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Transient analysis is an important circuit simulation technique. The circuit model, which is a system of
differential-algebraic equations, is solved for a given initial condition using numerical time integration tech-
niques. Multirate methods are efficient if the dynamical behaviour of the circuit model is not uniform.
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1 Introduction

Analog electrical circuits are usually modelled by differential-algebraic equations of the following type

< Laex] +i(6%) = 0, m
where x € R? represents the state of the circuit. A common analysis is the transient analysis, which computes
the solution x(t) of this non-linear DAE along the time interval [0, 7] for a given initial state. In the Philips
analog simulator Pstar, this initial value problem is solved by means of an implicit integration method, such as
the variable order, variable time step BDF method.

Often, parts of electrical circuits have various time behaviour, i.e. different time scales. This characteristic can
be exploited in order to increase the simulation speed without decreasing the required overall accuracy.

2 Multirate time integration

In contrast to classical (single-rate) T,
integration methods, multirate time
integration methods integrate differ-
ent parts of the circuit by using dif-
ferent step sizes or even different nu-

tn,O = tn—l,qn

merical schemes. Besides the coarse Hn L A

time-grid, defined by {T},,0 < n <

N} with stepsizes Hy, = Ty, — Th—1, P
arefined time-grid {t,,—1,m,1 <n < hn’—l 1
N,0 < m < g,} is also used with Tn N [ tn1,0
stepsizes hp,m = tn,m — tn,m—1 and L interface

multirate factors g,. If the two time-
grids are synchronized, T}, = tp 0 =
tn—1,q, holds for all n.
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3 Partitioning

For a multirate method it is necessary to partition variables and equations into an active (A) and a latent (L)
part. We define By € R% %4 and By, € Rz *?, with d4 + dr, = d, to be the partitioning matrices satisfying
BABZ; =1, BLBE =1, BAB}: =0, BLBZ; = 0. Then the variables can be split into an active (A) and a latent
(L) partas x = Bz;x A+ fo L, allowing us to transform the equation (1) into the following partitioned system

d .
% [qL(taanxL)] +JL(t7 XAaxL) =0, 2

d .
a [qA(taXAaXL)] +-]A(t7XA3XL) =0. (3)

Of course, it is also possible to extend these partitions by introducing more than two sub-systems, corresponding
to various time scales.

The partitioning can be done by the user or automatically. Since the number of unknowns in modern circuits
varies from several hundreds up to tens of thousands, it is clear that obtaining the permutation matrices B 4
and Bz, requires a significant effort. In Figure 1 the automatic dynamical partitioning principle is shown. The
simulation starts with a standard single-rate integration, during which the information about the circuit behaviour
is obtained. At a certain time point, where the multirate conditions (small part of the circuit changes more rapidly
than the rest) are satisfied, the partitioning process is activated and the multirate time integration is initiated. If
the multirate behaviour is lost after a time period, the time integration is switched back to the standard single-rate
one and the new error data is started to be collected and analysed. The algorithm repeats this procedure until the
end of the simulation.
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Fig.1 Automatic dynamical partitioning of the circuit.

4 BDF Compound-Fast multirate algorithm

There are several multirate approaches for partitioned systems (see [1, 2, 3, 5, 6]) but we will consider the
Compound-Fast version of the variable order BDF method, introduced in [4]. This method can be summarised
by the following four steps.

1. Compound step. During the compound step the complete system (1) is integrated at the coarse time-grid by
means of BDF time discretisation. Hence we solve

On Q(Tnaxn) + Hnj(Tnaxn) +b, =0, “4)

where by, is a vector that represents the history of the numerical integration and a,, is a parameter that
depends on the variable step (H,,) and the BDF order (k) and it is defined by a,, = H, an:1 m

2. Interpolation of the interface. The latent interface variables (i.e. interface currents in our approach, although
voltages can also be used) are interpolated at the refined time-grid. Clearly, various interpolation techniques
can be used, e.g. piecewise interpolation methods. Natural choice of the interpolation method and the order
mainly depends on the integration order, corresponding to the available data history.
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3. Refinement phase. The active part is integrated at the refined time-grid by the variable order BDF scheme.
In fact, during the refinement phase, we solve a new initial value problem for a much smaller perturbed
DAE (3). It solves for each time-point ¢,,_1 , the nonlinear equation

A ~T . A ~T
An—1,m qA(tn—l,”%anl,mJ anl,m) + hn—1,m ja(tn—1,m, Xn—1,m> anl,m) +br1m =0, (5

where x4 denotes active unknowns only and fcfb_L m 18 the vector of the interpolated latent interface currents

at t,,—1,m, 1.e. interpolated values of the latent unknowns coupled to the active part.

