
 

Buckling of superconducting structures under prescribed
current
Citation for published version (APA):
Ven, van de, A. A. F., & Lieshout, van, P. H. (1990). Buckling of superconducting structures under prescribed
current. (RANA : reports on applied and numerical analysis; Vol. 9003). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/1990

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://research.tue.nl/en/publications/cf81680a-c928-43ad-92c3-f17a589764f0


Eindhoven University of Technology
Department of Mathematics and Computing Science

RANA90-03

February 1990

BUCKLING OF SUPERCONDUCfING

STRUCfURES UNDER

PRESCRIBED CURRENT

by
A.A.F. van de Yen

P.H. van Lieshout

Reports on Applied and Numerical Analysis

Department of Mathematics and Computing Science

Eindhoven University ofTechnology
P.O. Box 513

5600 MB Eindhoven

The Netherlands



BUCKLING OF SUPERCONDUCfING STRUCfURES UNDER PRESCRIBED

CURRENT

A.A.F. van de VEN and P.H. van LIESHOUT

Department of Mathematics and Computing Science

Eindhoven University of Technology

Eindhoven, The Netherlands

The main lines of two methods for the determination of the buckling current of supercon

ducting structures under prescribed current are presented. Applications of both methods will

be given for systems of parallel rods and rings, and their results will be compared. Finally,

the stability of a superconducting helix is investigated.

INTRODUCfION

Consider a superconducting slender body (beam-like), or a system of such bodies, carrying a prescribed

current 10, placed in a vacuum. Above a certain value of 10 the system will become unstable and buckle.

This buckling is solely due to the own fields of the conductors (there is no external magnetic field). In this

paper we shortly present the main lines of two methods for the calculation of the buckling current (for the

details we refer to [1], [2] and [3]). The first method is based upon a variational principle, whereas the

second one starts from a formula for the (Lorentz-)force on a slender beam-like current carrier in the mag

netic field of another electric circuit. This formula is derived from the Biot-Savart law (cf. [4], Sec. 2.6),

and therefore we refer to this method as the Biot-Savart method.

Both methods will be applied in the calculation of the buckling current of superconducting structures

which are systems of slender, straight or curved, beams. In the variational method it is assumed that the

current runs over the surface of the body, while in the Biot-Savart-approach the distribution of the current

over the cross-section of the beam-like structure is unspecified (and irrelevant). That the total current is

prescribed can be expressed by means of Ampere's law, i.e.

I (B,t) ds =~lo,
c

(1)

where B is the magnetic induction in vacuum, C is a contour entirely in the vacuum and encircling the

current carrier, and't is the tangent vector at C. In the variational method this relation serves as an extra

constraint.

VARIATIONAL PRINCIPLE

Our variational method is based upon the following Lagrangian for a superconducting body in vacuum,

defined on the deformed configuration of the body, (cf. [3])



L =- f pu dV + -2
1 J (B,B)dV ,

G- Ilo G+

-2-

(2)

where the first integral represents the elastic energy of the body and the second one is the magnetic

energy of the field in the vacuum surrounding the body. In (2), G- and G+ are the deformed configuration

(in JR3) of the body and the vacuum, respectively, and pUis the elastic energy density <J..Lo =41CX 10-7).

In accordance with (1) we assume B proportional to 10 , implying that we may introduce a normalized B

field by

A 1
B=-B

10 '

such that Bis independent of10• Then, (2) can be rewritten as

J lij f A A

L =- PU dV + -2 (B, B) dV ,
G- Ilo G+

(3)

(4)

where, now, the two integrals in this expression are independent of 10 ,

The body deformes due to the action of the Lorentz-force generated by the prescribed current 10 . For sta

bility considerations we have to distinguish between two different equilibrium states of the body, Le. (i)

the intermediate state, and (ii) the final (or buckled) state. The intermediate state may be approximated by

the rigid-body state; the only unknown in this state then is the rigid-body magnetic field denoted by Bo.
In the final state the unknowns are the displacement u and the magnetic field B, which is written as

B = Bo + b (hence, b is the perturbation of the magnetic field due to the buckling of the structure).

The Lagrangian given by (4) is developed up to the second order in the perturbations u and b. Variation

ofL with respect to these perturbations then yields

Since the intermediate state is an equilibrium state the first variation of L must be zero, so

f,L =0.

