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Chapter 1

Introduction to spherical codes and
designs

In this chapter we give some notations and properties of the spherical codes and designs.

1.1 Euclidean sphere

The unit sphere Sn−1 in the n-dimensional Euclidean space Rn is the set of all unit norm
vectors:

Sn−1 = {x = (x1, x2, . . . , xn) ∈ Rn : ‖x‖ = x2
1 + x2

2 + · · ·+ x2
n = 1}.

The standard metric is defined through the equation

d(x, y) =
√

(x1 − y1)2 + (x2 − y2)2 + · · ·+ (xn − yn)2 (1.1.1)

and the standard inner product is given by

〈x, y〉 = x1y1 + x2y2 + · · ·+ xnyn, (1.1.2)

where x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) are arbitrary points in Rn. When the
points x and y lie on Sn−1, the inner product 〈x, y〉 equals the cosine of the angle (in their
usual sense) between the vectors x and y.

The distance between points on Sn−1 and their inner product are in close connection.
Indeed, they are connected by the equations

d(x, y) =
√

2(1− 〈x, y〉) (1.1.3)

and

〈x, y〉 = 1− d2(x, y)

2
. (1.1.4)

This observation implies that investigations on distances give the same information as
investigations on inner products. Following the tradition (see [31, 46]) and for some
reasons which will become clearer later on we prefer to work with the inner products.
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1.2 Spherical codes

In this section we describe some basic parameters of spherical codes.

Definition 1.2.1. Any finite nonempty subset C of the Euclidean sphere Sn−1 is called
spherical code.

The most important parameters which characterize a spherical code C ⊂ Sn−1 are as
follows:

• cardinality or size M = |C|. This is the cardinality of the nonempty finite set C;

• dimension n = dim(Sn−1). This is the smallest dimension of any Euclidean space
which contains C;

• maximal cosine s = s(C). This is defined as the maximal possible inner product of
any two different points of C, i.e.

s = s(C) = max{〈x, y〉 : x, y ∈ C, x 6= y}.

• minimum distance d = d(C). This is the minimum possible distance between any
two different points of C, i.e.

d = d(C) = min{d(x, y) : x, y ∈ C, x 6= y}.

It follows from (1.1.3) and (1.1.4) that the maximal cosine and the minimum distance are
related. For this reason we will work with the maximal cosine only.

Definition 1.2.2. A spherical code C ⊂ Sn−1 is said to be an (n,M, s)-code if it has
dimension n, cardinality M = |C| and maximal cosine s.

Generally speaking we are interested in finding codes with small dimension, large size and
small maximal cosine. Obviously these three ambitions are in conflict.

For given dimension n one investigates the relations between the size M and the maximal
cosine s (the minimum distance d respectively). For given n and s, one wishes to find
the maximal possible cardinality of an (n, M, s)-code. Similarly, for fixed n and M , one
wishes to find the minimum possible maximal cosine of an (n,M, s)-code.

1.3 Spherical designs

Spherical designs were introduced by Delsarte, Goethals and Seidel in 1977 (see [31]) as
analogs on Sn−1 of the classical combinatorial designs. They wrote ”Thus Ω, Sym(v), and
the classical t-designs, correspond to Ωd, O(d), and the spherical t-designs, respectively”.
(Here Ω is the set of the d-subsets of {1, 2, . . . , v}, 1 ≤ d ≤ v/2, Sym(v) is the symmetric
group on v elements, Ωd = Sd, and O(d) is the orthogonal group.)
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The spherical designs are special class of spherical codes. The original motivation for
studying these objects came from the numerical evaluation of multi-dimensional integrals.
The integral of a polynomial function over the sphere may be approximated by its average
value at the code points. Thus, among all equivalent definitions for a spherical design,
the following one gives a nice intuitive idea for this notion. Namely, the average value of
any polynomial f of degree at most τ over the whole sphere is equal to the average value
of this polynomial over the code.

Definition 1.3.1. A spherical code C is a spherical τ -design (τ ≥ 0 is an integer) if and
only if the equality ∫

Sn−1

f(x)dµ(x) =
1

|C|
∑
x∈C

f(x) (1.3.1)

holds for any real n-variable polynomial f(x) = f(x1, x2, . . . , xn) of total degree at most
τ . Here µ(.) is the normalized Lebesgue measure, i.e. µ(Sn−1) = 1.

The number τ is called strength of the design. We will always assume that the strength
is the maximum value of τ for which C is a spherical τ -design.

Of course, every spherical code is a spherical 0-design. Spherical 1-designs are nothing
else than the codes which have their centre of mass in the origin. A spherical 2-design C
in three dimensions is what Schläfli called a eutactic star, essentially the projection onto
Sn−1 of M = |C| mutually orthogonal vectors (cf. Coxeter [28]).

Definition 1.3.2. A spherical design C ⊂ Sn−1 is said to be antipodal if and only if C
equals −C = {−x : x ∈ C}.

1.4 Two main problems

In this section we formulate the two main problems we are interested in. In some sense,
the problems for codes and for designs are dual to each other.

1.4.1 Maximal size of a spherical code

Here, one wants to maximize the size of a spherical code provided the dimension and the
maximal cosine are fixed.

Definition 1.4.1. The maximal possible cardinality of a spherical code on Sn−1 with
prescribed maximal inner product s is denoted by A(n, s), i.e.

A(n, s) = max{M : C is an-(n,M, s)-code}.

Problem 1 Determine the exact value of A(n, s) or find upper and lower bounds on this
number.

The problem to find A(n, s) comes from classical geometry, but is of interest for com-
binatorics, information theory, coding theory, etc. In particular, bounds for A(n, s) can
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be used to obtain estimations on the maximal possible density of a sphere packing in
Rn [27, 49] and on the error exponent for the Gaussian channel [1]. For further discus-
sions on this theme we refer to the books by Conway-Sloane [27], Ericson-Zinoviev [36],
Levenshtein [49] (Chapter 6 of Pless-Huffman [54]), and Zong [64].

Lower bounds for A(n, s) are given in terms of explicit constructions. Our main interest
is in obtaining better upper bounds.

Upper bounds for A(n, s) are general and indicate limits beyond which codes do not
exist. As usually in coding theory, the best upper bounds are those obtained from linear
programming techniques. At present, the best universal (here ”universal” means that the
bound can be written for all n and s) bound is the linear programming bound due to
Levenshtein [46, 47, 48, 49]. We explain this in detail in Chapter 2.

Chapter 3 is based on the paper [17]. There we prove necessary and sufficient conditions
for the existence of particular improvements of the Levenshtein bounds on A(n, s). In
that chapter we also investigate these conditions further and show that better bounds do
exist quite often.

Some problems require estimations on the quantity D(n,M) – the maximal possible min-
imum distance of a spherical code in n dimensions of fixed cardinality M . We study
lower bounds on S(n,M) – the minimum possible maximal cosine of a spherical code in
n dimensions of fixed cardinality M . These two quantities are related by

S(n,M) = 1− D2(n,M)

2
and D(n,M) =

√
2(1− S(n,M)).

Therefore, upper/lower bounds for S(n,M) lead to lower/upper bounds for D(n,M). In
Chapter 3 we show how new bounds on A(n, s) can be used for obtaining new bounds on
D(n,M).

The values of A(n, s) are known for −1 ≤ s ≤ 0 in all dimensions (for example, cf.
[27]). Thus we can assume that s ∈ (0, 1) further. Apart from one infinite sequence of
(n,A(n, s), s) codes with s > 0, finitely many such codes are known.

1.4.2 Minimum size of a spherical design

One wants to minimize the size of a spherical design provided the dimension and the
strength are fixed.

Definition 1.4.2. The minimum possible cardinality of a τ -design in n dimensions is
denoted by B(n, τ), i.e.

B(n, τ) = min{|C| : C ∈ Sn−1 is a τ -design}.

Problem 2 Determine the exact value of B(n, τ) or find upper and lower bounds on this
number.

Upper bounds for B(n, τ) are given by explicit constructions. For every fixed n and τ ,
there exist τ -designs of large enough cardinality (Seymour-Zaslavsky [58]). Examples,
which became classical of spherical designs were described by Delsarte-Goethals-Seidel
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[31], and further constructions can be found in Goethals-Seidel [39], Bannai [6, 7], Bajnok
[3, 4, 5], Hardin-Sloane [40, 41], Reznick [55], etc.

Following the analogy with the classical designs, Delsarte-Goethals-Seidel [31] obtained
the following Fisher-type (DGS) bound

B(n, τ) ≥ R(n, τ) =





2

(
n + k − 2

n− 1

)
, if τ = 2k − 1,

(
n + k − 1

n− 1

)
+

(
n + k − 2

n− 1

)
, if τ = 2k.

(1.4.1)

Despite of its combinatorial appearance, this bound can be easily obtained by linear
programming as Delsarte-Goethals-Seidel did in [31, Section 5]. The linear programming
approach to Problem 2 will be explained in Chapter 2.

The possibilities for attaining the DGS bound were investigated by Bannai-Damerell [8, 9].
Later, some linear programming improvements on the DGS bound were obtained by
Boyvalenkov-Nikova [23, 24, 52] and Yudin [63].

Chapter 4 is based on [12, 13, 15]. We develop methods for proving nonexistence results
for spherical designs which use ideas beyond the pure linear programming approach. We
first derive restrictions on the structure of designs of relatively small cardinalities using
linear programming techniques. Then we apply some geometric argument to strengthen
these restrictions. This allows us to prove nonexistence results in the first open parameters
of spherical designs as well as in some asymptotic processes.
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Chapter 2

The linear programming bounds for
spherical codes and designs

The best non-constructive bounds in coding theory are usually those obtained from linear
programming techniques. The basic ideas go back to MacWilliams (cf. [25, 50]) and were
developed by Delsarte [30]. The particular case of spherical codes was studied firstly by
Delsarte-Goethals-Seidel [31] and Kabatianskii-Levenshtein [43] (cf. [32, 49]).

In this chapter we describe the linear programming techniques which are used for upper-
bounding A(n, s) and for lowerbounding B(n, τ). The best upper bound on A(n, s) was
obtained by Levenshtein. We explain the logic of the Levenshtein’s bound together with
some properties of the parameters involved.

2.1 Gegenbauer polynomials

The linear programming bound is largely based on the theory of orthogonal polynomials.
The situation on the Euclidean sphere is expressed in terms of the Gegenbauer polynomials
(also called ultraspherical polynomials). These polynomials are orthogonal with respect
to the inner product

〈f, g〉 =

∫ 1

−1

f(t)g(t)(1− t2)(n−3)/2dt,

i.e. we have

cn

∫ 1

−1

P
(n)
i (t)P

(n)
j (t)(1− t2)(n−3)/2dt = δij,

where

cn =

(∫ 1

−1

(1− t2)
n−3

2 dt

)−1

=
Γ(n− 1)

2n−2(Γ(n−1
2

))2
, (2.1.1)

Γ(z) is the Gamma function and δij is the Kroneker symbol.

For fixed dimension n ≥ 3, we consider the corresponding family of Gegenbauer polyno-
mials {P (n)

i (t)}∞i=0. We use the recurrence relation to define the Gegenbauer polynomials

9
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in the following way. Let P
(n)
0 (t) = 1 and P

(n)
1 (t) = t. Then one has

(i + n− 2)P
(n)
i+1(t) = (2i + n− 2)tP

(n)
i (t)− iP

(n)
i−1(t) (2.1.2)

for i ≥ 1.

The Gegenbauer polynomials can be also introduced as a particular case of Jacobi poly-
nomials {P (α,β)

i (t)}∞i=0 where one needs to set α = β = (n − 3)/2 and to normalize with
Pα,β

i (1) = 1 in order to obtain the Gegenbauer polynomials (cf. [61]).

The first few Gegenbauer polynomials are:

P
(n)
2 (t) =

nt2 − 1

n− 1
,

P
(n)
3 (t) =

(n + 2)t3 − 3t

n− 1
,

P
(n)
4 (t) =

(n + 2)(n + 4)t4 − 6(n + 2)t2 + 3

(n− 1)(n + 1)
,

P
(n)
5 (t) =

(n + 4)(n + 6)t5 − 10(n + 4)t3 + 15t

(n− 1)(n + 1)
.

It easily follows from (2.1.2) by induction that P
(n)
i (1) = 1. Another obvious property of

the Gegenbauer polynomials is that the even (respectively odd) degree polynomials are

even (respectively odd) functions, i.e. P
(n)
i (t) = (−1)iP

(n)
i (−t) for all integers i ≥ 0 and

all real t. Note also that the leading coefficient of the polynomial P
(n)
i (t) is positive and

that sign(P
(n)
i (−1)) = (−1)i for i ≥ 0.

Let us denote

P
(n)
i (t) =

i∑
j=0

ai,jt
j = ai,0 + ai,1t + · · ·+ ai,i−1t

i−1 + ai,it
i.

Since ai,j = 0 when i + j is odd, we actually have

P
(n)
i (t) = ai,it

i + ai,i−2t
i−2 + ai,i−4t

i−4 + · · · .

Let f(t) = a0 +a1t+a2t
2 + · · ·+akt

k be a real polynomial. It is well known that f(t) can
be uniquely expanded in terms of any series of orthogonal polynomials. In particular, let
us consider the expansion

f(t) = f0P
(n)
0 (t) + f1P

(n)
1 (t) + · · ·+ fkP

(n)
k (t)

= f0 + f1t + · · ·+ fkP
(n)
k (t).

in terms of Gegenbauer polynomials. We are interested in the coefficients f0, f1, . . . , fk.
They can be found in different ways.

Since the Gegenbauer polynomials are orthogonal on the interval [−1, 1] with respect to
weight (1 − t2)(n−3)/2, the classical formulas for fi (0 ≤ i ≤ k) as Fourier coefficients of
f(t) give

fi = cn

∫ 1

−1

f(t)P
(n)
i (t)(1− t2)(n−3)/2dt, (2.1.3)
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where the constant cn is given by (2.1.1).

In particular, the coefficient f0 can be calculated by the formula

f0 = cn

∫ 1

−1

f(t)(1− t2)(n−3)/2dt (2.1.4)

= a0 +

[k/2]∑
i=1

a2i(2i− 1)!!

n(n + 2) · · · (n + 2i− 2)

= a0 +
a2

n
+

3a4

n(n + 2)
+ · · · . (2.1.5)

It follows from this formula that f0 = 0 for polynomials which are odd functions.

Another way to calculate the coefficients fi turns out to be more convenient when the
indices i are close to the degree k. Indeed, in this case we may solve the (beginning of)
linear system which is obtained by comparing the coefficient of the same degrees of t in
the equality

f(t) = f0P
(n)
0 (t) + f1P

(n)
1 (t) + · · ·+ fkP

(n)
k (t).

We have the equations

ak = fkak,k,

ak−1 = fk−1ak−1,k−1,

ak−2 = fk−2ak−2,k−2 + fkak,k−2,

ak−3 = fk−3ak−3,k−3 + fkak−1,k−3,

etc. Therefore we find

fk =
ak

ak,k

,

fk−1 =
ak−1

ak−1,k−1

,

fk−2 =
ak−2

ak−2,k−2

− fkak,k−2

ak−2,k−2

=
ak−2

ak−2,k−2

− akak,k−2

ak,kak−2,k−2

,

fk−3 =
ak−3

ak−3,k−3

− fk−1ak−1,k−3

ak−3,k−3

=
ak−3

ak−3,k−3

− ak−1ak−1,k−3

ak−1,k−1ak−3,k−3

,

etc.

Yet another (third) way to calculate f0, the coefficient of special interest to us, will be
given later.

We give the coefficients f0 for the power polynomials f(t) = tk.
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Lemma 2.1.1. Let bk be a real number such that tk = bk +
∑k

i=1 fiP
(n)
i (t) then

bk =





0, if k is odd,
(2j − 1)!!

n(n + 2) · · · (n + 2j − 2)
, if k = 2j.

(2.1.6)

The first few nonzero values of the constants bk are

b0 = 1, b2 =
1

n
, b4 =

3

n(n + 2)
, b6 =

15

n(n + 2)(n + 4)
.

With this notation, formula (2.1.5) becomes

f0 = a0 +

[k/2]∑
i=1

a2i(2i− 1)!!

n(n + 2) · · · (n + 2i− 2)
=

[k/2]∑
i=0

a2ib2i.

2.2 Harmonic polynomials and the addition formula

The relevance and the importance of the Gegenbauer polynomials for investigations on
the Euclidean sphere are justified by the so called addition formula. This property is
the bridge between the Gegenbauer polynomials and the harmonic analysis on the sphere
[31, 42, 62].

Definition 2.2.1. An n-variable polynomial f(x) = f(x1, x2, . . . , xn) is called harmonic
if it satisfies the Laplace equation

∆(f) =
∂2f

∂x2
1

+
∂2f

∂x2
2

+ · · ·+ ∂2f

∂x2
n

= 0.

The set of all harmonic polynomials of degree i forms a linear space which is denoted by
Harm(i).

For example, Harm(0) = 〈1〉 consists of all constants and Harm(1) = 〈x1, x2, ..., xn〉
consists of all linear polynomials. If

ri = dim(Harm(i)),

then r0 = 1, r1 = n and it can be shown in general that

ri =

(
n + i− 1

i

)
−

(
n + i− 3

i− 2

)
=

n + 2i− 2

i

(
n + i− 3

i− 1

)
. (2.2.1)

Definition 2.2.2. For any integer i ≥ 1 let {vij(x) : j = 1, 2, . . . , ri} be an orthonormal
basis of the space Harm(i) with respect to the inner product 〈f, g〉 =

∫
Sn−1 f(x)g(x)dµ(x).

The connection between the harmonic polynomials and the Gegenbauer polynomials is
given by the following relation which is widely known as the addition formula [2, 31, 45]:

P
(n)
i (〈x, y〉) =

1

ri

ri∑
j=1

vij(x)vij(y). (2.2.2)
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In this formula, both sides do not depend on the particular choices of the points x and y
but only on their inner product. The Gegenbauer polynomials are what are called zonal
spherical functions for the Euclidean sphere Sn−1 (cf. [45]). The addition formula is
connected also with the concept of positive definite functions on Sn−1.

2.3 The linear programming bound (LPB) for spher-

ical codes and designs

2.3.1 Main identity

The addition formula (2.2.2) allows the derivation of an identity which seems to be the
main source of inequalities for spherical codes and designs (cf. Delsarte-Goethals-Seidel
[31] and Levenshtein [47, 49]). In particular, we use this identity to prove the linear
programming theorems.

Theorem 2.3.1 (The main identity; [31, 47]). Let C ⊂ Sn−1 be arbitrary spherical
code (possibly a τ -design of strength τ ≥ 1) and f(t) be an arbitrary real polynomial.
Then the following identity holds

|C|f(1) +
∑

x,y∈C,x6=y

f(〈x, y〉) = |C|2f0 +
k∑

i=1

fi

ri

ri∑
j=1

(∑
x∈C

vij(x)

)2

, (2.3.1)

where f(t) =
∑k

i=0 fiP
(n)
i (t).

Proof. We calculate in two different ways the sum

∑
x,y∈C

f(〈x, y〉).

For the left hand side we simply extract the |C| members with x = y thus giving number
f(〈x, x〉) = f(1) exactly |C| times.

For the right hand side we use the expansion f(t) =
∑k

i=0 fiP
(n)
i (t) and then the addition
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formula:

∑
x,y∈C

f(〈x, y〉) =
∑

x,y∈C

k∑
i=0

fiP
(n)
i (〈x, y〉)

=
∑

x,y∈C

f0P
(n)
0 (〈x, y〉) +

k∑
i=1

∑
x,y∈C

P
(n)
i (〈x, y〉)

= |C|2f0 +
k∑

i=1

fi

∑
x,y∈C

1

ri

ri∑
j=1

vij(x)vij(y)

= |C|2f0 +
k∑

i=1

fi

ri

ri∑
j=1

( ∑
x,y∈C

vij(x)vij(y)

)

= |C|2f0 +
k∑

i=1

fi

ri

ri∑
j=1

(∑
x∈C

vij(x)

)(∑
y∈C

vij(y)

)

= |C|2f0 +
k∑

i=1

fi

ri

ri∑
j=1

(∑
x∈C

vij(x)

)2

which completes the proof.

2.3.2 LPB for spherical codes

We wish to maximize size M = |C| over all spherical codes of fixed dimension n and
maximal inner product s. The linear programing bound relates this maximization problem
to a minimization problem for certain real polynomials as follows.

Theorem 2.3.2 (LPB for spherical codes [31, 43]). Let n ≥ 3 and f(t) be a real
polynomial such that

(A1) f(t) ≤ 0 for −1 ≤ t ≤ s, and

(A2) The coefficients in the Gegenbauer expansion f(t) =
∑k

i=0 fiP
(n)
i (t) satisfy f0 > 0,

fi ≥ 0 for i = 1, . . . , k.

Then A(n, s) ≤ f(1)/f0.

Proof. The assertion follows by the main identity (2.3.1). Let C be an (n,M, s) code and
let f(t) satisfy the conditions of the theorem.

For the left hand side of (2.3.1) we apply condition (A1) to see that it does not exceed
Mf(1). Then for the right hand side we use condition (A2) to establish that it is not less
than or equal to M2f0. Hence we have

Mf(1) ≥ M2f0.
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Since this inequality must be satisfied by all (n,M, s) codes, we conclude that

A(n, s) ≤ f(1)

f0

,

which completes the proof.

It will become clear later that for any pair of values of n ≥ 3 and s ∈ [−1, 1) the set of
polynomials which satisfy the conditions (A1) and (A2) is nonempty.

2.3.3 LPB for spherical designs

For fixed dimension n and strength τ we wish to find the minimum possible cardinality of
a τ -design on Sn−1. Similarly to the case of spherical codes, the linear programing bound
leads to a maximization problem for certain real polynomials.

Theorem 2.3.3 (LPB for spherical designs [31]). Let n ≥ 3 and f(t) be a real
polynomial such that

(B1) f(t) ≥ 0 for −1 ≤ t ≤ 1, and

(B2) The coefficients in the Gegenbauer expansion f(t) =
∑k

i=0 fiP
(n)
i (t) satisfy fi ≤ 0

for i = τ + 1, . . . , k.

Then B(n, τ) ≥ f(1)/f0.

Proof. Let C be a τ -design on Sn−1 and let f(t) satisfy the conditions of the theorem.

At the left hand side of (2.3.1) we apply condition (B1) to see that it is not less than or
equal to |C|f(1). Then for the right hand side we use condition (B2) to establish that it
does not exceed |C|2f0. Hence we have

|C|f(1) ≤ |C|2f0.

Note that f0 > 0 by (A1). Since this inequality must be satisfied for an arbitrary choice
of C, we conclude that

B(n, τ) ≥ f(1)

f0

,

which completes the proof.

Condition (B2) is satisfied for the nonnegative polynomials of degree at most τ . Therefore
for any pair of values of n ≥ 3 and τ ≥ 1 the set of polynomials which satisfy the conditions
(B1) and (B2) is nonempty.
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2.4 Further properties of the Gegenbauer polynomi-

als. Adjacent polynomials

We shall need some properties of the Gegenbauer polynomials. Many of them are valid in
the general case (i.e. for any series of orthogonal polynomials). The proofs can be found
in Szegö [61], Levenshtein [47].

Denote by

mk =
ak+1,k+1

ak,k

=
n + 2k − 2

n + k − 2
(2.4.1)

the ratio of the coefficients of the highest degrees the Gegenbauer polynomials P
(n)
k+1(t)

and P
(n)
k (t). Then recurrence relation (2.1.2) can be written in the following way:

mkP
(n)
k+1(t) =

(
t + mk +

mk−1rk−1

rk

− 1

)
P

(n)
k (t)− mk−1rk−1

rk

P
(n)
k−1(t)

for k ≥ 0, where r−1 = m−1 = 0 and P
(n)
−1 (t) ≡ 0.

Denote

Tk(x, y) =
k∑

i=0

riP
(n)
i (x)P

(n)
i (y).

Lemma 2.4.1 (Christoffel-Darboux formula). We have

Tk(x, y) =





rkmk

(
P

(n)
k+1(x)P

(n)
k (y)− P

(n)
k (x)P

(n)
k+1(y)

)

x− y
, if x 6= y,

rkmk

(
P

(n)
k (x)

d

dx
P

(n)
k+1(x)− P

(n)
k+1(x)

d

dx
P

(n)
k (x)

)
, if x = y.

(2.4.2)

We use the Christoffel-Darboux formulas to simplify the functions Tk(x, y) for some special
values of x and y.

Lemma 2.4.2. Any polynomial P
(n)
k (t) has exactly k different simple zeros inside the

interval [−1, 1]
−1 < tk,1 < tk,2 < ... < tk,k = tk < 1.

We shall also need the so-called adjacent polynomials {P a,b
i (t)}∞i=0, where a, b ∈ {0, 1}.

Definition 2.4.3. The adjacent polynomials are (normalized by P a,b
i (1) = 1) Jacobi poly-

nomials of parameters α = a + (n− 3)/2 and β = b + (n− 3)/2, i.e.

P a,b
i (t) =

P
a+(n−3)/2,b+(n−3)/2
i (t)

P
a+(n−3)/2,b+(n−3)/2
i (1)

.

Therefore, the adjacent polynomials {P a,b
i (t)}∞i=0 are orthogonal in [−1, 1] with respect to

the weight function
(1− t)a+(n−3)/2(1 + t)b+(n−3)/2.
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This means that

ca,b
n

∫ 1

−1

P a,b
i (t)P a,b

j (t)(1− t)a(1− t)b(1− t2)(n−3)/2dt = δij (2.4.3)

where ca,b
n is a positive constant.

Since {P 1,1
i (t)}∞i=0 are Jacobi polynomials of parameters α = β = (n− 1)/2, we see that

P 1,1
i (t) =

P
1+(n−3)/2,1+(n−3)/2
i (t)

P
1+(n−3)/2,1+(n−3)/2
i (1)

= P
(n+2)
i (t).

This fact will be used often in what follows.

Lemma 2.4.4 (Levenshtein [47]). We have

P 1,0
k (t) =

Tk(t, 1)

Tk(1, 1)
=

(
k+n−2

k

) (
P

(n)
k (t)− P

(n)
k+1(t)

)

(1− t)Tk(1, 1)
(2.4.4)

and

P 1,1
k−1(t) =

2k
(
P

(n)
k−1(t)− P

(n)
k+1(t)

)

(n + 2k − 2)(1− t2)
. (2.4.5)

We shall also need the functions

T a,b
k (x, y) =

k∑
i=0

ra,b
i P a,b

i (x)P a,b
i (y),

where (a, b) = (1, 0) or (1, 1) and ra,b
i are positive integers.

For the adjacent polynomials {P a,b
i (t)}∞i=0 the same Christoffel-Darboux formulas (Lemma

2.4.1) hold as for {P n
i (t)}∞i=0 . As above, one needs these formulas to express T a,b

k (x, y) in
a simpler form for some values of x and y.

Denote by ta,b
k (again a, b ∈ {0, 1}) the largest zero of the adjacent polynomial P a,b

k (t).

Lemma 2.4.5 ([49]). The largest zeros of the adjacent polynomials satisfy the following
separation conditions:

t1,0
k < t1,1

k < t1,0
k+1,

t1,1
k−1 < t1,0

k < t1,1
k ,

t1,0
k < tk,

t1,1
k < t0,1

k

for any k ≥ 1 (t1,1
0 = −1 by definition).

Many ratios of orthogonal polynomials are monotonic in intervals where the denominator
does not vanish. Such properties can be proved by using separation rules as those in
Lemma 2.4.5. We need only the following two facts.
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Lemma 2.4.6 ([49]). a) The rational function P 1,0
k (t)/P 1,0

k−1(t) is increasing in t in every
interval which does not contain zeros of its denominator.

b) The rational function P 1,1
k (t)/P 1,1

k−1(t) is increasing in t in every interval which does
not contain zeros of its denominator.

