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1 Motivation

The motivation behind this work is to be able to add more functionality to the
existing theory of “Process Algebra for hybrid Systems”(ACP srt

hs )[5]. A hybrid
process is one in which continuous state changes of the environment variables
are combined with the discrete actions of the process. ACP srt

hs provides the
operators and semantics with the help of which we can describe the environment
dependent (discrete and continuous) behaviour of a hybrid system. It is an
extension of process algebra with propositional signals (ACPps) from [1] and
process algebra with standard relative timing (ACP srt) from [2].

Recently formal description of hybrid systems has attracted a lot of interest
especially in the field of embedded system software as many embedded systems
are in fact hybrid in nature. As a consequence, a number of hybrid process
algebraic and hybrid automata theories have been developed. Examples are
Hybrid Automata [6], Hybrid I/O automata [7], HyPA [10], Hybrid Chi [11],
φ-Calculus [9], and hybrid CSP [8].

In this report, we propose a graph model for BPAsrt
hs , the basic process

algebra for hybrid systems (i.e. process algebra without parallelism and com-
munication, see [5]). Our aim is to correctly specify the “signal hiding” operator.
The signal hiding operator hides some effects of a given environment variable
from the behaviour of a hybrid system. This makes it easier to study a desired
property of the system regarding its discrete actions and delays. We give below
some examples of the phenomena of signal hiding.

Consider a Candy machine that asks its customer to enter his or her name.
If the name starts with a vowel (i.e. ‘a’,‘e’,‘i’,‘o’,‘u’,‘y’), it gives its customer a
bounty, otherwise if the name starts with a consonant, it gives a snickers. The
BPAsrt

hs specification of the candy machine will be as follows:

Candy machine = enter name·
(( first letter is a vowel) :→ give bounty +
(first letter is a consonant) :→ give snickers)

On hiding the environment variable name, the Candy machine will behave as
the process,

enter name · (give bounty + give snickers);

and its not visible anymore how the choice between bounty and snickers is
determined.

Similarly consider a process with an arbitrary delay, where the duration of
the delay is controlled by some environment variable. We name this process as
P and the concerned variable as l.

P = (l = 0) ∧N (l̇ = 0.5) ∩Hl σ∗rel((l = 5) :→ ˜̃a).

At the start of the process, the value of l is zero (symbolized by (l = 0)∧N). The
variable continuously evolves according to the equation l̇ = 0.5 ( represented
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by (l̇ = 0.5)∩Hl). P can delay for any time t ∈ [0,∞) (represented by σ∗rel). At
the end of the delay, if the value of l is 5, action a is performed (symbolized by
(l = 5) :→ ˜̃a).

According to the operational semantics of BPAsrt
hs , we conclude that process

P can either perform action a after 10 time units or delay indefinitely. When
we hide the variable l from P , the process becomes equivalent to σ10

rel (˜̃a) + δ,
that can also perform action ˜̃a after 10 time units or delay indefinitely. We see
that after signal hiding, we retain the information of the duration of the delay.

The structure of the report is as follows. First we explain the concept of
signal hiding in ACP srt

hs and give its axioms and first operational semantic
rules. We describe the problem in the original operational semantic rules with
the help of an example of a thermostat. We also point out the difficulties faced
while designing operational semantic rules for the signal hiding operator (as
defined in ACP srt

hs ). We propose a graph model for basic process algebra for
hybrid systems as a solution to these problems. In Section 5, we give a detailed
description of our graph model. Later, we add signal hiding and integration to
our graph model and define the notion of bisimulation in it. We come back to
the example of a thermostat to assert our claim that the problems faced in the
earlier semantic model for signal hiding do not appear in the graph model. In
Section 9, we give soundness proofs for some BPAsrt

hs axioms in our model.
We include the axioms and operational semantic rules of BPAsrt

hs (from [5])
in the appendix.

2 Signal Hiding

The concept of signal hiding was first introduced in [1]. While developing
ACP srt

hs , signal hiding was initially included in the theory (see [3]) but was
later removed (Signal hiding is not included in [5]). The reason for its removal
was that, under the operational semantics given in [3], the signal hiding oper-
ator did not preserve bisimulation, i.e. two bisimilar processes did not always
remain bisimilar after applying signal hiding with respect to a certain environ-
ment variable (see Section 4 for more details). It was realized that a more de-
tailed semantics of BPAsrt

hs is required for correctly specifying the signal hiding
operator (see [5], section 3.3). The work on signal hiding was further developed
than given in [3] but was not published. The axioms and operational semantic
rules of signal hiding have been taken from [3], and the lifting rules (described
later in this section) are taken from its (unpublished) later version.

We define the concept of signal hiding as follows:
Let P be a process and v be an environment variable. The process v4P

denotes the signal hiding of P with respect to v. The behaviour of v4P is the
same as that of P except that its behaviour no longer depends on the values of v
and its derivative v̇. That roughly means that at any stage, the behaviours that
are possible in a given state, become possible after hiding, in all those states as
well that differ only in their values of v and v̇ from the given state. (A state
assigns values to the environment variables (see section 5)). It is to be noted

8



that while applying signal hiding, we want to put an additional constraint of
not loosing the effect of the hidden variable on the duration of delays in P .

The signal hiding operator, 4, is also extended to state and transition propo-
sitions. A state proposition is a proposition concerning the state of a process.
Let V be the set of all environment variables and V̇ be the set consisting of their
derivatives. Then a state proposition ψ is a proposition on variables from set
V ∪V̇ . A transition proposition is a proposition regarding the states of a process
immediately before and after an action or delay. We introduce two new sets •V
and V •, for denoting values of variables (and their derivatives), immediately
before and after an action or delay. A transition proposition χ is a proposition
on variables from •V ∪ V •.

If ψ is a state proposition, then the signal hiding of ψ with respect to a
variable v ∈ V , written v4ψ, is the proposition ψ with the dependence of its
satisfaction on the values of v and v̇ removed. That is if ψ holds in a state
called α, then v4ψ holds in α, and in every state that differs from α only in
its values of v and v̇. Similarly, let χ be a transition proposition. Then v4χ is
the transition proposition χ with dependence of its satisfaction on the values of
•v, •v̇, v•, v̇• removed.

2.1 Structural operational semantic rules for signal hiding

Here we give the operational semantic rules for the signal hiding operator as
defined in [3].

For any states α and α′, we write α =v α′, to indicate that α and α′ may
differ from each other only in the values of variables v and v̇. For two state
evolutions ρ and ρ′ over the interval [0, r], we write ρ =v ρ′ to indicate that at
any instant during [0, r], ρ may differ from ρ′ only in the values of v and v̇.

Table 1: Operational Semantic rules for signal hiding (a ∈ A, r > 0)

〈x, α〉 a−→ 〈x′, α′〉
〈v4x, α∗〉 a−→ 〈v4x′, α′∗〉 α∗ =v α, α′∗ =v α′ Rule1

〈x, α〉 a−→ 〈√, α′〉
〈v4x, α∗〉 a−→ 〈√, α′∗〉 α∗ =v α, α′∗ =v α′ Rule2

〈x, α〉 r,ρ7−−→ 〈x′, α′〉
〈v4x, α∗〉 r,ρ∗7−−−→ 〈v4x′, α′∗〉

α∗ =v α, α′∗ =v α′, ρ∗ =v ρ Rule3

α∈ [s(x)]

α∗ ∈ [s(v4x)]
α∗ =v α Rule4

These rules are defined on pairs of BPAsrt
hs terms and states, called config-

urations.
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Four different kinds of transition relations are defined: (where t, t′ are BPAsrt
hs -

terms, α, α′ represent states of the environment variables, a is an action, r is a
non-zero time duration and ρ, also called a state evolution, gives states of the
environment variables in the duration [0, r].)

1. 〈t, α〉 a−→ 〈t′, α′〉: known as an action step represents that in state α, t is
capable of first performing action a and then proceeding as process t′ in
state α′;

2. 〈t, α〉 a−→ 〈√, α′〉: known as a termination step represents that in state α,
t is capable of first performing action a and then terminating in state α′;

3. 〈t, α〉 r,ρ7−−→ 〈t′, α′〉: known as a time step represents that in state α, t
is capable of first idling for r time units during which the state evolves
according to ρ and then proceeding as t′ in state α′;

4. α∈ [s(t)]: known as the signal relation indicates that in state α, the signal
emitted by process t holds.

The signal relation needs more explanation. In ACPps [1], the state of a
process is made visible to some extent with the help of state propositions. In
ACPps, a process may require that a certain proposition regarding the environ-
ment variables must hold for the process to behave as defined. Such a proposi-
tion is called the signal emitted by a process. The rules defining satisfaction of
signal relations are given in the appendix in table 9.

In [12], congruence formats of operational semantic rules for different kinds of
bisimilulations are defined. Two kinds of bisimulations are defined in BPAsrt

hs .
One is simply called a bisimulation and the other is known as “Interference
compatible bisimulation”, abbreviated as ic-bisimulation. A bisimulation relates
two configurations (a configuration is an ordered pair of a BPAsrt

hs process term
and a state) that have the same states, if their behaviours match according
to the operational semantic rules of BPAsrt

hs . An ic-bisimulation relates two
process terms if their behaviours match when compared in all states and this
property is reflected in all the subsequent pairs of terms obtained as a result
of matching transitions. (For definitions of bisimulation and ic-bisimulation see
the appendix). The concept of bisimulation is the same as the definition of
state-based bisimilarity in [12] and the concept of ic-bisimulation matches that
of stateless bisimilarity.

Ic-bisimulation is a more restrictive notion of equivalence than desired in a
model for hybrid processes. BPAsrt

hs axioms HST5, HST14 and lifting rules of
BPAsrt

hs HSELR2 and HSELR3 are not sound under ic-bisimulation.
These axioms are essential for deriving many useful results about hybrid

processes, therefore in BPAsrt
hs bisimulation is a preferred equivalence over ic-

bisimulation.
The congruence format for stateless bisimilarity defined in [12] is known as

process-tyft format, which is given as follows:
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Let (Σp, Σd, L, D(Rel)) be a transition system specification. A deduction
rule in D(Rel) is in process-tyft format if it is of the form

{(ti, ui)
li−→ri

(yi, u
′
i)|i ∈ I}

(f(x0, . . . , xn−1), u) l−→r (t′, u′)
,

where I is a set of indices, r ∈ Rel, l ∈ L, f ∈ Σp is a process function of arity
n, the variables x0, . . . , xn−1 and yi (i ∈ I) are all distinct variables from Vp,
and, for all i ∈ I: ri ∈ Rel , li ∈ L, ti, t

′ ∈ T (Σp) and u, u′, ui, u
′
i ∈ T (Σd).

We name the set of process variables appearing in the left-hand-side of the
conclusion Xp and in the right-hand-side of the premises Yp. The two sets Xp

and Yp are obviously disjoint following the requirements of the format.
Looking at the semantic rules Rule 1 to Rule 3, in Table 1, we realize that

they are in process-tyft format. Thus for ic-bisimulation or stateless bisimilarity,
the signal hiding operator is a congruence in the current semantics.

For state-based bisimulation, more restrictions on the operational semantic
rules besides the process-tyft standard apply in order for bisimulation to be a
congruence. The resulting format is known as sfsb (for standard format for
state-based bisimilarity).

A deduction rule is in the sfsb format if it is in process-tyft format and
satisfies the following data-dependency constraints:

1. If a variable x ∈ Xp appears in t′, then u′ = u;

2. If a variable yi ∈ Yp appears in t′, then u′ = u′i;

3. If a variable x ∈ Xp appears in some ti, then ui = u;

4. If a variable yi ∈ Yp appears in some tj (j ∈ I), then uj = u′i.

Looking at the semantic rules Rule 1 to Rule 3, in Table 1, we see that data-
dependency constraint 2 and 3 are being violated. Thus congruence of bisimu-
lation for signal hiding cannot be proved on the basis of the format. Later on,
we give a counter example to show that bisimilarity actually is not a congruence
for signal hiding.

2.2 Axioms of signal hiding

The axioms concerning the signal hiding operator as defined in [3] are given in
Table 2.

We briefly describe the symbols of BPAsrt
hs , given in table 2, so that the user
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Table 2: Axioms for signal hiding (a ∈ Aδ)

v4⊥ = ⊥ HSH1
v4(ψ ∧N ˜̃δ) = (v4ψ) ∧N ˜̃δ HSH2
v4(ψ ∧N (χ uH ˜̃a)) = (v4ψ) ∧N ((v4(•ψ ∧ χ)) uH ˜̃a) HSH3
v4(ψ ∧N (χ uH ˜̃a · x)) = (v4ψ) ∧N ((v4(•ψ ∧ χ ∧ sρ(x)•)) uH ˜̃a · (v4x)) HSH4
v4(x + y) = v4(sρ(x + y) ∧N x) + v4(sρ(x + y) ∧N y) HSH5
v4(v′4x) = v′4(v4x) HSH6
v4(

∫
u∈U

F (u)) =
∫

u∈U
(v4(sρ(

∫
u∈U

F (u)) ∧N F (u))) HSH7

v is a variable, ψ is a state proposition, χ is a transition proposition and Aδ stands
for the set of all actions including the deadlock process (δ).

can develop some understanding of the axioms.

⊥ Non-existence process
A process that emits a signal that cannot hold in any state

˜̃a Undelayable action
An action that performs instantaneously without delay

˜̃δ Undelayable Deadlock Process
A process that deadlocks without delay

ψ ∧N x Process x emits signal ψ

χ uH ˜̃a Action ˜̃a is performed in such a way that χ is true
e.g. (v• = •v − 1) uH ˜̃a means that after doing action ˜̃a,
the value of v decrements.
v• stands for value of v after doing ˜̃a
•v is the value of v before doing ˜̃a∫

u∈U
F (u) An alternative composition between process expressions F (u),

for all values of variable u in U
sρ(x) The root signal of x

sρ(x) is a state proposition. It is the signal emitted by x

sρ(
∫

u∈U
F (u))

∧
u∈U sρ(F (u))

•ψ •ψ is a transition proposition, whereas ψ is a state proposition.
When written as •ψ uH (x), it means process x can only start doing
action or delays, if the system is in a state where ψ is true.
If ψ is false, •ψ uH (x) = ˜̃δ.
For ψ = (v = 3), we have •ψ = (•v = 3)

ψ• ψ• is a transition proposition. When written as ψ• uH (˜̃a),
it means action ˜̃a is performed in such a way that

after performing a, ψ becomes true.
For ψ = (v = 3), we have ψ• = (v• = 3)

12



Roughly it can be said that the axioms show that the signal hiding operator
can be distributed over process terms and propositions. At the right hand side
of axioms HSH3 and HSH4, hiding is applied to the conjunction of •ψ, χ
and sρ(x)•. This is because dependencies may exist between •ψ, χ and sρ(x)•,
because of variables v and v̇. After signal hiding, we want to retain the effect
of these dependencies in the process v4(ψ ∧N (χ uH ˜̃a · x)).

For example, let ψ be (v > 3), χ be (v• = •v + 1) and sρ(x) be (v < 3).
Then the proposition,

•ψ ∧ χ ∧ sρ(x)• = (•v > 3) ∧ (v• = •v + 1) ∧ (v• < 3)

can never be satisfied. Thus in process ψ ∧N (χ uH ˜̃a · ((v < 3) ∧N ˜̃b)), action ˜̃a can
never be performed. While applying signal hiding, if we hide v in individual
propositions then we get true ∧N(true uH ˜̃a ·(true ∧N ˜̃b)). By taking the conjunction
of •ψ, χ and sρ(x)•, and applying signal hiding on •ψ ∧ χ ∧ sρ(x)•, we keep
the effect of this dependency. By axiom HSH4, (ψ and χ are as defined above),

v4(ψ ∧N (χ uH ˜̃a · ((v < 3) ∧N ˜̃b))) = true ∧N (v4(false) uH ˜̃a · (true ∧N ˜̃b))
= true ∧N (false uH ˜̃a · (true ∧N ˜̃b))
= true ∧N ˜̃δ.

A proposition ψ after signal hiding is true if and only if there exists an
assignment of variables v and v̇ to real numbers for which ψ is true. i.e., let
ψ[r, r′/v, v̇] denote the proposition with v and v̇ replaced by some real values r
and r′ respectively, then

v4ψ ⇔ ∃r, r′ ∈ R • ψ[r, r′/v, v̇].

2.3 Lifting Rules of signal hiding

In addition to axioms, there are lifting rules in BPAsrt
hs . According to these

rules, results of real analysis on environment variables can be incorporated in
equations about process terms. In a later version of [3], two lifting rules are
defined for the signal hiding operator, which are given in Table 3.

These lifting rules indicate when signal hiding operator can be distributed
over propositions and other operators in a delayable process term. The two
rules cater for different continuity requirements of the variable to be hidden in
the delay interval. The rule HSHLR1 is for the case when signal hiding with
respect to a variable v, is applied to a process that requires v to be infinitely
often continuously differentiable in the delay interval. Whereas rule HSHLR2
is for the case when signal hiding is applied to a process, that requires v only
to be piecewise infinitely often continuously differentiable during the delay.

We explain here different terms used in the rules. MT is the name given
to a mathematical theory used for doing real analysis on environment or state
variables in BPAsrt

hs . In MT , each state variable is interpreted as a real valued
function of an interval I in R≥, that is infinitely often piecewise continuously
differentiable in I.
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Table 3: Lifting rules for signal hiding (r > 0)

V ∪ {v} ⊆ C∞[0, r], ψ′′ ↔ sρ(x) `MT

∃f ∈ C∞[0, r] •((v4ψ)(0) → ψv
f (0)) ∧ ((v4ψ′)(0) → ψ′vf (0))∧

(∀t ∈ [0, r] • (v4φ)(t) → φv
f (t)) ∧ ((v4ψ′′)(r) → ψ′′vf (r))

v4(ψ ∧N (ψ′ :→ (φ ∩HV∪{v} σr
rel(νrel(x))))) =

(v4(ψ ∧ (ψ′ → φ))) ∧N (v4(ψ ∧ ψ′ ∧ φ)) :→ ((v4φ) ∩HV\{v} σr
rel(v4νrel(x)))

HSHLR1

V\{v} ⊆ C∞[0, r], ψ′′ ↔ sρ(x) `MT

∃f ∈ PC∞[0, r] •((v4ψ)(0) → ψv
f (0)) ∧ ((v4ψ′)(0) → ψ′vf (0))∧

(∀t ∈ [0, r] • (v4φ)(t) → φv
f (t)) ∧ ((v4ψ′′)(r) → ψ′′vf (r))

v4(ψ ∧N (ψ′ :→ (φ ∩HV\{v} σr
rel(νrel(x))))) =

(v4(ψ ∧ (ψ′ → φ))) ∧N (v4(ψ ∧ ψ′ ∧ φ)) :→ ((v4φ) ∩HV\{v} σr
rel(v4νrel(x)))

HSHLR2

ψ, ψ′ and ψ′′ are state propositions. A state proposition, for example ψ,
after signal hiding is true if and only if there exists an assignment of variables
v and v̇ to real numbers for which ψ is true. i.e., let ψ[r, r′/v, v̇] denote the
proposition with v and v̇ replaced by some real values r and r′ respectively,
then

v4ψ ⇔ ∃r, r′ ∈ R • ψ[r, r′/v, v̇].

In the lifting rules, we use ψv
f as an abbreviation for ψ[f, ḟ/v, v̇], where f is

a real valued function of an interval in R≥. We write f ∈ C∞[0, r], to indicate
that f (and ḟ) are infinitely often continuously differentiable in the interval
[0, r]. We write f ∈ PC∞[0, r], to indicate that function f (and ḟ) are infinitely
often piecewise continuously differentiable in the interval [0, r].

For example, in HSHLR1, the statement

∃f ∈ C∞[0, r] • ((v4ψ)(0) → ψv
f (0)),

means that at the start of the process, proposition ψ after hiding can only be
true, if there exists a real valued function f that is infinitely often continuously
differentiable in [0, r], and ψ holds when v and v̇ in it are replaced by f(0) and
ḟ(0).

In the conclusion of HSHLR1, signal hiding with respect to variable v, is
applied to a process term ψ ∧N (ψ′ :→ (φ ∩HV∪{v} σr

rel(νrel(x)). ψ is the signal emit-
ted by the process. ψ′ is the proposition of the conditional guarding the term
φ ∩HV σr

rel(νrel(x)), where φ ∩HV σr
rel(νrel(x)) is the delaying part of the process. In

BPAsrt
hs , ∩H is known as the signal evolution operator. It assigns a state propo-

sition and a set of environment variables to the delay interval. The evolution
operator requires that φ ∩HV σr

rel(νrel(x)) can only delay, under the conditions
that state proposition φ holds during the complete duration of the delay and
variables in the set V ∪ {v}, remain infinitely often continuously differentiable.
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σr
rel indicates a delay interval of r time units in the setting of relative timing.

Process term (φ∩HV∪{v}σr
rel(νrel(x)), evolves into νrel(x), (where x is any BPAsrt

hs

process), after delaying for r time units. The process term νrel(x) is a process
term that behaves as x, but with all initial delays removed from x. Thus νrel(x)
can only perform actions in the beginning. Because of the continuity require-
ments of the variable v in the delay interval, the lifting rules are applicable to
processes with definite delays.

ψ′′ is the name given to the root signal of a process x, i.e., to sρ(x). The root
signal of a process is the signal emitted by it. For signal relations, see section
2.1 and Table 9. The root signal of νrel(x) is true in a state if and only if the
root signal of x is true in that state.

