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Numerical Analysis of a 2-D
Viscous Sintering Problem
with Non Smooth Boundaries

G.A.L. van de Vorst
R.M.M. Mattheij

Abstract

By viscous sintering it is meant the process of bringing a granular com-
pact to a temperature at which the viscosity of the material becomes low
enough for surface tension to cause the particles to deform and coalesce,
whereby the material transport can be modelled as a viscous incompressible
newtonian volume flow. Here a two-dimensional model is considered. A
Boundary Element Method is applied to solve the governing Stokes creep-
ing flow equations for an arbitrarily initial shaped fluid region. In this
paper we show that the viscous sintering problem is well-conditioned from
an evolutionary point of view. However as boundary value problem at
each time step, the problem is ill-conditioned when the contact surfaces of
the particles are small, i.e. in the early stages of the coalescence. This is
because the curvature of the boundary at those places can be very large.
This ill-conditioning is illustrated by an example: the coalescence of two
equal circles. This example demonstrates the main evolutionary features
of the sintering phenomenon very well. A numerical consequence of this
ill-conditioning is that special care has to be taken for distributing and re-
distributing the nodal points at those boundary parts. Therefore an algo-
rithm for this node redistribution is outlined. Several numerical examples
sustain the analysis.

A.M.S. Classifications: 65R99, 76D07
- Keywords : sintering, viscosity, boundary element method,
moving boundaries.



1 Introduction

Sintering is the process of bringing a powder of metals, ionic crystals, or glasses (a
compact) to such a high temperature that sufficient mobility is present to release
the excess free energy of the surface of the powder, thereby joining the particles
together. The driving force arises from the excess free energy of the surface of
the powder over that of the solid material. For a survey of the most important
papers about sintering we refer to the book edited by Somiya and Moriyoshi [11].

We are interested in the case of sintering glasses, see also [7] or [13]. There,
the material transport can be modelled as a viscous incompressible Newtonian
volume flow, driven solely by surface tension (viscous sintering), i.e. the Stokes
creeping flow equations hold. The geometry of such a sintering compact is mostly
very complex. Because of this it is impossible to give a deterministic description
of the flow in such a compact as a whole. We shall therefore investigate simple
geometries; to start with in 2-D only, aiming at eventually deriving constitutive
laws of the effects obtained.

Analytical solutions for certain classes of two-dimensional viscous sintering
problems are recently be obtained by Hopper [3] and [4]. Among these is the
coalescence of two equal circles, which is a classical problem in sintering literature.
A numerical simulation of the sintering of an infinite line of circles was performed
by Ross et al [10]. They were the first who applied a Finite Element Method
to the problem. However, they obtained a growth of the contact line between
those circles which was differing from experimental results in known literature.
Jagota and Dawson [6] have reported about the evolution of two spheres and an
infinite line of spheres (three-dimensional axisymmetric problems), using a Finite
Element Method. Recently, Kuiken [7] applied a Boundary Element Method to
solve viscous sintering problems for bodies with rather smooth boundaries. In
previous work of us, i.e. [12] and [13], we used a Boundary Element Method to
solve the problem for an arbitrarily shaped fluid region. In those papers, we also
discussed the numerical problems that can arise in computing the curvature of
the shape, in particular at places where a cusp is arising.

In this paper we investigate whether the viscous sintering problem as described
in detail in the next section, is well-conditioned from an evolutionary point of view
and as boundary value problem at each time step as well. We then consider the
numerical consequences of the conditioning of these problems. It turns out that
special care has to be taken when the nodal points are redistributed. Therefore a
special algorithm for the node redistribution has been developed, which is suitable
for problems where the curvature of the boundary is the driving force. Such a kind
of precise grid generation technique is also performed, for example, by Dritschel
[1]. The methods he developed are an extension on the technique called “contour
dynamics”, which is used in two dimensional vortex dynamics. However, the
properties he uses to redistribute the nodes differ completely from ours; this is
because the type of problem is quite different from ours.

This paper is built up as follows: In the next section we first formulate the
problem; after which we shall go deeper into the question of the conditioning



of the sintering problem on the basis of a simple but typical example, viz. the
evolution of the coalescence of two equal circles. This example demonstrates the
main features of the simulation of the sintering phenomenon very well as will be
shown in section 3. More than that, for this example the coalescence can be solved
analytically, as has recently been shown by Hopper [3]. By using this analytical
solution we are able to give a fairly quantitative sensitivity analysis; i.e. we can
investigate the influence of a perturbation of the initial radius R, the contact
radius v and the neck curvature on the shape and curvature of the region where
those circles are touching. Then, in section 5 we briefly discuss the Boundary
Element Method, which is used to solve the problem numerically. Furthermore
we give an algorithm for distributing the nodal boundary points and discuss the
numerical implementation of it. Finally, in section 6 we show some numerical
results for simply connected surfaces.

2 Problem Formulation

We model the viscous sintering problem by the Stokes creeping flow equations,
i.e. the flow is a viscous incompressible Newtonian fluid, see also Kuiken [7]. The
two dimensional fluid region is assumed to be simply connected and is defined by
a closed curve I' with interior domain . We denote the dimensionless velocity
field of the fluid by v and the dimensionless pressure by p.