Lemma 2.4.7 ([49]). The equality

P 1,0
k

(
t1,1
k−1

)

P 1,0
k−1

(
t1,1
k−1

) =
P 1,0

k (−1)

P 1,0
k−1(−1)

holds.

2.5 Universal bounds for spherical codes and designs

2.5.1 Levenshtein bound for spherical codes

We are ready to describe the Levenshtein bound. Let us define the closed intervals

Im =

{[
t1,1
k−1, t

1,0
k

]
, if m = 2k − 1,[

t1,0
k , t1,1

k

]
, if m = 2k,

(2.5.1)

for k = 1, 2, ... and I0 = [−1, t1,0
1 ).

It follows from Lemma 2.4.5 that the intervals Im are consecutive and non-overlapping.
Therefore, they constitute a partition of the half-open interval I = [−1, 1). For s ∈ Im,
Levenshtein uses the polynomial

f (n,s)
m (t) =

{
(t− s)

(
T 1,0

k−1(t, s)
)2

, if m = 2k − 1,

(t + 1)(t− s)
(
T 1,1

k−1(t, s)
)2

, if m = 2k,
(2.5.2)

in order to obtain a linear programming bound from Theorem 2.3.2. It can be proved
that the polynomials f

(n,s)
m (t) satisfy the conditions of Theorem 2.3.2 and imply (after

some calculations) the following universal bound.

Lemma 2.5.1 (Levenshtein [47]). The polynomials f
(n,s)
m (t) satisfy the conditions (A1)

and (A2) for all s ∈ Im. Moreover, all coefficients fi, 0 ≤ i ≤ m, in the Gegenbauer

expansion of f
(n,s)
m (t) are strictly positive for s ∈ Im.

Theorem 2.5.2 (Levenshtein bound for spherical codes [46, 47]). Let n ≥ 3 and
s ∈ [−1, 1). Then

A(n, s) ≤





L2k−1(n, s) =

(
k + n− 3

k − 1

) [
2k + n− 3

n− 1
− P

(n)
k−1(s)− P

(n)
k (s)

(1− s)P
(n)
k (s)

]

for s ∈ I2k−1,

L2k(n, s) =

(
k + n− 2

k

) 
2k + n− 1

n− 1
−

(1 + s)
(
P

(n)
k (s)− P

(n)
k+1(s)

)

(1− s)
(
P

(n)
k (s) + P

(n)
k+1(s)

)



for s ∈ I2k.
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For example, the third bound

A(n, s) ≤ L3(n, s) =
n(1− s) [2 + (n + 1)s]

1− ns2

is valid in the interval

I3 =
[
t1,1
1 , t1,0

2

)
=

[
0,

√
n + 3− 1

n + 2

)
.

The graphs of the bounds L3(3, s), L4(3, s), L5(3, s) and L6(3, s) are shown in Figure 2.1.

L3(3, s)
L4(3, s)

L5(3, s)

L6(3, s)

0

5

10

15

20

0.1 0.2 0.3 0.4 0.5 0.6

Figure 2.1: Four Levensthein bounds in three dimensions – L3(3, s), L4(3, s), L5(3, s) and
L6(3, s)

All known codes which attain the Levenshtein bound are listed in Table 3 [49]. The
possibilities for existence of such codes were investigated in [19, 21, 44].

2.5.2 Delsarte-Goethals-Seidel bound for spherical designs

For fixed n and τ , Delsarte-Goethals-Seidel use the polynomial

f (n)
τ (t) =

{
(t + 1)

(
P 1,1

k−1(t)
)2

, if τ = 2k − 1,(
P 1,0

k (t)
)2

, if τ = 2k,
(2.5.3)

in order to obtain LPB by Theorem 2.3.3. It is obvious that the polynomials f
(n)
τ (t)

satisfy the conditions of Theorem 2.3.3 (condition (B1) follows by the choice of f
(n)
τ (t)
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and condition (B2) is not relevant for these polynomials). The explicit form of Delsarte-
Goethals-Seidel bound was given in (1.4.1) (see also (2.5.4) below). We have

R(n, 2k − 1) =

(
1− P 1,0

k−1(−1)

Pk(−1)

)
k−1∑
i=0

ri = 2

(
n + k − 2

n− 1

)
,

R(n, 2k) =
k∑

i=0

ri =

(
n + k − 1

n− 1

)
+

(
n + k − 2

n− 1

)
.

The duality in the linear programming approach to spherical codes and designs implies
some relations between the Levenshtein bound and the Delsarte-Goethals-Seidel bound.
At the end points of the intervals Im one has

L2k−2(n, t1,1
k−1) = L2k−1(n, t1,1

k−1) = R(n, 2k − 1) = 2

(
n + k − 2

n− 1

)
, (2.5.4)

L2k−1(n, t1,0
k ) = L2k(n, t1,0

k ) = R(n, 2k) =

(
n + k − 1

n− 1

)
+

(
n + k − 2

n− 1

)
. (2.5.5)

In particular, this implies that the function

L(n, s) =

{
L2k−1(n, s), if s ∈ I2k−1,
L2k(n, s), if s ∈ I2k,

is continuous in s ∈ [−1, 1).

2.6 Properties of the Levensthein polynomials

Our investigations in the next chapters are based on some observations on the connections
between the parameters involved in the explanation of the Levenshtein bound.

2.6.1 Extremal polynomials

The best choice of polynomials for application in Theorem 2.3.2 is still unknown. Thus
it makes sense to study some extremality properties of the polynomials already used.

Definition 2.6.1. The set of suitable polynomials for applying in Theorem 2.3.2 is de-
noted by An,s, i.e. f(t) = f0 + f1P

(n)
1 (t) + · · ·+ fkP

(n)
k (t) belongs to An,s if and only if it

satisfies f(t) ≤ 0 for −1 ≤ t ≤ s, and f0 > 0, f1 ≥ 0, . . . , fk ≥ 0.

Among all polynomials in An,s, we wish to find the best one to estimate A(n, s).

Definition 2.6.2. A polynomial f(t) ∈ An,s is called An,s-extremal (resp. An,s-global
extremal) if it gives the best bound on A(n, s) among the polynomials of the same or
lower degree (resp. all polynomials) from An,s.
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Sidel’nikov [60] proved that the Levenshtein polynomials f
(n,s)
m (t) are An,s-extremal. Other

proofs were given later by Levenshtein [48, Section 4] and Boyvalenkov [10, Theorem 5.2].
Boyvalenkov [10] also introduces the notion of An,s-local extremality and proves that this
is in fact the same as An,s-extremality.

In Chapter 3 we shall find necessary and sufficient conditions for the Levenshtein polyno-
mials f

(n,s)
m (t) to be An,s-global extremal.

2.6.2 Roots of f
(n,s)
m (t) and another formula for f0

The polynomial (t− s)T 1,0
k−1(t, s) (see (2.5.2)) has k simple real zeros α0, α1, . . . , αk−1, all

of them belonging to the interval [−1, 1). We take them in the following order:

−1 < α0 < α1 < · · · < αk−2 < αk−1 = s.

Analogously, the polynomial (t + 1)(t− s)T 1,1
k−1(t, s) has k + 1 simple zeros

−1 = β0 < β1 < β2 < · · · < βk−1 < βk = s.

The numbers α0, α1, . . . , αk−1 (respectively β0, β1, . . . , βk) can be considered as nodes
for the Gauss-Jacobi-type formula for numerical integration.

Lemma 2.6.3 ([49]). a) For every fixed s ∈ I2k−1 there exist positive numbers (weights)
ρ0, ρ1, . . . , ρk such that the equality

f0 = ρkf(1) +
k−1∑
i=0

ρif(αi) (2.6.1)

holds for every real polynomial f(t) =
∑2k−1

i=0 fiP
(n)
i (t) of degree at most 2k − 1.

Moreover, the numbers ρ0, ρ1, . . . , ρk are uniquely determined by n and s and the
equality ρk = 1/L2k−1(n, s) holds.

b) For every fixed s ∈ I2k there exist positive numbers (weights) γ0, γ1, . . . , γk+1 such
that the equality

f0 = γk+1f(1) +
k∑

i=0

γif(βi) (2.6.2)

holds for every real polynomial f(t) =
∑2k

i=0 fiP
(n)
i (t) of degree at most 2k. More-

over, the numbers γ0, γ1, . . . , γk+1 are uniquely determined by n and s and the
equality γk+1 = 1/L2k(n, s) holds.

Some formulas for the weights ρi (0 ≤ i ≤ k − 1) and γi (0 ≤ i ≤ k) can be found in [49]
(see also [19]).

Lemma 2.6.4. a)([49]) The numbers α0, α1, ..., αk−1 are roots of the equation

P 1,0
k (t)P 1,0

k−1(s)− P 1,0
k (s)P 1,0

k−1(t) = 0.



22 Chapter 2. The linear programming bounds for spherical codes and designs

b)([49]) The numbers β0, β1, ..., βk are roots of the equation

P 1,1
k (t)P 1,1

k−1(s)− P 1,1
k (s)P 1,1

k−1(t) = 0.

c)([19]) If s ∈ [
t1,1
k−1, t

1,0
k

]
then αi, i = 0, 1, ..., k − 1, are strictly increasing the functions

in s.

d) If s = t1,0
k then γ0 = 0, ρi = γi+1 and αi = βi+1 for i = 0, 1, ..., k − 1. If s = t1,1

k then
ρi = γi+1 and βi+1 = αi for i = 0, 1, ..., k and α0 = −1.

Proof. a) The numbers α0, α1, ..., αk−1 are roots of the polynomial (t−s)T 1,0
k−1(t, s). Using

the Cristoffel-Darboux formulas we obtain that equation (t−s)T 1,0
k−1(t, s) = 0 is equivalent

to P 1,0
k (t)P 1,0

k−1(s)− P 1,0
k (s)P 1,0

k−1(t) = 0.

b) Again using the Cristoffel-Darboux formulas we get the equivalence between equations
(t + 1)(t− s)T 1,1

k−1(t, s) = 0 and P 1,1
k (t)P 1,1

k−1(s)− P 1,1
k (s)P 1,1

k−1(t) = 0.

c) We write the equations a) and b) in the following form:

P 1,0
k (αi)

P 1,0
k−1(αi)

=
P 1,0

k (s)

P 1,0
k−1(s)

, i = 0, 1, ..., k − 1,

and
P 1,1

k (βi)

P 1,1
k−1(βi)

=
P 1,1

k (s)

P 1,1
k−1(s)

, i = 1, 2, ..., k.

The functions
P 1,0

k (s)

P 1,0
k−1(s)

and
P 1,1

k (s)

P 1,1
k−1(s)

are strictly increasing with respect to s in intervals where

they are defined. Therefore αi and βi are strictly increasing in the same intervals (see
Lemma2.4.6).

d) When s = t1,0
k polynomial (t− s)T 1,0

k−1(t, s) divides (t+1)(t− s)
(
T 1,1

k−1(t, s)
)2

and when

s = t1,1
k polynomial (t + 1)(t− s)T 1,1

k−1(t, s) divides (t− s)
(
T 1,0

k−1(t, s)
)2

. Since the numbers
αi and βi are ordered we obtain the desired relations.

The relations between the weights follow from the fact that they are solutions of the same
system of linear equations with nonzero determinants.

We shall need formulas for ρ0.

Lemma 2.6.5 (Theorem 3.8, [16]). We have

ρ0 = − (1− α2
1)(1− α2

2) · · · (1− α2
k−1)

α0(α2
0 − α2

1)(α
2
0 − α2

2) · · · (α2
0 − α2

k−1)L2k−1(n, s)
.

We also need some relations between the parameters under consideration.

For fixed k ≥ 2, we consider the power sums

Sl = ρk +
k−1∑
i=0

ρiα
l
i
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and

Rl = γk+1 +
k∑

i=0

γiβ
l
i,

where l is a non-negative integer. It follows from Lemma 2.6.3 that

Si = bi

for 0 ≤ i ≤ 2k − 1 and that
Ri = bi

for 0 ≤ i ≤ 2k, respectively. We interpret these relations as a system of equations with
respect to the numbers ρi, i = 0, 1, . . . , k (respectively for γi, i = 0, 1, . . . , k + 1).

Lemma 2.6.6. The numbers ρi and αi, i = 0, 1, . . . , k − 1 (respectively γi and βi, i =
0, 1, . . . , k) satisfy the following system of 2k (respectively 2k + 1) equations

Sl = bl, l = 0, 1, . . . , 2k − 1 ( resp. Rl = bl, l = 0, 1, . . . , 2k ). (2.6.3)

Proof. Plug consecutively f(t) = 1, t, . . . , t2k−1 (respectively 1, t, . . . , t2k) in the equality
(2.6.1) (resp. in (2.6.2)) to obtain the system (2.6.3) by Lemma 2.1.1.

Lemma 2.6.7 ([19]). a) For s ∈ (
t1,1
k−1, t

1,0
k

]
, the numbers αi, i = 0, 1, ..., k − 1, satisfy

the following inequalities

1 > |α0| > |αk−1| > |α1| > |αk−2| > · · · > |α[k/2]| > 0.

b) For s ∈ (
t1,0
k , t1,1

k

]
the numbers αi, i = 0, 1, ..., k − 1, satisfy the following inequalities

1 = |β0| > |β1| > |βk| > |β2| > |βk−1| > · · · > |β[k/2]+1| > 0.

Proof. a) To prove this assertion, we need the following fact: |αi| 6= |αj| for any s ∈ I2k−1.
Let us suppose that for s = s0 we have αi = −αj. There exists a small enough ε > 0 such
that (s0 − ε, s0 + ε) ⊂ I2k−1 and αi1 6= −αi2 for every i1, i2 ∈ {0, 1, . . . , k − 1} whenever
s ∈ (s0−ε, s0+ε)\{s0}. We set f(t) = t, t3, . . . , t2k−1 in (2.6.1) and obtain a Vandermonde
system with respect to the ratios ρl/ρk, l = 0, 1, . . . , k − 1. For s ∈ (s0 − ε, s0 + ε)\{s0}
this system has a unique solution. In particular, we have

ρi

ρk

= − (1− α2
0)(1− α2

1) . . . (1− α2
i−1)(1− α2

i+1) . . . (1− α2
k−1)

αi(α2
i − α2

0)(α
2
i − α2

1) . . . (α2
i − α2

i−1)(α
2
i − α2

i+1) . . . (α2
i − α2

k−1)
. (2.6.4)

The ratio ρi/ρk has different signs when s ∈ (s0 − ε, s0) and s ∈ (s0, s0 + ε), because
the numbers αi are strictly increasing with respect to s (see Lemma 2.6.4c)). This is a
contradiction with ρi > 0 for i = 0, 1, . . . , k.

Now, using (2.6.4) and the fact that ρi > 0 for i = 0, 1, . . . , k, we obtain the desired
inequalities.

b) Analogously.
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At the end of this section we give an identity which relates the coefficients of even degree
in the Gegenbauer polynomials.

Lemma 2.6.8. For any integer m > 0 we have

m∑
i=0

(2i− 1)!!

n(n + 2) . . . (n + 2i− 2)
a2m,2i =

m∑
i=0

b2ia2m,2i = 0. (2.6.5)

Proof. According to (2.1.5), the left-hand side is the coefficient f0 in the expansion in

terms of the Gegenbauer polynomials of P
(n)
2m (t). Of course, this coefficient equals zero.

2.7 Equivalent definitions for spherical designs

In this section we will give two other equivalent definitions for spherical designs.

Definition 2.7.1. A spherical code C ⊂ Sn−1 is a spherical τ -design (n ≥ 3, τ ≥ 1)
if and only if for any homogeneous non-constant harmonic polynomial v(x) of degree at
most τ the equality ∑

x∈C

v(x) = 0

holds.

The equivalence between Definition 1.3.1 and Definition 2.7.1 follows from the fact that
the integral over the sphere Sn−1 vanishes for harmonic polynomials. We use Definition
2.7.1 to prove a further equivalence, which was observed by Fazekas-Levenshtein [37].

Theorem 2.7.2 ([37]). A spherical code C ⊂ Sn−1 is a spherical τ -design (n ≥ 3, τ ≥ 1)
if and only if the equality ∑

x∈C

f(〈x, y〉) = f0|C| (2.7.1)

holds for every point y ∈ Sn−1 and for every real polynomial f(t) =
∑k

i=0 fiP
(n)
i (t) of

degree k ≤ τ .

Proof. We follow the proof of Nikova [52]. Let C be a spherical τ -design and y ∈ Sn−1.

Then the sum
∑

x∈C P
(n)
i (〈x, y〉) equals zero for i ≥ 1. Indeed, using (2.2.2) for 1 ≤ i ≤ τ ,

we obtain

∑
x∈C

P
(n)
i (〈x, y〉) =

1

ri

∑
x∈C

ri∑
j=1

vij(x)vij(y)

=
1

ri

(
ri∑

j=1

vij(x)

)(∑
x∈C

vij(y)

)
= 0,
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since vij(x), j = 1, 2, . . . , ri, are harmonic polynomials from Harm(i), i = 1, 2, . . . , τ . Any

real polynomial f(t) can be written as f(t) =
∑k

i=0 fiP
(n)
i (t). Therefore,

∑
x∈C

f(〈x, y〉) =
∑
x∈C

k∑
i=0

fiP
(n)
i (〈x, y〉)

=
∑
x∈C

f0P
(n)
0 (〈x, y〉) +

∑
x∈C

k∑
i=1

fiP
(n)
i (〈x, y〉)

= f0|C|+
k∑

i=1

fi

(∑
x∈C

P
(n)
i (〈x, y〉)

)

= f0|C|.

To prove the necessity, we may use (2.3.1) for C and for some real polynomial f(t) of

degree τ such that fi > 0 for every i = 0, 1, ..., τ . For example, f(t) =
∑τ

i=0 P
(n)
i (t) is

such a polynomial (fi = 1 for all i = 0, 1, . . . , τ).

On the left hand side of (2.3.1), the sum

∑

x,y∈C,x6=y

f(〈x, y〉)

decomposes into |C| sums of the form (2.7.1), each of them therefore is equal to f0|C| −
f(1). Therefore (2.3.1) becomes

τ∑
i=1

1

ri

ri∑
j=1

(∑
x∈C

vij(x)

)2

= 0,

whence
∑

x∈C vij(x) = 0 for all i = 1, ..., τ and j = 1, ..ri. Since {vij(x) : j = 1, 2, . . . , ri}
is a basis of Harm(i), this completes the proof.

Equality (2.7.1) from Theorem 2.7.2 will be crucial for our investigations in Chapter 4.

We usually apply Theorem 2.7.2 when we investigate the structure of a design of which
the existence is yet undecided. For such a putative τ -design C ⊂ Sn−1, we use (2.7.1) for
points y ∈ C. In this case (2.7.1) becomes

∑

x∈C\{y}
f(〈x, y〉) = f0|C| − f(1). (2.7.2)

To conclude this chapter we give the definition for the indices of spherical codes.

Definition 2.7.3. Let k ≥ 1 be an integer. A spherical code C ⊂ Sn−1 is said to have
index k if for any homogeneous harmonic polynomial v(x) of degree k the equality

∑
x∈C

v(x) = 0

holds.
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It is clear that a τ -design has indices 1, 2, . . . , τ and vise versa – if C ⊂ Sn−1 has indices
1, 2, . . . , τ then C is a τ -design. It is also obvious that for antipodal codes every odd
integer is an index.

It follows as in the proof of Theorem 2.7.2 that the equality

∑
x∈C

P
(n)
k (〈x, y〉) = 0

holds for every y ∈ C. Indices of some spherical codes were studied by Boyvalenkov-
Danev-Kazakov [18]. In Chapter 5 we introduce so-called moments of spherical codes and
find some connection between indices and moments.



Chapter 3

Conditions for possible
improvements of the Levenshtein
bound

This chapter is based on the paper [17]. After giving some preliminary results, we prove
necessary and sufficient conditions for the existence of improvements of the Levenshtein
bounds. Then we investigate these conditions to prove that better bounds are often
possible. Examples of new better bounds are presented as well.

3.1 Some preliminaries

We did not find the next identity in the standard books on orthogonal (Gegenbauer)
polynomials. This is why we give a detailed proof.

Lemma 3.1.1. For any integer k ≥ 0 we have

(k + 1)(t2 − 1)P
(n+2)
k (t) = (n− 1)[P

(n)
k+2(t)− tP

(n)
k+1(t)]. (3.1.1)

Proof. We will use induction on k. If k = 0, then the equality

(t2 − 1)P
(n+2)
0 (t) = (n− 1)[P

(n)
2 (t)− tP

(n)
1 (t)]

holds since P
(n)
0 (t) = 1, P

(n)
1 (t) = t and P

(n)
2 (t) = (nt2 − 1)/(n− 1).

Analogously, for k = 1

2(t2 − 1)P
(n+2)
1 (t) = (n− 1)

[
P

(n)
3 (t)− tP

(n)
2 (t)

]

holds since P
(n)
3 (t) = ((n + 2)t3 − 3t)/(n− 1).

Let k ≥ 1 and let (3.1.1) holds for all positive integers smaller than k + 1. Then we have

k(t2 − 1)P
(n+2)
k−1 (t) = (n− 1)

[
P

(n)
k+1(t)− tP

(n)
k (t)

]

27
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and
(k + 1)(t2 − 1)P

(n+2)
k (t) = (n− 1)

[
P

(n)
k+2(t)− tP

(n)
k+1(t)

]
.

We calculate (k + 2)(t2 − 1)P
(n+2)
k+1 (t) using the recurrence relation for P

(n+2)
k+1 (t) and the

induction assumptions. We consecutively have

(k + 2)(t2 − 1)P
(n+2)
k+1 (t) =

(k + 2)(t2 − 1)

n + k

[
(n + 2k) t P

(n+2)
k (t) − k P

(n+2)
k−1 (t)

]

=
(k + 2)(t2 − 1)

k + n

[(n + 2k) (n− 1) t

(k + 1) (t2 − 1)

(
P

(n)
k+2(t) − t P

(n)
k+1(t)

)

− n− 1

t2 − 1

(
P

(n)
k+1(t)− t P

(n)
k (t)

) ]

= (n− 1)
[ 1

n + k

(
(n + 2k) (k + 2)

k + 1
t P

(n)
k+2(t) − (k + 2) P

(n)
k+1(t)

)

− (k + 2) (n + 2k)

(n + k) (k + 1)
t2 P

(n)
k+1(t) +

k + 2

n + k
t P

(n)
k (t)

]

= (n− 1)
[ 1

n + k

( (
n + 2k + 2 +

n− 2

k + 1

)
t P

(n)
k+2(t) − (k + 2) P

(n)
k+1(t)

)

− (k + 2) t

(n + k) (k + 1)

(
(n + 2k) t P

(n)
k+1(t) − (k + 1) P

(n)
k (t)

) ]

= (n− 1)
[
P

(n)
k+3(t) +

(n− 2) t

(n + k) (k + 1)
P

(n)
k+2(t) −

(k + 2) (n + k − 1) t

(n + k) (k + 1)
P

(n)
k+2(t)

]

= (n− 1)
[

P
(n)
k+3(t) − t P

(n)
k+2(t)

]
.

Lemma 3.1.2. For the ratio of the first two nonzero coefficients of the Gegenbauer poly-
nomial P

(n)
k (t), k ≥ 2, we have

ak,k−2

ak,k

= − k2 − k

2(n + 2k − 4)
.

Proof. We have
a2,0

a2,2

= − 1

n

as an induction basis. Let
ak,k−2

ak,k

= − k2 − k

2(n + 2k − 4)

be the induction assumption. In the recurrence relation

(k + n− 2)P
(n)
k+1(t) = (2k + n− 2)tP

(n)
k (t)− kP

(n)
k−1(t)
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we compare the coefficients of tk−1 and obtain

ak+1,k−1 =
(n + 2k − 2)ak,k−2 − kak−1,k−1

n + k − 2
= mkak,k−2 − kak−1,k−1

n + k − 2
.

Therefore

ak+1,k−1

ak+1,k+1

=
1

mkak,k

(
mkak,k−2 − kak−1,k−1

n + k − 2

)

=
ak,k−2

ak,k

− kak−1,k−1

(n + 2k − 2)ak,k

= − k2 − k

2(n + 2k − 4)
− k

(n + 2k − 2)mk−1

= − k

n + 2k − 4

(
k − 1

2
+

n + k − 3

n + 2k − 2

)

= − k2 + k

2(n + 2k − 2)
,

which completes the induction.

In particular, it follows from Lemma 3.1.2 that

a2k+3,2k+1

a2k+3,2k+3

= −2k2 + 5k + 3

n + 4k + 2
.

Now we give some more specific identities.

Lemma 3.1.3. a) For every k ≥ 1

P 1,0
k (t1,1

k−1)

P 1,0
k−1(t

1,1
k−1)

= −n + 2k − 3

n + 2k − 1
.

b) For every k ≥ 1

P
(n+2)
k (t1,0

k )

P
(n+2)
k−1 (t1,0

k )
= − k

n + k − 1
.

Proof. a) From Lemma 2.4.7 we have the equality

P 1,0
k (t1,1

k−1)

P 1,0
k−1(t

1,1
k−1)

=
P 1,0

k (−1)

P 1,0
k−1(−1)

. (3.1.2)

So we have to calculate P 1,0
k (−1). From equality (2.4.4) we derive

P 1,0
k (−1) =

Tk(−1, 1)

Tk(1, 1)
=

∑k
i=0 riPi(−1)Pi(1)∑k

i=0 ri(Pi(1))2
=

∑k
i=0(−1)iri∑k

i=0 ri

. (3.1.3)
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We therefore need to find the sums
∑l

p=0 r2p and
∑l

p=0 r2p+1, where r0 = 1, r1 = n and

ri =
(

n+i−1
i

)− (
n+i−3

i−2

)
from (2.2.1). We have

l∑
p=0

r2p = 1 +
l∑

p=1

r2p = 1 +
l∑

p=1

[(
n + 2p− 1

2p

)
−

(
n + 2p− 3

2p− 2

)]

= 1 +
l∑

p=1

(
n + 2p− 1

2p

)
−

l∑
p=1

(
n + 2p− 3

2p− 2

)

= 1 +
l∑

p=1

(
n + 2p− 1

2p

)
− 1−

l∑
p=2

(
n + 2p− 3

2p− 2

)

=
l∑

p=1

(
n + 2p− 1

2p

)
−

l−1∑
p=1

(
n + 2p− 1

2p

)

=

(
n + 2l − 1

2l

)
.

Since
∑k

i=0 ri is equal to the Delsarte-Goethals-Seidel bound

R(n, 2k) =

(
n + k − 1

k

)
+

(
n + k − 2

k − 1

)

we obtain
l∑

p=0

r2p+1 =

(
n + 2l

2l + 1

)

(this also can be proved as above).

Hence it follows from (3.1.3) that

P 1,0
k (−1) = (−1)k

(
n+k−1

k

)− (
n+k−2

k−1

)
(

n+k−1
k

)
+

(
n+k−2

k−1

) = (−1)k n− 1

n + 2k − 1
.

We plug this and the corresponding identity for P 1,0
k−1(−1) in (3.1.2) to obtain

P 1,0
k (t1,1

k−1)

P 1,0
k−1(t

1,1
k−1)

= −n + 2k − 3

n + 2k − 1
.

b) It follows from (2.4.4) that t1,0
k is a root of the equation P

(n)
k (t) = P

(n)
k+1(t). Therefore

we have the identity P
(n)
k (t1,0

k ) = P
(n)
k+1(t

1,0
k ).

