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DECOUPLING AND STABILITY OF ALGORITHMS FOR 
BOUNDARY VALUE PROBLEMS* 

R. M. M. MATTHEIJt 

Abstract. The ordinary differential equations occurring in linear boundary value problems characteristi- 
cally have both stable and unstable solution modes. Therefore a stable numerical algorithm should avoid both 
forward and backward integration of solutions on large intervals. It is shown that most methods (like multiple 
shooting, collocation, invariant imbedding and difference methods) derive their stability from the fact that 
they all decouple the continuous or the discrete problem sooner or later (for instance when solving a linear 
system). This decoupling is related to the dichotomy of the ordinary differential equations. In fact it turns out 
that the inherent initial value instability is an important prerequisite for a stable utilization of the decoupled 
representations from which the solutions are computed. How this stability is related to the use of the 
boundary conditions is also investigated. 
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1. Introduction. Consider the linear system 

(1.1)~~~~5 x(t) = L ( t) x (t) + r (t ), a t _ , 

where L (t) is a continuous n X n matrix valued function. Let the following boundary 
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condition (BC) be given: 

(1.2) Max()(+M x( 3) b, 

where Ma and MAi are n x n matrices. Assume the solution is unique. 
Boundary value problems (BVPs) form an active area of research and there exists a 

large number of methods to compute solutions of such BVPs (1.1), (1.2), cf, [4], [11], 
[23], [53], [55] for some general references. Historically and conceptually, methods have 
had many different backgrounds. For example, multiple shooting [16], [17], [24], [51] 
was developed to improve the poor stability of single shooting. Collocation, was long 
considered too expensive (and hence not competitive) until a more rigorous investiga- 
tion showed its usefulness [2], [3], [56]. It is interesting to realize, however, that a 
condensed form of collocation is more or less equivalent to multiple shooting with a 
shooting interval of only one integration (if the integration is based on Runge-Kutta 
formulae, this equivalence also follows from [30], [64]). It may also be equivalent to 
some difference methods, cf. [56]. 

Recently a relation between the box scheme and invariant imbedding has been 
established, cf. [26]. The latter paper and many others also show that sparse BVP 
matrix solvers are related to each other cf. [5], [8], [27], [37], [38], [66]. All these methods 
try to circumvent the inherent instability with respect to initial data that is so character- 
istic of BVPs. Indeed, the ordinary differential equation (ODE) system (1.1) usually has 
a dichotomy; that is, the solution space can be split into a subspace of solutions whose 
members do not decrease with increasing t (and often even decay) and a complemen- 
tary solution space whose members do not decrease (and often decay for decreasing t). 
Properties of such ODEs are discussed, for example, in [15], [20], [47], [48], [58], [67]. 

As we shall see, the above-mentioned methods avoid this (initial value) instability 
via an appropriate decoupling of the dynamics, either analytically or numerically. By 
an appropriate analytic decoupling we mean that the system (1.1) is transformed such 
that the nonincreasing modes can be computed from a subsystem of lower dimensional- 
ity. If the system is first discretized by some numerical method, then an appropriate 
decoupling means that the resulting (discrete) system is analogously transformed. It will 
be shown that the idea of finding a decoupling is closely related to computing bases for 
the two aforementioned subspaces. In fact an important feature of a robust BVP 
algorithm should be the capability to find such transformations (implicitly or explicitly). 
These transformations are nothing but a (numerically well-conditioned) method of 
determining a geometric basis for the directions of the solutions. The computation of 
the solutions of the transformed system is then done in two sweeps. First, a suitable 
component is computed in a forward direction, after which the complementary compo- 
nent is found by integrating (or recurring) in a backward direction. By such an 
algorithm, one which finds the transformations and employs the forward and backward 
integration as indicated, we have a means to compute members of these two solution 
subspaces in a stable way. In order to indicate whether such a transformation may be 
successful, we introduce a consistency concept. Of great practical importance is the fact 
that certain BCs induce such decoupling transformations in a natural way. We shall 
show that they also induce consistency, which is why algorithms like invariant imbed- 
ding, or the Godunov-Conte algorithm, are stable. (It is curious that no explicit 
mention of this simple property seems to have been made before, cf. [35, Ex. 6.5]). 

Roughly speaking, this paper consists of three parts. First, ?? 1 to 4 set the general 
framework. Section 2 summarizes several definitions and conventions, ?3 describes the 
general decoupling algorithm and ?4 shows why the BCs may imply consistency if the 
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problem is well-conditioned. The second part, ??5 and 6, mainly deals with analytic 
methods, most of them being some variant of the Riccati method. Because of a 
similarity with the problems of this paper, we have devoted ?6 to decoupling of 
problems with two time scales. The last part, ??7 and 8, deals with discrete BVP 
methods. Section 7 considers multiple shooting and its variants and ?8 the important 
linear algebraic systems that usually arise after discretizing a BVP. 

2. Definitions and conventions. 
2.1. Norms. We assume that the real n-dimensional space is provided with some 

Holder norm, denoted by 11 This induces a least upper bound for matrices A 

(2.1) lub(A) = ||A II= max IAxii, jjxjj= 1 

and a greatest lower bound 

(2.2) glb(A)= min IIAxII. 
iIxII=1 

2.2. Partitioning. Any integer k ? n induces a partitioning of the matrix A as 
follows 

[All A12] (2.3) A [21 A22] 

where All is a k x k matrix. By a block upper triangular matrix we mean such a matrix 
with A 21 = 0. We also write 

(2.4) A=[AlIA2I, 

where A1 has k columns. Correspondingly we may partition a vector x as 

(2.5) x= () 

where xl has k coordinates. By span(A') we mean the space spanned by the columns of 
Ai. 

If we partition the rows of A in a similar way (i.e. into the first k rows and the last 
n - k rows), we shall use the notation 

(2.6) A ['hA] 

2.3. Sums and products of matrices. We denote 

(2.7a) 5? Aq = fA+ +Aq if qp, 

(2.7b) A fA, ( Ap ifq2p, j 0 ~~if q<p. 

2.4. Fundanental solutions: continuous case. If an n x n matrix function 4) satisfies 

(2.8) =L(t) 

and '1(0) is nonsingular, then 1 is called a fundamental solution for (1.1). Continuity of 
L implies that ??(t) is then nonsinguhir for all t. The linear space of solutions of (2.8) is 
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denoted by span((D). We now make 
Assumption 2.9. Let the solution space have a dichotomy, i.e. suppose there exists a 

partitioning (F = ((' I (D2), fixed throughout [a, /3], and a reasonably small constant K 

(? 1) the dichotomy constant, such that 

lub((F1(t))/glb(41 (s)) )K? t ? s 

lub((F2(t))/glb((FK(s))?K, t_s. 

We call span((F) the unstable and span((D2) the stable solution space. 
This notion is a slight generalization of exponential dichotomy, see [15], [31]. In 

[21] it has been shown that Assumption 2.9 holds if the BVP is well-conditioned (see ?4). 
We realize that for finite intervals there always exists some constant K for any funda- 
mental solution splitting. However, the constant we use in Assumption 2.9 should not 
be something like exp((,/ - a)), where ? is some Lipschitz constant. Thus 2.9 should 
be interpreted in the proper spirit, that is for K a moderate constant of order one. By 
doing so we do not have to complicate the subsequent analyses by performing rather 
obvious but tedious asymptotics. 

For technical reasons we would like to have a normalized fundamental solution. 
Hence we also ask (cf. [35, Assumption 3.21]). 

Assumption 2.10. Let (D be normalized such that max,e[afi]I>(F(t)jj=1 and 
V p,q ? n max,jj4P(t)jj = maxSijjq(s))jj where 4P(t) denotes thepth column of 4?(t). 

2.5. Fundamental solutions: discrete case. The discrete BVP methods we will con- 
sider in the sequel can be thought of as one-step discretizations of the continuous 
problem. Consider the grid{to,... ,9tN} C[a, /3], where to=a and tN=,8. Denoting a 
solution value of x at ti by xi (= x(t,)), the resulting recursion should be 

(2.11) x,=Aixi+A , 

where (disregarding discretization errors) 

(2.12a) Aj= ?D(ti+l)[ D(t,)] = I+ tI L(T) 4D(T)[ 4D(ti)] 'dT9 

and 

(2.12b) fi= t'+1 (D (ti +1) (D(s) 'r (s) ds. 

Apparently, a discrete fundamental solution for (2.11) is given by {Fe i }, where 

(2.13) (Di=(F(tl). 

This discrete solution space therefore has the same dichotomy as the continuous one. 

2.6. Special boundary conditions. Quite often the BCs (1.2) have special form such 
as separated ones with 

(2.14) Ma [2M] If M [A 
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If the number of nonzero rows in Ma and MA is larger than n, but still smaller than 2n, 
we have a partially separated BC for which, say, 

(2.15) MfA [ ] 
where no special zero row structure for Ma is assumed. 

3. Decoupling of the dynamics. We shall give the basic idea of decoupling both for 
a differential equation and for a difference equation. First we give a geometrical 
introduction which shows the basic principle. Then we treat the continuous and discrete 
cases. 

3.1. Introduction. In order to understand more easily why transformations can 
produce a meaningful geometric basis for the directions of the solutions, we discuss a 
simple geometrical model first. 

Let x and y be two independent vectors, such that X11x2>>?Y1y112. Let a and b be 
linear combinations of x and y, say 

(3.1) a=alx+a2y, b=/81x+182y, 

where a1, 82 are 0(1) and such that a and b are independent as well. Although a and b 
span the same space as x and y, they are less attractive as a basis, since they generally 
enclose a small angle (see Fig. 3.1). 

Given a and b and neglecting rounding errors, we can find a better basis as 
follows: Let y1 be of the order of Iall 2; then define 

a 
(3.2) tl= -. 

Let t2espan(a,b) be a vector with IIt2II2 lltlll2 such that t2 and t, do not enclose a 
small angle. Then for some Y2, Y3 

(3.3) b = y2tl + y3t2. 

We shall show that y311t2112 is of the order of IYIIy2 if we assume that the angle 0 between 
x and y is not small. 

Think of a situation where y1 = tlall2 (so 11tlll2 = 1), (t1, t2)= 0 and 11t2112 = 1. In such 
a case we just have a Gram-Schmidt orthogonalization, with 

(3.4) y2=(b,tl), y3=(b,t2). 

Z - _- bi .~~~~~- 

a1x x 

FIG. 3.1 
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t2 

'y3t2t :::/ -b 

l _-t____-- - - - - a y2tl 

x 

FIG. 3.2 

Since a was assumed to have a significant component of x, the angle 'q between x and a 
is small, whence I711lix I2 It also follows that the angle between t2 and x equals 
ST/2 + n = 7T/2. Now since b has a significant component of y (i.e. /81/,f2 is not large), it 
can be seen from Fig. 3.2 that the projection of b on the t2-axis and the projection of y 
on the t2-axis have the same order of magnitude, namely IIY 2, (as 0 was assumed not to 
be small). Formally, this process can be written as 

(3.5) (xIY) (a 2 
= (ab) (tl I t2) ( Y3 

The third expression in (3.5), viz the QU-decomposition, therefore retrieves information 
about the original basis, that is I71I1=1x112 and IY3=11YI12 (where = means "order of 
magnitude"). It should be realized that this simple but important phenomenon only 
occurs if t1 and t2 do not enclose a small angle. Now, if we generalize this to subspaces 
and let (t1It2) be a square matrix, we should expect such a factorization to produce 
magnitudes of blockvectors x and y, provided (tl It2) is well-conditioned (which implies 
that span(tl) and span(t2) do not enclose a small angle, cf. [32]). 

