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Preface
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The research work was carried out by Technische Universiteit Eindhoven at two depart-
ments: the Control Systems Group at the Department of Electrical Engineering, and the
Control Systems Technology Group at the Department of Mechanical Engineering. Both
groups employed a PhD student. The second thesis, by John Kessels from the Department
of Electrical Engineering, is expected to appear in 2007.
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Chapter 1

Introduction

1.1 Trends in automotive transportation

Transportation of persons and goods over land, sea, and air is increasing worldwide, as
has been the case since the dawn of mankind. An overview of the total current and ex-
pected energy use in various transportation sectors is given in [56]. Looking at passenger
vehicles, several trends can be noticed. The mobility of people is increasing, both the
number of people and the distances covered. Today’s customers have higher demands
from new vehicles, such as:

• more performance,e.g., a more powerful engine,

• more comfort,e.g., a larger and heavier vehicle and climate control,

• more safety,e.g., airbags

• more luxury,e.g., navigation and entertainment systems.

Another trend is that mechanical and hydraulic components in the vehicle, are being re-
placed by electrical devices, which can be operated independently from the engine. An
example is the drive-by-wire concept. These trends lead to more power consumption in
a vehicle, and especially the electric power consumption is increasing. At the same time,
customers expect a lower fuel consumption, and governments impose tight restrictions on
emissions.

Over the last two decades, the electric power consumption in automobiles increased sig-
nificantly, approximately 4% every year, and in the near future, even higher power de-
mands are expected [35, 53]. At this moment, the average electric power consumption
in modern vehicles ranges between 200 W and 1 kW, depending on the vehicle and its
accessories [35]. Considering the fact that a belt driven 14 V alternator typically supplies
1.5 kW at full load, power limitations cannot be neglected in the next years.

To keep up with future power demands, the automobile industry has suggested new 42 V
power net topologies which should extend (or replace) the traditional 14 V power net from
present vehicles. These topologies make use of more efficient high-power components.
The 42 V power net has been extensively discussed in literature, see,e.g., [19,21,35,53].

Before coming to the problem formulation of this thesis, a brief overview of recent de-
velopments in automotive engineering to reduce fuel consumption and exhaust emissions
will be given.



Section 1.2

1.2 Solutions for fuel and exhaust emissions reduction

To prevent depletion of fossil fuels and to limit air pollution, the restrictions on fuel
consumption and emissions are increasing. One way to meet these requirements, is to
maintain a conventional vehicle configuration, but to improve the vehicle design and the
components. By making vehicles smaller, lighter, and more aerodynamic, the power nec-
essary to propel the vehicle can be reduced, and thereby also the fuel consumption.

Fuel reduction can also be obtained by improving the drive train components, especially
the engine. The working principle of internal combustion engines has been the same for
over a century, but in the last 20 years, large improvements have been made. Although
the improvement in fuel economy of modern engines is rather small, huge improvements
have been made in lowering various exhaust emissions. This is done partly by replacing
the traditional carburetor by a direct injection system in combination with a computer
controlled motor management system that adjusts the amount of fuel, the air to fuel ratio,
and the ignition timing, such that emissions are reduced. However, the largest improve-
ment comes from using exhaust aftertreatment systems, especially the three-way catalytic
converter, see,e.g., [6].

A more radical way to lower fuel consumption and emissions, is to use alternative drive
train configurations, of which the most popular will be discussed below.

1.2.1 Continuously variable transmissions

A continuously variable transmission (CVT) can obtain a continuous range of gear ratios
instead of the usual 4 or 5 of a manual or automatic transmission. This has the benefit that
the engine can run at the engine speed with the lowest fuel consumption. On the other
hand, the CVT itself has a lower efficiency than a manual transmission.

In [11], an electromechanically actuated and slip-controlled CVT is shown to have supe-
rior efficiency over a conventional CVT.

In [66], a CVT is combined with a flywheel for energy storage, and a controller is designed
that improves the drivability. In [39], a CVT is combined with a flywheel, such that the
engine can be operated intermittently. This results in a reduction of fuel consumption and
exhaust emissions.

In the Zero Inertia project [64, 70, 71], a CVT is combined with a flywheel and a plane-
tary gear set. This is done to obtain a faster change in engine speed, thereby improving
drivability and fuel economy.

1.2.2 Electric vehicles

Electric vehicles [12, 20] use electric motors for propulsion. The electric power is pro-
vided by a battery. The battery is recharged when the vehicle is not used, using the main
electricity supply, which is a time consuming process. The electricity is produced at
power plants using a variety of primary energy sources. These power plants are usually
operated at their most efficient operating point and have relatively low emissions. The
vehicle itself does not produce any emissions. Compared to fossil fuels, batteries have a

12



Chapter 1. Introduction

low energy content per weight ratio. This limits the radius of action of electric vehicles,
making them mostly suitable for urban traffic and special transport applications, such as
shuttle services.

1.2.3 Fuel cell vehicles

Fuel cell vehicles [20, 73] are electric vehicles that use a fuel cell instead of or next to a
battery to produce electric power. A fuel cell converts hydrogen and oxygen into water.
During this process, electric energy becomes available. Although a fuel cell does not
produce any exhaust emissions itself, the production of hydrogen does require another
energy source and does produce exhaust emissions. Because hydrogen has a higher energy
content per weight ratio than a battery, a fuel cell vehicle has a much larger radius of
action. Furthermore, refilling the hydrogen tank can be done much faster than recharging
a battery. Currently, fuel cells are still in development and an infrastructure for supply of
hydrogen is not yet available.

1.2.4 Hybrid electric vehicles

Hybrid electric vehicles (HEV) [20, 28, 51] combine a fuel combustion engine and one
or more electric motors and use a battery for temporary storage of electric energy. They
are charge sustaining, meaning that the battery is recharged during driving, usually at
beneficial moments. HEV’s come in various drive train configurations, the most common
are the series and the parallel HEV.

Series hybrid electric vehicles are electric vehicles that use a combustion engine with an
alternator and a battery to provide the electric power. The engine is usually operated inter-
mittently in its most efficient operating point and turned off where possible. The topology
is shown in Fig. 1.1. A drawback of this topology is that the energy is first converted from
mechanical to electrical by the alternator and then back again to mechanical by the motor,
both introducing losses.

fuel
Engine Alternator Motor

Battery

Figure 1.1: Series hybrid electric vehicle topology

Parallel hybrid electric vehicles are more like conventional vehicles. The topology is
shown in Fig. 1.2. They use both the combustion engine and an integrated starter generator
(ISG) for propulsion. The battery is charged when the ISG is used in generator mode, and
discharged when using the ISG in motor mode. If the ISG is mounted directly on the
crank shaft, it can only be operated simultaneously with the engine. If it is mounted
on the drive shaft, after the clutch, the engine can be turned off during propulsion. An
example currently in production is the Honda Civic with Integrated Motor Assist (IMA)
[26], which has an ISG mounted directly on the crank shaft.
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fuel
Engine

ISG

Gearbox

Battery

Figure 1.2: Parallel hybrid electric vehicle topology

The Toyota Prius [29], which has been on the market since 2000, has a combined series
parallel drive train using a planetary gear set.

Hybrid electric vehicles require an energy management strategy to control the power split
between the engine and the electric motors. Energy management can also be applied to
the electric power system of a vehicle with a conventional drive train.

1.2.5 Advanced power net control

The vehicular electric power system, or simply power net, usually consists of an alternator
that generates electric power, a storage device, such as a battery, and various electric
consumers in the vehicle [21].

In a conventional vehicle, the alternator tries to maintain a fixed voltage level on the power
net. A traditional lead-acid battery is present for supplying key-off loads and for making
the power net more robust against peak-power demands. Although the battery offers
freedom to the alternator in deciding when to generate power, this freedom is generally
not used.

The research described in this thesis exploits this freedom as it replaces the conventional
alternator with an advanced alternator that is power controlled. The alternator is directly
coupled to the engine’s crankshaft, so by controlling its output power, it will influence
the operating point of the combustion engine, and thus the fuel use of the vehicle. An
energy management strategy can be used to control the alternator such that it generates
the required amount of electric energy in a more beneficial way by temporarily charging
and discharging the battery.

1.3 Energy management

The energy management problem of an automotive vehicle deals with controlling the
amount of power exchange and other available input variables such that desired behavior
of the vehicle is obtained. Desired behavior can be expressed by demands on,e.g., fuel
consumption, exhaust emissions, component wear, and comfort, while satisfying restric-
tions on operating points of components and energy storage levels.
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1.3.1 Energy management as an optimization problem

The energy management problem can be formulated as an optimization problem, where
a cost function is minimized subject to constraints. Because energy is temporarily stored
and later retrieved, the optimization problem is usually defined over a time horizon instead
of at a single time instant.

The energy management problem can be formulated as a continuous time dynamic opti-
mization problem, where the vehicle is represented by a dynamic system:

ẋ(t) = f(x(t), u(t), t) (1.1)

which has to be controlled, such that the cost criterion:∫ tn

0

γ(x(t), u(t), t) dt (1.2)

is minimized, satisfying the constraints:

φ(x(t), u(t), t) ≤ 0 ψ(x(t), u(t), t) = 0 (1.3)

wherex(t) are the state variables, such as vehicle speed, engine speed, and energy storage
levels andu(t) are the control variables. The control variables can be continuous, for
instance, the power flow, discrete, such as engine on/off, or complementary, meaning that
only one of a set of variables can be nonzero at a time, like the gear position.

Demands on vehicle behavior that should be strictly met can be written as constraints.
Demands that are less strict can be incorporated into the cost function.

If the energy management problem is formulated in discrete time, it can be rewritten as
a static optimization problem. This is discussed in detail in Appendix A, which also
presents an overview of suitable optimization algorithms.

The optimization problem can be carried out off-line for a specific driving cycle. This
gives a lower bound for what can be achieved in practice. For online application of an
energy management controller, computation time is limited and a prediction of the future
driving cycle is usually not available, which requires modifications to the optimization
problem.

If a limited prediction horizon is available, the optimization problem can be solved with
a Model Predictive Control (MPC) structure, which uses a receding horizon [50]. This
means that the optimization is carried out at each time step over a limited prediction
horizon. The first value of the optimal control sequence is implemented. The next time
step a new optimization is done using an updated prediction and new measurement data.

If no prediction is available, instantaneous optimization at each time instant can be done,
but this requires modifications to the cost function, such that a trade-off is made between
benefits now and expected costs later and vice versa.

1.3.2 Energy management of hybrid electric vehicles

In recent years, a lot of research is carried out in the field of hybrid electric vehicles
(HEV). Especially the research activities on energy management strategies for parallel
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HEV’s (see,e.g., [74] for an overview) address many useful concepts that are strongly
related to the research presented in this thesis. Although the electric power requirements
in a parallel HEV are higher than in a conventional vehicle, both configurations can use
the same concepts for controlling the amount of stored electric power. Because of the
relevance to the work presented in this thesis, a short literature overview will be given on
energy management strategies for HEV.

Strategies that are based on heuristics can easily be implemented in a real vehicle by using
a rule-based strategy [7] or by using fuzzy logic [58]. Although these strategies can offer
a significant improvement in energy efficiency, they do not guarantee an optimal result
in all situations. Consequently, strategies are developed that are based on optimization
techniques.

To find the optimal solution, techniques as linear programming [68], optimal control [17,
60], and especially Dynamic Programming [3,4,31,48,62] have been studied. In general,
these techniques do not offer an online solution, because they assume that the future
driving cycle is entirely known. Nevertheless, their result can be used as a bench-mark
for the performance of other strategies, or to derive rules for a rule-based strategy. If only
the present state of the vehicle is considered, optimization at each time instant can be
beneficial, but profits will be limited, see [32,57].

Another possibility is to perform an instantaneous optimization over the current time step,
using a cost function that makes a trade off between fuel consumption, battery use and
optionally a penalty on undesired behavior, such as done,e.g., in [13,61,75].

A different approach is taken in [40, 47]. Instead of focussing on one particular driving
cycle, a certain set of driving cycles is considered, resulting in a stochastic optimization
approach. A difficulty will be to cover a real-world driving situation with a set of indi-
vidual driving cycles. Promising results on the prediction of the vehicle load in the near
future make it possible to execute the optimization over a short horizon [3]. One step
further is to incorporate the optimization into a Model Predictive Control framework, as
done,e.g., in [4], such that the energy management strategy will be able to anticipate on
upcoming events. The benefits of such a strategy are directly related to the quality of the
prediction information as well as the length of the prediction horizon.

1.3.3 Relation with similar problems

The energy management problem for automotive vehicles shows some similarities with
other applications and active fields of research.

The problem is very similar to electricity production and scheduling. See,e.g., [59, 76]
for an overview and [33,34] for some recent results. The method described in [69] served
as an inspiration for the strategy presented in Chapter 3.

Power transmission expansion planning deals with the problem of determining the optimal
number of lines that should be added to an existing power network to supply the forecasted
load as economically as possible, subject to operating constraints, see,e.g., [1,2]. Because
the number of lines is discrete, this is usually solved as an integer programming problem.

Other related applications include warehouse storing, stock market trading and logistics.
Related problems in mathematics are the Knap-Sack problem, the shortest path problem,
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and the traveling salesman problem, which are described,e.g., in [14].

1.4 Problem definition

1.4.1 Open issues

Although a lot of research is recently carried out on energy management for automotive
vehicles, there are still several open issues, some of which will be addressed in this thesis.

Many energy management strategies are designed for hybrid electric vehicles, but not
specifically for the electric power net in a conventional vehicle. These strategies are often
based on heuristics. Heuristic strategies are often tuned by hand using trial and error or
fitted on the optimal solution for a known cycle, but not on the physical explanation of this
solution. An analysis and explanation on where the profits come from, is usually lacking
or incomplete.

1.4.2 Goals of this thesis

The goals of the research described in this thesis are the following:

• Investigate the potential fuel and exhaust emissions reduction that can be obtained
by applying energy management to the electric power system of a passenger vehicle
with a conventional drive train.

• Design an online implementable strategy that is derived directly from the global
optimization problem.

• Implement and test the strategy on a Hardware-in-the-Loop test setup.

• Apply the approach to mild hardware extensions of the vehicle: a vehicle with
a dual storage power net and a parallel hybrid electric vehicle with an integrated
starter generator.

1.4.3 Main contributions of this thesis

The main contributions of this thesis are the following:

• The vehicle model is reduced drastically, such that it can be used in an optimization.

• By analyzing the typical component characteristics, it is explained why and how
much fuel reduction can be obtained.

• It is explained why for this application, shifting the engine to an operating point
with a higher efficiency will not necessarily lead to a lower fuel consumption.

• Several optimization methods have been studied and compared with respect to their
suitability to solve the energy management problem.
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• An online implementable strategy is analytically derived from the global optimiza-
tion problem. This strategy does not require prediction of the future, while yielding
results that are close to the global optimum.

1.5 Layout of this thesis

This thesis is built up as follows.

In Chapter 2, the vehicle configuration is described, a detailed simulation model and
a simplified control model are derived and the relevant component characteristics are
modeled.

In Chapter 3, energy management strategies for a conventional vehicle are presented.
First, the global optimization problem is formulated and suitable solvers are discussed.
Further, the problem is simplified to reduce computation time. Then, a strategy is derived
that does not require a prediction of the future, such that it can be implemented online.
The strategies are compared by simulations.

In Chapter 4, the potential benefits of energy management are analyzed. First, the com-
ponent characteristics that give rise to fuel reduction are discussed. Subsequently, a set
of engineering rules is derived that predict the amount of fuel reduction. Finally, the
predicted results are compared with results obtained with global optimization.

In Chapter 5, the conventional vehicle topology is expanded with a dual storage power
net, combining a battery and an ultracapacitor. Energy management strategies are derived
and evaluated.

In Chapter 6, two parallel hybrid vehicle topologies are studied. A suitable energy man-
agement strategy is derived and the performance of the topologies is compared.

In Chapter 7, the energy management strategies for the conventional and the dual storage
power net are tested on the detailed simulation model and on a Hardware-in-the-Loop test
setup.

In Chapter 8, conclusions and an outlook for future research are given.

Appendix A gives an overview of optimization methods that are studied for this research.

Appendix B presents a more formal description and stability analysis of the strategy de-
scribed in Section 3.5.
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Chapter 2

Vehicle Model

2.1 Introduction

This chapter describes the simulation environment that is used for developing and evaluat-
ing energy management strategies. Two different models are distinguished: a simulation
model to analyze the energy management strategy and a control model as part of the strat-
egy itself. Both models only cover vehicle characteristics that are relevant for energy
management. The latter one requires drastic model reductions, to make it useable for
an optimization algorithm. These reduced models also give a better insight in how fuel
reduction can be obtained, as will be the topic of Chapter 4.

The vehicle model that is used within this thesis is based on a Ford Mondeo built in 2001,
with a 2.0 liter Spark Ignition engine and a 5 gear manual transmission. A picture of the
vehicle is shown in Fig. 2.1.

Figure 2.1: Ford Mondeo

For the power net, two varieties are used: a conventional 14 V, and an advanced 42 V
power net.

The 14 V power net consists of a 1.5 kW alternator and a 12 V Absorption Glass Mat
(AGM) lead-acid battery with a capacity of 60 Ah, which corresponds to an energy ca-
pacity of 3 MJ.

The 42 V power net consists of a 5 kW alternator and a 36 V AGM lead-acid battery with
a capacity of 27.5 Ah, which corresponds to an energy capacity of 4 MJ.

Both power nets are equipped with a programmable electric load on top of the electric
loads already present in the vehicle.



Section 2.2

This chapter is built up as follows. The power flow in the vehicle is described in Sec-
tion 2.2. Two model structures are discussed in Section 2.3. The drive train is mod-
eled in Section 2.4. The engine is modeled in Section 2.5. The alternator is modeled in
Section 2.6. The battery is modeled in Section 2.7. The electric loads are modeled in
Section 2.8. Conclusions are given in Section 2.9.

2.2 Power flow in a vehicle

This thesis focusses on vehicles with a conventional drive train and a manual transmission.
The power flow in such a vehicle is shown in Fig. 2.2.

fuel
Engine

Pm
Drive Train

Alternator

Pd

Pg Pe

Electric
Load

Battery
Efficiency

Pl

Pb Ps Es

Figure 2.2: Power flow in a conventional vehicle

The power flow in the vehicle starts with fuel that is injected in the combustion engine.
The resulting mechanical powerPm splits up into two directions: one partPd goes to
the drive train for vehicle propulsion, whereas the other partPg goes to the alternator.
The alternator provides electric powerPe for the electric loadsPl but also takes care of
charging the batteryPb. Contrary to the other components, the power flow of the battery
can be positive as well as negative. In the end, all power, except for losses, is used for
vehicle propulsion and for electric devices connected to the power net.

The drive train block contains all drive train components including clutch, gears, wheels,
and vehicle inertia. The alternator is connected to the engine by a belt with a fixed gear
ratio.

2.3 Model structure

Depending on the purpose of the model, two model classes can be distinguished: a simu-
lation model and a control model.

The simulation model is used to analyze and validate the control actions of an energy
management strategy. This is a complex dynamic vehicle model with a flexible interface
for connecting the energy management strategy, similar to the real vehicle.

The control model is incorporated in the energy management strategy itself. By evaluating
this model, the strategy determines which control actions should be taken. The control
model is less complex and runs at a much lower sampling frequency than the simulation
model, such that real-time implementation of the energy management strategy can be
realized.
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Chapter 2. Vehicle Model

Both models only cover the longitudinal dynamics,i.e., the relation between engine torque
and vehicle speed on a straight road. Phenomena like suspension and roadholding in
curves are neglected as those are not expected to be influenced heavily by the energy
management strategy.

2.3.1 Simulation model

The simulation model accurately represents all relevant characteristics of a real vehicle,
and is used to evaluate energy management strategies and their influence on drivability.

The drive train is represented by a forward facing (or integrating) model, which means
that the input is the engine throttle and the output is the resulting vehicle speed. The
throttle is controlled by a driver model that tries to track the desired speed.