The Stokes creeping flow equations in dimensionless form read,

Av—gradp = 0

divv = 0,
with stress tensor 7, given by
8v,~ ij
= . i ) 2
7; biip + (aa:j + Baci) (2)

The driving force of the boundary movement is a tension in the normal direction
on the boundary, which is proportional to the local curvature (&) of the boundary.
This boundary condition can be described as

Tn = (divn)n = «n, (3)

where n is the outward unit normal vector of the boundary.

In principle, the above equations can be solved for a fized boundary I', which
gives the velocity field v of this boundary. The displacement of the boundary can
be obtained from this boundary velocity field, in the following way,

dx
dt ~
where ¢ is the dimensionless time. The above equation is expressing that that the

material points of the boundary are moving in the direction of the characteristic
curves.

v(x) (x €T), (4)



Our only interest is the movement of the boundary I'. Hence only the velocity
at the boundary is required, from which we can calculate the shape evolution of
the body directly. Therefore this problem is ideally suited to be solved numerically
by a Boundary Element Method (BEM). To do this, we have to reformulate the
problem as an integral equation over the boundary. This is done in terms of
boundary distributions of hydrodynamical single- and double-layer potentials,
see also Ladyzhenskaya [8].

When the boundary is sufficiently “smooth”, the integral formulation that can
be derived for the Stokes equations at a point, say X, reads in matrix notation

(see also [13])

evx)+ [ Q@x,y)vdl, = [U(x,y)bdr,. (5)
Here C,Q(x,y) and U(x,y) are 2 x 2 matrices with coefficients ¢;;, ¢;; and u;;
respectively:
o 6i; x€f)
CGj = { %6,'1' xeTl, (6)

rir;
=t 7

1 'I",'Tj

4w ri4r2l’
where 6;; is the Kronecker delta, r; = x; — y;, and the vector b is the boundary
curvature in the normal direction, i.e.

1
[ - 8:j5 log[ry +r3] +

Uy; =

b = kn. (9)

The integral equation (5), or the equations (1)-(3), which have to be solved
for a fixed boundary, do not ensure a unique solution v. It can be seen, cf [13],
that a superposition of an arbitrary rigid-body translation or rotation upon any
particular solution of these equations, is also a solution of equations (1)-(2) and
will not alter the stress field at the boundary. Hence, in total we need to add three
extra conditions (equations) for obtaining the velocity field of a fixed boundary.

We follow the approach of Hsiao, Kopp and Wendland [5], for making the
integral equation (5) uniquely solvable for a fixed boundary. This is done by
adding three additional variables w; to this integral equation which prescribe the
translation and rotation, i.e.

Cv(x) + /FQ(x,y)vdl“y + VX)W = /FL((x,y)de‘y, (10)

where V is a 2 x 3 matrix defined by

V=l(1)(1)_“’;ll (11)

Now, three equations have to be given to ensure that the boundary velocity
is defined uniquely. In order to prescribe the translation freedom, we formulate
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the problem to be stationary at a (reference) point in the fluid, say x". With
regard to this reference point the velocity of the boundary points is computed.
The most natural choice for this reference point is the centre of mass: the point
where the gravity forces would grip the body, thus:

v(x") = 0. (12)

Using this, we derive from the integral formulation (5) and x = x" the following
two equations

/F Q(x",y)vdl, = /F Ux’,y)bdr,. (13)

Furthermore we assume the tangential component of the velocity at the boundary
is zero (one equation), i.e.

/F (v,7)dl = 0, (14)

where 7 is the tangential vector of the boundary. Combining this with Stokes
formula it follows from equation (14) that the flow in  is irrotational.

3 The Analytical Solution for the coalescence
of two equal circles

In this section we give the analytical solution for the coalescence of two equal
circles and we introduce some notation for the main properties of this evolution.
These are the initial radius R of both circles, the measure of contact between
both circles and the boundary curvature at the contact.

The coalescence of two equal circles demonstrates the main features of the
simulation of the sintering phenomenon very well. In the early stage of the
coalescence, the curvature of the boundary is very large in the region where
both circles are touching (almost a cusp); at later stages the shape is becoming
“smoother”, i.e. the curvature is varying only moderately everywhere.

The analytical solution for the evolution of two equal coalescing circles has
recently been derived by Hopper [3], subsection 4.4. He described the evolution of
these circles in terms of a time-dependent mapping function z = z + 1y = Q(¢,¢)
of the unit circle, conformal on |(| < 1. The time evolution of the map was
given in parametric form. In these papers, the equations derived are valid for the
coalescence of two circles with initial radius %\/ﬁ

Following Hopper [3], we can derive parametric equations for the evolution of
two coalescing circles both with initial radius R and centres (R,0) and (—R,0)
each

(1 = v?)(1 — v)Rv2cos 8

0¥ = A2 cos20 1 )Vt R (15)
y6.) = 1=v1+r)RVEsing

(1 —2vcos28 + v2)v/1 4+ v2



and for the time ¢ (as function of v)

1
TR dk
t = — . 16
W) =7 / k1t BK(k) (16)
Here K(k) is the complete elliptic integral of the first kind defined by
2 -1
K(k) = /(1 - k? sinch) 2 de. (17)
0

The degree of coalescence is specified by the parameter v, which decreases from
1 to 0 if time increases (t is going to infinity as v — 0), and the boundary curve
is specified by the parameter § which is varying from 0 to 2. Remark that at
t = 0, both circles are making contact in the origin.