3.2. The continuous case. Both analytically and computationally linear transfor- 
mations of ODEs play an important role, cf. [5], [12], [20], [30], [32], [33], [39], [40], [41], 
[42], [47], [49], [62], [63], [68]. The most simple approach is to try to transform the 
system matrix L(t) by a time-dependent matrix T(t) such that T(t) - lL(t)T(t) has a 
special form, e.g. a diagonal or an upper triangular matrix. Unless L is constant or 
slowly varying, this does not necessarily lead to a system that has a special advantage 
over the original. To be more specific, let 

(3.6) W(t)= T(t) L(t)T(t)- 

Then by setting 

(3.7) x(t)= T(t)y(t), 

we see that 

(3.8) Y=(T-1LT-T- T)y= (W-T-'T)y=: Wy. 

Hence in order for W to have the same special form as W, T- 1t must have such a form 
too. 
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A better approach for obtaining a special form of W is to compute T from the 
Lyapunov equation (cf. (3.8)) 

(3.9) T= LT- TW, 

where W may, for example, be block upper triangular. This has an important conse- 
quence for the solutions of the transformed system. To see this, let T(a) be some initial 
value, let K be a fundamental solution for (2.8) with K(a) = T(a), and define 

(3.10) V(t)= T(t) yK(t). 

Then V is a fundamental solution of 

(3.11) y= Wy. 

Since V(a)=I, it now follows that V(t) is block upper triangular for all t. Hence 
finding a block upper triangular form for W is equivalent to finding a matrix function 
T such that a fundamental solution K can be factorized as TV, with V in the same form 
as W. 

We shall show that such a factorization gives rise to a splitting of the solution 
space into subspaces representing the growth classes of the dichotomy (cf. ?2). In ?3.1 
in order to have ll 7 lIx 112, the vector a had to contain a (significant) component of the 
vector x. For similar reasons we now require that the matrix solution induced by the 
first k columns of T(a), viz. K1, contains a nontrivial component of (F1. To this end we 
define the following important concept. 

DEFINITION 3.12. Let the fundamental solution K be partitioned as K= (K1 1K 2). 
Then K is said to be consistent (with eD as in Assumption 2.9) if span(Kl(a))nf 
span(&D2(a))= (01. 

We have 
PROPERTY 3.13. K is consistent iff 
(i) span(K1(t))fnspan(eD2(t))= {O}, for all t or 
(ii) [[4I>(a)] - 1K(a)]11 is nonsingular. 
Proof. (i) is trivial. (ii): There exists some constant matrix H such that K= 'DH 

K1 = 4lHll + D2H21. Suppose (ii) is not true, i.e. H11 is singular; then there exists a 
vector a # 0 such that H11a = 0. Since H is nonsingular, H21a must be nonzero, whence 
span(K1)f nspan(1D2)# {0}. Now, on the other hand, if (ii) is true, H11 is nonsingular 
and Klv e span(&D2) for some v, so D H 1lv = 0 implies v = 0. al 

From the foregoing we see that consistency of K means that the first k columns of 
K represent a basis for an unstable solution subspace. 

If T(t) in (3.10) is a well-conditioned matrix, i.e. IIT(t)111jT-1(t)1I is not large [71, p. 
86ff] and K is consistent, then we can expect from our geometrical model that V11 and 
V22 represent the increments of the unstable and the stable modes of (3.11) respec- 
tively. This is quantified below. 

THEOREM 3.14. Let K:= 1DH. Let H11 be nonsingular, so K is consistent. Then 
(D = (D I lD2)=( ( llHll + q 2H211 l(H 22-H 21[ Hll] - 1H12 )) has a similar dichotomy to 
1, that is the dichotomy constants for eD and 4D are of the same order. Moreover in the 
factorization K= TV the following estimates hold 

1 <l1V111 glb(V11) 1 sinH < 11V22112 glb2(V22) 

where I is1II glb(l t ) anT||2 d2(2132 glb2). 
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Proof. Write 

T-'=: S Is 

where 1S has k rows. From V= T- 1K= S0H, 

vll = lS(( lHll + (D'2H21) = is4'. 

Hence: 11V1ll< IllSllllI11I < 11T- 11111(41)lI and glb(Vll) < 1T- ll glb(i1)l). Since 1=,T = 

IV)111?11 <IIT11IV11 and glb(')1)I?Tll glb(V11). On the other hand, 
o 

2S(( lHll + (D2H21 ) =>2S(DI = _ 2S D2H21 [ Hll]- 

Combining this with V22 =2S(1)lHl2 + D2H22), we obtain V22 =2S(Dz2(H22- 
H21[H1l]-lHl2)= S2'12. The estimates for V22 now follow in a similar way to those for 
Vll, cf. [32, Thm. 5.9]. 

In order for 1) to have a similar dichotomy, it only remains to show that the Schur 
complement (H22 - H21[ H11]-1H12) of El is nonsingular. Otherwise, an a #0 belongs 
to its kernel, and 

H [H] H 2a] =o, 

contradicting the nonsingularity of H. C 
Remark 3.15. It is fairly important that JI[H11]-111 and II[H22-H21[H1f]-lHl2]f-11 

not be large to make sure that V1 and (D2 resemble $1X and (D2 respectively. Perhaps 
even more interesting is that Theorem 3.14 shows how the skewness of the transforma- 
tion T affects the growth properties of Vll(t) and V22(t) (for a more detailed discus- 
sion see [32]). 

We now show how these results should be used. Return to the original inhomoge- 
neous ODE (1.1) and define 

(3.16) s(t)= T-1(t)r(t). 

Transforming (1.1) via a solution T of (3.9) leads to the following decoupled ODE: 

(3.17a) yl = W1lyl + W12Y2+sl 

(3.17b) Y2= W22Y2+S2 

Recall that V22 and V11 satisfy V22= W22V22 and VUl= W11V1. Since V22 and V11 
resemble 412 and qDl respectively, in their growth behaviour, and the latter resemble (D 2 
and V1 respectively, we can conclude that (3.17b) is stable for increasing t and (3.17a) is 
stable for decreasing t. These considerations lead to the following basic algorithm for 
computing solutions of conditionally stable problems. 

(3.18) BASIc ALGORITHM (continuous case) 
Step I. Compute a matrix function T, given some appropriate T(a), and a block 

upper triangular matrix function W satisfying the Lyapunov equation (3.9). 
Step II. For appropriate initial conditions y2(a) and terminal conditions y'(,8), 

compute the particular solution yp and a fundamental solution (or part of a fundamen- 
tal solution) Y by employing the stable directions, i.e. integrate first (3.17b) for t 
increasing, and then (3.17a) for t decreasing. 
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Step III. Compute by superposition the transformed desired solution y =yp + Yc, 
selecting the constant vector c to satisfy the BC MaT-1(a)y(a)+MJ?T-1(,8)y(B)=b. 
(This step is not needed if y happens to coincide with yp.) 

Step IV. Compute x as Ty. 

Although our intuitive derivation of the stability of Step II made use of the 
fundamental solution K, we do not compute K in practice. Indeed, as we noted in ?1, 
this is not possible in many practically relevant problems where the growth of solutions 
in span ((1)) causes serious rounding error problems. The trick in the algorithm above 
is that instead we compute a more convenient form for our ODE system-matrix and so 
avoid computations where these unstable modes may blur the results. 

In ??5 and 6 we shall discuss a number of algorithms that fit into the framework 
of (3.18). An important point will be how these algorithms manage to keep T well-con- 
ditioned. (One should realize that (3.9) is not solved as an ODE in T, since W is also 
unknown!) 

3.3. The discrete case. In any BVP algorithm we have to discretize the ODE 
sooner or later in order to find numerical solutions. In contrast to ?3.2 we now assume 
that this discretization precedes other manipulations which are needed to compute an 
approximate solution. Therefore we consider the discrete problem setting of ?2.5. The 
gridpoints to, ,t can be thought of as the points used for collocation, cf. [2], [56], 
[69], or the points where shooting is restarted, cf. [16], [24], [25], [42], [51], [60], or just 
the discretization points of a one step method, cf. [12], [26], [57], [65], [70]. As in the 
continuous case, the computation of a solution { xi} by using (2.10) in a forward 
direction is not meaningful if there exist strongly increasing modes (and x is not such a 
solution). Likewise the computation of a fundamental solution { Ki } (that is a matrix 
solution of K,+1= AIKi) would be unstable for the same reason. Recalling from ?3.1 
that the magnitudes of 01 and (D)2 might be retrieved from a factorization of K, cf. 
(3.10), we now investigate the possibility of a decomposition 

(3.19) K = TJV, i=0, N 

where V, is block upper triangular. Since we identified the discrete solution with 
appropriate continuous solution values, we can immediately use the same consistency 
concept here. Thus we say K is consistent (with eD) if span(Kd) n span 4D 2(0)= {0}. From 
this it follows (cf. Property 3.13) that [[(Do] - [Ko]]11 is nonsingular. Moreover, Theorem 
3.14 carries over directly; the estimates should now hold for each index i. Thus, a 
consistent choice of To gives rise to a J1$ which has a similar magnitude (that is in 
terms of its lub and glb) to IV (and likewise for j/72 and (D). Again we should avoid 
direct computation of the fundamental solution, by using the following discrete version 
of the Lyapunov equation (3.9): Let To= Ko determine a consistent fundamental solu- 
tion K. Then, for each i =O, , N-1, we compute transformations { Ti } and block 
upper triangular matrices { U } such that 

(3.20) AiTi= T,+ 

(cf. [34]). 
Remark 3.21. In practice solving (3.20) utilizes QU- or LU-decompositions of AiT 

(i.e. Ti+ 1 is orthogonal or (block) lower triangular). 
By defining 

i-l 
(3.22) V.: =I j 

j=0 
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we see that (3.20) actually gives (3.19) in factored form. It is important to realize that 
the recursive computation of the { Ti } and { Ui } produces errors in UJ of the order of 
(IIA1l II jjIi Ti+- only, where t is the machine constant. Moreover, because the Ui are 
expected to be properly decoupled incremental matrices with II[HUl1 j- ll, 11Hyj211 = 

0(1), we see that, for example, H>OUj22 is perturbed by errors of the order 
{.0 IIAjII 1T1j1 Tj1)7l' only. Thus, it is important to have well-conditioned transforma- 
tions in general. We now use the following decoupled recursion instead of (2.10): 

1 = Ullyl+ U 12yi2+ 

(3.23b) yi2 = Ub22y2 + g2 

where we have set 

(3.24) gi>T,+lfi. 

A discrete version of (3.18) is then given by 

(3.25) BASIc ALGORITHM (discrete case) 
Step I. Compute a set of nonsingular matrices { T }, given some appropriate To. 

and a set of block upper triangular matrices { Ub } which satisfy (3.20). 
Step II. Choose appropriate initial conditions yO and terminal conditions y' to 

compute solutions of both the inhomogeneous recursions (3.23) (and generally also of 
the homogeneous parts of (3.23)) by employing the stable directions, i.e. by solving 
(3.23b) first and then (3.23a). 

Step III, Step IV follow (3.18). 

Finally, we wish to elaborate a bit on the relation between the continuous and the 
discrete Lyapunov equation. 

THEOREM 3.26. Let T, V satisfy the continuous Lyapunov equation (3.9). Define 
Ti- T(ti), and U=I =-f,"1V(T)[V(ti)flddT, i=O,1, ,N. Then {T,} and {Uj} satisfy 
(3.20) (for Ai in (2.12a)). 

Proof . 

Ai-I+|+L (T) *(T) f(D(ti)] d 

=I+ t'+L (T) T(T) V(T) [V(ti)] [T(ti)] dT. 

Hence 

A-T Ti+f+1 {(L(rT)T(T)-T(T)W(T))V(T)[V(ti)] -1 

+ T(T)W(T)V(T)[V(ti) 1} dr 

= Ti+f (t TtT)V(T)+1T(Tr(T)}[V(ti)] dT= fTji+{ Ij1- TiVi'} Vi-1 

=Ti + IYi + Iiv 1 - , + lUi .E 

Thorem 31.26 shows that the results for the continuous case carry over to the 
digcret c=. Note, however, that in practice we have to reckon with discretization 
errors, ef. [36.- (For some more dramatic differences see, e.g., [331.) As one might expect 
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(and can simply verify), the converse of 3.26 does not hold. Indeed, given any pair of 
sets { T, } and { Ui } that satisfies (3.20), we can find infinitely many pairs of functions T, 
such that T(t) = Ti. Of particular interest is the choice of T, where 

(3.27) T(ti) = 0. 