α∈ [s(x)] ⇐⇒ α∈ [s(νrel(x))]

The statement

ψ′′ ↔ sρ(x) `MT

∃f ∈ C∞[0, r] • ((v4ψ′′)(r) → ψ′′vf (r)),

means that after a delay of r time units, the root signal of x after signal hiding,
is true if there exists a real valued function f that is infinitely often continuously
differentiable in [0, r], and root signal of x holds when v and v̇ in it are replaced
by f(r) and ḟ(r).

In HSHLR2, signal hiding with respect to variable v, is applied to the
process ψ ∧N (ψ′ :→ (φ ∩HV∪{v} σr

rel(νrel(x)). The variable set V, that must remain
infinitely often continuously differentiable in interval [0, r], excludes variable v.
Therefore, in the premise of HSHLR2, the continuity requirements on function
f require it to be piecewise infinitely often continuously differentiable in [0, r].

The conclusions to the two rules indicate that after signal hiding, we want
to retain the effect of any dependencies because of variables v and v̇ among
propositions ψ, ψ′ and φ. That is why for example, the conditional proposition
after signal hiding is v4(ψ ∧ ψ′ ∧ φ). After signal hiding, the two processes
in the rules, delay in [0, r] according to proposition v4φ, i.e. without regard to
the trajectory followed by v. Also in HSHLR1, after hiding, v is not required
to be infinitely often continuously differentiable during the delay.

3 An Example: Thermostat

We give here the example of a thermostat given in [5].
A thermostat controls the heating of a room. Initially the temperature is

18◦ and the heating is on. The temperature (denoted by T ) rises according to
the equation Ṫ = −T + 22. When it reaches 20◦, heating is turned off. The
temperature of the room then falls according to the equation Ṫ = −T + 17.
When it reaches 18◦, the heating is again turned on and the process repeats
itself.
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A BPAsrt
hs specification describing the thermostat is given below:

Th = (T = 18) ∧N (Thon),
Thon = (18 ≤ T ≤ 20 ∧ Ṫ = −T + 22)∩HT

σ∗rel((T = 20) :→ (T • = •T ) uH ˜̃toff · Thoff ),
Thoff = (18 ≤ T ≤ 20 ∧ Ṫ = −T + 17)∩HT

σ∗rel((T = 18) :→ (T • = •T ) uH ˜̃ton · Thon);

where σ∗rel(x) is an abbreviation for
∫

u∈[0,∞)
σu

rel(x), i.e., an alternative composi-
tion of σu

rel(x) for all u ∈ [0,∞). σ∗rel represents an indefinite delay (including a
delay of zero duration) before a process.

(T • = •T ) is required here to ensure that the temperature remains constant
when the actions ˜̃ton and ˜̃toff are performed. T under the curved arrow,
in (18 ≤ T ≤ 20 ∧ Ṫ = −T + 22)∩HT and (18 ≤ T ≤ 20 ∧ Ṫ = −T +
17)∩HT , indicates that the temperature and its derivative Ṫ , are infinitely often
continuously differentiable during the delays.

Now consider another process definition Th′ that defines the same thermo-
stat as follows,

Th′ = (T = 18) ∧N (Th′on),
Th′on = (18 ≤ T ≤ 20 ∧ Ṫ = −T + 22)∩HT

σln2
rel ((T • = •T ) uH ˜̃toff · Th′off ),

Th′off = (18 ≤ T ≤ 20 ∧ Ṫ = −T + 17)∩HT
σln3

rel ((T • = •T ) uH ˜̃ton · Th′on).

We compare the behaviours of Th and Th′ in the operational semantic rules of
BPAsrt

hs .
There are two kinds of bisimulations in BPAsrt

hs . One is simply called a
bisimulation and the other is known as “Interference compatible bisimulation”,
abbreviated as ic-bisimulation. A bisimulation relates two configurations (a
configuration is an ordered pair of a BPAsrt

hs process term and a state) that
have the same states, if their behaviours match according to the operational
semantic rules of BPAsrt

hs . An ic-bisimulation relates two process terms if their
behaviours match when compared in all states and this property is reflected in
all the subsequent pairs of terms obtained as a result of matching transitions.
(See the appendix for the definitions of bisimulation and ic-bisimulation).

Under the operational semantic rules of BPAsrt
hs , 〈Th, 18〉 is bisimilar to

〈Th′, 18〉, denoted by 〈Th, 18〉 ↔ 〈Th′, 18〉, but Th is not ic-bisimilar to Th′,
denoted by Th 6↔ Th′. The operational semantic rules of BPAsrt

hs and the proof
that 〈Th, 18〉 ↔ 〈Th′, 18〉 are given in the appendix. Here we give a proof that
Th 6↔ Th′.

Let (18 ≤ T ≤ 20 ∧ Ṫ = −T + 22) be denoted by up. We rewrite Thon and
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Th′on as,

Th = (T = 18) ∧N Thon,
Thon = up ∩H

T Thon
0 ,

Thon
t =

∫
u∈[t,∞)

σu−t
rel (Th→),

Th→ = (T = 20):→
(T • = •T ) uH ˜̃toff · Thoff

Th′ = (T = 18) ∧N Th′on,
Th′on = up ∩H

T Th′on
0 ,

Th′on
t = σln2−t

rel (Th′→),
Th′→ = (T • = •T ) uH ˜̃toff · Th′off

where t ∈ [0,∞] and q ∈ [0, ln2].
In Thon

t and Th′on
t , t indicates how much time is spent since the start of the

process. Note for any t ∈ R≥, Thon
t =

∫
u∈[0,∞)

σu
rel(Th→) = σ∗rel(Th→).

Th has an indefinite delay, which is controlled by the proposition up and
the conditional T = 20. Whereas Th′ has a definite time delay of ln2 time
units. According to the operational semantics of BPAsrt

hs , starting from 18◦

and evolving according to the same proposition up, the two thermostats reach
temperature 20◦ at time ln2, at which both Thon and Th′on perform action
˜̃toff .

Consider some instant say ln(4/3) ∈ (0, ln2). Starting from 18◦ and evolving
according to the same proposition up, the two thermostats reach temperature
19◦ at time ln(4/3),

Consider process terms up ∩H
T Thon

ln4/3 and up ∩H
T Th′on

ln4/3.

up ∩H
T Thon

ln4/3 = up ∩H
T

∫
u∈[ln4/3,∞)

σ
u−ln4/3
rel (Th→)

= up ∩H
T σ∗rel(Th→)

and
up ∩H

T Th′on
ln4/3 = up ∩H

T σ
ln2−(ln4/3)
rel (Th′→)

= up ∩H
T σ

ln3/2
rel (Th′→).

At temperature 19, up ∩H
T Thon

ln4/3 will wait the same amount of time as up ∩H
T

Th′on
ln4/3, i.e., ln(3/2) time units, before performing action toff. (See the proof

of 〈Th, 18〉↔ 〈Th′, 18〉).
But up ∩H

T Thon
ln4/3 behaves differently than up ∩H

T Th′on
ln4/3 at states other

than 19. For example at temperature 20◦, up ∩H
T Thon

ln4/3 can perform action
˜̃toff , whereas up ∩H

T Th′on
ln4/3 cannot.

From rules {24,3,18,27,16,1} of table 8 and rule 1 of table 10,

〈up ∩H
T Thon

ln4/3, 20〉 toff−−−→ 〈up ∩H
T Thoff , 20〉,

where 〈up ∩H
T Th′on

ln4/3, 20〉 6 toff−−−→;

Thus process Th and Th′ are not ic-bisimilar.

17



4 Problems in Signal hiding

4.1 Bisimulation is not preserved by signal hiding

As briefly described in section 2.1, the problem with signal hiding is that under
the operational semantics given in [3], bisimulation is not preserved by signal
hiding, i.e. two BPAsrt

hs processes that are bisimilar before, do not always
remain bisimilar after the application of signal hiding.

Consider process Thon. Action ˜̃toff is performed by Thon when the tem-
perature reaches 20◦. After signal hiding, (see rules 1 & 2 in table 1), ˜̃toff can
be performed at any temperature. Whereas in process Th′on, there is a definite
time delay of ln2 units and the performance of ˜̃toff does not depend on the
temperature. After signal hiding, Th′on still performs action ˜̃toff at time ln2,
whereas Th can perform ˜̃toff (after hiding) at any time. Thus after hiding the
temperature, Th and Th′ behave differently.

After hiding 〈T4Th, ∗〉 behaves as 〈Th′′′′, ∗〉, where ∗ indicates a state with
an arbitrary value of the temperature and,

Th′′′′ =
∫

u∈(0,∞)
σu

rel(˜̃toff) · σ∗rel(˜̃ton) · Th′′′

Th′′′ = σ∗rel(˜̃toff) · σ∗rel(˜̃ton) · Th′′′;

and 〈T4Th′, ∗〉 behaves as 〈Th′′, ∗〉, where,

Th′′ = σln2
rel (˜̃toff) · σln3

rel (˜̃ton) · Th′′.

〈T4Th, ∗〉 6↔ 〈T4Th′, ∗〉
(Refer to the appendix for a detailed proof). Thus bisimulation no longer re-
mains a congruence for signal hiding in BPAsrt

hs .

4.2 An attempt at developing new semantic rules for sig-
nal hiding

We made several attempts to develop an operational semantics that preserves
bisimulation with signal hiding operator. But we could not come up with a
simple set of SOS rules that correctly specifies the behaviour of signal hiding
operator as defined in [3]. One such attempt of defining a desired set of SOS
rules is described below.

We add a timer, (a nonnegative real number), to the configurations in
BPAsrt

hs semantics; i.e. our configurations in the new semantic rules consist
of three components, a process term, a state and a timer. The timer accu-
mulates time while a process is idling and resets to zero when an action is
performed. The motivation is to keep a record of the instant at which an action
is performed, if an action is performed after a time delay. In case two actions
are performed consecutively without any delay in between, then the timer of
the second action will not exceed zero.
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Table 4: Operational Semantic Rules for Signal hiding (timers added to config-
urations )

〈x, α, t〉 a−→ 〈x′, α′, 0〉
〈v4x, α∗, t〉 a−→ 〈v4x′, α′∗, 0〉 α∗ =v α, α′∗ =v α′ Rule1

〈x, α, t〉 a−→ 〈√, α′, 0〉
〈v4x, α∗, t〉 a−→ 〈√, α′∗, 0〉 α∗ =v α, α′∗ =v α′ Rule2

〈x, α, t〉 r,ρ7−−→ 〈x′, α′, t + r〉
〈v4x, α∗, t〉 r,ρ∗7−−−→ 〈v4x′, α′∗, t + r〉

α∗ =v α, α′∗ =v α′, ρ∗ =v ρ Rule3

α∈ [s(x)]

α∗ ∈ [s(v4x)]
α∗ =v α Rule4

The transition rules of signal hiding in this semantics are in table 4.
Rule 1 shows the reset of the timer to zero at the execution of an action.

Similarly for Rule 2. In Rule 3, the timer evolves from t to t+r by the execution
of a time step of duration r. The transition rules for other operators for BPAsrt

hs

are constructed on the same principle, i.e. time accumulates when a process is
waiting and resets when an action is performed. The rules for signal relations
remain the same as given in table 9.

Consider processes Th and Th′ again. The timer in the new operational
semantics records the time from the start of the process until ˜̃toff is performed.
This information is used when temperature is hidden to know after how long
T4Th should perform ˜̃toff . By this scheme we hoped to preserve bisimilarity
of T4Th and T4Th′. But this idea does not work as explained below.

The signal emitted by Th is only true in state 18 (by rule 8 table 9). By
rule 4 table 4,

18∈ [s(Th)] =⇒ ∗∈ [s(T4Th)]

where ∗ is a state with an arbitrary value of temperature, i.e.,

∗ =T 18 =T 19 =T 20.

Let ρ be a state evolution on the interval [0, ln(4/3)] that keeps T and
Ṫ infinitely often continuously differentiable and satisfies proposition up. Let
ρ(0)(T ) = 18 and ρ(ln(4/3))(T ) = 19. Let ρ′ be another state evolution such
that ρ =T ρ′. We can derive,

〈Th, 18, 0〉 ln(4/3),ρ7−−−−−−→ 〈up ∩H
T Thon

ln(4/3), 19, ln(4/3)〉.
From rule 3 of table 4, we can derive:

〈T4Th, ∗, 0〉 ln(4/3),ρ′7−−−−−−→ 〈T4up ∩H
T Thon

ln4/3, ∗, ln(4/3)〉
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The signal of up ∩H
T Thon

ln(4/3) is true in states with temperature in the
range [18, 20]. Also note, (from the rules given in Table 4), that the pro-
cess 〈T4up ∩H

T Thon
ln(4/3), ∗, ln(4/3)〉 can behave as the set of processes {〈up ∩H

T

Thon
ln4/3,T, ln(4/3)〉 | T ∈ [18, 20]}. i.e. the process up ∩H

T Thon
ln(4/3) in any state

with T ∈ [18, 20] and with timer ln(4/3).
A few possible behaviours of 〈T4Thon

ln4/3, ∗, ln(4/3)〉 are as follows: Let
ρ2 and ρ′2 be state evolutions on interval [0, ln(3/2)] with ρ2(0)(T ) = 19,
ρ2(ln(3/2))(T ) = 20 and ρ2 =T ρ′2. Let ρ2 satisfy proposition up while keeping
T and Ṫ infinitely often continuously differentiable in [0, ln(3/2)].

By Rule 3,

〈up ∩H
T Thon

ln4/3, 19, ln(4/3)〉 ln(3/2),ρ27−−−−−−−→ 〈up ∩H
T Thon

ln2, 20, ln2〉
=⇒ 〈T4up ∩H

T Thon
ln4/3, ∗, ln(4/3)〉 ln(3/2),ρ′27−−−−−−−→ 〈T4up ∩H

T Thon
ln2, ∗, ln2〉;

By Rule 2, 〈up ∩H
T Thon

ln4/3, 20, ln(4/3)〉 toff−−−→ 〈up ∩H
T Thoff , 20, 0〉

=⇒ 〈T4up ∩H
T Thon

ln4/3, ∗, ln(4/3)〉 toff−−−→ 〈T4up ∩H
T Thoff , 20, 0〉.

The second derivation indicates that T4Th can also perform action ˜̃toff before
ln2 time units. It can also perform ˜̃toff after ln2 time units, if we consider
the behaviour of 〈up ∩H

T Thon
ln(4/3), 18, ln(4/3)〉. Whereas T4Th′ behaves as

Th′′ = σln2
rel (˜̃toff) ·σln3

rel (˜̃ton) ·Th′′, under these operational semantic rules also.
Thus bisimilarity is still not preserved over signal hiding.

The reason being that, while deriving a transition for a process of the form
〈v4x, α′, t〉, (where v is any variable and t > 0), we may have lots of options
(configurations) that can be used as a source to the premise of the rule being
applied (see table 4). Some of these configurations may not actually be derivable
from the initial process, for example starting from 〈up ∩H

T Th, 18, 0〉, 〈up ∩H
T

Thon
ln4/3, 20, ln(4/3)〉 cannot be derived from the rules. But we have no means

to verify it while deriving a transition for 〈T4up ∩H
T Thon

ln4/3, ∗, ln(4/3)〉.
In structural operational semantics, at all times our point of reference is the

current configuration and the set of transition rules. As we perform actions and
delays, our current configuration evolves and the information found in process
terms regarding previous actions and evolutions is lost. Therefore a configu-
ration with a process term, state and timer cannot check itself whether it is a
derivable configuration or not. The problem with this solution led us to the idea
of having a graph semantics for BPAsrt

hs . In a graph, we retain the information
of the initial configuration and hence can figure out at all times whether starting
from an initial configuration a given configuration is reachable or not.

4.3 Proposed Solution to the problem

We propose to solve this problem by presenting a graph model of BPAsrt
hs .

The nodes of the graph, called configurations, consist of a process term, state
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and a timer. The nodes are connected with edges that correspond to action,
termination and time steps as defined in the operational semantics of [5]. The
timer accumulates time while idling and resets when an action is performed.
The traversal of our graph begins with a special set of nodes called “initial
configurations”. We define a notion of reachability of configurations depending
on what configurations in our graph are traversed when starting from an initial
configuration. Finally we remove configurations in our graphs that are not
reachable by any initial configuration.

Processes are represented by graphs and operations on processes are defined
as operations on graphs.

5 The Graph Model for BPAhs
srt

We define a graph model for BPAsrt
hs . Several definitions required by the graph

model are given below:
We assume a predetermined set V of environment variables and a predeter-

mined set A of actions. V̇ = {v̇ | v ∈ V } denotes the set of derivatives of all
variables v ∈ V . We define a function of the type V ∪ V̇ → R, called state,
which assigns real values to variables v ∈ V ∪ V̇ . The set of all possible states
is denoted by S, i.e. S = V ∪ V̇ → R.

A function of the type [0, r] → (V → R) gives the evolution of all variables
v ∈ V in a duration [0, r], r ∈ R>. Let ρ be a function of type [0, r] → (V → R).
Then for every v ∈ V , we write ρv for the function ρv : [0, r] → R, defined by
ρv(t) = ρ(t)(v). We call ρ a state evolution, if for all v ∈ V , ρv is piecewise
infinitely often continuously differentiable in [0, r). If ρ is a state evolution, we
say that ρ is smooth for a subset V of V , if ρv is infinitely often continuously
differentiable in [0, r] for all v ∈ V.

We denote the set of all state evolutions ρ : [0, r] → (V → R) defined on the
interval [0, r], by εr. We denote the set of all state evolutions by ε,

ε =
⋃

0<r<∞
εr.

For a given state evolution ρ : [0, r] → (V → R) and a given instant t ∈ [0, r],
there is a unique state αρ

t that agrees with ρ at time t, i.e. for all v ∈ V :

αρ
t (v) = ρv(t) and αρ

t (v̇) = ρ̇v(t).

A state proposition φ is satisfied by a state evolution ρ ∈ εr if and only if all
the states corresponding to ρ(t) for t ∈ [0, r] satisfy φ, i.e.,

ρ |= φ iff αρ
t |= φ, for all t ∈ [0, r].

In addition if ρ is also smooth for V a subset of V , we write,

ρ |=V φ or αρ
0

r,ρ7−−→ αρ
r |=V φ.
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We denote the set of all BPAsrt
hs process terms by P , where,

P := ˜̃a | ˜̃δ | ⊥ | νrel(P ) | P · P | P + P | σ0
rel(P )

| σr
rel(P ) | ψ ∧N P | ψ :→ P | χ uH P | φ ∩HV P ;

where ψ and φ are state propositions, χ is a transition proposition, r > 0 and
V is a subset of V .

We denote the set of all pairs of durations and state evolutions on them by
D and call them delays, i.e.,

D = {(r, ρ) | r ∈ R> ∧ ρ ∈ εr}.

5.1 Transition System

5.1.1 Definition

We define a transition system for hybrid processes TS as a five-tuple, i.e.,

TS = (C,−→, 7−→, I, F ),

where:

1. C ⊆ (P ∪ {√} × S × R≥) is a set of configurations.

2. −→⊆ C ×A× C is the set of all action transitions .

If (c1, a, c2) ∈−→, then we write c1
a−→ c2.

If c1
a−→ c2 , then the third component of c2 is reset to 0, (i.e. c2 = (p, α, 0),

for some p ∈ P ∪ {√}, α ∈ S), as we are dealing with relative time.

3. 7−→⊆ C ×D × C is the set of all time transitions.

If (c1, (r, ρ), c2) ∈7−→, then we write c1
r,ρ7−−→ c2.

• (p1, α1, t1)
r,ρ7−−→ (p2, α2, t2) ⇒ t2 = t1 + r

4. I ⊆ C is the set of initial configurations given for a process.

Any initial configuration is of the form i = (p, α, 0). If i1 = (p1, α1, 0)
and i2 = (p2, α2, 0) ∈ I, then p1 = p2 = p, i.e. the process term is same.
Term p ∈ P (p cannot be

√
) is the process expression of TS, denoted by

expr(TS).

5. F ⊆ C is the set of final states.

If f ∈ F , then f is of the form (
√

, α, 0) for some α ∈ S, as a final state
can only be entered by an action transition.
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5.1.2 Discussion of the definition

In [5], a structural operational semantics for BPAsrt
hs is given. The process graph

induced by this operational semantics has process nodes consisting of process
terms and states. The process nodes are denoted by 〈p, α〉, for some p ∈ P and
α ∈ S . We add timing information to this model. The configurations in our
transition systems have a label for a timer ∈ R≥ in addition to process terms
and states. The timer indicates the time elapsed since the last action. When an
action is performed (indicated by action transitions) it is reset. It accumulates
during idling (indicated by time transitions).

In an action transition c1
a−→ c2, c1 is called the source, a is called the action

label and c2 is called the target. In a time transition c1
r,ρ7−−→ c2, c1 is called

the source, r is called the time duration, ρ is called the state evolution and c2

is called the target. The action and time transitions are said to originate from
their sources and end in their targets√

stands for the termination symbol and denotes successful termination
of a process in BPAsrt

hs . There is no concept of an empty process in BPAsrt
hs

(an empty process is a process that terminates without idling or performing an
action), so we require that the process term of an initial configuration cannot be
equal to the termination symbol. It should not be too difficult to add a successful
termination process ε to the current set-up, but we leave this for future work for
now. On the other hand, in place of a process term, a final configuration always
has

√
. Final configurations cannot be sources to any action or time transitions.

Furthermore, a final configuration can only be a target to action transitions and
not to a time transition. This is in accordance with the assumption of BPAsrt

hs ,
that an idling process can only terminate by performing an action.