A schematic overview of the model is given in Fig. 2.3, also showing the physical con-
nections that are present between subsystems. The simulation model is described in more
detail and validated with real vehicle measurement data in [37]. This model will only be
used in Chapter 7.

Driver
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Cycle Combustion

Engine
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Energy
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Brakes / Clutch / Gear

Vehicle speed
Electr. load

Vehicle
signals

+

Trq. compensation

Fuel

Figure 2.3: Forward facing simulation model

2.3.2 Control model

The control model is used by an optimization routine to compute the optimal control
signals that minimize the fuel consumption. It is also used for evaluation of the fuel
consumption.

To reduce complexity, the drive train is represented by a backward facing or differentiating
model. This model assumes that the desired velocity is tracked exactly. The inputs are the
desired velocity and gear position, and the outputs are the engine speed and the propulsion
torque. By adding the alternator torque, the fuel consumption is computed. The alternator
torque depends on the electric power delivered to the electric loads and the battery. A
schematic overview of the control model is given in Fig. 2.4.

The control model uses simple power-based models for the drive train, the engine, the
alternator, the battery, and the loads, which are described below.
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Figure 2.4: Backward facing control model

2.4 Drive train

The drive train consists of clutch, transmission, final drive, wheels, and inertia. They
are not modeled in detail, as only the relation between vehicle speed, engine speed, and
drive train torque is of interest. For a given vehicle speed profilev(t), road slopeα(t), and
selected gear ratiogr(t), the corresponding engine speed and torque needed for propulsion
can be calculated as follows.

The forceFd(t) necessary to propel the vehicle consists of inertia, air drag, road slope and
rolling resistance:

Fd(t) = M v̇(t) + 1
2
ρCdAd v(t)

2 +M g sin(α(t)) + Cr M g cos(α(t)) (2.1)

By neglecting losses in the transmission, the torque at the crank shaft becomes:

τd(t) =
wr

fr

1

gr(t)
Fd(t) (2.2)

The engine speed is given by:

ω(t) =
fr

wr

gr(t) v(t) (2.3)

The power required for propulsion is given by:

Pd(t) = ω(t) τd(t) (2.4)

When the engine speed drops below idle speed, the clutch is opened, the drive train torque
becomes zero, and the engine keeps running at idle speed. The engine power becomes
equal to the alternator power and the drive train power becomes equal to the brake power.

In Table 2.1, the parameters are explained and their values as used in this thesis are given.

2.4.1 Driving cycle

All simulations in this thesis will be done for the New European Driving Cycle (NEDC)
[22] of which the vehicle speed and gear position are shown in Fig. 2.5. It consists of 4
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Table 2.1: Parameter values for the simulation model

Quantity Symbol Value Unit

Mass M 1400 kg
Frontal area Ad 2 m2

Air drag coefficient Cd 0.3 -
Rolling resistance Cr 0.015 -
Wheel radius wr 0.3 m
Final drive ratio fr 4.0 -
Gear ratio gr 3.4 - 2.1 - 1.4 - 1.0 - 0.77 -
Idle speed ωi 73.3 rad/s
Air density ρ 1.2 kg/m3

Gravity g 9.8 m/s2

identical urban cycles and one extra-urban cycle. The corresponding engine speed, torque
and power are shown in Fig. 2.6. This cycle is rather conservative for this vehicle as the
engine speed and torque remain far below their maximum allowed values.
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Figure 2.5: New European Driving Cycle

2.5 Internal combustion engine

The two most commonly used internal combustion engines (ICE) are spark ignition (SI)
engines using gasoline and compression ignition (CI) engines using diesel [30,67].

2.5.1 Combustion

Gasoline and diesel fuels are both complex hydro-carbons HyCz. Air is a mixture of
mostly nitrogen (N2) and oxygen (O2). When fuel is combusted, ideally the hydrogen and
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Figure 2.6: New European Driving Cycle

oxygen turn into water (H2O) and the carbon and oxygen turn into carbon-dioxide (CO2).
However, in reality, several other reactions take place. If the air-to-fuel ratio is too low,
carbon and oxygen partly turn into toxic carbon-monoxide (CO). This is especially the
case for a cold engine and in the highest torque region. At high temperatures, nitrogen
reacts with oxygen, becoming NOx which is toxic an done of the causes of smog. Partly
unburned fuel turns into various other hydro-carbons (HC) HvCw.

Neglecting the molar ratios, the chemical reaction equation for gasoline is roughly as
follows:

HyCz +O2 +N2 → H2O + CO2 + CO +NOx +HvCw (2.5)

Diesel also contains sulfur (S) and produces considerable amounts of particle matter
(PM), leading to the following reaction equation:

HuCv + S +O2 +N2 → H2O + CO2 + CO +NOx +HvCw + (2.6)

SO2 + PM

A more detailed description of the chemical reactions and properties of the exhaust emis-
sions can,e.g., be found in [6].

2.5.2 Power-based model

For simplicity, and by lack of accurate data, the temperature dependency and the dynamic
behavior of the internal combustion engine are neglected. The engine is represented by a
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nonlinear static map that describes the fuel rateṁ as function of the engine speedω, and
the torque delivered by the engineτm:

ṁ = f̂(τm, ω) (2.7)

For given engine speed, the mechanical power delivered by the enginePm can be derived
from the engine torque as follows:

Pm = τm ω (2.8)

Using this relation, the fuel map can also be written as a nonlinear function of engine
speed and power:

ṁ = f(Pm, ω) (2.9)

The fuel map of a Spark Ignition (SI) engine is displayed in Fig. 2.7. In this figure,
fuel consumption curves are drawn for different engine speeds as function of mechanical
power. As can be seen, the fuel map can be approximately represented by a linear relation
between the mechanical power and the fuel rate for each engine speed:

f(Pm, ω) ≈ f0(ω) +
kf

hf

Pm (2.10)

The fuel consumption at zero torquef0(ω) is caused by mechanical friction and pumping
losses in the engine. It increases with the engine size, the number of cylinders, and the
engine speed. The dimensionless factorkf has a typical value of 2.5, which corresponds
to a combustion efficiency of 40%. Parameterhf is the lower heating value of fuel,i.e., the
chemical energy content of fuel, with a typical value of 44 kJ/g for gasoline and 49 kJ/g
for diesel. The chemical power of the fuel rate is given by:

Pf = hf ṁ (2.11)

The affine relation between fuel and engine power corresponds with the so-called Willans
lines model [30], which is a scaling method used to create numerical models of IC engines
of any desired size.

In automotive engineering, the fuel map of an engine is usually visualized by normalizing
the fuel consumption with respect to the power delivered by the engine. This so called
Brake Specific Fuel Consumption (BSFC)βice, which is usually expressed in g/kWh, is
defined as:

βice = 3.6 · 106 ṁ

Pm

= 3.6 · 106 ṁ

ω τm
(2.12)

The dimensionless efficiency of the engineηice is inverse to the BSFC:

ηice =
Pm

Pf

=
ω τm
hf ṁ

=
3.6 · 106

hf βice

(2.13)
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Figure 2.7: Fuel map of a SI engine for various engine speeds

The efficiency is usually visualized as a contour plot of engine speed and torque, as done
in Fig. 2.8. The efficiency is zero at zero torque, because there, fuel is combusted, but no
useful power is provided. For increasing torque, the efficiency increases, because the fuel
use at zero torque,f0 becomes relatively less. For negative torques,ṁ is still positive,
which results in a negative efficiency.

Although the efficiency varies drastically over the operating range, the absolute fuel use
increases more or less linearly with the delivered power, as shown in Fig. 2.7. This is
a very important observation with respect to energy management, as will be further ex-
plained in Section 4.2.1.
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Figure 2.8: Efficiency map of an SI engine

As is illustrated in the efficiency map in Fig. 2.8, the operating range of the fuel converter
is bounded by a drag torque and a maximum torque that are both speed dependent. The
drag torque is defined as the engine torque when no fuel is injected. Translated to power
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this becomes:

f0(ω) +
kf

hf

Pm min(ω) = 0 ⇒ Pm min(ω) = −hf

kf

f0(ω) (2.14)

The fuel map can then also be described as:

ṁ ≈ kf

hf

(Pm − Pm min(ω)) (2.15)

The fuel consumption over a driving cycle can be computed by:

m =

∫ tn

0

ṁ dt ≈ kf

hf

∫ tn

0

(Pm − Pm min(ω))dt (2.16)

2.5.3 Exhaust emissions

Compared to fuel, emissions are more dependent on dynamic phenomena, such as tem-
perature, air moisture, and the dynamic change in engine torque and speed. However,
static maps are the only available information on them.

The CO2 and CO maps of an SI engine are shown in Fig. 2.9, while Fig. 2.10 shows the
maps of HC and NOx. CO2 is more or less proportional with fuel, except for the high
power area, where a lower air-to-fuel ratio is used, leading to more CO and HC, but less
NOx. NOx shows a more nonlinear non-convex behavior.
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Figure 2.9: CO2 and CO map for various engine speeds

2.6 Alternator

Alternators as used in vehicles are equipped with a voltage regulator that tries to maintain
a constant power net voltage. The alternators used in this project are equipped with a
voltage regulator of which the voltage set-point can be adjusted, thereby also affecting the
resulting current to the battery and the loads. An outer control loop is applied that controls
the delivered electric power by measuring the current and manipulating the voltage.
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Figure 2.10: HC and NOx map for various engine speeds

The remaining dynamics are sufficiently fast to represent the alternator by a static nonlin-
ear map that describes the mechanical power as function of the electrical power and the
rotational speed:

Pg = g(Pe, ω) (2.17)

The measured map of the 42 V 5 kW alternator is shown for various engine speeds in
Fig. 2.11. Similar to the engine, the alternator can be approximated by a linear relation
between electrical powerPe and mechanical powerPg with a constant slopekg:

Pg ≈ g0(ω) + kg Pe(ω) (2.18)

The slopekg has a typical value around 1.25, which corresponds to a conversion efficiency
of 80%. The termg0(ω) is caused by mechanical friction and increases with the speed.
The operating range of the alternator is bounded between:

0 ≤ Pe ≤ Pe max(ω) ⇒ Pg min(ω) ≤ Pg ≤ Pg max(ω) (2.19)

where:

Pg min(ω) = g0(ω) and Pg max(ω) = g0(ω) + kg Pe max (2.20)

2.7 Battery

A lead-acid battery has a complex nonlinear electro-chemical behavior. First, its electric
behavior will be illustrated using a simplified linear electric circuit. Subsequently, the
losses during charging and discharging are approximated by a power-based model.
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Figure 2.11: 42 V 5 kW alternator map for various engine speeds
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Figure 2.12: Battery modeled as an RC circuit

2.7.1 Electric circuit

A battery behaves roughly like a capacitor and a resistor in series together with a resistor
in parallel, as illustrated in Fig. 2.12.

The resistor in seriesRs causes a voltage drop and thus power losses during (dis)-charging,
where a higher value ofRs causes higher losses. The resistor in parallelRp causes a leak
current, resulting in self-discharging of the battery, where a higher value ofRp means
a lower self-discharging rate. The self-discharge of a battery becomes significant if a
vehicle is not used for several weeks, but can be neglected during driving, resulting in
Fig. 2.13.
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Figure 2.13: Battery modeled as a simplified RC circuit
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The charge level of the battery is given by a simple integrator:

Qc(t) = Qc(0) +

∫ t

0

I(τ) dτ (2.21)

The state of charge (SOC) represents the relative charge in the battery:

SOC =
Qc

Qc max

· 100% (2.22)

The relation between the open circuit voltageUc and the state of charge of a lead-acid
battery is highly nonlinear, as illustrated in Fig. 2.14. However, between 20 and 100%
state of charge, the voltage is more or less linear with the state of charge, but with a large
offsetUc(0). It can be modeled as:

Uc(t) = Uc(0) +
1

C

∫ t

0

I(τ) dτ (2.23)
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Figure 2.14: Open circuit voltage of a 6-cell lead-acid battery

Using Kirchoff’s laws, the electric equation for the battery then becomes:

Ub(t) = Uc(t) + Ur(t) = Uc(0) +
1

C

∫ t

0

I(τ) dτ +RI(t) (2.24)

2.7.2 Power-based model

Although a battery has a nonlinear dynamic behavior, it’s most important property for this
research is that it has losses during charging and discharging that increase with the stored
or retrieved power. To be able to incorporate the battery losses in the control model, the
battery characteristic is modeled as a power based model:

Pb = Ps + Ploss(Ps, Es, T ) (2.25)
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Chapter 2. Vehicle Model

Pb represents the power entering or leaving the battery terminals, andPs represents the
power actually stored in the battery.Ploss represents the battery losses that depend on
the storage power, the energy level in the batteryEs, and the temperatureT . The charg-
ing losses increase with theSOE, whereas the discharging losses decrease withSOE.
Usually, they are both acceptable around 70%SOE.

Assuming the variation in energy level and temperature is small, (2.25) reduces to:

Pb = Ps + Ploss(Ps) (2.26)

The battery voltage and current can only be measured at the terminals, which makes it
difficult to identify the losses. Therefore, the losses are identified using an accurate simu-
lation model of the 42 V battery, consisting of multiple nonlinear resistors and capacitors.
A sinusoidal current with an amplitude of 50 A and a frequency of 0.01 Hz is applied
and the corresponding voltage of the main capacitor and at the terminals are measured.
The resulting power losses are shown in Fig. 2.15. As can be seen, the energy losses
are approximately 10% for charging and 5% for discharging. There is some hysteresis
due to the dynamic behavior of the battery, which becomes more obvious when higher
frequencies are used.
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Figure 2.15: Battery losses of a detailed simulation model

The energy level of the battery is given by a simple integrator:

Es(t) = Es(0) +

∫ t

0

Ps(τ) dτ (2.27)

The state of energy (SOE) represents the relative energy level in the battery:

SOE =
Es

Es max

· 100% (2.28)

If the open circuit voltageUc would be constant,SOE andSOC are identical. In reality,
Uc varies a little, as was illustrated in Fig. 2.14. In this thesis,SOE will be used, as all
models are power-based.
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2.8 Electric loads

There are many electric consumers present in a vehicle. Some of them are required for
running the engine, such as the motor management system, the ignition system and the
fuel pump. Others are for safety, such as lighting. Others are for driver and passenger
comfort, such as window heating and audio and navigation equipment.

Some loads, such as light bulbs and window heating, behave as resistors, which means that
their current increases linearly with the power net voltage, and their power consumption
quadratically. Other more advanced loads, such as audio equipment, have an internal
voltage regulator, which means that their power consumption is independent from the
power net voltage. For convenience, the electric loads are modeled as one lumped power
consumer.

2.9 Conclusion

A control model of the vehicle is derived that uses severe simplifications of the compo-
nents in order to come to a model that can be used by an optimization algorithm. The
engine and the alternator are modeled as static lookup tables and the battery is approx-
imated as a power-based model. The engine and the alternator roughly show a linear
behavior. This property will be used in Chapter 4 to explain what potential fuel can be
obtained using an energy management strategy to control the alternator.
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Chapter 3

Energy Management Strategies

3.1 Introduction

This chapter presents a practically implementable energy management strategy that is
directly derived from global optimization methods. This strategy is obtained by taking
the following steps.

First a formal problem definition is given, by expressing the total fuel consumption and
emissions along the driving cycle as a function of the control variables. To find the opti-
mal control sequence for the alternator, Dynamic Programming has been applied. Under
the assumption that the entire driving cycle is known in advance, the method calculates the
power set-points for the alternator. For the problem formulation considered here, several
modifications of the algorithm are carried out, thereby reducing the amount of compu-
tations. Nevertheless, the computation time of Dynamic Programming still remains too
large for a practical real-world application.

To come to a solution that is implementable in a vehicle, additional modifications are
necessary. First, the vehicle model is further simplified, such that the problem formula-
tion reduces to a simpler Quadratic Programming structure. However, this solution still
depends on the assumption that information about the driving cycle in the near future is
available. Second, based on the Quadratic Programming formulation, a strategy is de-
signed that only requires present vehicle information and uses a single state to capture
information of the past.

This chapter is built up as follows. Section 3.2 formulates the energy management prob-
lem as an optimization problem. The Dynamic Programming strategy is explained in
Section 3.3. Section 3.4 reduces the problem to a Quadratic Programming problem. Sec-
tion 3.5 presents an online implementable strategy. The performances of all individual
strategies are compared by simulations in Section 3.6. Conclusions are given in Sec-
tion 3.7.

The contents of this chapter are published earlier in [46], which continued on the work
presented in [15,42,54,55].

3.2 Problem definition

The idea of controlling the alternator power is initiated by the fact that energy losses in
the internal combustion engine, alternator, and battery change according to their operat-
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ing point. Minimizing these energy losses will result in an energy management strategy
achieving higher fuel economy.

3.2.1 Control objective

The control objective of energy management is to lower the fuel consumption and exhaust
emissions while satisfying several constraints. This control problem can be formulated as
a dynamic optimization problem. Using discrete time, the system dynamics (1.1) can be
described as:

x(k + 1) = f(x(k), u(k), k) (3.1)

The cost criterion (1.2) then becomes:

n∑
0

γ(x(k), u(k), k) ∆t (3.2)

and the constraints (1.3) become:

φ(x(k), u(k), k) ≤ 0 ψ(x(k), u(k), k) = 0 (3.3)

In this application, the only relevant state is the energy level in the batteryEs. By using a
discrete time version of (2.27), (3.1) becomes:

Es(k + 1) = Es(k) + Ps(k) ∆t (3.4)

Assuming the signalsω(k), Pd(k), andPl(k) to be known, and combining the character-
istics of all components, given by:

Pb = Ps + Ploss(Ps) (3.5)

Pe = Pl + Pb (3.6)

Pg = g(Pe, ω) (3.7)

Pm = max(Pd + Pg, Pm min) (3.8)

ṁ = f(Pm, ω) (3.9)

the fuel rate can be expressed as a function of the battery storage power:

ṁ(ω(k), Pd(k), Pl(k), Ps(k)) = ṁ(Ps(k), k) (3.10)

Instead of minimizing the fuel use only, the cost function can also be a weighted sum of
the fuel use and the exhaust emissions by using:

γ(Ps, k) = w1 ṁ(Ps, k) + w2CO2(Ps, k) + w3CO(Ps, k) + (3.11)

w4NOx(Ps, k) + w5HC(Ps, k)
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Chapter 3. Energy Management Strategies

wherewi are weighting factors for the respective mass flows.

The cost function expresses the fuel use and the emissions over the driving cycle in the
time intervalt = ∆t · [ 0, . . . , n ], so (3.2) becomes:

J =
n∑

k=0

γ(Ps(k), k) (3.12)

By choosingPs as decision variablez, the characteristics of all components are included
in the cost function. The actual controlled input in the vehicle isPe. Because the relation
betweenPs andPe is known,Pe can be computed from the optimalPs.

The operating range of the components is limited, so bounds have to be set on the en-
gine power, electrical power, and battery power throughput. This can be done using the
following constraints:

Pm min ≤ Pm ≤ Pm max (3.13)

Pe min ≤ Pe ≤ Pe max (3.14)

Pb min ≤ Pb ≤ Pb max (3.15)

Because the relations (2.17) and (2.26) are invertible, the constraints (3.13)-(3.15) can be
translated to time varying bounds onPs. Combining them leads to one lower and upper
bound forPs at each time instant:

Ps min ≤ Ps ≤ Ps max (3.16)

The bounds on the battery energy levelEs can also be translated to constraints onPs:

Es min − Es(0) ≤
∑k

i=0 Ps(i) ∆t ≤ Es max − Es(0) ∀ k ∈ [0, n] (3.17)

A charge-sustaining vehicle requires some kind of endpoint penalty to guarantee that the
state of charge of the battery remains in a neighborhood around a desired value. An
endpoint constraint will be used here, requiring the state of energy at the end of the cycle
to be the same as at the beginning:

Es(tn) = Es(0) ⇒
n∑

k=0

Ps(k) = 0 (3.18)

3.2.2 Applied control techniques

The nonlinear optimization problem can be carried out using nonlinear problem solvers.
The problem is defined such that it can be easily incorporated into an optimization tech-
nique calledDynamic Programming[10], as will be done in Section 3.3.