Of special interest is the region where the circles are touching. In sintering lit-
erature, see for example Somiya and Moriyoshi [11], this contact region is usually
called the neck region. In our example, the line of contact is the Y-axis during
the evolution. Let r be the contact radius between both circles, and denote the
point on the boundary at the line of contact in the positive direction by x", i.e.
x" = (0,7). In the remainder of this paper we call this point the neck.

The development during sintering of the contact radius is also of physical
interest. This contact radius is a measure of how “strong” a sintering compact
already is. When this contact radius is small, a smaller force is necessary to brake
the contact between both circles than at later stages of the sintering process, when
the contact radius is larger.

In the analytical solution (15) the neck is occurring at § = 7 /2 during the
evolution. Thus for the contact radius r, as function of the parameter v, the
following holds

r(v) = y(5.v) = (- pRv2 ”)R;@. (18)
vV1+v
Note that as v — 0, i.e. t — oo, then r — R/2; which is the radius of the circle

that the shape evolution approaches as the time increases.
We obtain by elimination for the parameter v as function of the contact radius

r, from (18)
2R — o JTRE=T
v=uv(r)= SRT 2 : (19)

For the curvature of the neck, say «,, we can derive from the parametric equations
(15)
TeeYo — ToYoo

3
(xg + y3)2 f=1

(1 —6v+ )1+ v?
(1-v)3RV2

ko(v) =

(20)




Remark that as v — 0, i.e. t — oo, then k, — —1/Rv/2, as assumed. The
derived neck curvature (20) can be written as a function of the contact radius r;
from equations (19) and (20), we obtain

4R? 3
nn(r) = —rg_ - r (21)
This is an interesting result on it’s own, which also can be used for the pertur-
bation analysis which is performed out in the next sections.

Not only the curvature & of the neck point can be written as a function of the
contact radius r, i.e. equation (21). The shrinkage of the two circles can also be
described as a function of the contact radius. Let therefore s be defined as the

shrinkage of both circles, i.e.
s = 2R — z(0,v). (22)
From equations (15) and (18) follows

(14 v)RV2

= 2R —
® V14?2 (23)
= 9R — M
1—v

With equation (19) we eliminate v from (23), we obtain

s = 2R — V4R? —r2. (24)

4 Perturbation Analysis of the Analytical So-
lution

In this section we shall investigate the influence of a perturbation of the initial
radius R, the contact radius r and the neck curvature on the shape and curvature
of the neck. From this analysis we shall draw conclusions about the conditioning
of the above described problem as an evolutionary problem and as boundary value
problem at each time step as well.

4.1 Perturbation of the initial radius R

In the following analysis, we show that a small perturbation of the initial radius
R of both circles, will not perturb the evolution of the shape of the neck region
significantly, while the neck curvature is changing dramatically.

Here we are interested in the change of the shape of two coalescing equal circles
both with initial radius R each and with R + ¢ (¢ < 1) each, considered for the
same contact radius r (figure 1); note that the shapes are taken at a different
time t and £, say, respectively. Thus we have to consider the parametric equations



Figure 1: The coalescence of two equal circles with both initial radii R and R+ ¢ respectively.

(15) as function of R and ¢ (i.e. v). A measure for the difference between both
shapes is given by the derivative of z, y with respect to R.
Using (18), the parametric equations (15) can be written as

r(1 —v?)cosd
14+ v2—2vcos2d

r(1 + v)?siné
1+ v2—2vcos20

z(0,v) =

(25)

y(0,v)

For the derivative of v with respect to R, we obtain after squaring, taking the
derivative from equation (18) and using the relation (19)

v _ 2R(1 — v)?
OR =~ rV4R*—r?

By taking the derivative of the parametric equations (25) with respect to R and
using (26), we derive

(26)

Oz 4R(1 — v)?[(1 + v?*) cos 20 — 2v] cos 6
OR VAR? —7%(1 4 v? — 2v cos 20)?
Oy 8R(1 + v)(1 — v)3sin @ cos?® §

OR 4R? —r2(1 4 v — 2v cos 20)?

(27)

We can find upper bounds for those derivatives as follows. Because of symmetry,
we only look at the first quadrant of the shape, i.e. 6 € [0,7/2] and z,y > 0.
After substituting £ = cos§ and # = r/(v/2 R) in (27) we derive

6_2: 2v/2(1 — v)?[2(1 + )€ — (1 + v)?)¢
OR V2 = 72( (1 + v)? — 4v€2)?

Oy _ V21401 -V
OR V2 —72((1+v)? — 4vE?)?




Note that the parameters £, v and 7 are varying between 0 and 1. Furthermore,
we are mainly interested in the change of the shape of the neck region, i.e. { is
small. Using (25) and

1—-v T
T = A (29)
we derive from (28)
Oz 2zy[2(1 +v*)& — (1 +v)’]
OR ~ Rr2-/)(1+v)2/1-€ (30)

dy 22zt
OR R(2 — 72)%

When ¢ = 0, the expression |2(1 + »?)é? — (1 + v)?| is maximal (= (1 + v)?) as a
function of £. From this and 0 < 7 < 1, the following upper bounds are obtained

9a oy| 22y
R OR| = R?