By interpolating T, we can define a sufficiently differentiable ("continuous") transfor- 
mation. By interpolating the Vi, we have also constructed a pseudo decoupling transfor- 
mation which yields a (continuous) fundamental solution that is (block) upper triangu- 
lar on the grid. If the Ui exhibit a proper growth, so will the Vi and it follows that such a 
fundamental solution will very likely be directionally close to a (continuous) fundamen- 
tal solution with the desired properties. 

4. Well-conditioning of BVPs and its consequences. When solving a BVP, one 
should be aware that no numerical method can be held responsible for large errors if 
the problem is inherently unstable. Therefore it makes sense to investigate the be- 
haviour of such methods for well-conditioned problems only. Fortunately most problems 
which actually describe physically realistic situations can be expected to be well-condi- 
tioned from physical considerations. Usually a similar well-conditioning carries over to 
the discretized problem (where we have perturbed solution approximates), see [7] and 
also [33], [36]. Although the conditioning of a problem deals with perturbation sensitiv- 
ity with respect to all data, it was shown in [35] that if there is a dichotomy, it is mainly 
the sensitivity of the solution with respect to the BC that is of importance, see also [16], 
[17], [30]. A meaningful quantity to measure this conditioning is given by 

(4.1) WA:= max I14(t)Q-'II, 

where 

(4.2) Q:= Mp(4(a)+M,f(fi3) 

As was shown in [35], our normalization assumption (2.10) makes the quantity K 

(4.3) K := IIQ 'l|| 
a useful estimate of WA. Further, we can obtain important information regarding the 
value of K by inspecting the norms of a partitioned Q. For this, we partition I1 into 

(4.4) ( l I D ) 

where VI represents the rapidly increasing modes, and 4V the "moderate" modes (those 
which do not increase or decrease significantly on the inverval [a, /3]). In a similar way 
we partition 1 2 into 

(4.5) ? 2 ) 

where S2 represents the rapidly decreasing modes and 402 the "moderate" modes. By 
our normalization assumption we then find 

(4.6a) IV (a) I| is smal, !{+&( ) 1), 

(4.6b) mI4l(a)II (1), ItI(/)Il is small. 

(4.6c) 111b2( c)1|- nil) jfgs2 jo | ijj a 
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So 

(4.7) QZ= [M,4u(,8)1 IM,s2(afl, 

where Q = [Ma(? (av)I 42(v))+MJ(()I2(R))I. We therefore have, cf. [30, Thm. 
4.61 

PROPERTY 4.8. If the problem is well-conditioned, that is IIQ-1ll= 0(1), then 
rank( M,A0 1 ( )) = rank(4 1(f8)) and rank(Ma4D2 (a)) = rank(4>D2 (a)). 

In this way, well-conditioning gives natural constraints for the BC. In particular, 
no row vector of M,, can be orthogonal to span(D2(a)) and similarly no row vector of 
M can be orthogonal to 4Xl(,8). In practice, near orthogonality should also be ex- 
cluded. We omit a further quantification, however. We now have 

PROPERTY 4.9. Let the BVP be well-conditioned. (i) If for some solution 4 of the 
homogeneous problem M4o(a) = 0, then ) 0 span(ID2), i.e. 4 must be either a significantly 
growing or a moderately growing solution. (ii) If M1,(/3) = O, then 4 4 span(IV), i.e. (A 
must be either a significantly decaying or a moderately growing solution. 

The proof of this follows from Property 4.8 by contradiction (cf. also [35, Ex. 6.5]). 
For separated BCs we employ Property 4.9 to obtain an important tool for showing 
why certain algorithms are stable. 

THEOREM 4.10. Let the BVP be well-conditioned and have separated BC. If 
2MjlT(a) = 0, then the fundamental solution K, with K(a) = T(a), is consistent. 

Remark 4.11. The stability considerations in ?3 only make sense if there is a 
dichotomy. As is shown in [21], however, well-conditioning of a BVP implies that there 
is a splitting of the solution space as assumed in Assumption 2.9, with a moderate K. 

5. Methods based on Riccati transformations. An important class of methods that 
decouple the system utilizes block lower triangular matrices T with diagonal blocks 
being identity matrices. This provides the normalization needed to make such a decou- 
pling transformation meaningful (cf. Theorem 3.14). The equation to be satisfied by the 
remaining block of the T is a matrix Riccati equation. We shall first consider the most 
well-known member of this class, viz., invariant imbedding. Then we show that order 
reduction for scalar ODEs also belongs to this class and, finally, we briefly overview 
some algorithms for discrete scalar problems that are like Riccati transformation 
methods. In ?6 we consider special Riccati transformations using power series as is 
natural for singularly perturbed problems. 

5.1. Invariant imbedding. Although invariant imbedding can be introduced in many 
ways, cf. [1], [24], [43], [59], [61], we prefer to interpret the method as a linear transfor- 
mation of a system to a nicer form, cf. [26], [39], [49]. This will enable us to use simple 
geometrical arguments to explain the possible blowup of the solution to the associated 
Riccati equation. We first describe the algorithm. 

Consider the transformation 

(5 .1) T 
[t P(t) I] 

where P(t) is an (n-k)xk matrix. Note that T-l(t) is obtained by replacing P(t) by 
- P(t) in (5.1). Substitution of Tin the Lyapunov equation (3.9) gives 
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provided P satisfies the Riccati equation 

(5.3) P = L21 + L22P-PL11-PL12P. 

Originally invariant imbedding was advocated for its ability to transform a BVP into 
two IVPs, which could be solved by standard routines, when the BC are separated. The 
two ODEs for this purpose are (3.17a, b) (the latter being subject to terminal condi- 
tions). For P, one uses initial conditions. 

We now show that this is not only a sensible, but also a consistent use of the BC. 
Consider the separated BC 

(5.4a) (M , lM2)x(a)=b2 

(5 .4b) (m lma1 M2 ) x (B) =b. 

where M22 is nonsingular. Then 
PROPERTY 5.5. Let the BVP be well-conditioned and M 22 be nonsingular. Define 

P( a) = -[M,2]2- 1M21. Then the fundamental solution K, defined by K(a) = T( a) (cf. 
(5.1)) is consistent. 

Proof. By this choice of P(a), we have 

K ( _) -[M22] -lMc2l 

Hence M<K1(a) = 0. Application of Theorem 4.10 completes the proof. E] 
PROPERTY 5.6. If besides the previous assumptions, P(f3) also exists, then (Ml1 + 

M 12P( /3)) is well-conditioned (and, a fortiori, nonsingular). 
Proof. (sketchily). Since K in Property 5.5 is consistent, the left upper block of 

H = - 1K is nonsingular. Thus Theorem 3.14 implies that a properly scaled fundamen- 
tal matrix K, obtained from K by normalizing column solutions by their maximum 
value, should have similar growth properties to (. Now decompose K as TV, where V is 
block upper triangular. Then Q = M,K(a)+MMK(K3) satisfies: 

ml [M1+M,2P( )l1(f) 1[Mll+M2p(,8)1(#)+Ml2'22(#) 

Mc2l + Mc22p(C) Vl(t 21 + Mc22p(c) V(t)+<22 V22() [f?iK- M~2(a)] 1711(a) [Me, +M P(a)] 1711(a) +M. fV (a)J 
By construction M<1 +M<2P(a) = 0. Hence well-conditioning of Q means that both 
[M<22V22(a)] and [Mll + M,12P(f3)] should be well-conditioned. O 

By this choice of P (cf. (5.3)) to compute a T and W (cf. (5.1), (5.2)), we have 
performed Step I of the basic algorithm (3.18). The next step of the invariant imbed- 
ding method actually is to solve y from (3.17). By the clever choice of the initial value 
for P(a) 

(5.7) y2(a) =[1j lx(a)I2= -P(a)x1(a)+x2 (a) 

= [M2] -lM21xl(a)+x2(a)= [Ma 2] =b2. 

Moreover, 

(5.8) X2(/3)=y2( 1)+P(13)X1(I3), 
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which gives 

(5.9) M1llX1(f) +M12y2(3) +MM12P(f3)X1(%8) = b2, 

and so 

(5.10) y1(f>x1(fi)4 Mll+M12p(f8)] 
l(b2_Mi2y2(f)). 

From Properties 5.5 and 5.6 it follows that (5.7) and (5.10) give well defined and stably 
computed initial values to start the computation of (3.17a) and (3.17b). Hence we can 
perform Step II of (3.18). Since the BCs are used in such a special way, we can omit 
Step III. However, if we would not be able to use the special P(a) (see also below) or if 
we had more general BCs than (5.4), we could use (3.17) to compute both a fundamen- 
tal solution and some particular solutions and determine the proper linear combination 
to satisfy the BC. For partially separated BCs, this leads to a generalization of invariant 
imbedding along the lines of the Godunov-Conte algorithm. In ?7.3, we treat such 
variants in the framework of multiple shooting. Finally, Step IV is very simple, for back 
transformation is needed for x2 only and 

(5.11) x2(t)=y2(t)+P(t)xl(t). 

We conclude this subsection with some marginal notes: The main part of the 
algorithm, in terms of the computational labour, seems to be the computation of the 
nonlinear matrix valued Riccati ODE. This may limit its use for higher order problems. 
Another problem is that P may become unbounded. It has sometimes been advocated 
then to try integration in the backward direction, but there is no guarantee that this will 
work. The Riccati transform, despite its mathematical elegance, is rather awkward from 
a geometrical point of view. Recall our derivation of the general algorithm in ?3, where 
an appropriate decoupling takes place in terms of solution vectors. More precisely 
span(Tl(t)) and span(11(t)) become closer as t increases. By our choice of 

Tl(t)- P (t)] 

for all t, we require the unstable part of the solution to have approximately the same 
direction as span (Tl(t)) and to have a nonsingular D11(t) block. If the directions of 
the solutions are varying this may be no longer true. In [23] it is shown how the Riccati 
solution may be restarted at points where such a phenomenon threatens to take place; 
this leads to a strategy that resembles multiple shooting. (Then the nice choice of P(a) 
no longer has special advantages!) Unlike in multiple shooting, however, the new 
starting points are chosen according to the "speed" by which these directions change. 
This might sometimes make invariant imbedding a more powerful algorithm, especially 
if this "speed" is not too high compared to the activity of the unstable modes (as in 
some singular perturbation problems). In multiple shooting, if the integration works at 
all, one has to choose many shooting points in order to limit the solution growth on an 
interval (see ?7). We illustrate this by an example. 

Example 5.12. Consider the ODE 

dx [1 -pcos2wt w + p sin2wt 
(5.13) dt -+snt1po2 jx, 0?<t?<v. 
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A fundamental solution is given by 

(5.14) I(t) = ('1 (t)l 'I,2(t)) =[snwt c st ]diag(e P, e-Pt). 

Since the general solution x is x = I(,) (for a, b E IR), 

(5 .15 ) P ( t ) = x 2 ( t 2(t)[x1(t) ] a cos wte Pt+b sin iwte- Pt 
a siniwtePt - b cos cte& t 

If a # 0, which we need for consistency, P has poles at all points t where 

(5.16) b = e 2ptcotan wt. a 

Hence even the most contrived choice of P(a) cannot prevent the need of O(w) restarts 
for the Riccati equation. Away from these trouble spots P(t) should be quite smooth 
and therefore a numerical integration of (5.3) is fairly simple even for extremely large p. 
On the other hand we will see in ?7 that a multiple shooting type algorithm for (5.13), 
will be plagued by stiffness for larger values of p, and not so much by problems due to 
o, unless X becomes of the order of magnitude of p. 