Because computation time is limited in online applications, the nonlinear optimization
problem will be approximated by aQuadratic Programming[23] problem in Section 3.4.
For practical data, the problem is convex, which makes solution easier.

In reality, only a limited prediction of the future driving cycle will be available. A possible
control technique that is able to use this prediction isModel Predictive Control[50], which
will be the topic of Section 3.5.
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3.3 Dynamic Programming

After discretization, the optimization problem formulated in the previous section can be
seen as a multi-step decision problem: at each time instant, one has to decide which
alternator setpoint, for the next time interval, will achieve the smallest objective value
over a certain trajectory, while satisfying the constraints. To find this optimal control
sequence, Dynamic Programming (DP) [10] will be applied.

DP is commonly used for global optimization of the energy management problem of
hybrid electric vehicles [3,4,31,48]. For the problem formulation considered here, several
modifications are carried out, thereby reducing the amount of computations.

3.3.1 Implementation DP algorithm

Equations (2.9), (2.17), (2.26), and (3.4) define the fuel consumption of a dynamic system
with one control inputPs and one state variableEs. The sample moments are indicated
by variablek = [1, . . . , n] with n defined by the length of the driving cycle:

n =

⌈
tn
∆t

⌉
(3.19)

Due to the bounds (3.17), only energy levels betweenEs min andEs max will be used. This
area is mapped onto a fixed grid with distance∆Es, such that exactlym+1 energy levels
are considered, with:

m =

⌊
Es max − Es min

∆Es

⌋
(3.20)

The relation between the input variablePs and the stateEs is an integrator. As will be
explained at the end of this section, it is computationally beneficial to select a grid forPs

that is directly related to∆Es. Therefore∆Ps is chosen as:

∆Ps =
∆Es

∆t
(3.21)

The control inputPs should respect the constraint (3.16). It will be selected from a discrete
set of input values, separated with grid distance∆Ps. The set of feasible input grid points
at each time instantk can be defined as:

Ps(k) = {u | Ps min(k) ≤ u(k)∆Ps ≤ Ps max(k) , u ∈ N} (3.22)

The operating range of the battery reduces further by considering only those trajectories
that are possible between an initial energy level of the batteryEs(0) and a desired end state
Es(n). For convenience, bothEs(0) andEs(n) are restricted to one of the grid points for
Es. Consequently, both energy levels can be represented by an integere ∈ [0, . . . ,m] :

Initial energy levele0 : Es(0) = Es min + e0∆Es

Final energy levelen : Es(n) = Es min + en∆Es
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Due to the endpoint constraint (3.18),en = e0 holds.

The feasible area forEs along the driving cycle is restricted by six individual constraints,
i.e., the upper and lower bound onPs, the upper and lower bound onEs, the initial state
Es(0), and the end stateEs(n). Together, they define stricter boundaries onEs, given by:

E∗
s min = max( Es min , E

1
s min , E

2
s min ) (3.23)

E∗
s max = min( Es max , E

1
s max , E

2
s max ) (3.24)

where:

E1
s min(k) = Es(0) +

k∑
i=1

Ps min(i)∆t (3.25)

E2
s min(k) = Es(n)−

n∑
i=k+1

Ps max(i)∆t (3.26)

E1
s max(k) = Es(0) +

k∑
i=1

Ps max(i)∆t (3.27)

E2
s max(k) = Es(n)−

n∑
i=k+1

Ps min(i)∆t (3.28)

These boundaries are illustrated in Fig. 3.1. Typically, the feasible area has a diamond-
shape. Starting from an initial stateEs(0), it is possible to charge or discharge the battery
until one of the boundariesEs max orEs min becomes active. It is allowed to stay between
those boundaries, as long as the end of the driving cycle is sufficiently far away. In the
end, it is necessary to return toEs(n), so the feasible area ofEs converges according to
the limitations onPs.

k
n0

e0

Es

Es(k)

Es max
1 Es max

2

Es min
2Es min

1

Es min

Es min

Es max

E+ s enEs min E+ s

Figure 3.1: Feasible energy window for battery along driving cycle

The energy levelse that are feasible are different at each time instant. Given the bound-
aries (3.23) and (3.24), it is possible to define a setR that represents all feasible combi-
nations(e, k) for a given driving cycle:

R =

{
(e, k)

∣∣∣∣∣ E∗
s min(k) ≤ Es min + e∆Es ≤ E∗

s max(k)

1 ≤ k ≤ n , 0 ≤ e ≤ m

}
(3.29)
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The DP algorithm creates a cost matrixR ∈ R(m+1)×n and fills this matrix recursively
from k = n down tok = 1. In literature,R is often called the cost-to-go matrix. Here,
it represents the amount of fuel and emissions necessary to reach the end of the driving
cycle:

Re,k = the minimum cumulative cost for driving the remainder of the driving cycle,
starting att = k∆t with an initial stateEs(k) = Es min + e∆Es

Using (3.22) and (3.29), it is possible to formulate a recursive definition for matrixR.
The DP algorithm uses the expressions (3.30) and (3.31) to calculate the contents ofR:

Ren,n = 0 (3.30)

Re,k = min
u ∈ Ps(k)
(e, k) ∈ R

(e+ u, k + 1) ∈ R

(Re+u,k+1 + γ(u∆Ps, k) ∆t )

for k = [n− 1, . . . , 1]

(3.31)

From (3.31) it should become clear why it is beneficial to select∆Es and∆Ps according
to (3.21). Consider the dynamics of the battery as described in (3.4). If the present state
Es(k) is selected such that it corresponds exactly to one of them+1 grid points, then the
next stateEs(k + 1) will also be an energy level that matches exactly to a grid point, so
there is no interpolation needed. This explains why the first term in (3.31) can be taken
directly from cost matrixR, without further calculations. Consequently, the calculation
time of the DP-algorithm reduces significantly.

The sequence ofPs that achieves minimum fuel consumption is not stored inR. The
optimal values are calculated afterwards, by starting atEs(0) and then following the path
of minimal cost, as it has been stored inR. Given this sequence forPs(k), the requested
set-points for the alternator are found using (2.17) and (2.26).

All calculations required for DP can be done in an acceptable amount of time due to the
simple dynamics (only the energy level in the battery) and all the restrictions onEs and
Ps. However, the number of computations increases rapidly with the driving cycle length
and the grid density.

3.4 Quadratic Programming

Although the computation time of the Dynamic Programming routine has been reduced
significantly, as discussed in Section 3.3, it is still very time consuming for long driv-
ing cycles, so for real-time implementation other modifications need to be considered. In
this section, simplifications will be introduced to achieve a Quadratic Programming struc-
ture (QP) [23], which has the advantage that a global minimum is guaranteed and short
computation times can be achieved, provided that the problem is convex. Limiting the
prediction length of the driving cycle in the optimization is the subject of Section 3.5.
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A QP problem is given by a quadratic cost criterion subject to linear constraints:

min
z

J(z) = 1
2
zT H z + hT z + h0 subject to Az ≤ b (3.32)

3.4.1 Model approximation

To obtain a quadratic cost function, the nonlinear relation forγ(Ps) in (3.11) is approxi-
mated as a convex quadratic relation:

γ(Ps) ≈ ϕ2 P
2
s + ϕ1 Ps + ϕ0 , ϕ2 > 0 (3.33)

where parametersϕi are time varying, as they depend onω, Pd, andPl. The approxima-
tion is done at each time instant, for the valid range ofPs, given by (3.16).

3.4.2 Cost function

The cost function is the weighted sum of fuel use and emissions over the driving cycle.
By discretization one may obtain:

J =
n∑

k=1

γ(Ps(k)) ∆t (3.34)

The sample time∆t may be omitted, since it is constant.

Returning to (3.32), this means thatH is diagonal with:

H(k, k) = 2ϕ2(k) (3.35)

The other terms become:

h(k) = ϕ1(k) and h0 =
n∑

k=1

ϕ0(k) (3.36)

The decision variables are:

z = [ Ps(1) · · ·Ps(n) ]T (3.37)

3.4.3 Constraints

The bounds onPs (3.16), that include the bounds onPm, Pe, andPb are still present.
The bounds onEs can be written as linear constraints onPs, by using the following
discretization:

Es(k) = Es(0) +
k∑

i=1

Ps(i) ∆t (3.38)
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The equality constraint (3.18) becomes:

Es(n) = Es(0) ⇒
n∑

k=1

Ps(k) = 0 (3.39)

From (3.16), (3.38), and (3.39) it is easy to constructA andb in (3.32).

3.4.4 Solution

When only the upper and lower bounds onPs (3.16) and the equality constraint (3.39)
are taken into account, the exact solution of the problem can be solved efficiently with
a routine described in [69]. If the upper and lower bound onEs or other constraints are
taken into account, a general QP solver must be used.

3.5 Model Predictive Control

When the complete driving cycle is known a priori, the optimization problem has to be
solved only once. However, if only a limited prediction horizon is available, both the DP
and QP problem can be used within a Model Predictive Control (MPC) structure using
a receding horizon [50]. This means that the optimization is carried out at each time
step over a limited prediction horizon. The first value of the optimal control sequence is
implemented. The next time step a new optimization is done using an updated prediction
and new measurement data.

In [4], DP optimization is used within an MPC framework for an HEV. As shown in [54],
for short prediction horizons, the variation inPs and thus the performance is limited by
the endpoint constraint onEs. Inspired by [69], a new approach based on QP that does
not require a prediction has been developed and will be presented below.

3.5.1 Reduction of the QP problem

If only the cost function (3.34) and the equality constraint (3.39) are considered, the QP
problem can be solved analytically by introducing the Lagrange function:

L(z, λ) =
n∑

k=1

{ ϕ2(k)Ps(k)
2 + ϕ1(k)Ps(k) + ϕ0(k) } − λ

n∑
k=1

Ps(k) (3.40)

The optimal solution can be calculated by solving:

∂L(z, λ)

∂z
= 0 and

∂L(z, λ)

∂λ
= 0 (3.41)

The solution is given by:

P o
s (k) =

λ− ϕ1(k)

2ϕ2(k)
(3.42)
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where:

λ =
n∑

k=1

ϕ1(k)

2ϕ2(k)
/

n∑
k=1

1

2ϕ2(k)
(3.43)

The incremental costs are given by:

∂γ(Ps)

∂Ps

= 2ϕ2(k)Ps(k) + ϕ1(k) (3.44)

Substituting (3.42) in (3.44) yields:

∂γ(Ps)

∂Ps

∣∣∣∣
P o

s

= 2ϕ2(k)
λ− ϕ1(k)

2ϕ2(k)
+ ϕ1(k) = λ (3.45)

which means that the optimal solution is characterized by equal incremental costλ at each
time instant.

3.5.2 Elimination of the prediction horizon

Although for the computation ofP o
s (k) only current valuesϕ1(k) andϕ2(k) are needed,

computation of the value ofλ requires knowledge ofϕ1 andϕ2 over the entire driving
cycle. When a prediction of the complete cycle is not available, an estimate ofλ can be
used. However, if this value is too low,Es will increase on the long run, whereas it will
decrease if the estimate is chosen too low.

Long term drift ofEs can be prevented by adaptingλ online, based on the measuredEs.
This can for instance be done using the following PI-type controller:

λ(k + 1) = λ0 +KP (Es(0)− Es(k)) +KI

k∑
i=1

(Es(0)− Es(i))∆t (3.46)

whereλ0 is an initial guess andKP , KI > 0.

BecausePs is proportional withλ, andEs is the integral ofPs, the closed loop system
becomes a discrete time version of a time varying second order dynamic system:

Es(k + 1) = Es(k) +
∆t

2ϕ2(k)
{ λ0 − ϕ1(k) +KP (Es(0)− Es(k)) (3.47)

+ KI

k∑
i=1

(Es(0)− Es(i))∆t }

If the initial valueλ0 is chosen too high,Es will increase, which will lead to a lower value
of λ. If λ0 is chosen too low,Es will decrease, which will lead to a higher value ofλ.

The feedback ofEs is meant to avoid draining or overcharging the battery in the long
run, but short term fluctuations ofEs should still be possible, so the bandwidth of the
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PI-controller should be chosen rather low. The stability of this control strategy and a
conventional MPC strategy is analyzed in Appendix B.

As an alternative to the PI-controller (3.46), it is also possible to use MPC with zone
control, which means thatλ is only adapted ifEs exceeds some boundary, see,e.g., [72].

For givenλ, computingP o
s (k) using (3.42) is equivalent to solving at each time instantk :

P o
s (k) = arg min

Ps(k)
{ ϕ2(k)Ps(k)

2 + ϕ1(k)Ps(k) + ϕ0(k)− λ(k)Ps(k) } (3.48)

Instead of the quadratic approximation, the original nonlinear cost function can also be
used:

P o
s (k) = arg min

Ps(k)
{ γ(Ps(k), k)− λ(k)Ps(k) } (3.49)

This can be solved using DP with a horizon length of 1 on a dense grid.

Equation (3.49) provides a nice physical interpretation of the control strategy. At each
time instant the actual incremental cost for storing energy is compared withλ(k), which
can be seen as the average incremental cost of the past. Energy is stored when generating
now is more beneficial than average, whereas it is retrieved when it is less beneficial.

The bounds onPs can be respected by saturation:

P ′
s(k) = min(max(Ps min(k), P o

s (k)), Ps max(k)) (3.50)

This is a suboptimal solution, which doesn’t guarantee stability.

3.6 Simulations

3.6.1 Model

Simulations are done for the Ford Mondeo, as described in Section 2.1, equipped with the
42 V power net. Simulations are done for the New European Driving Cycle (NEDC). For
the electric power request, constant loads of 500, 1000, and 2000 W are used.

The battery has an energy capacity ofEcap = 4 · 106 J and is operated around 70%SOE,
because the efficiencies for both charging and discharging in this range are acceptable.
The battery losses are approximated as quadratic with the stored power, such that (2.26)
reduces to:

Pb = Ps + b P 2
s (3.51)

Parameterb has a value of5 · 10−5 W−1, which gives an energy efficiency of 95% at
1000 W and 90% at 2000 W.

When the drive train power is negative and the clutch is closed, the drive train power is
partly delivered by the internal combustion engine (which has a negative drag power), by
the alternator, and by the brakes. Because regenerative braking delivers electrical power
without extra fuel use, it is expected that it will be used as much as possible. The brakes
are only used when the desired deceleration power is larger than the maximum negative
power that can be taken up by the engine and the alternator.
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3.6.2 Strategies

The following strategies are implemented and their results will be compared:

BL Baseline strategy where the alternator power is equal to the requested load.

DP This strategy solves the DP problem once for the complete driving cycle.

QP This strategy solves the QP problem once for the complete driving cycle.

QP1 QP at each time step with adaptedλ using (3.42), (3.50), and (3.46).

DP1 DP at each time step with adaptedλ using (3.49) and (3.46).

The DP and QP strategies require knowledge of the entire driving cycle. The QP1 and
DP1 strategies are causal as they do not need any prediction. They do require knowledge
of the currentω(k), Pd(k), Pl(k), andEs(k).

To limit the computation time, the DP strategy is used with an input grid of 100 W and a
state grid of 100 J. The DP1 strategy is used with an input grid of 10 W and does not need
a state grid.

The PI-controller (3.46) is designed as follows. Forλ0 the value of the Lagrange multi-
plier resulting from the global QP optimization is used. The value depends on the electric
load, a typical value isλ0 = 2.7.

KP andKI are designed such that for average values ofϕ1(t) andϕ2(t), (3.47) becomes
a critically damped second order system with a bandwidth of 10−3 rad/s. The average
values ofϕ1(t) andϕ2(t) are:

ϕ̃1 = 2.5 and ϕ̃2 = 2 · 10−4 (3.52)

The corresponding values ofKP andKI then become:

KP = 6.7 · 10−7 and KI = 3.3 · 10−4 (3.53)

The QP1 and DP1 strategy do not guarantee that the endpoint constraint is exactly sat-
isfied. The difference inSOE is accounted for in the fuel consumption using the initial
value ofλ :

mc =
n∑

k=1

ṁ(k)− λ0 (Es(n)− Es(0)) (3.54)

3.6.3 Results

The fuel consumption and emissions are evaluated with the control model described in
Section 2.3.2 using the nonlinear fuel and alternator map and the quadratic battery losses.

When the cost function represents only the fuel consumption, it turns out that for this case
theCO2, CO, andNOx emissions are also reduced significantly. However, the emission
of HC increases. Therefore, a weighted sum of fuel andHC emission is used as cost
function. The weighting factors in (3.11) arew1 = w5 = 1 andw2 = w3 = w4 = 0. This
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time, all emissions are reduced, at the cost of a slight decrease in fuel reduction. The fuel
consumption is given in Table 3.1. The savings with respect to the baseline strategy for
the various loads are presented in Fig. 3.2, Fig. 3.3, and Fig. 3.4.

Table 3.1: Fuel Consumption

Pl 500 W 1000 W 2000 W

Strategy Fuel Use [g] Fuel Use [g] Fuel Use [g]

BL 556.157 589.862 661.464

DP 545.806 580.549 655.460

QP 546.524 581.140 655.374

QP1 546.456 581.057 655.259

DP1 545.613 580.693 655.434
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Figure 3.2: Fuel and emissions reduction forPl = 500 W
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Figure 3.3: Fuel and emissions reduction forPl = 1000 W

The resulting trajectories ofPs andPe for the DP strategy withPl = 1000 W are shown
in Fig. 3.5. As can be seen, the optimization anticipates on regenerative braking phases
and generates less in between.

Figure 3.6 shows theSOE for all strategies. All trajectories ofSOE show a similar
behavior. The variation inSOE is small, because of the large capacity of the battery.
This justifies that for this simulation, the battery efficiency is chosen independently ofEs.

The trajectories of the adaptiveλ for the DP1 and QP1 strategies are also shown in
Fig. 3.6. The value ofλ varies slightly around its initial value.
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Figure 3.6: Battery state of energy and adaptedλ for Pl = 1000 W

3.6.4 Evaluation

The simulations show that the strategies are effective, as they all succeed in lowering
the fuel consumption and the exhaust emissions. The results might be improved by fine
tuning the weighting factors of the cost function.

Most of the profit comes from regenerative braking, which delivers a certain amount of
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energy for free. As will be explained in Section 4.3.2, the baseline already exploits a part
of the free energy from regenerative braking and that part increases with increasing load.
Therefore the relative fuel savings of a strategy exploiting the full regenerative braking
potential compared to the baseline are higher at low electric powers.

Both Dynamic Programming and Quadratic Programming do not find the global optimum
of the original nonlinear optimization problem. The DP algorithm uses the original non-
linear cost criterion, but restricts itself to a grid, whereas the QP algorithm finds the global
optimum of a quadratic approximation of the original problem. The small difference be-
tween DP and QP for fuel use andCO2 indicates that these terms in the nonlinear cost
function are approximated adequately by a QP problem, and that the chosen grid is not
too restrictive for the DP problem. For the other emissions, that show more non-smooth
behavior, the differences between DP and QP are larger, because the QP based methods
use smooth convex approximations.

The adaptive strategies QP1 and DP1, that do not using future knowledge, perform equally
well. For some loads, the DP1 strategy outscores the DP strategy, because of its finer input
grid.

The DP1 strategy is the one to choose for, because of its good results and because it is
easy implementable online. However, realtime implementation in a vehicle of the DP1
strategy still has some requirements.

Accurate measurements of the current values ofω(k), Pd(k), Pl(k), andEs(k) are re-
quired. A measurement ofω is usually available in a vehicle.Pd cannot be measured
directly, but it is possible to measureτd or to estimate it based on the throttle position.
Pl can be measured simply using a voltage and a current sensor.Es can not be measured
directly, but can be estimated using measurements ofUb andIb.

Furthermore, the alternator must be equipped with a power control loop that manipu-
lates the alternator voltage such that the desiredPe is realized. This will be addressed in
Chapter 7, where the DP1 strategy will be implemented on the simulation model and a
hardware-in-the-loop test setup.