< 2zy
~ Rry1-¢&2

Remark that in the neck region (y/r) is bounded and z is small. From this and
the estimates (31) we conclude that a perturbation of the initial radius R of the
coalescing circles will not change much the shape of the neck region measured at
a point where the contact radius r is the same for both, even when r is small, as
can also be observed in figure 1.

However, the neck curvature does change dramatically when the contact radius
1s small. This can be illustrated by computing the derivative of the curvature with
respect to R in the neck. From the relation for the exact neck curvature (21),
this derivative by constant radius r is given by

O0kn S8R
dR ~ 3’ (32)
This derivative becomes very large when the contact radius r is small, i.e. the
curvature may change a lot from a very small perturbation of the initial radius
of the two coalescing circles!

A measure for the difference between t and { is given by the derivative of ¢
with respect to R, i.e. taking the derivative of equation (16) and using (18) and

(26), we find
_6_t_ _t w1 + v?
OR R yK)/2(2-72)

From the asymptotic expansions for the complete elliptic integral K(»), i.e. equa-
tions 8.113.1 and 8.113.3 of Gradshteyn and Ryzhik [2],

16

1 -2

and \ (31)

(33)

K(v) = %log +0((1-v?)log1—»?)) (v 1) "

Kw) = [+ i-,ﬂ + 0 (v<1),



we obtain that when the time ¢ is not too large, say for values of v > 0.1, the
derivative (33) is small. We conclude that when the initial radius R is perturbed,
the time-scale of the neck evolution will not change much.

We conclude that the global shape of the neck region, by a given contact
radius, is effectively independent of the initial radius R of both coalescing circles;
although the curvature of the neck (local effect) can be rather different at an early
stage of the coalescence.

4.2 The Evolution of the Neck Region

In the following analysis, we show that when the contact radius r is getting some-
what larger, the shape of the neck region is not perturbed significantly. However
again, a small perturbation of the contact radius is changing the neck curva-
ture dramatically! Furthermore we show that the neck evolution is a “smooth”
function of the time.

For this we consider the shape of two coalescing equal circles both with initial
radius R at time ¢t when the contact radius is r and at time ¢ with contact radius
is 7+ ¢ (¢ € 1). Thus now, we have to consider the parametric equations (15) as
function of r and ¢. The measure for the difference between both shapes is given
by the derivative of z,y with respect to r.

For the derivative of v with respect to r, we obtain after squaring, taking the
derivative from equation (18) and using the relation (19)

ov _ 2R*(1-v)
o  r2/aR? —r?

By taking the derivative of the parametric equations (25) with respect to r and
considering only the first quadrant, we obtain after substitution of ¢, 7 and (35)

0 _ (L=w | 21- w0+ 0= 20+ )
or (14 v)? — 4v€? P2 — 72( (1 + v)? — 40€?)?
dy  (14+v)’V1-€€ 414+v)1-v)’/1-8

o (P —wg 2o ((1+v) - )

Again our interest is mainly the neck region, i.e. ¢ is small. Using (25) and (29),
we derive for (36)

Oz yé v éV2[(1+v) —2(1 4 V"’)§2]
or R21-¢€3)(2-7)  R1-€)(1+v)}(2~7)2
oy y 2v2 zyé

or r rR(2—F2)%'

(35)

(36)

37)

Following the procedure of subsection 4.1, we obtain as upper bounds

dz y€ 2y dy| _ v 2V2x€
Rl e IR R G
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In the neck region y is O(r) and « small, i.e. from (38) we conclude again that a
small change of the contact radius r of the coalescing circles will not perturb the
shape of the neck region, even when r is small.

The relation (21) for the (exact) neck curvature gives also information about
the effect of a change of the contact radius r on this curvature. From (21) it
follows that the derivative of the neck curvature, with respect to r, is given by

0K, 12R? 3

(39)

ar 2’
Thus a small change of the contact radius r has an O (;11-) effect on the neck curva-

ture, i.e. when the contact radius is small the curvature is changed dramatically.
Conversely, we also have,

4
o _ L (40)
Ok, 12R? + 3r?
i.e. a change of the neck curvature gives only an O(r*) effect on the contact
radius 7.
A measure for the time difference between the shapes at time t and £ is given
by the derivative of ¢ with respect to r, i.e. taking the derivative of equation (16)
and using (18) and (35), we derive

ﬁ _ V1 + v?
OR ~ WwKw)W2 -/

From the asymptotic expansions (34) follows that the derivative (41) is small,
when the time ¢ is not too large. We conclude that the neck evolution is a
smooth function of the time.

The above analysis shows that a small change of the contact radius is hardly
perturbing the global shape of the neck region. Only the curvature of the neck
(a local effect) is changed dramatically when r is small.

(41)

4.3 Condition of Evolution and Boundary Value Prob-
lem

In the two previous subsections, we have shown that a perturbation of the initial
radius R or the contact radius r is hardly changing the global shape of the neck
region, even in the early stage of the coalescence, i.e. when the contact radius is
small. However, the neck curvature is changed dramatically in both cases when
r is small. This causes on the shape of the neck region an effect that is only very
locally noticeable in the neighbourhood of the neck point.

From this, we conclude that the problem of two coalescing circles is well-
conditioned from an evolutionary point of view. However, if we consider the
problem that has to be solved for a fixed boundary at each time step, i.e. the
boundary value problem, especially in the early stage of the coalescence; this
problem is ill-conditioned because of the dramatically changing neck curvature.

