of the douglas-
peucker algorithm for line simplification. In Proc. ACM Symposium on Computa-
tional Geometry (SCG), pages 383–384, 1994.



112 References

[66] J. Hershberger and J. Snoeyink. Cartographic line simplification and polygon CSG
formulae and in o(nlog ∗ n) time. In Proc. Workshop on Algorithms and Data
Structures, pages 93–103, 1997.

[67] J. Hershberger and S. Suri. Kinetic connectivity of rectangles. In Proc. ACM
Symposium Computational Geometry (SCG), pages 237–246, 1999.

[68] H. Imai and M. Iri. Polygonal approximations of a curve-formulations and algo-
rithms. In Computational Morphology, pages 71–86, 1988.

[69] N. Jacobson. Basic Algebra I. W.H. Freeman, New York, 2nd edition, 1985.

[70] D. Johnson. Routing in ad hoc networks of mobile hosts. In Proc. Workshop on
Mobile Computing Systems and Applications, pages 158–163, 1994.

[71] M.J. Katz. 3-D vertical ray shooting and 2-D point enclosure, range searching,
and arc shooting amidst convex fat objects. Computational Geometry: Theory and
Applications, 8:299–316, 1998.

[72] D. Kim, L.J. Guibas, and S. Shin. Fast collision detection among multiple moving
spheres. IEEE Transactions on Visualization and Computer Graphics, 4(3):230–
242, 1998.

[73] H.K. Kim, L. Guibas, , and S.Y. Shin. Efficient collision detection among moving
spheres with unknown trajectories. Algorithmica, 43:195–210, 2005.

[74] D. Kirkpatrick, J. Snoeyink, and B. Speckmann. Kinetic collision detection for
simple polygons. International Journal of Computational Geometry and Applica-
tions, 12(1&2):3–27, 2002.

[75] D. Kirkpatrick and B. Speckmann. Kinetic maintenance of context-sensitive hier-
archical representations of disjoint simple polygons. In Proc. ACM Symposium on
Computational Geometry (SCG), pages 179–188, 2002.

[76] Y.-B. Ko and N.H. Vaidya. Location-aided routing (lar) in mobile ad hoc networks.
Wirel. Netw., 6(4):307–321, 2000.

[77] G. Kollios, D. Gunopulos, and V. Tsotras. Nearest neighbor queries in a mobile
environment. In Proc. Intl. Workshop on Spatiotemporal Database Managment,
pages 119–134, 1999.

[78] G. Kollios, D. Gunopulos, and V. Tsotras. On indexing mobile objects. In Proc.
ACM Symposium on Principles of Database Systems, pages 261–272, 1999.

[79] Y. Kunita, M. Inami, T. Maeda, and S. Tachi. Real-time rendering system of mov-
ing objects. In Proc. IEEE Workshop on Multi-View Modeling & Analysis of Visual
Scenes, pages 81–88, 1999.



References 113

[80] D. Lam, D. Cox, and J. Widom. Teletraffic modeling for personal communications
services. IEEE Communications Magazine, 35(2).

[81] K.K. Leung, W.A. Massey, and W. Whitt. Traffic models for wireless communica-
tion networks. IEEE Journal on Selected Areas in Communications, 12(8):1353–
1364, 1994.

[82] B. Liang and Z.J. Haas. Predictive distance-based mobility management for PCS
networks. In INFOCOM (3), pages 1377–1384, 1999.

[83] M.C. Lin and D. Manocha. Collision and proximity queries. In J.E. Goodman and
J. O’Rourke, editors, Handbook of Discrete and Computational Geometry, pages
787–807. CRC Press, 2nd edition, 2004.
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Summary

New Data Structures and Algorithms for Mobile Data

Recent advances in sensing and tracking technology have led researchers to investigate the
problem of designing and analyzing algorithms and data structures for moving objects.
One important issue in this area of research is which assumptions are made about the
motions of the objects. The most common model is one where motions are assumed to
be continuous and explicitly known in advance (or at least in the near future), usually
as polynomial functions of time. The kinetic-data-structure framework introduced by
Basch et al. is based on this model. It has become the common model for dealing with
moving objects in computational geometry.