The performance is limited by the losses that occur during charging and discharging of
the battery. As an alternative, or in addition, an ultracapacitor can be used, which has a
much higher efficiency, but also a lower capacity. This will be addressed in Chapter 5.

The strategies presented here are based on optimization using the component characteris-
tics of a specific vehicle. They are easy to adapt for a different vehicle by replacing these
component characteristics.

Because the realtime strategies do not use information of the entire driving cycle, it is
expected that they will also perform well for different driving cycles or real world driving.
Furthermore, the few controller parameters are not fine-tuned for a specific driving cycle
or vehicle configuration, so this method is likely more robust with regard to performance
than existing heuristic strategies, although this has not been verified yet.
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3.7 Conclusion

Several energy management strategies for the electrical power net are presented, that use
either a prediction of the future or information about the current state of the vehicle, to
reduce the fuel consumption and exhaust emissions over a driving cycle.

Simulations show that applying energy management on the vehicle power net is effective.
With the degree of freedom considered here and the component characteristics used, a
fuel reduction of 2% can be obtained, while at the same time reducing the emissions even
more. The largest part of the fuel reduction is obtained with regenerative braking.

Application of energy management on the vehicle power net does not require changes to
the drive train and is therefore cheap to implement. The DP1 strategy is the most suitable
for online implementation, as it exploits the non-convexity of the cost function and does
not require a prediction of the future. It does require measurement of the actual engine
speed and torque and the electric load.

The strategies can also be applied to a mild hybrid electric vehicle with an integrated
starter generator. The only difference is that the lower bound on the alternator power is
negative instead of zero. The approach can be extended to vehicle topologies with more
degrees of freedom, as will be done in Chapter 5 and Chapter 6.
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Chapter 4

Fuel Reduction Potential

4.1 Introduction

In the previous chapter, energy management strategies have been developed and tested.
To explain the results, this chapter investigates the potential fuel reduction that can be ob-
tained with regenerative braking and more advanced energy management. This is done by
analyzing the typical characteristics of components that are directly related to the power
flow in the vehicle. It is explained why for this application, shifting the engine to an oper-
ating point with a higher efficiency will not necessarily lead to a lower fuel consumption.

Subsequently, engineering rules are presented to estimate the amount of fuel reduction
that can be expected for each strategy. The characteristics of components are included as
input parameters to make the method general applicable. This makes it easy to predict the
influence of component sizing when designing a vehicle.

To show the value of the engineering rules, the potential fuel reduction is computed for a
specific vehicle configuration and driving cycle and compared with simulation results.

This chapter is built up as follows: The concept of energy management including regen-
erative braking will be handled in Section 4.2. The engineering rules to predict the per-
formance of an energy management strategy are presented in Section 4.3. In Section 4.4,
the expected performance is compared with simulation results. Finally, conclusions are
given in Section 4.5.

The contents of this chapter will be published in [44], of which a preliminary version was
presented as [43].

4.2 Energy management

Energy management strategies shift the operating points of energy converting compo-
nents, such that the losses are reduced. In the situation considered in this thesis, only
the alternator power is controlled, thereby shifting the engine torque, which should lead
to a lower fuel consumption. This section takes a closer look at the fuel consumption
characteristics of an engine and explains how fuel savings can be obtained.



Section 4.2

4.2.1 Efficiency improvement versus fuel reduction

As can be seen in Fig. 2.8, the efficiency of the combustion engine varies drastically over
the operating range. This may give the impression that a large fuel reduction can be
obtained by a small shift in engine torque, by manipulating the alternator power. It will
be shown here, that this is not the case.

It is easy to assume that increasing the efficiency will result in a lower fuel consumption.
In some situations this is true,e.g., the gear shifting problem where the requested engine
power is predefined and freedom exists in the engine speed by selecting the optimal gear
shifting pattern. Because the engine power is fixed at each time instant, a higher efficiency
corresponds to a lower fuel rate and results in a lower fuel consumption for a driving cycle.

However, the energy management problem considered in this thesis is not solved by sim-
ply bringing the engine to an area with a higher efficiency, as will be explained below.

In a vehicle with a conventional drive train and manual transmission, the engine speed
is controlled by the driver, so only the engine torque can be altered. Fig. 4.1 shows
the fuel rate vs. mechanical power for a particular engine speed. The power required
for propulsion, is indicated byPd. Depending on the requested alternator powerPe, the
engine moves to the operating pointPm = Pd + Pg. The corresponding change in fuel
consumption∆ṁ depends directly on the slope of the fuel map and the alternator map,
leading to the definition of the incremental costλ:

λ =
∂Pf

∂Pe

= hf
∂ṁ

∂Pm

∂Pg

∂Pe

(4.1)
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Figure 4.1: Explanation of the incremental cost

Additional electric energy can be produced cheaply at moments whenλ is low. There-
fore, an effective strategy should compare the incremental cost at each time instant and
store electric energy whenλ is low and retrieve it when it is high. This does not nec-
essarily correspond to shifting the engine to the high efficiency area. This can be seen
from Fig. 4.2, where a linear, a convex and a concave fuel curve and their corresponding
efficiency curves are drawn. For all three cases, the efficiency increases for increasing
power, because the fuel consumption at zero powerf0(ω) becomes relatively less.
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Figure 4.2: Fuel and efficiency curves

By looking at the slope of the fuel map it turns out that for the convex fuel curve, it
is cheaper to generate in the low torque area, whereas for the concave fuel curve, it is
cheaper to generate in the high torque area. For the linear curve, it does not matter where
electricity is generated.

For most engines, the changes inλ are rather small over a large range of operating con-
ditions. This enables the use of the approximation (2.10), but limits the fuel reduction
that can be obtained with an electric energy management system. When battery losses
are taken into account, the differences of the fuel map must be larger than the additional
losses of storing and retrieving energy, which further reduces the potential.

4.2.2 Regenerative braking

When a vehicle is decelerating, kinetic energy becomes available, causing a negative drive
train torque. As long as the clutch is closed, a part of this energy is absorbed by the engine
(which has a negative drag torque). The remaining part can be absorbed by the brakes that
convert it into useless heat and wear, but it can also be used by the alternator to convert it
into useful electric energy. When the clutch is engaged, the kinetic energy can no longer
be used by the engine or the alternator, so it will all be absorbed by the brakes.

Because regenerative braking delivers electrical power with no extra fuel consumption, it
should be used as much as possible. When the clutch is closed, the brakes should only be
used if the desired deceleration torque exceeds the maximum negative torque that can be
delivered by the engine and the alternator.

The potential of regenerative braking can be increased by altering the drive train config-
uration such that the alternator is connected to the drive train instead of to the engine.
In this case, generating can be continued when the clutch is open and the vehicle is still
decelerating. A drawback is that no electric power can be generated when the vehicle
is standing still, so electricity is drawn from the battery. This configuration is further
investigated in Chapter 6.
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4.2.3 Start-stop operation

When the vehicle is standing still, the engine runs at idle speed and provides the torque
requested by the alternator to supply the electric loads. The engine can also be turned off,
which saves fuel. The electric loads that are still active are supplied by the battery, which
should be recharged when the engine is running again. Furthermore, restarting the engine
requires electric energy and leads to additional wear of the engine, starter, and battery.

4.2.4 Hybrid electric vehicles

The analysis presented in this chapter also applies to mild hybrid electric vehicles with
an integrated starter generator (ISG) that is mounted directly on the crank shaft of the
engine, such as the Honda Insight [26] and the Honda Civic IMA (Integrated Motor As-
sist). The only difference is thatPe min is negative. There, the engine and the ISG are
always operating simultaneously and there is no freedom in the engine speed. Fuel re-
duction is obtained mostly by the fact that a smaller engine can be used, because the ISG
can be used for boosting to obtain a similar performance as a larger engine. A smaller
engine has smaller friction and pumping losses, and thus a smaller drag torque. This re-
sults in less fuel consumption during propulsion, and also leaves more energy available
for regenerative braking. Furthermore, the engine is turned off during standstill.

Full hybrid electric vehicles, such as the Toyota Prius [29], have both freedom in the
engine speed and torque, and the engine and the electric motor can be operated indepen-
dently. This makes the energy management problem more complex and lies beyond the
scope of this thesis.

4.3 Engineering rules

This section presents a set of engineering rules to predict the amount of fuel reduction that
can be obtained with regenerative braking and with a more advanced energy management
strategy compared to a baseline strategy for a given vehicle configuration and driving cy-
cle. This is done using the linear approximations of the fuel map (2.10) and the alternator
map (2.18). The battery is assumed to be ideal, such that (2.26) reduces to:

Pb = Ps (4.2)

4.3.1 Baseline strategy

The baseline strategy is defined such that the alternator always generates exactly what is
requested, so the battery is not used:

Pe = Pl ⇒ Pg = g0(ω) + kg Pl (4.3)

For a given speed and gear profile, the corresponding engine speedω and propulsion
powerPd can be computed as shown in Section 2.4. By adding the alternator power, the
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total mechanical power becomes:

Pp = Pd + Pg (4.4)

The power delivered by the engine is then given by:

Pm = max(Pp, Pm min) (4.5)

Using the linear approximation of the fuel map (2.10), the fuel consumption can be esti-
mated by the following simple equation:

mbl =
kf

hf

∫ tn

0

(Pm − Pm min) dt (4.6)

It turns out that the baseline strategy already uses some of the regenerative braking poten-
tial. During deceleration periods wherePd < Pm min, some or all of the electrical power
for the load is generated without using fuel. This is illustrated for the last 400 s of the
NEDC in Fig. 4.3, where the mechanical energy that can be obtained for free and used for
generating electric power is indicated by the solid areas. This amount of free mechanical
energy can be calculated as follows:

Pg regen bl = −min(max(Pm min − Pg, Pd), Pm min − Pg min) (4.7)

+Pm min − Pg min

The corresponding electric power is then given by:

Pe regen bl =
1

kg

Pg regen bl (4.8)

If the baseline strategy would not exploit the regenerative braking potential at all, the fuel
consumption is given by:

m∗
bl =

kf

hf

∫ tn

0

(P ∗
m − Pm min) dt (4.9)

whereP ∗
m is defined as:

P ∗
m = max(Pd, Pm min) + Pg (4.10)

The amount of fuel that is saved by exploiting the regenerative braking potential is given
by:

∆mregen bl =
kf

hf

∫ tn

0

Pg regen bl dt (4.11)

The amount of electric energy that is obtained for free increases withPg and thus with the
requested load.
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Figure 4.3: Regenerative braking potential of the baseline strategy

4.3.2 Regenerative braking strategy

The regenerative braking strategy as will be considered in this chapter is defined as fol-
lows. During normal operation, the alternator generates exactly what is requested. During
deceleration phases, it generates the maximum amount of electrical power that does not
cost fuel. If this is more than what is requested at that moment, the surplus of electrical
energy is stored in the battery. After the braking period, the electric load is supplied by
the battery, till it reaches the originalSOE level. From that point on, the load is provided
by the alternator again.

During normal operation, the additional fuel consumption is more or less proportional
with the electric energy provided, so the fuel saving that can be obtained with regenerative
braking depends on the amount of electric energy that can be generated for free during
deceleration periods.

The mechanical power that can be used for free during braking is the part between the
engine drag power minus the alternator drag power, and the engine drag power minus the
maximum alternator power. This is illustrated by the solid areas in Fig. 4.4. The amount
of power can be calculated as follows:

Pg regen = −min(max(Pm min − Pg max, Pd), Pm min − Pg min) (4.12)

+Pm min − Pg min

The corresponding electric power is then given by:

Pe regen =
1

kg

Pg regen (4.13)
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The corresponding fuel consumption that can be saved is given by:

∆mregen =
kf

hf

∫ tn

0

Pg regen dt (4.14)
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Figure 4.4: Regenerative braking potential of a regenerative braking strategy

The amount of electrical energy that can be obtained for free with regenerative braking
does not depend on the requested electric load, but only on the power needed for propul-
sion and the alternator capacityPe max. How much of the electric energy is stored for later
usage, does depend on the load.

The amount of electrical energy that is already obtained for free by the baseline strategy
increases with the requested load. This means that for higher electric loads, the additional
improvement of a real regenerative braking strategy will decrease.

4.3.3 Advanced energy management strategy

On top of regenerative braking, an additional fuel reduction can be obtained by using a
more advanced energy management strategy, that exploits differences in the incremental
cost and only generates electric power when these costs are low, as explained in Sec-
tion 4.2.1. Its potential depends on the differences between the nonlinear fuel and alterna-
tor map and their linear approximations, in other words, the deviation ofλ(Pm, ω) from
the linear approximationλ0 = kf kg.

The fuel reduction also depends on the amount of the requested electric load and the
maximum alternator power. When the amount of the electric load is small compared to
the maximum alternator power, most of the electricity can be generated in the cheapest
area. Since the load is small, the fuel consumption needed for it is also small and the fuel
reduction will also be small. When the load is higher, it causes more fuel consumption,

55



Section 4.3

so the fuel that can be saved by generating only at cheap moments also increases. When
the requested load is close to the maximum alternator power, there is not much freedom
anymore when to generate, so the fuel reduction will decrease again.

Suppose that the driving cycle is such that the corresponding value ofλ is uniformly
distributed between:

1− σf <
λ

λ0

< 1 + σf (4.15)

If the requested electrical load equals the maximum alternator power, it is generated
within the entire interval[1 − σf , 1 + σf ], with an average of1. If the requested load
is half of the maximum alternator power, it can be generated cheapest within the interval
[1− σf , 1], so with an average of1− 1

2
σf . If the requested load is a quarter of the maxi-

mum alternator power, it can be generated cheapest within the interval[1− σf , 1− 1
2
σf ],

so with an average of1− 3
4
σf .

More general, the load can be generated cheapest within the interval[1 − σf , 1 − (1 −
2α)σf ], with an average of1 − (1 − α)σf , whereα is the ratio between the average
requested load over a driving cycle and the maximum electric alternator power:

α =
P̃l

Pe max

(4.16)

The fuel that can be saved on top of regenerative braking is then given by:

∆mem = (1− α)σf
λ0

hf

∫ tn

0

(Pl − Pe regen) dt (4.17)

4.3.4 Start-stop operation

The fuel that can be saved by start-stop operation, is the fuel that is required for engine
idling during the stand still periods. It can be computed as follows:

∆mss =

∫ tn

0

iss(t) f0(ω(t)) dt (4.18)

where:

iss(t) =

{
1 if v(t) = 0
0 if v(t) 6= 0

(4.19)

Hereby, it is assumed that the engine can be turned on and off immediately. Furthermore,
the costs for restarting the engine, both the required electric energy and component wear,
are neglected.
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4.4 Comparison

In this section, the fuel reduction that can be obtained with regenerative braking and
advanced electric energy management for a specific vehicle and driving cycle will be
estimated with the rules presented in the previous section, and will be compared with
simulation results.

4.4.1 Strategies

The fuel consumption is estimated using the engineering rules for the following 4 strate-
gies:

1. The fictive baseline strategy that does not use regenerative braking according to
(4.9)

2. The realistic baseline strategy according to (4.11)

3. The regenerative braking strategy according to (4.14)

4. The advanced energy management strategy according to (4.14) and (4.17)

The results are compared with simulation results for the following 4 strategies:

1. The fictive baseline strategy that does not use regenerative braking, as described in
Section 4.3.1

2. The realistic baseline strategy, as described in Section 4.3.1

3. The heuristic regenerative braking strategy, as described in Section 4.3.2

4. Dynamic Programming, as described in Section 3.3

The simulation results are obtained with the control model described in Section 2.3.2
using the original nonlinear fuel and alternator map

When using the fictive baseline strategy, fuel is injected during deceleration periods to
supply the load, whereas the realistic baseline strategy recuperates part of the kinetic
energy from the vehicle. The heuristic regenerative braking strategy operates as described
in the beginning of Section 4.3.2.

The Dynamic Programming [10] strategy used for the simulations minimizes the fuel
consumption over the entire driving cycle with the constraint that the energy level of the
battery at the end is the same as at the beginning. This method assumes that the entire
driving cycle is known and acts as a benchmark for other strategies. The implementation
of this method is described in more detail in Section 3.3.
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4.4.2 Simulation parameters

Simulations are done for the Ford Mondeo driving the New European Driving Cycle. The
variation of the incremental costλ at each time instant of this cycle atPe = 2000 W is
shown as a histogram in Fig. 4.5. It varies roughly between 2.4 and 3.2, although not
uniformly, leading to a value forσf of 0.1.
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Figure 4.5: Distribution ofλ

For the power net, both the 14 V and the 42 V version are used. As electric power
request, constant loads between 0 and 1500 W are used with the 1.5 kW alternator and
loads between 0 and 5000 W with the 5 kW alternator.

4.4.3 Results & evaluation

The results for the 5 kW alternator are presented in Fig. 4.6. The total fuel consumption,
the absolute fuel reduction with respect to the fictive baseline and the percentile reduction
with respect to the realistic baseline are displayed. As could be expected, the total fuel
consumption increases almost proportionally with the requested electric load.

The fuel reduction of regenerative braking is predicted rather well. The benefits of re-
generative braking over a normal baseline strategy are large for low electric loads and
decrease for higher loads. A load of 200 W can be provided solely by regenerative brak-
ing. For smaller loads, the regenerative braking potential is not completely used, because
theSOE at the end must equal its initial value. This explains the rapid increase in fuel
reduction between 0 and 200 W.

The additional fuel reduction of advanced energy management shows larger differences
between analysis and simulation. According to the analysis, the highest additional fuel
reduction is obtained with a load that is half of the maximum alternator power. In the
simulations, the fuel reduction is smaller for loads between 1000 and 4000 W. This can be
explained, because the distribution of the slope of the real fuel map, as shown in Fig. 4.5,
is not uniform, but more gaussian, leading to a lower fuel reduction than predicted.

The results for the 1.5 kW alternator are presented in Fig. 4.7. The fuel savings by regen-
erative braking are smaller, because of the smaller alternator capacity. The additional fuel
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Figure 4.6: Results for the 5 kW alternator

saving by advanced energy management is smaller because the electric load is smaller
compared to the mechanical load. Besides from that, the results look similar to the 5 kW
configuration. A load of only 100 W can be provided solely by regenerative braking.

The additional fuel reduction that can be obtained with start-stop is about 30 gram. This
amount does not vary much with the electric load or the strategy.

When battery losses are taken into account, the profits of regenerative braking and ad-
vanced energy management will be smaller, because the baseline strategy does not use
the battery.

4.5 Conclusion

A set of engineering rules are presented to estimate the fuel reduction that can be obtained
with regenerative braking and with more advanced electric energy management strategies
in conventional vehicles.

For a specific vehicle configuration and driving cycle, the estimated fuel consumption is
compared with simulations, with reasonable results, showing the value of this method.

With regenerative braking a fixed amount of electrical energy can be obtained for free.
This amount does not depend on the requested load. The baseline strategy already does
some regenerative braking, where the amount increases with the requested load. This
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Figure 4.7: Results for the 1.5 kW alternator

means that for higher electric loads, the additional fuel reduction of a real regenerative
braking strategy becomes smaller.

It is explained why for this application, shifting the operating point of the engine to a
higher efficiency area will not necessarily lead to a lower fuel consumption.

The fuel consumption of an internal combustion engine increases more or less propor-
tionally to the delivered mechanical power. The additional fuel reduction that can be
obtained with an advanced electric energy management system depends on nonlineari-
ties and speed dependencies in the fuel map. For the engine used in this analysis, these
deviations are rather small, which limits the additional fuel reduction.
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Chapter 5

Dual Storage Power Net

5.1 Introduction

The fuel reduction that can be obtained with energy management applied to a conventional
vehicle is to some extend limited by the losses in the battery. A possible solution is to
use an advanced dual storage power net topology, as proposed in [63], which combines
a lead acid battery and an ultracapacitor. This chapter studies this power net topology
and presents both a global optimization method and a real-time implementable strategy to
control it.