Using twice Lemma 3.1.1, we can derive the equalities:

k(t2 − 1)P
(n+2)
k−1 (t) = (n− 1)

[
P

(n)
k+1(t)− tP

(n)
k (t)

]
(3.1.4)

and
(k + 1)(t2 − 1)P

(n+2)
k (t) = (n− 1)

[
P

(n)
k+2(t)− tP

(n)
k+1(t)

]
. (3.1.5)
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We combine (3.1.5) with the recurrence relation for the Gegenbauer polynomials for

P
(n)
k+2(t) and obtain

(t2 − 1)P
(n+2)
k (t) =

n− 1

k + n− 1

[
tP

(n)
k+1(t)− P

(n)
k (t)

]
. (3.1.6)

We now plug t = t1,0
k in (3.1.4) and (3.1.6) and divide the first by the second to derive

the desired ratio.

3.2 Test functions

For every integer j ≥ 1 we introduce the following functions in n and s

Qj(n, s) =





1

L2k−1(n, s)
+

k−1∑
i=0

ρiP
(n)
j (αi), for s ∈ I2k−1,

1

L2k(n, s)
+

k∑
i=0

γiP
(n)
j (βi), for s ∈ I2k,

(3.2.1)

(We recall that ρk = 1/L2k−1(n, s) and γk+1 = 1/L2k(n, s).)

It follows from Lemma 2.4.5 (see also the comments of the beginning of Subsection 2.5.1)
that the functions Qj(n, s) are defined for all values of s ∈ [−1, 1) and for all dimensions
n ≥ 3.

Lemma 3.2.1. For fixed n and j the function Qj(n, s) is continuous in s.

Proof. Since γ0 = 0, βi = αi−1 for i = 1, 2, ..., k and ρi = γk−1 for i = 1, 2, ..., k (see
Lemma 2.6.4) the values of Qj(n, s) in right end points of I2k−1 (from (3.2.1) for I2k−1)
are equal to values of Qj(n, s) in left end point of I2k (from (3.2.1) for I2k).

Analogously, for the right end points of I2k.

The next lemma shows that Qj(n, s) vanishes for some initial values for j.

Lemma 3.2.2. We have

Qj(n, s) ≡ 0 for

{
1 ≤ j ≤ 2k − 1, when s ∈ I2k−1,

1 ≤ j ≤ 2k, when s ∈ I2k.

Proof. By Lemma 2.6.3, the right hand side in the definition of Qj(n, s) equals the coef-

ficient f0 in the Gegenbauer expansion of the polynomials P
(n)
j (t) for j ≤ 2k − 1, when

t1,1
k−1 ≤ s ≤ t1,0

k , and for j ≤ 2k, when t1,0
k ≤ s ≤ t1,1

k . Since this coefficient is actually zero,
the assertion follows.

Therefore in the sequel we may assume that

j ≥
{

2k, when s ∈ I2k−1,

2k + 1, when s ∈ I2k.

The functions Qj(n, s) were called ”test functions” in [17]. The reason for this name will
become clear below.
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3.3 The main theorem

The next theorem is the main result in this chapter. It shows the importance of the test
functions for investigations on the linear programming bound for spherical codes.

Theorem 3.3.1. The bound Lm(n, s) can be improved by means of a polynomial from
An,s of degree at least m + 1 if and only if Qj(n, s) < 0 for some j ≥ m + 1. Moreover,
if Qj(n, s) < 0 for some j ≥ m + 1, then Lm(n, s) can be improved by a polynomial from
An,s of degree j.

Proof. We give a proof for m = 2k − 1. The proof for m = 2k follows by the same
arguments.

⇒ (necessity) We use Lemma 2.6.3a) several times. Let us assume that Qj(n, s) ≥ 0 for
all integers j ≥ 2k. For an arbitrary polynomial f(t) ∈ An,s of degree r ≥ 2k we write

f(t) = g(t) +
r∑

i=2k

fiP
(n)
i (t), (3.3.1)

where deg(g) ≤ 2k− 1. Then the first coefficients f0 and g0 in the Gegenbauer expansion
of f(t) and g(t), respectively, are the same. For the calculation of g0 we use (2.6.1) to
obtain

f0 = g0 = ρkg(1) +
k−1∑
i=0

ρig(αi). (3.3.2)

We use (3.3.1) to substitute g(αi), i = 0, 1, . . . , k − 1, and g(1) in (3.3.2) and obtain

f0 = ρk

(
f(1)−

r∑

j=2k

fi

)
+

k−1∑
i=0

ρi

[
f(αi)−

r∑

j=2k

fjP
(n)
j (αi)

]

= ρkf(1) +
k−1∑
i=0

ρif(αi)−
r∑

j=2k

fjQj(n, s)

≤ ρkf(1).

For the last inequality we have made use of f(t) ∈ An,s (i.e. f(αi) ≤ 0 for i = 0, 1, . . . , k−1
and fi ≥ 0 for i = 2k, 2k + 1, . . . , r), ρi > 0 for i = 0, 1, . . . , k, and Qj(n, s) ≥ 0. We
conclude that

f(1)

f0

≥ 1

ρk

= L2k−1(n, s),

(see Lemma 2.6.3a)) i.e. the polynomial f(t) does not improve the Levenshtein bound.
Since we chose an arbitrary polynomial in An,s, it follows that no polynomial from An,s can
be used for improving the Levenshtein bound. This completes the proof of the necessity.

⇐ (sufficiency) Conversely, let us assume that Qj(n, s) < 0 for some j ≥ 2k. We shall
construct a certain polynomial from An,s of degree j which improves the Levenshtein
bound.
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We consider polynomials which can be simultaneously represented in the following two
ways:

f(t) = g(t) + P
(n)
j (t) (3.3.3)

= h(t)f
(n,s)
2k−1(t), (3.3.4)

where deg(g) ≤ 2k − 1 and f
(n,s)
2k−1(t) is the corresponding Levenshtein polynomial.

We show that it is possible to construct f(t) in such a way that the conditions (A1) and
(A2) are satisfied. Let

f(t) =

j∑
i=0

fiP
(n)
i (t).

It follows from (3.3.3) that fj = 1 and f2k = f2k+1 = · · · = fj−1 = 0.

Denote
h(t) = a0t

j−2k+1 + a1t
j−2k + · · ·+ aj−2kt + aj−2k+1.

Then the coefficients a0, a1, . . . , aj−2k can be uniquely determined by the triangular system
of equations which can be obtained by equating the coefficients of the same degree of t in
(3.3.3) and (3.3.4). Indeed, by fj = 1 we find a0, then by fj−1 = 0 we calculate a1 and so
on, finally computing aj−2k by the equation f2k = 0.

Therefore we have found the polynomial

h1(t) = a0t
j−2k+1 + a1t

j−2k + · · ·+ aj−2kt = h(t)− aj−2k+1.

To find h(t) itself, it remains to choose aj−2k+1 in such a way that f(t) ∈ An,s.

We already know that fi ≥ 0 for i ≥ 2k. Let us consider the remaining coefficients fi,
0 ≤ i ≤ 2k − 1. The polynomial

g1(t) = P
(n)
j (t)− f

(n,s)
2k−1(t)h1(t) = aj−2k+1f

(n,s)
2k−1(t)− g(t) (3.3.5)

has degree at most 2k − 1. Let consider the Gegenbauer expansion of g1(t) and f
(n,s)
2k−1(t)

g1(t) =
2k−1∑
i=0

f ′iP
(n)
i (t)

and

f
(n,s)
2k−1(t) =

2k−1∑
i=0

fi
′′P (n)

i (t).

Since f(t) = P
(n)
j (t)+aj−2k+1f

(n,s)
2k−1(t)−g1(t) by (3.3.3) and (3.3.5), we obtain the equalities

fi = aj−2k+1fi
′′ − f ′i

for i = 0, 1, . . . , 2k−1. We need to choose aj−2k+1 to have fi ≥ 0 for all i = 0, 1, . . . , 2k−1.
This is possible because f

′′
i > 0 for every 0 ≤ i ≤ 2k − 1 by Lemma 2.5.1. We therefore

obtain that if

aj−2k+1 >
f ′i
f
′′
i
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for all i = 0, 1, 2, . . . , 2k − 1 then f(t) satisfies (A2). In particular, we have f0 > 0 for
this choice of aj−2k+1.

Since f
(n,s)
2k−1(t) ≤ 0 for all t ∈ [−1, s], it follows from the representation (3.3.4) that we

must ensure h(t) ≥ 0 for all t ∈ [−1, s] in order to have f(t) ≤ 0 for all t ∈ [−1, s]. By the
equality h(t) = aj−2k+1 + h1(t) we conclude that this aim will be achieved if we choose
aj−2k+1 in such a way that

aj−2k+1 ≥ ε = −min{h1(t) : t ∈ [−1, s]}
(ε exists and is uniquely determined).

Finally, we derive that if

aj−2k+1 > max

{
ε,

f ′0
f
′′
0

,
f ′1
f
′′
1

, . . . ,
f ′2k−1

f
′′
2k−1

}

then we have f(t) ∈ An,s.

The above construction gives infinitely many polynomials from An,s. For each of them,
as in the proof of necessity, we conclude that

f(1)

f0

< L2k−1(n, s). (3.3.6)

Indeed, we use the representation (3.3.3) to obtain as above

f0 = ρkf(1) +
k−1∑
i=0

ρif(αi)−Qj(n, s).

Since f(αi) = h(αi)f
(n,s)
2k−1(αi) = 0 by (3.3.4) (we recall that the αi’s are zeros of the

Levenshtein’s polynomial f
(n,s)
2k−1(t)) and Qj(n, s) < 0, we obtain f0 > ρkf(1), which is

equivalent to (3.3.6) because f0 > 0 and ρk = 1/L2k−1(n, s). This completes the proof of
the sufficiency and the whole theorem.

Theorem 3.3.1 may be formulated as a necessary and sufficient condition for the global
extremality of the Levenshtein polynomials. In this form it was included (in a more
general setting) in ”Handbook of Coding Theory”, Chapter 6, Theorem 5.47 (reference
[49]).

Corollary 3.3.2. The Levenshtein polynomial f
(s)
m (t) is An,s-global extremal if and only

if Qj(n, s) ≥ 0 for all j ≥ m + 1.

The following ”restricted” version of Theorem 3.3.1 (the proof is essentially the same) will
be used (for l = 2) in the next section to derive a proof that the Levenshtein’s polynomials
are the best not only up to their degrees but to degree m + 2 as well.

Corollary 3.3.3. The Levenshtein polynomial f
(s)
m (t) gives the best upper bound on An,s

among all polynomials from An,s of degree at most m + l if and only if Qj(n, s) ≥ 0 for
all j = m + 1, . . . , m + l.
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Using a similar argument, if Qj(n, s) > 0, one can construct polynomials

f(t) = g(t)− P
(n)
j (t) = h(t)f (n,s)

m (t)

for which the only reason that they do not belong to An,s is that fj = −1 < 0. However,
as before, we see that

f(1)

f0

< Lm(n, s).

Similar polynomials are shown to be useful (see [10, Theorems 3.1,3.2]) to prove that
fj = 0 for some An,s-extremal polynomials. In fact, better results in this direction are
usually obtained by polynomials

f(t) = g(t)− fj1P
(n)
j1

(t) + P
(n)
j2

(t) = h(t)f (n,s)
m (t) 6∈ An,s,

where fj1 > 0, Qj1(n, s) > 0, Qj2(n, s) < 0, and m < j1 < j2.

3.4 Extending the extremality of the Levenshtein’s

polynomials

We begin this section with a formula for the test functions Qj(n, s) in terms of some
power sums Sl and Rl, the numbers b2l (see Subsection 2.6.2), and some coefficients of
the Gegenbauer polynomials.

Theorem 3.4.1. a) For s ∈ I2k−1 and r ≥ k

Q2r(n, s) =
r∑

l=k

(S2l − b2l) a2r,2l (3.4.1)

and

Q2r+1(n, s) =
r∑

l=k

S2l+1a2r+1,2l+1. (3.4.2)

b) For s ∈ I2k and r ≥ k + 1

Q2r(n, s) =
r∑

l=k+1

(R2l − b2l) a2r,2l (3.4.3)

and

Q2r−1(n, s) =
r∑

l=k+1

R2l−1a2r−1,2l−1. (3.4.4)

Proof. a) We use the defining formula (3.2.1) to obtain

Qj(n, s) =

j∑
i=0

aj,iSi.
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Then we subtract from this the equality 0 =
∑j

i=0 aj,ibi (see Lemma 2.6.8; for j odd this
is simply ”0 = 0”) and take into account Lemma 2.6.6 to cancel the terms of indices at
most 2k − 1.

b) This can be proved analogously.

Using the next two assertions we prove that the Levenshtein bound Lm(n, s) can not be
improved by using polynomials of degree at most m + 2. This strengthens the result
of Sidelnikov [59] and shows that any improving polynomial would have degree at most
m + 3.

Lemma 3.4.2. a) If s ∈ I2k−1, then Q2k+1(n, s) ≥ 0.

b) If s ∈ I2k, then Q2k+1(n, s) ≥ 0.

Proof. a) It follows from Theorem 3.4.1a) that

Q2k+1(n, s) = S2k+1a2k+1,2k+1

for s ∈ I2k−1. Since a2k+1,2k+1 > 0, it is enough to prove that S2k+1 ≥ 0. We notice that
S2k+1 = 0 for s = t1,1

k−1 and prove that S2k+1 > 0 for s ∈ (
t1,1
k−1, t

1,0
k

]
.

We consider (see Lemma 2.6.6) the equations

ρ0α0 + ρ1α1 + · · ·+ ρk = 0,
ρ0α

3
0 + ρ1α

3
1 + · · ·+ ρk = 0,
...

ρ0α
2k−1
0 + ρ1α

2k−1
1 + · · ·+ ρk = 0,

ρ0α
2k+1
0 + ρ1α

2k+1
1 + · · ·+ ρk = S2k+1,

(3.4.5)

as a linear system with respect to the weights ρ0, ρ1, . . . , ρk. The number of equations is
k + 1 thus equal to the number of unknowns.

The determinant of (3.4.5) equals Vandermonde1 like determinant

∆ =

∣∣∣∣∣∣∣∣∣∣

α0 α1 · · · αk−1 1
α3

0 α3
1 · · · α3

k−1 1
· · ·

α2k−1
0 α2k−1

1 · · · α2k−1
k−1 1

α2k+1
0 α2k+1

1 · · · α2k+1
k−1 1

∣∣∣∣∣∣∣∣∣∣

= V (α2
0, α

2
1, . . . , α

2
k−1, 1)

k−1∏
i=0

αi. (3.4.6)

1A Vandermonde matrix is a square matrix whose columns form a geometric progression. Consider
the determinant

V (a1, a2, ..., an) =

∣∣∣∣∣∣∣∣

1 1 · · · 1
a1 a2 · · · an

· · ·
an−1
1 an−1

2 · · · an−1
n

∣∣∣∣∣∣∣∣
.

Then the following is true.

(i) Determinant V (a1, a2, · · · , an) is a homogeneous polynomial in ai of degree n(n− 1)/2.

(ii) Determinant V (a1, a2, · · · , an) is divisible by (aj − ai). It follows that V (a1, a2, · · · , an) is divisible
by the product

∏
n≥j>i≥1(aj − ai).

(iii) Determinant V (a1, a2, · · · , an) =
∏

n≥j>i≥1(aj − ai).
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Since αi 6= 0 for all i = 0, 1, . . . , k and |αi| 6= |αj| for i 6= j, we have ∆ 6= 0. Therefore
(3.4.5) has a unique solution with respect to ρ0, ρ1, . . . , ρk and this solution must coincide
with the weights ρ0, ρ1, . . . , ρk as defined by Levenshtein.

We calculate ρk by simple linear algebra to find

ρk =
∆k+1

∆
,

where

∆k+1 =

∣∣∣∣∣∣∣∣∣∣

α0 α1 · · · αk−1 0
α3

0 α3
1 · · · α3

k−1 0
· · ·

α2k−1
0 α2k−1

1 · · · α2k−1
k−1 0

α2k+1
0 α2k+1

1 · · · α2k+1
k−1 S2k+1

∣∣∣∣∣∣∣∣∣∣

= S2k+1V (α2
0, α

2
1, . . . , α

2
k−1)

k−1∏
i=0

αi.

Hence, we have

ρk =
S2k+1V (α2

0, α
2
1, . . . , α

2
k−1)

V (α2
0, α

2
1, . . . , α

2
k−1, 1)

=
S2k+1∏k−1

i=0 (1− α2
i )

. (3.4.7)

Then S2k+1 = ρk

∏k−1
i=0 (1− α2

i ) > 0 because ρk > 0 and |αi| < 1 for all i = 0, 1, . . . , k.

b) Analogously to a).

Lemma 3.4.3. a) If s ∈ I2k−1, then Q2k(n, s) ≥ 0.

b) If s ∈ I2k, then Q2k+2(n, s) ≥ 0.

Proof. a) Denote

h(t) = (1− t)
k−1∏
i=0

(t− αi)

= (1− t)(t− s)T 1,0
k−1(t, s)

= rkmk−1(1− t)
(
P 1,0

k (t)P 1,0
k−1(s)− P 1,0

k−1(t)P
1,0
k (s)

)
,

(cf. the Christofel-Darboux formula from Lemma 2.4.1).

We divide the polynomial P
(n)
2k (t) by h(t) to obtain

P
(n)
2k (t) = h(t)q(t) + r(t), (3.4.8)

where deg r(t) < deg h(t) = k + 1 ≤ 2k − 1. Then we have

Q2k(n, s) = ρk +
k−1∑
i=0

ρiP
(n)
2k (αi) = ρkr(1) +

k−1∑
i=0

ρir(αi).

It follows from the last observations and from Lemma 2.6.3a) that the test function
Q2k(n, s) equals the coefficient f ′0 in the Gegenbauer expansion of

r(t) =

deg r(t)∑
i=0

f ′iP
(n)
i (t)
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for every s ∈ I2k−1. Thus we need to prove that f ′0 ≥ 0 for s ∈ I2k−1.

If

h(t)q(t) =
2k∑
i=0

f ′′i P
(n)
i (t)

then (3.4.8) shows that f ′0 = −f ′′0 . Now we prove that f ′′0 ≤ 0 for s ∈ I2k−1.

We write the polynomial h(t)q(t) in the following form:

h(t)q(t) = rkmk−1(1− t)
(
P 1,0

k (t)P 1,0
k−1(s)− P 1,0

k−1(t)P
1,0
k (s)

)
(

k−1∑
i=0

qiP
1,0
i (t)

)
,

where we have expanded q(t) in terms of the adjacent polynomials {P 1,0
i (t)}∞i=0. Com-

paring the signs of the highest coefficient on both sides, we see that qk−1 < 0 (note that
Pk−1(s) > 0 for s ∈ I2k−1).

Using consecutively (2.1.4) and the orthogonality relation (2.4.3) we obtain

f ′′0 = cn

∫ 1

−1

h(t)q(t)(1− t2)(n−3)/2dt

= rk−1mk−1cn

∫ 1

−1

(
P 1,0

k (t)P 1,0
k−1(s)− P 1,0

k−1(t)P
1,0
k (s)

) ·
(

k−1∑
i=0

qiP
1,0
i (t)

)
(1− t)(1− t2)(n−3)/2dt

= rk−1mk−1cnP 1,0
k−1(s)

∫ 1

−1

P 1,0
k (t)

(
k−1∑
i=0

qiP
1,0
i (t)

)
(1− t)(1− t2)(n−3)/2dt

− rk−1mk−1cnP 1,0
k (s)

∫ 1

−1

P 1,0
k−1(t)

(
k−1∑
i=0

qiP
1,0
i (t)

)
(1− t)(1− t2)(n−3)/2dt

= rk−1mk−1cnP 1,0
k−1(s)

k−1∑
i=0

qi

(∫ 1

−1

P 1,0
k (t)P 1,0

i (t)(1− t)(1− t2)(n−3)/2dt

)

− rk−1mk−1cnP 1,0
k (s)

k−1∑
i=0

qi

(∫ 1

−1

P 1,0
k−1(t)P

1,0
i (t)(1− t)(1− t2)(n−3)/2dt

)

= − rk−1mk−1cn

c1,0
n

P 1,0
k (s) qk−1.

(Notice that cn = c1,0
n ). Since rk−1mk−1, P 1,0

k (s) and qk−1 in the last expression are positive
for s ∈ I2k−1 we conclude that f ′′0 ≤ 0 whence f ′0 = Q2k(n, s) ≥ 0 for s ∈ I2k−1. This
completes the proof.

b) Analogously to a).

The main result in this section follows from the last two Lemmas and by Corollary 3.3.3
applied for l = 2.
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Theorem 3.4.4. The Levenshtein bound Lm(n, s) can not be improved by polynomials
from An,s of degree at most m + 2.

We shall see in the next section that there exist values of n and s such that Qm+3(n, s) < 0.

As a by-product of the formulas in Theorem 3.4.1 and Lemma 3.4.3, we obtain the fol-
lowing inequalities.

Corollary 3.4.5. a) For every s ∈ I2k−1

S2k = ρk +
k−1∑
i=0

ρiα
2k
i ≥ b2k.

b) For every s ∈ I2k

S2k+2 = γk +
k∑

i=0

γiβ
2k+2
i ≥ b2k+2.

Proof. a) It follows from Theorem 3.4.1b) that

Q2k(n, s) = (S2k − b2k) a2k,2k

for s ∈ I2k−1. Since a2k,2k > 0, Lemma 3.4.3 implies that S2k ≥ b2k.

b) Analogously to a).

3.5 Some conditions for improving the Levenshtein

bounds

It follows from the previous section that the first two test functions that are relevant for
the Levenshtein bound Lm(n, s), namely Qm+1(n, s) and Qm+2(n, s), are nonnegative. In
this section we consider the function Q2k+3(n, s) which is either Qm+4(n, s) for m = 2k−1
or Qm+3(n, s) for m = 2k.

The next theorem gives formulas for Q2k+3(n, s) which turn out to be useful for the
purposes of this section.

Theorem 3.5.1. a) We have

Q2k+3(n, s) = S2k+1

[
a2k+3,2k+3(α

2
0 + α2

1 + · · ·+ α2
k−1 + 1) + a2k+3,2k+1

]

for s ∈ I2k−1.

b) We have

Q2k+3(n, s) = R2k+1

[
a2k+3,2k+3(1 + β2

1 + · · ·+ β2
k) + a2k+3,2k+1

]

for s ∈ I2k.
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Proof. a) It follows from Theorem 3.4.1 that

Q2k+3(n, s) = S2k+1a2k+3,2k+1 + S2k+3a2k+3,2k+3.

Therefore it is enough to prove that

S2k+3 = (α2
0 + α2

1 + · · ·+ α2
k−1 + 1)S2k+1.

We consider the system (3.4.5) from the previous section together with the system

∣∣∣∣∣∣∣∣∣∣∣

ρ0α0 + ρ1α1 + · · ·+ ρkαk = 0,
ρ0α

3
0 + ρ1α

3
1 + · · ·+ ρkα

3
k = 0,

...
ρ0α

2k−1
0 + ρ1α

2k−1
1 + · · ·+ ρkα

2k−1
k = 0,

ρ0α
2k+3
0 + ρ1α

2k+3
1 + · · ·+ ρkα

2k+3
k = S2k+3.

(3.5.1)

The system (3.5.1) is also linear with respect to ρ0, ρ1, . . . , ρk and has as many equations
(namely k + 1) as unknowns. We prove that it has a unique solution which therefore
coincides with the weights ρ0, ρ1, . . . , ρk as defined by Levenshtein and the solution of
(3.4.5). The determinant of (3.5.1) is

∆′ =

∣∣∣∣∣∣∣∣∣∣∣

α0 α1 · · · αk−1 1
α3

0 α3
1 · · · α3

k−1 1
. . .

α2k−1
0 α2k−1

1 · · · α2k−1
k−1 1

α2k+3
0 α2k+3

1 · · · α2k+3
k−1 1

∣∣∣∣∣∣∣∣∣∣∣

=
k−1∏
i=1

αi

∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1 1
α2

0 α2
1 · · · α2

k−1 1
. . .

α2k−2
0 α2k−2

1 · · · α2k−2
k−1 1

α2k+2
0 α2k+2

1 · · · α2k+2
k−1 1

∣∣∣∣∣∣∣∣∣∣∣

.

To calculate the last determinant (∆
′′

say) we use the same tricks as in the calculation of
a Vandermonde determinant.

We finally obtain

∆
′′

= V (α2
0, α

2
1, . . . , α

2
k−1, 1)

(
1 +

k−1∑
i=0

α2
i

)
.

In particular, we see that

∆′ = ∆
′′

k−1∏
i=0

αi 6= 0.

Therefore, if we solve (3.5.1), then we should obtain the same answer as the solution of
(3.4.5) gives. Thus our approach is to solve these two systems with respect to ρk and to
equate the results.

From (3.5.1) we obtain

ρk =
∆′

k+1

∆′ ,
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where

∆′
k+1 =

∣∣∣∣∣∣∣∣∣∣∣

α0 α1 · · · αk−1 0
α3

0 α3
1 · · · α3

k−1 0
. . .

α2k−1
0 α2k−1

1 · · · α2k−1
k−1 0

α2k+3
0 α2k+3

1 · · · α2k+3
k−1 S2k+3

∣∣∣∣∣∣∣∣∣∣∣

= S2k+3V (α2
0, α

2
1, . . . , α

2
k−1)

k−1∏
i=0

αi.

Hence we have

ρk =
S2k+3(

1 +
∑k−1

i=0 α2
i

) ∏k−1
i=0 (1− α2

i )
.

We compare this to the expression (3.4.7) for ρk to obtain

S2k+3 = (α2
0 + α2

1 + · · ·+ α2
k−1 + 1)S2k+1.

This completes the proof. Notice that S2k+3 > 0 follows in the same way from the last
equality and S2k+1 > 0 what we proved in Lemma 3.4.2a).

b) This can be proved analogously. It follows from Theorem 3.4.1 that

Q2k+3(n, s) = R2k+1a2k+3,2k+1 + R2k+3a2k+3,2k+3.

Thus we have to prove that

R2k+3 = (1 + β2
1 + · · ·+ β2

k)R2k+1

(note that β0 = −1).

When s belongs to the interval I2k, then we can derive the following two systems

∣∣∣∣∣∣∣∣∣∣∣

γ0β0 + γ1β1 + · · ·+ γk+1 = 0
γ0β

3
0 + γ1β

3
1 + · · ·+ γk+1 = 0
...

γ0β
2k−1
0 + γ1β

2k−1
1 + · · ·+ γk+1 = 0

γ0β
2k+1
0 + γ1β

2k+1
1 + · · ·+ γk+1 = R2k+1

(3.5.2)

and ∣∣∣∣∣∣∣∣∣∣∣

γ0β0 + γ1β1 + · · ·+ γk+1 = 0
γ0β

3
0 + γ1β

3
1 + · · ·+ γk+1 = 0
...

γ0β
2k−1
0 + γ1β

2k−1
1 + · · ·+ γk+1 = 0

γ0β
2k+3
0 + γ1β

2k+3
1 + · · ·+ γk+1 = R2k+3

(3.5.3)
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Now we resolve both systems with respect to γk+1 and equate the results:

γk+1 =

∣∣∣∣∣∣∣∣∣∣∣

β0 β1 · · · βk 0
β3

0 β3
1 · · · β3

k 0
. . .

β2k−1
0 β2k−1

1 · · · β2k−1
k 0

β2k+1
0 β2k+1

1 · · · β2k+1
k R2k+1

∣∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣∣

β0 β1 · · · βk 1
β3

0 β3
1 · · · β3

k 1
. . .

β2k−1
0 β2k−1

1 · · · β2k−1
k 1

β2k+1
0 β2k+1

1 · · · β2k+1
k 1

∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣

β0 β1 · · · βk 0
β3

0 β3
1 · · · β3

k 0
. . .