11



In practice, this implies that we have to start with a shape that has a contact
radius such that the neck curvature is not too large (we used order 10%). Fur-
thermore, we have shown that a change of the neck curvature does not result in
a noticeable change of shape of the neck region. Therefore it is sufficient that the
approximate neck curvature be of the order of the exact curvature, and that dur-
ing the computation this approximate neck curvature is not changing significantly
due to node redistribution.

5 Numerical Solution

In this section we shall assess the numerical consequences of the fact that the
evolution problem is ill-conditioned as a boundary value problem at each time
step when the neck curvature is large, i.e. the contact radius r is small. We
first investigate the influence of a perturbation of the (boundary) discretization
points on the approximate curvature, especially in the neck region. We then give
an algorithm for distributing the nodal points. We also discuss the numerical
implementation of the latter.

5.1 Numerical Discretization

The problem is ideally suited to be solved by a Boundary Element Method.
Therefore the boundary will be discretized into a sequence of elements and the
velocity and surface tension are written in terms of their values at a sequence
of, say N, nodal points. From the discretized form of the integral equation (10)
for every node, together with the discretized form of equations (13) and (14), we
derive a system of (2N+3) linear algebraic equations with 2N+3 unknowns. More
details of the implementation can be found in [12] and [13].

From this system we obtain the (approximate) velocity at time, say ¢ = i,
at the nodal boundary points. The displacement of the boundary at time t34; =
tx+At can be obtained by discretizing equation (4). In early papers of us, we used
a simple Forward Euler scheme. However sometimes, e.g. in the early stages of
the coalescence of two equal circles, the system of ordinary differential equations
that has to be solved for the displacement of the boundary is stiff. Because of
this, it seems better to use a time integration method which is more suitable for
stiff systems.

5.2 Perturbation Analysis of the Approximate Curva-
ture

We consider the disturbance of the curvature when one of the discretization points
of the boundary is moved slightly in one direction. Here, special interest is taken
in the approximation of the curvature of the neck. Again we shall show that for
a small perturbation of the boundary of the neck region the curvature is changed
dramatically. This perturbation of the boundary is arising numerically from the

12



spatial discretization error, i.e. the error that is made by replacing the boundary
through a polygon, and the time discretization error, i.e. the error that arises
from a time stepping scheme.

An approximation for the curvature, say &, of this discretized boundary is
found by fitting a quadratic polynomial at the point x2, say, and its two neigh-
bouring nodes, say x! and x> (see also [13]). The approximating curvature of the
point x? is computed as

_ ooy - 4[(z5 = 23)(e] = 22] + 2}) — (2} — =1)(a3 — 22 + 23)] 49
R(x") = 7 . (42)
((z} — 21)* + (a3 — 23)?)*
We are interested in the change of the curvature when one of the coordinates
of point x* (k=1,2,3) is perturbed. A measure for the change of the approximate

curvature of x? by such a perturbation is given by the partial derivatives of &
with respect to :c;?, i.e.

9% _ 3(z3-zl) . 8(z3-72) 8r _ 3(z3-zi) .~ 8(z3—z2)

5l T - @ KT iy el

9% __ 8(z3-x}) ok _ 8(z3-zi)

5 T T Ay T (43)
% _ z2-z3) 8% _ _ 3z3-z3)~  8(z}-z})

R R o e

where £ = \/(9::1" — z})? + (23 — z1)2. From the equations above we conclude that
these derivatives are large when ¢ is small. Especially, this is the case when
computing the neck curvature of two coalescing circles. Then the points x! and
x? are the neighbouring points of the neck point x2.

When we take the nodal points fixed during the evolution, the nodes of the
neck region are getting very close to each other, i.e. the approximate neck curva-
ture has a large error (see also [13]). On the other hand, it seems reasonable that
the collocation points have to lie close to each other in the neck region; since there
we are expecting large variations of the velocity field of the boundary. These two
conflicting aspects are brought together in an algorithm that takes care of the
node distribution and which we describe first in the next subsection.

5.3 Node Distribution

In this subsection we present an algorithm for an optimal mesh generation which
is based on equidistributing the curvature of the boundary. The aim of this
algorithm is twofold. Firstly the number and place of the discretization points is
optimized, which is important because the computational costs per time step are
proportional to (2N)3, where N is the number of points. Secondly this algorithm
treats regions where a neck (or cusp) is occurring in a special way, see also the
end of this subsection.

In this subsection we assume that the boundary of the fluid region can be
described by a parametric equation with respect to the arc length s, i.e.

x(s)el, 0<s<s and x(0)=x(s). (44)
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Only an equidistribution of the curvature is performed; an equidistribution
of the velocity field of the boundary will not be necessary. In general, when the
velocity and the curvature of the boundary are considered as functions of the
arc length, we observed that the velocity function is a much “smoother” function
than the curvature. Furthermore we observed that at places where the size of the
velocity field is changing rapidly over a small part of the boundary, the curvature
is also rapidly changing in size, i.e. the mesh is already finer there. When the
velocity is large on a considerable part of the boundary, and the curvature is of
moderate size everywhere, this part is moving as a whole but the shape as such
is not deforming much, i.e. a finer mesh is not necessary.