In control problems, the Riccati method has an inherent meaning cf. [48], [49]. 
Quite often those problems involve ODEs of high dimensions and with two (or more) 
time scales. Roughly speaking this means that the system matrix has large eigenvalues 
(in modulus) as well as moderately small eigenvalues. If one is interested in steady state 
solutions, then the Riccati method may provide a way to estimate the slow modes. This 
is not only convenient from a stiffness point of view but also because the reduced 
system is of lower dimension and hence more tractable. In the method suggested in [49], 
the W22 block contains the absolutely larger eigenvalues and W1' the absolutely 
smaller ones, so one tries to compute 

(5.17) P(a)= Q21 (a)[Q11(a)] -1 

where span(Ql(a)) is the subspace corresponding to these small eigenvalues of L(a). 
This initial vector is used to start the integration of the Riccati equation. Unless the 
system has constant coefficients, such a procedure may only work if the large eigen- 
values are all stable. Indeed in that case the fundamental solution K, induced by 
T = (p ), is expected to be consistent. Small eigenvalues correspond to solutions that 
dominate the fast modes (here consistency provides relative stability). If the problem 
has unstable fast modes, we may have to take recourse to other approaches, like the 
ones described in ?6. 

5.2. Order reduction for scalar ODEs. A classical analytic tool to compute a 
solution to a linear ODE, given one (or more) solutions, is order reduction, cf. [13]. The 
reasons for considering this method here are threefold. First, some literature exists 
about this subject. Second, order reduction yields a system of which the dominant 
modes may be linked with subdominant modes of the original system. Third, it is the 
continuous analogue of a class of algorithms that play an important role in the 
computation of special functions (cf. ?5.3). We shall restrict our discussion to the 
second order scalar case (for extensions see [64]). Consider the ODE 

(5.18) ri(t)+p(t) i(t)+q(t)u(t)=f(t), a?<t<? , 

and let 4 be some nonvanishing solution of the homogeneous equation. 
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Define a function 4 by 

(5.19) u=44,. 

Substituting this in (5.18), we find a first order (reduced) equation for A: 

(5.20) = p+2 

Suppose we obtain 4 from (5.20); then u can be found from 

(5.21) =u++(A. 

If ii(a) is given, then an initial value for 4,(a), needed to integrate (5.20), follows from 
(5.21). However, if we also know u(,8), then we can integrate (5.21) backward. 

In order to show that this algorithm is just another implementation of the decou- 
pling idea, we rewrite (5.18) as a linear system (1.1) with 

(5.22) x:= L:= ( 0?L r:= 

Now define the transformation matrix 

(5.23) T:( 1 X ) 

and y by 

(5.24) Y (= 

Using this T in the Lyapunov equation yields a system y = Wy + s, with 

(5.25) W=({'/ +p .V) \0 +p-2+/0 

In fact W21, the (2,1) element in W, is given by 

(5.26) w [ t( p ( q 

Since 0 is a homogeneous solution of (5.18), W21 = 0. Thus, (5.26) actually is a Riccati 
ODE for 4/4, the "direction" of the solution 4, and it is tempting to try to relate T in 
(5.23) to a Riccati transformation T, with 

(5.27) (t) (z(t) 1) 

Defining 

(5.28) T-lx 

we arrive at the triangular system 
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provided 

(5.30) 2+p+z2+qz=0. 

Hence the ODE W21 =0 (cf. (5.20)) is the Riccati equation. Note that T is a scaled 
version of T; in fact they are related by 

(5.31) T= T( 1 ? ) 

Apparently - 2=0, which explains the different (2,2) blocks in (5.23) and (5.29). 
Having linked order reduction and invariant imbedding, we see that a consistent 
initialization of (5.20) implies stability of forward integration. We also find that back- 
ward integration of (5.21) must be stable. Therefore a method as given in [64] is a 
special implementation of the Riccati method, with all its vices and virtues. If instead 
of ii(a) we have u(a) as the given initial condition, the order reduction formulation 
does not offer any advantage, since we are obliged to compute a fundamental solution 
and a particular solution of the system y = Wy + s (cf. (3.18) Step II) and determine the 
proper linear combination (cf. (3.18) Step III), which is roughly three times as expen- 
sive as an invariant imbedding method applied to the system 

(5.32) (u) q( P i)(u (f) 

where a natural initialization of the "direction" ODE and the stable part of the 
decoupled system follow, since 

(5.33) Ma =( 
0 0 

5.3. Riccati methods and scalar discrete problems. Besides BVPs that arise from 
discretizing ODEs, one also encounters discrete BVPs that are formulated for special 
functions, cf. [61, [34], [39]. 

They involve conditionally stable recurrence relations, i.e., BVPs on infinite inter- 
vals with the requirement that the solution should remain everywhere bounded which is 
more or less equivalent to a terminal condition. These recurrence relations plus initial 
and terminal conditions lead to a banded matrix which, in principle, can be solved by 
an LU-decomposition. A major problem in analyzing the stability of such an approach 
is that often little can be said about the conditioning of this matrix and hence a (global) 
error analysis is difficult. An additional problem is that often the exponential behaviour 
of the solution also makes such a global analysis less meaningful; one would like 
pointwise relative error estimates rather than a bound for the norm of the error vector 
(cf. [39]). We shall restrict ourselves to the second order scalar recursion 

(5 .34) u, +1 =pi U.+qiu, _ 1+Ai i = 1,2 

for which u0 (and probably ul) is given and where it is known that {ui}i,o is 
dominated by some homogeneous solution. The discrete analogue of order reduction cf. 
[45], is as follows: Let {fi} be a solution of the homogeneous part of (5.34) which is 
nonvanishing (for i ?1). Now define { 4, } by 

(5.35) u,=4,4',, i=O,1,** 



18 R. M. M. MA1THEIJ 

Then we obtain from (5.34) and (5.35) ("Abel's summation trick"): 

(5.36) C+10i+1 = Coi+i + (c - c-M- i+1 +Pi0i) 

+Ai+lf- oi+l +pioi+ qioi-,) +ji. 

Since { 4) satisfies the homogeneous part of (5.34), the weighted differences 

(5.37) Xi:= (Ci+1-0Ai)P i=0,1,*. 

(where p, is some nonzero real number), must satisfy the reduced recurrence relation 

4)i-i Pi Pi (5.38) i i- l 
Pi w 1 + i , 1, 2, 

If we know u0 and ul, then we know 40 and 41, so wo. Hence we can use (5.38) to 
compute { , } in forward direction. On the other hand, the relation (5.37) describes a 
one step recursion for { u, }, viz. 

(5.39) ui = < Ui+1 +1 Pi 
which can be used in backward direction once {f )i o and {wi} XO have been com- 
puted. In the particular case where one chooses 

(5.40a) )0 =0, 
(5.40b) Oi = 
(5.40c) Pi =-kj4)j?1, i=1, 

and moreover 

(5.40d) I= flu = Uo, 

we obtain "Olver's algorithm", cf. [41]. Order reduction, including "Olver's algorithm" 
now fits in the general framework of (3.25). To see this, we form a matrix vector 
recursion that corresponds to (5.34) by 

/Ui+2 \_/pi qi 1uj1? If + " (5.41) xi+1:= u 1 )I - ui ) i=0,1, 

If we define 

(5.42) Ti 
I 

[0/il f/i 

we obtain a decoupled recursion like (3.23): 

if i?2 (P?i +? I4 i u? ? 
UI+2 1[f/tZ +' ][ui + fL I 

(5 .43) ___ 

+ 
~ [+ IL Oi+Pi J A) L I 4i?2 'i 

A-s noted before, the transformation matrix Ti may be very skew unless we take pi =-i 
for all i. In that case we have a traditional Riccati transformation. More important, 
however, is the consistency question. Assume again that there is a dichotomy (cf. [6]). 
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With probability one, (?) is the initial value of an unstable mode of (5.41). Hence we 
see that the first column of T, has the direction of such a mode, i.e. we should expect 
consistency. We conclude that computing { 4, } % (for some N) effectively corresponds 
to Step I of algorithm (3.25). If u0 is given and we use Olver's implementation of order 
reduction (cf. (5.40)), we obtain an initial value to compute {l , from (5.38); by 
setting UN= 0, we can also compute { u, } backward from (5.39). Note that a homo- 
geneous solution here is given by {fi)}i,0; this constitutes Step II of (3.25). As with 
invariant imbedding, we do not need to compute a fundamental system and a particu- 
lar solution with the choice of (5.40), i.e. Step III is void. For different choices of the pi, 
however, such a step is required. Finally, whatever choice we made for the pi, back 
transformation is not needed, since the first coordinate of the solution coincides in the 
original and transformed recursions. This algorithm may fail if the Lyapunov equation 
or some similar relation does not have a solution, in particular if 4, =0 for some i > 0. 
In such a case, we need to restart this computation. However, this is not likely to 
happen too frequently. Indeed, one should realize that scalar recursions give rise to very 
special matrix vector recursions (and the same is true with scalar ODEs). 

For most of the well-known orthogonal functions it is a powerful algorithm, 
however. 

6. Transformations based on power series. One of the basic problems in decou- 
pling an ODE is how to find reasonably well-conditioned matrices T and block upper 
triangular matrices W at the same time. An intuitively simple idea to achieve this is to 
try a good guess for W (like W in (3.6)) and then correct this so that the result satisfies 
the Lyapunov equation (3.9), at least better than W does. If the system matrix has a 
power series expansion, we can utilize this to obtain better and better approximations 
in terms of a power series. The classical work in this area is Wasow's book [68]. In this 
section, we are particularly interested in problems which depend on t and in a singular 
way on some (small) parameter e. Such problems have been investigated in detail, cf. 
[3], [20], [27], [28], [40], [41], [47], [48], [49], [58]. The combination of analytic techniques 
with appropriate numerical tools may provide a powerful method to solve singular 
perturbation problems. We shall restrict ourselves to a brief discussion (for an extensive 
list of references, see [10]) and mainly treat this technique from a stability viewpoint. 

Consider the system 

(6.1) i(t)=Y'(t,c)x(t)+r(t,c), E small, 

where Y(t, e) has a power series expansion 

(6.2) 1(t,e) =L(t,e) =-LO(t)+LI(t) +eL2(t) + 

We assume that the coefficient matrices L, are smooth. If the matrix Lo is singular, then 
the system in (6.1) has two time scales, viz. fast modes with 0(1/c) derivatives and slow 
modes with 0(1) derivatives. We first restrict ourselves to the case where Lo(t) is 
nonsingular for all t, so that the homogeneous part of (6.1) has only fast modes. Now if 
we define 

(6.3) x(t)=T(t,c)y(t), 

where T is a (smooth) matrix function, we hope to transform (6.1) to obtain a decou- 
pled ODE 

(6.4) -A=W(t,c)y?cs(t,c) 
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via the Lyapunov equation 

(6.5) -T=LT-TW. 

As an Ansatz we set 

(6.6a) T(t, To(t) +,T,(t) + 
(6.6b) W(t, e) = Wo(t) +EW'(t) + 

This leads to the recursive relations (cf. [68, p. 141]) 

(6.7a) LOTO-ToWo= 0, 
/-I 

(6.7b) LoT1-T1W0= l [7TSW_S-L1,STS7+!_1, 1>1. 
s=I 

(Note that (6.7b) is not to be regarded as ODE for T_ 1, but a relation for T, in terms of 
Ts, s < I -1.) Further assume that the signs of the eigenvalues of Lo(t) are independent 
of t throughout [a,,/]; so we do not have turning points. Since in (6.7a) the matrix 
WO(t) is similar to Lo(t), we use a canonical form of WO(t). In contrast to the use of 
Jordan forms in [68], we prefer WO(t) that are (block) upper triangular since they are 
fairly easy to compute in practice. Indeed, by subspace iteration or an extended form of 
the QR algorithm, cf. [27], [41] one can compute an orthogonal matrix To and a (block) 
upper triangular W0 such that 

(6.8) LoTo=ToWo, 

where Wo has an ordered diagonal with the positive real part eigenvalues appearing 
first, or-in the block upper triangular case-diagonal blocks which are similar to 
these W0. (Note that appropriate transformations can bring the stable eigenvalues into 
the upper left block.) While proceeding with t, one hopes that the eigensystem To is 
only slowly varying, thus making TO(ti) a good starting guess for the iterative computa- 
tion of T0(tj+ ). From [41] we derive the following adapted basic theorem. 