This chapter is built up as follows. The dual storage power net topology is described
in Section 5.2. The control objective is formulated in Section 5.3. The reduced vehicle
model is derived in Section 5.4. The global optimization strategy is presented in Sec-
tion 5.5. Section 5.6 presents an online implementable strategy. The performances of
the strategies are compared by simulations in Section 5.7. Conclusions are given in Sec-
tion 5.8.

A preliminary version of this chapter is published earlier in [41].

5.2 Dual storage power net

The dual storage power net consists of an alternator, a switch, a lead acid battery, an
ultracapacitor and a DC-DC converter. The reason for using two storage devices is to
combine their advantageous properties, see also [5] for a comparison.

A lead acid battery has a large capacity and small energy leakage over time. However, the
losses during charging and discharging and battery wear are large, especially when using
high powers.

The open cell voltage of the battery is linear with the energy level but with a large offset.
Because of this offset, the battery can be operated between 20% and 100% state of charge
while maintaining an acceptable power net voltage.

An ultracapacitor, or ultracap, has a smaller capacity, but the charge and discharge losses
are also much smaller. This makes the ultracap advantageous to use for high peak powers.
An ultracap has considerable energy leakage, so it is not suitable for long term storage.

The open cell voltage of the ultracap is linear with the energy level. If the ultracap is
connected directly to the power net, it can only be operated within a smallSOE window
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while maintaining an acceptable board net voltage. By connecting it to the board net using
a DC-DC converter, it can be used in its full range.

Two methods to control such a power net are presented: global optimization using knowl-
edge of the complete driving cycle and an online implementable strategy doing without
future knowledge. The alternator and the DC-DC converter are power controlled.

5.2.1 Power flow

The power flow in the vehicle is shown in Fig. 5.1. It starts with fuel that goes into the
internal combustion engine (ICE) which converts it into mechanical power. One part goes
to the drive train (DT) for vehicle propulsion, whereas the other part goes to the alternator
(GEN) which converts it into electric power.

The alternator is connected to a switching device (S) that divides the electric alternator
power between the ultracap (C) and the battery (B). The switch can be a discrete switch
or a continuous power divider. The battery and the ultracap are connected to a DC-DC
converter (DC). The loads are connected to the battery.

There are three control variables: the electric alternator powerPe, the power through the
DC-DC converterPdc and the position of the switchS.

Independently from the position of the switch, the electric power provided by the alter-
nator is equal to the sum of the powers to the load, the battery, and the ultracap, and the
power losses of the DC-DC converter.

ICE

DT

GEN

Pm

Pp

Pg

Load

B

Pe

Pl

Pb Ebs

Pbs

C Ecs

Pcs

DCS

Pdb

Pdc
Pec

Peb

Pc

Pf

Figure 5.1: Power flow in a dual storage power net

5.2.2 Analysis

The possible benefits of a dual storage net will be analyzed for the two positions of the
switch.

CaseS = 0

The alternator is connected to the battery and the loads. This is the baseline situation.
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Additionally, the ultracap can be charged and discharged through the DC-DC converter.
Doing so is only beneficial if the losses of the ultracap and the DC-DC converter together
are smaller than the battery losses.

CaseS = 1

The alternator is connected to the ultracap, so the ultracap can be charged directly. The
loads can be provided by the battery or by the combination of alternator, ultracap, and
DC-DC converter. It is only beneficial to use the switch in this position if the power that
is stored in the ultracap is larger than the power requested by the loads, because then, the
losses of the DC-DC converter are smaller in this direction.

5.3 Control objective

The control objective is to minimize the fuel consumption while satisfying several con-
straints. For a predefined driving cycle, this can be described as a dynamic optimization
problem. The cost functionJ expresses the fuel use over a driving cycle as function of
the decision variablesz. Depending on the selected optimization method and the model
structure, it might be beneficial to choose the decision variables different from the con-
trol variables and to compute the corresponding values of the control variables afterwards,
such that the characteristics of all components can be combined into a single cost function
over a time interval[ 0, n∆t] :

J(z) =
n∑

k=0

ṁ(z(k), k) ∆t (5.1)

The operating range of the components is limited, so bounds have to be set on their power
and energy levels. To prevent the storage devices from being drained, endpoint constraints
on the state of energy must be used.

5.3.1 Optimization method

To solve the optimization problem, various optimization algorithms have been studied,
that all have their requirements on the way the system is modeled.

Because there are two storage devices, there are two state variables. With Dynamic Pro-
gramming, this means that the solution space becomes three dimensional (Ebs, Ecs and
t), which is too large to solve in a limited amount of time.

As a solution, the component characteristics are modeled as piecewise linear. This way,
the problem can be written as a Linear Programming (LP) problem:

min
z

J(z) = hT z subject to Az ≤ b (5.2)

which can be solved efficiently [52]. In Section A.4 it is explained how piecewise lin-
earities are incorporated in an LP. A similar approach has been applied to a series hybrid
vehicle in [68].
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5.4 Modeling

The dual storage power net control problem has been described as an optimization prob-
lem. Here, the relation between the decision variables and the cost function is described
which is needed to compute the solution.

5.4.1 Components

The (dis)-charging of the battery is modeled using a piecewise linear function:

Pb =

{
b−Pbs if Pbs < 0
b+Pbs if Pbs ≥ 0

(5.3)

which can also be described as follows:

Pb = max(b−Pbs, b
+Pbs) (5.4)

wherePb represents the power entering or leaving the battery terminals, andPbs represents
the power actually stored in the battery. The losses are positive both during charging and
discharging, sob+ > 1 and0 < b− < 1. A typical curve is shown in Fig. 5.2.
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Figure 5.2: Battery characteristics

The model for the ultracap is similar:

Pc = max(c−Pcs, c
+Pcs) (5.5)

The DC-DC converter is modeled likewise:

Pdb = max(d−Pdc, d
+Pdc) (5.6)

wherePdb > 0 means power is going from the battery to the ultracap.
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The characteristic of the alternator is linearly approximated for given engine speedω:

Pg = g0(ω) + g1 Pe (5.7)

g0 is caused by friction andg1 is the inverse of the conversion efficiency, sog0 > 0 and
g1 > 1.

The characteristics of the fuel converter is linearly approximated:

Pf = f0(ω) + f1(t)Pm (5.8)

The approximation is made at each time step for the rangePm ∈ [Pd+Pg min, Pd+Pg max].
Because this range is small compared to the entire operating range of the engine, a linear
fit is sufficient.

5.4.2 Power flow

The mechanical powerPm is given by:

Pm = Pd + Pg + Pbr (5.9)

wherePbr is the power of the friction brakes.

Pm min(ω) is the friction in the engine at zero fuel use. At moments where:

Pd < Pm min − g0 (5.10)

electric power can be generated without fuel use, which is called regenerative braking. It
is expected that the friction brakes are only used when:

Pd < Pm min − Pg max (5.11)

The equation for the electric power flow becomes:

Pe = Peb + Pec = Pl + Pb + Pc + Pdb − Pdc (5.12)

As stated before, independently from the position of the switch, the electric power pro-
vided by the alternator is equal to the sum of the powers to the load, the battery, and the
ultracap, and the power losses of the DC-DC converter.

5.4.3 Decision variables

Suppose the primary decision variables are chosen to be:

z1 = [ Pbs Pcs Pdc ]T (5.13)

The piecewise linear component models and the linear power flow equations can be in-
corporated by introducing the following secondary decision variables:

z2 = [ Pb Pc Pdb Peb Pec Pe Pg Pm Pbr Pf ]T (5.14)

If optimization is carried out over a horizon ofn time steps, the variables are vectors with
lengthn, so the total number of decision variables is13n.
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5.4.4 Cost function

The cost function is the fuel consumption over a driving cycle with lengthtn = n∆t:

J(z) =
n∑

i=1

Pf (i) ∆t (5.15)

5.4.5 Constraints

The power flow equations and the alternator and engine model are incorporated as linear
equality constraints:

Peb = Pl + Pb + Pdb (5.16)

Pec = Pc − Pdc (5.17)

Pe = Peb + Pec (5.18)

Pm = Pd + Pg + Pbr (5.19)

Pg = g0 + g1 Pe (5.20)

Pf = f0 + f1 Pm (5.21)

The piecewise linear component models are incorporated using the following linear in-
equality constraints:

Pb ≥ b± Pbs (5.22)

Pc ≥ c± Pcs (5.23)

Pdb ≥ d± Pdc (5.24)

The physical limitations of the components are incorporated using upper and lower bounds
on the decision variables:

zmin ≤ z ≤ zmax (5.25)

The endpoint constraints on the energy storage levels become:

E∗s(n) = E∗s(0) ⇒
n∑

i=1

P∗s(i) = 0 ∗ ∈ {b, c} (5.26)

5.4.6 Complementarity constraint

If the switch is considered to be a continuous power divider,Peb andPec can both be
positive at the same time. In the case of a discrete switch, eitherPeb = 0 and/orPec = 0
at each time instant. This can be modeled by adding a complementarity constraint:

Peb · Pec = 0 (5.27)
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As shown in Appendix A.7.1, the LP problem with complementarity constraint for the
discrete switch can be translated to a mixed integer LP problem by introducing a binary
variableS ∈ {0, 1} and adding the following linear constraints:

0 ≤ Peb ≤ (1− S)Peb max (5.28)

0 ≤ Pec ≤ S Pec max (5.29)

Note thatS = 0 yields thatPec = 0 andS = 1 yields thatPeb = 0, which corresponds to
the two positions of the switch.

5.5 Global optimization

If the switch is considered to be a continuous power divider, the binary variableS ∈
{ 0, 1 } can be relaxed to a continuous variableS ∈ [ 0, 1 ]. In this case, the optimization
problem can be solved with a standard LP solver. The problem is very sparse, so despite
the large number of decision variables, the computation time remains short.

For the discrete switch, a mixed integer LP solver can be used,e.g., a branch and bound
algorithm. The computation time of mixed integer solvers increases drastically with the
number of discrete variables, because the algorithms evaluate many combinations of these
variables. This makes mixed integer optimization not suitable for optimization over a long
horizon, despite the sparseness of the problem.

A suboptimal mixed integer solution can be obtained as follows. First the problem is
solved for the continuous switch. Then the position of the switch is rounded off to boolean
values. The continuous optimization is repeated, but with the upper bounds modified
according to (5.28) and (5.29).

The solution for the continuous switch provides a lower bound for the mixed integer min-
imum, whereas the suboptimal mixed integer solution is an upper bound. If the difference
between this upper and lower bound is small, not much improvement can be obtained by
searching for the global minimum of the mixed integer problem.

5.6 Real-time control strategy

A control strategy is derived that can be used in real-time. It is similar to the method for
a single storage system as presented in Section 3.5.

Optimization is done at each time instant with a horizon length of 1 time step. Instead of
using endpoint constraints on the storage levels, the change inSOE is accounted for in
the cost function:

γ(u, x, k) = Pf (k)− λb(k)Pbs(k) − λc(k)Pcs(k) (5.30)

At each time instant, a trade off is made between the increase in fuel and the increase in
SOE. All other constraints still apply.
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The factorsλb andλc represent the average fuel costs to store energy in the battery and
the ultracap. They are online adapted using proportional state feedback:

λ∗(k) = λ∗0 +Kp (E∗s(0)− E∗s(k)) (5.31)

The state feedback ensures that theSOE remains bounded, although theSOE at the
end will differ from the beginning. The changes inSOE are accounted for in the fuel
consumption using the initial values ofλb andλc.

Because of the switch, the optimization has to be carried out twice at each time instant,
once withPeb = 0 and once withPec = 0. The solution with the lowest cost function
value is then selected.

5.7 Simulations

5.7.1 Model

Simulations are done for the Ford Mondeo driving the NEDC cycle. The vehicle is
equipped with the 42 V power net. The specifications of the electric components are
shown in Table 5.1. The electric load is kept constant at 1000 W.

Table 5.1: Power net components

Energy Capacity Power limits Efficiency

Battery 1000 kJ 5 kW 90%

Ultracap 100 kJ 5 kW 99%

DC-DC - 1 kW 95%

Alternator - 5 kW 90%

5.7.2 Strategies

The following strategies are implemented:

BL1 A baseline strategy that does not use the storage devices, so the alternator
power is equal to the load

BL2 Continuous LP optimization of the complete cycle, using only the battery

LP1 Continuous LP optimization of the complete cycle

LP2 Sub-optimal mixed integer LP optimization of the complete cycle

RT The real-time strategy

The RT strategy is used withKp = 1 · 10−6, andλb0 = λc0 = 2.5, as these values turned
out to yield good results.
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5.7.3 Results

The resulting trajectories ofPe, Pdc, S, SOEbat, andSOEcap are shown in Fig. 5.3 for the
LP2 strategy and in Fig. 5.4 for the RT strategy. During deceleration, when much electric
power is generated, the alternator is connected to the ultracap. The battery is mainly used
during the braking period at the end, when theSOE of the ultracap hits its boundary.

The power levels change rapidly. This is typical for LP since the optimal solution will
always lie at a constraint. Smoother behavior can be obtained by adding rate limiting
constraints, or by using quadratic terms for the losses, resulting in a QP.
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Figure 5.3: Results for the LP2 strategy

The fuel consumption of all strategies is shown in Table 5.2. It is computed both using
the original nonlinear lookup table and the local linear fit as used in the optimization. The
differences are very small, which justifies the approximation.

The difference in fuel consumption between the LP1 and LP2 is small, so searching for
the global minimum of the mixed integer problem will not give much improvement.

Besides the fuel consumption, the exhaust emissions are also evaluated using the original
lookup tables. The percentile savings in fuel with respect to the BL1 strategy are given
in Fig. 5.5. All emissions show an improvement except for HC. It is possible to obtain
a reduction in all emissions, by incorporating them in the cost function, at the cost of a
smaller fuel reduction.

5.8 Conclusion

Simulations show that the control strategies are effective and that the performance of
the real-time strategy is close to the optimal one. For the chosen parameter values, the
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Figure 5.4: Results for the RT strategy

Table 5.2: Fuel Consumption

Nonlinear map Linear fit

Strategy Fuel Use [g] Fuel Use [g]

BL1 589.486 588.938

BL2 579.749 579.344

LP1 576.736 577.024

LP2 577.606 577.373

RT 577.970 577.452
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Figure 5.5: Reduction of fuel and exhaust emissions

dual storage power net only gives a limited improvement in fuel reduction over the single
storage net, at the cost of additional hardware investments. This power net topology
may be worthwhile for hybrid vehicles using start-stop operation, or if tight limits on the
battery voltage are present.
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Full optimization of the mixed integer problem can not be carried out for a reasonable
driving cycle length, due to the rapidly increasing computation time. However, the differ-
ence between the suboptimal integer solution and the continuous optimum is very small.

The energy management problem considered here is easy and straight forward to formu-
late as a Linear Programming problem using piecewise linear component models. Be-
cause of its simple structure, the method is easy to apply on other topologies, such as a
hybrid electric vehicle, as will be done in Chapter 6.
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Chapter 6

Parallel Hybrid Electric Vehicles

6.1 Introduction

The drive train of a conventional vehicle can easily be modified to look like a parallel hy-
brid electric vehicle (HEV) by replacing the alternator with an integrated starter generator
(ISG). The possibility to change the operating point of the engine and to turn it off, gives
rise to a reduction of fuel consumption and exhaust emissions.

This chapter analyzes the benefits of two parallel drive train configurations: one with the
ISG connected directly to the engine, before the clutch, and one with the ISG connected
directly to the drive train, after the clutch. The first configuration can only turn off the
engine during standstill and deceleration. The second configuration offers the opportunity
to turn off the engine during propulsion.

The effect on fuel economy is analyzed by using optimization over a given driving cycle.
The optimization problem is formulated as a Linear Programming (LP) problem [52].
Adding start-stop functionality makes it a Mixed Integer LP (MILP) problem. A similar
approach without start-stop is applied to a series HEV in [68]. Another formulation is a
Dynamic Program [10] as done,e.g., in [18, 48]. Here, LP is chosen because of its easy
implementation and fast computation.

This chapter is built up as follows. The vehicle topology will be described and analyzed
in Section 6.2. The objective is presented in Section 6.3. Section 6.4 presents the ve-
hicle model. In Section 6.5, the energy management control problem is formulated and
solved as an optimization problem. The performance will be evaluated by simulations in
Section 6.6. Conclusions are given in Section 6.7.

A preliminary version of this chapter is published earlier in [45].

6.2 Parallel hybrid electric vehicles

The drive train of a parallel HEV is based on a conventional vehicle, where the alternator
is replaced by an integrated starter generator that can also be used for propulsion. The
clutch can be located before or after the power split for the ISG. If the clutch is closed,
the configurations are similar.

For this case study, it is assumed that the vehicle speed is defined by the driver and that
the gear ratio is selected by either the driver or by the automatic transmission. This way,
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the engine speed is also predefined.

6.2.1 Power flow description

The power flows in the vehicle with configuration 1 and 2 are shown in Fig. 6.1 and
Fig. 6.2 respectively. The power required for the drive train is delivered by the engine,
the ISG, and the brakes. The internal combustion engine converts fuel into mechanical
power. The ISG converts mechanical power into electric power or vice versa. The electric
side of the ISG is connected to the battery and the auxiliary electric load. The battery can
be separated in the (dis)-charging losses and the net energy storage.

Engine

Pm

Drive Train

ISG

Pd

Pg Pe

Electric
Load

Battery

Pl

Pb

fuel

Pbr

Clutch

Figure 6.1: Configuration 1

Engine
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Drive Train

ISG

Pd

Pg Pe

Electric
Load

Battery

Pl

Pb

fuel

Pbr

Clutch

Figure 6.2: Configuration 2

6.3 Control objective

Hybrid electric vehicles require an energy management strategy to control the power flow
in an optimal way, meaning that fuel consumption and emissions are reduced while main-
taining requirements on performance and comfort.

In this chapter, the difference in fuel reduction depending on the location of the clutch is
being evaluated. To do so, the control objective is to minimize the fuel consumption for a
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given driving cycle. This can be described as an optimization problem. The cost function
J expresses the fuel use over a driving cycle as function of the decision variablesz. This
way, the characteristics of all components can be combined into a single cost function
over a time interval[ 0, n∆t] :

J(z) =
n∑

k=0

ṁ(z(k), k) ∆t (6.1)

The operating range of the components is limited, so bounds have to be set on their power
and energy levels. To prevent the storage device from being drained, an endpoint con-
straint on the state of energy can be used.

The dynamics are modeled in discrete time and the component losses are modeled using
piecewise linearities, such that the nonlinear optimization problem reduces to a linear
programming problem, as also done in Chapter 5.

6.4 Modeling

The control problem has been described as an optimization problem. Here, the relation
between the decision variables and the cost function is described which is needed to com-
pute the solution.

6.4.1 Components

The (dis)-charging of the battery is modeled as in Section 5.4:

Pb = max(b−Ps, b
+Ps) (6.2)

The electric power flow equation is given by:

Pe = Pl + Pb (6.3)

The characteristic of the ISG is approximated as a piecewise linear function:

Pg = g0(w) + max(
1

ηg

Pe, ηmPe) (6.4)

whereg0 is the friction loss,ηg is the conversion efficiency in generator mode (Pe > 0),
andηm the conversion efficiency in motor mode (Pe < 0). A typical curve is shown in
Fig. 6.3.

The mechanical power flow equation is given by:

Pm = Pd + Pg + Pbr (6.5)

wherePbr ≥ 0 is the power dissipated by the friction brakes.
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Figure 6.3: ISG map

The characteristics of the fuel converter is linearly approximated:

Pf = f0(ω) + f1(t)Pm (6.6)

The approximation is done at each time step for the rangePm ∈ [Pm min, Pd + Pg max].
The actual fuel map is more or less linear, except for the highest torque area, which is not
reached very often. Therefore, a linear fit is probably sufficient.

The fuel use is positive for zero power, due to friction. This can be avoided by turning off
the engine during idle, which is called start-stop.