First, we shall derive properties for the step-length between two successive
nodes, which have to be fullfilled for all the mesh points that are generated. Let
x'~! = x(s;_;) and x* = x(s;) be two given successive nodal points and denote
the distance between those points by h; = s; — s;_1; the step-length. The next
node x**! has to lie at a distance h;,, from x;, such that the following conditions
(45), (46) and (48) are satisfied.

We introduce two positive constants ki, and hpay, which are given bounds
for the step-length

hmin < hi+l < hma.x- (45)

In effect, we are introducing a maximum resolution. Furthermore we want the
collocation points to lie quasi-uniformly distributed on the boundary, i.e.
h;

* < hiyn < khy, (46)
where k is a given parameter, larger than 1.

From (44) it follows that the curvature & of the boundary can also be described
as a function of the arc length s. We define the curvature density, say €, of the
curvature as follows

./I:|n(s)|d3 = Me, (47)

where M is a prescribed number, given by the user, and which is approximately
equal to the total number of nodes that the algorithm will find eventually. The
curvature of the boundary between two successive nodes integrated over the arc
has to be smaller than this curvature density, i.e. the following equidistribution
condition has to hold (approximately),

Si42

/ Ik(s)|ds = e. . (48)

With h, we denote the step-length such that the equality from (48) holds, i.e.
Siy1 = 8; + h..

When the curvature is very large on a certain part of the boundary, i.e. in a
neck region, it may happen that the proposed A, is smaller than the lower bound
hmin. However, we take as next step Apy;n, although condition (48) is not satisfied
then. A justification for this is given in the previous sections. There we have
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Figure 2: The curvature as function of the arc length s of the left figure. The derivative of
this curvature with respect to the arc length is becoming large at some parts of the boundary,
while the curvature is only moderately varying.

shown that it is not possible to approximate the correct neck curvature and that
we have to proceed judiciously in choosing the “neck discretization”: the neck
point and its neighbouring points have to be chosen such that the neck curvature
does not change (see also subsection 5.2).

From equations (45), (46) and (48), we see that the distance between x* and
the proposed next nodal point x**! is equal to

hisr = max ( hemin, hi/k, min (Amax, khi, ke )). (49)

However, this proposed h;;; may be too large when it turns out that an appro-
priate step-length further on is not possible due to an increasing magnitude of
the curvature; namely if at the next node, the step-length h;,, is required to be
equal to or larger than max(hmin, hi41/k). Thus, we have to build in a mechanism
that investigates whether the choice of node x'+!, i.e. step-length h;.;, will not
require the step-length for succeeding nodes to become larger than permitted!

At first sight, it seems obvious to choose a control mechanism that uses the
derivative of the curvature with respect to the arc length s; however for a bound-
ary with a rapidly changing though moderately valued curvature, the information
of the derivative, derived numerically, is useless. See for example figure 2, taken
from [3], in which the curvature with respect to the arc length of the above shape
is plotted. Hence, we have developed the following simple algorithm for testing
and correcting the step-length h;y,.

We say that the step-length h;,, is a correct one, when for all following small-
est new step-lengths

J .
8 = si+ )y, hl;:l, 7=0,..,m, (50)

p=0

where m is an integer such that h;11/k™ > hmin and hip1 /™ < hmyin, the
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curvature equidistribution (48) holds,

5541
/ |k(s)|ds = e, j=0,..,m—1 (51)

8
When it follows that this h;;; does not satisfy the above relation, this step-
length is made somewhat smaller, i.e. h;y; = max(Amin, hi/k, I * hiy1) where [ is
a given number, smaller than 1. Afterwards this new h;,; is tested at the above
described way. This procedure can be continued until the step-length is equal to
max(Amin, hi/k).

This algorithm may look very time consuming; however, by choosing the
bounds Agax/bmin = 100, say and the factor k is not too close to 1 this is not so
dramatic. In our examples the CPU time for generating a complete mesh was a
small percentage the costs per time step only.

Next, we discuss how a neck region is discretized. To dos this, we derive
properties which have to be satisfied for the new discretized neck. We denote by
X" = x(s,) the neck point and by x"~! and x™*! the neighbouring nodes of the
neck point, where s,_; < s, < $p41.

The first criterion that has to be satisfied is that the distance between the
neighbouring nodes and the neck point is the same, and that the step-length is
bounded as in (45), i.e.

hmin < |3n - Sn-—ll = |3n+1 - 3n| < hmax- (52)

Furthermore, we have to avoid cancellation in the computation of the approximate
neck curvature (see also [13]). This means that the distance between the neck
point neighbours has to be larger than a certain bound dn, i.€.

[x** = x" 7| > duin, (53)

where dp;, is taken of the order hpn;, (we used dpin = 2hmin)-

Another property is the equidistribution of the curvature, i.e. equation (48).
In general, this condition is not fullfilled, when the neck curvature is large; how-
ever during the deformation of the neck region, the neck curvature is getting
smaller and it may be possible that this condition can be satisfied.

From the above properties, we obtain a step-length, which is denoted by &,,,
between the neck and the proposed new neighbouring neck points. The new ap-
proximate neck curvature, which is computed by fitting a quadratic interpolation
polynomial through the neck node and its neighbours, is not the same as the old
neck curvature. The size of this new neck curvature is unpredictable. However,
we want to avoid the influence of this new neck curvature in the further com-
putation. This is performed by shifting the neck point a bit such that the neck
curvature is equal to the old curvature; more details can be found in the next
subsection.