Moreover, the zeroth order term L (0) is irrelevant, so we may write (5) as

(5)

(6)

(7)

where J is a homogeneously quadratic functional in the perturbations. Using the fact that also the final

state is an equilibrium state, we find from (7) that

M=O,

too, but because J is homogeneously quadratic this implies

J=O,

in this final state. In analogy with (4) we may write J in the simple form

J=-W +lij K ,

(8)

(9)

(10)

where the integrals W and K do not depend on 10. Here, W is the total elastic energy in the final state,

which only depends on u (or better V u), and K is the normalized magnetic energy, depending on u, Do



(11)

- 3 -

and b. From (9) and (10) we immediately conclude that either W =K =0, implying that 0 =b =0 too, or

(o,b) * (0,0) and then lois an eigenvalue of (9)-(10), obeying

lo=~~ .

The lowest of these eigenvalues is the looked for buckling current.

The equation (11) gives an explicit relation for the buckling current. However, the main part of the work

lies in the determination of K for which the fields Bo and b under an assumed displacement field 0 must

be calculated. How this works in practice is shown in [2] and [3].

BIOT-SAVART METHOD

Two electrical circuits L I and L2 , to be considered as one-dimensional curves, carry currents I I and 12 ,

respectively. According to [4], Section 2.6, the Lorentz-force per unit oflength in a point PI of L I , hav

ing arc length S I , is given by

(12)

where R is the position vector of P I with respect to the point P2 on L2 , arc length S2, and tl = t l (SI) and

t2 =t2(S2) are unit tangent vectors in P I on L I and in P z on L2 , respectively.

Let this formula refer to the deformed state of the system {L I ,L2 }. Introducing the (small) displacement

0, we can develop F I with respect to u, obtaining

(13)

where f l (s I) is linear in 0 (it is only this part of the force that is of relevance in stability calculations).

Once the force f 1 is calculated it can serve as a load parameter in, for instance, a beam or ring equation

(dependent on the form of the circuit). For detailed evaluations we again refer to [2] or [3].

Our ultimate aim is to investigate in how far one, or both, of these methods can be employed for the cal

culation of the buckling current in one electrical circuit in the shape of a helix. In principle, the Biot

Savart method can not be used for this, since it only applies to actions from one circuit on another circuit.

The variational method can serve fairly well as a way to solution, but it then turns out that the (analytical)

calculation of K becomes very difficult. Therefore, we suggest to follow a combined path, in the sense

that we shall try to calculate (an approximation for) K from an expression for the electromagnetic force

derived by means of the Biot-Savart formula (12) and then use (11) to obtain the desired buckling current

10 , However, before we can proceed along this path, we need some auxiliary results which will provide us

with a more or less solid fundament for our approach. To this end we first report on some results derived

by us for systems of n (n ~ 2) parallel rods or rings (for n =2, see [2J and [3], for n > 2 we refer to the

forthcoming paper [5]).

SYSTEMS OF N PARALLEL RODS OR RINGS

Consider an equidistant grid of n identical parallel rods L j , i =1,2, ...,n, all carrying the same current 10 .
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The rods are infinitely long, but periodically supported over finite distances l. Each rod has a circular

cross-section, radius R, and the distance between the central lines of two adjacent rods is 2a. The system

is called a slender system in the sense that R < a « l.

For the variational method the unperturbed field Bo and the perturbed field b must be calculated. For

n = 2 a completely analytical solution is found (see [2]), but for n > 2 this seems no longer possible.

Therefore, for n > 2 we have developed a numerical procedure that will be presented in [5]. There, we

obtained numerical results for the buckling current /0 in case n = 3,4 and 5 and for aIR = 3. These

results will now be compared with those of the Biot-Savart method. Although the theoretical foundation

of the latter method is less firm than that of the variational method, all results derived thus far by both

methods show a satisfactory correspondence. For the system under consideration the Biot-Savart

approach is very simple and straightforward. This is mainly due to the assumption of slenderness.

Let the z-axis be parallel to the rods and the x-axis perpendicular to it (all rods lying in the x-z-plane),

and let Ui(Z) be the displacement in x-direction of a point of L i with coordinate z. Moreover, let 1I)(z) be

the force per unit of length normal to the rod L i due to the current in Li+j U*0). For a slender system,

i.e. under the neglect of terms of O(a21l2 ), a rather simple analysis (cf. [2] or [5]) shows that

with

~i) k 1
Jr (z) =--:z [Ui(Z) - Ui+/Z)] ,

]
(14)

(15)

Hence, we see that in the perturbed force on Li in z only the displacement of that point of L i+j that has the

same z-coordinate enters (note that this is the point on Li+j that is nearest to the considered point z on L i).