β2k−1
0 β2k−1

1 · · · β2k−1
k 0

β2k+3
0 β2k+3

1 · · · β2k+3
k R2k+3

∣∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣∣

β0 β1 · · · βk 1
β3

0 β3
1 · · · β3

k 1
. . .

β2k−1
0 β2k−1

1 · · · β2k−1
k 1

β2k+3
0 β2k+3

1 · · · β2k+3
k 1

∣∣∣∣∣∣∣∣∣∣∣

.

We continue the investigation of the formulas from Theorem 3.5.1.

Corollary 3.5.2. a) Let s ∈ I2k−1. Then Q2k+3(n, s) < 0 if and only if

k−1∑
i=0

α2
i −

2k2 + k + 1− n

n + 4k + 2
< 0.

b) Let s ∈ I2k. Then Q2k+3(n, s) < 0 if and only if

k∑
i=1

β2
i −

2k2 + k + 1− n

n + 4k + 2
< 0.

Proof. a) We have

Q2k+3(n, s) = S2k+1a2k+3,2k+3

(
k−1∑
i=0

α2
i +

a2k+3,2k+1

a2k+3,2k+3

− 1

)
.

To obtain the desired inequality, we replace the ratio a2k+3,2k+1/a2k+3,2k+3 by −(2k2 +
5k + 3)/(n + 4k + 2) (see the remark that follows Lemma 3.1.2) and subtract 1.

b) Similar to a).

For small values of k, we are already able to deal with the conditions from Corollary 3.5.2.
Later on we consider the general case.

Example 3.5.3. (k = 2; improving the bound L3(n, s))

For s ∈ I3 =
[
t1,1
1 , t1,0

2

]
=

[
0,

√
n+3−1
n+2

]
the inequality Q7(n, s) < 0 is equivalent to

(
1 + s

1 + ns

)2

+ s2 <
11− n

n + 10
. (3.5.4)
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Indeed, in this case we have k = 2,

f
(n,s)
3 (t) = (t− s)

(
t +

1 + s

1 + ns

)2

,

whence α0 = −(1 + s)/(1 + ns) and α1 = s. Then, by Corollary 3.5.2a), we obtain
(3.5.4). It follows that the Levenshtein bound L3(n, s) can be improved for these values
(but possibly not only for them) of n and s for which (3.5.4) is satisfied.

It is obvious that (3.5.4) can not be satisfied for n ≥ 11. Therefore we have to consider
dimensions 3 ≤ n ≤ 10. A little algebra shows that in this case (3.5.4) is equivalent to
the inequality

n2(n+10)s4+2n(n+10)s3+(n3−11n2+2n+20)s2+2(n2−10n+10)s+2n−1 < 0, (3.5.5)

where we have made use of the conditions 3 ≤ n ≤ 10 and s ∈ I3 =
[
0,

√
n+3−1
n+2

]
.

We avoid the analytical solution but, instead, explain the MAPLE results. They show that
(3.5.5) does not have a solution for 7 ≤ n ≤ 10. No solutions of (3.5.5) for n = 6 belong
to I3. The results for 3 ≤ n ≤ 5 are given in Table 3.1.

n s0(n) t1,0
2

3 0.1845211 0.2898979
4 0.1830127 0.2742918
5 0.2 0.2612038

Table 3.1: Solutions of (3.5.4) and (3.5.5) in I3 for 3 ≤ n ≤ 5

Therefore, the bound L3(n, s) can be improved for 3 ≤ n ≤ 5 (as given in Table 3.1) in

the intervals
(
s0(n),

√
n+3−1
n+2

]
.

Example 3.5.4. (k = 2; improving the bound L4(n, s))

For s ∈ I4 =
[
t1,0
2 , t1,1

2

]
=

[√
n+3−1
n+2

, 1√
n+2

]
the inequality Q7(n, s) < 0 is equivalent to

1

s2(1 + n)2
+ s2 <

11− n

n + 10
. (3.5.6)

In this case we have

f
(n,s)
4 (t) = (t + 1)(t− s)

(
t +

1

s(n + 2)

)2

,

whence β1 = −1/s(n + 2) and β2 = s. Then, by Corollary 3.5.2b), we obtain (3.5.6). It
follows that the Levenshtein bound L4(n, s) can be improved for these values (but possibly
not only for them) of n and s for which (3.5.6) is satisfied.
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It is obvious that (3.5.6) can not be satisfied for n ≥ 11. It is equivalent to the following
bi-quadratic inequality

(n3 + 14n2 + 44n + 40)s4 + (n3 − 7n2 − 40n− 44)s2 + n + 10 < 0. (3.5.7)

Here, an analytical solution is easier. However, we firstly notice that it follows from
the general case (see Corollary 3.5.16 below) that L4(n, s) can be improved in the whole
interval I4 for n ≤ 22 + 2 = 6. Since (3.5.6) does not have solutions for n ≥ 8 it remains
to consider it for n = 7 only, i.e. we have to find all solutions of 1377s4− 324s2 + 17 < 0

which belong to I4 =
[√

10−1
9

, 1
3

]
≈ [0.24025, 0.33333].

We conclude that the bound L4(7, s) can be improved for

s ∈
(√

1190−√34

102
,
1

3

]
≈ (0.28103, 0.33333] ⊂ I4.

Example 3.5.5. (k = 3; improving the bound L5(n, s)) For s ∈ I5 =
[
t1,1
2 , t1,0

3

]
=[

1√
n+2

, t1,0
3

]
the inequality Q9(n, s) < 0 is equivalent to

(2s(1 + s))2

[(n + 2)s2 + 2s− 1]2
− 2(3− (n + 2)s2)

(n + 2)[(n + 2)s2 + 2s− 1]
+ s2 <

22− n

n + 14
. (3.5.8)

Here α2 = s and the numbers α0 and α1 are the roots of the quadratic equation

(n + 2)[(n + 2)s2 + 2s− 1]t2 + 2s(s + 1)(n + 2)t + 3− (n + 2)s2 = 0.

We use the Viète formulas

α0 + α1 = − 2s(s + 1)

(n + 2)s2 + 2s− 1

and

α0α1 =
3− (n + 2)s2

(n + 2)[(n + 2)s2 + 2s− 1]

to compute

α2
0 + α2

1 = (α0 + α1)
2 − 2α0α1 =

4s2(1 + s)2

[(n + 2)s2 + 2s− 1]2
− 2(3− (n + 2)s2)

(n + 2)[(n + 2)s2 + 2s− 1]
.

Then Corollary 3.5.2a) leads to (3.5.8). It follows that the Levenshtein bound L5(n, s)
can be improved for these values (but possibly not only for them) of n and s for which
(3.5.8) is satisfied.

As in Example 3.5.3 we obtain by MAPLE a sixth degree inequality for s which must be

solved in dimensions 3 ≤ n ≤ 21 and for s ∈ I5 =
[

1√
n+2

, t1,0
3

)
. This inequality does not

have solutions for 12 ≤ n ≤ 21. No solutions belonging to I5 appear in dimension n = 11.
The results for 3 ≤ n ≤ 10 are given in Table 3.2.
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n s0(n) t1,0
3

3 0.5048054373 0.5753189235
4 0.4605005478 0.5379862044
5 0.4308531120 0.5077876296
6 0.4094610855 0.4826149646
7 0.3938450834 0.4611587038
8 0.3829844486 0.4425522091
9 0.3768786881 0.4261936288
10 0.3772571414 0.4116488702

Table 3.2: Solutions of (3.5.8) in I5 for 3 ≤ n ≤ 10

The last example suggests what we have to do in the general case. We proceed with
investigations of the sign of Q2k+3(n, s) for s ∈ I2k−1. Thus we study the possibilities for
improving the bounds L2k−1(n, s) with polynomials of degree 2k + 3.

To find the sum
∑k−1

i=0 α2
k, which is required in Corollary 3.5.2a), we need to express the

sums
∑k−1

i=0 αi and
∑

0≤i<j≤k αiαj as functions of n, k and s.

Lemma 3.5.6. For every s ∈ I2k−1, k ≥ 2, the numbers α0, α1, . . . , αk−1 satisfy the
equalities

k−1∑
i=0

αi = − k

n + 2k − 2
X, (3.5.9)

∑

0≤i<j≤k−1

αiαj = − k2 − k

2(n + 2k − 4)
+

k(k − 1)

(n + 2k − 2)(n + 2k − 4)
X, (3.5.10)

where

X = 1− (n + 2k − 1)(n + k − 2)

k(n + 2k − 3)
· P 1,0

k (s)

P 1,0
k−1(s)

.

Proof. The numbers α1, α2, . . . , αk−1 are defined (see (2.5.2) and Subsection 2.6.2) as the
roots of the equation

(t− s)T 1,0
k−1(t, s) = 0.

From the Christofel-Darboux formula, the left hand side equals the polynomial

q(t) = P 1,0
k (t)P 1,0

k−1(s)− P 1,0
k (s)P 1,0

k−1(t)

up to multiplication by a nonzero constant. We expand the polynomial q(t) with respect
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to t and obtain

q(t) =
ak,krkP

1,0
k−1(s)∑k

i=0 ri

tk

+ ak−1,k−1rk−1

(
P 1,0

k−1(s)∑k
i=0 ri

− P 1,0
k (s)∑k−1
i=0 ri

)
tk−1

+

[
(ak,k−2rk + ak−2,k−2rk−2)P

1,0
k−1(s)∑k

i=0 ri

− ak−2,k−2rk−2P
1,0
k (s)∑k−1

i=0 ri

]
tk−2 + . . .

We actually need the first three coefficients of q(t) to apply the Viète formulas.

Therefore, we have

k−1∑
i=0

αi = −
ak−1,k−1rk−1

(
P 1,0

k−1(s)Pk
i=0 ri

− P 1,0
k (s)Pk−1
i=0 ri

)

ak,krkP 1,0
k−1(s)Pk

i=0 ri

= − ak−1,k−1rk−1

ak,krk

(
1−

∑k
i=0 ri∑k−1
i=0 ri

· P 1,0
k (s)

P 1,0
k−1(s)

)

= − k

n + 2k − 2

(
1− (n + 2k − 1)(n + k − 2)

k(n + 2k − 3)
· P 1,0

k (s)

P 1,0
k−1(s)

)
.

Here, we use that the ratio ak−1,k−1/ak,k is in fact the constant 1/mk−1 defined through

equality (2.4.1). The constants ri are taken from (2.2.1) and
∑k

i=0 ri is equal to the
Delsarte-Goethals-Seidel bound R(n, 2k).

Similarly, we obtain

∑

0≤i<j≤k−1

αiαj =

(ak,k−2rk+ak−2,k−2rk−2)P 1,0
k−1(s)Pk

i=0 ri
− ak−2,k−2rk−2P 1,0

k (s)Pk−1
i=0 ri

ak,krkP 1,0
k−1(s)Pk

i=0 ri

=
ak,k−2

ak,k

+
ak−2,k−2rk−2

ak,krk

(
1−

∑k
i=0 ri∑k−1
i=0 ri

P 1,0
k (s)

P 1,0
k−1(s)

)

= − k2 − k

2(n + 2k − 4)

+
k(k − 1)

(n + 2k − 2)(n + 2k − 4)

(
1− (n + 2k − 1)(n + k − 2)

k(n + 2k − 3)

P 1,0
k (s)

P 1,0
k−1(s)

)
.
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It follows from Lemma 3.5.2a) and equalities (3.5.9) and (3.5.10), that we have to inves-
tigate the sign of the function

G(n, k, s) =
k−1∑
i=0

α2
i −

2k2 + k + 1− n

n + 4k + 2

=

(
k−1∑
i=0

αi

)2

− 2

( ∑

0≤i<j≤k−1

αiαj

)
− 2k2 + k + 1− n

n + 4k + 2

=
k2

(n + 2k − 2)2
X2 − 2

k(k − 1)

(n + 2k − 2)(n + 2k − 4)
X

+
k(k − 1)

n + 2k − 4
− 2k2 + k + 1− n

n + 4k + 2
,

where

X = 1− (n + 2k − 1)(n + k − 2)

k(n + 2k − 3)
· P 1,0

k (s)

P 1,0
k−1(s)

,

and s belongs to the interval I2k−1 =
[
t1,1
k−1, t

1,0
k

]
.

Lemma 3.5.7. For fixed n and k, the function G(n, k, s) is decreasing in s in the interval
I2k−1 =

[
t1,1
k−1, t

1,0
k

]
.

Proof. The function G(n, k, s) is quadratic with respect to X. Since s ∈ [
t1,1
k−1, t

1,0
k

] ⊂(
t1,0
k−1, t

1,0
k

]
, Lemma 2.4.6a) says that the ratio P 1,0

k (s)/P 1,0
k−1(s) increases in I2k−1. There-

fore X decreases in s in the same interval and we need to determine the numbers

X1 = 1− (n + 2k − 1)(n + k − 2)

k(n + 2k − 3)
· P 1,0

k

(
t1,1
k−1

)

P 1,0
k−1

(
t1,1
k−1

)

and

X2 = 1− (n + 2k − 1)(n + k − 2)

k(n + 2k − 3)
· P 1,0

k

(
t1,0
k

)

P 1,0
k−1

(
t1,0
k

)

(the end points of the interval of variation of X).

We now calculate the numbers X1 and X2 as functions of n and k. We have

X1 = 1− (n + 2k − 1)(n + k − 2)

k(n + 2k − 3)
· P 1,0

k

(
t1,1
k−1

)

P 1,0
k−1

(
t1,1
k−1

)

= 1 +
(n + 2k − 1)(n + k − 2)(n + 2k − 3)

k(n + 2k − 3)(n + 2k − 1)

=
n + 2k − 2

k
,

using Lemma 3.1.3a), and

X2 = 1,
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because P 1,0
k

(
t1,0
k

)
= 0.

We can already locate the numbers X1 and X2 with respect to the minimum of the graph
of the quadratic function

g(X) = G(n, k, s)

=
k2

(n + 2k − 2)2
X2 − 2k(k − 1)

(n + 2k − 2)(n + 2k − 4)
X

+
k(k − 1)

n + 2k − 4
− 2k2 + k − n + 1

n + 4k + 2
.

The minimum of g(X) is attained at the point

X0 =
(k − 1)(n + 2k − 2)

k(n + 2k − 4)
.

We have

X0 −X2 = X0 − 1 = − n− 2

k(n + 2k − 4)
< 0

for every n ≥ 3 and k ≥ 2. This shows that X0 < 1 = X2 < X1 i.e. X2 and X1 lie on the
left side of X0. Hence g(X) decreases from g(X1) to g(X2) when X decreases from X1 to
X2. This means that G(n, k, s) decreases in s in the whole interval I2k−1. This completes
the proof.

Thus we need to consider the sign of the function G(n, k, s) in the end points of the
interval I2k−1 = [t1,1

k−1, t
1,0
k ]. Define the functions

ϕ1(n, k) = G
(
n, k, t1,1

k−1

)
= g(X1)

and
ϕ2(n, k) = G

(
n, k, t1,0

k

)
= g(X2).

From the above we have

ϕ1(n, k) > G(n, k, s) > ϕ2(n, k)

for all s ∈ (
t1,1
k−1, t

1,0
k

)
. We calculate ϕ1(n, k) and ϕ2(n, k).

Lemma 3.5.8. For every n ≥ 3 and k ≥ 2 we have

ϕ1(n, k) =
(4− n)k2 + 4(n− 2)k + 2n2 − 5n

(n + 2k − 4)(n + 4k + 2)
, (3.5.11)

ϕ2(n, k) =
(n− 2)(n + 2k − 1)(n− k2 − 2)

(n + 4k + 2)(n + 2k − 2)2
. (3.5.12)

Proof. Plug X1 = n+2k−2
k

and X2 = 1 in g(X).

We can already describe the behaviour of the test function Q2k+3(n, s) for the odd bounds
L2k−1(n, s).
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Theorem 3.5.9. Let n ≥ 3, k ≥ 2 and s ∈ [
t1,1
k−1, t

1,0
k

]
. Then the function Q2k+3(n, s) has

the following properties:

a) If k ≥ 9 and

3 ≤ n ≤ k2 − 4k + 5 +
√

k4 − 8k3 − 6k2 + 24k + 25

4
,

then Q2k+3(n, s) < 0 for all s ∈ (
t1,1
k−1, t

1,0
k

]
.

b) If k ≥ 9 and

k2 − 4k + 5 +
√

k4 − 8k3 − 6k2 + 24k + 25

4
≤ n ≤ k2 + 1

or if 2 ≤ k ≤ 8 and 3 ≤ n ≤ k2 + 1 then there exists s0 = s0(n, k) ∈ (
t1,1
k−1, t

1,0
k

]
such

that

Q2k+3(n, s) > 0, for all s ∈ [
t1,1
k−1, s0

)
,

Q2k+3(n, s0) = 0, (3.5.13)

Q2k+3(n, s) < 0, for all s ∈ (
s0, t

1,0
k

]
.

c) If n ≥ k2 + 2 then Q2k+3(n, s) ≥ 0 for all s ∈ (
t1,0
k , t1,1

k

]
.

Proof. a) For k ≥ 9, all values of n such that

3 ≤ n ≤ k2 − 4k + 5 +
√

k4 − 8k3 − 6k2 + 24k + 25

4

are solutions of the inequality ϕ1(n, k) < 0 (see (3.5.11)). Therefore G(n, k, s) < 0 for all
s ∈ [

t1,0
k , t1,1

k

]
in this case. This means that Q2k+3(n, s) < 0 for s ∈ (

t1,1
k−1, t

1,0
k

]
.

b) Inequality ϕ1(n, k) < 0 does not have any solutions n ≥ 3 for 2 ≤ k ≤ 8. For k ≥ 9
and

k2 − 4k + 5 +
√

k4 − 8k3 − 6k2 + 24k + 25

4
≤ n ≤ k2 + 1,

we have ϕ1(n, k) ≥ 0. In both cases n < k2 + 2 and we have

ϕ1(n, k) > 0 > ϕ2(n, k).

This means that the function G(n, k, s) decreases from the positive value ϕ1(n, k) to the
negative value ϕ2(n, k). Since G(n, k, s) is continuous, there exists a value s0 with the
required properties. Therefore Q2k+3(n, s) behaves as described in Theorem 3.5.9.

c) In this case we have ϕ2(n, k) ≥ 0. Therefore

ϕ1(n, k) ≥ G(n, k, s) ≥ ϕ2(n, k) ≥ 0,

which means that Q2k+3(n, s) ≥ 0.
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We are now in position to state the main theorem concerning the impact of the test
functions Q2k+3(n, s) on the possibilities for improving the odd bounds L2k−1(n, s).

Corollary 3.5.10. Let n ≥ 3 and k ≥ 2.

a) If k ≥ 9 and

3 ≤ n ≤ k2 − 4k + 5 +
√

k4 − 8k3 − 6k2 + 24k + 25

4
,

then the Levenshtein bound L2k−1(n, s) can be improved in the interval
(
t1,1
k−1, t

1,0
k

]
=

I2k−1\{t1,1
k−1}.

b) If k ≥ 9 and

k2 − 4k + 5 +
√

k4 − 8k3 − 6k2 + 24k + 25

4
≤ n ≤ k2 + 1,

then there exists a number s0 = s0(n, k) ∈ (
t1,1
k−1, t

1,0
k

)
such that the Levenshtein

bound L2k−1(n, s) can be improved in the interval
(
s0, t

1,0
k

]
.

Proof. The proof follows by the results in the counterparts of a) and b) in Theorem 3.5.9.

Remark 3.5.11. Since the test functions are continuous we conclude that Q2k+3(n, t1,0
k ) <

0 for n < k2 + 2.

We proceed by investigating the sign of the test functions Q2k+3(n, s) for s ∈ I2k. Thus,
we study the possibilities for improving the bounds L2k(n, s) by means of polynomials of
degree 2k + 3. The situation is somewhat simpler.

To find the sum
∑k

i=0 β2
k = 1 +

∑k
i=1 β2

k which is required in Corollary 3.5.2b) we need to

express
∑k

i=1 βi and
∑

1≤i<j≤k βiβj as functions of n, k and s.

Lemma 3.5.12. For every s ∈ I2k, k ≥ 2, the numbers β1, β2, . . . , βk satisfy the equalities

k∑
i=1

βi =
(n + k − 1)P 1,1

k (s)

(n + 2k − 2)P 1,1
k−1(s)

, (3.5.14)

∑

1≤i<j≤k

βiβj = − k(k − 1)

2(n + 2k − 2)
. (3.5.15)

Proof. The numbers β1, β2, . . . , βk are defined (see (2.5.2) and Subsection 2.6.2) as the
roots of the equation

(t− s)T 1,1
k−1(t) = 0.

From the Christofel-Darboux formula, up to multiplication by a nonzero constant, the
left hand side equals

P 1,1
k (t)P 1,1

k−1(s)− P 1,1
k (s)P 1,1

k−1(t).



3.5. Some conditions for improving the Levenshtein bounds 51

We expand the last polynomial with respect to t and obtain

r(t) = ak,kP
1,1
k−1(s)t

k + ak−1,k−1P
1,1
k (s)tk−1 + ak,k−2P

1,1
k−1(s)t

k−2 + · · ·

(note that P 1,1
i (t) = P

(n+2)
i (t) and that the ai,j’s are the coefficients of Gegenbauer poly-

nomial of degree j and dimension n + 2, namely P
(n+2)
i (t)).

Therefore, we have by the Viète formulas

k∑
i=1

βi = −ak−1,k−1P
1,1
k (s)

ak,kP
1,1
k−1(s)

=
(n + k − 1)P

(n+2)
k (s)

(n + 2k − 2)P
(n+2)
k−1 (s)

(the ratio ak−1,k−1/ak,k is in fact the constant 1/mk−1 calculated for dimension n + 2, i.e.
mk = (n + 2k − 2)/(n + k − 1)) and

∑

1≤i<j≤k

βiβj =
ak,k−2

ak,k

= − k(k − 1)

2(n + 2k − 2)

(see Lemma 3.1.2 which also must be recalculated for dimension n + 2).

It follows from Lemma 3.5.2b), (3.5.14) and (3.5.15) that we have to investigate the sign
of the function

H(n, k, s) =
k∑

i=1

β2
i −

2k2 + k + 1− n

n + 4k + 2

=

[
(n + k − 1)P 1,1

k (s)

(n + 2k − 2)P 1,1
k−1(s)

]2

+
k(k − 1)

n + 2k − 2
− 2k2 + k + 1− n

n + 4k + 2
. (3.5.16)

Lemma 3.5.13. For fixed n and k, the function H(n, k, s) is decreasing in s in the
interval

[
t1,0
k , t1,1

k

]
.

Proof. The function H(n, k, s) is quadratic with respect to Y = P 1,1
k (s)/P 1,1

k−1(s) and only
Y in the definition of H(n, k, s) depends on s. It follows from Lemma 2.4.6b) that Y
increases with s. Since

P 1,1
k (t1,1

k )

P 1,1
k−1(t

1,1
k )

< 0,

we conclude that Y is negative in the whole interval under consideration. Thus after
squaring it becomes decreasing in s and so does the function H(n, k, s) with respect to s.
This completes the proof.

Thus we need to consider the sign of the function H(n, k, s) in the end points of the
interval

[
t1,0
k , t1,1

k

]
. Define

ψ1(n, k) = H(n, t1,0
k )

and
ψ2(n, k) = H(n, t1,1

k ),
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(note that ψ1(n, k) = ϕ2(n, k) because of the continuity of the test functions). Then we
have

ψ1(n, k) > H(n, k, s) > ψ2(n, k)

for all s ∈ (t1,0
k , t1,1

k ). We now calculate ψ1(n, k) and ψ2(n, k).

Lemma 3.5.14. For every n ≥ 3 and k ≥ 2 we have

ψ1(n, k) =
(n− 2)(n + 2k − 1)(n− k2 − 2)

(n + 4k + 2)(n + 2k − 2)2
, (3.5.17)

ψ2(n, k) =
n2 − (k2 + 3)n + 2− 2k

(n + 4k + 2)(n + 2k − 2)
. (3.5.18)

Proof. The value of ψ2(n, k) follows easily since P 1,1
k (t1,1

k ) = 0. For ψ1(n, k) we may use
Lemma 3.1.3b) to replace the ratio P 1,1

k (t1,0
k )/P 1,1

k−1(t
1,0
k ) by −n/(n + k − 1). After some

calculations we obtain (3.5.17).

We are now in a position to state the main theorem concerning Q2k+3(n, s) for the bounds
L2k(n, s).

Theorem 3.5.15. Let n ≥ 3, k ≥ 2 and s ∈ [
t1,0
k , t1,1

k

]
. Then the function Q2k+3(n, s)

has the following properties:

a) If 3 ≤ n ≤ k2 + 1 then Q2k+3(n, s) < 0 for all s ∈ [
t1,0
k , t1,1

k

)
.

b) If n = k2+2 then Q2k+3

(
k2 + 2, t1,0

k

)
= 0 and Q2k+3(k

2+2, s) < 0 for all s ∈ (
t1,0
k , t1,1

k

)
.

c) If n = k2 + 3 then there exists s0 = s0(n, k) ∈ (
t1,0
k , t1,1

k

)
such that

Q2k+3(k
2 + 3, s) > 0, for all s ∈ [

t1,1
k−1, s0

)
,

Q2k+3(k
2 + 3, s0) = 0, (3.5.19)

Q2k+3(k
2 + 3, s) < 0, for all s ∈ (

s0, t
1,0
k

)
.

d) If n ≥ n2 + 4 then Q2k+3(n, s) > 0 for all s ∈ (
t1,0
k , t1,1

k

)
.

Proof. a) For 3 ≤ n ≤ k2+1 we have ψ1(n, k) < 0 by (3.5.17) and therefore H(n, k, s) < 0
for all s ∈ [

t1,0
k , t1,1

k

]
. This means that Q2k+3(n, s) < 0 for s ∈ [

t1,0
k , t1,1

k

)
.

b) For n = k2 + 2 we use the same argument as in a) but now ψ1(k
2 + 2, k) = 0 implies

Q2k+3

(
n, t1,0

k

)
= 0.

c) In this case (n = k2 + 3), we have

ψ1(n, k) > 0 > ψ2(n, k).

This means that the function H(n, k, s) decreases from the positive value ψ1(n, k) to the
negative value ψ2(n, k). Since H(n, k, s) is continuous, there exists s0 with the required
properties.

d) Now n ≥ k2 + 4 and we have ψ2(n, k) > 0 which shows that H(n, k, s) is positive in
the whole interval

(
t1,0
k , t1,1

k

)
.
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Corollary 3.5.16. Let n ≥ 3 and k ≥ 2.

a) If n ≤ k2 + 1, the Levenshtein bound L2k(n, s) can be improved in the whole half-open
interval

[
t1,0
k , t1,1

k

)
= I2k\{t1,1

k }.
b) If n = k2 + 2, the Levenshtein bound L2k(n, s) can be improved in the whole open

interval
(
t1,0
k , t1,1

k

)
.

c) If n = k2 + 3, there exists a number s0 = s0(k) ∈ (
t1,0
k , t1,1

k

)
such that the Levenshtein

bound L2k(n, s) can be improved in the interval
(
s0, t

1,1
k

)
.

d) If n > k2+3, the Levenshtein bound L2k(n, s) can not be improved by using polynomials
of degree at most 2k + 3.

Proof. The proof follows by the results in the counterparts of a), b), c) and d) in Theorem
3.5.15. For d) we recall that by Corollary 3.4.4 the bound L2k(n, s) can not be improved
by using polynomials of degree at most 2k + 2.

At the end of this section we consider the situation when the dimension n is small with
respect to k. We combine Corollaries 3.5.10 and 3.5.16 to see which Levenshtein bounds
Lm(n, s) can be improved in the whole interval Im.

For n ≥ 5, denote

k0(n) =
2n− 4 +

√
2n3 − 9n2 + 4n + 16

n− 4
. (3.5.20)

The first few values of k(n) are k(5) = 14, k(6) = 11, k(7) = 10 and k(8) = 9.