6.4.2 Start-stop operation

For both configurations, start-stop functionality can be added using a binary variable.

Configuration I

First the case where the ISG is connected directly to the engine is considered. If the
engine is turned off, this means that:

Pe = 0 Pg = 0 Pm = 0 Pf = 0 (6.7)

which results in:

Pb = −Pl (6.8)

Pd = −Pbr (6.9)

BecausePbr ≥ 0, the engine can only be turned off whenPd ≤ 0 and if the electric load
can be delivered by the battery. It is only advantageous to do so, if the additional fuel for
restarting the engine and for recharging the battery during propulsion is smaller than the
fuel saved during stand still.
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Start-stop can be included by introducing a binary variableS, whereS = 1 means the
engine is running, andS = 0 means the engine is turned off. This can be achieved with
the following constraints:

S Pe min ≤ Pe ≤ S Pe max (6.10)

S Pm min ≤ Pm ≤ S Pm max (6.11)

Normally, the engine characteristics are such thatPm = 0 corresponds toPf > 0 and
Pf = 0 to Pm < 0, but if the engine is turned off, the operating point becomesPm = 0
andPf = 0. Therefore, the engine model is changed into:

Pf ≥ f0(ω)S + f1(t)Pm (6.12)

such thatS = 0 yields thatPf = 0 for Pm = 0.

Equivalently, the alternator model is changed into:

Pg = g0(ω)S + max(
1

ηg

Pe, ηmPe) (6.13)

These constraints are still linear in the decision variables.

Configuration II

If the ISG is connected directly to the drive train, or after the clutch, the ISG can still be
operated when the clutch is opened and the engine is turned off, which means that:

Pm = 0 Pf = 0 (6.14)

which results in:

Pd = −Pg − Pbr (6.15)

BecausePg can be both positive and negative, the engine can be turned off whenever
the maximum ISG power in motor mode is sufficient to propel the vehicle. This can be
achieved with the following constraints:

S Pm min ≤ Pm ≤ S Pm max (6.16)

Pf ≥ f0(ω)S + f1(t)Pm (6.17)

Penalty

To prevent frequent switching of the engine, both configurations require a penalty cost for
every time the engine is restarted. This is implemented using an additional variableR as
follows:

R(k) = max(S(k)− S(k − 1), 0) (6.18)
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This yields thatR = 1 at times whereS changes from 0 to 1, andR = 0 otherwise. The
cost criterion is modified to:

J(z) =
n∑

k=1

( Pf (x(k)) ∆t+ C R(k) ) (6.19)

such that, for every time the engine is started, a costC is added to the fuel consumption.

6.5 Optimization

The energy management problem is formulated as a Linear Programming problem. Add-
ing start-stop functionality makes it a Mixed Integer LP becauseS is a binary variable.

6.5.1 Cost function

The complete set of decision variables becomes:

z = [ Ps Pb Pe Pg Pbr Pm Pf S R ]T (6.20)

The cost function consists of the fuel use and the cost for starting the engine, so:

h = [ 0 0 0 0 0 0 1 0 C ]T (6.21)

If optimization is done over a horizon ofn time steps, the variables are vectors with length
n, so the total number of decision variables is9n.

6.5.2 Constraints

The power flow equations are incorporated as linear equality constraints:

Pe = Pl + Pb (6.22)

Pm = Pd + Pg + Pbr (6.23)

The piecewise linear component models are incorporated using the following linear in-
equality constraints:

Pb ≥ b± Pbs (6.24)

Pc ≥ c± Pcs (6.25)

Pdb ≥ d± Pdc (6.26)

Pg ≥ g0 S + 1/ηg Pe (6.27)

Pg ≥ g0 S + ηm Pe (6.28)

Pf ≥ f0 S + f1 Pm (6.29)
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The physical limitations of the components are incorporated using upper and lower bounds
on the decision variables:

zmin ≤ z ≤ zmax (6.30)

The constraints on the energy storage levels are incorporated using a discrete linear inte-
grator model:

Es(k) = Es(0) +
k∑

i=1

Ps(i) ∆t (6.31)

The endpoint constraint then becomes:

Es(n) = Es(0) ⇒
n∑

i=1

Ps(i) = 0 (6.32)

All constraints are linear in the decision variables.

6.5.3 Model Predictive Control

Because the computation time of mixed integer programming increases rapidly with the
number of integer variables, it is not possible to do global optimization over a long driving
cycle within a reasonable time. Furthermore, obtaining a suboptimal solution as done in
Section 5.5, will not give usable results. The continuous relaxation will yield a value of
S, such that at every time instant:

Pm = S Pm max (6.33)

BecauseS ∈ { 0, 1 } corresponds withf0(ω), which is either present or not, values of
0 < S < 1 are not realistic.

As a solution, the mixed integer optimization problem is solved using a receding horizon,
as in Model Predictive Control (MPC) [50]. This means that the optimization is carried
out at each time step over a limited prediction horizon. The first value of the optimal
control sequence is implemented. The next time step a new optimization is done using
updated prediction and state information.

6.5.4 Removing the endpoint constraint

For short horizons, the performance of the MPC strategy is limited by the endpoint con-
straint on theSOE. Therefore, the endpoint constraint is removed and the cost function
is modified such that a trade off is made between fuel use andSOE, as presented in
Section 3.5.

The cost function becomes:

J(z, k) =

k+Np∑
i=k+1

[ ( Pf (i)− λPs(i) ) ∆t+ C R(i) ] (6.34)
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Np is the length of the prediction horizon. The factorλ represents the average fuel cost to
store energy in the battery. Its value is online adapted using proportional feedback of the
SOE:

λ(k) = λ0 +Kp (Es(0)− Es(k)) (6.35)

The feedback ensures that theSOE remains bounded, although theSOE at the end may
differ from that at the beginning. The difference inSOE can be accounted for in the fuel
consumption using the average value ofλ.

6.6 Simulations

6.6.1 Model

Simulations are done for the Ford Mondeo driving the NEDC cycle. The vehicle contains
a 10 kW (electrical) ISG and a battery with a capacity of1 ·106 J. The electric load is kept
constant at 1000 W.

6.6.2 Strategies

Simulations are done for the following strategies:

BL Configuration 1 using a baseline strategy where the ISG only provides
the electric load, like in a conventional vehicle

S1 Global optimization using configuration 1 without start-stop functionality

S2 MPC strategy using configuration 1 without start-stop functionality

S3 MPC strategy using configuration 1 including start-stop functionality

S4 MPC strategy using configuration 2 including start-stop functionality

Strategy S1 does a single optimization over the entire driving cycle, whereas Strategies
S2, S3, and S4 use a receding horizon length of 10 s. The strategies are used withKp =
1 ·10−6, andλ0 = 2.8, as these values turned out to yield reasonable results. All strategies
run faster than real-time on an Intel Pentium IV 2.4 GHz computer.

6.6.3 Results

The trajectories ofPm, Pg, Pbr, S, andSOE are shown for Strategies S1, S2, S3, and S4
in Fig. 6.4, Fig. 6.5, Fig. 6.6, and Fig. 6.7 respectively.

Strategies S1, S2, and S3 use the ISG mainly for regenerative braking and supplying
the electric load. Apparently it is not beneficial to use the ISG for propulsion if the
engine is already running, but this depends on the selected vehicle and driving cycle. With
Strategy S3, the engine is turned off during braking and idle periods. With Strategy S4,
the engine is turned off during low velocity periods and during braking, such that more
energy is available for regenerative braking. The engine cannot be turned off when the
required propulsion power exceeds the maximum ISG power. Because the ISG is more
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intensively used, both for generation and propulsion, theSOE of the battery varies much
more.
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Figure 6.4: Results for Strategy S1
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Figure 6.5: Results for Strategy S2
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Figure 6.6: Results for Strategy S3
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Figure 6.7: Results for Strategy S4

The engine operating points of Strategy S4 and the baseline are compared in Fig. 6.8. As
can be seen, Strategy S4 switches between “engine off” and the high torque area, where
the efficiency is high, whereas the baseline strategy remains in the low torque area.
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Figure 6.8: Operating points

6.6.4 Fuel consumption

The fuel consumption is given in Table 6.1. Differences inSOE are accounted for using
λ0. Strategies S1 and S2 show a small decrease in fuel consumption because the engine is
always running. Profits come mainly from regenerative braking. The difference between
S1, which does optimization over the entire driving cycle, and S2, which uses a short
receding horizon, is small, thereby justifying this approach. Strategy S3 shows a larger
fuel reduction, because the engine is turned off during idle periods. Strategy S4 shows
a much higher fuel reduction because it allows turning the engine off during propulsion
phases.

Table 6.1: Fuel Consumption

Nonlinear map Linear fit

Strategy Fuel Use [g] Fuel Use [g]

BL 589.486 592.613

S1 575.948 576.665

S2 575.789 576.952

S3 544.463 541.701

S4 418.947 420.039

6.6.5 Exhaust emissions

The exhaust emissions CO2, CO, HC, and NOx are also evaluated, although they are not
accounted for in the cost function. CO2 is roughly proportional to fuel consumption,
whereas the other emissions are highly non-convex, which makes it harder to incorporate
them into a convex LP. As can be seen in Fig. 6.9, the exhaust emissions are also reduced
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significantly. This is mainly because of start-stop operation, as no emissions are produced
when the engine is not running.
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Figure 6.9: Reduction of fuel and exhaust emissions

6.7 Conclusion

The fuel consumption and exhaust emissions of two parallel hybrid drive train configura-
tions are compared: one with the ISG connected directly to the engine, and one with the
ISG connected to the drive train, after the clutch.

The simulations show a large improvement in fuel and emissions reduction if start-stop is
included, especially if the ISG is placed after the clutch.

The results depend on the component sizing and the driving cycle. More improvement
can possibly be obtained by including freedom in the engine speed.

The optimization is done using a short receding horizon, so the method allows easy real-
time implementation. Due to the choice of cost function (6.34), including the Lagrangian
term for the endpoint constraint, the results are expected to be close to the global opti-
mum.
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Chapter 7

Implementation on a
Hardware-in-the-Loop test setup

7.1 Introduction

This chapter presents the implementation of previously developed energy management
strategies on a Hardware-in-the-Loop (HIL) test setup. The main purpose is to show that
the power net can be power controlled in practice, thereby justifying the use of power-
based models. Experiments are done both with the single storage and the advanced dual
storage power net topology.

This chapter is built up as follows. The Hardware-in-the-Loop test setup is described
in Section 7.2. Section 7.3 discusses the implementation of the control strategies. The
results are presented in Section 7.4. Conclusions are given in Section 7.5.

7.2 Hardware-in-the-Loop test setup

A Hardware-in-the-Loop test setup is a test environment in which some components of
the vehicle are actually present, some are emulated, and the remaining parts are simulated.

In this case, a lead-acid battery, an ultracapacitor, a DC-DC converter, and a controllable
switch are actually present. The electrical side of the alternator is emulated by a power
supply and the electric consumers are emulated by a programmable load. The driver, the
drivetrain, the mechanical side of the alternator, and the engine are simulated using the
forward facing simulation model as mentioned in Section 2.3.1.

The battery is a 14 V AGM lead acid battery with a capacity of 60 Ah which corresponds
to an energy capacity of 3 MJ.

The ultracapacitor is a Maxwell Technologies Boostcap module. This module consists
of 9 capacitor cells connected in series. Each cell has a capacitance of 2600 F and a
maximum voltage of 2.5 V. The module’s indicated nominal capacitance is 290 F and the
nominal voltage is 22.5 V. The energy capacity is 73.4 kJ.

The DC-DC converter is bidirectional and has a maximum power throughput of 700 W.
At the side of the ultracap, the voltage should be higher than 15 V. Because the voltage of
the ultracap is linear with its state of energy, this limits the usable capacity of the ultracap
to 67-100%SOE.
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To emulate the alternator, a programmable electric power supply made by Delta Power
Supplies is used that can provide 30 V and 200 A. The electric power is limited to 1.5 kW.
The voltage is limited to 16 V when the supply is connected to the battery and to 24 V
when it is connected to the ultracap. The corresponding mechanical alternator power is
computed using the 14 V 1.5 kW map. Although this alternator cannot provide 24 V in
reality, the map calculates the alternator torque as function of the electric power instead
of using the current and voltage.

To emulate the electric power consumers, a programmable electric load made by Höcherl
& Hackl GmbH is used that can withdraw up to 10 kW.

The programmable power supply, the programmable load, and the DC-DC converter re-
turn voltage and current measurements, from which the electric power can be obtained.
Furthermore a current sensor is available on the wire of the battery. NoSOC or SOE
measurement is available for the battery or the ultracap, so theSOE is estimated by inte-
grating the power.

7.2.1 Power controller

The alternator and the DC-DC converter are controlled by lower level power controllers,
that manipulate the voltage and current such that the desired power is realized.

The power controller for the alternator is illustrated in Fig. 7.1. The output is the desired
alternator voltageUe sp and the inputs are the desired electrical alternator powerPe sp and
the measured electrical load powerPl and battery powerPb. The controller is an integral
controller with an anti-windup, to keep the alternator voltage within its allowed region.

1

U_e_sp [V]
Saturation

1
s

Integrator

0.01

Control 
Gain

1000

Anti Windup 
Gain

3

P_b [W]

2

P_l [W]

1

P_e_sp [W]

Figure 7.1: Power net controller

The power controller for the DC-DC converter is simular. It turned out that this power
controller does not work well if the DC-DC converter is used in both directions. Therefore
the DC-DC converter is only used to provide power from the ultracap to the battery and
the load. This implies that the ultracap can only be charged at moments when the position
of the switch is such that the alternator is connected to the ultracap.

7.3 Control strategies

Three strategies are implemented: a baseline strategy, an optimal strategy for the single
storage power net and an optimal strategy for the dual storage power net. The baseline
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strategy provides a constant alternator voltage, such that the battery is hardly used and the
loads are supplied directly.

The optimal strategy that is used for the single storage power net is the DP1 strategy, as
described in Section 3.6. The strategy provides one set-point: the alternator power. For
a given electric load power, this uniquely defines the resulting power to the battery. The
alternator is controlled by a lower level power controller, that manipulates the alternator
voltage such that the desired power is realized.

The strategy that is used for the dual storage power net differs from the strategies de-
scribed in Chapter 5. The strategy controls the position of the switch a priori such that
during propulsion the alternator is connected to the battery and the load and during brak-
ing to the ultracap. The power set-points forPbs andPcs are computed by solving the
following optimization problem at each time step:

min
Pbs,Pcs

Pf (Pbs, Pcs)− λb Pbs − λc Pcs (7.1)

The corresponding set-points forPe andPdc are computed fromPbs andPcs using the
power net model. The cost function is approximated as a quadratic function, resulting in
a QP. The factorsλb andλc are adapted online using proportional feedback of the state of
energy:

λ∗ = λ∗0 +Kp (E∗s(0)− E∗s) (7.2)

7.4 Results

7.4.1 Drive train

To compare the engine speed and drive train torque of the simulation model and the con-
trol model, an experiment is done using a baseline strategy, which means that the alterna-
tor provides a constant voltage, equal to the battery voltage, such that the battery is hardly
charged or discharged.

The resulting engine speedω and drive train torqueτd are compared with the ones cal-
culated using the backward facing model described in Section 2.4. Both are shown in
Fig. 7.2. The engine speeds are very close. The drive train torque from the forward facing
model is mostly higher, because it also incorporates inertia and friction of the drive train
itself. This will result in a higher overall fuel consumption.

Because the friction brakes are operated independently in the forward facing model, the
drive train torque signal is already saturated at the drag torque of the engine. Besides from
that, both signals are mostly alike.

7.4.2 Single storage power net

The experiment on the HIL with the single storage power net using the DP1 strategy is
done with a constant load of 500 W.
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Figure 7.2: Engine speed and drive train torque

Fig. 7.3 shows the desired and realized power of the power supply (representing the alter-
nator) and the load. The realized load power has an average value of 508 W and shows
high frequent noise with a standard deviation of 19 W. It is not known to what extend
this noise is caused by the power controller, the programmable supply, the programmable
load, or the sensors.
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Figure 7.3: Single storage results on the HIL: a)Pe b) Pl

The power delivered by the supply shows the same high frequent noise. Low frequent, the
realized value corresponds with the reference values, except during the last regenerative
braking period and at 900 s, where the realized alternator power is too low, because the
voltage saturates at 16 V. This can be seen in Fig. 7.4, which shows the desired and
realized alternator voltage, and the measured voltage of the battery and the load.

Fig. 7.5 shows the desired and realized power of the battery and theSOE. Like the
alternator power, the desired battery power is tracked accurately, except for the last part.
TheSOE shows only a small variation, due to the high capacity of the battery.
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Figure 7.5: Single storage results on the HIL: a)Pb b) SOE

7.4.3 Dual storage power net

The experiment on the HIL with the dual storage power net using the DS strategy is also
done with a constant electric load of 500 W.

Fig. 7.6 shows the desired and realized power of the alternator and the DC-DC converter.
The measured powers show high frequent noise, but besides from that, the reference val-
ues are tracked accurately. Only at the end, the alternator power becomes unstable, be-
cause the ultracap reaches its maximumSOE.

Fig. 7.7 shows the desired and realized power of the battery and the ultracap. Although
they are not directly controlled but result from the alternator, DC-DC converter and load
power, the reference values are tracked accurately.

Fig. 7.8 shows theSOE of the battery and the ultracap. The batterySOE shows only a
small variation, due to its high capacity. The ultracap is used more intensively and has a
much smaller capacity. Therefore, the bounds are easily reached.
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7.4.4 Fuel consumption

A summary of the fuel consumption is shown in Table 7.1, together with the realized
average electric load power and the difference inSOE. The fuel consumption is higher
than in the previous chapters, because the drive train torque of the forward facing model
is generally higher, as was shown in Section 7.4.1. No hard conclusions on the fuel
reduction obtained on the HIL can be made, because the realized electric load differs for
each experiment and theSOE estimation of the battery is not accurate. Furthermore, the
most interesting component of the engine, the combustion engine, is still modeled by a
static lookup table.

Table 7.1: Fuel Consumption

Strategy Pload [W] ∆SOEb [%] ∆SOEc [%] Fuel Use [g]

Baseline 496 0 0 633.98

DP1 508 0.46 0 632.82

DS 482 -0.18 9.6 630.08

7.5 Conclusion

A Hardware-in-the-Loop test setup is used to test whether the desired electric power set-
points prescribed by an energy management strategy can be realized on an existing power
net. The realized power trajectories show high frequent noise. It is not known in what
extend this noise is caused by the power controller, the programmable supply, the pro-
grammable load, or the sensors.

The power controller of the alternator is working properly except for high peak powers
during regenerative braking, where the power is limited by the voltage levels. The power
controller of the DC-DC converter is working properly in one direction only.

The energy management strategies are power-based. The operating range of the ultracap
and DC-DC converter is largely limited by the voltage levels. Although the voltage is
related to the power, it would be better to design a strategy that can handle constraints on
the voltage levels directly.

Some open issues are the following. The actual losses in the DC-DC converter have not
been identified yet, as the measurements of in and outgoing voltage and current are too
noisy and have an offset. Furthermore, a reliableSOE estimation of the battery and the
ultracap is not yet available.
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Chapter 8

Discussion

Inspired by the research on energy management for hybrid electric vehicles, this thesis
presents an extensive study on controlling the vehicular electric power system to reduce
the fuel use and emissions, by generating and storing electrical energy only at the most
suitable moments. For this purpose, both off-line optimization methods using knowledge
of the driving pattern and online implementable ones are developed. The approach is
extended to handle vehicles with a dual storage power net and parallel hybrid electric
vehicles with an integrated starter generator.

This chapter will summarize the main conclusions, address some open issues and point
directions for further research. A distinction is made between the methodology and this
specific application.

8.1 Conclusions

8.1.1 Methodology

The energy management problem is formulated as an optimization problem, where a cost
function is to be minimized subject to constraints, given a set of decision variables.

To solve the optimization problem, numerous solvers have been studied and several have
been tested in simulations. Each optimization routine requires different model approxi-
mations and the most suitable optimization method differs for various problems.