The way we form a transition system from a BPAsrt
hs term is such that the

process terms of all initial configurations are equal to that BPAsrt
hs term. We

call the common process term of all initial configurations as process expression
of the transition system. The states of the initial configurations of a transition
system represent the set of states in which the signal emitted by the process
expression is true.

We want our process model to be consistent with the work done in [5].
This means that when we remove the time labels from all configurations, the
transition system of a process becomes exactly the same as the process graph
induced by the semantics of [5].

5.2 Garbage Collection on Transition Systems

We define here a notion of reachability on a transition system which is quite
similar to the reachability relation defined in [4] (except that in [4] the transition
systems do not have time transitions).

Let TS be a transition system given by,

TS = (C,−→, 7−→, I, F ).
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We define a reachability relation ³⊆ C ×C, as the smallest relation, such that
for all configurations c0, c1, c2 ∈ C, action a ∈ A and delay (r, ρ) ∈ D,

• c0 ³ c0;

• If c0
a−→ c1 and c1 ³ c2, then c0 ³ c2;

• If c0
r,ρ7−−→ c1 and c1 ³ c2, then c0 ³ c2.

If c0 ³ c1 we say c1 is reachable from c0. Reach(c0) denotes the set of all
configurations reachable from c0, i.e.,

Reach(c0) = {c ∈ C | c0 ³ c}.
For a set of configurations C ′ ⊆ C, Reach(C ′) denotes the set of all configura-
tions that are reachable from any member of C ′, i.e.,

Reach(C ′) = {c ∈ C | ∃c′ ∈ C ′ • c′ ³ c}.
As we apply different operators on a transition system, we add new config-
urations and transitions to it. During this process some configurations and
transitions originating from them may become unreachable (i.e. the configura-
tions are no longer reachable from an initial configuration) in the new transition
system. Unreachable configurations and transitions have no effect on the be-
haviour of a transition system. So we can safely remove them. This is called
garbage collection.

We write reach(TS) for TS with all the unreachable configurations and
transitions removed from it, i.e.,

reach(TS) = (C ′,−→′, 7−→′, I, F );

where,

• C ′ = Reach(I);

• −→′= {c0
a−→ c1 | c0 ∈ Reach(I)}; and

• 7−→′= {c0
r,ρ7−−→ c1 | c0 ∈ Reach(I)}.

5.3 Undelayable Actions

An action may change the values of variables arbitrarily. We associate with
every action a ∈ A a transition system:

TS(˜̃a) = (C,−→, ∅, I, F ),

where,

1. C = C1 ∪ C ′1,
C1 = {(˜̃a, α, 0) | α ∈ S} and C ′1 = {(√, α, 0) | α ∈ S};

2. −→= {(c1, a, c′1) | c1 ∈ C1 ∧ c′1 ∈ C ′1};
3. I = C1; and

4. F = C ′1.
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5.4 Non-existence

We propose to describe the non-existent process ⊥ by a transition system with
an empty configuration-set, an empty set of action transitions and an empty set
of time transitions, i.e.,

TS(⊥) = (∅, ∅, ∅, ∅, ∅).
We define the process expression of TS(⊥) to be ⊥, i.e.,

expr(TS(⊥)) = ⊥

5.5 Undelayable Deadlock

The transition system corresponding to ˜̃δ has no action transitions, no time
transitions and no final or terminating configurations, i.e.,

TS(˜̃δ) = (C, ∅, ∅, I, ∅),
with

• C = {(˜̃δ, α, 0) | α ∈ S}; and

• I = ({(˜̃δ, α, 0) | α ∈ S} =)C.

5.6 Signal Emission

The operation of signal emission takes two operands, one a state proposition
and the other a transition system. A state proposition is a proposition on the
variables in V ∪ V̇ . For a formal definition of a state proposition see [5]. The
signal emission operator acts on the set of initial configurations of a transition
system. The configurations whose states do not satisfy the given state proposi-
tion are removed from the set of initial configurations, while the process terms
of other initial configurations are modified to include the state proposition as
an emitted signal.

Let c = (p, α, t) be a configuration and ψ be a state proposition.
We denote α satisfies ψ by α |= ψ, and write,

c |= ψ iff α |= ψ.

We write ψ ∧N (p, α, t) for (ψ ∧N p, α, t).
Let TS be a transition system, i.e.,

TS = (C,−→, 7−→, I, F ).

We define ψ ∧N TS as,

ψ ∧N TS = (C ′,−→′, 7−→′, I ′, F ),

where,
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1. The set of initial configurations I ′ is defined as,

I ′ = {ψ ∧N i | i ∈ I ∧ i |= ψ};

2. the set of all configurations C ′ is defined as,

C ′ = C ∪ I ′;

3. the set of action transitions −→′ is defined as,

−→′=−→ ∪ −→′′,

where −→′′ is the set of all action transitions originating from members of
I ′, i.e.,

−→′′= {(ψ ∧N i, a, c) | i ∈ I, c ∈ C, a ∈ A, i |= ψ ∧ i a−→ c};

4. 7−→′ is the set of all time transitions, i.e.,

7−→′= 7−→ ∪ 7−→′′,

where 7−→′′ is the set of all time transitions originating from members of
I ′, i.e.,

7−→′′= {(ψ ∧N i, (r, ρ), c) | i ∈ I, c ∈ C, (r, ρ) ∈ D, i |= ψ ∧ i
r,ρ7−−→ c}.

This means that in a time transition ψ is only required to hold in the
source of the transition and not along the trajectory or in the target.

5.7 Relative Undelayable Timeout

The operation of relative undelayable timeout on a process P prevents it from
idling in the start. If there are no options to a process in the start other than
idling, then applying the relative undelayable timeout operator on P , denoted
by νrel(P ), results in undelayable deadlock. νrel has no effect on the signal
of a process. It distributes over the signal emission, signal transition, signal
evolution and conditional operators without affecting the signal propositions.

The relative undelayable timeout operator takes a transition system as an
operand.

We write νrel(p, α, t) for (νrel(p), α, t), where (p, α, t) is a configuration.
Let TS be a transition system, i.e.,

TS = (C,−→, 7−→, I, F ).

We define νrel(TS) as

νrel(TS) = (C ′,−→′, 7−→, I ′, F ),

where
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1. I ′, the set of initial configurations is defined as,

I ′ = {νrel(i) | i ∈ I};

2. C ′, the set of all configurations is defined as,

C ′ = C ∪ I ′;

3. the set of all action transitions −→′ is defined as,

−→′=−→ ∪ −→′′,

where −→′′ is the set of all action transitions that originate from members
of I ′, i.e.,

−→′′= {(νrel(i), a, c) | i ∈ I, c ∈ C, a ∈ A ∧ i a−→ c}.

5.8 Conditional Proceeding

This operator takes two operands, i.e., one a state proposition and the other a
transition system. As mentioned in [5], a process P proceeding conditionally on
a state proposition ψ, behaves like P if ψ is true, else it behaves like undelayable
deadlock.

The conditional proceeding operator while acting on a transition system
modifies the process terms of its initial configurations and adds more initial
configurations to it with states that do not satisfy the state proposition. Con-
figurations that do not satisfy the state proposition have no action or time
transitions originating from them.

We write ψ :→ (p, α, t) for (ψ :→ p, α, t).
Let TS be a transition system, i.e.,

TS = (C,−→, 7−→, I, F ).

Let p be the process expression of TS.
We define ψ :→ TS as,

ψ :→ TS = (C ′,−→′, 7−→′, I ′, F ),

where,

1. I ′ is the set of initial configurations, i.e.,

I ′ = {ψ :→ i | i ∈ I}
∪{ψ :→ (p, α, 0) | α ∈ S ∧ α 6|= ψ};

2. C ′ is the set of all configurations, i.e.,

C ′ = C ∪ I ′;
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3. the set of all action transitions −→′ is,

−→′=−→ ∪ −→′′,

where −→′′ is the set of all action transitions originating from the members
of I ′, i.e.,

−→′′= {(ψ :→ i, a, c) | i ∈ I, c ∈ C, a ∈ A ∧ i |= ψ ∧ i a−→ c}; and

4. the set of all time transitions 7−→′ is,

7−→′= 7−→ ∪ 7−→′′,

where 7−→′′ is the set of all time transitions with their sources in the new
initial configuration set, i.e.,

7−→′′ = {(ψ :→ i, (r, ρ), c) | i ∈ I,

c ∈ C, (r, ρ) ∈ D, i |= ψ ∧ i
r,ρ7−−→ c}.

ψ is only evaluated in the source of the time transition and not along the
trajectory or in the target.

5.9 Signal transition

The signal transition operator takes a transition proposition and a transition
system as operands. A transition proposition is a proposition regarding the
state of a configuration immediately before and after an action transition. For
a complete definition of the transition proposition see [5].

For each variable v ∈ V ∪ V̇ , we introduce two new variables •v and v•,
denoting the values of the variable v immediately before and after an action
transition. We write •V for {•v | v ∈ V ∪ V̇ } and V • for {v• | v ∈ V ∪ V̇ }.
A transition proposition is a proposition on the variables belonging to the set
•V ∪ V •. Furthermore if ψ is a state proposition, then •ψ and ψ•are transition
propositions. In a given transition system, the proposition •ψ is satisfied by
those action and time transitions that originate from configurations whose states
satisfy ψ. Whereas, the proposition ψ• is satisfied by those action transitions
of the transition system, that end in configurations whose states satisfy ψ.

Similarly, if χ is a transition proposition, then ◦χ and χ◦ are state proposi-
tions. ◦χ is that part of χ that deals with the source configuration of an action
or time transition, i.e., ◦χ describes a property about the state of the source
of a transition. Whereas χ◦ is that part of χ that assigns a property to state
of the target configuration of an action transition. ◦χ holds in a configuration
from which an action/time transition satisfying χ can originate. χ◦ holds in a
configuration which can be a target to an action transition satisfying χ.

The signal transition operator operating on a transition system TS with
transition proposition χ, modifies the process terms of initial configurations to
indicate that the first transitions will take place only in accordance with χ. It
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adds more configurations in the initial set of configurations that have states that
do not satisfy the proposition ◦χ. Such initial configurations have no action or
time transitions originating from them. Action and time transitions originating
from initial configurations that do not satisfy the state proposition ◦χ are re-
moved from the transition system. Furthermore an action transition originating
from an initial configuration satisfying the state proposition ◦χ must end in a
configuration satisfying the state proposition χ◦. Otherwise it is removed from
the transition system.

Let α1, α2 be two states and χ be a transition proposition. Then,

α1
a−→ α2 |= χ means α1 |= ◦χ ∧ α2 |= χ◦.

For any configuration c = (p, α, t), we write:

c |= ◦χ iff α |= ◦χ, and c |= χ◦ iff α |= χ◦.

We use the abbreviation χ uH c for (χ uH p, α, t). We use the notation state(c) to
denote the state α of c.

Let TS be a transition system,i.e.,

TS = (C,−→, 7−→, I, F ),

Let p be the process expression of TS.
We define χ uH TS as,

χ uH TS = (C ′,−→′
, 7−→′

, I ′, F ),

where,

1. I ′ is the set of initial configurations, i.e.,

I ′ = {χ uH i | i ∈ I}
∪{χ uH (p, α, 0) | α ∈ S ∧ α 6|= ◦χ};

2. C ′ is the set of all configurations, i.e.,

C ′ = C ∪ I ′;

3. −→′ is the set of all action transitions, i.e.,

−→′=−→ ∪ −→′′,

where −→′′ is the set of all action transitions originating from the members
of I ′, i.e.,

−→′′ = {(χ uH i, a, c) | i ∈ I, c ∈ C, a ∈ A, i a−→ c ∧
state(i) a−→ state(c) |= χ}; and
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4. 7−→′ is the set of all time transitions, i.e.,

7−→′= 7−→ ∪ 7−→′′,

where 7−→′′ is the set of all time transitions with their sources in the new
initial configuration set, i.e.,

7−→′′= {(χ uH i, (r, ρ), c) | i ∈ I, c ∈ C, (r, ρ) ∈ D, i |= ◦χ ∧ i
r,ρ7−−→ c}.

5.10 Sequential Composition

The sequential composition operator takes two transition systems as operands.
When we sequentially compose two transitions systems, the resulting system
does not terminate with the termination of the first transition system but con-
tinues as the second. We achieve this behaviour by replacing the final configura-
tions in the first transition system by the initial configurations of the second. In
case the second transition system denotes a non-existent process, the sequential
composition of two transition systems behaves as the first one but deadlocks be-
fore terminating. In that case there is no action transition that originates from
a configuration of the first transition system and ends in an initial configuration
of the other.

Let c = (p, α, t) be a configuration. We use the notation state(c) to denote
the state α of c. Let p2 be a process term. We use the abbreviation c · p2 for
the configuration (p · p2, α, t).

Let TS1 and TS2 be two transition systems, i.e.,

TS1 = (C1,−→1, 7−→1, I1, F1); and
TS2 = (C2, ,−→2, 7−→2, I2, F2).

Let p2 be the process expression of TS2.
We define the sequential composition of TS1 and TS2, denoted by TS1 ·TS2

as:
TS1 · TS2 = (C12,−→12, 7−→12, I12, F2),

where,

1. I12 is formed by appending the process terms of configurations in I1 by
p2, i.e.,

I12 = {i · p2 | i ∈ I1};

2. C12, the set of all configurations, is defined as

C12 = C ′ ∪ C2,

where C ′ denotes the set of configurations of C1 with their process terms
appended by the process expression of TS2, i.e.,

C ′ = {c · p2 | c ∈ C1\F1};
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3. the set of all action transitions −→12 is,

−→12=−→′ ∪ −→2 ∪ −→′′,

where, −→′ is the set of all action transitions originating and ending in
members of C ′, i.e.,

−→′ = {(c · p2, a, c′ · p2) | c, c′ ∈ C1\F1, a ∈ A ∧ c a−→1 c′};
and −→′′ is the set of all action transitions originating from members of C ′

and ending in members of I2, i.e.,

−→′′ = {(c · p2, a, i2) | c ∈ C1, a ∈ A, i2 ∈ I2,

∃ f ∈ F1 • state(f) = state(i2) ∧ c a−→1 f};

4. the set of all time transitions 7−→12 is,

7−→12= 7−→′ ∪ 7−→2,

where, 7−→′ is the set of all time transitions originating and ending in
members of C ′, i.e.,

7−→′ = {(c · p2, (r, ρ), c′ · p2) | c, c′ ∈ C1\F1, (r, ρ) ∈ D,

∧ c
r,ρ7−−→1 c′}.

5.11 Alternative Composition

The alternative composition of two transition systems exhibits a choice between
them. The resulting transition system behaves either as one transition sys-
tem or as the other. But some options of behaviour that were present in the
operand transition systems may get lost in their alternative composition. The
alternative composition operator operates on the set of initial configurations of
its operands. Two initial configurations, one from each transition system, are
composed alternatively and included in the initial configuration set of the new
transition system only if their states are same. Thus behaviour possible from
an initial configuration of one transition system that has no match (according
to state) in the (initial configuration set of) the other operand is lost in their
alternative composition. Consider two initial configurations i1 and i2 with equal
states, of two transition systems that are to be alternatively composed. If i1 is
a source to a time transition with a certain duration and state evolution, and i2
is also a source to a time transition with the same duration and state evolution,
then the targets of these time transitions will also be composed alternatively.

Let c = (p, α, t) be a configuration. We again use the notation state(c)
for the state α of c and the notation time(c) for the time label t of c. Let
c1 = (p1, α1, t1) and c2 = (p2, α2, t2) be two configurations. If α1 = α2 and
t1 = t2, then we write c1 + c2 for the configuration (p1 + p2, α1, t1). For any
t ∈ R>, we write c 6 t7−→ to denote that for any ρ ∈ εt, there is no configuration c′

such that c
t,ρ7−−→ c′.
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Let TS1 and TS2 be two transition systems, where,

TS1 = (C1,−→1, 7−→1, I1, F1); and
TS2 = (C2,−→2, 7−→2, I2, F2).

Their alternative composition is denoted by TS1 + TS2, i.e.,

TS1 + TS2 = (C1+2,−→1+2, 7−→1+2, I1+2, F1+2),

where,

1. the set I1+2 consists of alternatively composed configurations of I1 and I2

with equal states, i.e.,

I1+2 = {i1 + i2 | i1 ∈ I1 ∧ i2 ∈ I2 ∧ state(i1) = state(i2)};

2. the set of all configurations C1+2 is defined as

C1+2 = C1 ∪ C2 ∪ I1+2 ∪ C ′,

where C ′ denotes the set of alternatively composed configurations of C1\I1

and C2\I2, i.e.,

C ′ = {c1 + c2 | c1 ∈ C1, c2 ∈ C2 ∧ ∃ i1 + i2 ∈ I1+2,

∃ (r, ρ) ∈ D • i1
r,ρ7−−→ c1 ∧ i2

r,ρ7−−→ c2};

3. −→1+2 is the set of all action transitions. It is defined as,

−→1+2=−→1 ∪ −→2 ∪ −→′ ∪ −→′′,

where−→′ denotes the set of all action transitions originating from members
of I1+2 ∪ C ′ and ending in members of C1, i.e.,

−→′ = {(c1 + c2, a, c′) | c1 + c2 ∈ C ′ ∪ I1+2,

a ∈ A, c′ ∈ C1 ∧ c1
a−→1 c′};

and −→′′ denotes the set of all action transitions originating from members
of I1+2 ∪ C ′ and ending in members of C2, i.e.,

−→′′ = {(c1 + c2, a, c′) | c1 + c2 ∈ C ′ ∪ I1+2,

a ∈ A, c′ ∈ C2 ∧ c2
a−→2 c′};

4. The set of all time transitions 7−→1+2 is defined as

7−→1+2= 7−→1 ∪ 7−→2 ∪ 7−→′ ∪ 7−→′′ ∪ 7−→′
1+2,

where 7−→′ denotes the set of all time transitions originating from some
configuration c1 + c2 in I1+2 ∪ C ′, with c1 ∈ C1 & c2 ∈ C2 & c2 6 t7−→, for
any t ∈ R>, and ending in a member of C1. We define 7−→′ as

7−→′ = {(c1 + c2, (r, ρ), c′) | c1 + c2 ∈ C ′ ∪ I1+2,

(r, ρ) ∈ D, c′ ∈ C1, c1
r,ρ7−−→1 c′ ∧ c2 6 r7−→2)};

32



7−→′′ denotes the set of all time transitions originating from a configuration
in I1+2 ∪ C ′, and ending in a member of C2, i.e.,

7−→′′ = {(c1 + c2, (r, ρ), c′) | c1 + c2 ∈ C ′ ∪ I1+2,

(r, ρ) ∈ D, c′ ∈ C2, c2
r,ρ7−−→2 c′ ∧ c1 6 r7−→1)};

and 7−→′
1+2 denotes the set of all time transitions originating from and

ending in members of I1+2 ∪ C ′, i.e.,

7−→′
1+2 = {(c1 + c2, (r, ρ), c′1 + c′2) | c1 + c2, c

′
1 + c′2 ∈ C ′ ∪ I1+2,

(r, ρ) ∈ D, c1
r,ρ7−−→1 c′1 ∧ c2

r,ρ7−−→2 c′2};

5. The set of final configurations F1+2 is the union of F1 and F2, i.e.,

F1+2 = F1 ∪ F2.

5.12 Relative delay

Let TS be a transition system given by

TS = (C,−→, 7−→, I, F ).

Let the process expression of TS be p.

5.12.1 Adding relative delay of r > 0 time units

To explain the operation of relative delay on TS, we make use of the following
functions and abbreviations:

• Time-step reachability, 7→→⊆ C ×C, is the smallest relation, such that for
any c0, c1, c2 ∈ C and (r, ρ) ∈ D,

– c0 7→→ c0.

– If c0
r,ρ7−−→ c1 and c1 7→→ c2, then c0 7→→ c2.

If c0 7→→ c1, we say c1 is time-step reachable from c0. tReach(c0) denotes
the set of all configurations that are time-step reachable from c0, i.e.,

tReach(c0) = {c ∈ C | c0 7→→ c}.

For a set of configurations C ′ ⊆ C, tReach(C ′) denotes the set of all
configurations that are time-step reachable from any member of C ′, i.e.,

tReach(C ′) = {c ∈ C | ∃ c′ ∈ C ′ • c′ 7→→ c}.

• We define a function incr timer: C×R> → C, that takes a configuration
(p, α, t) and a time duration s and returns the configuration (p, α, t + s)
with its time label incremented by s.
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• If p ∈ P and r, s ∈ R≥ such that s ≤ r, then after time(σr
rel(p), s) denotes

the process term σr−s
rel (p), after the passage of s time units.

• We define a function pr exp : C → P . It takes a configuration and returns
its process term.

• For some s, t ∈ R>, ρs ∈ εs and ρt ∈ εt, if ρs(s) = ρt(0), then we define
ρs.ρt as

(ρs · ρt)(r) =
{

ρs(r) if 0 ≤ r ≤ s
ρt(r − s) if s < r ≤ s + t.

• A time transition ending at a certain configuration is composed sequen-
tially with a time transition originating from the same configuration. Let
(c, (s, ρs), c′) and (c′, (t, ρt), c′′) be two time transitions. Note that

ρs(s) = ρt(0) = state(c′).

(c, (s, ρs), c′) · (c′, (t, ρt), c′′) stands for the time transition (c, (s+ t, ρ), c′′),
where ρ = ρs · ρt ∈ εs+t.

• Let α1, α2 ∈ S, r ∈ R> and ρ ∈ εr. When we write

α1
r,ρ7−−→ α2 we mean that α1 = αρ

0 ∧ α2 = αρ
s .