THEOREM 6.9. Let the eigenvalues of Lo(t) be distinct for all t. Assume T(t, e) has an 
asymptotic expansion on [ a, /3]. Then there exists a fundamental solution F (t, e) such that 

0 ( t ) TO T( t)exp 
t 

e W(S ) ds ] 0 . 

Hence the choice in (6.8) induces the proper dichotomy provided E is small enough. 
In [41] a description is given of how to compute subsequent Ws and Ts form (6.7b). It 
should be realized, however, that it will often be quite satisfactory to restrict oneself to 
the first order term, since -2 will often be smaller than the required numerical tolerance. 
In fact, in [27] only the zeroth order terms are taken into account. After discretization, 
we obtain a sequence of transformation matrices { T0(tj)+ eT1(t1)} and block upper 
triangular matrices { W0(t,) +eW1(t1)} for a first order approximation, corresponding to 
Step I of (3.25). The remaining three steps are exactly as in the basic algorithm. It goes 
without saying that consistency and hence stability is assured if - is small enough (cf. 
Theorem 6.9). 

Quite often the matrix Lo is singular, so there are also slow modes. If, in particular, 
Lg2(t) =0 for all t, then the homogeneous system (6.1) can more conveniently be 
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written upon rescaling x2 as 

(6.lOa) &il = Lllxl + L12x 2 

(6.lOb) x2 = L21X1 + L22x2 

see [41]. In such a system it is reasonable to assume that Lll(t) is invertible for all t. 
Although decoupling of two time scales is a somewhat different problem than decou- 
pling increasing and decreasing modes (which seems to be imperative in order to have a 
stable algorithm), we shall still treat it here because of the nice similarity with our 
problem setting. Consider the Riccati transformation 

(6.11) T( t, e(t) I] 

then we obtain a time scale decoupled block upper triangular system 

(6.12a) eyl = Wll (t, e) yl + W12 (t, e) y2 

(6.12b) y2= W2(t,e)y2' 

provided P satisfies the (singularity perturbed) Riccati equation (cf. (5.3)) 

(6.13) eP=- PL" + L21 + eL22P-ePL12p. 

If we try a power series expansion for P 

(6.14) P(t,e)=Po(t)+eP(t)? + 

we have 

(6.15) Po=L21[L11] 1, 

and 

(6.16) PO = L-22Po-PLl- POL12Po. 

Since PO can be found from differentiation in (6.15), i.e., 

(6.17) PO1-21[L"] -lL21[LL"] -L"[L"] -l1, 

we thus can derive P1 analytically. If we are again satisfied with first order approxima- 
tions, we may use 

[L11 L 412 (Po eP1) ] 1 

(6.18) (t) 12 2 

Such a decoupling has been suggested in [3], [40]. If we would relate consistency of a 
fundamental solution of (6.1) to the fast mode part, then it can be seen that this Riccati 
transformation should produce a consistent transformation for E small enough. In fact, 
we can expect 

(6.19) lim T(t, e) =I. 
-0o 

This shows that the Riccati equation is always solvable, because we do not have 
significant rotation of the fast mode part. 



22 R. M. M. MA1THEIJ 

7. Special implementations of multiple shooting. In this section we consider three 
special implementations of multiple shooting. The global strategy of this method will be 
described first. Then we consider the Godunov-Conte variant for separated BCs and its 
generalization to partially separated BCs. Finally, it is shown how general BCs can be 
handled by a decoupling algorithm. 

7.1. Multiple shooting. Multiple shooting is an adaptation of single shooting, since 
it solves a number of initial value problems in order to make the interval of integration, 
and therefore the error growth, smaller. Although this method is quite well-known, cf. 
[16], [17], [23], [24], [42], [51], we give a short description for better understanding of the 
subsequent implementations. Let the interval [a,,8] be divided into N subintervals 
[tilt,+t?, i=O,---,N-1. Then over each such subinterval both some fundamental 
solution Fi and some particular solution pi are computed. The desired solution x can be 
found from superposition of these solutions, i.e., for i = ,, N - 1 there exists a vector 
vi such that 

(7.1) x(t)=F1vi+pi(t) on [t,,ti+,] 

By matching at the "shooting points" ti we obtain the recursion 

(7.2) F;+?(t1+?)vi+l=F;(ti+?) v+pi(t1+?)-p,+1(ti+,), i=O, N-1 

In order to obtain the sequence { v,} the following BC must be satisfied 

(7.3) MaFO(tO)VO+M fFN_l(tN)VN1= = 
b-MapO(tO)>MOPN-l(tN). 

Sometimes it is preferable to write (7.2), (7.3) as the linear system 

-Fo(tj) - Fl(tl) vo 

Fl(t2) -F2(t2) 0 

0 
(7.4) 

FN-2(tN-1) FN-E(tN-1) 

Ma,FO(to) MfFN_l(tN) VN-1 

Pi(ti) -Po(ti) 
P2(t2) -P1(t2) 

PN-1 (tN-1 )PN-2 (tN ) 

b _ 
It is worth noting that the system (7.4) also describes the discrete problem for most 

other methods including so-called "direct" and "global" methods. Those methods 
mainly differ from multiple shooting in two ways. First, they need some global strategy 
to determine the grid before discretization takes place. Second, the system generally 
contains many more unknowns since the grid { to,... , tN } coincides more or less with 
the entire mesh where the solution is discretized (for collocation this is true for the 
matching points between elements). 
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7.2. The Godunov-Conte algorithm. If the BCs are separated, cf. (2.14), some 
savings in CPU time can be gained by integrating only suitable parts of the fundamen- 
tal solutions. This idea was first suggested by Godunov and later developed by Conte, 
cf. [14]. Part of its popularity is due to a FORTRAN implementation described in [60]. 
Analyses of this algorithm, as well as the version given in the next section, can be found 
in [33], [42], [52]. We first describe the algorithm: Let FoJ be a homogeneous matrix 
solution, where Fo1(t) consists of k columns such that 

(7 .5) 2MaFl( to0) =0, 

and Foj(to) has orthonormal columns. At the same time letpo be a particular solution of 
(1.1) which satisfies 

(7.6) 2Mapo(to) = b2. 

If, for some reason, the designer of a code decides to stop the integration of po and Fo 
at some point t1 (in order, say, to restrict the error growth) a new particular solution pI 
and a new partial fundamental solution F1 are computed, starting at t1. The important 
special feature now is to ensure that span(F,1(t1))= span(F0l(t0)) and that span(FJ'(tl)) 
E3p0(t1)= span(F,'(t1))DP1p(t1). This is done by a QU-decomposition of Fo1(tl), viz., 

(7.7) FO (tl)=Fl(tl)Bo, 

where Fl(tl) has orthonormal columns and Bo is upper triangular. At the same time 
po(tl) is reduced by subtracting its projection on span (F1'(t1)), thus resulting in 

p(tl) =Po(tl) _F, (tl) [Fl (tl)] 
T 

O(tl)' 

which is orthogonal to span(F,'(t1)). In this way we proceed until we reach tN := /8. In 
doing so we have produced a recursive relation between the successive fundamental 
solutions as follows: 

(7.8) Fi1(ti+J=Fi1 l(tl+,)B5 

where Fil 1(ti+1) has k orthogonal columns and B, is upper triangular. The particular 
solutions are related by 

(7.9) p,+1(ti+1) =p,(t,+1)-F,l+1(t,+1)[F,l+l(tl,+)] T i(t.+,)- 

By matching as in (7.2) we find a recursion for the vectors v', defined by 

(7.10) x(t) =Fi7(t)vl +pi(t), i=0,** ,N-1. 

The vector v' can be found from the BC by solving 

(7.11) [1MF (t)v blMPN-l(tn) 

Once vl1 is know, we can compute vl .2. *V from 

(7.12) vil+l =Bivl 1+ [F,l+(t,+l)] T(Pi(ti+l)_P.+l(t.+l)) 

=, + [Fil l(ti+l)]T i(ti+J)- 

We now show that this is a decoupling algorithm which is stable because of consistency. 
If we formally complete the solutions FI1 to a full fundamental solution F, by requiring 
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that span(F 2(ti)) be orthogonal to span(Fil(ti)), we obtain the factorization 

(7.13) Fi(ti+,)=Fj+l(ti+,)Ui 

so Ui is block upper triangular. We also introduce vectors 

(7.14) gi = i+l(ti+l)] (Pi(ti+l)_Pi+l(ti+l)) 

and 

(7.15) y,: = [Fi(ti)] -xi 

so that (7.2) implies 

(7.16) Yi+ 1 = Uiyi + gi 

From this we derive 
PROPERTY 7.17. Assume the problem is well-conditioned. Let [F1(ti)ITF7(ti)=0. 

Then 
(i) 2MaF02(to) is nonsingular. 

(ii) y0=[22MaF2(t0) - lb2, and 
y2= [[Fi(ti)]-lpi(ti)]2= [[F i= 0, ,N-1. 

(iii) 1M FN - 1 (tN) is nonsingular. 

(iv) y1= ['MAFxl(tN)V{l( b1b-1M MFl1(tN)y2 ) andy' = vl, i = . , ,N. 
Proof. Assertion (i) follows since 2Ma has full row rank and the space spanned by 

its rows must be identical to span(F02(to)). For the other assertions, it is useful to 
realize that 

[Fi(ti) 
[G, 2j 

where span(G()= span(FI( ti)). Hence 

y2= [G21 Tx(ti) [G2] {F1(ti)vl +p, (ti)} = 2[G1 T p(t)=[[F1(tt)] Pi(t)]2 

Similarly, yi2 = [G7 i_l(ti)vl_l +pi-l(ti)} = [GITpi(t)= (ti)] 
Moreover, it is straightforward to see that y2 should satisfy [2MaF02(t0)]y2 = b2. Asser- 
tion (iii) can be proven similar to Property 5.6 using the well-conditioning. For the first 
componentsyl, we realize that g =[F7l 1(ti+1)]T(p,(ti1+)-Pi+1(ti1,)) so that {yi ) and 
{vl } satisfy the same recursion. Finally it is straightforward to check the terminal 
condition fory 2. R 

As can be seen from Property 7.17, the Godunov-Conte algorithm fits nicely in 
the framework of (3.25). The clever point is that the transformation Ti = Fi(ti) is not 
computed completely. Indeed, the actual choice of the last n - k columns of Ti does not 
matter as long as they are taken orthogonal to Fil(ti). Here consistency follows from 
the well-conditioning and the use of separated BCs (cf. Theorem 4.10). In particular this 
implies that the backward recursion (7.12) should be stable (cf. [35, Ex. 6.5]). 

Finally note that the use of the BC and a consequence the resulting consistency are 
almost identical to what we found for invariant imbedding. 
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7.3. Orthonormalization and partially separated BCs. The important point in the 
strategy of ?7.2 was using the zero rows in M in order to find an explicit initial value 
for a particular solution po being in the same k-dimensional linear variety as the desired 
solution x. It is not surprising that this idea can be generalized to BCs with a few zero 
rows in M,, not necessarily complementary to the zero rows in Ma. Keller [23] called 
such BCs partially separated BCs. Descriptions and an error analysis of such algorithms 
can be found in [52]. Because of its similarity with the Godunov-Conte algorithm we 
do not elaborate here but only note that the row partitioning should now be such that 

(7.18) 2M = 0. 

The notations of ?7.2 immediately carry over, except the BCs now contain values of the 
transformed solution at both ends. Instead at (7.11) we now have 

(7 .1 1) * 'MFl( to ) V'o+ 1M8Fx - I N)V = bl _ Ma PO ( to) _ M,8PN- I ( tN)- 

Obviously, we cannot use Theorem 4.10 to check consistency. In fact we do not have 
such a property in general. 