Using the ideas above, the collocation points are redistributed. If the bound-
ary has neck regions, the node redistribution takes place starting from the dis-
cretized neck (where h,, is already known), to the middle of the boundary part
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Figure 3: The first figure shows how the point %() is found. The second figure is showing
the direction in which the neck point is shifted, such that the neck curvature has a prescribed
value.

between those necks. Afterwards, in the middle the nodes are somewhat shifted
such that the mesh conditions (49) are satisfied. If the boundary does not have
necks, one node of the old mesh is held fixed and the other nodes are generated
relative to this fixed node. When the boundary is symmetric, a mesh genera-
tion is performed out on to symmetry part only, i.e. the nodes of the complete
boundary are also chosen symmetrically.

5.4 Numerical Implementation of Node Distribution

In this subsection we comment on the numerical implementation of the algorithm
which is given in subsection 5.1. First we introduce a discretized version of
the arc length and show how a point x(s) is found. Furthermore, we discuss
some properties about the neck discretization. Finally, we give the curvature
equidistribution condition which is used in the numerical scheme.

In the numerical algorithm we are starting with an already discretized bound-
ary, which will referred to as the old nodes X' (1< ¢ <N). For practical application
of applying the ideas of the previous subsection, we have to define a discretized
version of the arc length, say §, i.e. how a point X(§) has to be found, and what
is meant by the curvature £(3). ‘

In the numerical algorithm we use as a discretization of the arc length the
straight-line distance between two successive old nodes, i.e.

=8+ & %7 (2<i<N+D), (54)

where §; = 0 and xN*! = %X!. A nodal point at a certain arc length, say §, is

found by fitting a quadratic polynomial through tree successive old nodes, say
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%/=1 %I and X/t!, where j is taken such that
18, — 3| < min (|82 — 3], 3541 — 3]). (55)

Assuming that § < §;, the node %X(3) is at the intersection of this quadratic
polynomial with the straight line in the direction normal to the straight line
through the old points ’j — 1’ and ’j’, and through the point on this straight line
that has a distance §; — § with the node X’ (see figure 3).

However, the proposed new neighbouring neck points are computed using a
straight line representation through the two successive old nodes which are lying
between the proposed arc length (§ = §, £ k,). A linear interpolation is carried
out instead of a quadratic interpolation; this is to avoid interpolation errors which
occur when the neck curvature is large and the old nodes are not distributed nice
in the neck region.

We also require that the new approximate neck curvature is equal to the old
neck curvature. To perform this, the neck point is shifted a bit over the straight
line through the old neck point, in the direction normal to the straight line through
the new neighbouring nodes; or, when the new nodes are lying further apart than
the old neighbours, through these old nodes (see also figure 3). The neck node
may be shifted over a maximum a distance dp,y, 1.€.

”in - xn” S dmaxa (56)

where dpay is also of the order Ay, (we used dipax = 0.25hmin ). If it is not possible
to find a new neck point on this line, the neck point is shifted over a distance
dmax on this line, such that the new neck curvature is as close as possible to the
old curvature.

When starting a computation, the curvature of the neck points of the initial
boundary are unknown. These initial neck curvatures may be user specified, or
they are computed from the initial nodes.

The approximate curvature &; of the old nodes is found in the usual way, see
subsection 5.2. The curvature at a certain value of the arc length, i.e. &(3), is
derived in the same way as a boundary point was found; however, now through
linear interpolation. In our algorithm we derive an approximation of k. using the
linear discrete form of (48), which is given by

he (|R(5: + he)| + [R(3)]) = 2e. (57)

This equation is solved using a bisection method.

6 Numerical Results and Discussion

In this section we shall demonstrate the usefulness of the node redistribution
algorithm, as described in section 5.3; we show a number of results for some simply
connected surfaces. All problems are solved using quadratic boundary elements.
Since, as we said in the introduction, the driving force for sintering arises from the
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Figure 4: The coalescence of two equal circles in time. The boundary curves refer to values
of time t = 0.0(0.1)2.0.

excess of free surface energy, a 2-dimensional viscous incompressible fluid region
) transforms itselfs into a circle, and the total surface of the region has to remain
constant, when the time is going to infinity.

The first example is the coalescence of two equal circles, see also figure 4. We
shall compare the derived numerical results with the analytical solution of section
3. For the initial radius R is taken %\/Q, than the final shape of the coalescence
is a circle with radius 1. The contact radius r is set equal to 0.14. Using this and
equation (21), it follows that the exact neck curvature is approximately equal to
707. The centre of mass is taken as the reference point, which is chosen to be
the origin. The initial nodes of the shape are derived from the exact solution.
Only nodes from the first quadrant are needed because of the double symmetry
of the body. This symmetry is preserved during the calculation. For the node
distribution algorithm we used as bounds for the step length, Ay, = 0.005 and
hmax = 0.15; for the uniformly distribution factor k taken 1.5 and we have taken
the number M equal to 15 for the shape of the first quadrant.