Let TS be a transition system. The transition system obtained after adding
delay of r ∈ R> time units to TS is denoted by σr

rel(TS). We precede the initial
configurations of TS with configurations that can idle for any t ∈ (0, r] time
units. We add time transitions between these new configurations (i.e. time tran-
sitions that originate and end in the new configurations), and time transitions
that originate from the new and end in the initial configurations of TS. As the
initial configurations of TS become targets of time transitions of duration ≤ r,
therefore their time labels have to be incremented. Consequently, time labels of
configurations that are time-step reachable from initial configurations are also
incremented. Due to the property of additivity of time of σr

rel operator, new time
transitions that end in an initial configuration of TS are sequentially composed
with time transitions that originate from that configuration.

We define σr
rel(TS) as

σr
rel(TS) = (C ′,−→′, 7−→′, I ′, F ),

where

1. I ′ contains an initial configuration for each α ∈ S (as the signal of a
process term (see table 6 in [5]) that can idle for r ∈ R> time units is true
in all states), i.e.,

I ′ = {(σr
rel(p), α, 0) | α ∈ S};
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2. the set of all configurations C ′ is defined as

C ′ = C ∪ Cnew ∪ Cr ∪ Ir,

where Cnew is the set of new configurations that precede members of I

Cnew = {(σR
rel(p), α, r −R) | R ∈ R>, 0 < R ≤ r, α ∈ S};

Cr denotes the set of configurations that are time-step reachable from I
with their time labels incremented by r:

Cr = {incr timer(c, r) | c ∈ tReach(I)};
and Ir is the set of initial configurations of I with incremented labels and
process terms preceded by σ0

rel, i.e.,

Ir = {(σ0
rel(p), α, r) | (p, α, 0) ∈ I};

3. the set of all action transitions −→′ is

−→′=−→ ∪ −→Cr
∪ −→Ir

,

where −→Cr is the set of action transitions originating from members of Cr

−→Cr = {(incr timer(c, r), a, c′) | c ∈ tReach(I), c′ ∈ C,

a ∈ A, c
a−→ c′};

and −→Ir is the set of action transitions originating from members of Ir

−→Ir = {((σ0
rel(p), α, r), a, c) | (p, α, 0) ∈ I, c ∈ C, a ∈ A, (p, α, 0) a−→ c};

4. the set of all time transitions 7−→′ is

7−→′= 7−→ ∪ 7−→Cnew
∪ 7−→Cr ∪ 7−→Ir ∪ 7−→′′,

where 7−→Cnew
is the set of all time transitions originating in members of

Cnew and ending in members of Ir ∪ Cnew

7−→Cnew
= {(c, (s, ρ), c′) | c ∈ Cnew, c

′ ∈ Ir ∪ Cnew, (s, ρ) ∈ D,

time(c′) = time(c) + s, state(c)
s,ρ7−−→ state(c′)∧

pr exp(c′) = after time(pr exp(c), s)};
7−→Cr is the set of all time transitions originating and ending in members
of Cr

7−→Cr = {(incr timer(c, r), (s, ρ), incr timer(c′, r)) | c, c′ ∈ tReach(I),
(s, ρ) ∈ D ∧ c

s,ρ7−−→ c′};
7−→Ir is the set of all time transitions originating from members of Ir

7−→Ir = {((σ0
rel(p), α, r), (s, ρ), incr timer(c, r)) | (p, α, 0) ∈ I, c ∈ C,

(s, ρ) ∈ D ∧ (p, α, 0)
s,ρ7−−→ c};

and 7−→′′ is the set consisting of sequential composition of time transitions
ending in members of Ir and originating from members of Ir

7−→′′ = {(c, (s + t, ρs · ρt), c′) | (s, ρs), (t, ρt) ∈ D, c ∈ Cnew, c
′ ∈ Cr,

∃ i ∈ Ir • c
s,ρs7−−−→Cnew

ir ∧ ir
t,ρt7−−→Ir c′}.
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5.12.2 Adding relative delay of zero time units

Adding a relative delay of zero time units has no effect on the behaviour of a
process. Consider a process term p ∈ P . The signal of the process p with a
delay of r ∈ R>, is true in all states, where as the signal of the process p with
a delay of zero time units is only true in states where the signal of p is true.
Therefore while adding relative delay of zero time units to a transition system,
configurations with states other than those already present among the initial
configuration set are not added. The process terms in the initial configurations
are prefixed by σ0

rel.
Let c = (p, α, t) be a configuration and let s ∈ R≥. We use the abbreviation

σs
rel(c) to denote (σs

rel(p), α, t).
The transition system obtained by applying a relative delay of zero time

units to TS is
σ0

rel(TS) = (C ′,−→′ 7−→′, I ′, F ),

where,

1. I ′ = {(σ0
rel(p), α, 0) | (p, α, 0) ∈ I};

2. C ′ = C ∪ I ′;

3. −→′=−→ ∪ −→′′,

where −→′′= {(σ0
rel(i), a, c) | i ∈ I, a ∈ A, c ∈ C ∧ i

a−→ c}.
Note that σ0

rel(i), where i ∈ I, denotes a configuration from the new initial
configuration set I ′;

4. 7−→′= 7−→ ∪ 7−→′′,

where 7−→′′= {(σ0
rel(i), (r, ρ), c) | i ∈ I, (r, ρ) ∈ D, c ∈ C ∧ i

r,ρ7−−→ c}.
Here also σ0

rel(i) denotes a configuration from the new initial configuration
set I ′.

5.13 Signal evolution

In BPAsrt
hs , the signal evolution operator (denoted by ∩H), when applied to a

process restricts the evolution of environment variables to a given state propo-
sition during an initial delay of the process. Besides a process term and a state
proposition, the signal evolution operator takes a subset of environment vari-
ables as an argument. This set of variables signifies that the variables in the set
must evolve without discontinuities during an initial delay of the process term.
When signal evolution is applied to a process that cannot idle initially, then the
result is simply a process that emits the given state proposition as its signal,
i.e. φ ∩H

V P , where P cannot idle is simply φ ∧N P .
Let c = (p, α, t) be a configuration. We use the notation φ∩HV c for (φ ∩HV

p, α, t).
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A state proposition φ is satisfied by a state evolution ρ ∈ εr, written as
ρ |= φ, if all the states corresponding to ρ(t) for t ∈ [0, r] satisfy φ, i.e.,

αρ
t |= φ, for all t ∈ [0, r].

Let α1, α2 ∈ S, (r, ρ) ∈ D. Then we write,

α1
r,ρ7−−→ α2 |=V φ if

α1 = αρ
0, α2 = αρ

r , ρ |= φ and ρ is smooth for V.

Let TS be a transition system, i.e.,

TS = (C,−→, 7−→, I, F ).

A transition system in evolution according to φ and smooth for variables V, is
written as φ ∩HV (TS). It is defined as

φ ∩HV (TS) = (C ′,−→′, 7−→′, I ′, F ′),

where

1. I ′ is the set of initial configurations, i.e.,

I ′ = {φ ∩HV i | i ∈ I ∧ i |= φ};

2. The set of all configurations C ′ is defined as

C ′ = C ∪ C ′′,

where
C ′′ = {φ ∩HV c | c ∈ tReach(I) ∧ c |= φ}.

For any set C of configurations, tReach(C) is the same as defined in section
5.12;

3. −→′ is the set of all action transitions, i.e.,

−→′=−→ ∪ −→′′,

where −→′′ is the set of all action transitions originating from members of
C ′′

−→′′ = {(φ ∩HV c, a, c′) | c ∈ tReach(I), c′ ∈ C, c |= φ, c a−→ c′′};

4. 7−→′ is the set of all time transitions, i.e.,

7−→′= 7−→ ∪ 7−→′′,

where 7−→′′ is the set of time transitions originating and ending in members
of C ′′, i.e.,

7−→′′ = {(φ ∩HV c, (r, ρ), φ ∩HV c′) | c, c′ ∈ tReach(I),
c

r,ρ7−−→ c′, state(c)
r,ρ7−−→ state(c′) |=V φ}.
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6 Extending the graph model for BPAsrt
hs

We add process terms with signal hiding operator and integration operator to
the set P .

P := ˜̃a | ˜̃δ | ⊥ | νrel(P ) | P · P | P + P | σ0
rel(P )

| σr
rel(P ) | ψ ∧N P | ψ :→ P | χ uH P | φ ∩HV P

| v4P | ∫
u∈U

F (u);

where ψ and φ are state propositions, χ is a transition proposition, r > 0, V
is a subset of V , v is an environment variable, U is a set of non-negative real
numbers and F is a process expression containing a real valued variable u.

6.1 Signal Hiding

Unlike most other operators that modify the set of initial configurations only,
the signal hiding operator modifies the whole transition system. The signal
hiding operator takes two operands, one a transition system and the other an
environment variable. It returns a transition system that behaves independent
of the value of the given variable. Thus we hide the effect of the given variable on
the transition system. Below are some definitions that will help us in formally
describing signal hiding.

For all v ∈ V , we define a binary relation =v between two states α and α′,
when they differ from each other only in their values of v and v̇, i.e.,

α =v α′ iff α(v′) = α′(v′) for all v′ ∈ (V ∪ V̇ )\{v, v̇}.
We extend this relation to configurations having same process terms and

time labels. i.e. for any two configurations (p, α, t) and (p, α′, t) we have,

(p, α, t) =v (p, α′, t) iff α =v α′.

Similarly, for all v ∈ V , we define a binary relation =v between two state
evolutions, ρ1&ρ2 ∈ εr, r ∈ R>, if and only if ρ may differ from ρ′ only in the
evolution of the variables v and v̇. i.e.,

ρ =v ρ′ iff αρ
t =v αρ′

t for all t ∈ [0, r].

Let (p, α, t) be a configuration and v be a variable. We write v4(p, α, t) for
a configuration (v4p, α, t). When we applying signal hiding of variable v on a
transition system, we add v4c′ for any configuration c present in the transition
system, such that c′ =v c. v4c′ behaves the same as c, except regarding the
transition and evolution of variable v.

Let TS be a transition system. Signal hiding is applied to a transition system
after removing unreachable configurations and transitions from it. This is done
by taking reach of a transition system (see section 5.2).

Let reach(TS) be given by,

reach(TS) = (C,−→, 7−→, I, F ).
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We define v4(reach(TS)), the transition system obtained after applying
signal hiding of variable v on reach(TS) as follows:

v4(reach(TS)) = (C ′,−→′, 7−→′, I ′, F ′),

where,

1. C ′ = {v4c′ | ∃ c ∈ C • c =v c′}.
2. −→′= {(v4c′1, a, v4c′2) | ∃ c1, c2 ∈ C, a ∈ A • c1 =v c′1 ∧ c2 =v c′2 ∧ c1

a−→
c2};

3. 7−→′= {(v4c′1, (r, ρ
′), v4c′2) | (r, ρ′) ∈ D, ∃ ρ ∈ εr, ∃ c1, c2 ∈ C • c1 =v

c′1 ∧ c2 =v c′2 ∧ ρ′ =v ρ ∧ c1
r,ρ7−−→ c2};

4. I ′ = {v4i′ | ∃ i ∈ I • i =v i′};
5. F ′ = {v4f ′ | ∃ f ∈ F • f =v f ′};
6. Signal hiding is applied to a transition system after removing unreachable

configurations and transitions originating from them (see section 5.2).

Removing unreachable configurations and transitions from a transition system
is critical before apply signal hiding to it. Consider the following scenario.
Let c0, c1 be configurations of TS, where c1 is a reachable configuration and
c0 is unreachable. Also let c0 =v c1. In v4(TS), we add a configuration
v4c′, where c′ =v c1 =v c0. Also note if c1 ∈ Reach(I) before hiding, then
v4c′ ∈ Reach(I ′). According to the definition above, v4c′ will behave both
as c0 and c1. Thus not removing an unreachable configuration and transition
originating from it may add unintended behaviour in a transition system after
signal hiding.

The signal hiding operator is also extended to state propositions and tran-
sition propositions. Let ψ be a state proposition then v4ψ is the proposition
ψ with the effect of variable v and v̇ on its satisfaction hidden. If ψ is satisfied
in a state α, then v4ψ is satisfied by all states that differ from α only in their
values of v and v̇. Formally, it is defined that a proposition ψ after signal hiding
is true only if there exists an assignment of variables v and v̇ to real numbers
for which ψ is true. i.e., let ψ[r, r′/v, v̇] denote the proposition with v and v̇
replaced by some real values r and r′ respectively, then

v4ψ ⇔ ∃r, r′ ∈ R • ψ[r, r′/v, v̇].

Similarly, a transition proposition with v hidden is defined as,

v4χ ⇔ ∃r, r′, s, s′ ∈ R • χ[r, r′, s, s′/•v, •v̇, v•, v̇•].
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6.2 Integration

In order to cover processes that can perform an action at all points in a certain
interval of time, we add integration to the graph model of BPAsrt

hs .
Let F be an expression possibly containing a real valued variable u. Let r

be a nonnegative real number. Then F[u/r] denotes the process F with all the
instances of u replaced by r. Let U be a subset of R≥. The process

∫
u∈U

F(u)
behaves as one of the processes F[u/r], for some r ∈ U . Thus

∫
u∈U

F(u) repre-
sents an alternative choice among a number of processes; this choice may even
be infinite.

For u ∈ U , let TS(F(u)) denote the transition system corresponding to the
expression F(u) and let TS(

∫
u∈U

F(u)) denote the transition system correspond-
ing to expression

∫
u∈U

F(u).
We give a definition of TS(

∫
u∈U

F(u)) based on our intuition about its be-
haviour obtained from the operational semantics of integration given in Table
10. TS(

∫
u∈U

F(u)) behaves as the alternative composition of all transition sys-
tems, TS(F(u), for all u ∈ U . There is added complexity in the idling behaviour
of TS(

∫
u∈U

F(u)). When
∫

u∈U
F (u) waits for a duration r ∈ R>, the interval

U may need to be partitioned in subintervals as F(u) may evolve into a differ-
ent process term for each partition of U . We illustrate the partition of U , in
expression

∫
u∈U

(F )(u), as time passes by the following example:
Consider the process

∫
u∈[0,6]

σu
rel((l = 18) :→ (l̇ = 0.5) ∩H

l σ4
rel(˜̃a)) in state

l = 18. Let (l = 18) :→ (l̇ = 0.5) ∩Hl σ4
rel(˜̃a) be denoted by p. Let ρ ∈ ε1 such that

ρ |= (l̇ = 0.5) and ρ is smooth for l and l̇.
We study the effect of idling for 1 time unit on process 〈∫

u∈[0,6]
σu

rel(p), 18〉,
deriving transitions according to the operational semantics in Table 10.

For different partitions of [0, 6], 〈∫
u∈[0,6]

σu
rel(p), 18〉, takes different forms as

it evolves. Consider partitions [0, 0], (0, 1) and [1, 6] of [0, 6].

For u ∈ [0, 0]

〈σ0
rel(p), 18〉 1,ρ7−−→ 〈(l̇ = 0.5) ∩Hl σ3

rel(˜̃a), 18.5〉 From rule {4,26} Table 5
For u ∈ (0, 1), take u = 0.5.
〈σ0.5

rel (p), 18〉 6 17−→ After 0.5 time units have passed,

〈σ0.5
rel (p), 18〉 0.5,ρ7−−−→ 〈p, 18.25〉

and p with l > 18 cannot wait
For all u ∈ (0, 1),
〈σu

rel(p), 18〉 cannot wait for more than u time units
and u is less than 1. Therefore,
〈∫

u∈(0,1)
σu

rel(p), 18〉 6 17−→

Now for all u ∈ [1, 6],

〈∫
u∈[1,6]

σu
rel(p), 18〉 1,ρ7−−→ 〈∫

u∈[1,6]
σu−1

rel (p), 18.5〉 From Rule 3 Table 8
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Thus we have,

〈∫
u∈[0,6]

σu
rel(p), 18〉 1,ρ7−−→ 〈(l̇ = 0.5) ∩Hl σ3

rel(˜̃a) +
∫

u∈[1,6]
σu−1

rel (p), 18.5〉
For a deeper insight into partition formation as a process with integration op-
erator evolves, we refer the reader to chapter 4 of [2].

These partitions account for the complexity in the definition of the configu-
ration and time transition sets of

∫
u∈U

TS(F(u)).
Let for all u ∈ U , TS(F(u)) be given by,

TS(F(u)) = (Cu,−→u, 7−→u, Iu, Fu);

For all u ∈ U , F(u) is the process expression of TS(F(u)) and
∫

u∈U
F(u) is the

process expression of TS(
∫

u∈U
F(u)).

And let TS(
∫

u∈U
F(u) be given by,

TS(
∫

u∈U
F(u)) = (C,−→, 7−→, I, F );

where,

1. The set of initial configurations I is defined as,

I = {(∫
u∈U

F(u), α, 0) | ∀u ∈ U • (F(u), α, 0) ∈ Iu};

2. The set of all configurations C is defined as,

C =
⋃

u∈U

Cu ∪ I ∪ C ′;

where C ′ is the set of configurations obtained by idling of an initial con-
figuration in I, i.e.,

C ′ = {(∫
u∈U1

F1(u) + · · ·+ ∫
u∈Un

Fn(u), α′, r) |
n ∈ N, {U1, . . . , Un} partition of U\Un+1, Un+1 ⊂ U,
α′ ∈ S, r ∈ R> ∧ ∃α ∈ S • ((

∫
u∈U

F(u), α, 0)) ∈ I,
∃ρ ∈ εr • ∀i ∈ {1, 2, . . . , n} • (∀u ∈ Ui • ((Fi(u), α′, r) ∈ Cu

∧(F(u), α, 0)
r,ρ7−−→u (Fi(u), α′, r)))

∧ (∀u ∈ Un+1 • (F(u), α, 0) 6 r7−→u)},
where N denotes the set of natural numbers.

3. The set of all action transitions −→ is,

−→=
⋃

u∈U

−→u ∪ −→′ ∪ −→′′;

where −→′ denote the set of action transitions from initial configurations,
i.e.,

−→′ = {((∫
u∈U

F(u), α, 0), a, c) |
(
∫

u∈U
F(u), α, 0) ∈ I, a ∈ A, ∃ u ∈ U • (c ∈ Cu ∧ (F(u), α, 0) a−→u c)};
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and −→′′ denote the set of action transitions originating from members of
C ′, i.e.,

−→′′ = {((∫
u∈U1

F1(u) + · · ·+ ∫
u∈Un

Fn(u), α, t), a, c) |
(
∫

u∈U1
F1(u) +

∫
u∈U2

F2(u) + · · ·+ ∫
u∈Un

Fn(u), α, t) ∈ C ′,
a ∈ A, ∃ i ∈ {1, 2, . . . , n}, ∃u ∈ Ui • (c ∈ Cu ∧ (Fi(u), α, t) a−→u c)};

4. The set of all time transitions 7−→ is,

7−→=
⋃

u∈U

7−→u ∪ 7−→′ ∪ 7−→′′;

where 7−→′ is the set of all time transitions originating from the initial
configurations and ending in the members of C ′, i.e.,

7−→′ = {((∫
u∈U

F(u), α, 0), (r, ρ), (
∫

u∈U1
F1(u) + · · ·+ ∫

u∈Un
Fn(u), α′, r)) |

(
∫

u∈U
F(u), α, 0) ∈ I, (r, ρ) ∈ D,

(
∫

u∈U1
F1(u) + · · ·+ ∫

u∈Un
Fn(u), α′, r) ∈ C ′,

∀i ∈ {1, 2, . . . , n} • ∀u ∈ Ui • ((F(u), α, 0)
r,ρ7−−→u (Fi(u), α′, r))};

7−→′′ denotes the set of time transitions originating and ending in members
of C ′. We construct the target configuration from the source configuration
by specifying how different processes with different subintervals in the
source configuration idle and evolve.

7−→′′ = {((∫
u∈U1

F1(u) + · · ·+ ∫
u∈Un

Fn(u), α, t), (r, ρ),
(
∫

u∈U1
1
F 1

1 (u) + · · ·+ ∫
u∈Uk

1
F k

1 (u)+∫
u∈U1

2
F 1

2 (u) + · · ·+ ∫
u∈Uq

2
F q

2 (u)+
. . .
+

∫
u∈U1

n
F 1

n(u) + · · ·+ ∫
u∈Um

n
Fm

n (u), α′, t + r)) |
(
∫

u∈U1
F1(u) + · · ·+ ∫

u∈Un
Fn(u), α, t) ∈ C ′, (r, ρ) ∈ D,

(
∫

u∈U1
1
F 1

1 (u) + · · ·+ ∫
u∈Uk

1
F k

1 (u)+
. . .
+

∫
u∈U1

n
F 1

n(u) + · · ·+ ∫
u∈Um

n
Fm

n (u), α′, t + r) ∈ C ′,
k, q, . . . ,m ∈ N,

{U1
1 , . . . , Uk

1 } is a partition of U1\Uk+1
1 , Uk+1

1 ⊆ U1,

{U1
2 , . . . , Uq

2 } is a partition of U2\Uq+1
2 , Uq+1

2 ⊆ U2,
. . .
{U1

n, . . . , Um
n } is a partition of Un\Um+1

n , Um+1
n ⊆ Un,

∃ ρ ∈ εr • (∀u ∈ U1
1 • ((F1(u), α, t)

r,ρ7−−→u (F 1
1 (u), α′, t + r)), . . .

∀u ∈ Uk
1 • ((F1(u), α, t)

r,ρ7−−→u (F k
1 (u), α′, t + r)),

. . .