Example 7.19. Consider the ODE 

I-10 0 0 (10\ 
(7.20) x= 0 -20 0 x+ 20 

-20 0 10 10 

and the BC 

1 0 0 0 0 1 2 
(7.21) 0 1 0 x(0)+ 0 1 0 x(0)= 21, 

O 0 1 0 OO 1/ 

with solution x(t)--(1,1,1)'. It is simple to see that (7.20) has an (unnormalized) 
fundamental solution: 

(7.22) II(t)= 1 0 0 diag( e-20t e - lOt, elOt) 

0 1 11 

Moreover, the problem is well-conditioned. If we use the max-norm, then the condition- 
ing matrix 

01 1 
(7.23) QI I 0 0 

0 1 0 

SO K (cf. (4.3)) is approximately 2. If we take 

I 0 
Fol (0) =0 1 

O O 

span(F0J(0)) is orthogonal to the rows of 2MO. Nevertheless the second column of FoJ(0) 
is the initial value of a mode that decreases like exp( - 20t), whereas the first one is the 
initial value of a solution that grows like exp( - 10t) + exp(10t). Hence we certainly do 
not have consistency. Therefore, if no errors are made, we should expect the upper 
triangular matrices Bi to have a (1, 1) element equal to exp( - 20(t, + 1 - t)), thus making 
backward recursion an unstable affair. 
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One should realize that there is no good reason to use (7.12) directly as we have to 
satisfy the BC (7.11). The gain in this approach is that we have reduced the order of the 
blocks in the recurrence relation for the vi to I, the number of coordinates of v' 
compared to "complete" multiple shooting. Rather than (7.4), we now have the simpler 
linear system 

B -I vI I 

(7.24) I 1 - 

Ma ~ ~~~~~MP LN-1 A Lb 
where Ma = 

1Ma FJ(t0) M,3=1M,F_l(tN) 
and 

bIL-MaPO(tO)-_1MIPN_(tN) 
(cf. 

(7.11)). Questions concerning the stability of solving (7.24) will be dealt with in ?8. We 
now want to show that well-conditioning implies stability of the above strategy. The 
crucial point is that any possible unstable component in the (orthogonal) complemen- 
tary part of Fil(t) also occurs in Fi7(t). For if this were not the case, 7.17 implies that yi2 
would contain unstable modes (projection onto the "dominant" space would not 
"remove" these components). Thus we have the following generalization of Theorem 
4.10. 

PROPERTY 7.25. Let the BVP be well-conditioned, let 0=0, and let 2MaF01(t0)=0. 
Setting Fo( t0) = (I'( t0)H, let H be the l x l principal submatrix of H having the order I of 
the column rank of I1 (cf. (4.4)). Then H is nonsingular. (Note that 1 < k.) 

Proof. (Sketchily). If rank (H) < l, Fol(t) consists of less than I unstable solutions 
(whether or not polluted by components of "moderate" or "stable" solutions, cf. (4.4)). 
It is no restriction then to suppose that there exists some basis solution in span (01), 
but not in span(FJ'), whence span(FJl) contains at most an (I- 1)-dimensional unstable 
solutions space and there are n - (1-1) moderate or stable solutions in span(FJl). But it 
follows from the well-conditioning that no vector in the orthogonal complement of 
span(F0J(t0)), viz., span(FJ2(t0)), can be almost orthogonal to an (n - k)-dimensional 
subspace of the (n - l)-dimensional space of initial values of moderate and stable 
solutions. This implies that we would have a subspace of such moderate and stable 
solutions of dimension n - + 1, which contradicts the assumption. O 

The complicated argumentation in Property 7.25 indicates that the stability of this 
generalized Godunov-Conte algorithm is a delicate matter. It shows a generalization of 
the consistency concept: we always compute the unstable solution space at least! More- 
over, this strategy excludes the growth of the orthogonal complement of the basis 
solutions F,7. In fact, it is sufficient to show that { y2 } (see also Property 7.17(ii)) does 
not grow like an unstable solution: 

PROPERTY 7.26. Let Fi(ti) satisfy [F,1(ti)]TF7(ti)=0, thereby inducing Ui as in 
(7.13). If the BVP is well-conditioned, there exists a moderate constant y such that 

11j=oUj2211 ? y, for all i. 
Proof. (cf. Theorem 3.14). Let Fo(to) = ((to)H as in Property 7.25. Since H has 

full rank, by a suitable permutation of columns of (VIl 1 I21I I), we can make sure that 
H11 is nonsingular. Arguing as for Theorem 3.14 but replacing span(4') by span(b.l) 
plus some suitable "not unstable" space and span( 1' 2) by some complementary 
"unstable" space, say, span(ID.2), then gives I=iL{)22II <jyII45(t )II for some y. El 

COROLLARY 7.27. The computation of the pi(ti) is stable (i.e. { pi(ti)} does not grow 
like an unstable solution). 
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Proof. Define 

[Fi+(til)] = f[l ,+(tij+] 
T| 

Then from (7.9), Property 7.17 

i? / k ol(t,+l)]T k+(t+lj 

[F,+I(tl+,)]~~~~~~~~ [Fi.(t+l(ti+l Pit+)A_f[iltil]P(il 

Hence IIp1?1(t1?1)II2=IIF,?1(ti+I2IIy7-1II. It is not restrictive to choose i,t1(t1+1) 
orthogonal. Now since {y12} satisfies a stable recursion (cf. Property 7.26) it follows 
that { p,(t,)} does not grow faster than the particular solution of the lower right block 
of the recursion (7.16). [1 

Remark 7.28. In [60] the authors raise the question whether or not one should 
normalize the particular solution pi(ti) as well. Corollary 7.27 shows that there is no 
need for this if the problem is well-conditioned. 

7.4. General BCs. In [42] a method is suggested to employ decoupling and a 
special recursion technique to solve a BVP via multiple shooting. Omitting the details 
about how the integration is performed and the shooting points are selected, it can be 
seen as a step further in the Godunov-Conte algorithm. Theoretically it is based on 
finding a suitable sequence of matrices which transform the incremental matrices 
F, + ?(ti + ?)[ F, + ?(t)]1- onto upper triangular form. Again, the upper triangular matrix is 
obtained directly, i.e., the untransformed increment never appears. 

The method starts off with some initial transformation matrix Q0. This is used to 
generate a fundamental solution Fo with 

(7.29) Fo(to):= Qo. 

At the next shooting point we decompose 

(7.30) Fo(t1)=: Q1Uo, 

where Q1 is orthogonal and U0 upper triangular. This is done using elementary hermi- 
tians (Householder's method). Now it is most important to have an ordered diagonal in 
U0. Therefore, if the diagonal elements of U0 do not appear in decreasing modulus from 
above to below, an appropriate permutation matrix P0 is constructed which premulti- 
plies Q0. The result U0PO is then decomposed again as 

(7.31) U0Po=: P1U0. 

Suppose U0 is in order; then the fundamental solution on the next shooting interval 
should satisfy 

(7.32) F(t) = PIQI 

with P1 = I if U0 = U?. Since there usually is no idea about a meaningful Q0, take as a 
first guess Q0 = I. Without loss of generality, let Q0 = I be correct. Then this recursive 
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computation of the {Qi } and {Ui} gives a decoupling algorithm like (3.25). As was 
shown in [32], if there is a dichotomy, this strategy gives an upper triangular recursion 
where the upper left blocks correspond to the unstable and the lower right blocks 
correspond to the stable incremental values. This is now used to compute a fundamen- 
tal solution and a particular solution in a stable way. (Step II of (3.25)). To start with, 
let the particular solution t zi }' 0 satisfy the BC 

(7.33) z2 = O, z4 = 0. 

For the fundamental solution, t Si }f =, we choose 

(7.34) t20=(0 IIn-k), 2N= (Inl 0). 

Apparently Q21 =0 for all i, while g722 is found by forward recursion via the homoge- 
neous part of (3.23b), and Si"] and U" are found by using the homogeneous part of 
(3.23a) in the backward direction. For some fixed vector a, we should have 

(7.35) Qi- lx ( ti ) = Zi + S2ia . 

In Step III of (3.25), we compute a from 

(7.36) [MaQ0o0 + M,QNQNI a = b-MaQOZO - MQNZN, 

with the matrix appearing in (7.36) as well-conditioned as the problem itself, cf. [42, 
Thm. 4.3]: 

PROPERTY 7.37. II[MaQO20O + 
MplQNUN] 

11? 2A 
In ?8.3 we shall return to this algorithm. We conclude this section by giving a 

numerical example to demonstrate the impact of conditioning on consistency and, 
hence, stability. 

Example 7.38. Consider the ODE (cf. [42, Ex. 5.1]) 

dx 1 - 19 cos 2t 0 1 + 19 sin 2t 
(7.39) 0 19 0 x +f(t), 

1 + 19sin2t 0 1 + l9cos2tJ 

where f(t)= et(- 1 + 10(cos2t- sin2t), -18, 1-19 (cos2t+ sin 2t))7. A fundamental 
solution is given by 

sint 0 - Cosit 
(7.40) P(t) = 0 1 0 diag(0e 20t- eo9t et 18t 

cos t 0 sin t 
and a particular solution by 

(7.41) x(t) = e t(,1,1)T. 

Let the BC be 

/ 0 1 ( 0 1 1+e-07 
(7.42) 0 1 0 x(0)+ 0 1 0 x(ST)= 1+e-7 

1 00 0 O 1 

It is straightforward to see that the condition number K= 1.000 (for K cf. (4.3)). We 
computed the solution x at 10 equally spaced points with our code MUTS, cf. [42]. The 
algorithm on which this code is based uses a special implementation of the method 
outlined in this subsection. The code automatically computes the conditioning matrix 
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[MaQo20+MflQNE2N1_- We found for any tolerance up to 10-10, errors bounded by 
this tolerance and a numerical estimate for i equal to 1 (up to the tolerance). We also 
used a modified version capable of employing a zero row of structure in Ma or M . The 
results were similar. 

We also tested the BC 
/ 0 1 1 0 0 1+e7' 

(7.43) 0 1 0 x(O)+ 0 1 0 x (19) 1 + e 7 
1 00 0 O O 1 

Here, the matrix M. does not control the mode growing like e 20t, and we have a 
condition number =e207r=1.9 1027. MUTS gave an error message that the matrix in 
(7.36) was numerically singular. The choice 

O O) 
(7 .44) Fol (0) = 0 1 

1 0/ 

induces a consistent fundamental solution. However, the ill-conditioning is inherited by 
the reduced problem since the partial terminal matrix does not control the most 
unstable mode. 

Finally, we tested the BC 

0 0 1 1 0 0) 11+e7 
(7.45) O 1 0 x(T)+ 0 0 1 x(O)= 1+e7). 

1 0 00 0 0 ' 

(Mathematically and numerically, interchanging the initial and terminal points does not 
matter.) As can be seen now the unstable mode (in backward direction) is not con- 
trolled by this BC; hence K = = 3.6 1024. Again MUTS gave an error message. The 
adapted version for partially separated BCs did give numerical results, though with 
0(1) errors. The explanation for this is simple, but extremely instructive. At the 
"initial" point to = r the columns of 

(O Ol 
(7.46) Fo(to)(= 1, 

1 01 

are the "initial" values (to = g) of the stable solutions, growing like e - 20t and e-19t (as t 
runs from ST to 0). Necessarily the particular solution induced by po(to) contains a 
component of the unstable mode which grows like e+ 18t. This instability illustrates the 
need for the well-conditioning assumption in Property 7.6. Because we actually deal 
with a problem with perturbations of the order of the tolerance (tol), we should expect 
that after the point t such that exp(l8t) 1/tol, the numerically computed fundamental 
solutions Fil(t) with be again "consistent". Instead of a theoretical condition number 
exp(l8(T - 0)), we have a numerically relevant condition number exp(l8(g - t)). As a 
consequence, the local errors are amplified by (tol)- 1, which explains the 0(1) errors. 
This phenomenon is closely related to the observations in [42, Ex. 5.4]. 