Dynamic Programming is a suitable and often used method, as it is able to handle a
non-convex cost function, and integer constraints. A disadvantage is the relatively large
computation time, especially if there are multiple states.

By approximating the cost function as convex quadratic, and the constraints as linear, the
problem can be casted as a Quadratic Programming problem, which requires much less
computation time.

Using linear or piecewise linear component models, the energy management problem is
easy and straightforward to model and solve as a Linear Programming problem. However,
this is a very rough approximation and results in non-smooth trajectories, as the solution
jumps from one constraint to the other.

If the optimization problem is carried out off-line for a known driving cycle, computation
time is not a strong issue. This gives a lower bound on what can be achieved. For online
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application of an energy management controller, computation time is limited and a pre-
diction of the future driving cycle is usually not available, which requires modifications
to the optimization problem. As computers are getting faster exponentially, computation
time will not be the strongest limitation.

If a prediction of the future driving cycle is not available, an online strategy can be used
that compares the current cost for generating electric power with the average incremental
costs. Because the average incremental cost corresponds to the Lagrangian of the endpoint
constraint of the global optimization, the results are close to the global optimum.

The average incremental costs are adapted using feedback of the state of energy , such
that closed loop stability of the battery state of energy is obtained. The state of energy
only contains information of the past. Thereby, it is assumed that on the long run, the
average of the future will be more or less equal to the average of the past. This seems to
be a reasonable assumption for this type of problem, as the driving behavior of a person
is not likely to change drastically over hours or days.

8.1.2 Application

By controlling the alternator in a conventional vehicle, the engine torque can be influ-
enced. The fuel characteristics of an internal combustion engine are usually visualized as
an efficiency map, which varies roughly between 0 and 40%. Although this might give
the impression that a large fuel reduction is possible by manipulating the engine torque,
this is not the case, because the fuel use is more or less linear with the delivered power.
This means that the additional, or incremental cost for generating electric energy does not
vary very much for different operating points. Most of the profits that are obtained come
from regenerative braking and engine shut-off, thereby eliminating the engine drag torque
temporarily.

Simulations show a reduction in fuel use up till 2% on the NEDC cycle. Simultaneously,
larger reductions of the exhaust emissions are obtained. With the online strategy doing
without prediction of the future driving cycle, equally good results are obtained. The
performance loss of the online strategy compared to the off-line optimization is less than
0.1% fuel consumption.

The developed method is extended to handle a vehicle with a dual storage power net and
a hybrid electric vehicle with an integrated starter generator. The approach can be applied
to other types of hybrid electric vehicles with slight changes in the formulation, but no
change in the basic methodology.

The dual storage power net combines a battery and an ultracapacitor. For the studied con-
figuration, only a small improvement in fuel and emission reduction is obtained, because
of the limited capacity of the ultracap and the losses in the DC-DC converter. This power
net topology may be worthwhile for hybrid vehicles using start-stop operation, or if tight
limits on the battery voltage are present.

With a parallel hybrid electric vehicle using an integrated starter generator, fuel and emis-
sions are reduced much more, mainly because of start-stop operation of the engine. By
mounting the ISG after the clutch, the engine can be turned off more often, resulting in a
tremendous fuel and emission reduction.
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However, all results are obtained on simplified simulation models, so they still have to be
validated on a real vehicle, where unmodeled dynamics and the influence on drivability
may become important. This is especially the case for hybrid vehicles, where a frequent
switching between the engine and ISG takes place.

The developed strategies for the conventional vehicle with single and dual storage power
net are tested on a Hardware-in-the-Loop test setup using existing electric components
and a more detailed simulation model for the drive train. It is shown, that power set-
points provided by the energy management system can be realized reasonably accurate.

8.2 Future research

Some open issues and other suggestions for future research are the following.

An optimal energy management strategy for the conventional vehicle is implemented in
real-time on a Hardware-in-the-Loop environment. However, the most interesting com-
ponent in the vehicle, the internal combustion engine, is simulated using a simple static
model. To validate the effectiveness of the strategy, implementation in a real vehicle on a
test bench is necessary. These measurements have already been made and will be treated
in [36], but the results are still unclear.

The fuel consumption and exhaust emissions of the internal combustion engine are mod-
eled using static maps. Although the fuel consumption and CO2 emission of a hot engine
are modeled rather accurately by static maps, this may not hold for the other emissions, or
if engine heating up is taken into consideration. Therefore, dynamic models are needed,
or the fuel and emission characteristics should be identified online. A start has been made
in [65], and will be treated further in [36].

The energy management strategies presented in this thesis use simple power-based mod-
els. These models and thus the developed strategies will not be sufficient if drive train
topologies are used with freedom in both engine speed and torque, or if constraints on the
current and voltage become dominant. A possible solution is to online adjust the bounds
on the power based on the actual torque and speed or voltage and current.

So far, it is assumed that the drive train torque is defined exactly by the driver. By allowing
small variations in torque that are imperceptible by the driver, an additional fuel reduction
may be obtained.

The electric loads are modeled as predefined. Some loads, such as electric heating have a
large time constant, so it is possible to vary their power demand without reducing driver
comfort. Doing so, variations in alternator torque can be obtained without using the bat-
tery, thereby reducing (dis)-charging losses and battery wear. This is called power distri-
bution management and is studied in [38].
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Overview of Optimization Methods

A.1 Introduction

This chapter presents an overview and comparison of optimization methods that seem
suitable for solving energy management problems with continuous, discrete, and/or com-
plementary variables.

This chapter is built up as follows: The dynamic optimization problem is formulated in
Section A.2. In Section A.3, it is rewritten as a static optimization problem. Linear pro-
gramming is handled in Section A.4, while Section A.5 treats Quadratic Programming.
Some methods for mixed integer programming are discussed in Section A.6. Section A.7
handles optimizations problems with complementarity constraints. Dynamic Program-
ming is discussed in Section A.8. The methods are evaluated in Section A.9.

A.2 Dynamic optimization

The energy management problem can be formulated as a continuous time dynamic opti-
mization problem, where the vehicle is represented by a dynamic system:

ẋ(t) = f(x(t), u(t), t) (A.1)

which has to be controlled, such that the cost criterion:∫ tn

0

γ(x(t), u(t), t) dt (A.2)

is minimized, satisfying the constraints:

φ(x(t), u(t), t) ≤ 0 ψ(x(t), u(t), t) = 0 (A.3)

wherex(t) are the state variables andu(t) are the control variables. The control variables
can be continuous, discrete, or complementary, meaning that only one of a set of variables
can be nonzero at a time.

In discrete time, the system can be described as:

x(k + 1) = f(x(k), u(k), k) (A.4)
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The cost criterion then becomes:

n∑
0

γ(x(k), u(k), k) ∆t (A.5)

and the constraints become:

φ(x(k), u(k), k) ≤ 0 ψ(x(k), u(k), k) = 0 (A.6)

A.3 Static optimization

For a given time span, the discrete time dynamic optimization problem can be formulated
as a static optimization problem, of which a general formulation is the following:

min
z

J(z) subject to G(z) ≤ 0 Geq(z) = 0 z ∈ Rn (A.7)

whereJ(z) is the cost function to be minimized,G(z) are the inequality constraints,
Geq(z) are the equality constraints, andz are the decision variables. The decision vari-
ables include the control variablesu, the state variablesx and possible other slack vari-
abless :

z = [ u(0) · · ·u(n) x(0) · · ·x(n) s(0) · · · s(n) ]T (A.8)

The cost criterion becomes:

J(z) =
n∑
0

γ(x(k), u(k), k) ∆t (A.9)

The equality constraintsG(z) become:

G(z) =

 φ(x(0), u(0), 0)
...

φ(x(n), u(n), n)

 ≤ 0 (A.10)

The equality constraintsGeq(z) also include the system dynamics (A.4) :

Geq(z) =



ψ(x(0), u(0), 0)
...

ψ(x(n), u(n), n)

x(1)− f(x(0), u(0), 0)
...

x(n)− f(x(n− 1), u(n− 1), n− 1)


= 0 (A.11)

In general,J(z) andG(z) are nonlinear functions, making this a Nonlinear Programming
Problem (NLP). IfJ(z) andG(z) are convex, the global optimum can be found in limited
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time. If they are non-convex, most algorithms will only find a local optimum. If no set of
decision variables exists that satisfies all constraints, the problem is infeasible.

In the remainder of this chapter,x will be used to denote the decision variables, whereas
y andz will be used as additional variables.

A.4 Linear Programming

A Linear Programming problem (LP) [52] is given by a linear cost function subject to
linear constraints:

min
x

J(x) = fT x subject to Ax ≤ b (A.12)

The solution of an unconstrained LP is unbounded. The solution of a constrained LP
is solved numerically, for which many fast algorithms and software implementations are
available.

A.4.1 Piecewise linearities

A convex nonlinear function can be approximated as a piecewise linear function, which
consists of linear approximations in various points. This piecewise linear function can
be used within an LP framework by adding secondary variablesz together with linear
inequality constraints [52].

A piecewise linear function of the form:

z = max
i

(ai x+ bi) i = 1, . . . ,m (A.13)

can be incorporated in an LP as follows:

min
z

z subject to z ≥ ai x+ bi i = 1, . . . ,m (A.14)

Becausez is minimized, it will always hit one of them constraints. If the original cost
function is already monotonically increasing inz, includingz in the function explicitly is
not necessary.

A.5 Quadratic Programming

A Quadratic Programming problem (QP) [23] is given by a quadratic cost function subject
to linear constraints:

min
x

J(x) = 1
2
xT H x+ fT x subject to Ax ≤ b (A.15)

If H is positive definite, the problem is convex, so it has one unique optimum.
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A.5.1 Unconstrained QP

An unconstrained convex QP can be solved analytically as follows:

∂J(x)

∂x
= xT H + fT = 0 (A.16)

so:

x = −H−1 f (A.17)

A.5.2 QP with equality constraints

A QP with only equality constraints can also be solved analytically.

Consider the following optimization problem:

min
x

J(x) = 1
2
xT H x+ fT x subject to Aeq x = beq (A.18)

The equality constraints can be included in the function by introducing the Lagrange
function:

L(x, λ) = 1
2
xT H x+ fT x+ λT (Aeq x− beq) (A.19)

whereλ is a vector with the Lagrange multipliers.

The optimal solution is given by:

∂L(x, λ)

∂x
= xT H + fT + λT Aeq = 0 (A.20)

and:

∂L(x, λ)

∂λ
= Aeq x− beq = 0 (A.21)

so:

x = −H−1 (f + AT
eq λ) (A.22)

Demanding that:

Aeq x = beq (A.23)

yields:

−Aeq H
−1 f − Aeq H

−1AT
eq λ = beq (A.24)

which results in:

λ = −(Aeq H
−1AT

eq)
−1 (Aeq H

−1 f + beq) (A.25)
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A.5.3 The Quadratic Knapsack Problem

Suppose the Hessian is diagonal, withH(i, i) = hi, and the equality constraint applies on
the sum of the decision variables. Then the problem reduces to:

min
x

J(x) =
n∑

i=1

1
2
hi x

2
i + fi xi subject to

n∑
i=1

xi = c (A.26)

This is called the continuous quadratic knapsack problem.

The Lagrange function becomes:

L(x, λ) =
n∑

i=1

( 1
2
hi x

2
i + fi xi + λxi ) + λ c (A.27)

The optimal solution is given by:

∂L(x, λ)

∂xi

= hi xi + fi − λ = 0 (A.28)

and:

∂L(x, λ)

∂λ
=

n∑
i=1

xi − c = 0 (A.29)

This results in:

xi = −fi + λ

hi

(A.30)

Demanding that:

n∑
i=1

xi = c (A.31)

yields:

n∑
i=1

fi + λ

hi

= c (A.32)

which results in:

λ = −( c+
n∑

i=1

fi

hi

) /
n∑

i=1

1

hi

(A.33)

When upper and lower bounds onx are present, the problem can still be solved efficiently
with a routine described in [69]. If other constraints are added, a general QP solver must
be used.
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A.6 Mixed Integer Programming

If some of the decision variables are required to take integer variables, the optimization
problem becomes a Mixed Integer Programming problem (MIP):

min
x,y

J(x, y) subject to G(x, y) ≤ 0 and y ∈ N (A.34)

Good overviews of MIP algorithms are presented in [25, 27]. The most important algo-
rithms for mixed integer optimization are Enumeration, Branch and Bound, Outer Ap-
proximation, and Generalized Benders Decomposition.

All routines have the disadvantage that the computation time increases exponentially with
the number of discrete variables, because mixed integer problems are NP-hard [25].

A.6.1 Enumeration

Enumeration is a brute force method, where for all possible combinations of integer val-
ues, the corresponding continuous subproblem is solved. The one with the lowest ob-
jective function is a global optimum. Note that even if the continuous relaxation of the
problem is strictly convex, the MIP can have multiple optimums with the same cost func-
tion value.

A.6.2 Branch and Bound

In Branch and Bound (BB) [27], a tree search is performed in the space of the integer
variables. At each node of the tree some integer variables are fixed to a certain integer
value, whereas the remaining integer variables are relaxed to continuous variables. The
resulting continuous problem is solved, which yields a lower bound for the subproblems
of the specific node.

A node is fathomed when the lower bound exceeds the current upper bound to the original
problem, when the subproblem is infeasible, or when all integer variables take on discrete
values. The latter yields an upper bound to the original problem.

BB is the most commonly used method for MILP, and can also be used for Mixed Integer
NLP problems. The number of required continuous optimizations is always less or equal
to the enumeration method. It is usually much less, but that depends heavily on the
specific problem, the initial condition, and the search order of the tree search.

A.6.3 Outer Approximation

The Outer Approximation method (OA) [27] is a dedicated method for MINLP’s.

NLP subproblems and MILP master problems are solved successively in a cycle of iter-
ations. For the NLP, all integer variables are fixed, so this provides an upper bound for
the optimum. The MILP is the linear outer approximation of the original MINLP, so it
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provides a lower bound. The cycle of iterations is continued until this upper bound and
the lower bound are within a specified tolerance.

The NLP subproblem is defined as:

xk = arg min
x

J(x, yk) subject to G(x, yk) ≤ 0 (A.35)

The MILP master problem is defined as:

{x̃k+1, yk+1, αk+1} = arg min
x,y,α

α (A.36)

subject to:

α ≥ J(xi, yi) +∇ J(xi, yi)

[
x− xi

y − yi

]
(A.37)

G(xi, yi) +∇G(xi, yi)

[
x− xi

y − yi

]
≤ 0

for i = 1, . . . , k

The MILP master problem is usually solved using Branch and Bound.

The OA method generally requires relatively few cycles or major iterations. It is ad-
vantageous compared to BB when the NLP takes much computation time, because less
iterations are needed.

A.6.4 Generalized Benders Decomposition

The Generalized Benders Decomposition method (GBD) [27] is similar to the Outer-
Approximation method. The difference arises in the definition of the MILP master prob-
lem, because only inequality constraints that are active in the NLP subproblem are consid-
ered. They are regarded as equality constraints and substituted in the cost function using
the Lagrange multipliers resulting from the NLP. Furthermore, the continuous variablesx
are fixed in the MILP. The NLP is the same as in the OA method.

The MILP master problem becomes:

{x̃k+1, yk+1αk+1} = arg min
y,α

α (A.38)

subject to:

α ≥ J(xi, yi) +∇y J(xi, yi) (y − yi) + (A.39)

(µi)T ( G(xi, yi) +∇y G(xi, yi) (y − yi) )

for i = 1, . . . , k

whereµ is a vector with the Lagrange multipliers of the constraints resulting from the
NLP.
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The MILP master problem has less constraints then when using the OA method, but usu-
ally more iterations are needed, because convergence is slower.

In [16], Branch and Bound, Outer Approximation and Generalized Benders Decompo-
sition are applied to solve a MINLP representing the dual storage power net described
in Chapter 5. It turned out that Branch and Bound outscored the other two methods in
computation time.

A.6.5 Convert to nonlinear constraint

A variabley can be forced to take an integer value using the following nonlinear con-
straint:

sin(π y) = 0 (A.40)

This is a nonlinear non-convex constraint, so it depends on the solver whether the global
optimum is found.

A variabley can be forced to take a binary value by introducing a variablez and using the
following complementarity constraint:

y z = 0 and y + z = 1 (A.41)

or, without an additional variable:

y (y − 1) = 0 (A.42)

This way, dedicated solvers for problems with complementarity constraints can be used,
as discussed in Section A.7.

A.6.6 Heuristic methods

Because the computation time increases exponentially with the number of discrete vari-
ables, in practice heuristic methods are often used, leading to a suboptimal solution. There
are also heuristics that lead faster to the global optimum.

One possibility to obtain a suboptimal mixed integer solution is the following. First the
problem is solved, with all integer variablesy relaxed to continuous ones. This provides
a lower bound to the mixed integer optimum. The resulting values ofy are rounded off
to integer values. The continuous optimization is repeated, with the variablesy fixed at
these integer values, to ensure that all constraints are satisfied, if possible. This provides
an upper bound to the mixed integer optimum. By comparing this upper bound with the
lower bound, it can be decided whether this solution is sufficient.
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A.7 Complementarity Constraints

This section focusses on optimization problems with complementarity constraints on
some of the decision variables:

min
x

f(x) subject to 0 ≤ x1⊥x2 ≥ 0 (A.43)

where other constraints may also apply.

Operator⊥ means that for each elementi holds that eitherx1(i) = 0 and/orx2(i) = 0.

Complementarity constraints are a form of equilibrium constraints.

Several methods to handle complementarity constraints are presented.

A.7.1 Convert to Mixed Integer Programming problem

Complementarity constraints can be incorporated by introducing binary variables and
adding linear constraints. The optimization problem becomes a Mixed Integer Program-
ming problem, as discussed in Section A.6.

Supposex is a vector withn elements and0 ≤ x ≤ xmax.

If only m elements ofx may be nonzero, this can be accomplished by addingn binary
variablesβ with the following linear constraints:

x ≤ β xmax and
n∑

i=1

βi ≤ m (A.44)

Such a constraint is called a Special Ordered Set (SOS). The complementarity constraint
can be regarded as a special case of a SOS.

Supposex1 andx2 are subsets ofx, each with lengthp, and with corresponding upper
boundsx1 max andx2 max, where:

xT
1 x2 = 0 (A.45)

This can be accomplished by introducing two vectorsβ1 andβ2 each consisting ofp
binary variables, and adding the following constraints:

x1(i) ≤ β1(i)x1 max(i)

x2(i) ≤ β2(i)x2 max(i) for i = 1, . . . , p (A.46)

β1(i) + β2(i) ≤ 1

This can also be accomplished more efficiently, by adding only one vectorβ consisting
of p binary variables, and the following constraints:

x1(i) ≤ β(i)x1 max(i) for i = 1, . . . , p (A.47)

x2(i) ≤ (1− β(i))x2 max(i)
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Note thatβ(i) = 0 yieldsx1(i) = 0 andβ(i) = 1 yieldsx2(i) = 0

If x1 andx2 can be negative, the lower boundsx1,min andx2,min have to be incorporated:

β x1,min ≤ x1 ≤ β x1 max and (1− β)x2,min ≤ x2 ≤ (1− β)x1 max (A.48)

A.7.2 Substitute complementarity constraint in cost function

The complementarity constraint can be substituted in the cost function as a penalty.

The optimization problem:

min
x

J(x) subject to xT
1 x2 = 0 x1 ≥ 0 x2 ≥ 0 (A.49)

then becomes:

min
x

J(x) + k xT
1 x2 (A.50)

If the penalty factork ∈ R+ is chosen sufficiently high, the constraint will be satisfied
with sufficient accuracy. However, the termk xT

1 x2 is not convex and for a high value of
k, this will result in a non-convex function.