∀u ∈ U1
n • ((Fn(u), α, t)

r,ρ7−−→u (F 1
n(u), α′, t + r)), . . .

∀u ∈ Um
n • ((Fn(u), α, t)

r,ρ7−−→u (Fm
n (u), α′, t + r))),

∀u ∈ Uk+1
1 ((F1(u), α, t) 6 r7−→u), ∀u ∈ Uq+1

2 ((F2(u), α, t) 6 r7−→u) . . .

∀u ∈ Um+1
n ((Fn(u), α, t) 6 r7−→u)};
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5. The set of final configurations F is,

F =
⋃

u∈U

Fu.

7 Bisimulation in the graph model

We want to define bisimulation between two transition systems. First we give
a notion of bisimulation between two configurations.

Let TS denote the set of all transition systems. Let TS and TS′ be two
transition systems, i.e.,

TS = (C,−→, 7−→, I, F ) and
TS′ = (C ′,−→′, 7−→′, I ′, F ′).

A bisimulation B ⊆ C × C ′, is a binary relation such that, for all c ∈ C and
c′ ∈ C ′, if B(c, c′), then:

1. the states and time labels of c and c′ are equal, i.e.,

state(c) = state(c′) ∧ time(c) = time(c′);

2. for c′′ ∈ C and a ∈ A, if c a−→ c′′, then ∃ c′′′ ∈ C ′, such that c′ a−→′
c′′′ and

B(c′′, c′′′).

Vice versa, if c′ a−→′
c′′′, for some c′′′ ∈ C ′ and a ∈ A, then ∃ c′′ ∈ C, such

that c a−→ c′′ and B(c′′, c′′′) ;

3. for c′′ ∈ C and (r, ρ) ∈ D, if c
r,ρ7−−→ c′′, then ∃ c′′′ ∈ C ′, such that

c′
r,ρ7−−→′

c′′′ and B(c′′, c′′′).

Vice versa, if c′
r,ρ7−−→′

c′′′, for some c′′′ ∈ C ′ and (r, ρ) ∈ D, then ∃ c′′ ∈ C,
such that c

r,ρ7−−→ c′′ and B(c′′, c′′′); and

4. if c ∈ F , then c′ ∈ F ′.

Vice versa, if c′ ∈ F ′, then c ∈ F .

A bisimulation between two transition systems, B ⊆ TS×TS, is a symmetric
binary relation, such that, if B(TS, TS′), then,

for every i ∈ I, there exists an i′ ∈ I ′, such that B(i, i′).
Vice versa, for every i′ ∈ I ′, there exists an i ∈ I, such that

B(i, i′).

If B(TS, TS′), then TS and TS′ are said to be bisimilar to each other, denoted
by TS ↔ TS′.
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8 Thermostat Again

We revisit the thermostat example given in section 3.

Th = (T = 18) ∧N Thon,
Thon = up ∩H

T Thon
0 ,

Thon
t =

∫
u∈[t,∞)

σu−t
rel (Th→),

Th→ = (T = 20):→
(T • = •T ) uH ˜̃toff · Thoff ,

Thoff = down ∩H
T Thoff

0 ,

Thoff
t′ =

∫
u∈[t′,∞)

σu−t′
rel (Th←),

Th← = (T = 18):→
(T • = •T ) uH ˜̃ton · Thon.

Th′ = (T = 18) ∧N Th′on,
Th′on = up ∩H

T Th′on
0 ,

Th′on
t = σln2−t

rel (Th′→),
Th′→ = (T • = •T ) uH ˜̃toff · Th′off ,

Th′off = down ∩H
T Th′off

0 ,

Th′off
t′ = σln3−t′

rel (Th′←),
Th′← = (T • = •T ) uH ˜̃ton · Th′on

where t ∈ [0, ln2] and t′ ∈ [0, ln3].
We write up for proposition (18 ≤ T ≤ 20 ∧ Ṫ = −T + 22), and down for

proposition (18 ≤ T ≤ 20 ∧ Ṫ = −T + 17).
Thon

t and Th′on
t show processes Thon and Th′on after t time units respec-

tively. Th′on has a definite delay of ln2 time units. But Thon has an indefinite
delay. Starting from 18◦ and delaying according to up, the temperature reaches
20◦ in ln2 time units. According to the operational semantic rules (see rule 26
table 8), keeping the temperature infinitely often continuously differentiable and
up true, delaying more than ln2 time units is not possible for Thon. Therefore,
we define t in interval [0, ln2]. Thon

t =
∫

u∈[t,∞)
σu−t

rel (Th→) indicates that after
t time units t is subtracted from the delay duration u.

Similarly, Thoff
t′ and Th′off

t′ show processes Thoff and Th′off after t′ time
units respectively. Starting from 20◦, keeping down true and the temperature
infinitely often continuously differentiable, delaying for more than ln3 time units
is not possible for Thoff . Therefore, t′ ∈ [0, ln3].

Starting at T = 18◦, evolving according to Ṫ = −T + 22, the temperature
at any time r is given by (22er − 4)/er. In the following subsections, we denote
a state with T (r) = (22er − 4)/er and Ṫ (r) = −T (r) + 22 by αr.

Similarly, starting at T = 20◦, evolving according to Ṫ = −T + 17, the
temperature at any time r is given by (17er + 3)/er. We denote a state at any
instant r, with T (r) = (17er + 3)/er and Ṫ (r) = −T (r) + 17 by α′r.

We sometimes write a state at any instant r as, (T (r), Ṫ (r)).
First we give representations of Th and Th′ in the graph model proposed in

this paper. Then we prove that the two graphs are bisimilar. We apply signal
hiding on graphs of Th and Th′ and prove that the graphs obtained after signal
hiding with respect to T are also bisimilar. Thus we have been successfully able
to define an operational semantics for signal hiding that preserves bisimulation.
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8.1 Graph of Th

Let TS(Th) be the graph of the process Th,

TS(Th) = (Cth,−→th, 7−→th, Ith, ∅).

• There is only one initial configuration with temperature 18,

Ith = {(Th, (18, 4), 0)};

• the initial configuration evolves (while idling), into the following set of
configurations:

C ′th = {(up ∩H
T (

∫
u∈[r,∞)

σu−r
rel (Th→)), αr, r) | r ∈ [0, ln2]}.

After performing action ˜̃toff , (up∩HT (
∫

u∈[ln2,∞)
σu−ln2

rel (Th→)), (20, 2), ln2),
becomes (Thoff , (20,−3), 0).

While idling, Thoff evolves into the following processes:

C ′′th = {(down ∩H
T (

∫
u∈[r′,∞)

σu−r′
rel (Th←)), α′r′ , r

′) | r′ ∈ [0, ln3]}.

The set of all configurations, Cth, is defined as,

Cth = C ′th ∪ C ′′th ∪ Ith;

• Thon performs action ˜̃toff at temperature T = 20. The temperature
reaches 20 in time ln2. Thoff performs action ˜̃ton at temperature T = 18.
The temperature reaches 18 in time ln3.

The set of action transitions consists of the following transitions:

{(up ∩H
T (

∫
u∈[ln2,∞)

σu−ln2
rel (Th→)), (20, 2), ln2) toff−−−→th (Thoff , (20,−3), 0),

(down ∩H
T (

∫
u∈[ln3,∞)

σu−ln3
rel (Th←)), (18,−1), ln3) ton−−→th (Thon, (18, 4), 0)};

• Time transitions originating from (Th, (18, 4), 0) are,

{(Th, (18, 4), 0)
t,ρt7−−→th (up ∩H

T (
∫

u∈[t,∞)
σu−t

rel (Th→)), αt, t)
| t ∈ (0, ln2], (t, ρt) ∈ D, ρt |= up ∧ ρt is smooth for T};

Time transitions among members of C ′th are,

{(up ∩H
T (

∫
u∈[r,∞)

σu−r
rel (Th→)), αr, r)

t,ρt7−−→th

(up ∩H
T (

∫
u∈[r+t,∞)

σ
u−(r+t)
rel (Th→)), αt+r, t + r) |

(t, ρt) ∈ D, ρt |= up ∧ ρt is smooth for T,
r ∈ [0, ln2), t ∈ (0, ln2], r + t ∈ (0, ln2]};
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Time transitions among members of C ′′th are,

{(down ∩H
T (

∫
u∈[r′,∞)

σu−r′
rel (Th←)), α′r′ , r

′)
t,ρt7−−→th

(down ∩H
T (

∫
u∈[r′+t,∞)

σ
u−(r′+t)
rel (Th←)), α′t+r′ , t + r′) |

(t, ρt) ∈ D, ρt |= down ∧ ρt is smooth for T,
r′ ∈ [0, ln3), t ∈ (0, ln3], r′ + t ∈ (0, ln3]};

• Process Th is an infinite process with recursion and there are no final
configurations.

8.2 Graph of Th′

Let TS(Th′) be the graph of the process Th′,

TS(Th′) = (Cth′ ,−→th′ , 7−→th′ , Ith′ , ∅).

• Like in the case of Th there is only one initial configuration,

Ith′ = {(Th′, (18, 4), 0)};

• (Th′, (18, 4), 0) can wait for upto ln2 time units and evolve into the fol-
lowing set of configurations:

C ′th′ = {(up ∩H
T σln2−r

rel (Th′→), αr, r) | r ∈ [0, ln2]}.

After performing action ˜̃toff , (up ∩H
T σ0

rel(Th′→), (20, 2), ln2), becomes
(Th′off , (20,−3), 0).

While idling, Th′off evolves into the following processes:

C ′′th′ = {(down ∩H
T σln3−r′

rel (Th′←), α′r′ , r
′) | r′ ∈ [0, ln3]}.

The set of all configurations, Cth′ , is defined as,

Cth′ = C ′th′ ∪ C ′′th′ ∪ Ith′ ;

• After waiting for ln2 time units, Th′on performs action ˜̃toff . The temper-
ature at that time is 20◦. Th′off waits for ln3 time units before performing
action ˜̃ton. Temperature at that time is 18◦.

The set of action transitions is as follows:

{(up ∩H
T σ0

rel(Th′→), (20, 2), ln2) toff−−−→th′ (Th′off , (20,−3), 0),
(down ∩H

T σ0
rel(Th′←), (18,−1), ln3) ton−−→th′ (Th′on, (18, 4), 0)};
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• the time transitions originating from (Th′, (18, 4), 0) are,

{(Th′, (18, 4), 0)
t,ρt7−−→th′ (up ∩H

T σln2−t
rel (Th′→), αt, t) |

t ∈ (0, ln2], (t, ρt) ∈ D, ρt |= up ∧ ρt is smooth for T}.

Time transitions among members of C ′th′ are,

{(up ∩H
T σln2−r

rel (Th′→), αr, r)
t,ρt7−−→th′

(up ∩H
T σ

ln2−(r+t)
rel (Th′→), αt+r, t + r) |

(t, ρt) ∈ D, ρt |= up ∧ ρt is smooth for T,
r ∈ [0, ln2), t ∈ (0, ln2], r + t ∈ (0, ln2]}.

Time transitions among members of C ′′th′ are,

{(down ∩H
T σln3−r′

rel (Th′←), α′r′ , r
′)

t,ρt7−−→th′

(down ∩H
T σ

ln3−(r′+t)
rel (Th′←), α′t+r′ , t + r′) |

(t, ρt) ∈ D, ρt |= down ∧ ρt is smooth for T,
r′ ∈ [0, ln3), t ∈ (0, ln3], r′ + t ∈ (0, ln3]};

• Process Th′ is an infinite process with recursion and there are no final
configurations.

8.3 Proof : TS(Th) is bisimilar to TS(Th′)

We define a binary relation R on configurations of Cth and Cth′ as follows:

R = {((Th, (18, 4), 0), (Th′, (18, 4), 0)),
((up ∩H

T

∫
u∈[r,∞)

σu−r
rel (Th→), αr, r), (up ∩H

T σln2−r
rel (Th′→), αr, r)),

((down ∩H
T

∫
u∈[r′,∞)

σu−r′
rel (Th←), α′r′ , r

′),

(down ∩H
T σln3−r′

rel (Th′←), α′r′ , r
′))

| r ∈ [0, ln2], r′ ∈ [0, ln3]}.

We prove that R is a bisimulation relation. For all pairs (c, c′) ∈ R, where
c ∈ Cth and c′ ∈ Cth′ , we prove that the pair (c, c′) fulfills the four conditions
mentioned in section 7. We concentrate only on Thon and Th′on. The proof
that ((down ∩H

T

∫
u∈[r′,∞)

σu−r′
rel (Th←), α′r′ , r

′), (down ∩H
T σln3−r′

rel (Th′←), α′r′ , r
′))

fulfills the bisimulation conditions is left to the reader.

1. The states and time labels of c and c′ for all pairs (c, c′) ∈ R are the same.

2. While evolving as up, ˜̃toff is the only action that Thon and Th′on can
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perform at time ln2.

(Th, (18, 4), 0) 6 toff−−−→th

(Th′, (18, 4), 0) 6 toff−−−→th′

For all r ∈ [0, ln2),
(up ∩H

T (
∫

u∈[r,∞)
σu−r

rel (Th→)), αr, r) 6 toff−−−→th

(up ∩H
T σln2−r

rel (Th′→), αr, r) 6 toff−−−→th′

At r = ln2,
(up ∩H

T (
∫

u∈[r,∞)
σu−r

rel (Th→)), (20, 2), ln2) toff−−−→th (Thoff , (20,−3), 0)

(up ∩H
T σln2−r

rel (Th′→), (20, 2), ln2) toff−−−→th′ (Th′off , (20,−3), 0) and
((Thoff , (20,−3), 0), (Th′off , (20,−3), 0)) is in R.

3. For all t ∈ (0, ln2], let (t, ρt) ∈ D, where ρt |= up and ρt is smooth for T,
we can derive,

(Th, (18, 4), 0)
t,ρt7−−→th (up ∩H

T (
∫

u∈[t,∞)
σu−t

rel (Th→)), αt, t)

(Th′, (18, 4), 0)
t,ρt7−−→th′ (up ∩H

T σln2−t
rel (Th′→), αt, t) and,

((up ∩H
T (

∫
u∈[t,∞)

σu−t
rel (Th→)), αt, t), (up ∩H

T (σln2−t
rel (Th′→)), αt, t)) is in R.

For r ∈ [0, ln2), t ∈ (0, ln2], r + t ∈ (0, ln2] let (t, ρt) ∈ D, where ρt |= up
and ρt is smooth for T, then we can derive,

(up ∩H
T

∫
u∈[r,∞)

σu−r
rel (Th→), αr, r)

t,ρt7−−→th

(up ∩H
T

∫
u∈[r+t,∞)

σ
u−(r+t)
rel (Th→), αt+r, t + r)

(up ∩H
T σln2−r

rel (Th′→), αr, r)
t,ρt7−−→th′ (up ∩H

T σ
ln2−(r+t)
rel (Th′→), αt+r, t + r)

4. No configuration in R is a final configuration.

Thus R is a bisimulation relation that shows that TS(Th) and TS(Th′) are
bisimilar.

8.4 Graph of T4(Th)

Signal hiding is applied to a graph of a process after removing unreachable con-
figurations and transitions from it. TS(Th) and TS(Th′), have no unreachable
configurations and transitions, therefore:

TS(Th) = reach(TS(Th)) and TS(Th′) = reach(TS(Th′))

Thus we can apply signal hiding with respect to T on TS(Th) and TS(Th′)
respectively.
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We define α, α′ to be states with arbitrary values of T and Ṫ . i.e.,

α =T α′ =T (18, 4) =T (19, 3) =T (20,−3) etc.

Let T4(TS(Th)) be the graph obtained after applying signal hiding with
respect to T on TS(Th).

We define T4(TS(Th)) as,

T4(TS(Th)) = (CT4th,−→T4th, 7−→T4th, IT4th, ∅);
where,

•
IT4th = {(T4Th, α, 0) | α =T (18, 4)};

• the initial configurations evolve into the following set of configurations
while idling:

C ′T4th = {(T4(up ∩H
T

∫
u∈[r,∞)

σu−r
rel (Th→)), α, r) | r ∈ [0, ln2], α =T αr};

Any of the configurations, (T4(up ∩H
T

∫
u∈[ln2,∞)

σu−ln2
rel (Th→)), α, ln2),

with timer equal to ln2, can perform action ˜̃toff and become one of
the configurations of the form, (T4(down ∩H

T

∫
u∈[0,∞)

σu
rel(Th←)), α′, 0).

T4Thoff evolves into the following processes:

C ′′T4th = {(T4(down ∩H
T

∫
u∈[r′,∞)

σu−r′
rel (Th←)), α, r′) | r′ ∈ [0, ln3]}

The set of all configurations, CT4th, is defined as,

CT4th = C ′T4th ∪ C ′′T4th ∪ IT4th;

• the set of action transitions consists of transitions with two action labels,
i.e., ˜̃toff and ˜̃ton. For action ˜̃toff , consider configuration T4c, where

c =T (up ∩H
T

∫
u∈[ln2,∞)

σu−ln2
rel (Th→), (20, 2), ln2).

T4c can perform action ˜̃toff and become a configuration T4c′, where
c′ =T (Thoff , (20,−3), 0).

For action ton, consider a configuration T4c′′, such that

c′′ =T (down ∩H
T (

∫
u∈[ln3,∞)

σu−ln3
rel (Th←)), (18,−1), ln3).

T4c′′ can perform action ˜̃ton and become a configuration T4c′′′, where
c′′′ =T (Thon, (18, 4), 0).

The set of actions −→T4th consists of the following transitions:

{(T4(up ∩H
T

∫
u∈[ln2,∞)

σu−ln2
rel (Th→)), α, ln2) toff−−−→T4th (T4Thoff , α′, 0)}

∪
{(T4(down ∩H

T

∫
u∈[ln3,∞)

σu−ln3
rel (Th←)), α, ln3) ton−−→T4th (T4Thon, α′, 0)};
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• time transitions originating from initial configurations are,

{(T4Th, α, 0)
t,ρ∗t7−−−→T4th (T4(up ∩H

T

∫
u∈[t,∞)

σu−t
rel (Th→)), α′, t) | t ∈ (0, ln2],

(t, ρ∗t ) ∈ D, ∃ ρt ∈ εt • (ρt |= up ∧ ρt is smooth for T ∧ ρ∗t =T ρt)}.

Time transitions among members of C ′T4th are,

{(T4(up ∩H
T

∫
u∈[r,∞)

σu−r
rel (Th→)), α, r)

t,ρ∗t7−−−→T4th

(T4(up ∩H
T

∫
u∈[r+t,∞)

σ
u−(r+t)
rel (Th→)), α′, t + r) |

(t, ρ∗t ) ∈ D, ∃ ρt ∈ εt • (ρt |= up ∧ ρt is smooth for T
∧ ρ∗t =T ρt), r ∈ [0, ln2), t ∈ (0, ln2], r + t ∈ (0, ln2]}.

Time transitions among members of C ′′T4th are,

{(T4(down ∩H
T

∫
u∈[r′,∞)

σu−r′
rel (Th←)), α, r′)

t,ρ∗t7−−−→T4th

(T4(down ∩H
T

∫
u∈[r′+t,∞)

σ
u−(r′+t)
rel (Th←)), α′, r′ + t) |

(t, ρ∗t ) ∈ D, ∃ ρt ∈ εt • (ρt |= down ∧ ρt is smooth for T
∧ ρ∗t =T ρt), r′ ∈ [0, ln3), t ∈ (0, ln3], r′ + t ∈ (0, ln3]}.

8.5 Graph of T4(Th′)

Let T4(TS(Th′)) be the graph obtained by applying signal hiding with respect
to T on TS(Th′). α, α′ denote states with arbitrary values of T and Ṫ and
α =T α′.

We define T4TS(Th′) as,

T4(TS(Th′)) = (CT4th′ ,−→T4th′ , 7−→T4th′ , IT4th′ , ∅);
where,

•
IT4th′ = {(T4Th′, α, 0) | α =T (18, 4)};

• the initial configurations evolve into the following set of configurations
while idling:

C ′T4th′ = {(T4(up ∩H
T σln2−r

rel (Th′→)), α, r) | r ∈ [0, ln2], α =T αr}.
Any of the configurations, (T4(up ∩HT σ0

rel(Th′→)), α, ln2), can perform ac-
tion ˜̃toff and become one of the configurations of the form, (T4(down ∩HT
σln3

rel (Th′←)), α′, 0). T4Th′off evolves into the following processes:

C ′′T4th′ = {(T4(down ∩H
T σln3−r′

rel (Th′←)), α, r′) | r′ ∈ [0, ln3]}.

The set of all configurations, CT4th′ , is defined as,

CT4th′ = C ′T4th′ ∪ C ′′T4th′ ∪ IT4th′ ;
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• the set of action transitions consists of transitions with two action labels,
i.e., ˜̃toff and ˜̃ton. For action ˜̃toff , consider a configuration T4c, where

c =T (up ∩H
T σ0

rel(Th′→), (20, 2), ln2).

T4c with timer equal to ln2 can perform action ˜̃toff , and become a
configuration T4c′, where c′ =T (Th′off , (20,−3), 0).

Whereas for action ˜̃ton, consider a configuration T4c′′, such that

c′′ =T (down ∩H
T σ0

rel(Th′←), (18,−1), ln3).

T4c′′ can perform action ˜̃ton and become a configuration T4c′′′, where
c′′′ =T (Th′on, (18, 4), 0).