8. Solution of linear algebraic systems. We saw that multiple shooting gives rise to 
a linear system with a special sparsity structure. A similar system is found for many 
other methods, e.g. collocation. The special block structure has inspired a number of 
algorithms that aim at an LU-decomposition without loss of zero blocks, cf. [8], [18], 
[25], [37], [38], [66]. We shall show that such a strategy and, in fact, any successful 
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partial pivoting strategy is related to an appropriate decoupling method. Before that, 
however, we consider a simpler matrix structure, viz., a (block) tridiagonal form such as 
appears when we use a three point difference scheme for a second order ODE. 

8.1. Block tridiagonal matrices. If we have a scalar second order ODE with Di- 
richlet BC, we may use a central difference scheme to find an approximate solution. 
The resulting three point recursion plus the BC give rise to a tridiagonal system. We 
now consider, more generally, such block systems 

(8.1a) Ax = b, 

where 
C0oD 0 

Bi C1 D, 
(8.lb) A= 

DN-1 

0 BN CN 

Assmption 8.2. Let the blocks Di in (8.1b) be nonsingular. 
(This assumption is trivially fulfilled for the central difference scheme.) Suppose 

we can decompose A as 

(8.3) A =LU, 

where 

0 
L1 I 

(8.4) L:= L2 I , 

0 

LN I 

U0 Do 
0 

U1 D1 
(8.5) U:= 

0 N-1 

UN 

Then the following relations must hold (cf. [37]). 

(8.6a) U0= C0, 
(8.6b) LiUi - = Bi, i= 1,. ,N, 
(8.6c) LiDi_1 + U1= C, i , 1 N. 

Note that if A is nonsingular and L and U can be found, then all Ui are nonsingular. 
Hence we obtain for the pivot sequence { Li }, 
(8.7a) Uo= C0, 
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We shall show that the computation of L and U and the resulting forward and 
backward substitution can be viewed as a decoupling algorithm. To this end, we write 

(8.8) Ai:=(DI?lC?l Di?iBi) i=0,* 2 

(8.9) Xi: =(x I) i=0,---,N-1, f,-=(DI?lbi?l), i=O,---,N-2 

so that 

(8.10) Xi+ i =Al Xi +fi 

Using the transformation matrix 

I 0 
(8.11) T:=[-1D U1]9 

we obtain (cf. (3.20)) 

(8.12) T 1 AT= E D+ 1( C;+1 1B+1 lU i D+1 BIU I 

so, using (8.7b), 

(8 .13) Ti+ A,Ti = [ i+ li ,+ ; 

Hence, if we define 

(8.14) y = T7- Xi, 

we have the recursion, 

(8.15) 2 = -L1? i+b?,1, i=0,2, N 

which is just forward substitution on the lower triangular system. On the other hand, 

(8.16) 1 =D= + l-D, i+ + Di+ 

=-D, lU, + lY,-D,-' i t 

Hence we can find Y1 = Xi' = x, + 1 by backward recursion 

(8.17) Xi1=-Ui+1[Di+1X1+1+ i2 i=N-2, , 0. 

Concluding, the LU-decomposition is equivalent to (3.25), Step I. By this special choice 
of T, we have a suitable initial condition for YJ and a suitable terminal condition for 
YN-1 = XN. Hence Step II and Step III of (3.25) are just (8.15) and (8.17), while Step IV 
can be omitted. It should be clear that this LU-decomposition is closely related to a 
Riccati method. Indeed, if we perform such an algorithm for (8.10), with a transforma- 
tion matrix 

(8.18) ccti cistny 
(cf. 5.3) weouldlsotudyit stbiity andi cnistny 
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Recall that we tacitly assumed that no pivoting was necessary in the LU-decom- 
position. This may be restrictive. As is shown in [26], a privoting strategy is closely 
related to eliminating the blow-up of the Riccati solution. This is also obvious from 
(8.11), where the "unstable directions" cannot be represented meaningfully if Ui- 
becomes large, i.e., if pivoting becomes necessary. 

8.2. Intermezzo: Generalized decoupling transformations. Thinking of the more 
general setting of the recursion relation in multiple shooting, cf. (7.2), it makes sense to 
consider decoupling transformations for 

(8.19) AiXj+j =AiXi+fi. 

In order to have a decoupling we may use two sets of nonsingular matrices {Si} and 
{ Ti }, such that 

(8.20) AT 1IlT A (8.20) ~Si +,l il,+ l i+ l xi+ l ( Si + l iTi )Ti-lX, + Si f 

with 

(8.21a) Si+lAiTi block upper triangular 
(8.21b) Si+ AjiTi+1 block diagonal, with nonsingular lower right block. 

Then we can use the lower (decoupled) recursion in the forward direction and the upper 
(coupled) one in backward direction. If we already have a matrix Ti at the ith stage, we 
may perform a QU-decomposition for AiTi, giving an orthogonal Si-+', cf. (8.21a). 
Then, provided Ai is nonsingular, T-l1 is found from (8.21b). However, unless A' is 
orthogonal, it will require a matrix inversion to compute Ti+ . We therefore see that we 
could as well invert Ai first and apply a decoupling to the sequence of matrices 
{A -'Ai}. For some problems we may have recursions like (8.19) where the A1 are 
singular. Then we have even more freedom to choose Ti+1. In particular, suppose the 
recursion is implicitly defined by (8.1), but now with Di singular. Written in matrix 
vector notation, cf. (8.9), this results in a relation like (8.19) with 

(8.22) Ai( 0 7), Ai=( I1 0 ) 

For these special matrices we propose using 

(8.23) s= ( I 0) I'T ( 0) 

where the nonsingular U,'s are still to be chosen. For the transformed {Yi} (i.e. 
Yi = Ti- 'Xi) we then find the following recursions 

(8.24a) Di+,Yi+l= (-Ci+BL+Bi+?Uiy Di)Yil-Bi+1iVy1i2+bi+?1 
(8.24b) Yi+ 1= (-Cj+l +Bi+ lUjlDi+ Ui+JY) E-B,+1 Ui i + bi+,. 

Formally, we may apply the same procedure as in ?7.1 to find the desired decou- 
pled form, by requiring { UL} to satisfy (8.7). As a consequence, (8.15) and (8.16) are 
also valid without Assumption 8.2. Unfortunately, the simple relation to the Riccati 
method suggested in ?8.1 does not imply stability. The singularity of the matrices Ai 
does not allow the consistency argument, but the stability of (8.15) and (8.16) follows 
from the more general result of the next section. 



DECOUPLING AND STABILITY FOR BVP 33 

8.3. Matrices arising from BVPs with general BCs. As was already noted, the 
multiple shooting system (7.4) arises in quite a few other algorithms. Without affecting 
the generality, we may assume that the F1(tj)=I. This is automatically true for the 
methods in ??7.2-7.4, since we can always postmultiply the matrix in (7.4) by 
diag(I,[F1(tl)]-1, * ,[FN-J(tN-l)]-1). For convenience we also replace the last two 
block rows in (7.4) by 

(8.25a) FN-l(tN)vN-l-vN= PN-l(tN), 

(8.25b) MaVO + MPVN= bMa PO (to) - 

(For orthogonalization methods this corresponds to a QU-decomposition of 
"FN_1(tN)"). If we moreover use the notation 

(8.26a) Al:= Fj(tj+1), 
(8.26b) MO := Ma 

(8.26c) MN:= MP 

we obtain the matrix 

AO -I 
A1 I 

(8.27) A= 

AN-1 -I 

MO MN 

Of course there exist many other forms of such a multiple shooting matrix. Of particu- 
lar interest are matrices A that can be found from A by writing some of the BC first. 
Formally this can be described using the permutation matrix 

In- k. ......... .... ... --..** 

In 
(8.28) 

In. 

Ik 

so that 

- 2mo 2MN 

AO -I 
- _ ~~Al -I 

(8.29a) A:= PA- = 

AN-1 -I 
1MA 
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By repartitioning A into a matrix of n x n blocks, we obtain an almost tridiagonal block 
matrix. We shall use the notation 

CO DO HN 

- B1 C1 Di 
(8.29b) A= 

BN-1 CN-1 DN-1 

H1 BN CN 

In (8.29b) we see that HN and the Bi systematically have zeros in their last k rows; 
likewise H1 and the Di have zeros in their first (n - k) rows. Specifically, if the BC are 
separated, then (8.29) may be chosen as a block tridiagonal matrix. The aim of many 
methods is to obtain an LU-decomposition where the upper and lower matrices contain 
codiagonal blocks with a similar zero row structure to A (cf. [8], [18], [25], [37], [66] . To 
preserve this structure, one may only allow row permutations within the rows n - k + 1 
+in to n-k+(i+1)n, where i is an integer, 0_i? N-1. Similarly one may allow 
permutations in the columns 1 +jn to (j + 1)n, 0 <j < N. However, this means that we 
may permute rows and columns of A by pre and postmultiplication by a block diagonal 
matrix. Thus, in its most general form, cf. [37], we compute an LU-decomposition of 

(8.30) A = PRAE, 
where 

(8.31a) R=diag(RO, ...R) 

(8.31b) E = diag( EO, * EN)- 

So we have 

(8.32a) A =LU, 

where 

YO 
L1 Y1 0 

(8.32b) L= . 

LN-1 YN-1 

L S1 SN-2 SN-1 YN 

UO YO 1DZ 

(8.32c) U= 

0 UN-1 ZN-1 
UN 

Remark 8.33. The Li, Si and Zi have the same systematic zero rows as B0, H1 and 
HN respectively. More commonly, one chooses the matrices Yi to be identity matrices. 
For other choices, however, see [23], [25]. 
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In order to investigate the existence and stability of this decomposition, we com- 
pare it to a simple LU-decomposition that results from a decoupled recursion, cf. [37]. 
First we have: 

PROPERTY 8.34. Let RN be the permutation matrix in (8.31) which permutes the rows 
of the BC. Assume that the last (n - k) rows of RNMO are independent. Then there exists 
an orthogonal matrix Q0 such that Mo:= R NMOQO is upper triangular with a nonsingular 
lower right block. 

Proof. By bottom-up Gram-Schmidt orthogonalization of the row vectors of 
R NMO completed to a full basis, we find Q0 and MO. O 

Now use this Q0 to generate transformations { Qi } which decouple the Ai into A, 
as in the basis algorithm, cf. (3.25). We now have 

(8.35a) AiQi= Qi+Ai\i i=0, N - ,N1, 
(8.35b) MN ==RNMNQNi 

Then premultiplying A by PR, where P equals P (see (8.28)) but for a minus sign in 
front of In - k and 

(8.36) R=diag(Q-1',. *,Q-1,RN), 

and postmultiplying A by 

(8.37) f= diag(Q0, ... *QN)' 

we obtain the matrix 

(8.38) A=PRAE, 

-~~~ . 
. . . . . . ... ........ ...... 

:0 422: 0 0 .j .21 _ M22. 
1 /1A02 -I 0 0 0 

* 
- - - 
. . . . . . . . . . . . . . *. . . . . . . . .*. @ 

0 A202 0 -I' 
0 0 A" &2. 

(8.39) A= 
.0 '0~~~ 

:*'k, *_ . -.I 0. * XN-1 /\X-N - 
. . . . . . . . * @ . . . . . . . .: . . . . . . . . 
0 0 .0 A2121 0 -I 

.MJ' fMl2 .0 0 : 
M' 12 

L * . . . . . . . . . . . . . . . . . . . . . . . . . 

This matrix A is interesting because one can quite easily find an explicit LU-de- 
composition 

(8.40a) A = Lf, 

with lower block L and upper block U as in (8.32b, c) where, (providing elements of 
these matrices with a tilde) we have 

(8.40b) )j=In, i=O,** N 
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(8.40d) L1= [A o4[ o] 0] Li=[L?1 0] i=2, ,N-1, 

(8.40e) bi = [-9 0 .. 'N 2 

The expressions for the other blocks are somewhat more complicated. However, the 
main insight into the stability of the problem can already be obtained from (8.40b-e), 
by comparing them to (8.32). We have 

THEOREM 8.41. (i) Solving the homogeneous part of Lizi- 1 + Yizi = 0 is equivalent to 
solvingy72 =,22 1y71, (cf. (3.23b). 