Theorem 3.5.17. If n ≥ 5 and m ≥ 2k(n)− 1, then the Levenshtein bound Lm(n, s) can
be improved in the whole interval of its validity.

Proof. We solve the inequality ϕ1(n, k) < 0 with respect to k. Its positive solutions can
be found from k ≥ k0(n). It is clear that n ≥ 5 is necessary.

If k ≥ k0(n) then we have

0 > ϕ1(n, k) > G(n, k, s) > ϕ2(n, k)

for all s ∈ (
t1,1
k−1, t

1,0
k

)
.

Moreover, for n ≥ 5 we have k0(n) ≥ √
n− 2 which implies that n ≤ k2+2 is a consequence

of k ≥ k0(n). Therefore k ≥ k0(n) means that

0 > ψ1(n, k) > H(n, k, s) > ψ2(n, k)

for all s ∈ (
t1,0
k , t1,1

k

)
.

Combining the last two observations we conclude that the test function Q2k+3(n, s) is
negative in both intervals

(
t1,1
k−1, t

1,0
k

)
and

(
t1,1
k−1, t

1,0
k

)
provided n ≥ 5 and k ≥ k0(n). This

completes the proof.

Theorem 3.5.17 shows that, for every fixed dimension n ≥ 5, there exists m0 = m0(n)
such that all Levenshtein bounds Lm(n, s) with m ≥ m0 can be improved by using linear
programming.
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3.6 Algorithm for computing the test functions

The investigations on the test functions Q2k+3(n, s) in the previous section suggest that
in general the analytical computation of the functions Qj(n, s) tends to be very difficult.
In this section we give an algorithm for computer calculations of Qj(n, s) for given n and
s.

Let us assume that the dimension n is fixed and some s ∈ (0, 1) is given. One wishes to
calculate some test functions Qj(n, s) in order to decide if the Levenshtein bound

A(n, s) ≤ Lm(n, s)

can be improved by linear programming. Recall that Qj(n, s) ≡ 0 for j ≤ m and
Qj(n, s) ≥ 0 for j = m + 1 and j = m + 2. Therefore the first ”interesting” test
functions are Qm+3(n, s) and Qm+4(n, s).

The whole procedure should be started by computing some Gegenbauer polynomials.
The computer systems MAPLE and MATHEMATICA have many orthogonal series in
their memory including the Jacobi polynomials. Therefore one can just take them paying
attention for the normalization. Otherwise the Gegenbauer polynomials may be generated
by the recurrence relation (2.1.2).

The first thing one needs is the number m. It can be found by finding the largest zeros
of the adjacent polynomials P 1,0

k (t) and P 1,1
k (t). This procedure determines the intervals

I3, I4, I5, etc. When one has s ∈ Im the number m is found.

We present an algorithm for finding test functions Qj(n, s), j ≥ m + 1, which uses the
formulas (3.4.1–3.4.4) from Theorem 3.4.1. We describe the cases m = 2k−1 and m = 2k
simultaneously.

1. Take Gegenbauer polynomials P
(n)
i (t) for i = 0, 1, ..., k, from MAPLE’s libraries or

calculate them from the recurrence relation (2.1.2).

2. Find the adjacent polynomials

P 1,0
l (t) =

l∑
i=0

riP
(n)
i (t),

where l = k − 1 and l = k for L2k−1(n, s) and

P 1,1
l (t) = P

(n+2)
l (t),

where l = k − 1 and l = k for L2k(n, s).

Since P 1,0
k (t) and P 1,1

k (t) are Jacobi polynomials, this step can be also reduced to
the use of MAPLE’s libraries.

3. Find the polynomials

h1(t) = P 1,0
k (t)P 1,0

k−1(s)− P 1,0
k (s)P 1,0

k−1(t), for L2k−1(n, s),

h2(t) = (t + 1)[P 1,1
k (t)P 1,1

k−1(s)− P 1,1
k (s)P 1,1

k−1(t)], for L2k(n, s).

Define hi(t) =
∑k

l=0 a
(i)
l tl for i = 1, 2.
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4. Calculate (see Lemma 2.1.1)

bi =





1, for i = 0,

0, for i ≥ 1 odd,
(2p−1)!!

n(n+2)...(n+2p−2)
, for i = 2p.

5. Calculate

ρk =

∑k
i=0 a

(1)
i bi

h1(1)
=

1

L2k−1(n, s)
,

γk+1 =

∑k+1
i=0 a

(2)
i bi

h2(1)
=

1

L2k(n, s)
.

(these formulas follow from Lemma 2.6.3 (equalities (2.6.1) and (2.6.2)) and (2.1.5).
This step can be reduced to ρk = 1/L2k−1(n, s) or γk+1 = 1/L2k(n, s), respectively,
if the bound Lm(n, s) is already calculated.

6. Calculate

σ
(1)
l =





bl − ρk, 0 ≤ l ≤ 2k − 1,

−
∑k−1

p=0 a
(1)
p σ

(1)
p−k+l

ak

, l ≥ 2k,

for L2k−1(n, s), and

σ
(2)
l =





bl − γk+1, 0 ≤ l ≤ 2k,

−
∑k

p=0 a
(2)
p σ

(2)
p−k+l−1

ak+1

, l ≥ 2k + 1,

for L2k(n, s). The σ
(1)
l ’s and σ

(2)
l ’s are analogs of the power sums Sl and Rl which

are computed in the next step.

7. Calculate (see Lemma 2.6.6)

Sl =

{
bl, 0 ≤ l ≤ 2k − 1,

σ
(1)
l + ρk, l ≥ 2k,

for L2k−1(n, s), and

Rl =

{
bl, 0 ≤ l ≤ 2k,

σ
(2)
l + γk+1, l ≥ 2k + 1,

for L2k(n, s).

8. Compute Qj(n, S) by the formulas in Theorem 3.4.1. Here, one needs some further
coefficients of the Gegenbauer polynomials. These can be extracted by means of
MAPLE or MATHEMATICA after having calculated the Gegenbauer polynomials.



56 Chapter 3. Conditions for possible improvements of the Levenshtein bound

We give examples of the test functions in dimensions 3 and 4. In Figures 3.1 and 3.2,
vertical lines mark the limits between the intervals Im for 3 ≤ m ≤ 10. In every interval
we plot the first four nonzero test functions, i.e. Qm+i(n, s) for i = 1, 2, 3, 4, n = 3 in
Fig. 3.1 and n = 4 in Fig. 3.1, and s ∈ Im. Thus one test function disappears in each
end (vanishing afterwards) and one new starts from the same vertical line (starting from
positive values for m odd and from zero for m even).

Figures 3.1 and 3.2 provide some justification of our efforts in Section 3.5 to investigate
the test function Q2k+3(n, s). They also show that the test functions Q2k+2(n, s) for
m = 2k−1 and Q2k+4(n, s) for m = 2k provide further values of s for which improvement
of the corresponding Levenshtein bounds are possible.

L3(3, s)

L4(3, s)

L5(3, s)

L6(3, s)

–0.2

–0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.2 0.4 0.6 0.8

Figure 3.1: Some test functions in three dimensions – Qm+1(3, s), Qm+2(3, s), Qm+3(3, s)
and Qm+4(3, s) in Im, where m is the number of the corresponding Levenshtein bound
Lm(3, s)

Figure 3.1 suggests that the Levenshtein bound in three dimensions is not best possible
for all s ∈ [0.06, 1) with one exception – the case

L4

(
3, t1,1

2

)
= L5

(
3, t1,1

2

)
= 12.

This bound is attained by the icosahedron. In particular, the vanishing of the test function
Q8(n, s) at the point t1,1

2 = 1/
√

5 means that the icosahedron has an index 8 (cf. [18]).
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L3(4, s)

L4(4, s)

L5(4, s)

L6(4, s)

–0.1

0

0.1

0.2

0.3

0.4

0.2 0.4 0.6 0.8

Figure 3.2: Some test functions in four dimensions – Qm+1(4, s), Qm+2(4, s), Qm+3(4, s)
and Qm+4(4, s) in Im, where m is the number of the corresponding Levenshtein bound
Lm(4, s)

3.7 Examples of new bounds

3.7.1 Some new bounds on A(n, s)

In [10], Boyvalenkov proposed a method for finding improvements of the Levenshtein
bounds on A(n, s) by using linear programming. Afterwards, the role of the test functions
was explained as to show if the corresponding bound can be improved. This gave reason to
design a computer program called SCOD which tests whether improvements are possible
and, if so, finds some better bounds.

The program was announced in [14] and developed later by Kazakov [44] who is the
principal author of SCOD. Since the exploitation of SCOD, some databases with new
bounds were developed. We give a few examples.

Example 3.7.1. (s = 1/
√

5 = 0.44721359, 3 ≤ n ≤ 25) The icosahedron is an antipo-
dal (3, 12, 1/

√
5) code which attains L5(n, s). Thus there are no negative test functions

Qj(3, 1/
√

5). In Table 3.3, all possible improvements of Levenshtein bounds in higher di-
mensions for s = 1/

√
5 ≈ 0.44721359 are shown. In the fourth column we give the indices

of the negative test functions Qj(n, 1/
√

5) with m + 1 ≤ j ≤ m + 20.

Example 3.7.2. (s = 0.5, 3 ≤ n ≤ 25) The number A(n, 0.5) equals the maximal number
of n-dimensional non-overlapping unit spheres that can touch Sn−1. It is widely known
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n m Lm(n, 1/
√

5) j: Qj(n, 1/
√

5) < 0 New bound
3 5 12.00 No –
4 5 22.15 8, 15 21.97
5 5 38.09 8, 9 37.69
6 5 62.80 9 61.21
7 5 101.30 9 97.71
8 6 160.68 9 156.28
9 6 245.17 9 244.07
10 6 372.83 9 372.14
11 7 572.00 No –
12 7 835.08 10 833.55
13 7 1204.48 10 1203.66
14 7 1724.06 11 1718.52
15 7 2460.26 11 2433.83
16 7 3518.16 11 3472.50
17 7 5073.74 11 5024.81
18 8 7352.23 No –
19 8 10337.97 No –
20 8 14683.06 No –
21 9 21252.00 No –
22 9 29314.66 12 29250.09
23 9 40134.06 12 40101.72
24 9 54713.19 No –
25 9 74509.49 No –

Table 3.3: Some improvements of Lm

(
n, 1/

√
5
)

as kissing number and usually denoted by τn. For n ≥ 3, only three kissing numbers are
known – τ3 = 12 (an object of a famous dispute between Newton and Gregory), τ8 = 240 =
L7(8, 0.5) and τ24 = 196560 = L11(24, 0.5) (the last two found by linear programming
independently by Levenshtein [46] and Odlyzko-Sloane [53]; see also [27, Chapters 9,13]).
Apart from n = 8 and n = 24 SCOD is able to improve Ln(n, 0.5) in all dimensions
4 ≤ n ≤ 24.

Table 3.4 almost coincide with the table from [53] (cf. also Table 1.5 in [27, Chapter
1]). The small improvements for n = 19, 21, 22 and 23 are explained by the slightly better
accuracy of SCOD compared with the method of Odlyzko-Sloane [53] from 1978. The
worse bound for n = 17 is because of the additional restrictions used in [53].

Example 3.7.3. (s = 0.55, 3 ≤ n ≤ 30) Improvements of Lm(n, 0.55) are possible in all
dimensions 3 ≤ n ≤ 25. The results are presented in Table 3.5.

If the dimension n is fixed, SCOD can be applied to find all possible improvements starting
from the first s ∈ (0, 1) where a new bound is possible. We consider the situation in three
dimensions improving L6(3, s).
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n m Lm(n, 0.5) j: Qj(n, 0.5) < 0 New bound
3 5 13.28 8, 15, 22 13.17
4 5 26.00 9, 16 25.55
5 5 48.00 9 46.34
6 6 84.00 9 82.63
7 6 142.15 9, 10 140.16
8 7 240.00 No –
9 7 384.24 10 380.09
10 7 605.00 11 595.82
11 7 945.04 11 915.38
12 7 1478.75 11 1416.09
13 8 2328.18 11 2234.37
14 8 3546.66 11, 12 3537.76
15 8 5460.92 11 5431.02
16 9 8364.00 12 8313.78
17 9 12373.30 12 12218.67
18 9 18199.29 13 17877.06
19 9 26771.00 13 25900.78
20 9 39655.00 13 37974.00
21 9 59693.12 13 56851.68
22 10 88391.88 13, 14 86886.91
23 10 130340.04 13, 14 128095.85
24 10 196560.00 No –
25 11 282687.64 14 278364.37

Table 3.4: SCOD’s results on kissing numbers

Example 3.7.4. (n = 3, 0.5753189235 ≤ s ≤ 0.6546536707, improving L6(3, s)) We
calculate new bounds on A(3, s) for s = 0.58+0.05i, where i = 0, 1, . . . , 14 (see Table 3.6).

3.7.2 Some new bounds on D(n,M)

The problem of finding D(3,M) (the minimum possible distance between M distinct
points in the three dimensional sphere) mainly belongs to classical geometry. The optimal
configurations for M = 3, 4, 6 and 12 were described by Fejes Tóth [38] and are the
expected ones. Solutions for M = 5, 7, 8 and 9 were given by Schütte-van der Waerden
[57], for M = 10 and 11 by Danzer [29], and for M = 24 by Robinson [56].) Therefore,
the exact values of D(3,M) are known only for M ≤ 12 and M = 24.

The classical Fejes Tóth bound [38] gives

D(3,M) ≤ dFT =

(
4− 1

sin2 πM
6(M−2)

) 1
2
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n m Lm(n, 0.55) j: Qj(n, 0.55) < 0 New bound
3 5 14.91 9 14.75
4 6 31.21 9, 17 30.61
5 6 60.33 9, 10, 17, 21 59.40
6 7 113.42 10 111.73
7 7 200.90 10, 11 197.64
8 7 348.20 11 337.96
9 7 600.47 11 572.34
10 8 1021.00 11, 12 1009.27
11 8 1703.87 11, 12 1652.10
12 9 2855.63 12 2773.05
13 9 4592.96 12, 13 4476.00
14 9 7339.02 13 7080.00
15 9 11772.36 13 11141.58
16 9 19216.84 13, 14 17826.35
17 10 30386.59 13, 14 28870.90
18 10 48757.53 13, 14 45558.64
19 11 76897.43 14 73248.87
20 11 118400.22 14, 15 113776.87
21 11 182197.92 15 173383.13
22 11 282837.90 15 264014.93
23 11 448535.05 15, 16 412536.81
24 12 691763.23 15, 16 640677.94
25 12 1082745.59 15, 16 976107.24

Table 3.5: Some improvements of Lm(n, 0.55)

in three dimensions.

The Levenshtein bound on D(n, M) can be calculated by solving the equation M =
Lm(n, s). To do this we first determine the number m by comparing M with the values of
the Levenshtein bound in the end points of the intervals Im (this is a comparison between
integers because of (2.5.4)). After finding sL by this procedure we derive the Levenshtein
bound on D(n,M) as

D(n,M) ≤ dL =
√

2(1− sL).

Improvements on the Levenshtein bounds on A(n, sL) lead to new bounds on D(n,M) as
well. The program SCOD has a module for calculating such bounds. It works by consecu-
tive applications of the main module of SCOD to check how much s can be increased from
sL while keeping A(n, s) ≤ M . At the last step the new bound

√
2(1− s) is calculated.

Example 3.7.5. In Table 3.7 we show the situation in three dimensions. In all cases
13 ≤ M ≤ 36, SCOD derives improvements on dL and for 13 ≤ M ≤ 27 on dFT . In-
terestingly, in a few cases the Fejes Tóth bound lies between the two linear programming
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s L6(3, s) j: Qj(n, s) < 0 New bound

t1,0
3 = 0.5753189235 16.000 9, 16, 23 15.760

0.580 16.178 9, 16, 17, 23, 24 15.976
0.585 16.374 9, 16, 17, 23, 24 16.219
0.590 16.576 9, 16, 17, 24 16.476
0.595 16.784 9, 17, 24 16.748
0.600 17.000 9, 17, 24 16.892
0.605 17.222 9, 17 17.107
0.610 17.453 9, 17 17.332
0.615 17.692 9, 17 17.567
0.620 17.941 9, 10, 17 17.815
0.625 18.200 9, 10, 17 18.074
0.630 18.470 9, 10, 17, 18 18.347
0.635 18.752 9, 10, 17, 18 18.635
0.640 19.047 9, 10, 17, 18 18.938
0.645 19.356 9, 10, 17, 18 19.256
0.650 19.682 9, 10, 17, 18 19.589

t1,1
3 = 0.6546536707 20.000 10 19.905

Table 3.6: Some improvements on L6(3, s)

bounds, which are extremal in the sense of subsection 2.6.1 [10, 48, 59]. The first col-
umn presents lower bounds on D(3,M) which are obtained by constructions [26, 36] and
http://www.research.att.com/∼njas/.

Examples of good spherical codes in higher dimensions are rare.

Sloane (http://www.research.att.com/∼njas/) maintains database of good codes which
are obtained by computer, constructions based on block codes, lattices or polytopes.

Ericson-Zinoviev [36] publish tables of good spherical codes (some examples appeared
earlier in Dodunekov-Ericson-Zinoviev [33] and in [34, 35]). In their tables there is a
column of upper bounds on the squared minimum distance (i.e. on D2(n,M)). With a
few exceptions, these bounds are either Levenshtein bounds or bounds from SCOD (the
last one is applied whenever the improvement is possible).

Example 3.7.6. We select some cases from Tables VI and VII in Ericson-Zinoviev [35]
and some tables from [34]. Nine examples are shown in Table 3.8.

3.8 Concluding remarks

In some cases we obtain negative test functions Qj(n, s) < 0 for j > m+4. One interesting
example is the case n = 4, s = 0.5 (the first unknown kissing number) where we have
m = 5, Q9(4, 0.5) < 0 but also Q16(4, 0.5) < 0. This suggests that a better bound could
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M Lower bound [26] New upper bound Levenshtein bound dFT

13 0.9564 1.0067 1.0105 1.0138
14 0.9338 0.9719 0.9756 0.9799
15 0.9026 0.9415 0.9463 0.9492
16 0.8805 0.9159 0.9216 0.9212
17 0.8624 0.8915 0.8944 0.8955
18 0.8382 0.8676 0.8704 0.8718
19 0.8085 0.8473 0.8494 0.8499
20 0.8043 0.8294 0.8310 0.8296
21 0.7752 0.8092 0.8111 0.8106
22 0.7611 0.7920 0.7928 0.7929
23 0.7445 0.7744 0.7762 0.7763
24 0.7442 0.7589 0.7612 0.7607
25 0.7107 0.7451 0.7476 0.7460
26 0.7010 0.7318 0.7332 0.7321
27 0.6951 0.7183 0.7198 0.7190
28 0.6734 0.7066 0.7074 0.7065
29 0.6629 0.6949 0.6959 0.6947
30 0.6609 0.6839 0.6854 0.6834
31 0.6463 0.6734 0.6743 0.6727
32 0.6424 0.6627 0.6638 0.6625
33 0.6222 0.6528 0.6539 0.6527
34 0.6148 0.6435 0.6446 0.6433
35 0.6067 0.6347 0.6359 0.6343
36 0.6045 0.6262 0.6278 0.6257

Table 3.7: Bounds on D(3, M) for 13 ≤ M ≤ 36.The lower bounds are taken from [26]

possibly be derived by using a 16-th degree polynomial. This is out of the range of SCOD
for the parameters n = 4 and s = 0.5.

On the other hand, the investigations in the previous section and our computer calcu-
lations suggest that the principal test functions are the first two which could become
negative: Qm+3(n, s) and Qm+4(n, s). This leads to the following conjecture.

Conjecture 3.8.1. If Qj(n, s) ≥ 0 for j = m + 3 and j = m + 4, then Qj(n, s) ≥ 0 for
all j ≥ m + 1.

Another important observation is the fact that for fixed n and s and when j tends to
infinity, the sum in the defining formula (3.2.1) tends to 1/Lm(n, s) > 0. Thus, we have
the following assertion.

Theorem 3.8.2. For fixed n and s there exists a constant j0 = j0(n, s) such that test
function Qj(n, s) > 0 for all j ≥ j0.
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n M Lower bound New upper bound Levenshtein bound
4 30 0.84498 0.95418 0.96126
4 24 1.00000 1.02212 1.02474
5 42 0.89442 1.02238 1.02822
5 40 1.00000 1.03487 1.03956
6 72 1.00000 1.02126 1.02773
7 78 1.06911 1.09103 1.09257
8 120 1.01341 1.08535 1.08822

Table 3.8: Some new bounds on D(n, M) by improvements on L5(n, s) by a polynomial
of degree 9

On the other hand, the behaviour of the test functions suggest that the Levenshtein
bounds Lm(n, s) are good when the dimension n is large with respect to the bound m.
We conjecture that this is the case when n tends to infinity and m is fixed.

Conjecture 3.8.3. For fixed m there exists a constant n0 = n0(m) such that for every
n ≥ n0 the bound Lm(n, s) can not be improved by using pure linear programming.

Theorem 3.8.2 shows that we can not expect large degrees to work better in improving the
Levenshtein bound. Therefore, the global extremality of the linear programming should
be expected to be close to what is obtained by using degree m + 3 or m + 4 polynomials.
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Chapter 4

Necessary conditions for the
existence of spherical designs

This chapter is based on the paper [13]. We consider spherical designs with relatively
small cardinalities, which means near to the Delsarte-Goethals-Seidel bound. We develop
methods for obtaining restrictions on the structure of such designs. To do this, we use
suitable polynomials in Definition 2.7.2. Our results can be considered as necessary con-
ditions for the existence of designs. In many cases they imply nonexistence of designs of
odd strengths and odd cardinalities.

4.1 Some preliminaries

We need a deeper explanation of the duality in the linear programming approaches for
spherical codes and designs. The parameters which we used in the definition and the
investigations of the test functions (see subsection 2.6.2) are useful for the description of
the results on the structure of spherical designs.

We recall that the Levenshtein’s polynomial f
(n,s)
2k−1(t) has exactly k different zeros

α0 < α1 < · · · < αk−1 = s.

All αi’s belong to the interval [−1, s]. Furthermore, there exist positive weights ρi, i =
0, 1, . . . , k − 1, and a number ρk, which is positive for s < tk, such that equality

f0 = ρkf(1) +
k−1∑
i=0

ρif(αi)

holds for any polynomial f(t) =
∑m

i=0 fiP
(n)
i (t) of degree m ≤ 2k − 1.

The equality L2k−1(n, s) = 1/ρk is valid not only for t1,1
k−1 ≤ s ≤ t1,0

k , as we used so far, but

also for t1,1
k−1 ≤ s ≤ tk. The function L2k−1(n, s) is continuous and strictly increasing in the

later interval. Hence, for any integer (in our case – cardinality) M ∈ [R(n, 2k − 1), +∞)
there exists a unique s ∈ [

t1,1
k−1, tk

)
such that

M = L2k−1(n, s) =
1

ρk

.

65
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Analogously, the polynomial f
(n,s)
2k (t) has exactly k + 1 different zeros

−1 = β0 < β1 < · · · < βk = s.

All βi’s belong to the interval [−1, s]. Furthermore, there exist positive weights γi, i =
0, 1, . . . , k, and a number γk+1, which is positive for s < t0,1

k , such that equality

f0 = γk+1f(1) +
k∑

i=0

γif(βi)

holds for any polynomial f(t) =
∑m

i=0 fiP
(n)
i (t) of degree m ≤ 2k.

We have L2k(n, s) = 1/γk for t1,0
k ≤ s ≤ t0,1

k . The function L2k(n, s) is continuous and
strictly increasing in the later interval. Hence, for any cardinality M ∈ [R(n, 2k), +∞)
there exists a unique s ∈ [

t1,0
k , t0,1

k

)
such that

M = L2k(n, s) =
1

γk+1

.

In what follows we first assume the existence of a τ -design C ⊂ Sn−1. Then we always
associate C with the unique s ∈ [

t1,1
k−1, tk

)
for τ = 2k − 1 or the unique s ∈ [

t1,0
k , t0,1

k

)
for

τ = 2k such that |C| = L2k−1(n, s) or |C| = L2k(n, s). Then all parameters defined above
(the αi’s, βi’s, ρi’s and γi’s) come with this s in a unique way.

Let C ⊂ Sn−1 be a spherical τ -design. The investigation of the structure of C with respect
to its points is a useful tool in combinatorics and coding theory.

Definition 4.1.1. For every point x ∈ C, we denote

I(x) = {〈x, y〉 : y ∈ C \ {x}} = {t1(x), t2(x), . . . , t|C|−1(x)},

where we assume the following order

−1 ≤ t1(x) ≤ t2(x) ≤ · · · ≤ t|C|−1(x) < 1.

It is clear that I(x) is a multiset (because ti(x) = ti+1(x) is possible) of cardinality |C|−1.
It may be different for distinct points of C. We shall prove some facts which are common
for all sets I(x). We shall discuss the sets I(x) for some points in detail.

Equality (2.7.2) from Definition 2.7.2 will be our main tool. In the above notation it
becomes

|C|−1∑
i=1

f(ti(x)) = |C|f0 − f(1). (4.1.1)

We use (4.1.1) for polynomials which have zeros at almost all points αi, i = 0, 1, . . . , k−1
(respectively βi, i = 0, 1, . . . , k). Then we apply (2.6.1) or (2.6.2). As a result, the right
hand side of (4.1.1) becomes relatively simple. This allows us to obtain some estimations
on the numbers ti(x) (for i = 1, 2, |C| − 2 and |C| − 1).
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4.2 Constructions of spherical designs and nonexis-

tence results

In this subsection we describe dimensions, strengths and cardinalities for the constructions
of spherical designs that are available.

A spherical design is called tight if it attains the Delsarte-Goethals-Seidel bound (1.4.1).
In Table 4.1 we present all known tight designs. Notice that tight 4- and 5-designs coexist.

τ n |C| References
1 n any pair of antipodal points on Sn−1

2 n (n + 1)-vertices of regular simplex in Rn Delsarte-Goethals-Seidel[31]
3 n 2n-vertices of cross polytope on Sn−1 Delsarte-Goethals-Seidel[31]
4 6 27
4 22 275 Delsarte-Goethals-Seidel[31]
4 m2 − 3 if a tight spherical 4-design exists

then n = m2 − 3, m must be odd
and m ≥ 3

5 3 12
5 7 56 Delsarte-Goethals-Seidel[31]
5 23 552
5 m2 − 2 if a tight spherical 5-design exists

then n = m2 − 2, m must be odd
and m ≥ 3

7 8 240
7 23 4 600 Delsarte-Goethals-Seidel[31]
7 3m2 − 4 if a tight spherical 7-design exists

then n = 3m2 − 4 and m ≥ 2
11 24 196 560 (Leech lattice) Bannai-Damerell [6, 7]

Table 4.1: Tight designs

Bannai and Damerell [3, 4] proved that spherical τ -designs on Sn−1 do not exist if

τ = 2e, e ≥ 3, (e = 3 was considered in [31])

τ = 2e + 1, e ≥ 4, (exept for the case τ = 11, n = 24)

The existence of spherical designs for every τ, n and large enough cardinality C was first
proved by Seymour-Zaslavsky in 1984 [58] and general constructions were first given by
Bajnok in 1992 [3] .

Much work has been done for dimension three. We summarize the known results in
Table 4.2.