A kinetic data structure (KDS) maintains a discrete attribute of a set of moving objects—
the convex hull, for instance, or the closest pair. The basic idea is that although all objects
move continuously there are only certain discrete moments in time when the combinato-
rial structure of the attribute—the ordered set of convex-hull vertices, or the pair that is
closest—changes. A KDS contains a set of certificates that constitutes a proof that the
maintained structure is correct. These certificates are inserted in a priority queue based
on their time of expiration. The KDS then performs an event-driven simulation of the
motion of the objects, updating the structure whenever an event happens, that is, when a
certificate fails.

In some applications, continuous tracking of a geometric attribute may be more than is
needed; the attribute is only needed at certain times. This leads us to view a KDS as a
query structure: we want to maintain a set S of moving objects in such a way that we can
reconstruct the attribute of interest efficiently whenever this is called for. This makes it
possible to reduce the maintenance cost, as it is no longer necessary to update the KDS
whenever the attribute changes. On the other hand, a reduction in maintenance cost will
have an impact on the query time, that is, the time needed to reconstruct the attribute. Thus
there is a trade-off between maintenance cost and query time. In Chapter 2, we show a
lower bound for the kinetic sorting problem showing the following: with a subquadratic
maintenance cost one cannot obtain any significant speed-up on the time needed to gen-
erate the sorted list (compared to the trivial O(n log n) time), even for linear motions.
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This negative result gives a strong indication that good trade-offs are not possible for a
large number of geometric problems—Voronoi diagrams and Delaunay triangulations, for
example, or convex hulls—as the sorting problem can often be reduced to such problems.

KDSs form a beautiful framework from a theoretical point of view, but whether or not
they perform well in practice is unclear. A serious problem for the applicability of the
KDS framework in practice is how to cope with the situation where event times cannot be
computed exactly and events may be processed in a wrong order. We addresses this prob-
lem in Chapter 3. We present KDSs that are robust against the out-of-order processing,
including kinetic sorting and kinetic tournaments. Our algorithms are quasi-robust in the
sense that the maintained attribute of the moving objects will be correct for most of the
time, and when it is incorrect, it will not be far from the correct attribute.

The aim of the KDS framework is not only maintaining a uniquely defined geometric
attribute but also maintaining a query data structure in order to quickly answer queries
involving objects in motion such as ”Which are the points currently inside a query rectan-
gle?”, or ”What is currently the nearest point to a given query point?”. In Chapter 4, we
study the kinetic maintenance of kd-trees which are practical data structures to quickly
report all points inside any given region. We present a new and simple variant of the
standard kd-tree, called rank-based kd-trees, for a set of n points in d-dimensional space.
Our rank-based kd-tree supports orthogonal range searching in time O(n1−1/d +k) and it
uses O(n) storage—just like the original. But additionally it can be kinetized easily and
efficiently. We obtain the similar results for longest-side kd-trees.

Collision detection is a basic problem arising in all areas of geometric modeling involving
objects in motion—motion planning, computer-simulated environments, or virtual proto-
typing, to name a few. Kinetic methods are naturally applicable to this problem. Although
most applications of collision detection are more concerned with three dimensions than
two dimensions, so far KDSs have been mostly developed for two-dimensional settings.
In Chapter 5, we develop KDSs for 3D collision detection that have a near-linear number
of certificates for multiple convex fat objects of varying sizes and for a special case of
balls rolling on a plane.

In a practical setting, the object motion may not known exactly or the explicit description
of the motion may be unknown in advance. For instance, suppose we are tracking one, or
maybe many, moving objects. Each object is equipped with a device that is transmitting
its position at certain times. Then, we just have access to some sample points of the object
path instead of the whole path, and an explicit motion description is unavailable. Thus,
we are just receiving a stream of data points that describes the path along which the object
moves. This model is the subject of Chapter 6. Here, we present the first general algo-
rithm for maintaining a simplification of the trajectory of a moving object in this model,
without using too much storage. We analyze the competitive ratio of our algorithms, al-
lowing resource augmentation: we let our algorithm maintain a simplification with 2k
(internal) points, and compare the error of our simplification to the error of the optimal
simplification with k points.
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