(ii) Solving the homogeneous part of Uiwi + Diwi, 1 =0 is equivalent to solving y'1+ = 
A'7yi7, (cf. (3.23a) . 

Proof. By our special choice of R, IR and P, we see that 

(a) PRR-'P-'=diag(In-kR 0 Q1, * ... ,RN-1QN,Ik) 

From (8.30) and (8.38) 

A = R- 'PAE-1 = IR-1PA-1. 

Using (8.32) and (8.40), we get 

(b) UE-tE'- =L-'PRR-'P'L. 

Since the left-hand side in (b) is block upper triangular and the right-hand is block 
lower triangular (cf. (a)), but with a different staircase (cf. [18]), we can express L, and 
Ui in terms of Li and U,, respectively. To this end, let Yi = I for all i (not essential, but 
convenient) and write 

Fo K o 

(C) L-1Pk1P-L=[ . K I 
FN 

where, upon denoting 

Ip,121 pj22 

9 

[L22 L21] 
1-0 

0 
_ 

we have 

pi22 0 ] 
F= -~-' --r~-------~-- [ p12 L22 P"l +P p2 L21 2 

i?i ? ? i?1 j 

and 

K 0 0] K= -1 l2o) 1 
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By comparing the blocks in L with the values obtained from (c) we find, denoting 
Pi = Pi , 

L22 _ p21 plP2 22 - P22A 22p22 =p22 L pi22 22= - _22P22p22 Li+l i+l i+,li+ i+l i i +l i+l i+l i+l 

L21 _ 21 
pill 

+ pbA21p1 2 L1 22 p22 L221 _p22 p21 ili+ + i+l i+l+ i+l i+l i+l i+l i+l i+ 

Now we can interchange the roles of L, R and L, IR respectively in (c), giving a staircase 
matrix with diagonal blocks Fi which should be nonsingular. In particular, we deduce 
from [37, Prop. 2.13] that Pi,'+ should be nonsingular, whence Pi22 (from the ortho- 
gonality). Finally, the vector zi in Li+ 1zi + zi+ 1 should be partitioned like 

Zi+ 

Defining 

Yl l2= i. 

we thus obtain 

L,+2 1 Z 2+ L, 21 z + + z 2+ = 0 p 22 IL 22 lz2 + p,22 IL21 Z1 + p,221 2 =0 

- A22p22Z 2+y21 =o 

- A22yi2 ?y71 + A22Ppi21z = 0. 

Since the z' are mere inhomogeneities, part (a) is proven. Part (b) follows similarly. 0 
From Theorem 8.41 we see that the stability of forward and backward substitution 

(which is controlled by the underlying homogeneous recursion) is similar to the one 
that would be found from transforming the incremental recursion onto upper triangular 
form and applying algorithm (3.5). Hence we have shown stability of block LU-de- 
composition if we can show consistency. To this end we combine Theorem 4.10 and 
Property 8.34 to obtain 

PROPERTY 8.42. If the BC are separated (so Mf22 has full rank), then QO induces a 
consistent fundamental solution. 

COROLLARY 8.43. If in (8.29a) 2MN = 0 and 'MO = 0, then a block LU-decomposition, 
found from restricted pivoting, cf. [32], is stable. 

One should realize, that if 2MN and lMo are nontrivial matrices, a result like 
Corollary 8.43 is, in general, not true. For partially separated BC it might be tempting 
to choose the initial permutation P such that either 2MN= 0 or lMo= 0 in order to have 
either the U or L block bidiagonal. This may lead to a dramatic instability as can be 
seen from the following: 

Example 8.44. Consider 

--20 30 0 -101 
x= 0 10 0 x+ 10 I 

0 0 -10] [10] 
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and 

1 0 0 1 00 2 
0 1 0 x (0) + 0 1 0 x (10)= 2. 
-0 0 1 -0 0 0 -2 

A fundamental solution is given by 

1 1 01 
I(t)= 0 1 0 diag(e 2te elOt lot 

O O 12 

If we write the last row of the BC first and the first two rows last in A (cf. (8.29a)), then 
we obtain a bidiagonal block U. If we use shooting on an interval of length 8, we obtain 
the incremental matrix 

11 1] 
Al = 0 1 0 diag(e - 208,e08 e'- 10) 

Since Ai is upper triangular, we may identify A, and Ai. So we immediately see (cf. 
(8.40)): 

O O -1 
208 108 -1083 [e e eO 
0 e103 0 

Obviously 

-1 e208 -e208 

implying that backward substitution is as unstable as single shooting for this BVP, 
starting at t = 10. The important conclusion to be drawn is that the zero row structure 
in partially separated BC matrices should not be employed to save memory (viz., of the 
last block columns in U or the last block row in L) but should be used to compute a 
special subspace of solutions containing at least the unstable ones, as in the generalized 
Godunov-Conte algorithm (see ?7.3). Assuming that the BVP is well-conditioned, it 
should be expected that a classical partial pivoting strategy is stable for any BC. 
Therefore we conclude this section by showing that such a strategy can also be viewed 
as a decoupling method. Such a partial pivoting process can be described as 

(8.45) LN_1DN_1 . . . LODOA = U. 

The matrices Li are lower triangular ("generalized") elementary matrices cf. [71, p. 44], 
and the Di are permutation matrices such that LiDi actually describes the elimination of 
elements in the i th block column. Inspired by the preceding results we look for Di of a 
special form. Since we can only permute within blocks and moreover between the 
pivotal block and the block in the last row, we typically have 

(8.46a) Do=ROPo00 

where 

(8.46b) RA= diag(R0,I,I- ,I,R7), 00=diag(00,I,T , 
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and for some suitable number ko 

*0 0 . * I .' 

:1k. 0. 0 0 

(8.46c) P =In 
In. 

0 In-k o 0 0 

0 0 'Iko 0 

The matrix Lo typically looks like 

Lo0 
I, 0 

(8.46d) Lo 

0 
LNo~ ~ ~ ~~' _ o0 IN 

In a similar way we have 

(8.47a) D1= R1P1O0, 

where 

(8.47b) RI = diag(In, RI,In, g .,IngR) J9 =a( InOl In * ..* Ing ?1) 

and P1 as a matrix like P0, but now permuting rows in the second and Nth "block" 
position, with k = kI. We can rewrite 

(8.48) L D L D0=diag(R0,R1,I,, ...,I )L P1LoPodiag(OO,I,,In) 
where Lo and L1 have a zero block structure similar to Lo and L1 respectively. In 
general there exist Li such that 

(8.49) LN_lDN-l ... LOD0 = diag(R,)LNlPN1 LOPO diag(Oi), 

where Rn and ON are orthogonal. Now use the matrix ON in Property 8.34 to generate 
sequences of orthogonal { Qi } and upper triangular { Ai }. This then induces a sparse 
matrix RAE (cf. (8.38), (8.39)). We may use the same permutation matrices Pi in order 
to obtain a block factorization as in (8.45), i.e., 

(8.50) LN-IPN-1 ...L Po [RAE] JN- 

As a first step, 

(8.51a) LoPo [RA] = fJ0, 

where 

In 0 Uo co 0 ZO 

(8.51b) fLo a *. , U=| U1 | 
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The shaded area in U0 is equal to the corresponding part of (P 'A). We obtain 

/ Sol A'02I 

(8.52a) ? <0 J2)' ( I 0 0 )2)' 

(~0 [o]- [Sol] 'A'2 
(8.52b) 0N 2]2 -1....... ..... 

LN-~0 0 0 [pO22]-l, 

(8.52c) C1T=(M A [So l), C1A 

The partitioning in (8.52) is after ko rows and columns. In order to understand the 
arguments, we perform one more "column elimination", viz., 

(8.53) L1Pifio = Ui1, 

where 

In 0 UO C0 0 Zo 

(8.54) LN In 1 C j X 

Basically the blocks in L1 and U1 can be found as in (8.52). We are mainly interested in 
U1 and LNI. We distinguish three cases 

_ _ 1 ol@l 01 
(8.55a) k1<k0: 0 ko HIi; AY2 J 

L 
0 -In-k l L 0 2 

(8.55b) k= ko: U Si[, Ink] HI [-/ oI 0]O 

[-511 512 1 Mol[zo] 0 

(8.55c) k1 > ko:U1= 0 j; H 0 -Ikl-ko. 

[0 -In-kl 0 A22 

The bar above a matrix denotes that jko-kll rows are left out. The matrix H1 
temporarily appears in the (N, 1) block position after permutation; it determines the 
matrix: 

(8.55d) LN1 =H1 [U1 ] 

These expressions are less frightening than they look at first sight. To start with, we 
have 

PROPERTY 8.56. Let ki= kfor all i (so the permutation blocks in the Pi are the same). 
Then we may identify P with PN-1 ... Po, L with L1 1 * LO-1 and U with UN-, cf. 
(8.38), (8.40) and (8.50). 
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Proof. Because of the special form of the Li and P, for i >j: P1Lj = LjPi, where Lj is 
a "block" elementary matrix with the identity matrix I,, as (j,j) block. Hence, 
LN-1PN-1 LOPO=LN-1 LOPN-1 .PO. It is easy to see that PN-l PO= P (cf. 
(8.28)), which was equal to P apart from a minus sign in the first (n - k) rows. The rest 
is trivial. El 

We now obtain the following interesting result: 
THEOREM 8.57. If we solve a system with a matrix like (8.27) by partial pivoting such 

that for each j, (O 1j < N-1) the number of rows exchanged between positions jn + 1 until 
jn + n and the last n positions, is constant, then the solution of such a system is mathemati- 
cally equivalent to decoupling the recursion (and solving it in a stable way). 

Proof. From (8.45) and (8.50), we obtain 

A= DO- LO-1 ... DN 1 1PN-1U = 1P lO1***P- 1 LN - -1U-1 N-.D~1PN-lU=R- P~- L-'. P]~,L4U,' 

From this via (8.49): 

(a) UEUN-1j=diag(Ri)LN 1PN LP diag(01)R-lp L-1 * P- 1 11 
As in Property 8.56, the right-hand side can be written as 

diag(R ,)L,Pdiag( 0)R 'P 'L2, 

where L, and L2 are block lower triangular. Since the last block in R equals ON we 
find that Pdiag(01)R- P-' is a block diagonal matrix as in 8.41(a) (Proof). We can 
now use the same arguments as were used in the proof of 8.41 to show that a property 
like Theorem 8.41(i) or (ii) holds. Moreover, due to the partial pivoting no inhomoge- 
neous term in those recursions will be comparatively large, as can happen in [37, Thm. 
3.25]. O 

Although we may have k, different at each block, this is not very likely to happen 
if we have an exponential dichotomy (i.e, only decaying and increasing and no mod- 
erately growing solutions). This can be seen from (8.52) and (8.55). Indeed, in such a 
case, it is very reasonable to suppose that glb(\202)< lub(HO). This implies that IILNII 
and j1U111 are 0(1) and that we must have (8.55b) (both (8.55a) and (8.55b) would give 
"larger" IH1 II and I I LNI). For this reason and to avoid fairly messy notation, we simply 
note that when the ki are not constant we still have a kind of decoupled recursion. If we 
restrict ourselves to the "backsolving", the expression UxO + COx1 + ZOXN has a " ho- 
mogeneous part" (cf. Theorem 8.41(ii)) zolx x(0) - xl(0), where x11(0) has k0 elements. In 
fact we see in (8.54) that the expression Ulxl + C,x2 + ZlxN has a "homogeneous part" 
Si' (1)x2(1)-x3(1), where ,ll'(1) is the k,xk1 left upper block in U1 and xJ.(1) has k, 
element. Hence, if ks is the smallest of all ki, back solving involves a recursion for 
{xl(ks)}, which should be stable in backward direction. 
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