Mimura [51] settled the case τ = 2 in 1990. He gave constructions for τ = 2 in all
dimensions and all cardinalities |C| ≥ n2 for some positive integer n2.
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τ |C| References
1 2 antipodal points
2 4 vertices of a regular tetrahedron
3 the regular octahedron
4 12, 14, ≥ 16 Hardin, Sloane [40]
5 the icosahedron Delsarte-Goethals-Seidel [31]
5 12, 16, 18, 20, ≥ 22 Hardin-Sloane [41]
5 and conjecture that this list is complete Reznick [55]
6 24, 26, ≥ 28 Hardin-Sloane [41]
7 24, 30, 32, 34, ≥ 36 Hardin-Sloane [41]
8 36, 40, 42, ≥ 44 Hardin-Sloane [41]
9 48, 50, 52, ≥ 54 Hardin-Sloane [41]
10 60, 62, ≥ 64 Hardin-Sloane [41]
11 70, 72, ≥ 74 Hardin-Sloane [41]
12 84, ≥ 86 Hardin-Sloane [41]

Table 4.2: Spherical designs in three dimension

For τ = 3, the Delsarte-Goethals-Seidel bound gives B(n, 3) ≥ 2n. It is attained in
all dimensions by the so-called bi-orthogonal code (an orthonormal basis together with
the opposites). Moreover, it was shown by Bajnok [3, 4], that all even cardinalities are
feasible, i.e. in every dimension n ≥ 3 and for every even integer m ≥ 2n, there exists a
spherical 3-design on Sn−1 of cardinality m. The odd cardinalities turn out to be more
difficult to construct (see Table 4.3).

On one hand, Bajnok gives constructions of 3-designs in all dimensions n ≥ 7 for all odd
cardinalities greater than or equal to 5n/2. In lower dimensions, he constructs 3-designs
of all odd sizes beginning with 11 for n = 3 and n = 4 and with 15 for n = 5 and n = 6.

On the other hand, Boyvalenkov-Danev-Nikova [20] show that 3-designs on Sn−1 of odd
cardinality 2n+k, where k is an odd positive integer, do not exist for k ≤ ( 3

√
2−1)n+0.3.

This completes the description of the possible sizes of 3-designs in dimensions four and
six. Just one open case remains in all other dimensions below 14, and two open cases
remain in dimensions 15 ≤ n ≤ 24.

Much less is known for larger strengths. Some database on existing spherical designs
can be found in Neil Sloane’s home page http://www.research.att.com/∼njas/ (mainly in
dimensions three and four).

Constructions of spherical 4-designs were given by Hardin-Sloane [40]. In particular, they
show that 4-designs of size m on Sn−1 exist precisely when m = 12, 14 and m ≥ 12 for
n = 3, m ≥ 20 for n = 4, m ≥ 29 for n = 5, m = 27, 36 and m ≥ 39 for n = 6, etc.
They conjecture that all remaining cardinalities are impossible. We collect their results
in Table 4.4.

Apart from investigations (cf. [8, 9, 22]) on the existence of spherical 4-designs of the
smallest possible cardinality R(n, 4) = n(n + 3)/2, no nonexistence results for 4-designs
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n |C| = 2n + 1 |C| = 2n + 3 |C| = 2n + 5
3 7∗ 9 | 11

4 9∗ | 11

5 11∗ 13 | 15

6 13∗ | 15

7 15∗ 17 | 19

8 17∗ 19 | 21

· · ·
n (2n + 1)∗ (2n + 3)∗ ( 3

√
2 + 1)n + 0.3 | · · · |5n

2

Table 4.3: Spherical 3-designs
Key to Table 4.3:

| m all designs of size ≥ m exist (Bajnok [3, 4])

∗ nonexistence proved in [20] (Boyvalenkov-Danev-Nikova)

( 3
√

2 + 1)n + 0.3 | nonexistence proved in [20] for |C| ≤ ( 3
√

2 + 1)n + 0.3 |.

were proved.

n |C|
3 12, 14, ≥ 16
4 ≥ 20
5 ≥ 29
6 27, 36, ≥ 39
7 ≥ 53
8 ≥ 69

Table 4.4: Spherical 4-designs, Hardin-Sloane [40]

Spherical 5-designs were constructed (mainly in three dimensions) by Reznick [55] and
Hardin-Sloane [40, 41]. Their results show that 5-designs exist in three dimensions for
cardinalities 12, 16, 18 and ≥ 20 and conjectured that all remaining cardinalities are
impossible.

Nonexistence results for 5-designs were obtained by Boyvalenkov-Danev-Nikova [20]. In
particular, it was shown that there exist no 5-designs with 13 points in three dimensions.
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4.3 Bounds on the smallest and largest inner prod-

ucts

Let C ⊂ Sn−1 be a spherical (2k− 1)-design and s ≥ t1,1
k−1 be such that |C| = L2k−1(n, s).

As we know, this uniquely determines the parameters αi, i = 0, 1, . . . , k − 1, and ρi,
i = 0, 1, . . . , k, where ρk = 1/L2k−1(n, s) = 1/|C|.
The first step in our approach is to use suitable polynomials in (4.1.1) for obtaining some
restrictions on the inner products in I(x), x ∈ C. Let x ∈ C be arbitrarily chosen. We
derive an upper bound on the smallest inner product t1(x) and a lower bound on the
greatest one t|C|−1(x). Both bounds do not depend on the choice of x.

Theorem 4.3.1. Let C ⊂ Sn−1 be a spherical (2k − 1)-design. Then for every point
x ∈ C we have

t1(x) ≤ α0 (4.3.1)

and
t|C|−1(x) ≥ s = αk−1. (4.3.2)

If equality holds in one of these two cases then all elements of the multiset I(x) belong to
the set {α0, α1, . . . , αk−1}.

Proof. Consider the polynomial

f(t) =
(t− t1(x))(t− s)f

(n,s)
2k−1(t)

(t− α0)2
= (t− t1(x))

k−1∏
i=1

(t− αi)
2.

Since f(t) has degree 2k − 1, we can apply (4.1.1) for C, x and f(t).

The left hand side is equal to

|C|−1∑
i=1

f(ti(x)) =

|C|−1∑
i=2

(
(ti(x)− t1(x))

k−1∏
i=1

(ti(x)− αi)
2

)

(i.e. its first term is zero and all remaining terms are nonnegative). Therefore, the whole
sum is nonnegative.

To calculate the right hand side we use (2.6.1) and the equality ρk = 1/|C|. Since
f(αi) = 0 for i = 1, 2, . . . , k − 1, we obtain

f0|C| − f(1) = |C|
(

ρkf(1)−
k−1∑
i=0

ρif(αi)

)
− f(1)

= (|C|ρk − 1)f(1) + ρ0f(α0)|C|
= ρ0f(α0)|C|.

Therefore, we have

0 ≤ f(α0) = (α0 − t1(x))
k−1∏
i=1

(α0 − αi)
2,
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which implies t1(x) ≤ α0.

If equality holds in (4.3.1) for some point x ∈ C, i.e. t1(x) = α0, then the right hand side
of (2.7.2) is zero. Thus we have ti(x) ∈ {t1(x), α1, α2, . . . , αk−1} for all i = 2, 3, . . . , |C|−1.
Therefore all elements of the multiset I(x) belong to the set {α0, α1, . . . , αk−1}.
To prove the the inequality t|C|−1(x) ≥ s, we use the polynomial

f(t) =
(t− t|C|−1(x))f

(n,s)
2k−1(t)

t− s
= (t− t|C|−1(x))

k−2∏
i=0

(t− αi)
2.

In this case, f(t) also has degree 2k− 1 and we again can apply (4.1.1) for C, x and f(t).
The arguments for obtaining t|C|−1(x) ≥ s and for the investigation of the case of equality
are as above.

Inequality t1(x) ≤ α0 is new both in its appearance and in its nature, while inequality
t|C|−1(x) ≥ s can be considered as an extension of the inequality s(C) ≥ s which was
proved by Fazekas-Levenshtein [37].

As a by-product we obtain a corollary that describes codes which attain the bounds in
Theorem 4.3.1 for any point. These codes are maximal spherical codes.

Corollary 4.3.2. Let C ⊂ Sn−1 be a spherical (2k − 1)-design such that for every point
x ∈ C equality holds either in (4.3.1) or (4.3.2). Then C is an (n, L2k−1(n, s), s) code.

Proof. It follows that all inner products of the points of C belong to {α0, α1, . . . , αk−1}.
In particular, we obtain s(C) = s. We apply the main identity (2.3.1) for C and the

Levenshtein’s polynomial f
(n,s)
2k−1(t). Then the sums on both sides vanish (for the right

hand side see Definition 2.7.1) and we get f
(n,s)
2k−1(1)|C| = f0|C|2, i.e. |C| = f

(n,s)
2k−1(1)/f0 =

L2k−1(n, s).

Theorem 4.3.1 gives t1(x) ≤ α0 for any point x ∈ C. In some sense this means that good
(2k − 1)-designs (with relatively small cardinality) are close to antipodal designs – each
point x ∈ C has (at least one) corresponding point which is close to −x.

For small cardinalities this has significant consequences. Indeed, we prove below that in
such cases (to be described in terms of the dimensions, strengths and cardinalities) the
points of the hypotetical design pair-off. In particular, this implies nonexistence when the
cardinality is odd.

We continue with the counterpart of Theorem 4.3.1 for (2k)-designs. Let C ⊂ Sn−1 be
a (2k)-design and s ≥ t1,0

k be such that |C| = L2k(n, s). This uniquely determines the
parameters βi, i = 0, 1, . . . , k, and γi, i = 0, 1, . . . , k+1, where γk+1 = 1/L2k(n, s) = 1/|C|.
For every point x ∈ C we derive an upper bound on t1(x) and a lower bound on t|C|−1(x).

Theorem 4.3.3. Let C ⊂ Sn−1 be a spherical (2k)-design. Then for every point x ∈ C
we have

t1(x) ≤ β1 (4.3.3)

and
t|C|−1(x) ≥ s = βk. (4.3.4)
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If equality holds in one of these two cases then all elements of the multiset I(x) belong to
the set {β0, β1, . . . , βk}.
Proof. The proof is analogous to the proof of Theorem 4.3.1 by making use of the poly-
nomials of degree 2k

(t− t1(x))(t− s)f
(n,s)
2k (t)

(t− β1)2
= (t + 1)(t− t1(x))

k∏
i=2

(t− βi)
2

for (4.3.3) and

(t− t|C|−1(x))f
(n,s)
2k (t)

t− s
= (t + 1)(t− t|C|−1(x))

k−1∏
i=1

(t− βi)
2

for (4.3.4).

Inequality (4.3.3) seems to be rather weak while (4.3.4) can be viewed as a generalization
of the Fazekas-Levenshtein inequality s(C) ≥ s [37].

When C is a 2k-design the bounds (4.3.3) and (4.3.4) can not be achieved simultaneously
by all points of the design.

Corollary 4.3.4. Let C ⊂ Sn−1 be a spherical (2k)-design of cardinality |C| > R(n, 2k).
Then there exists a point x ∈ C such that the bounds (4.3.3) and (4.3.4) are both strict.

Proof. If for every point x ∈ C equality holds either in (4.3.3) or (4.3.4) then it can be
proved as in Corollary 4.3.2 that C is an (n, L2k(n, s), s) code. However, it was proved
in [19] that such codes do not exist for s > t1,0

k , which is equivalent to |C| > R(n, 2k).
Therefore both bounds (4.3.3) and (4.3.4) are strict for at least one point x ∈ C.

4.4 Nonexistence results for (2k − 1)-designs of odd

cardinalities

4.4.1 A necessary condition

Let C ⊂ Sn−1 be a (2k − 1)-design. Inequality (4.3.1) must be valid for all points of C.
It was observed (first by Boyvalenkov-Danev-Nikova [20]) that a similar property leads to
nonexistence results for designs of odd cardinality. In this section we generalize the results
from [20] and give some examples. As in [20], our approach is based on Theorem 4.3.1. The
improvement is then caused by using more suitable polynomials in later investigations.

First we conclude that, in the case of odd cardinalities, there exists some special point
x ∈ C.

Theorem 4.4.1. Let C ⊂ Sn−1 be a spherical (2k − 1)-design of odd cardinality. Then
there exists a point x ∈ C such that

t2(x) ≤ α0. (4.4.1)
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Proof. Let us assume that t2(x) > α0 for all points x ∈ C. Then the inequalities

t1(x) ≤ α0 < t2(x)

mean that for point x there exists a unique point y ∈ C such that the inner product 〈y, x〉
belongs to the interval [−1, α0]. In fact, y is nothing but the farthest point of C to x.

Since α0 ≥ 〈x, y〉 ∈ I(y) = {t1(y), t2(y), . . . , t|C|−1(y)} and t1(y) ≤ α0 < t2(y), we obtain
t1(y) = 〈x, y〉 = t1(x). Therefore, the point x is the farthest point of C to y.

The above argument implies that the points of C pair-off, i.e. they can be divided into
disjoint pairs. This is a contradiction because such a division is impossible when the
cardinality of C is odd.

The next theorem is the main result of this section. It gives the second step in our
approach – to use already obtained restrictions and a new polynomial in (4.1.1).

Theorem 4.4.2. Let C ⊂ Sn−1 be a (2k − 1)-design with odd cardinality. Then

ρ0|C| ≥ 2. (4.4.2)

If equality holds then there exists a point x in C such that all elements of the multiset
I(x) belong to the set {α0, α1, . . . , αk−1}.
Proof. By Theorem 4.4.1 there exists a point x ∈ C such that t1(x) ≤ t2(x) ≤ α0.
Consider the polynomial

f(t) =
f

(n,s)
2k−1(t)(t− s)

(t− α0)2
=

k−1∏
i=1

(t− αi)
2.

Since f(t) has degree 2k− 2 (i.e. smaller than 2k− 1), we can apply (4.1.1) for C, x and
f(t).

Polynomial f(t) is decreasing in the interval (−∞, α1] which contains t1(x) ≤ t2(x) ≤ α0.
This fact and the inequalities f(ti(x)) ≥ 0 for every i = 3, 4, . . . , |C| − 1 imply that on
the left hand side of (4.1.1) we have

|C|−1∑
i=1

f(ti(x)) ≥ f(t1(x)) + f(t2(x)) ≥ 2f(t2(x)) ≥ 2f(α0). (4.4.3)

We calculate the right hand side of (4.1.1) as in the proof of Theorem 4.3.1. Since

f0 = ρ0f(α0) + ρkf(1)

by (2.6.1) and |C| = 1/ρk, we obtain

f0|C| − f(1) = |C|ρ0f(α0). (4.4.4)

The relations (4.4.3) and (4.4.4) show that

|C|ρ0f(α0) ≥ 2f(α0)

which is equivalent to (4.4.2) because f(α0) > 0.

If equality holds then t1(x) = α0 and the case of equality in Theorem 4.3.1 is applied.
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Theorem 4.4.2 reduces the existence problem for C to the calculation of the number ρ0|C|.
In concrete cases this can be done easily by computer. In fact, in Chapter 3 we developed
methods for calculating all weights ρi, i = 0, 1, . . . , k.

Using the formula in Lemma 2.6.5 we express condition (4.4.2) in terms of the numbers
α0, α1, . . . , αk−1.

Corollary 4.4.3. Let C ⊂ Sn−1 be a (2k − 1)-design of odd cardinality. Then

− (1− α2
1)(1− α2

2) · · · (1− α2
k−1)

α0(α2
0 − α2

1)(α
2
0 − α2

2) · · · (α2
0 − α2

k−1)
≥ 2. (4.4.5)

4.4.2 Nonexistence results in small dimensions

Condition (4.4.2) of Theorem 4.4.2 works well in small dimensions. In the numerical
calculations we made use of (parts of) the results of Chapter 3. Indeed, for given n
and s we can find all weights ρi, i = 0, 1, . . . , k and all numbers αi, i = 0, 1, . . . , k − 1.
Thus the only problem we have to solve here is to pass from the cardinality of C to the
corresponding value of s. This can be done, for example, by solving the equation

|C| = L2k−1(n, s) (4.4.6)

with respect to s. In the general case, this is a k-degree equation which can be easily
solved numerically (by MAPLE, e.g.). Notice that the MAPLE answer is some reordering
of the array [α0, α1, . . . , αk−1] and we have to take s = αk−1 as the largest number of this
array.

An even easier way to investigate the numerical consequences of Theorem 4.4.2 is given
by Corollary 4.4.3. We find all parameters we need for Corollary 4.4.3 by solving equation
(4.4.6).

We proceed with concrete nonexistence results. For τ = 3 our results are the same as those
of Boyvalenkov-Danev-Nikova [20] (see Table 4.5). This is because in the second step they
have used optimization techniques to find the best polynomial of the form f(t) = (t− a)2

(a is the parameter to be optimized). This has led to our f(t) = (t− α1)
2 = (t− s)2.

We describe in detail the results for 3-designs despite the fact that they are not new.
We do this for the following reason. In Section 4.6 below we refine our τ = 3 approach
by adding some further geometric arguments. We obtain nonexistence results which are
already better than those from [20].

Boyvalenkov-Danev-Nikova [20] prove that no spherical 3-design on Sn−1 with 2n+k, k ≥ 1
is odd, exists for k = 1 in all dimensions n ≥ 3, nor for k = 3 in all dimensions n ≥ 11, for
k = 5 in all dimensions n ≥ 19, for k = 7 in all dimensions n ≥ 25, etc. Combined with
the Bajnok’s constructions [4], this leaves twenty-two open cases in dimensions n ≤ 20.
Namely, existence remains undecided for (n, |C|) = (3, 9), (5, 13), (7, 17), (8, 19), (9, 21),
(10, 23), (11, 27), (12, 29), (13, 31), (14, 33), (15, 35), (15, 37), (16, 37), (16, 39), (17, 39),
(17, 41), (18, 41), (18, 43), (19, 45), (19, 47), (20, 47) and (20, 49). It follows that the
existence is completely decided in two cases – for dimensions 4 and 6, only one open case
remains in any of the dimensions 3, 5, and 7 ≤ n ≤ 14 and two cases remain in each
dimension 15 ≤ n ≤ 20.
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n |C| = 2n + 1 |C| = 2n + 3 |C| = 2n + 5 |C| = 2n + 7 |C| = 2n + 9
3 7∗ 9◦ | 11

4 9∗ | 11

5 11∗ 13◦ | 15

6 13∗ | 15

7 15∗ 17◦ | 19

8 17∗ 19◦ | 21

9 19∗ 21◦ | 23

10 21∗ 23◦ | 25

11 23∗ 25∗ 27◦ | 29

12 25∗ 27∗ 29◦ | 31

13 27∗ 29∗ 31◦ | 33

14 29∗ 31∗ 33◦ | 35

15 31∗ 33∗ 35◦ 37◦ | 39

16 33∗ 35∗ 37◦ 39◦ | 41

17 35∗ 37∗ 39◦ 41◦ | 43

18 37∗ 39∗ 41◦ 43◦ | 45

19 39∗ 41∗ 43∗ 45◦ 47◦

20 41∗ 43∗ 45∗ 47◦ 49◦

Table 4.5: Spherical 3-designs
Key to Table 4.5:

| m all designs of size ≥ m exist (Bajnok [3, 4])

∗ nonexistence proved in [20] (Boyvalenkov-Danev-Nikova) and in Theorem 4.4.2

◦ open cases

For τ = 5, Boyvalenkov-Danev-Nikova [20] describe a computer method for finding good
polynomials for the second step and apply it in some examples. Our approach (Theo-
rem 4.4.2) gives an analytical answer in all dimensions. For τ ≥ 7 the only available
numerical results are the bounds from [24] and [52, Chapter 2]. Our bounds on minimum
odd cardinalities are the same (in a few cases) or better than all of these examples.

Some new bounds for the minimum possible odd cardinalities of (2k−1)-designs are shown
in Tables 4.6, 4.7 and 4.8 below. Further numerical consequences of (4.4.2) are available
upon request.

The second and the fifth columns of Tables 4.6, 4.7 and 4.8 represent the values of
2
(

n+k−2
n−1

)
+ 1 given by the Delsarte-Goethals-Seidel bound R(n, 2k − 1) plus one.
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n DGS bound New bound n DGS Bound New bound
3 12 15 12 156 169
4 20 23 13 189 197
5 30 33 14 210 227
6 42 47 15 240 259
7 56 61 16 272 293
8 72 79 17 306 329
9 90 97 18 342 369

10 110 119 19 380 409
11 132 143 20 420 451

Table 4.6: Some lower bounds on the minimum possible odd cardinality of spherical
5-designs ensured by (4.4.2), for 3 ≤ n ≤ 20

n DGS bound New bound n DGS Bound New bound
3 20 23 12 728 765
4 40 43 13 910 957
5 70 75 14 1120 1175
6 112 119 15 1360 1427
7 168 177 16 1632 1713
8 240 253 17 1938 2031
9 330 347 18 2280 2393

10 440 463 19 2660 2791
11 572 601 20 3080 3233

Table 4.7: Some lower bounds on the minimum possible odd cardinality of spherical
7-designs ensured by (4.4.2), for 3 ≤ n ≤ 20

4.4.3 Asymptotic consequences of Theorem 4.4.2

The behaviour of the improvements suggests that an asymptotic improvement could be
possible. We consider the condition (4.4.2) of Theorem 4.4.2 in the following asymptotic
process. Let τ = 2k − 1 be fixed and n tend to infinity. We investigate the impact of
Theorem 4.4.2 on (2k − 1)-designs of cardinality approximately equal to nk−1 .

Denote
Bodd(n, τ) = min{|C| : C ⊂ Sn−1 is a τ -design, |C| is odd}.

The Delsarte-Goethals-Seidel bound implies that

Bodd(n, 2k − 1) ≥ R(n, 2k − 1) + 1 = 2

(
n + k − 1

n− 1

)
& 2nk−1

(k − 1)!
,



4.4. Nonexistence results for (2k − 1)-designs of odd cardinalities 77

n DGS bound New bound n DGS Bound New bound
3 30 33 12 2730 2825
4 70 73 13 3640 3769
5 140 145 14 4760 4929
6 252 261 15 6120 6339
7 420 435 16 7752 8029
8 660 683 17 9690 10039
9 990 1025 18 11970 12403

10 1430 1479 19 14630 15159
11 2002 2071 20 17710 18355

Table 4.8: Some lower bounds on the minimum possible odd cardinality of spherical
9-designs ensured by (4.4.2), for 3 ≤ n ≤ 20

where the inequality & should be interpreted as

lim
n→∞

Bodd(n, 2k − 1)

nk−1
≥ 2

(k − 1)!
.

Boyvalenkov-Danev-Nikova improve this to

Bodd(n, 2k − 1) & (1 + 21/τ )nk−1

(k − 1)!
.

Although our bounds are better than those of Boyvalenkov-Danev-Nikova [20] for τ ≥ 5
in concrete cases they are the same asymptotically. The reason for this phenomenon is
that the asymptotic behaviour of both bounds depends only on the asymptotics of α0.
The calculation below is missing in [13].

Lemma 4.4.4. Let n → +∞ and k be fixed. Then all roots of the equation

P 1,0
k (t)P 1,0

k−1(s)− P 1,0
k (s)P 1,0

k−1(t) = 0

tend to zero except for α0 and

α0 ∼ P 1,0
k (s)

P 1,0
k−1(s)

.

Proof. The first assertion follows from

|α0| > |αk−1| > |α1| > |αk−2| > · · ·

(cf. [19, Appendix], Theorem 2.6.7 ) and

s = αk−1 ≤ tk,

which tends to zero when n → +∞ and k are fixed.
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Now the behaviour of α0 can be derived by the Viète formula (see (3.5.9))

k−1∑
i=1

αi = − k

n + 2k − 2

(
1− (n + 2k − 1)(n + k − 2)

k(n + 2k − 3)
· P 1,0

k (s)

P 1,0
k−1(s)

)

= − k

n + 2k − 2
+

(n + 2k − 1)(n + k − 2)

(n + 2k − 2)(n + 2k − 3)
· P 1,0

k (s)

P 1,0
k−1(s)

∼ P 1,0
k (s)

P 1,0
k−1(s)

as n tends to infinity and k is fixed.

It follows from Lemma 4.4.4 and Corollary 4.4.3 that it is enough to find the asymptotic
behaviour of the ratio P 1,0

k (s)/P 1,0
k−1(s). This can be done, for example, by using the

following identity due to Levenshtein.

Lemma 4.4.5 ([49] equality (5.86)). For s ∈ [
t1,1
k−1, t

0,0
k

)
we have

L2k−1(n, s) =

(
1− P 1,0

k−1(s)

P
(n)
k (s)

)
R(n, 2k) =

(
1− P 1,0

k (s)

P
(n)
k (s)

)
R(n, 2k + 2).

Theorem 4.4.6. Let n → +∞, k be fixed and C ⊂ Sn−1 be a (2k−1)-design of cardinality

|C| ∼ R(n, 2k + 1) + γnk−1 ∼
(

γ +
2

(k − 1)!

)
nk−1,

where γ is some constant. Then

α0 ∼ − 1

1 + γ(k − 1)!
.

Proof. We apply twice the asymptotic process under consideration in the identities from
Lemma 4.4.5. Thus

|C| = L2k−1(n, s) =

(
1− P 1,0

k−1(s)

P
(n)
k (s)

)
R(n, 2k)

implies

1− P 1,0
k−1(s)

P
(n)
k (s)

∼ γ(k − 1)! + 2,

whence
P 1,0

k−1(s)

P
(n)
k (s)

∼ −1− γ(k − 1)!.

Similarly, we have
P 1,0

k (s)

P
(n)
k (s)

∼ 1.
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Hence

α0 ∼ P 1,0
k (s)

P 1,0
k−1(s)

=
P 1,0

k (s)

P
(n)
k (s)

· P
(n)
k (s)

P 1,0
k−1(s)

∼ − 1

1 + γ(k − 1)!
,

which completes the proof.

We are now in a position to describe the asymptotic consequence of Corollary 4.4.3.

Theorem 4.4.7. We have

Bodd(n, 2k − 1) & 1 + 21/(2k−1)

(k − 1)!
· nk−1.

Proof. Let us assume that C ⊂ Sn−1 is a (2k − 1)-design of cardinality

|C| <
(

γ +
2

(k − 1)!

)
nk−1,

where

γ =
21/(2k−1) − 1

(k − 1)!
.

Then it follows from Theorem 4.4.6 and Corollary 4.4.3 that

2 < − (1− α2
1)(1− α2

2) · · · (1− α2
k−1)

α0(α2
0 − α2

1)(α
2
0 − α2

2) · · · (α2
0 − α2

k−1)

∼ − 1

α2k−1
0

∼ [1 + γ(k − 1)!]2k−1 .

This implies that γ >
(
21/(2k−1) − 1

)
/(k− 1)!, which is a contradiction with the assump-

tion that γ =
(
21/(2k−1) − 1

)
/(k − 1)!. This completes the proof.

The first three cases are

Bodd(n, 3) & 2.2599n, Bodd(n, 5) & 1.0743n2, and Bodd(n, 7) & 0.3506n3,

compared to the bounds

Bodd(n, 3) & 2n, Bodd(n, 5) & n2, and Bodd(n, 7) & n3

3
,

which are ensured by the Delsarte-Goethals-Seidel bound.
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4.5 Other inequalities for inner products

4.5.1 Inequalities for (2k − 1)-designs of even cardinalities

Let C ⊂ Sn−1 be a (2k − 1)-design. In this subsection we assume that ρ0|C| < 2, i.e.
|C| is even by Theorem 4.4.2. For such designs we obtain upper and lower bounds on
their minimum and maximal inner products. In particular, we improve the upper bound
t1(x) ≤ α0 for every point x ∈ C.

We start with a lower bound on the second smallest inner product t2(x) and an upper
bound on the largest one t|C|−1(x). Both bounds are valid for all points x ∈ C.

Lemma 4.5.1. Let δ1 and µ1 be the smallest respectively the greatest root of the equation

f(t) = A,

where f(t) =
∏k−1

i=1 (t−αi)
2 and A = f(α0)(ρ0|C|−1). Then t2(x) ≥ δ1 and t|C|−1(x) ≤ µ1

for every point x ∈ C.