4. Active unknowns update. The active part of the solution and corresponding electrical variables (derived
from the active unknowns) at the coarse time-grid are updated by the refined values.

S Adaptive multirate step size control
Adaptive stepsize control of H,, and hy_1 ,, can be used to ensure

r¢ < TOLg, 14

n—1,m

< TOLy4, (6)

for every n and m. Here r§ := ||[BLr$|| + 7||BarS|| represents the weighted local discretisation error (LDE)

norm of the compound circuit in which r¢ is the vectorial LDE norm. The factor 7 € [0, 1] is used to relax the
active part of the LDE norm allowing larger compound time-steps. The value T£—1,m represents the refinement
LDE norm and TOL ¢, TOL 4 are given compound and refinement tolerances respectively.

Since the interface of two circuit parts is interpolated, the interpolation error norm, say r{b, has to be estimated
and included in the time-step control. Clearly, this estimate depends on the previous compound steps (the inter-
polation is performed on the coarse time grid) and on the type and the order of the interpolation method used.

Hence the step size controller can be defined by

=1 =1 T
. TOL k+1 TOL \ *+1 TOL
Hn+1 = 0 min { ( T-CC> 3 ( I) } Hn; hn—l,m+1 = 0 ( A A ) hn—l,m; (7)

I
n ™n n—1,m

where 6 € (0,1) is a safety factor and TOL represents the defined tolerance of the interpolation error. Of course,
all above mentioned tolerances can have the same value. In [7] more details are given about how control theory
can be applied to design proper stepsize controllers.

6 Numerical results

The implementation of the multirate time integration algorithm in Pstar, allows us to obtain results for various
circuits. We consider some theoretical examples, designed to meet multirate conditions, such as the linear chain
and the matrix circuit shown in Figures 2a and 2b respectively. Moreover, we consider two practical examples,
coming from the actual circuit design, the high-speed operational transconductance amplifier (HSOTA) and the
charge pump, see Figures 2c and 2d. The linear chain circuit consists of two sources of various frequencies (ratio
500), a small active nonlinear part, a filter to electrically decouple two parts and a large resistance chain (1000
models) that increase the size of the latent part and yet do not affect the dynamical behaviour. Since the circuit
satisfies multirate conditions to a large extent, the speed-up factor (as compared to the single-rate performance)
is relatively large. The matrix circuit has similar properties, and contains 5x 10 digital inverters and sources of
various frequencies (ratio 100). In HSOTA and the charge pump circuits there are relatively large bias blocks
that have practically constant dynamics, allowing small numbers of compound steps. Numerical results are
summarised in Table 1. One should note that the speed-up factor depends on the dynamical behavior as well as
the partition sizes. The latter causes smaller speed-up factors for HSOTA and the charge pump circuits, although
they have an even more appropriate multirate time behaviour (compare columns for N¢ and Ng).

Acknowledgements The authors would like to thank the circuit designers Mr. Govert Geelen (HSOTA) and Dr. Marq Kole
(charge pump) from Philips, for allowing us to use their designs.
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Fig. 2 Circuit examples.

Table 1 Numerical results. Notation: d- number of unknowns, N¢- number of compound steps, Ng- number
of refinement steps, Ns- number of single-rate steps, d 4- number of active unknowns, S- speed-up factor.

Circuit name d Nc Ng Ng da/d S
Nonlinear chain 2010 303 16732 9588  0.7% 10-12
Matrix circuit 277 71 2810 2018 7% 13
HSOTA 61 68 14092 14068 50% 1.6-2
Charge pump 249 151 10284 7419 12% 4-45
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