The total force /;,(z) per unit of length on L i due to the remaining rods Li+jU *0) of the grid is equal to

the sum off!) over all possible values of j, Le.

fi(z) = LII)(z) .
j

For L i the beam equation (E/ is the bending stiffness)

E/ u~V(z)= /;,(z) ,

(16)

(17)

(18)

holds, and similar relations hold for the other rods. Together with the support conditions these relations

constitute a system of n homogeneous equations for the n unknown displacements Ui. In this way the

problem is reduced to an eigenvalue problem: only for a set of discrete values of k1 the system has a

non-trivial solution and the lowest of these eigenvalues corresponds to the buckling current.

We have calculated buckling values for /0 by both methods for n =2,3,4 and 5 and for aIR =3. The

results, which can be found in [2] and [5], are listed in Table 1. Here, io is defined by

. Tr! R 3 _ IE
10 = lO ----p:- -'I J.I<l '

and (io)vp and (iO)BS are the values according to the variational and the Biot-Savart method, respectively,

while.L1 = [(io)vp - (iO)BS] I (io)vp.
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TABLE 1. Values of io and!!1 for aiR =3

n (io)vp (i 0)85 !!1 in %

2 3.274 3.000 8,4

3 2.679 2.449 8,6

4 2.469 2.260 8,5

5 2.364 2.168 8,3

Table I shows us that the relative differences !!1 are nearly the same for all values of n, and of the order of

8 % for aiR =3. From [2] we know that this difference rapidly decreases with increasing aiR (e.g.

!!1 =2 % for aIR =6, and!!1 < 1 % for aiR = to). In our opinion these differences are small enough to jus

tify the approximations that will be proposed below (at least as long as (aIR)~ 3). To obtain a useful

approximation for K we shall write the Biot-Savart method in variational form. To this end we multiply

(17) by Uj(z) (automatically summing over i from i =1 to n) and then integrate the result from z =0 to 2l

(one full period). After two partial integrations we thus arrive at

2J 2J

W :=£1 Jut(z) u{'(z)dz = Jfj(z) uj(z)dz =: 15 K .
o 0

The left-hand side of (19) is (two times) the elastic energy of the system. Comparing (19) with (9)-(10)

we see that the right-hand side of (19) represents, apart from a for the moment irrelevant constant factor,

the Biot-Savart version of the K-integral occurring in (10). Since the correspondence between the varia

tional method and the Biot-Savart method is satisfactory (as is shown above) it seems acceptable to use

the right-hand side of (19) as an, easily obtainable, approximation for K in (to) or (11).

As a next step we compare the value of the buckling current for a set of two rods (Le. (lo)ro). as obtained

in [2], with the corresponding result for a set of two (parallel or coaxial) rings (Le. (lo)rj) from [3]. It

turns out that the variational method and the Biot-Savart method yield the same value for the quotient

(lo)ro I (lo)rj. Moreover. a detailed consideration of the variational method showed us that:

the value ofK for a set of two rings was equal to the one for a set of two parallel rods.

Further calculations revealed that this also holds for n > 2. The consequence of this finding is that in cal

culating K for a set of n parallel rings we may replace the rings by an equivalent (Le. equal aiR-ratio) set

of parallel rods. Of course. this only holds for K; the values of the elastic energies are different.

In recapitulating the results of this section we conclude that (i) for slender systems (i.e. up to O(a 21R 2 )_

terms) the values of K for equivalent systems of parallel rods and rings are equal. and (ii) the value of K

obtained by a Biot-Savart approach (Le. the right-hand side of (19» is a reasonable approximation for the

exact K associated with the variational method, at least as long as aiR is not too small (say aiR ~ 3) (see

also the CONCLUSIONS at the end of this paper).
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THE HELIX

(21)f(lj» = f(lj» ez ' u(lj» = weep) ez •

The cross-section of the conductor is circular, radius

R (R < 7th « b). The total current 10 running through

the conductor is prescribed. The helix is periodically

supported in the points given by lj> =0, lj> = ±2mt,

lj> =±4mt, etc.

In case the helix buckles the main component of the

buckling displacement u will be binonnal, or what is

here nearly the same, in the ez-direction (this is due to

the fact that the pitch angle a. == b /h « 1). The per

turbed force density, which is caused by u and linear

in u, will then also be in that direction. Thus

Consider an infinitely long superconductor in the fonn

of a cylindrical helix. The radius of the helix is band

the (constant) pitch is h. For a slender helix one has

h «b. In the undefonned configuration a point on

the central line of the helix is given by its position

vector (see Fig. 1)

X =X(lj» =b coslj>ez +b sinlj>ey+h lj>ez

=be,+hlj>ez , (-oo<lj><oo). (20)

be,

Here, w(lj» is the displacement of the central line of

Fig. 1. The helical conductor the helical conductor which causes besides a bending

also a torsion of the helix. However, this torsion does

not affect the force f; it will only enter the elastic energy which will be derived furtheron.