Proof. The polynomial f(t) has degree 2k − 2. We apply (4.1.1) for C, x and f(t). We
first see that

|C|−1∑
i=2

f(ti(x)) = f0|C| − f(1)− f(t1(x))

= |C|ρ0f(α0)− f(t1(x))

because f(αi) = 0 for i = 1, 2, . . . , k − 1. Since f(t) is decreasing in (−∞, α1] and
t1(x) ≤ α0 (from Theorem 4.3.1), we have f(t1(x)) ≥ f(α0) whence

f(α0)ρ0|C| − f(t1(x)) ≤ f(α0)(ρ0|C| − 1) = A.

Since f(t) is nonnegative, we have

|C|−1∑
i=2

f(ti(x)) ≥ f(t2(x)) + f(t|C|−1(x)).

The last two inequalities imply that

f(t2(x)) + f(t|C|−1(x)) ≤ f(α0)(ρ0|C| − 1) = A.

Moreover, both numbers f(t2(x)) and f(t|C|−1(x)) must be less than A since they are
nonnegative.

The inequality t|C|−1(x) ≤ µ1 follows since f(t|C|−1(x)) ≤ A and f(t) is increasing in
[s,∞). It is clear that δ1 < α1. This completes the proof if t2(x) ≥ α1. If t2(x) < α1, the
inequality t2(x) ≥ δ1 follows since f(t2(x)) ≤ A and f(t) is decreasing in (−∞, α1].

The bound t2(x) ≥ δ1 allows us to improve the bound t1(x) ≤ α0.
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Lemma 4.5.2. Let λ1 is the smallest root of the equation

f(t) = B,

where f(t) = (t− δ1)
∏k−1

i=1 (t− αi)
2 and B = f(α0)ρ0|C|. Then t1(x) ≤ λ1 < α0 for every

point x ∈ C.

Proof. Notice that ρ0|C| > 1 from the proof of Lemma 4.5.1. Inequality λ1 < α0 then
follows from the definition of λ1 as the smallest root of f(t) = B.

Polynomial f(t) has degree 2k − 1. To prove t1(x) ≤ λ1 we use (4.1.1) for C, x and f(t).
The left hand side is at least f(t1(x)) since t2(x) ≥ δ1 and f(t) is nonnegative for t ≥ δ1.

On the other hand, the right hand side equals f(α0)ρ0|C|. This already implies our
assertion since f(t) is increasing in (−∞, δ1].

Since λ1 < α0 we obtain improvements of both bounds of Lemma 4.5.1. Indeed, one
can repeat the proof of Lemma 4.5.1 by replacing f(t1(x)) by f(λ1) instead of by f(α0).
Let δ2 and µ2 be the smallest and respectively the greatest root of the equation of the
Lemma 4.5.1 where A = f(α0)ρ0|C| − f(λ1). If t2(x) ≥ δ2 is the new bound, we can use
it in Lemma 4.5.2 (make use of polynomial f(t) = (t − δ2))

∏k−1
j=1(t − αj)) for obtaining

the better bound t1(x) ≤ λ2 (it easily follows that λ2 < λ1).

It is clear that this process can be continued. We obtain bounds t2 ≥ δk > δk−1 > · · · > δ1,
t|C|−1 ≤ µk < µk−1 < · · · < µ1, and t1 ≤ λk < λk−1 < · · · < λ1 for any integer k. (We
get δi and µi as the smallest and respectively the greatest root of the equation of the
Lemma 4.5.1 where A = f(α0)ρ0|C| − f(λi−1) and λi is the smallest root of the equation
from Lemma 4.5.2 by using polynomial f(t) = (t − δi))

∏k−1
j=1(t − αj)). Of course, it is

not difficult to prove that the sequences {δk}∞k=1, {µk}∞k=1, and {λk}∞k=1 are convergent.
Therefore, the following theorem holds.

Theorem 4.5.3. We have t2(x) ≥ δ = limk→∞ δk, t|C|−1(x) ≤ µ = limk→∞ µk, and
t1(x) ≤ λ = limk→∞ λk.

This implies new upper bounds on the maximal inner product of (2k − 1)-designs under
consideration.

Corollary 4.5.4. For any (2k − 1)-design C ⊂ Sn−1 with ρ0|C| < 2 we have

s ≤ s(C) ≤ µ.

Upper bounds on the maximal inner product of spherical designs of given dimension,
strength and cardinality have not been found by us in the literature. Such bounds could
not be obtained for codes of fixed dimension and cardinality since these codes could have
points which are arbitrarily close to each other.

Example 4.5.5. Since all 3-designs of feasible even cardinalities exist, the first possibility
to apply Theorem 4.5.3 is for 5-designs and 7-designs. If C ⊂ Sn−1 is a 5-designs of
n2 + n + k points, k is even and ρ0|C| < 2, we compute some approximations of the
limits δ, µ and λ. The third column of Table 4.9 and 4.10 shows the number of iterative
applications of Lemmas 4.5.1 and 4.5.2.
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n |C| Iterations λ δ µ
5 32 29 -0.9424004212 -0.806032224 0.870495133
6 44 19 -0.9697717297 -0.727024557 0.764542217
7 58 16 -0.9810194629 -0.671955713 0.695576773
7 60 45 -0.9185988547 -0.838754089 0.885451652
8 74 15 -0.9870639819 -0.628551111 0.644353867
8 76 23 -0.9580261272 -0.755606053 0.787010751
9 92 12 -0.9907046805 -0.592756595 0.603837520
9 94 20 -0.9724610484 -0.703533136 0.725611999
9 96 32 -0.9331941108 -0.809120048 0.842083472
10 112 13 -0.9930555315 -0.562484986 0.570551665
10 114 16 -0.9804084660 -0.662841788 0.678937405
10 116 21 -0.9590125740 -0.747010127 0.771083685

Table 4.9: Some upper bounds of t1(x) and t|C|−1(x) (resp. λ and µ) and lower bounds
of t2(x) (resp. δ) for spherical 5-designs

4.5.2 Inequalities for (2k)-designs

Let C ⊂ Sn−1 be a (2k)-design. We know that t1(x) ≤ β1 and t|C|−1(x) ≥ s for every
point x ∈ C. In this subsection we obtain lower bounds on t1(x) and upper bounds on
t|C|−1(x) which are valid for all points of C.

Lemma 4.5.6. Let ξ1 and η1 be the least resp. the greatest root of the equation

f(t) = D1,

where f(t) =
∏k

i=1(t−βi)
2 and D1 = γ0f(−1)|C|. Then we have t1(x) ≥ ξ1 and t|C|−1(x) ≤

η1 for every point x ∈ C (i.e. all elements of I(x) belong to the interval [ξ1, η1]).

Proof. Polynomial f(t) has degree 2k. We use (4.1.1) for C, x and f(t). The right hand
side is equal to

|C|
(

γk+1f(1) +
k∑

i=0

γif(βi)

)
− f(1) = γ0f(−1)|C| = D1

because f(βi) = 0 for i = 1, . . . , k and γk+1 = 1/|C|.
All terms in the sum on the left hand side are nonnegative. The assertion now follows
since outside the interval [ξ1, η1] we have f(t) > D1 (i.e. if we assume that some elements
of I(x) do not belong to [ξ1, η1] we obtain a contradiction).

Using similar argument we obtain bounds on the inner products t2(x) and t|C|−2(x).

Lemma 4.5.7. Let ξ2 and η2 be the least and the greatest root, respectively, of the equation

f(t) = D2,
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n |C| Iterations λ δ µ
5 72 17 -0.9809266013 -0.8256833155 0.8540162771
6 114 15 -0.9903837657 -0.7688111463 0.7830779317
6 116 22 -0.9711219849 -0.8491097310 0.8775152828
7 170 12 -0.9944928504 -0.7233980069 0.7313369340
7 172 17 -0.9854436087 -0.7900008816 0.8058653534
7 174 23 -0.9707742564 -0.8442191129 0.8679702660
8 242 12 -0.9965835090 -0.6855229067 0.6902881134
8 244 13 -0.9914203505 -0.7448522856 0.7543830233
8 246 19 -0.9843503982 -0.7892673722 0.8035590693
10 332 10 -0.9977538491 -0.6531888294 0.6562210113
10 334 12 -0.9945187925 -0.7074756538 0.7135421944
10 336 15 -0.9903790982 -0.7469050636 0.7560062102

Table 4.10: Some upper bounds of t1(x) and t|C|−1(x) (resp. λ and µ) and lower bounds
of t2(x) (resp. δ) for spherical 7-designs

where f(t) =
∏k

i=1(t − βi)
2 and D2 = γ0f(−1)|C|/2 = D1/2. Then we have t2(x) ≥ ξ2

and t|C|−2(x) ≤ η2 for every x ∈ C (i.e. all elements of I(x) \ {t1(x), t|C|−1(x)} belong to
the interval [ξ2, η2]).

Proof. Let us assume that t2(x) < ξ2. Polynomial f(t) has degree 2k. We use (4.1.1)
for C, x and f(t). As in Lemma 4.5.6 the right hand side is equal to D1 = 2D2 (the
polynomial f(t) is the same).

Since f(t) is decreasing in (−∞, β1] and t1(x) ≤ t2(x) < ξ2 < β1, the left hand side is at
least

f(t1(x)) + f(t2(x)) ≥ 2f(t2(x)) > 2f(ξ2) = 2D2.

This is a contradiction. We conclude that t2(x) ≥ ξ2.

Inequality t|C|−2(x) ≤ η2 can be proved in a similar way.

For odd cardinalities |C|, we prove stronger restrictions for at least one point x ∈ C.

Lemma 4.5.8. If |C| is odd then there exists a point x ∈ C such that simultaneously
t1(x) ≥ ξ2 and t|C|−1(x) ≤ η2 (i.e. all elements of I(x) belong to the interval [ξ2, η2]).

Proof. Let A = {x ∈ C : t1 ≥ ξ2} and B = {x ∈ C : t|C|−1 ≤ η2}. We firstly prove that
the sets A and B are nonempty.

Let us assume that t1(x) < ξ2 for every point x ∈ C. Then we can use the same argument
as in the proof of Lemma 4.4.1 to see that the points of C can be divided into disjoint
pairs. This is impossible since |C| is odd. Therefore, inequality t1(x) ≥ ξ2 is satisfied for
at least one point x ∈ C.

Using a similar argument, we prove that t|C|−1(x) ≤ η2 for at least one point x ∈ C, i.e.
the set B is nonempty.
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To complete the proof we need to show that the intersection A ∩ B is nonempty. Let us
assume that A ∩B = φ and consider the sets C \A and C \B. Again, as in the proof of
Lemma 4.4.1, we conclude that the points in these two sets can be divided into disjoint
pairs.

This implies that the cardinalities |C \ A| and |C \ B| are even. Since |C| is odd, this
shows that |A| and |B| are odd as well. Then A ∪B = C is impossible since |A ∩B| = 0
by our assumption. Therefore there exists x ∈ C which belongs neither to A nor B. This
means that t1(x) < ξ2 and t|C|−1(x) > η2 for this point.

We now complete the proof by obtaining a contradiction in (4.1.1) for C, x and the
polynomial f(t) =

∏k
i=1(t−βi)

2 from Lemmas 4.5.6 and 4.5.7. The right hand side equals
D1 = γ0f(−1)|C|, while the left hand side is at least

f(t1(x)) + f(t|C|−1(x)) > f(ξ2) + f(η2) = D2 + D2 = D1,

a contradiction.

For arbitrary cardinality |C|, Lemma 4.5.6 can be extended in the following way.

Lemma 4.5.9. For every point x ∈ C at least one of the following inequalities is true:
t1(x) ≥ ξ2 or t|C|−1(x) ≤ η2 (i.e. all elements of I(x) belong either to [ξ2, η1] or to [ξ1, η2]).

Proof. Let us suppose that t1(x) < ξ2 and t|C|−1(x) > η2 are simultaneously true for some

point x ∈ C. Then we arrive to a contradiction in (4.1.1) for C, x and f(t) =
∏k

i=1(t−βi)
2

in the same way as at the end of the proof of Lemma 4.5.8.

We combine inequality (4.3.4) from Theorem 4.3.3 with Lemma 4.5.6 to obtain bounds on
the maximal inner product of (2k)-designs of fixed dimension, strength and cardinality.

Corollary 4.5.10. For any (2k)-design C ⊂ Sn−1 we have

s ≤ s(C) ≤ η1.

Corollary 4.5.11. Let C ⊂ Sn−1 be a spherical (2k)-design which possesses a pair of
antipodal points. Then

|C| ≥ R(n, 2k + 1) = 2

(
n + k − 1

n− 1

)
.

Proof. Let x and −x be pair of antipodal points of C. It follows from Lemma 4.5.6 that
t1(x) = −1 ≥ ξ1. Therefore D1 = f(ξ1) ≥ f(−1) for f(t) =

∏k
i=1(t−βi)

2. This inequality
is equivalent to γ0|C| ≥ 1. The assertion now follows from a result of Boyvalenkov-Danev
[16] which shows that γ0|C| belongs to the interval [0, 1) when

R(n, 2k) ≤ |C| < R(n, 2k + 1).

Example 4.5.12. We computed by means of a MAPLE program some values of ξ1, ξ2,
η1 and η2 for 4-designs and 6-designs. The results are shown in Tables 4.11 and 4.12.
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n |C| ξ1 ξ2 η2 η1

3 10 -0.8340193108 -0.7651942262 0.5652072441 0.6340323288
3 11 -0.8555413134 -0.7675641087 0.6875632401 0.7755404449
3 13 -0.8984324723 -0.7856275790 0.8663183685 0.9791232617
4 15 -0.8060837800 -0.7409275407 0.5028293448 0.5679855840
4 16 -0.8306682339 -0.7509980960 0.5843259535 0.6639960914
4 17 -0.8511640007 -0.7607593767 0.6496520324 0.7400566564
4 18 -0.8693407551 -0.7704523520 0.7037818408 0.8026702438
5 21 -0.7764635392 -0.7114141682 0.4776500198 0.5426993909
5 22 -0.8020607702 -0.7259261485 0.5354527109 0.6115873325
5 23 -0.8227350536 -0.7379019065 0.5840549101 0.6688880572
5 24 -0.8405440992 -0.7485331783 0.6260849162 0.7180958371
6 28 -0.7500615327 -0.6841516342 0.4654014520 0.5313113505
6 29 -0.7747890720 -0.7001428755 0.5089640197 0.5836102162
6 30 -0.7949884051 -0.7132237930 0.5465568022 0.6283214143
6 31 -0.8123447615 -0.7245437900 0.5798055564 0.6676065279
7 36 -0.7275363961 -0.6605601496 0.4585408793 0.5255171258
7 37 -0.7504805628 -0.6764314780 0.4928549050 0.5669039898
7 38 -0.7696375349 -0.6896618641 0.5229965310 0.6029722018
7 39 -0.7862481808 -0.7011466384 0.5500344065 0.6351359489

Table 4.11: Some lower bounds of t1(x) and t2(x) (resp. ξ1 and ξ2) and upper bound of
t|C|−2(x) and t|C|−1(x) (resp. η2 and η1) for spherical 4-designs

4.6 Refining the approach from Sections 4.3 and 4.4

In this section we use additional geometric arguments to strengthen the results from
Section 4.4 for (2k − 1)-designs of odd cardinality.

4.6.1 Method for investigation

Let C ∈ Sn−1 be a (2k − 1)-design. Our approach now is the following. First, we show
that for odd cardinalities |C| some special triples (x, y, z) of points of C appear. Then
we use suitable polynomials in (4.1.1) to derive bounds on the smallest and the largest
inner products in the sets I(x), I(y) and I(z). In the third step, we organize an iterative
process by using the new bounds and (other) suitable polynomials in (4.1.1). The final
results are new bounds on inner products from I(x), I(y) and I(z) and sometimes the
nonexistence of the designs under target.

Step 1. Our first step is based on Lemma 4.3.1 and the following simple observation.

Lemma 4.6.1. Let C ⊂ Sn−1 be a τ -design of odd cardinality |C|. Then there exist three
distinct points x, y, z ∈ C such that t1(x) = t1(y) and t2(x) = t1(z).
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n |C| ξ1 ξ2 η2 η1

3 17 -0.9025321313 -0.8643157503 0.7119036818 0.7479734994
3 18 -0.8985034759 -0.8527163383 0.7678410465 0.8123008964
3 19 -0.8992541739 -0.8484584177 0.8118928781 0.8621076449
3 20 -0.9019510197 -0.8475003216 0.8474975957 0.9019482511
4 31 -0.9002148254 -0.8597854229 0.6709967013 0.7095199954
4 32 -0.8993570568 -0.8543269126 0.7007220944 0.7440536522
4 33 -0.9000232517 -0.8512837844 0.7272151355 0.7745136522
4 34 -0.9015825851 -0.8497751356 0.7509385955 0.8015692923
5 51 -0.8916787522 -0.8470134805 0.6572662722 0.7004309411
5 52 -0.8928338411 -0.8455425895 0.6741390433 0.7199992604
5 53 -0.8943313735 -0.8447052158 0.6899584579 0.7382413261
5 54 -0.8960676048 -0.8443492950 0.7048097569 0.7552826042
6 78 -0.8822286033 -0.8334412564 0.6526730399 0.7002991185
6 79 -0.8840453907 -0.8336774576 0.6630707075 0.7123074633
6 80 -0.8859016778 -0.8340609484 0.6730507912 0.7237960368
6 81 -0.8877841067 -0.8345668029 0.6826372152 0.7347987821
7 113 -0.8731696276 -0.8208596120 0.6513868604 0.7027942087
7 114 -0.8750510995 -0.8217236130 0.6582542615 0.7106942045
7 115 -0.8769070701 -0.8226082064 0.6649281963 0.7183564649
7 116 -0.8787380127 -0.8235103011 0.6714180974 0.7257936463

Table 4.12: Some lower bounds of t1(x) and t2(x) (resp. ξ1 and ξ2) and upper bound of
t|C|−2(x) and t|C|−1(x) (resp. η2 and η1) for spherical 6-designs

Proof. Let Γ be the directed graph with as vertices the points of C and edges

x → y if and only if t1(x) = 〈x, y〉,
x ← y if and only if t1(y) = 〈y, x〉,
x ↔ y if and only if t1(x) = t1(y) = 〈x, y〉.

For the cycles with length at least two of the following type x ↔ y ↔ z ↔ x our wishes
are satisfied.

Let us consider the cycles with at least one edge of the type x → y or x ← y. It is easy
to see that induced cycles (of this type) in Γ are possible only if their length is two. Since
|Γ| = |C| is odd, it is impossible to divide Γ into disjoint cycles. Therefore, we must have
the following situation y ↔ x ← z. This completes the proof.

It follows from Lemmas 4.3.1 and 4.6.1 that there exist distinct points x, y, z ∈ C such
that t1(x) = t1(y) ≤ α0 and t2(x) = t1(z) ≤ α0. In the next steps we carry our a more
detailed investigation of the triple (x, y, z).

Step 2. Inequalities of the type t1(x) = 〈x, y〉 ≤ t2(x) = 〈x, z〉 ≤ a < 0 may mean that
the points y and z are close to each other.
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Denote by ϕ the acute angle with cosine a. Then ϕ is greater than or equal to the angles
between −x and y and between −x and z. This means that the angle between y and z
does not exceed 2ϕ. Therefore

〈y, z〉 = cos ∠(y, z) ≥ cos 2ϕ = 2a2 − 1.

If 2a2 − 1 > s in this argument, we actually have obtained better lower bounds on the
inner products t|C|−1(y) and t|C|−1(z) because

t|C|−1(y) ≥ 〈y, z〉

and
t|C|−1(z) ≥ 〈y, z〉.

Remark. The improvement of the lower bounds (4.3.2) for y and z leads to an improve-
ment of the Fazekas-Levenshtein bound on s(C).

In turn, these two new bounds give better estimations on t1(y) and t1(z) respectively. In
particular, this leads to the improvement

t1(x) ≤ t2(x) ≤ a′ < a.

As we shall see below, the last fact follows by using suitable polynomials in (4.1.1) for C
and z.

Step 3. If 2α2
0−1 > αe−1, we can start an iterative process, by applying Step 2 as many

times as necessary.

Set δ0 = α0 and let δ1 = a′ be obtained by applying Step 2 for a = α0. Now 2δ2
1 − 1 >

2δ2
0 − 1 is a better lower bound for t|C|−1(y) and t|C|−1(z). In turn this calls for a second

application of Step 2 which gives better upper bounds t2(x) ≤ δ2. We can continue this
process, checking (at each iteration) the possible existence of C by some polynomial in
(4.1.1).

Theorem 4.6.2. If there exists a real nonnegative polynomial f(t) of degree at most 2k−1
which decreases in the interval [−1, α0) and if

2f(δi) > f0|C| − f(1) (4.6.1)

for some i ≥ 0 then C does not exist.

Proof. We apply (4.1.1) to C, x and the polynomial f(t). Then, the right hand side
f0|C| − f(1) is at least 2f(t2(x)) ≥ 2f(δi) for all i ≥ 0.

If we consider only i = 0 and take polynomial f(x) =
∏k−1

i=1 (t − αi)
2, we obtain Theo-

rem 4.4.2.

In the next two subsections we apply the above method to investigate the existence of
3- and 5-designs of small odd cardinalities. Because of the results in Section 4, we shall
always require ρ0|C| < 2.
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4.6.2 Some results for 3-designs

Let τ = 3 and C ⊂ Sn−1 be a 3-design of cardinality |C| = R(n, 3) + k = 2n + k, where
k ≥ 3 is an odd integer. The numbers α0 and α1 are the roots of the quadratic equation

n(n + k − 1)X2 + n(n− 1)X − k = 0 (4.6.2)

(see [20, Eq. (8)]).

All 22 open cases in dimensions 3 ≤ n ≤ 20 were listed in Subsection 4.4.1. Working on
this list we may assume that k is odd, k = 3 for n = 3, 5, 7, 8, 9, 10, k = 5 for 11 ≤ n ≤ 18,
k = 7 for 15 ≤ n ≤ 20. We actually applied our method to all open cases in dimensions
3 ≤ n ≤ 50.

Let x, y, z be points in C obtained in Step 1, i.e. x, y and z are such that t1(x) = t1(y) ≤
t2(x) = t1(z) ≤ α0. In Step 2, we shall assume that

µ0 = 2α2
0 − 1 > s (4.6.3)

(fortunately this is true in many cases we have to deal with, in other cases we can not
apply this method). We use (4.6.3) for obtaining better upper bound on t1(z).

Lemma 4.6.3. For any real a ∈ [α0, s], we have

t1(z) ≤ F (a) = −2
nα2

0a
2 + [2n(2α2

0 − 2α4
0 − 1) + |C|] a + nα2

0(4α
4
0 − 6α2

0 + 3)

(|C| − 2)na2 + 4nα2
0a + 2n(2α2

0 − 2α4
0 − 1) + |C| .

Proof. We apply (4.1.1) to C, z and the polynomial

f(t) = (t− t1(z))(t− a)2,

where a ≤ s. We calculate f0 from (2.1.5)

f0 =
t1(z) + 2a

n
− a2t1(z).

Therefore, the right hand side in (4.1.1) equals

f0|C| − f(1) = |C|
(

t1(z) + 2a

n
− a2t1(z)

)
− (1− t1(z))(1− a)2

= t1(z)

[ |C|
n
− a2|C|+ (1− a)2

]
+

2a|C|
n

− (1− a)2.

The left hand side is at least f(t|C|−1(z)). Since the polynomial f(t) is increasing in
(s, +∞) and t|C|−1(z) ≥ µ0 > s, this is bounded from below by

f(µ0) = (2α2
0 − 1− t1(z))(2α2

0 − 1− a)2

= −t1(z)(2α2
0 − 1− a)2 + (2α2

0 − 1)(2α2
0 − 1− a)2.
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We obtain the inequality

t1(z)

[ |C|
n
− a2|C|+ (1− a)2

]
+

2a|C|
n

− (1− a)2

≥ − t1(z)(2α2
0 − 1− a)2 + (2α2

0 − 1)(2α2
0 − 1− a)2

which is equivalent to

t1(z) ≤ −2(nα2
0a

2 + (2n(2α2
0 − 2α4

0 − 1) + |C|)a + nα2
0(4α

4
0 − 6α2

0 + 3))

(|C| − 2)na2 + 4nα2
0a + 2n(2α2

0 − 2α4
0 − 1) + |C|

because the denominator of the last fraction is negative in [α0, s].

We have to find the value of a ∈ (−∞, s] that minimizes the function F (a). In concrete
cases (i.e. for given n and k) this can be easily performed numerically by MAPLE.

According to Step 2, we denote

δ1 = min{F (a) : a ∈ R}.
Then we have

t1(y) ≤ t1(z) ≤ δ1

whence
t|C|−1(z) ≥ 〈y, z〉 ≥ 2δ2

1 − 1 = µ1.

For the next implementations of Step 2 (in the iterative process of Step 3) we use the
analog of Lemma 4.6.3 by setting µ1 instead of µ0 = 2α2

0 − 1 there. We obtain

t1(y) ≤ t1(z) ≤ δ2

and so on. To apply Theorem 4.6.2 we need to compute δi’s until nonexistence of the
code can be proved by (4.6.1) or their values remain the same.

To check the existence of C, we use Theorem 4.6.2 with the polynomial f(t) = t2. Since
f0 = 1/n, we have to check if inequality

2δ2
i >

|C|
n
− 1

is true for some i ≥ 1. If so then we have proved the nonexistence of C.

The whole iteration process was realized by a simple MAPLE program which is available
upon request from the author.

Example 4.6.4. Let us consider the cases n = 9 and n = 10, with k = 3 in both
dimensions. Let us assume that C ⊂ S9 is a 2n + k = 23-point 3-design. For these
parameters we have α0 = 0.78197, α1 = 0.03197 (all decimals are truncated after the fifth
digit). Thus 2α2

0 − 1 > α1 and we can start the iterative process. Already at the first
iteration we obtain δ1 = −0.81202 whence

2δ2
1 = 1.31875 > 1.3 =

23

10
− 1.
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Therefore C does not exist.

Analogously, for a putative 21-point 3-design on C ⊂ S8, we obtain

2δ2
4 = 1.35909 >

4

3
=

21

9
− 1.

Therefore such a design does not exist.

There were 144 open cases in dimensions 3 ≤ n ≤ 50. We ruled out 50 of them. The
first nonexistence results show that there are no 3-designs of 21 points in nine dimensions
(k = 3), 23 points in ten dimensions (k = 3), 35 points in fifteen dimensions (k = 5),
etc. Therefore the problem for finding all possible cardinalities of 3-designs is completely
solved in dimensions n = 4, 6, 9 and 10 (we consider two more dimensions than [20]) and
only one open case remains in each dimension n = 3, 5, 7, 8, 21, 22 and for 11 ≤ n ≤ 18
(considering six more dimensions than in [20]).

The present situation of the problem for finding all possible cardinalities of 3-designs in
dimensions 3 ≤ n ≤ 24 is presented on Table 4.13.

We now examine the asymptotic consequences of the refined approach. Table 4.13 and
our observations in dimensions 25 ≤ n ≤ 50 suggest that an asymptotic improvement
could be possible.

We recall that Boyvalenkov-Danev-Nikova [20] prove that

Bodd(n, 3) & (1 + 21/3)n ≈ 2.2599n (4.6.4)

as n tends to infinity (see also the end of Section 4.4). On the other hand, Bajnok’s
construction [3, 4] shows that Bodd(n, 3) ≤ 2.5n.

Therefore we have to consider designs with 2n + k points where

k

n
= γ ∈ [21/3 − 1, 0.5).

We cannot apply the iterative process from Step 3 as many times as we like. Fortunately,
already the first applications give better asymptotic results than (4.6.4).