The set of actions −→T4th′ consists of the following transitions:

{(T4(up ∩H
T σ0

rel(Th′→)), α, ln2) toff−−−→T4th′ (T4Th′off , α′, 0)}
∪
{(T4(down ∩H

T σ0
rel(Th′←)), α, ln3) ton−−→T4th′ (T4Th′on, α′, 0)};

• time transitions originating from initial configurations are,

{(T4Th′, α, 0)
t,ρ∗t7−−−→T4th′ (T4(up ∩H

T σln2−t
rel (Th′→)), α′, t)

| t ∈ (0, ln2], (t, ρ∗t ) ∈ D, ∃ ρt ∈ εt • (ρt |= up ∧ ρt is smooth for T)
∧ ρ∗t =T ρt}.

Time transitions among members of C ′T4th′ are,

{(T4(up ∩H
T σln2−r

rel (Th′→)), α, r)
t,ρ∗t7−−−→T4th′

(T4(up ∩H
T σ

ln2−(r+t)
rel (Th′→)), α′, t + r) |

(t, ρ∗t ) ∈ D, ∃ ρt ∈ εt • (ρt |= up ∧ ρt is smooth for T
∧ ρ∗t =T ρt), r ∈ [0, ln2), t ∈ (0, ln2], r + t ∈ (0, ln2]}.

Time transitions among members of C ′′T4th′ are,

{(T4(down ∩H
T σln3−r′

rel (Th′←)), α, r′)
t,ρ∗t7−−−→T4th′

(T4(down ∩H
T σ

ln3−(r′+t)
rel (Th′←)), α′, r′ + t) |

(t, ρ∗t ) ∈ D, ∃ ρt ∈ εt • (ρt |= down ∧ ρt is smooth for T
∧ ρ∗t =T ρt), r′ ∈ [0, ln3), t ∈ (0, ln3], r′ + t ∈ (0, ln3]}.

8.6 Proof: T4(TS(Th)) is bisimilar to T4(TS(Th′))

We define a binary relation R′ on configurations of CT4th and CT4th′ . The
pairs of configurations in R′ have same states. We use α and α′ to denote states
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with arbitrary values of temperature and its derivative.

R′ = {((T4Th, α, 0), (T4Th′, α, 0)),
((T4(up ∩H

T

∫
u∈[r,∞)

σu−r
rel (Th→)), α, r), (T4(up ∩H

T σln2−r
rel (Th′→)), α, r)),

((T4(down ∩H
T

∫
u∈[r′,∞)

σu−r′
rel (Th←)), α, r′),

(T4(down ∩H
T σln3−r′

rel (Th′←)), α, r′)),
| r ∈ [0, ln2], r′ ∈ [0, ln3]}.

We prove that R′ is a bisimulation relation. Here we give the proof that
(T4(Thon), α, r) and (T4(Th′on), α, r) are bisimilar. The proof that ((T4(down∩HT∫

u∈[r′,∞)
σu−r′

rel (Th←)), α, r′), (T4(down∩HT σln3−r′
rel (Th′←)), α, r′)) fulfills the bisim-

ulation conditions is left to the reader.

1. The states and time labels of c and c′ for all pairs (c, c′) ∈ R′ are the same,
where c ∈ CT4th and c′ ∈ CT4th′ .

2. ˜̃toff is the action that T4Thon and T4Th′on will perform at time ln2.

(T4Th, α, 0) 6 toff−−−→T4th

(T4Th′, α, 0) 6 toff−−−→T4th′

For all r ∈ [0, ln2),
(T4(up ∩H

T (
∫

u∈[r,∞)
σu−r

rel (Th→))), α, r) 6 toff−−−→T4th

(T4(up ∩H
T σln2−r

rel (Th′→), α, r)) 6 toff−−−→T4th′

For r = ln2,
(T4(up ∩H

T (
∫

u∈[r,∞)
σu−r

rel (Th→)), α, ln2)) toff−−−→T4th (T4Thoff , α′, 0)

(T4(up ∩H
T σln2−r

rel (Th′→)), α, ln2) toff−−−→T4th′ (T4Th′off , α′, 0) and
((T4Thoff , α, 0), (T4Th′off , α, 0)) is in R′.

3. For all t ∈ (0, ln2], let (t, ρt) ∈ D, where ρt |= up and ρt is smooth for T .
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Let ρ∗t ∈ εt and ρ∗t =T ρt.

(T4Th, α, 0)
t,ρ∗t7−−−→T4th (T4(up ∩H

T

∫
u∈[t,∞)

σu−t
rel (Th→)), α′, t)

(T4Th′, α, 0)
t,ρ∗t7−−−→T4th′ (T4(up ∩H

T σln2−t
rel (Th′→)), α′, t).

And,

((T4(up ∩H
T

∫
u∈[t,∞)

σu−t
rel (Th→)), α′, t), (T4(up ∩H

T (σln2−t
rel (Th′→)), α′, t))

is in R′.

For r ∈ [0, ln2), t ∈ (0, ln2], r + t ∈ (0, ln2], let (t, ρt) ∈ D,
where ρt |= up and ρt is smooth for T. Let ρ∗t ∈ εt and ρ∗t =T ρt.

(T4(up ∩H
T

∫
u∈[r,∞)

σu−r
rel (Th→)), α, r)

t,ρ∗t7−−−→T4th

(T4(up ∩H
T

∫
u∈[r+t,∞)

σ
u−(r+t)
rel (Th→)), α′, t + r)

(T4(up ∩H
T σln2−r

rel (Th′→)), α, r)
t,ρ∗t7−−−→T4th′

(T4(up ∩H
T σ

ln2−(r+t)
rel (Th′→)), α′, t + r)

4. No configuration in R′ is a final configuration.

Thus R′ is a bisimulation relation that shows that T4(TS(Th)) and T4(TS(Th′))
are bisimilar.

9 Soundness of Axioms of BPAsrt
hs

We prove the soundness of the axioms of BPAsrt
hs , by proving that their inter-

pretations in the paradigm of transition systems (given in this report) hold.

1. GC1

T :→ x = x

Interpretation:

T :→ TS ↔ TS.

Let TS be given by

TS = (C,−→, 7−→, I, F ) and;

T :→ TS is given by

T :→ TS = (C ′,−→′, 7−→′, I ′, F ), as defined in sec 5.8.

Let p be the process expression of TS. R1 ⊆ I × I ′ is a binary relation on
initial configurations of TS and T :→ TS

R1 = {(i, T :→ i) | i ∈ I}; and
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R ⊆ C × C ′, is a binary relation on configurations of TS and T :→ TS

R = R1 ∪ {(c, c) | c ∈ C}.
Note that if i ∈ I then T :→ i ∈ I ′. Also C ′ ⊇ C. So if c ∈ C, then c ∈ C ′.
We prove that R is a bisimulation relation. For this we have to prove that
for every pair (c, c′) ∈ R, (c, c′) satisfies the conditions in section 7. For
a pair (c, c), it is easy to see that all conditions of a bisimulation relation
are met. We prove it for pairs (i, T :→ i), where i ∈ I as follows(the reader
may consult section 5.8 to verify statements):

(a) The notation T :→ i doesn’t do anything to the state or time label of
i. It only changes the process term of i from p to T :→p.

(b) T :→ i a−→′
c, whenever i a−→ c, where i ∈ I, a ∈ A, c ∈ C. Therefore,

T :→ i a−→′
c if and only if i a−→ c. And (c, c) satisfies the conditions

for bisimulation.
(c) Similarly T :→ i

r,ρ7−−→′
c, whenever i

r,ρ7−−→ c, where i ∈ I, (r, ρ) ∈ D, c ∈
C. Therefore, T :→ i

r,ρ7−−→′
c ⇐⇒ i

r,ρ7−−→ c, and (c, c) satisfy the
bisimulation conditions.

(d) Neither i nor T :→ i is a final configuration.

The relation R indicates that TS ↔ T :→ TS, as,

For every i ∈ I, there exists an T :→ i ∈ I ′(and viceversa), such that
B(i, T :→ i).

2. GC2SR

F :→ x = ˜̃δ
Interpretation:

F :→ TS ↔ TS(˜̃δ).
Let TS be given by

TS = (C,−→, 7−→, I, F );

F :→ TS be given by

F :→ TS = (C ′,−→′, 7−→′ I ′, F ), as defined in sec 5.8;

TS(˜̃δ) be given by

TS(˜̃δ) = (C ′′, ∅, ∅, I ′′, ∅), as defined in sec 5.5.

Let p be the process expression of TS. R is binary relation on initial
configurations of TS(˜̃δ) and F :→ TS, i.e.,

R = {((˜̃δ, α, 0), (F :→ p, α, 0)) | α ∈ S}.
We prove that R is a bisimulation relation.
Let α ∈ S.
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(a) The states and time labels of (˜̃δ, α, 0) and (F :→p, α, 0) are the same.

(b) (˜̃δ, α, 0) is not a source to any action transition.

For, (F :→p, α, 0) a−→′
c, where a ∈ A, c ∈ C(c belongs to C ′ as well),

we must have (p, α, 0) a−→ c ∧ α |= F . Now F can never be true
in any state. Therefore (F :→ p, α, 0) is not a source to any action
transitions.

(c) (˜̃δ, α, 0) is not a source to any time transition.
For, (F :→ p, α, 0) to be a source to a time transition, it must be the
case that α |= F , which can never hold. Therefore (F :→ p, α, 0) is
not a source to any time transitions.

(d) Neither (˜̃δ, α, 0), nor(F :→ p, α, 0) is a final configuration.

R indicates that TS(˜̃δ)↔ F :→ TS.

3. GC5

ψ :→ (x · y) = (ψ :→ x) · y
Interpretation:

ψ :→ (TS1 · TS2) = (ψ :→ TS1) · TS2

Let TS1 and TS2 be defined as,

TS1 = (C1,−→1, 7−→1, I1, F1) and;
TS2 = (C2, I2,−→2, 7−→2, I2, F2).

TS1 · TS2 is given by,

TS1 · TS2 = (C12, I12,−→12, 7−→12, F2), as defined in sec 5.10.

Let the process expressions of TS1 and TS2 be p1 and p2 respectively.

First we write ψ :→ TS1 · TS2.

Let ψ :→ TS1 · TS2 be given by,

ψ :→ TS1 · TS2 = (C ′, I ′,−→′, 7−→′, F2), as defined in sec 5.8.

Below we define I ′ and the sets of action and time transitions originating
from members of I ′.

(a) I ′ = {ψ :→ i12 | i12 ∈ I12} ∪ {ψ :→ (p1 · p2, α, 0) | α ∈ S ∧ α 6|= ψ};
I ′ can also be written as

I ′ = {ψ :→ (p1 · p2, α, 0) | α ∈ S ∧ (α 6|= ψ ∨
(p1.p2, α, 0) ∈ I12)}

= {ψ :→ ((p1, α, 0) · p2) | α ∈ S ∧ (α 6|= ψ
∨ (p1, α, 0) ∈ I1)};
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(b) The set of action transitions originating from members of I ′, denoted
by −→′′, is,

−→′′ = {(ψ :→ i12, a, c) | i12 ∈ I12, a ∈ A, c ∈ C12, i12 |= ψ

∧ i12
a−→12 c};

−→′′ can also be written as

−→′′ = {(ψ :→ i12, a, i2) | i12 ∈ I12, a ∈ A, i2 ∈ I2,

i12 |= ψ ∧ i12
a−→12 i2}

∪{(ψ :→ i12, a, c1 · p2) | i12 ∈ I12, a ∈ A, c1 ∈ C1\F1,

i12 |= ψ ∧ i12
a−→12 c1 · p2}

= {(ψ :→ (i1 · p2), a, i2) | i1 ∈ I1, a ∈ A, i2 ∈ I2, i1 |= ψ,

∃ f ∈ F1 • state(f) = state(i2) ∧ i1
a−→1 f}

∪{(ψ :→ (i1 · p2), a, c1 · p2) | i1 ∈ I1, a ∈ A, c1 ∈ C1\F1,

i1 |= ψ ∧ i1
a−→1 c1};

(c) The set of time transitions originating from members of I ′ is,

7−→′′ = {(ψ :→ i12, (r, ρ), c) | i12 ∈ I12, (r, ρ) ∈ D, c ∈ C12,

i12 |= ψ ∧ i12
r,ρ7−−→ c};

7−→′′ can also be written as,

7−→′′ = {(ψ :→ (i1 · p2), (r, ρ), c1 · p2) | i1 ∈ I1, (r, ρ) ∈ D,

c1 ∈ C1\F1, i1 |= ψ ∧ i1
r,ρ7−−→ c1};

Now we simplify (ψ :→ TS1) · TS2.

Let ψ :→ TS1 be given by,

ψ :→ TS1 = (C ′1, I
′
1,−→′

1, 7−→′
1, F2), as defined in sec 5.8.

Let (ψ :→ TS1) · TS2 be given by,

(ψ :→ TS1) · TS2 = (C ′12, I
′
12,−→′

12, 7−→′
12, F2), as defined in sec 5.10.

Below we define I ′12 and the sets of action and time transitions originating
from members of I ′12.

(a) I ′12 = {i · p2 | i ∈ I ′1}.
I ′ can also be written as,

I ′12 = {(ψ :→ p1, α, 0) · p2 | α ∈ S ∧ (α 6|= ψ ∨
(p1, α, 0) ∈ I1)}.
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(b) The set of all action transitions originating from members of I ′12,
denoted by −→′′

12, is given by,

−→′′
12 = {(i · p2, a, c · p2) | i ∈ I ′1, a ∈ A, c ∈ C ′1\F1, ∧ i a−→′

1 c}
∪{(i · p2, a, i2) | i ∈ I ′1, a ∈ A, i2 ∈ I2,

∃ f ∈ F1 • state(f) = state(i2) ∧ i a−→′
1 f};

−→′′
12 can also be written as,

−→′′
12 = {((ψ :→ i1) · p2, a, c · p2) | i1 ∈ I1, a ∈ A, c ∈ C1\F1,

i1 |= ψ ∧ i1
a−→1 c}

∪{((ψ :→ i1) · p2, a, i2) | i1 ∈ I1, a ∈ A, i2 ∈ I2, i1 |= ψ,

∃ f ∈ F1 • state(f) = state(i2) ∧ i1
a−→1 f};

(c) The set of all time transitions originating from members of I ′12, de-
noted by 7−→′′, is,

7−→′′ = {(i · p2, (r, ρ), c · p2) | i ∈ I ′1, c ∈ C ′1\F1 ∧ i
r,ρ7−−→′

1 c};
7−→′′ can also be written as,

7−→′′ = {((ψ :→ i1) · p2, (r, ρ), c1 · p2) | i1 ∈ I1, c1 ∈ C1\F1,

i1 |= ψ ∧ i
r,ρ7−−→1 c};

A binary relation on configurations of ψ :→TS1 ·TS2 and (ψ :→TS1) ·TS2

is given as,

R = {(ψ :→ ((p1, α, 0) · p2), (ψ :→ (p, α, 0)) · p2) | α ∈ S ∧
(α 6|= ψ ∨ (p1, α, 0) ∈ I1)}

∪ {(c2, c2) | c2 ∈ C2}
∪ {(c1 · p2, c1 · p2) | c1 ∈ I1}.

R is a bisimulation relation and proves that

ψ :→ TS1 · TS2 ↔ (ψ :→ TS1) · TS2.

4. GC6

(ψ ∧ ψ′) :→ x = ψ :→ (ψ′ :→ x)
Interpretation:

(ψ ∧ ψ′) :→ TS = ψ :→ (ψ′ :→ TS).
Let TS be given by

TS = (C,−→, 7−→, I, F ).

The binary relation on configurations of ψ :→(ψ′ :→TS) and (ψ ∧ ψ′):→TS,
that proves bisimulation between two transition systems is ,

R = {(ψ :→ (ψ′ :→ (p, α, 0)), (ψ ∧ ψ′) :→ p, α, 0) |
α ∈ S ∧ ((p, α, 0) ∈ I ∨ α 6|= (ψ ∧ ψ′))}
∪{(c, c) | c ∈ C}.
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5. GC7

(ψ ∨ ψ′) :→ x = ψ :→ x + ψ′ :→ x

Interpretation: (ψ ∨ ψ′) :→ TS = ψ :→ TS + ψ′ :→ TS.

Let TS be given by
TS = (C,−→, 7−→, I, F );

(ψ ∨ ψ′) :→ TS be given by

(ψ ∨ ψ′) :→ TS = (C ′, I ′,−→′, 7−→′, F ), as defined in sec 5.8;

ψ :→ TS be given by

ψ :→ TS = (C1, I1,−→1, 7−→1, F ), as defined in sec 5.8;

ψ′ :→ TS be given by

ψ′ :→ TS = (C2, I2,−→2, 7−→2, F ), as defined in sec 5.8;

ψ :→ TS + ψ′ :→ TS be given by

ψ :→ TS + ψ′ :→ TS = (C1+2, I1+2,−→1+2, 7−→1+2, F1+2),
as defined in sec 5.11.

Let p be the process expression of TS.

First we simplify ψ :→TS +ψ′ :→TS. Below we give the definitions of I1+2

and the sets of action and time transitions originating from members of
I1+2.

(a) I1+2 = {i1 + i2 | i1 ∈ I1, i2 ∈ I2 ∧ state(i1) = state(i2)}.
I1+2 can also be written as

I1+2 = {ψ :→ i + ψ′ :→ i | i ∈ I}
∪{(ψ :→ p + ψ′ :→ p, α, 0) | α ∈ S ∧ α 6|= ψ
∧ α 6|= ψ′}

= {(ψ :→ p + ψ′ :→ p, α, 0) | α ∈ S ∧ ((p, α, 0) ∈ I
∨ α 6|= (ψ ∨ ψ′))};

(b) The set of action transition originating from members of I1+2, de-
noted by −→′

1+2, is given as

−→′
1+2 = {(i1 + i2, a, c) | i1 ∈ I1, i2 ∈ I2, a ∈ A, c ∈ C1

∧ i1
a−→1 c}

∪{(i1 + i2, a, c) | i1 ∈ I1, i2 ∈ I2, a ∈ A, c ∈ C2

∧ i1
a−→2 c};
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−→′
1+2 can also written as,

−→′
1+2 = {(ψ :→ i + ψ′ :→ i, a, c) | i ∈ I, a ∈ A, c ∈ C,

i |= ψ ∧ i a−→ c}
∪{(ψ :→ i + ψ′ :→ i, a, c) | i ∈ I, a ∈ A, c ∈ C,

i |= ψ′ ∧ i a−→ c}
= {(ψ :→ i + ψ′ :→ i, a, c) | i ∈ I, a ∈ A, c ∈ C,

i |= (ψ ∨ ψ′) ∧ i a−→ c};

(c) The set of all time transition originating from members of I1+2, de-
noted by 7−→1+2, is

7−→1+2 = {(ψ :→ i + ψ′ :→ i, (r, ρ), c) | i ∈ I, (r, ρ) ∈ D, c ∈ C,

i |= (ψ ∨ ψ′) ∧ i
r,ρ7−−→ c}

∪{(ψ :→ i + ψ′ :→ i, (r, ρ), c + c) | i ∈ I, (r, ρ) ∈ D, c ∈ C,

i |= (ψ ∧ ψ′) ∧ i
r,ρ7−−→ c}

The definition of (ψ ∨ ψ′) :→TS can easily be obtained from the definition
of ψ :→ TS. See section 5.8.

A binary relation on initial configurations of (ψ ∨ ψ′) :→TS and ψ :→TS+
ψ′ :→ TS is

R1 = {(ψ :→ (p, α, 0) + ψ′ :→ (p, α, 0), (ψ ∨ ψ′) :→ (p, α, 0)) |
α ∈ S ∧ ((p, α, 0) ∈ I ∨ α 6|= (ψ ∨ ψ′))}.

Let
R = R1 ∪ {(c, c) | c ∈ C}

∪{(c + c, c) | c ∈ C}.
We prove that R is a bisimulation relation. c + c↔ c will be proved while
proving the soundness of axiom A3 later on in the paper. Proving that
c↔ c is trivial, so we give the proof for pairs of configurations in R1 only.

(a) The states and time labels of configurations in a pair are the same.
(b) ((ψ ∨ ψ′) :→ i, a, c), can be an action transition in −→′, where i ∈

I, a ∈ A, c ∈ C, if and only if

i a−→ c ∧ i |= (ψ ∨ ψ′).

A corresponding initial configuration in I1+2, with i ∈ I, is ψ :→ i +
ψ′ :→ i. The conditions for ψ :→ i + ψ′ :→ i to be a source to an action
transition in −→1+2, with action label a ∈ A, and target c ∈ C, are
the same.
Similarly,

ψ :→ i + ψ′ :→ i a−→1+2 c,

where c ∈ C and a ∈ A, is possible only if i |= (ψ ∨ ψ′) ∧ i a−→ c, which
are the necessary and sufficient conditions for ((ψ ∨ ψ′) :→ i, a, c) to
be an action transition in −→′.
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(c) ((ψ ∨ ψ′) :→ i, (r, ρ), c) can be a time transition in 7−→′, with i ∈
I, (r, ρ) ∈ D, c ∈ C, if and only if

i
r,ρ7−−→ c ∧ i |= (ψ ∨ ψ′),

which are same as the conditions for (ψ :→ i + ψ′ :→ i, (r, ρ), c) to be
a time transition in 7−→1+2. Same argument applies vice versa.

For every initial configuration (ψ ∨ ψ′) :→ (p, α, 0) in I ′, where α ∈ S ∧
((p, α, 0) ∈ I ∨ α 6|= (ψ ∨ ψ′)), there is an initial configuration (ψ :→
(p, α, 0) + ψ′ :→ (p, α, 0) in I1+2, such that two are bisimilar to each other
and vice versa.