Our strategy for the solution of this buckling problem is as follows:

(i) We calculate K by using for K the expression on the right-hand side of (19) together with an

appropriate expression for ffollowing from (14)-(16). For the calculation of ffor the present prob

lem we have to replace in (14) Uj(z) by a field w(lj», representing the expected buckling mode of the

helix.

(ii) We calculate the elastic energy W, which is due to the bending and the torsion of the helix.

(iii) By variation of J according to (10) with respect to the torsion angle ~(lj» we obtain a relation

expressing ~(lj» in w(lj».

(iv) Finally, from (11) the buckling current lois calculated.

An appropriate choice for the buckling displacement, satisfying the periodic support conditions, is

w(~)=A sin [ 2~n] . (22)

With the replacement of Uj+j(z) by
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w(q>+ 21tj) =A sin [~+~ j] ,
2n n

for j E IN, we find from (14)-(16) the following expression for f

!($)=2k, A j% ;2 [I-COS [>]] sin [ i. ]=

=~[1__1]ASin[...t.],
n 2n 2 2n

(cf. [6], p. 92). Using for K a relation similar to the right-hand side of (19) we obtain

15K=4j f(q»w(q»bd<!l=2kl1t3 [1-~] A2b.
o 2n

(23)

(24)

(25)

(26)

For the elastic energy of one period of the buckled helix we take the classical expression for a slender

curved beam (of circular cross-section), i.e.

4ltn GI 4ltn

w= E~ J(w"-b~)2bd<!l+--f J(w'+bwibd<!l=
bob 0

4 4ltn

= 1tE R J{(w"-b ~)2 + _1_ (w' +b p'/} dq> I

4b 3 0 l+v

where we have used /p = 2/ = 1tR 4 /2, and G =E12(1 +v), with v denoting Poisson's modulus. In accor

dance with (22) we assume the torsion angle ~ of the form

~($) = ~ B sin [ 2$.] .

Substitution of (22) and (27) into (26) yields

W = n 1t
2

E R
4

{(~ + B)2 + 1 (A + B)2} .
2b3 4n2 4(1 +v)n 2

Taking the first variation of W with respect to B, Le. aw 1aB =0, we obtain

B=- (2+v) A.
4(1 +v)n2 + 1

Use of (29) in (28) yields

W = n i2 E R4 (4n 2 _1)2 A 2

2b3 16n4 [4(1+v)n 2 +1]

Similarly to (19) we here take W =15 K, yielding with (25) and (30)

ER 4 N
k 1 = 41tb 4 4(1 +v)n '

where

(27)

(28)

(29)

(30)

(31)
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N=N(n)=(1-_1)(1+-
2
1 )2/[1+ 1 2],

2n n 4(1 +v)n

(note that N(n) = 1+ O(n-I ) for n ~ 00).

With k1 given by (15) and with the replacement of 2a by 21th, we finally obtain for the buckling current

10

1
0
=7thR

2
- I EN.

b 2 -'I 2!J{)(l +v) n

CONCLUSIONS

(33)

In this paper we have derived a formula for the buckling current in a helical superconductor. The helix

was assumed of infinite length, but periodically supported over n turns. If n » 1, the buckling current 10

is proportional to n-Ih (see (33». It is reasonable to assume that (33) also governs (in good approxima

tion) the buckling of a finite helix of n turns in case n is large enough. In fact, for a finite helix (33)

represents the result that remains after ignoring all end effects.

We have used a combination of two methods, knowing a variational method (VP) and a variational ver

sion of the so called Biot-Savart method (BS) to arrive at our result. For both methods the formula for the

buckling current 10 can be written in analogous form, I.e.

while we also have seen that

lOBS 11OVP = 1- Ll , (Ll = Ll(aIR» .

Hence,

(34)

(35)

(36)

if f! « 1, as is the case if aiR> 3. For smaller values of aiR, and, hence, larger values of Ll, we can use

(36) and (34)1 to get a better estimate for 10.

Finally, we note that it is also possible to apply the method presented here to other forms of structural

superconductors, such as for instance a superconductor wound in the shape of a fiat spiral.
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