Since α0 and s = α1 are roots of (4.6.2), we have asymptotically

α0 ≈ − 1

1 + γ

and α1 ≈ 0. Now Lemma 4.6.3 with a = 0 gives

t2(x) = t1(z) ≤ δ1 ≈ −2(γ5 + 8γ4 + 19γ3 + 13γ2 − 2γ + 1)

γ(γ2 + 4γ + 5)2(γ + 1)4
.

We use MAPLE to solve numerically the corresponding equation 2δ2
1 = 1 + γ to obtain

that
Bodd(n, 3) & 2.2949n.

We were able to implement four iterations to obtain the following assertion.
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Theorem 4.6.5. We have
Bodd(n, 3) & 2.3227n. (4.6.5)

Therefore, 2.3227n . Bodd(n, 3) . 2.5n asymptotically. Our conjecture is that the upper
bound gives the exact behaviour of Bodd(n, 3) both for small dimensions and as n tends
to infinity.

4.6.3 Some results for 5-designs

Let τ = 5 and C ⊂ Sn−1 be a 5-design of cardinality |C| = R(n, 5) + k = n2 + n + k,
where k ≥ 3 is an odd integer.

In this case, α0 and α1 are the roots of the quadratic equation

(n + 2)[(n + 2)s2 + 2s− 1]t2 + 2s(s + 1)(n + 2)t + 3− (n + 2)s2 = 0.

Let x, y, z ∈ C be the points from Lemma 4.6.1. We assume that µ0 = 2α2
0 − 1 > s as

Step 2 requires. Similarly to the case of 3-designs we obtain some bound on t2(x) = t1(z)
which now depends on two parameters. This is given by the following lemma.

Lemma 4.6.6. For real a and b, we have

t1(z) ≤ F (a, b) =
2a|C| [(n + 2)b + 3]− n(n + 2) [(1 + a + b)2 + (2α2

0 − 1)K]

|C| [n(n + 2)b2 + (n + 2)(a2 + 2b) + 3]− n(n + 2) [(1 + a + b)2 + K]
,

where
K =

[
(2α2

0 − 1)2 + a(2α2
0 − 1) + b

]2
,

provided that the denominator in the last fraction is positive and that polynomial f(t) =
t2 + at + b is increasing in (s, 1).

Proof. This is similar to the proof of Lemma 4.6.3. We apply (4.1.1) to C, z and the fifth
degree polynomial f(t) = (t− t1(z))(t2 + at + b)2.

We organize an iterative process as in the case τ = 3. At each step the function F (a, b)
is minimized to give better bounds on t1(z) = t2(x), which in turn improve the bounds
on t|C|−1(z). To check the existence of C we apply Theorem 4.6.2 with the fourth degree
polynomial f(t) = (t− α1)

2(t− s)2 which is obviously decreasing in [−1, α0).

Since f0|C| − f(1) = ρ0f(α0)|C|, existence condition (4.6.1) from Theorem 4.6.2 becomes

2f(δi) > ρ0f(α0)|C|.

Therefore, C could exist only if

ρ0|C| ≥ 2f(δi)

f(α0)
. (4.6.6)

The last condition could be considered as an improvement over (4.4.2) from Theorem
4.4.2.
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The results in small dimensions are as follows. For each dimension n, 3 ≤ n ≤ 20, we
examine the first six open cases (i.e. those with ρ0|C| ≥ 2). Thus there are 108 = 18× 6
designs under consideration. The above procedure rules out 53 of them. The new bounds
are presented in Table 4.13. Some of the entries in this table improve the corresponding
bounds in Table 4.5 in Subsection 4.4.2.

Let n tend to infinity and |C| = R(n, s) + γn2 ∼ (1 + γ)n2 where γ > 0. Then α0 tends
to −1/(1 + 2γ) while α1 and s tend to zero (here |α1| < s ∼ 1/

√
n ).

Asymptotic results from [13, 20] show that

Bodd(n, 5) & 1 + 21/5

2
n2 ≈ 1.0743n2

as n tends to infinity. Using the same argument as in the previous subsection we are able
to improve this. We apply the first iteration only.

Theorem 4.6.7. We have
Bodd(n, 5) ≥ 1.0930n2. (4.6.7)

Proof. Let n → +∞ and C ⊂ Sn−1 be a 5-design of cardinality |C| = (1 + γ)n2 where γ
is some constant.

Since α0 tends to −1/(1 + 2γ) by Lemma 4.4.6, it follows from (4.6.6) that

1

(1 + 2γ)5
≥ 2f(δ1)

f(−1/(1 + 2γ))
.

We complete the proof by solving this numerically (with MAPLE) with respect to γ.

4.7 Better bounds on the maximal inner product

In this section, we show how Theorem 2.7.2 can be used to obtain better upper bounds on
the maximal inner product of designs of relatively small cardinalities. We apply (2.7.1)
for a point y 6∈ C.

Lemma 4.7.1. Let C ⊂ Sn−1 be a spherical τ -design and x1, x2 ∈ C be such that
〈x1, x2〉 = s(C). Then for every real polynomial f(t) of degree at most τ we have

2f

(√
1 + s(C)

2

)
≤ f0|C| − (|C| − 2)ε, (4.7.1)

where ε = min{f(t) : t ∈ [−1, 1]}.

Proof. Let ∠x1Ox2 = ϕ (O is the origin) and y ∈ Sn−1 be such that the line Oy bisects
∠x1Ox2. Then cos ϕ = s(C), ∠x1Oy = ∠x2Oy = ϕ/2 and

〈x1, y〉 = 〈x2, y〉 = cos
ϕ

2
=

√
1 + cos ϕ

2
=

√
1 + s(C)

2
.
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We apply (2.7.1) to C, y and an arbitrary real polynomial f(t) and obtain

f0|C| =
∑
x∈C

f(〈x, y〉)

= f(〈x1, y〉) + f(〈x2, y〉) +
∑

x∈C\{x1,x2}
f(〈x, y〉)

≥ 2f

(√
1 + s(C)

2

)
+ (|C| − 2)ε,

where ε = min{f(t) : t ∈ [−1, 1]}. This is equivalent to (4.7.1).

Lemma 4.7.1 implies the following upper bound on s(C).

Lemma 4.7.2. Let C ⊂ Sn−1 be a spherical τ -design and let f(t) be a real polynomial
of degree at most τ which is increasing in [s, +∞). Let ν denote the largest root of the
equation

2f(t) = A,

where A = f0|C| − (|C| − 2)ε and ε = min{f(t) : t ∈ [−1, 1]}. Then

s(C) ≤ 2ν2 − 1. (4.7.2)

Proof. It follows from Lemma 4.7.1 that
√

1 + s(C)

2
≤ ν,

which is equivalent to (4.7.2).

We consider applications of Lemma 4.7.2 with polynomials f(t) of maximal admissible

degree τ which vanish at the zeros of the corresponding Levenshtein polynomial f
(n,s)
τ (t).

This means that f(αi) = 0 for i = 0, 1 . . . , k − 1 and τ = 2k − 1 or f(βi) = 0 for
i = 0, 1 . . . , k and τ = 2k where all parameters are determined by |C| = 1/Lτ (n, s). Then
f0|C| = f(1) and the constant A from Lemma 4.7.2 becomes equal to f(1)− (|C| − 2)ε,
i.e. we have to find the largest root of the equation

2f(t) = f(1)− (|C| − 2)ε. (4.7.3)

In this situation f(t) should be chosen to have ε close to zero. We have k − 1 free
parameters to choose.

Let us consider polynomials f(t) having the k− 1 remaining zeros (i.e. different from the
αi’s or βi’s) in the interval [−1, s). In this case f(t) is increasing in the interval [s, +∞)
and Lemma 4.7.2 can be applied.

Example 4.7.3. One can find the upper bounds on maximal inner product s(C) for 3-
designs in Sn−1 of relatively small cardinalities (i.e. |C| = R(n, 3) + k = 2n + k). The
results are presented in Table 4.14.

Example 4.7.4. We have found the upper bounds on maximal inner product s(C) for
spherical 4-designs of relatively small cardinalities (i.e. |C| = R(n, 4)+k = n(n+3)/2+k).
The results are presented in Table 4.15.
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n |C| = 2n + 1 |C| = 2n + 3 |C| = 2n + 5 |C| = 2n + 7 |C| = 2n + 9
3 7∗ 9 | 11

4 9∗ | 11

5 11∗ 13 | 15

6 13∗ | 15

7 15∗ 17 | 19

8 17∗ 19 | 21

9 19∗ 21• | 23

10 21∗ 23• | 25

11 23∗ 25∗ 27 | 29

12 25∗ 27∗ 29 | 31

13 27∗ 29∗ 31 | 33

14 29∗ 31∗ 33• | 35

15 31∗ 33∗ 35• 37 | 39

16 33∗ 35∗ 37• 39 | 41

17 35∗ 37∗ 39• 41 | 43

18 37∗ 39∗ 41• 43 | 45

19 39∗ 41∗ 43∗ 45 47
20 41∗ 43∗ 45∗ 47 49
21 43∗ 45∗ 47∗ 49• 51
22 45∗ 47∗ 49∗ 51• 53
23 47∗ 49∗ 51∗ 53• 55
24 49∗ 51∗ 53∗ 55• 57

Table 4.13: On 3-designs of odd cardinalities
Key to Table 4.13:

| m all designs of size ≥ m exist (Bajnok [3, 4])

∗ nonexistence proved in [20] (Boyvalenkov-Danev-Nikova)

• nonexistence follows from Theorem 4.6.2 for f(t) = t2 and some i ≥ 1.

n C s(C)
5 13 0.436624441
7 17 0.473873164
8 19 0.516178363
9 21 0.567928898
10 23 0.626508894

Table 4.14: Bounds on s(C) for spherical 3-design
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n C s(C) n C s(C)
3 9 0.454040229 7 35 0.761804242
3 10 0.554044149 7 36 0.782804931
3 11 0.652241258 7 37 0.804097726
3 13 0.864179325 7 38 0.825624795
4 14 0.546306244 8 44 0.821492583
4 15 0.602594523 8 45 0.838448975
4 16 0.659847911 8 46 0.855584935
4 17 0.717303128 8 47 0.872871621
5 20 0.626086394 9 54 0.877235198
5 21 0.663330983 9 55 0.891343646
5 22 0.701357438 9 56 0.905565258
5 23 0.739844530 9 57 0.919885083
6 28 0.724281874 10 65 0.929750218
6 29 0.751888019 10 66 0.941757004
6 30 0.779846135 10 67 0.953836741
6 31 0.808045757 10 68 0.965981019

Table 4.15: Bounds on s(C) for spherical 4-design
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Chapter 5

Moments of spherical codes and
designs

This chapter is based on [11]. We introduce and investigate certain invariants of spherical
codes which we call moments. Such investigations could give information about the
structure of spherical codes and designs and therefore they are useful in dealing with
linear programming bounds.

5.1 Definitions and main properties

In the proofs of the linear programming bounds for spherical codes and designs some
terms on the right hand side of (2.3.1) were neglected. We now consider these terms.

Definition 5.1.1. For a spherical code C ⊂ Sn−1 and any integer i ≥ 1, the number

Mi =
1

ri

ri∑
j=1

(∑
x∈C

vij(x)

)2

is called i-th moment of C.

Some basic properties of the moments are described in the following theorem.

Theorem 5.1.2. a) We have Mi ≥ 0 for every i ≥ 1.

b) M1 = M2 = · · · = Mτ = 0 if and only if C is a τ -design.

c) C has index i if and only if Mi = 0.

d) The formula

Mi = |C|+
∑

x,y∈C,x6=y

P
(n)
i (〈x, y〉) (5.1.1)

holds.

97
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Proof. a) This is obvious.

b) This follows immediately from Definitions 2.7.1 and 5.1.1.

c) This follows from Definitions 2.7.3 and 5.1.1.

d) Apply (2.3.1) to C and f(t) = Pi(t). Since fi = 1 and fj = 0 for j 6= i, the right hand
side equals Mi which proves the assertion.

Since the moments are nonnegative they are usually neglected in (2.3.1). However, very
often good codes have small strengths as spherical designs. This was our motivation to
study the moments.

It follows by Theorem 5.1.2d) that the moments do not depend on the choice of the bases
{vij(x) : 1 ≤ j ≤ ri}. The moments are in close relation with the distance distribution of
codes.

Definition 5.1.3. Let C be a spherical code and x ∈ C. Then the system of nonnegative
integers {At(x) : t ∈ [−1, 1)} given by

At(x) = |{y ∈ C, 〈x, y〉 = t}|
defines the distance distribution of C with respect to x. The system of nonnegative rational
numbers {At : t ∈ [−1, 1)}, where

At =
1

|C|
∑
x∈C

At(x)

is called distance distribution of C.

Notice that antipodal codes have A−1 = A−1(x) = 1 for every x, At(x) = A−t(x) and
At = A−t for every t and x.

Corollary 5.1.4. A spherical code C is antipodal if and only if Mi = 0 for every odd i.

Proof. The necessity is obvious by Definition 5.1.1. For the sufficiency, let us assume
that code C ⊂ Sn−1 is such that Mi = 0 for every odd i. Therefore

∑
x∈C f(x) = 0,

for every odd polynomial f(x). (This is because each real polynomial decomposes into
homogeneous harmonic polynomials - cf. [27, 31]). Let us fix d ∈ C and consider the
polynomial f(x) = 〈x, d〉n where n is odd. So,

0 =
∑
c∈C

f(c) =
∑
c∈C

〈c, d〉n = 1 +
∑

c∈C,c6=d

〈c, d〉n (5.1.2)

If −c 6∈ C then

lim
n→∞

1 +
∑

c∈C,c6=d

〈c, d〉n = 1 + 0.

This is a contradiction.

Using Theorem 5.1.2d), one easily can calculate moments of known codes. In fact, it is
enough to know the inner products and the distance distribution of the code under target.
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Example 5.1.5. The icosahedron is an antipodal (3, 12, 1/
√

5) code which is a spherical
5-design. Therefore we have M1 = M2 = M3 = M4 = M5 = 0 and M2i+1 = 0 for
every integer i ≥ 0. It was proved in [18] that the icosahedron has indices 8 and 14, i.e.
M8 = M14 = 0. We shall determine the remaining moments Mi with i ≤ 20.

The distance distribution of the icosahedron is the system {A−1, A−1/
√

5, A1/
√

5}, where

A−1 = A−1(x) = 1

and
A−1/

√
5 = A−1/

√
5(x) = A1/

√
5 = A−1/

√
5(x) = 5.

As in the proof of Corollary 5.1.4 we obtain

M2k = 12

[
1 + 1.P

(n)
2k (−1) + 5.P

(n)
2k

(
− 1√

5

)
+ 5.P

(n)
2k

(
1√
5

)]

= 24

[
1 + 5P

(n)
2k

(
1√
5

)]
.

Thus we have (for example by using MAPLE) that M6 = 1584/25 = 63.36, M8 = 0
confirmed, M10 = 11856/625 = 18.9696, M12 = 154224/3125 = 49.35168, M14 = 0
confirmed, M16 = 452352/15625 = 28.950528, M18 = 619344/15625 = 39.638016 and
M20 = 672336/3900625 = 1.72118016.

Example 5.1.6. We calculate some moments of the famous regular polytope in four
dimensions known as the 600-cell [28]. It is an antipodal spherical 11-design with indices
14, 16, 18, 22, 26, 28, 34, 38, 46, 58.

It has 120 vertices and its maximal inner product is equal to cos π/5 = (1 +
√

5)/4 ≈
0.80902. This means that it is a (4, 120, (1 +

√
5)/4) code. The remaining inner products

are −1, −(1 +
√

5)/4, ±1/2, ±1/4, ±(
√

5− 1)/4 and 0.

The distance distribution of the 600-cell is given by

A−1 = 1,

A−(1+
√

5)/4 = A(1+
√

5)/4 = A−(
√

5−1)/4 = A(
√

5−1)/4 = 12,

A−1/2 = A1/2 = 20

A0 = 30.

Therefore we have as in the proof of Corollary 5.1.4 and in the previous example

M2k = 240

[
1 + 12P

(n)
2k

(
1 +

√
5

4

)
+ 12P

(n)
2k

(√
5− 1

4

)
+ 20P

(n)
2k

(
1

2

)
+ 15P

(n)
2k (0)

]
.

This implies that the first four nonzero moments of the 600-cell are M12 = 14400/13 ≈
1107.692, M20 = 4800/7 ≈ 685.714, M24 = 576 and M30 = 14400/31 ≈ 464.516.

One can also calculate moments of many feasible (i.e. when the existence is undecided)
classes of good codes and designs.
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5.2 Modified linear programming bounds

In this section we formulate four modifications of the linear programming bounds for
spherical codes and designs. As for the standard linear programming theorems the proofs
follow immediately from the main identity (2.3.1). Notice that all four theorems below
require preliminary information about moments of feasible codes (designs).

Theorem 5.2.1. Let f(t) be a real polynomial such that

(A1) f(t) ≤ 0 for t ∈ [−1, s].

(A2) In the Gegenbauer expansion f(t) =
∑k

i=0 fiPi(t), all coefficients fi satisfy fi ≥ 0
for all i ∈ A = {0, 1, . . . , k}.

Assume that for some (n,M, s) code the numbers Mk satisfy Mk ≥ αk > 0 for all k ∈
B ⊂ A. Then

Mf(1) ≥ M2f0 +
∑

k∈B

fkαk.

Proof. Apply the main identity (2.3.1) to C and f(t). Then the left hand side is at most
Mf(1) as in Theorem 2.3.2 and the right hand side is at least M2f0 +

∑
k∈B fkαk. This

completes the proof.

Theorem 5.2.2. Let f(t) be a real polynomial such that

(B1) f(t) ≥ 0 for t ∈ [−1, s].

(B2) In the Gegenbauer expansion f(t) =
∑k

i=0 fiPi(t), all coefficients fi satisfy fi ≥ 0
for all i ∈ A = {0, 1, . . . , k}.

Assume that for some (n,M, s) code the numbers Mk satisfy Mk ≤ βk for all k ∈ B ⊂ A.
Then

Mf(1) ≤ M2f0 +
∑

k∈B

fkβk.

Proof. As of Theorem 5.2.1.

Theorem 5.2.3. Let f(t) be a real polynomial such that

(C1) f(t) ≤ 0 for t ∈ [−1, 1].

(C2) In the Gegenbauer expansion f(t) =
∑k

i=0 fiPi(t), all coefficients fi satisfy fi ≥ 0
for all i ∈ A = {τ + 1, τ + 2, . . . , k}.

Suppose also that for a τ -design C ⊂ Sn−1 of cardinality M we have Mk ≥ αk > 0 for all
k ∈ B ⊂ A. Then

Mf(1) ≤ M2f0 +
∑

k∈B

fkαk.
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Proof. As in Theorem 5.2.1.

Theorem 5.2.4. Let f(t) be a real polynomial such that

(D1) f(t) ≥ 0 for t ∈ [−1, 1].

(D2) In the Gegenbauer expansion f(t) =
∑k

i=0 fiPi(t), we have fi ≥ 0 for all i ∈ A =
{τ + 1, τ + 2, . . . , k}.

Suppose also that for a τ -design C ⊂ Sn−1 of cardinality M we have Mk ≤ βk for all
k ∈ B ⊂ A. Then

Mf(1) ≥ M2f0 +
∑

k∈B

fkβk.

Proof. As of Theorem 5.2.1.

It is clear by Theorem 5.1.2d) that upper bounds βk exist for every k (these bounds
could be used in Theorems 5.2.2 and 5.2.4). Some good bounds can be obtained by using
suitable polynomials in (2.3.1).

More general, any polynomial which does not change in sign in the interval [−1, s] for
codes (respectively [−1, 1] for designs) gives by (2.3.1) a linear inequality for the rele-
vant moments. A set of such inequalities can be used as input for a conventional linear
programming problem (i.e. it can be investigated by the simplex method).

Example 5.2.5. Let us consider a hypothetical (4, 25, 0.5) code which existence or nonex-
istence would determine the fourth kissing number to be 25 or 24 respectively. We write
the main identity (2.3.1) for C and some polynomial f(t) as

25(f(1)− 25f0) +
∑

x,y∈C,x6=y

f(〈x, y〉) =
k∑

i=1

fiMi.

We assume that f(t) does not change in sign on [−1, 0.5]. Then we neglect the sum on
the left hand side to obtain

k∑
i=1

fiMi ≥ 25(f(1)− 25f0)

when f(t) ≥ 0 for every t ∈ [−1, 0.5] or

k∑
i=1

fiMi ≤ 25(f(1)− 25f0)

when f(t) ≤ 0 for every t ∈ [−1, 0.5].

In this way we obtain a set of linear inequalities with respect to the moments M1, M2,
. . . , Mk. We collect such inequalities together to use them as restrictions in the simplex
method. The objective function can be each of the moments Mi, i = 1, 2, . . . , k either for
a maximization or a minimization problem.
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The first two candidates are the Levenshtein polynomial

f
(4,0.5)
5 (t) =

(
t2 + t +

1

6

)2 (
t− 1

2

)

and the ninth degree polynomial which is produced by SCOD for improving L5(4, 0.5),
namely

t9−2t7+1.844953t5+0.6933373t4−0.2373005t3−0.1680599t2−0.02829665t−0.00149061.

As a third polynomial we take (t+1)(t−1/2)(t2+5/7t+1/14)2. Using the simplex method
we obtain the following inequalities for the moments :

0 ≤ M0 ≤ 13.96103005

0 ≤ M1 ≤ 3.858650822

0 ≤ M2 ≤ 2.282869486

0 ≤ M3 ≤ 1.983304866

0 ≤ M4 ≤ 2.781122920

0 ≤ M5 ≤ 6.035763582

0 ≤ M6 ≤ 63.77551058

0 ≤ M9 ≤ 30.85210010.

5.3 Moments of spherical designs

As usual, the design problem allows more detailed investigation. This is because condi-
tions (C1) and (D1) in Theorems 5.2.3 and 5.2.4 are in fact stronger than necessary.
Indeed, for designs of small cardinalities one usually knows that all inner products belong
to some intervals [a, b] ⊂ [−1, 1]. This helps to obtain better bounds on the moments of
spherical designs.

Let C ⊂ Sn−1 be a spherical τ -design. Denote

`(C) = min{〈x, y〉 : x, y ∈ C}.
Then `(C) equals −1 if and only if C possesses a pair of antipodal points. Since this does
not occur for τ = 2k and R(n, 2k) < |C| < R(n, 2k + 1) the parameter `(C) is nontrivial
(i.e. `(C) > −1) in such cases. This has an impact on moments.

Theorem 5.3.1. Let C ⊂ Sn−1 be a spherical (2k)-design.

a) For every polynomial
f(t) = (t− `(C)) A2(t),

where A(t) = tk + · · · is a k degree polynomial, we have

M2k+1 ≥ a2k+1,2k+1|C| (f0|C| − f(1)) .
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b) For every polynomial
f(t) = (t− s(C))A2(t),

where A(t) = tk + · · · is a k degree polynomial, we have

M2k+1 ≤ a2k+1,2k+1|C| (f0|C| − f(1)) .

Proof. a) We apply the main identity (2.3.1) to C and f(t) =
∑2k+1

i=0 fiP
(n)
i (t). Since C

is a (2k)-design, the right hand side reduces to

f0|C|2 + f2k+1M2k+1 = f0|C|2 + M2k+1/a2k+1,2k+1.

On the left hand side we have

f(1)|C|+
∑

x,y∈C,x6=y

f(〈x, y〉) ≥ f(1)|C|

because the polynomial f(t) is nonnegative in the interval [`(C), s(C)] which contains all
inner products 〈x, y〉, x, y ∈ C. We combine the last two relations to obtain the inequality

M2k+1 ≥ a2k+1,2k+1|C| (f0|C| − f(1)) .

b) This is analogous to a).

Example 5.3.2. Let us consider bounds for moments of some 4-designs of relatively small
cardinalities which existence is undecided. Let C ⊂ Sn−1 be a spherical 4-design. Then
Mi = 0 for 1 ≤ i ≤ 4 and the first ”interesting” moment is M5. Consider the polynomial

f(t) = (t− α)(t2 + at + b)2,

where a and b are parameters to be optimized later and α is either `(C) or s(C). Then,
by Theorem 5.3.1, we obtain

M5 ≥ a5,5|C|(f(1)− f0|C|) = |C|F (`(C), a, b) (5.3.1)

or
M5 ≤ a5,5|C|(f(1)− f0|C|) = |C|F (s(C), a, b), (5.3.2)

respectively. Here a5,5 = (n + 2)(n + 4)/(n2 − 1) does not depend on C, α, a and b, and

F (α, a, b) = (1− α)(1 + a + b)2 − |C|
(
−αb2 +

2ab− α(a2 + 2b)

n
+

3(2a− α)

n(n + 2)

)

(the coefficient f0 is calculated by (2.1.5)).

For particular values of α = `(C) or s(C), we have to optimize function F (α, a, b) with
respect to the parameters a and b. The optimization means maximization for α = `(C)
and minimization for α = s(C). Since F (a, b) is a quadratic form this can be carried out
easily by MAPLE.

The first open case is n = 3, |C| = 10 (it is still unknown if there exists a 10-point
4-design in three dimensions). Since all inner products of such a design must belong to
[−

√
23/27, 0.466), we obtain that 22.1 ≤ M5 ≤ 33.6. (see Examples 4.7.3 and 4.7.4)

Theorem 5.3.1 calls for better lower bounds on `(C) and better upper bounds on s(C).
General results follow from the investigations in Subsection 4.5.2. Some even better
bounds can be obtained in particular cases by using methods from Section 4.7. This will
be investigated in the future.
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Samenvatting

In dit proefschrift wordt onderzoek gedaan naar een aantal problemen die verwantschap
hebben met sferische codes en designs.

In het eerste hoofdstuk wordt een inleiding gegeven tot sferische codes en designs. Er zijn
twee belangrijke problemen te onderscheiden. Enerzijds willen we de precieze waarde (of
een boven- en ondergrens) van de grootst mogelijke kardinaliteit (i.e. A(n, s)) van een
sferische code vaststellen, indien de dimensie n en de maximale cosinus s zijn gegeven.

Aan de andere kant willen we de grootte van een sferisch design minimaliseren voor vaste
dimensie n en sterkte τ . De kleinst mogelijke kardinaliteit van een τ -design in n dimensies
wordt aangegeven met B(n, τ). Het probleem is boven- en ondergrenzen voor B(n, τ) te
vinden (of de precieze waarde).

Het tweede hoofdstuk behandelt de lineaire programmeer technieken die gebruikt worden
voor het vinden van een bovengrens voor A(n, s) en een ondergrens voor B(n, τ). De beste
bovengrens voor A(n, s) werd ontdekt door Levenshtein. Een uitleg van de logica van deze
bound, samen met de eigenschappen van de betrokkene parameters wordt gegeven.

In het derde hoofdstuk worden noodzakelijke en voldoende voorwaarden gegeven voor
het bestaan van verbeteringen van de Levenshtein bounds voor A(n, s). Verder wordt er
onderzoek gedaan naar deze voorwaarden en wordt er aangetoond dat betere grenzen vrij
vaak bestaan.

In het vierde hoofdstuk worden beperkingen afgeleid op de distributie van de optredende
inprodukten van een spferisch design met een relatief kleine kardinaliteit (i.e. dicht bij
de klassieke grenzen). Deze condities blijken voldoende te zijn voor non-existentie in
veel gevallen. Onze methode werkt efficient zowel in kleine dimensies als asymptotisch
voor grote n. Voor τ = 3 en τ = 5 worden nieuwe asymptotische grenzen op de kleinst
mogelijke oneven grootte van τ -designs afgeleid.

Het vijfde en laatste hoofdstuk introduceert en bestudeert bepaalde invarianten van
sferische codes die momenten genoemd worden. Zulk onderzoek zou informatie kunnen
geven over de structuur van sferische codes en designs.
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