If x1 andx2 are given by:

x1 = A1 x and x2 = A2 x (A.51)

then

xT
1 x2 = xT AT

1 A2 x (A.52)

DefineQ as:

Q = AT
1 A2 (A.53)

and its symmetric equivalent̃Q as:

Q̃ =
1

2
(QT +Q) (A.54)

Note that for every square matrixQ, the matrixQ̃ is symmetric and the following holds
for all x:

xT Qx = xT Q̃ x (A.55)

This is a quadratic term, but̃Q usually has both positive and negative eigenvalues, so if
it is added to an LP or QP, the problem becomes a non-convex QP. Most QP solvers that
can handle non-convex QP’s only find a local optimum.
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A.7.3 Nonlinear Programming

Complementarity constraints can be incorporated in an NLP by adding a nonlinear in-
equality constraint as follows:

min
x

J(x) subject to xT
1 x2 ≤ 0 x1 ≥ 0 x2 ≥ 0 (A.56)

This is a set of nonlinear generally non-convex constraints, so it depends on the solver
whether it can be solved. Both [24] and [49] report good results for specific problems
using a Sequential Quadratic Programming (SQP) solver. Some modifications of the SQP
solver may be needed.

A.8 Dynamic Programming

Dynamic Programming (DP), [8, 10] is a method to solve a discrete time dynamic opti-
mization problem,i.e., to find the optimal sequence of control variables:

[ u(0), . . . , u(n− 1) ] (A.57)

that brings a system given by:

x(k + 1) = f(x(k), u(k), k) (A.58)

from statex(0) = x0 to x(n) = xn, while minimizing the cost function:

J =
n∑

k=0

γ(x(k), u(k), k) (A.59)

To do so, the operating space(X,U) is discretized, making a grid, and all possible tra-
jectories on this grid are evaluated. The number of computations is reduced by using
Bellman’s Principle of Optimality ( [9] p. 15), which states that:

An optimal policy has the property that whatever the initial state and initial
decisions are, the remaining decisions must constitute an optimal policy with
regard to the state resulting from the first decision.

In other words: From any point on an optimal trajectory, the remaining trajectory is opti-
mal for the corresponding problem initiated at that point.

Bounds onu andx are handled by the limited grid size. Other constraints can be incor-
porated by adding a large penalty to the cost if a constraint is violated.

Because the cost function is evaluated numerically, it makes no difference whether it is
convex or not. Furthermore, integer variables take less computation time than continuous
variables, that are usually discretized on a more dense grid. Nevertheless, the computation
time increases rapidly with the number of states, inputs, and time steps, and their grid
densities.
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A.9 Evaluation

In this section, the optimization methods previously discussed are compared, with respect
to their suitability for solving energy management problems.

The energy management problem is a dynamic optimization problem, for which Dynamic
Programming seems the most suitable method. An advantage is that the cost function can
be nonlinear and non-convex. A disadvantage is the large computation time, especially if
there are multiple states.

The dynamic optimization problem can be rewritten as a static optimization problem. If
the problem can be approximated accurately as a convex optimization problem, it can be
solved using a convex NLP solver, or it can be further approximated to a QP or LP. LP’s
are faster to solve than QP’s, but approximating a problem as an LP generally requires
more constraints and additional variables, which increases computation time.

A mixed integer problem can be written as a continuous optimization problem with com-
plementarity constraints and vice versa. Because both types of problems are NP-hard,
they are both hard to solve. The computation time can be reduced by using a heuristic
method, leading to a suboptimal solution.
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Stability Analysis

B.1 Introduction

This chapter presents a stability analysis of two storage control strategies derived from
global optimization as presented and implemented in Chapter 3. The method is also
applicable to other systems with a storage unit.

This chapter considers the optimal storage control problem of systems consisting of one
or more energy convertors and a storage device. The energy convertors are characterized
by losses that depend on their time varying operating point. The problem is to control the
energy storage such that usage of the primary energy source is minimal.

In Chapter 3, this idea is applied to the electric power supply in a conventional passenger
vehicle, such that the fuel consumption is reduced. The storage control problem was
formulated as an optimization problem and two practically implementable strategies were
derived from it. The first strategy puts the optimization in a Model Predictive Control
(MPC) framework using a limited prediction horizon. Secondly, a feedback strategy is
derived doing without future knowledge. Their effectiveness was shown by simulations.

This chapter provides a more general description of this idea and analyzes the stability of
these strategies.

This chapter is built up as follows: Section B.2 formulates the storage control problem
as a quadratic knapsack problem. The Model Predictive Control strategy is presented
in Section B.3. In Section B.4 the endpoint constraint, and thus the required prediction
horizon, is replaced by state feedback. Conclusions are given in Section B.5.

B.2 Storage Control Problem

The storage control problem consists in controlling the storage poweru, such that a costΓ
is minimized, subject to the demand that the stored energyx at the beginning and the end
are equal. Using discrete time, this can be written as a dynamic optimization problem:

min
u

Γ(u) =
N∑

k=1

γ(u, k) ∆t (B.1)
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The statex is the discrete time integrated inputu:

x(k + 1) = x(k) + u(k) ∆t x(0) = x0 (B.2)

or equivalently:

x(k) = x0 +
k∑

j=1

u(j) ∆t (B.3)

The endpoint constraint becomes:

x(n) = x(0) ⇒
N∑

k=1

u(k) = 0 (B.4)

The cost rateγ is approximated by a quadratic function ofu with time-varying coeffi-
cients:

γ(k) = 1
2
ϕ2(k)u(k)

2 + ϕ1(k)u(k) + ϕ0(k) (B.5)

The termϕ0 can be omitted, because it does not influence the optimal solution foru. The
optimization problem becomes a continuous quadratic knapsack problem:

min
u

N∑
k=1

1
2
ϕ2(k)u(k)

2 + ϕ1(k)u(k) (B.6)

subject to
N∑

k=1

u(k) = 0 (B.7)

If no inequality constraints are present, this can be solved analytically by introducing the
Lagrange function:

L(u, λ) =
N∑

k=1

1
2
ϕ2(k)u(k)

2 + ϕ1(k)u(k)− λu(k) (B.8)

whereλ is the Lagrange multiplier. The optimal solution is given by:

δL(u(k), λ)

δu(k)
= ϕ2(k)u(k) + ϕ1(k)− λ = 0 (B.9)

δL(u(k), λ)

δλ
=

n∑
k=1

u(k) = 0 (B.10)

This results in:

u(k) =
λ− ϕ1(k)

ϕ2(k)
(B.11)
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where:

λ =
N∑

k=1

ϕ1(k)

ϕ2(k)
/

N∑
k=1

1

ϕ2(k)
(B.12)

The incremental costs are given by:

∂γ(u(k))

∂u(k)
= ϕ2(k)u(k) + ϕ1(k) (B.13)

By substituting (B.11), it follows that the optimal solution is characterized by equal in-
cremental cost at each time step, namelyλ.

Note that, for givenλ, computingu(k) using (B.11) is equivalent to solving at each time
instantk :

min
u(k)

γ(u, k)− λu(k) (B.14)

B.3 Model Predictive Control

If only a limited prediction horizon is available, the optimization problem can be solved
within a Model Predictive Control framework, using a receding horizon. At each time
stepk the optimization is carried out over the horizon[ k, · · · , k +Np ]:

min
u

J(u, k) =

k+Np∑
j=k

γ(j) (B.15)

The endpoint constraint incorporates feedback of the actual statex(k):

x(k + n) = x0 ⇒
Np+1∑
j=k

u(j) =
x0 − x(k)

∆t
(B.16)

This results in an optimal sequence[ u(k), · · · , u(k +Np) ].

The inputu(k) is applied to the system, and then a new optimization is run using a shifted
prediction horizon and updated state information.

The optimization can again be solved analytically using the Lagrange function, resulting
in:

u(k) =
λ(k)− ϕ1(k)

ϕ2(k)
(B.17)

where:

λ(k) = (
x0 − x(k)

∆t
+

k+Np∑
j=k

ϕ1(j)

ϕ2(j)
) /

k+Np∑
j=k

1

ϕ2(j)
(B.18)
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Although for the computation ofu(k) only current valuesϕ1(k) andϕ2(k) are needed,
computation of the value ofλ(k) requires knowledge ofϕ1 andϕ2 over the entire predic-
tion horizon.

The expression foru(k) can be separated in a time-varying feed forward and a linear
time-varying state feedback:

u(k) = f(k) + g(k)x(k) (B.19)

where:

f(k) = − 1

ϕ2(k)
{ ϕ1(k)− (

x0

∆t
+

k+Np∑
j=k

ϕ1(j)

ϕ2(j)
) /

k+Np∑
j=k

1

ϕ2(j)
} (B.20)

and:

g(k) = −1 / ( ∆t ϕ2(k)

Np∑
j=0

1

ϕ2(k + j)
) (B.21)

The closed loop becomes a first order linear time-varying system:

x(k + 1) = (1 + g(k) ∆t)x(k) + f(k) ∆t (B.22)

which has a pole at:

p = 1 + g(k) ∆t = 1− 1 / ( ϕ2(k)

k+Np∑
j=k

1

ϕ2(j)
) (B.23)

Forϕ2 > 0, the pole remains in the range0 < p < 1, which is a sufficient, although not
necessary, condition for asymptotic stability.

B.4 MPC without Endpoint Constraint

When the available prediction horizon is very short, the variation inu will be small, and
thus the performance will deteriorate from the global optimal solution. The hard endpoint
constraint can be replaced by a soft one, by taking a different choice for the value ofλ. It
can be a guess of the optimalλ over a longer horizon.λ is constant over the horizon, but
can be updated after each time step,e.g., as function of the state. By using an estimated
λ, only present valuesϕ1(k) andϕ2(k) need to be known.

The optimization problem becomes:

min
u

k+Np∑
j=k

γ(j)− λ(k)u(j) (B.24)
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Appendix B. Stability Analysis

If no constraints are present, the solution does not depend on the horizon length, so a
horizon ofNp = 0 is sufficient. The optimization problem then becomes:

min
u(k)

γ(k)− λ(k)u(k) (B.25)

This can be solved analytically, resulting in:

u(k) =
λ(k)− ϕ1(k)

ϕ2(k)
(B.26)

B.4.1 P-controller

To prevent drift of the statex, λ can be adapted using state feedback,e.g., with a P-
controller:

λ(k) = λ0 +Kp (x0 − x(k)) (B.27)

The statex is the discrete time integrated inputu:

x(k + 1) = x(k) + u(k) ∆t x(0) = x0 (B.28)

The closed loop becomes a first order linear time-varying system:

x(k + 1) = p(k)x(k) + v(k)

where:

p(k) = 1− Kp ∆t

ϕ2(k)
v(k) =

λ0 +Kp x0 − ϕ1(k)

ϕ2(k)
∆t (B.29)

Forϕ2 > 0 and0 < Kp <
2 ϕ2

∆t
, the eigenvaluep remains in the range−1 < p < 1, which

is a sufficient, although not necessary, condition for asymptotic stability.

The eigenvalue can be kept at a constant desired valuep̃, by making the gainKp time-
varying:

Kp(k) = −ϕ2(k) (1− p̃)

∆t
(B.30)

B.4.2 PI-controller

An integrating action can be added:

λ(k + 1) = λ0 +Kp (x0 − x(k)) +Ki (y0 − y(k)) (B.31)

where the additional statey is the discrete time integrated statex:

y(k + 1) = y(k) + x(k) ∆t y(0) = y0 (B.32)
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Section B.5

The closed loop becomes a second order linear time-varying system:[
x(k + 1)
y(k + 1)

]
=

[
q(k) r(k)
∆t 1

] [
x(k)
y(k)

]
+

[
w(k)

0

]
(B.33)

where:

q(k) = 1− Kp ∆t

ϕ2(k)
r(k) = −Ki ∆t

ϕ2(k)
(B.34)

and:

w(k) =
λ0 +Kp x0 +Ki y0 − ϕ1(k)

ϕ2(k)
∆t (B.35)

The eigenvalues are given by:

e = 1
2
+ 1

2
q ±

√
q2 − 2 q + 1 + 4 ∆t r (B.36)

For this system it is more difficult to prove stability.

Demanding that both poles have a desired constant valueẽ, requires:

q2 − 2 q + 1 + 4 ∆t r = 0 ⇒ r =
(q − 1)2

4 ∆t
(B.37)

and:

q = 2 ẽ− 1 (B.38)

so:

Kp(k) = −ϕ2(k) (1− q)

∆t
Ki(k) = −ϕ2(k) r

∆t
(B.39)

B.5 Conclusions

The conventional MPC controller and the MPC-based controller with proportional feed-
back both result in discrete linear time varying first order closed loop system, for which
stability is proven.

When using PI feedback, the closed a loop becomes a discrete second order linear time
varying system, for which stability is not yet proven.
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Nomenclature

Symbol Quantity Unit

v vehicle speed m/s

ω engine speed rad/s

τd drive train torque Nm

τm engine torque Nm

ṁ fuel rate g/s

Pf fuel rate kW

Pm mechanical engine power kW

Pd mechanical drive train power kW

Pg mechanical alternator power kW

Pe electrical alternator power kW

Pl electrical load power kW

Pb battery power kW

Ps stored battery power kW

Pbs stored battery power kW

Pc ultracap power kW

Pcs stored ultracap power kW

Es energy stored in battery kJ

Ebs energy stored in battery kJ

Ecs energy stored in ultracap kJ

SOE state of energy %

SOC state of charge %

λ incremental cost -

M mass kg

Ad frontal area m2

Cd air drag coefficient -

Cr rolling resistance coefficient -

wr wheel radius m

fr final drive ratio -

gr gear ratio -

ωi idle speed rad/s

ρ air density kg/m3



Nomenclature

g gravity m/s2

βice brake specific fuel consumption g/kWh

ηice engine efficiency -
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Summary

The electric energy consumption in passenger vehicles is rapidly increasing. To limit
the associated increase in fuel consumption, an energy management system has been de-
veloped. This system exploits the fact that the losses in the internal combustion engine
vary with the operating point, and uses the possibility to temporarily store electric energy
in a battery, such that electric energy is only produced at moments when it is cheap to
generate.

To come to a practically applicable solution, a vehicle model is derived, containing only
the component characteristics relevant for this application.

The energy management problem is formulated as an optimization problem. The fuel
consumption over a driving cycle is minimized, while respecting physical limitations of
the components and maintaining an acceptable energy level of the battery.

Several optimization methods are studied to come to a solution. The dynamic optimiza-
tion problem is solved using Dynamic Programming. After rewriting it as a static opti-
mization problem and approximating the cost function by a quadratic function, the prob-
lem is solved using Quadratic Programming, which requires less computation time.

A real-time implementable strategy has been derived from the Quadratic Programming
problem, that does not require a prediction of the future driving cycle. This strategy
compares the current cost of producing electric energy with the estimated average cost.
By adapting the average cost based on the energy level of the battery, it is ensured that the
battery energy level will remain around the desired value.

Simulations show that a fuel reduction up till 2% can be obtained on a conventional ve-
hicle without major hardware changes. Higher reductions are possible on the exhaust
emissions.

To predict and explain the amount of fuel reduction that can be obtained with a given
vehicle configuration, a set of engineering rules is derived based on typical component
characteristics. Their results correspond reasonably well with the simulations.

An advanced power net topology is studied which contains both a battery and an ultraca-
pacitor that are connected by a DC-DC converter and a switch. Because of the increased
complexity, this system is modeled using linear and piecewise linear approximations of
the component characteristics, such that the energy management problem can be casted
as a Linear Programming problem. The discrete switch makes it a Mixed Integer Linear
Programming Problem. A realtime strategy, similar to the strategy for the conventional
power net, has been derived. The addition fuel reduction that is obtained with the dual
storage power net is small, because the maximum profit that can be obtained with an ideal
lossless battery is not much higher than with a normal battery.

Subsequently, hybrid electric vehicles are studied that use an Integrated Starter Generator
which can be used for generating electric power and for vehicle propulsion. Several con-



Summary

figurations are studied with respect to their potential fuel reduction. Configurations that
enable start-stop operation of the engine obtain a much higher fuel reduction, up to 40%.

The controllers are tested in real-time on a Hardware-in-the-Loop environment, where a
vehicle simulation model is combined with existing electric components. It is shown that
the electric power setpoints provided by an energy management strategy can be realized
in practice.
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Samenvatting

In moderne auto’s wordt steeds meer elektrische energie verbruikt. Om het hiermee
gepaard gaande brandstofverbruik te verminderen, is een geavanceerd energie manage-
ment systeem ontwikkeld. Dit systeem maakt gebruik van het feit dat de verliezen in de
verbrandingsmotor variëren met het werkpunt (koppel en toerental) en benut de mogeli-
jkheid om elektrische energie tijdelijk op te slaan. Zodoende wordt alleen op de meest
gunstige momenten elektriciteit gegenereerd.

Om tot een praktisch bruikbare strategie te komen, is een voertuigmodel opgesteld, waar-
bij alleen de voor deze toepassing relevante componenten zijn meegenomen.

Het energie management probleem is geformuleerd als een optimalisatieprobleem. Hier-
bij wordt het brandstofgebruik over een gegeven route geminimaliseerd, waarbij rekening
wordt gehouden met de fysische beperkingen van de componenten en het toegestane en-
ergieniveau in de batterij.

Verschillende optimalisatiemethoden zijn bestudeerd om tot een oplossing te komen. Het
dynamisch optimalisatie probleem is opgelost met Dynamisch Programmeren. Door het
probleem om te schijven naar een statisch optimalisatie probleem, en de kostfunctie te
benaderen met een kwadratische functie, is het opgelost met Kwadratisch Programmeren,
wat minder rekentijd vergt.

Vervolgens is het Kwadratisch Programmeer probleem vertaald naar een realtime imple-
menteerbare regelstrategie die geen informatie over de toekomstige route vereist. Deze
strategie vergelijkt de huidige kosten voor het produceren van elektrische energie met de
geschatte gemiddelde kosten. Door de geschatte gemiddelde kosten aan te passen aan de
hand van het momentane energieniveau in de batterij, wordt gezorgd dat het energieniveau
in de buurt van de gewenste waarde blijft.

Simulaties laten een brandstofbesparing van ca. 2% zien, zonder dat er hardware-matige
aanpassingen aan het voertuig nodig zijn. Op de uitlaatgas emissies worden hogere be-
sparingen behaald.

Om te voorspellen en te verklaren hoeveel brandstof besparing mogelijk is voor een
bepaalde voertuigconfiguratie, is een set vuistregels opgesteld, gebaseerd op typische
component karakteristieken. De resultaten blijken redelijk overeen te komen met de sim-
ulaties.

Vervolgens is er een meer geavanceerde elektrische topologie bestudeerd, waarbij zowel
een accu als een supercondensator gebruikt worden, die onderling verbonden zijn mid-
dels een DC-DC converter en een schakelaar. Vanwege de hogere complexiteit is dit sys-
teem gemodelleerd met lineaire en stuksgewijs lineaire benaderingen van de component
karakteristieken. Hiermee kan het energie management-probleem geformuleerd worden
als een Lineair Programmeer-probleem. Vanwege het discrete gedrag van de aanwezige
schakelaar is dit een Mixed Integer Lineair Programmeer-probleem. Net als voor het con-
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ventionele elektriciteitsnet is er een realtime strategie ontworpen. Simulaties laten slechts
een kleine toename in brandstofreductie zien, omdat zelfs met een ideale verliesloze bat-
terij de mogelijke brandstofbesparing beperkt is.

Tevens is er gekeken naar hybride elektrische voertuigen die gebruik maken van een
gëıntegreerde startmotor/generator die zowel voor elektriciteit genereren als voor aan-
drijven van het voertuig gebruikt kan worden. Voor verschillende configuraties is de
haalbare brandstofbesparing onderzocht. Met name door gebruikt te maken van start-stop
operatie van de verbrandingsmotor kan een hoge brandstofbesparing bereikt worden.

De strategiëen zijn gëımplementeerd op een Hardware-in-the-Loop opstelling, waarbij
een simulatie model van het voertuig gecombineerd wordt met bestaande elektrische com-
ponenten. Hiermee is aangetoond dat de door de strategieën voorgeschreven elektrische
vermogens in praktijk gerealiseerd kunnen worden.
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