Therefore, R is a bisimulation relation and proves that

(ψ ∨ ψ′) :→ TS ↔ ψ :→ TS + ψ′ :→ TS.

6. ST3

σr
rel(x) + σr

rel(y) = σr
rel(x + y), where r > 0

Interpretation

σr
rel(TS1) + σr

rel(TS2) = σr
rel(TS1 + TS2)

Let TS1 be given by,
(C1,−→1, 7−→1, I1, F1);

and TS2 be given by,

(C2,−→2, 7−→2, I2, F2).

Let p1 and p2 be the process expressions of TS1 and TS2 respectively.

For definition of σr
rel(TS) see section 5.12 and for definition of TS1 +TS2,

refer to section 5.11.

We define a binary relation R′, on configurations of σr
rel(TS1) + σr

rel(TS2)
and σr

rel(TS1 + TS2) as follows:

R′ = R1 ∪R2 ∪R3 ∪R4 ∪R5;
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where,

R1 = {((σR
rel(p1) + σR

rel(p2), α, r −R), (σR
rel(p1 + p2), α, r −R)) |

α ∈ S, 0 < R ≤ r};

R2 = {((σ0
rel(p1) + σ0

rel(p2), α, r), (σ0
rel(p1 + p2), α, r)) |

α ∈ S, (p1, α, 0) ∈ I1, (p2, α, 0) ∈ I2};

R3 = {(incr timer(c1, r) + incr timer(c2, r)), (incr timer(c1 + c2, r)) |
c1 ∈ tReach(I1), c2 ∈ tReach(I2), ∃ (i1 ∈ I1, i2 ∈ I2, (s, ρ) ∈ D)•
state(i1) = state(i2) ∧ i1

s,ρ7−−→1 c1 ∧ i2
s,ρ7−−→2 c2};

R4 = {(incr timer(c, r), incr timer(c, r)) |
∃ (i1 ∈ I1, i2 ∈ I2, (s, ρ) ∈ D) • state(i1) = state(i2)
∧((c ∈ C1 ∧ i1

s,ρ7−−→1 c1 ∧ i2 6 s7−→2)∨
(c ∈ C2 ∧ i2

s,ρ7−−→2 c ∧ i1 6 s7−→1))};

R5 = {((p′, α, 0), (p′, α, 0)) | (p′, α, 0) ∈ C1 ∨ (p′, α, 0) ∈ C2}.

It can be observed that R′ is a bisimulation relation and it proves that
σr

rel(TS1) + σr
rel(TS2) is bisimilar to σr

rel(TS1 + TS2).

7. SRU2

νrel(σr
rel(x)) = ˜̃δ, where r > 0

Interpretation

νrel(σr
rel(TS)) = TS(˜̃δ).

Let TS be given by,
(C,−→, 7−→, I, F );

Let σr
rel(TS) be given by,

(C ′,−→′, 7−→′, I ′, F );

and let νrel(σr
rel(TS)) be given by,

(C ′′,−→′′, 7−→′, I ′′, F ).

Let p be the process expression of TS.

Then I ′′ is defined as,

I ′′ = {(νrel(σr
rel(p), α, 0)) | α ∈ S}.

There are no action transitions originating from members of I ′, (see section
5.12), therefore there are no action transitions originating from I ′′. No new
time transitions are added in νrel(σr

rel(TS)). Therefore, no time transitions
originate from members of I ′′ (see section 5.7).
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A binary relation R on members of I ′′ and initial configurations of TS(˜̃δ)
is as follows:

R = {((νrel(σr
rel(p)), α, 0), (˜̃δ, α, 0)) | α ∈ S}.

R shows that νrel(σr
rel(TS))↔ TS(˜̃δ).

8. HSH4

v4(ψ ∧N (χ uH ˜̃a · x)) = (v4ψ) ∧N ((v4(•ψ ∧ χ ∧ sρ(x)•)) uH ˜̃a · (v4x));

In this axiom signal hiding is applied to a process x, which is preceeded by
an action. The action must take place such that it satisfies the transition
proposition χ. The state proposition ψ denotes the signal of the whole
process to which signal hiding with respect to variable v is applied.

On the right hand side of the axiom is the process v4x preceeded by an
action. The action is accompanied by a transition proposition, i.e. signal
hiding with respect to variable v applied to a conjunction of •ψ, χ and
sρ(x)•). The signal emitted by the process on the right hand side is v4ψ.

Interpretation:

v4(ψ ∧N (χuH TS(˜̃a) · TS)) =
(v4ψ) ∧N ((v4(•ψ ∧ χ ∧ sρ(p)•)) uH TS(˜̃a) · (v4TS))

where TS is a transition system whose process expression is p and TS(˜̃a)
denotes the transition system corresponding to action ˜̃a.

We obtain a graph model of the transition system corresponding to the
right hand side of the axiom as follows:

Let reach(TS) = TS. This supposition frees us from the need to denote
reach(TS) by a separate notation. Let TS be given by,

TS = (Cp,−→p, 7−→p, Ip, Fp).

Let v4TS be the transition system obtained after hiding variable v, given
by,

v4TS = (Cv4p,−→v4p, 7−→v4p, Iv4p, Fv4p).

The process expression of v4TS is v4p. See section 6.1 for details.

We give here the sequential composition of (v4(•ψ ∧ χ ∧ sρ(p)•))uHTS(˜̃a)
and v4TS. Let it be denoted by TS′ and given by,

TS′ = (C ′,−→′, 7−→′, I ′, F ′);

where,

• I ′ = {((v4(•ψ ∧ χ ∧ sρ(p)•)) uH ˜̃a · (v4p), α, 0) | α ∈ S} ;

• C ′ = Cv4p ∪ I ′ ;
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• −→′ = −→v4p ∪ −→′′ , where,
−→′′ = {(i′, a, iv4p) | i′ ∈ I ′, a ∈ A, iv4p ∈ Iv4p, i′ |= v4(ψ ∧ ◦χ)

∧ iv4p |= v4(χ◦ ∧ sρ(p))};
• 7−→′ = 7−→v4p;

• F ′ = Fv4p.

Let TS′′ be (v4ψ) ∧N TS′, i.e.,

TS′′ = (v4ψ) ∧N ((v4(•ψ ∧ χ ∧ sρ(p)•)) uH TS(˜̃a) · (v4TS)).

Let
TS′′ = (C ′′,−→′′, 7−→′, I ′′, F ′);

Only the set of configurations and action transitions of TS′ are modified.
These would be,

• I ′′ = {((v4ψ) ∧N ((v4(•ψ ∧ χ ∧ sρ(p)•)) uH ˜̃a · (v4p)), α, 0) |
α |= v4ψ};

• C ′′ = Cv4p ∪ I ′′;

• −→′′ = −→v4p ∪ −→′′′; , where,
−→′′′ = {(i′′, a, iv4p) | i′′ ∈ I ′′, a ∈ A, iv4p ∈ Iv4p,

i′′ |= v4(ψ ∧ ◦χ) ∧ iv4p |= v4(χ◦ ∧ sρ(p))}.
Now we come to the left hand side of the interpretation of axiom HSH4.
Let ψ ∧N ((χ uH TS(˜̃a)) · TS) be given by,

(C◦,−→◦, 7−→◦, I◦, F ◦);

where,

• I◦ = {(ψ ∧N (χ uH ˜̃a · p), α, 0) | α |= ψ} ;

• C◦ = I◦ ∪ Cp ;

• −→◦ = −→p ∪ −→′′ , where,
−→′′ = {(i◦, a, ip) | i◦ ∈ I◦, a ∈ A, ip ∈ Ip, i

◦ |= (ψ ∧ ◦χ)
∧ ip |= χ◦};

• 7−→′ = 7−→p;

• F ′ = Fp.

Let the transition system obtained by applying signal hiding with respect
to variable v to the reach(ψ ∧N (χ uH TS(˜̃a) · TS)) be given by,

TS′◦ = (C ′◦,−→′◦, 7−→′◦, I ′◦, F ′◦);

(See section 6.1 for its details.)
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We define a binary relation R on the initial configurations of TS′′ and
TS′◦ as follows:

R = {(((v4ψ) ∧N ((v4(•ψ ∧ χ ∧ sρ(p)•)) uH ˜̃a · (v4p)), α, 0),
(v4(ψ ∧N (χ uH ˜̃a · p), α, 0))),
((v4p, α′, 0), (v4p, α′, 0))
| α, α′ ∈ S, α |= v4ψ ∧ α′ |= (sρ(p) ∧ χ◦)}.

We prove that R is a bisimulation relation. We prove that the pair
(((v4ψ) ∧N ((v4(•ψ ∧ χ ∧ sρ(p)•)) uH ˜̃a · (v4p)), α, 0), (v4(ψ ∧N (χ uH ˜̃a ·
p), α, 0))) satisfies the bisimulation conditions.

(a) The states and time labels are the same.
(b) (v4(ψ ∧N(χuH˜̃a·p)), α, 0) can do an action a, and become (v4p, α′, 0),

if
(ψ ∧N (χ uH ˜̃a · p), α∗, 0) a−→ (p, α′∗, 0)

and α =v α∗ and α′ =v α′∗.
From the definitions of signal transition (section 5.9) and signal emis-
sion (section 5.6), we have,
(ψ ∧N (χ uH ˜̃a · p), α∗, 0) a−→ (p, α′∗, 0) =⇒

α∗ |= (ψ ∧ ◦χ) ∧ α′∗ |= (sρ(p) ∧ χ◦)
As α =v α∗ and α′ =v α′∗, therefore

α |= v4(ψ ∧ ◦χ) and α′ |= v4(χ◦ ∧ sρ(p)).

((v4ψ) ∧N ((v4(•ψ ∧χ∧ sρ(p)•)) uH ˜̃a · (v4p)), α, 0) can do an action
a and become (v4p, α′, 0), only if

α |= (v4(ψ ∧ ◦χ)) ∧ α′ |= (v4((χ◦) ∧ sρ(p))).

(c) None of the pair can wait.
(d) None of the pair is a final configuration.

Therefore R is a bisimulation relation and proves that

v4(ψ ∧N (χuH TS(˜̃a) · TS))↔
(v4ψ) ∧N ((v4(•ψ ∧ χ ∧ sρ(p)•)) uH TS(˜̃a) · (v4TS))

9. HSH3

v4(ψ ∧N (χ uH ˜̃a)) = (v4ψ) ∧N ((v4(•ψ ∧ χ)) uH ˜̃a);

Interpretation:
v4(ψ ∧N (χuH TS(˜̃a)) =

(v4ψ) ∧N ((v4(•ψ ∧ χ)) uH TS(˜̃a)).

Let TS = ψ ∧N (χ uH TS(˜̃a)) and let TS be given by,

TS = (C,−→, 7−→, I, F ),

where,
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• I = {(ψ ∧N (χ uH ˜̃a), α, 0) | α ∈ S ∧ α |= ψ} ;

• F = {(√, α, 0) | α |= χ◦};
(We include the condition that a final configuration satisfies χ◦ to
get rid of unreachable states and make TS = reach(TS).)

• C = I ∪ F ;

• −→ = {(i, a, f) | i ∈ I, a ∈ A, f ∈ F • i |= ◦χ
∧f |= χ◦};

• 7−→ = ∅.
Applying signal hiding to TS with respect to variable v,

v4(ψ ∧N (χ uH TS(˜̃a))) = (C ′,−→′, ∅, I ′, F ′);

where,

• I = {((v4(ψ ∧N (χ uH ˜̃a)), α∗, 0) | ∃i ∈ I•
state(i) = α ∧ α =v α∗};

• F ′ = {(√, α∗, 0) | ∃f ∈ F • state(f) = α ∧ α =v α∗};
• C ′ = I ′ ∪ F ′ ;

• −→′ = {(i′, a, f ′) | i′ ∈ I ′, f ′ ∈ F ′ • ∃i ∈ I,∃f ∈ F •
i =v i′ ∧ f =v f ′ ∧ i

a−→ f}.
Now we come to the right hand side of the axiom.

Let TS′′ be (v4ψ) ∧N (v4(•ψ ∧ χ) uH TS(˜̃a)). Let it be given by,

TS′′ = (C ′′,−→′′, ∅, I ′′, F ′′);

• I ′′ = {((v4ψ) ∧N (v4(•ψ ∧ χ) uH ˜̃a), α, 0) |
α |= v4ψ};

• F ′′ = {(√, α, 0)};
• C ′′ = I ′′ ∪ F ′′;

• −→′′ = {(i′′, a, f ′′) | i′′ ∈ I ′′, a ∈ A, f ′′ ∈ F ′′

i′′ |= v4◦χ ∧ f ′′ |= v4χ◦}.

We define a binary relation R on the initial configurations of TS′′ and
v4TS as follows:

R = {(((v4ψ) ∧N ((v4(•ψ ∧ χ)) uH ˜̃a), α, 0),
(v4(ψ ∧N (χ uH ˜̃a)))), ((

√
, α′, 0), (

√
, α′, 0))

| α, α′ ∈ S, α |= v4ψ ∧ α′ |= χ◦)}.

We prove that R is a bisimulation relation. Proving (
√

, α′, 0)↔ (
√

, α′, 0)
is trivial. We prove that the pair (((v4ψ)∧N(v4(•ψ ∧ χ))uH˜̃a), α, 0), (v4(ψ∧N
(χ uH ˜̃a), α, 0))) satisfies the bisimulation conditions.
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(a) The states and time labels are the same.

(b) (v4(ψ ∧N (χ uH ˜̃a)), α, 0) can do an action a, and terminate in a state
α′, if,

(ψ ∧N (χ uH ˜̃a), α∗, 0) a−→ (
√

, α′∗, 0)

and α =v α∗ and α′ =v α′∗.
From the definitions of signal transition (section 5.9) and signal emis-
sion (section 5.6), we have,
(ψ ∧N (χ uH ˜̃a), α∗, 0) a−→ (

√
, α′∗, 0) =⇒

α∗ |= (ψ ∧ ◦χ) ∧ α′∗ |= χ◦

As α =v α∗ and α′ =v α′∗, therefore

α |= v4(ψ ∧ ◦χ) and α′ |= v4χ◦.

((v4ψ) ∧N ((v4(•ψ ∧χ)) uH ˜̃a), α, 0) can do an action a and terminate
in state α′, if

α |= (v4(ψ ∧ ◦χ)) ∧ α′ |= v4(χ◦).

(c) None of the pair can wait.

(d) None of the pair is a final configuration.

Therefore R is a bisimulation relation and proves that

v4(ψ ∧N (χuH TS(˜̃a)))↔
(v4ψ) ∧N ((v4(•ψ ∧ χ)) uH TS(˜̃a))

10 Conclusion

In this paper, we have proposed a graph model for a basic process algebra for
hybrid systems (BPAsrt

hs ). We present hybrid process terms as transition sys-
tems and define operations on process terms as operations on their correspond-
ing transition systems. In addition to the operators of BPAsrt

hs , we have also
defined integration and signal hiding on transition systems. These transition
systems provide a semantics which is detailed enough for correctly specifying
the signal hiding operator in BPAsrt

hs .
Soundness proofs of some BPAsrt

hs axioms are also included in order to show
that the graph model presented here is indeed a model of BPAsrt

hs .
This graph model can also be extended to include the parallel composition

of hybrid process terms.
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11 Appendix

We denote the set of all closed BPAsrt
hs terms by C(P ). Configurations in the

setting of BPAsrt
hs are pairs of closed BPAsrt

hs terms and states. We denote
(C(P )× S) by CBPA.

11.1 Axioms for BPAsrt
hs

Table 5: Axioms of BPAsrt
⊥ (a ∈ Aδ, p, q ≥ 0, r > 0)

x + y = y + x A1 σ0
rel(x) = x SRT1

(x + y) + z = x + (y + z) A2 σp
rel(σ

q
rel(x)) = σp+q

rel (x) SRT2
x + x = x A3 σp

rel(x) + σp
rel(y) = σp

rel(x + y) SRT3
(x + y) · z = x · z + y · z A4 (x · y) · z = x · (y · z) A5
x + ˜̃δ = x A6SR νrel(˜̃a) = ˜̃a SRU1
˜̃δ · x = ˜̃δ A7SR νrel(σr

rel(x)) = ˜̃δ SRU2
νrel(x + y) = νrel(x) + νrel(y) SRU3

x +⊥ = ⊥ NE1 νrel(x · y) = νrel(x) · y SRU4
⊥ · x = ⊥ NE2
˜̃a · ⊥ = ˜̃δ NE3SR νrel(⊥) = ⊥ NESRU

Table 6: Axioms of BPAsrt
ps

T :→ x = x GC1 T ∧N x = x SE1
F :→ x = ˜̃δ GC2SR F ∧N x = ⊥ SE2
ψ :→ ˜̃δ = ˜̃δ GC3SR
ψ :→ (x + y) = ψ :→ x + ψ :→ y GC4 ψ ∧N x + y = ψ ∧N (x + y) SE3
ψ :→ x · y = (ψ :→ x) · y GC5 (ψ ∧N x) · y = ψ ∧N x · y SE4
ψ :→ (ψ′ :→ x) = (ψ ∧ ψ′) :→ x GC6 ψ ∧N (ψ′ ∧N x) = (ψ ∧ ψ′) ∧N x SE5
(ψ ∨ ψ′) :→ x = ψ :→ x + ψ′ :→ x GC7

ψ ∧N (ψ :→ x) = ψ ∧N x SE6
ψ :→ (ψ′ ∧N x) = (ψ → ψ′) ∧N (ψ :→ x) SE7

νrel(ψ :→ x) = ψ :→ νrel(x) PSSRU1 νrel(ψ ∧N x) = ψ ∧N νrel(x) PSSRU2
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Table 7: Additional axioms for BPAsrt
hs (a ∈ A, r > 0,V,V′ ⊆ V )

T ∩H∅ x = x HSE1
F ∩HV x = ⊥ HSE2
φ ∩HV ˜̃δ = φ ∧N ˜̃δ HSE3
φ ∩HV ˜̃a = φ ∧N ˜̃a HSE4
φ ∩HV ˜̃a · x = φ ∧N ˜̃a · x HSE5
φ ∩HV σr

rel(x) = φ ∩HV (φ ∧N σr
rel(φ ∩HV x) HSE6

φ ∩HV (x + y) = φ ∩HV x + φ ∩HV y HSE7
φ ∩HV x · y = (φ ∩HV x) · y HSE8
φ ∩HV (ψ :→ x) = φ ∧N (ψ :→ (φ ∩HV x)) HSE9
φ ∩HV (ψ ∧N x) = ψ ∧N (φ ∩HV x) HSE10
φ ∩HV (φ′ ∩HV′ x) = (φ ∧ φ′) ∩HV∪V′ x HSE11
φ ∩HV (χ uH ˜̃a) = φ ∧N (χ uH ˜̃a) HSE12
φ ∩HV σr

rel(x) + φ′ ∩HV′ (σr
rel(νrel(y))) =

φ ∩HV (σr
rel(x) + φ′ ∩HV′ σr

rel(νrel(y))) HSE13

T uH x = x HST1
F uH x = ˜̃δ HST2
χ uH ˜̃δ = ˜̃δ HST3
χ uH ˜̃a = χ uH (◦χ :→ ˜̃a) HST4
χ uH ˜̃a · x = χ uH (◦χ :→ ˜̃a · (χ◦ ∧N x)) HST5
χ uH σr

rel(x) = ◦χ :→ σr
rel(x) HST6

χ uH (x + y) = χ uH x + χ uH y HST7
χ uH x · y = (χ uH x) · y HST8
χ uH (ψ :→ x) = ψ :→ (χ uH x) HST9
χ uH (ψ ∧N x) = (◦χ → ψ) ∧N (χ uH x) HST10
χ uH (χ′ uH x) = (χ ∧ χ′) uH x HST11
χ uH (φ ∩HV σr

rel(x)) = ◦χ :→ (φ ∩HV σr
rel(x)) HST12

ψ :→ ˜̃a = •ψ uH ˜̃a HST13
˜̃a · (ψ ∧N x) = ψ• uH ˜̃a · x HST14

νrel(φ ∩H
V x) = φ ∩HV νrel(x) HSSRU1

νrel(χ uH x) = χ uH νrel(x) HSSRU2

11.2 Operational Semantics of BPAsrt
hs

We have for all closed terms t and t′, for all α, α′ : V ∪ V̇ → R, a ∈ A, r, s ∈ R>

and ρ ∈ εr,ρ′ ∈ εr+s the following transition rules:
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Table 8: Rules for operational semantics of BPAsrt
hs (a ∈ A, r, s > 0)

1

〈˜̃a, α〉 a−→ 〈√, α′〉

2
〈x, α〉 a−→ 〈x′, α′〉

〈σ0
rel(x), α〉 a−→ 〈x′, α′〉

3
〈x, α〉 a−→ 〈√, α′〉

〈σ0
rel(x), α〉 a−→ 〈√, α′〉

4
〈x, α〉 r,ρ7−−→ 〈x′, α′〉

〈σ0
rel(x), α〉 r,ρ7−−→ 〈x′, α′〉

5

〈σr+s
rel (x), α〉 r,ρ7−−→ 〈σr

rel(x), α′〉
6

α′ ∈ [s(x)]

〈σr
rel(x), α〉 r,ρ7−−→ 〈x, α′〉

7
〈x, α′〉 s,ρ′Dr7−−−−→ 〈x′, α′′〉

〈σr
rel(x), α〉 r+s,ρ′7−−−−→ 〈x′, α′′〉

8
〈x, α〉 a−→ 〈x′, α′〉, α∈ [s(y)]