In figure 4 we have plotted the transformation of the fluid region in time with
initial neck curvature equal to 700. The curves are given between the (dimension-
less) time ¢ = 0.0 and ¢ = 2.0 with time intervals of 0.1. In figure 5 we compare
the neck curvature obtained by the numerical simulation (solid line) with the an-
alytical curvature of the neck (dotted line). It can be observed that the numerical
neck curvature differs quite a bit from the exact curvature in the early stage of the
coalescence; but when time is increasing, both curvatures are getting very close
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Figure 5: The neck curvature obtained by numerical simulation (solid line), is compared with
the analytical curvature of the neck (dotted line) over a large period of time.
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Figure 6: The contact radius r and the shrinkage s, both obtained by numerical simulations
(solid lines), are compared with the analytical solutions (dotted lines) over a large period of
time.
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Figure 7: The neck curvature obtained by the numerical simulation, with initial curvature set
equal to 500, 600, 700 and 800 respectively, are compared with the analytical curvature of the
neck (dotted line). The derived numerical contact radius r is also compared with the analytical
solution.

to each other. In figure 6 we have plotted the contact radius r and the shrinkage
s obtained both by the numerical and analytical solution. When we compare the
numerical contact radius (solid line) with the analytical contact radius (dotted
line), we see that these lines are almost the same, even in the initial stage.
When we zoom in to this initial stage to get a better look of the development
of the obtained neck curvature and contact radius, we obtain the pictures of
figure 7; they also demonstrate the influence of the initial neck curvature on the
development of the neck curvature and contact radius. We have set this initial
neck curvature equal to 500, 600, 700 and 800 respectively. The derived neck
curvatures and contact radii are compared to the analytical solutions (dotted
lines). It can be observed that the obtained numerical curvatures are getting
close to each other after a small period of time; but they significantly differ from
the analytical solution. After a small period of time, the lines of the numerically
derived contact radii run all parallel to each other. This can be interpreted as a
small shift in tfme. When we compare these numerical contact radii with the exact
solution, we see that those lines run also roughly parallel to each other, i.e. the
time is also a little moved on. This is due to spatial and time discretization errors.
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Figure 8: The initial fluid region which are three coalescing circles.

Figure 9: The coalescence of this three circles in time. The boundary curves refer to values
of time ¢ = 0.0(0.1)2.0.

22



Note that the development of the shape is most important; the (dimensionless)
time is not an important parameter because in reality, sintering can last a few
minutes up to a few days.

The above results are illustrating the correctness of the conclusions which we
derived from the perturbation analysis as is carried out in section 4. Thus if the
approximate neck curvature is of the order of the exact neck curvature, then this
will hardly change the development of the contact radius between both circles.

Another example to demonstrate the node redistribution algorithm is the
shape which is plotted in figure 8. The initial radius of the largest circle is taken
equal to 1 and the radii of both small circles are set equal to 0.5. The centre of
the largest circle is the origin and again, this point is chosen to be the reference
point. The angle between the straight lines through the centres of those circles is
equal to 45 degrees. The contact radius of both small circles was initially equal
to 0.095 and the other was set equal to 0.13. Furthermore, we used the analytical
solution for the coalescence of two equal circles (15) to approximate the initial
neck regions. The boundary of the touching region between the large and small
circle is approximated at the following way: for the neck region on the side of the
largest circle we used the analytical solution with R = 1; for the other side from
the neck point, we used the analytical solution with R = 0.5. The transformation
of these circles in time is shown in figure 9.

At last, we consider the geometry of three equal circles, which are making an
angle with each other, i.e. a problem with one axis of symmetry, see also the
solid lined shape of figure 10. This three particle model is commonly used in
sintering literature to study the effect of packing irregularities. The origin is set
in the centre of the circle in the middle, which is also used as reference point.
The radii of those circles are taken equal to 0.5, and for the angle between the
centres of the circles we took 70 degrees. Again, the neck region is approximated
using the analytical solution. However, here we used different neck regions, i.e.
neck curvatures, on both sides of the contact line between two touching circles.
We derived the neck region with smallest curvature, i.e. the outer neck, using
a contact radius of 0.2 and on the other side (inner neck) we took the contact
radius equal to 0.075. From equation (21), this choice of contact radii is giving a
neck curvature approximately equal to 110 an 2330 for the outer and inner neck
respectively.

The dotted shape of figure 10 is obtained at time ¢t = 0.1. When comparing
this shape with the initial configuration, it can be seen that the circles are rotated.
This effect is also observed in reality when three glasses spheres are sintered, see
also Petzow and Exner [9] or Somiya and Moriyoshi [11], pp. 649. From this
we conclude that the neck growth, which is a local process, can influence the
global shape evolution. Thus a numerical approach which consists of decomposing
the boundary in neck regions and smooth parts and computing these more or
less separately, would not be able to simulate this effect, i.e. such a method is
incorrect.

In figure 11 we show the obtained shape evolution between ¢ = 0.0 and ¢t = 2.0
with time intervals of 0.1. We see that two necks on the inner side grow together
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Figure 10: The initial fluid region (solid line) which consist of three equal coalescing circles
with an angle between the centres of 70 degrees. The dotted lined shape is the fluid at ¢ = 0.1,
which is showing the angle change during the evolution.

Figure 11: The coalescence of this three equal circles in time. The boundary curves refer to
values of time ¢ = 0.0(0.1)2.0.
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and this is showing that our algorithm is able to simulate this effect also.
In future, we plan to investigate multiply connected regions, i.e. viscous fluid
regions with gas bubbles.
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