〈x + y, α〉 a−→ 〈x′, α′〉
9
〈y, α〉 a−→ 〈y′, α′〉, α∈ [s(x)]

〈x + y, α〉 a−→ 〈y′, α′〉

10
〈x, α〉 a−→ 〈√, α′〉, α∈ [s(y)]

〈x + y, α〉 a−→ 〈√, α′〉
11
〈y, α〉 a−→ 〈√, α′〉, α∈ [s(x)]

〈x + y, α〉 a−→ 〈√, α′〉

12
〈x, α〉 r,ρ7−−→ 〈x′, α′〉, 〈y, α〉 6 r7−→, α∈ [s(y)]

〈x + y, α〉 r,ρ7−−→ 〈x′, α′〉
13
〈y, α〉 r,ρ7−−→ 〈y′, α′〉, α∈ [s(x)], 〈x, α〉 6 r7−→

〈x + y, α〉 r,ρ7−−→ 〈y′, α′〉

14
〈x, α〉 r,ρ7−−→ 〈x′, α′〉, 〈y, α〉 r,ρ7−−→ 〈y′, α′〉

〈x + y, α〉, r,ρ7−−→ 〈x′ + y′, α′〉

15
〈x, α〉 a−→ 〈x′, α′〉

〈x · y, α〉 a−→ 〈x′ · y, α′〉
16
〈x, α〉 a−→ 〈√, α′〉, α′ ∈ [s(y)]

〈x · y, α〉 a−→ 〈y, α′〉

17
〈x, α〉 r,ρ7−−→ 〈x′, α′〉

〈x · y, α〉 r,ρ7−−→ 〈x′ · y, α′〉

18
〈x, α〉 a−→ 〈x′, α′〉

〈ψ :→ x, α〉 a−→ 〈x′, α′〉 α |= ψ 19
〈x, α〉 a−→ 〈√, α′〉

〈ψ :→ x, α〉 a−→ 〈√, α′〉 α |= ψ

20
〈x, α〉 r,ρ7−−→ 〈x′, α′〉

〈ψ :→ x, α〉 r,ρ7−−→ 〈x′, α′〉 α |= ψ

21
〈x, α〉 a−→ 〈x′, α′〉

〈ψ ∧N x, α〉 a−→ 〈x′, α′〉 α |= ψ 22
〈x, α〉 a−→ 〈√, α′〉

〈ψ ∧N x, α〉 a−→ 〈√, α′〉 α |= ψ

23
〈x, α〉 r,ρ7−−→ 〈x′, α′〉

〈ψ ∧N x, α〉 r,ρ7−−→ 〈x′, α′〉 α |= ψ

24
〈x, α〉 a−→ 〈x′, α′〉

〈φ ∩H
V x, α〉 a−→ 〈x′, α′〉 α |= φ 25

〈x, α〉 a−→ 〈√, α′〉
〈φ ∩H

V x, α〉 a−→ 〈√, α′〉 α |= φ

Table 8 Continued on next Page
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26
〈x, α〉 r,ρ7−−→ 〈x′, α′〉

〈φ ∩H
V x, α〉 r,ρ7−−→ 〈φ ∩H

V x′, α′〉 α
r,ρ7−−→ α′ |=V φ

27
〈x, α〉 a−→ 〈x′, α′〉

〈χ uH x, α〉 a−→ 〈x′, α′〉 α → α′ |= χ 28
〈x, α〉 a−→ 〈√, α′〉

〈χ uH x, α〉 a−→ 〈√, α′〉 α → α′ |= χ

29
〈x, α〉 r,ρ7−−→ 〈x′, α′〉

〈χ uH x, α〉 r,ρ7−−→ 〈x′, α′〉 α |= ◦χ

30
〈x, α〉 a−→ 〈x′, α′〉

〈νrel(x), α〉 a−→ 〈x′, α′〉
31

〈x, α〉 a−→ 〈√, α′〉
〈νrel(x), α〉 a−→ 〈√, α′〉

Note that the following implications holds for the operational semantics given
in [5]:

〈t, α〉 a−→ 〈t′, α′〉 or 〈t, α〉 a−→ 〈√, α′〉 or 〈t, α〉 r,ρ7−−→ 〈t′, α′〉 implies α∈ [s(t)]
〈t, α〉 a−→ 〈t′, α′〉 or 〈t, α〉 r,ρ7−−→ 〈t′, α′〉 implies α′ ∈ [s(t′)]

Table 9: Rules for α∈ [s( )] (a ∈ Aδ, r > 0)

1

α∈ [s(˜̃a)]
2

α∈ [s(x)]

α∈ [s(σ0
rel(x))]

3

α∈ [s(σr
rel(x))]

4
α∈ [s(x)], α∈ [s(y)]

α∈ [s(x + y)]
5

α∈ [s(x)]

α∈ [s(x · y)]

6
α∈ [s(x)]

α∈ [s(ψ :→ x)]
7

α∈ [s(ψ :→ x)]
α 6|= ψ 8

α∈ [s(x)]

α∈ [s(ψ ∧N x)]
α |= ψ

9
α∈ [s(x)]

α∈ [s(φ ∩H
V x)]

α |= φ 10
α∈ [s(x)]

α∈ [s(χ uH x)]
11

α∈ [s(χ uH x)]
α 6|= ◦χ 12

α∈ [s(x)]

α∈ [s(νrel(x))]
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Table 10: Additional Rules for Integration (a ∈ A, p, q,≥ 0, r > 0)

1
〈F (p), α〉 a−→ 〈x′, α′〉, {α∈ [s(F (q))] | q ∈ U}

〈∫
u∈U

F (u), α〉 a−→ 〈x′, α′〉 p ∈ U

2
〈F (p), α〉 a−→ 〈√, α′〉, {α∈ [s(F (q))] | q ∈ U}

〈∫
u∈U

F (u), α〉 a−→ 〈√, α′〉 p ∈ U

3

{〈F (q), α〉 r,ρ7−−→ 〈F1(q), α′〉 | q ∈ U1},
. . .

{〈F (q), α〉 r,ρ7−−→ 〈Fn(q), α′〉 | q ∈ Un},
{〈F (q), α〉 6 r7−→, α∈ [s(F (q))] | q ∈ Un+1}

〈∫
u∈U

F (u), α〉 r,ρ7−−→ 〈∫
u∈U1

F1(u) + . . . +
∫

u∈Un
Fn(u), α′〉

{U1, . . . Un}
partition of U\Un+1, Un+1 ⊂ U

4
{α∈ [s(F (q))] | q ∈ U}

α∈ [s(
∫

u∈U
F (u))]

11.3 Bisimulation

A bisimulation is a symmetric binary relation B ⊆ CBPA × CBPA on configu-
rations with same states, such that if B(〈t1, α〉, 〈t2, α〉) then,

• for all a ∈ A and 〈t′1, α′〉 ∈ CBPA, if 〈t1, α〉 a−→ 〈t′1, α′〉, then ∃ 〈t′2, α′〉 ∈
CBPA, such that 〈t2, α〉 a−→ 〈t′2, α′〉 and B(〈t′1, α′〉, 〈t′2, α′〉);

• for all a ∈ A and α′ ∈ S, if 〈t1, α〉 a−→ 〈√, α′〉, then 〈t2, α〉 a−→ 〈√, α′〉;

• for all (r, ρ) ∈ D and 〈t′1, α′〉 ∈ CBPA, if 〈t1, α〉 r,ρ7−−→ 〈t′1, α′〉, then ∃ 〈t′2, α′〉 ∈
CBPA, such that 〈t2, α〉 r,ρ7−−→ 〈t′2, α′〉 and B(〈t′1, α′〉, 〈t′2, α′〉);

• if α∈ [s(t1)] then α∈ [s(t2)].

Two configurations 〈t1, α〉 and 〈t2, α〉 with same states are bisimulation equiv-
alent or bisimilar written as 〈t1, α〉 ↔ 〈t2, α〉, if there exists a bisimulation
relation B such that B(〈t1, α〉〈t2, α〉).

Two closed terms t1 and t2 are called bisimulation equivalent terms, written
as t1 ↔ t2, if 〈t1, α〉↔ 〈t2, α〉 for all states α.

11.4 Ic-bisimulation

Interference compatible bisimulation or ic-bisimulation relates two BPAsrt
hs terms

when their behaviour is same in all states and this property is maintained by all
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pairs of subsequent terms obtained through similar action or time steps. For-
mally, an ic-bisimulation is a symmetric binary relation B ⊆ C(P )×C(P ), such
that if B(t1, t2) then for all states α,

• for all actions a ∈ A and 〈t′1, α′〉 ∈ CBPA, if 〈t1, α〉 a−→ 〈t′1, α′〉 then
∃ 〈t′2, α′〉 ∈ CBPA, such that 〈t2, α〉 a−→ 〈t′2, α′〉 and B(t′1, t

′
2);

• for all actions a ∈ A and α′ ∈ S, if 〈t1, α〉 a−→ 〈√, α′〉 then 〈t2, α〉 a−→
〈√, α′〉;

• for all (r, ρ) ∈ D and 〈t′1, α′〉 ∈ CBPA, if 〈t1, α〉 r,ρ7−−→ 〈t′1, α′〉 then ∃ 〈t′2, α′〉 ∈
CBPA, such that 〈t2, α〉 r,ρ7−−→ 〈t′2, α′〉 and B(t′1, t

′
2);

• if α∈ [s(t1)] then α∈ [s(t2)].

Two closed terms t1 and t2 are called ic-bisimilar, written as t1 ↔ t2, if there
exists a ic-bisimulation

11.5 Proof: 〈Th, 18〉 is bisimilar to 〈Th′, 18〉
Th = (T = 18) ∧N Thon,
Thon = up ∩H

T Thon
0 ,

Thon
t =

∫
u∈[t,∞)

σu−t
rel (Th→),

Th→ = (T = 20):→
(T • = •T ) uH ˜̃toff · Thoff ,

Thoff = down ∩H
T Thoff

0 ,

Thoff
t′ =

∫
u∈[t′,∞)

σu−t′
rel (Th←),

Th← = (T = 18):→
(T • = •T ) uH ˜̃ton · Thon.

Th′ = (T = 18) ∧N Th′on,
Th′on = up ∩H

T Th′on
0 ,

Th′on
t = σln2−t

rel (Th′→),
Th′→ = (T • = •T ) uH ˜̃toff · Th′off ,

Th′off = down ∩H
T Th′off

0 ,

Th′off
t′ = σln3−t′

rel (Th′←),
Th′← = (T • = •T ) uH ˜̃ton · Th′on

where t ∈ [0, ln2] and t′ ∈ [0, ln3], up denotes proposition (18 ≤ T ≤ 20 ∧ Ṫ =
−T + 22) and down denotes proposition (18 ≤ T ≤ 20 ∧ Ṫ = −T + 17).

Let ρ ∈ εln4/3 be a state evolution that satisfies up in interval [0,ln4/3]
keeping the variables T and Ṫ continuously differentiable. Let ρ(0)(T ) = 18
and ρ(ln(4/3))(T ) = 19.Then we can write,

18
ln4/3,ρ7−−−−−→ 19 |=T up.

The above statement means, “the state with temperature 18 evolves into the
state with temperature 19, evolving according to ρ in time ln(4/3), where ρ
satisfies up and T & Ṫ remain infinitely often continuously differentiable
during the whole delay.”

Let ρ′ be another state evolution of duration ln3/2, such that ρ′ |= up and
ρ′ is smooth for T and ρ′(0)(T ) = 19 and ρ′(ln(3/2))(T ) = 20, i.e.,

19
ln3/2,ρ′7−−−−−→ 20 |=T up.
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Applying ρ and then ρ′, i.e., by sequentially composing ρ and ρ′ (see section
5.12), we get,

18
ln2,ρ·ρ′7−−−−−→ 20 |=T up.

We consider only T in our states (and not Ṫ ), for the sake of simplicity.
Temperature at any time r, for processes Thon and Th′on is given by T on

r ,
where T on

r = (22er−4)/er. Temperature at any time r for processes Thoff and
Th′off is given by T off

r , where T off
r = (17er + 3)/er.

We give a binary relation R on configurations of the process Th and process
Th′. The configurations are the ones as defined in the operational semantics for
BPAsrt

hs (see table 8).

R = {(〈Th, 18〉, 〈Th′, 18〉),
(〈up ∩H

T Thon
r , T on

r 〉, 〈up ∩H
T Th′on

r , T on
r 〉),

(〈down ∩H
T Thoff

r′ , T off
r′ 〉, 〈down ∩H

T Th′off
r′ , T off

r′ 〉)
| r ∈ [0, ln2], r′ ∈ [0, ln3]}.

We prove that R is a bisimulation relation. The definition of bisimulation for
BPAsrt

hs terms is given in Section 11.3. Here we give the proof of bisimula-
tion of (〈up ∩H

T Thon
r , T on

r 〉, 〈up ∩H
T Th′on

r , T on
r 〉). The proof that (〈down ∩H

T

Thoff
r′ , T off

r′ 〉, 〈down ∩H
T Th′off

r′ , T off
r′ 〉), for all r′ ∈ [0, ln3], fulfills the bisim-

ulation conditions is left to the reader.
All pairs in R have same states which is the first condition for bisimulation.
(We refer to the operational semantic rules given in tables 8,9 and 10.)
〈Th, 18〉 cannot perform action ˜̃toff because of conditional T = 20, and

〈Th′, 18〉 cannot perform action ˜̃toff because of a delay of ln2 time units.

〈Th, 18〉 6 toff−−−→
〈Th′, 18〉 6 toff−−−→
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They can only delay as follows:
19∈ [s(Th→)] From Rule 7 Table 9

〈σln4/3
rel (Th→), 18〉 ln4/3,ρ7−−−−−→ 〈Th→, 19〉 From Rule 6 Table 8

〈∫
u∈[0,∞)

σu−0
rel Th→, 18〉 ln4/3,ρ7−−−−−→

〈∫
u∈[ln4/3,∞)

σ
u−ln4/3
rel Th→, 19〉 From Rule 3 Table 10

〈Thon
0 , 18〉 ln4/3,ρ7−−−−−→ 〈Thon

ln4/3, 19〉
〈up ∩H

T Thon
0 , 18〉 ln4/3,ρ7−−−−−→ 〈up ∩H

T Thon
ln4/3, 19〉 From Rule 26 Table 8

1〈Th, 18〉 ln4/3,ρ7−−−−−→ 〈up ∩H
T Thon

ln4/3, 19〉 From Rule 23 Table 8

Similarly for < Th′, 18 >,

〈σln2
rel (Th′→), 18〉 ln4/3,ρ7−−−−−→ 〈σln2−ln4/3

rel Th′→, 19〉 From Rule 5 Table 8

〈Th′on
0 , 18〉 ln4/3,ρ7−−−−−→ 〈Th′on

ln4/3, 19〉
〈up ∩H

T (Th′on
0 ), 18〉 ln4/3,ρ7−−−−−→ 〈up ∩H

T Th′on
ln4/3, 19〉 From Rule 26 Table 8

2〈Th′, 18〉 ln4/3,ρ7−−−−−→ 〈up ∩H
T Th′on

ln4/3, 19〉 From Rule 23 Table 8

Similarly following two transitions can be derived:

3〈up ∩H
T Thon

ln4/3, 19〉 ln3/2,ρ′7−−−−−→ 〈up ∩H
T Thon

ln2, 20〉
4〈up ∩H

T Th′on
ln4/3, 19〉 ln3/2,ρ′7−−−−−→ 〈up ∩H

T Th′on
ln2, 20〉

〈up ∩H
T Thon

ln4/3, 19〉 cannot perform action ˜̃toff because of conditional T = 20,

and 〈up ∩H
T Th′on

ln4/3, 19〉 cannot perform action ˜̃toff because a delay of ln(3/2)
time units is still left in the process term. All configurations 〈up ∩H

T Thon
r , T on

r 〉
and 〈up ∩HT Th′on

r , T on
r 〉, with r less than ln2 cannot perform action ˜̃toff because

of the same reasons.
Using Rules {7,26} of Tab 8 and derivations 1, 2, 3, 4 above, we can derive,

〈Th, 18〉 ln2,ρ·ρ′7−−−−−→ 〈up ∩H
T Thon

ln2, 20〉
〈Th′, 18〉 ln2,ρ·ρ′7−−−−−→ 〈up ∩H

T Th′on
ln2, 20〉

Now we compare the behaviour of 〈up ∩H
T Thon

ln2, 20〉 and 〈up ∩H
T Th′on

ln2, 20〉.
〈up ∩H

T Thon
ln2, 20〉 cannot wait further as proposition up will not be satisfied

in a delay (keeping the temperature continuous). The delay duration of 〈up ∩H
T

Th′on
ln2, 20〉 is zero, so it also cannot wait further. They can both perform action

˜̃toff as described below:
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〈Th→, 20〉 toff−−−→ 〈Thoff , 20〉 From Rules {1,16,27,18}
of Table 8

〈Th→ +
∫

u∈(ln2,∞)
σu−ln2

rel Th→, 20〉
toff−−−→ 〈Thoff , 20〉 From Rule 1 of Tab 10,

Rule 8 of Tab 8
〈∫

u∈[ln2,∞)
σu−ln2

rel Th→, 20〉 toff−−−→ 〈Thoff , 20〉 Rule 3 of Tab 8

〈Thon
ln2, 20〉 toff−−−→ 〈Thoff , 20〉

〈up ∩H
T Thon

ln2, 20〉 toff−−−→ 〈Thoff , 20〉 From Rule 24 Table 8

Similarly
〈Th′→, 20〉 toff−−−→ 〈Th′off , 20〉 From Rule {1,27} Table 8
〈σln2−ln2

rel Th′→, 20〉 toff−−−→ 〈Th′off , 20〉 From Rule 2 Table 8
〈Th′on

ln2, 20〉 toff−−−→ 〈Th′off , 20〉
〈up ∩H

T Th′on
ln2, 20〉 toff−−−→ 〈Th′off , 20〉 From Rule 24 of Tab 8

And (〈Thoff , 20〉, 〈Th′off , 20〉) are in R.

Thus relation R is a bisimulation relation.

11.6 Proof: 〈T4Th, ∗〉 is not bisimilar to 〈T4Th′, ∗〉
where, ∗ indicates a state with temperature hidden, i.e.,

∗ =T 18 =T 19 =T 20 etc

We prove that 〈T4Th, ∗〉 behaves as 〈Th′′′, ∗〉, where,

Th′′′ =
∫

u∈(0,∞)
σu

rel(˜̃toff) · σ∗rel(˜̃ton) · Th′′′′;

Th′′′′ = σ∗rel(˜̃toff) · σ∗rel(˜̃ton) · Th′′′′.

i.e, initially 〈T4Th, ∗〉 can actually perform action ˜̃toff at any time t > 0.
Once it has performed a ˜̃toff and a ˜̃ton action then it behaves as Th′′′.

In this proof we frequently refer to the derivations obtained in the previous
section and the operational semantic rules given in section 2. The definitions
of ρ and ρ′ are the same as in the previous proof. We define ρ∗ and ρ′∗ to be
two state evolutions that differ from ρ and ρ′ only in their evolutions of T and
Ṫ respectively. Let ρt be a state evolution in εt that satisfies up. Let ρ∗t =T ρt.

The behaviour of 〈T4Th, ∗〉 depends on the behaviour of Th in any state.
Th can only exist in state 18 (as its signal is only true at temperature 18). After
delaying for some t > 0 time units, it becomes Thon

t whose signal is true in the
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range [18, 20] of temperature. Thus < T4Thon
t , ∗ > can behave as < Thon

t , α >,
where α is a state with T ∈ [18, 20].

〈Th, 18〉 t,ρt7−−→ 〈up ∩H
T Thon

t , αt〉
→〈T4Th, ∗〉 t,ρ∗t7−−−→ 〈T4(up ∩H

T Thon
t ), ∗〉 Rule 3 of table 1

where t ∈ (0, ln2] and αt = (22et − 4)/t.

Now the behaviour of 〈T4(up ∩HT Thon
t ), ∗〉, depends on the behaviour of up ∩HT

Thon
t in any state.

〈up ∩H
T Thon

t , 20〉 toff−−−→ 〈Thoff , 20〉 Refer to previous proof
〈T4(up ∩H

T Thon
t ), ∗〉 toff−−−→ 〈T4(Thoff ), ∗〉 Rule 1 table 1

T4(Thon
t ) can also delay indefinitely for time greater than ln2 as is shown in

the following derivations. Consider the process Thon
ln2(that has already delayed

for ln2 time units) in state 18.

〈up ∩H
T Thon

ln2, 18〉 ln4/3,ρ7−−−−−→ 〈up ∩H
T Thon

ln8/3, 19〉 From Rule {27,6} table 8

〈T4(up ∩H
T Thon

ln2), ∗〉
ln4/3,ρ∗7−−−−−−→ 〈T4(up ∩H

T Thon
ln8/3), ∗〉 From Rule 3 table 1

Waiting of 〈T4(up ∩HT Thon
ln8/3), ∗〉 can be repeated by considering the behaviour

of up ∩H
T Thon

ln8/3 again in state 18. Once Th has performed action ˜̃toff and
˜̃ton, then in the recursive call Thon is invoked instead of Th. And T4(Thon)
can perform action ˜̃toff at any time.

Whereas 〈T4(Th′), 18〉 behaves as 〈Th′′, 18〉, where

Th′′ = σln2
rel (˜̃toff) · σln3

rel (˜̃ton).

(The proof of this is left to the reader.)
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