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1 Introduction

The theory of functions plays an important role in the classical theory of harmonic analysis.
Because of this certain function spaces, the Hardy spaces, denoted byHp, have been studied
extensively on Rn (see [AuR], [CoW], [Ste] and the references therein for details). When
p > 1 the spaces Hp and Lp are essentially the same. When p ≤ 1, however, the space
Hp is much better adapted to problems arising in the theory of Fourier series, PDE etc.
In this note we discuss the characterization of Hardy spaces on Lie groups of polynomial
growth.

Let G be a connected Lie group with Lie algebra g. One can associate with each
fixed algebraic basis a1, . . . , ad′ of g a subelliptic distance (g, h) 7→ d′(g ; h). For all i ∈
{1, 2, . . . , d′}, let Ai = dL(ai) denote the generator of left translations in the direction ai.
This distance has the characterization

d′(g ; h) = sup{|ψ(g) − ψ(h)| : ψ ∈ C∞
c (G),

d′∑

i=1

|(Aiψ)|2 ≤ 1} ,

(cf. [Rob], Lemma IV.2.3). Let g 7→ |g| = d′(g ; e), where e is the identity element of G,
denote the corresponding modulus. Moreover, denote by |B(g ; r)| the Haar measure of
the subelliptic ball B(g ; r) = {h ∈ G : |gh−1| < r} and set V (r) = |B(e ; r)|. We assume
throughout that G has polynomial growth, and is not compact, i.e., one has bounds

c−1rD ≤ V (r) ≤ crD

for some c > 0 and integer D ≥ 1, uniformly for all r ≥ 1. These bounds automatically
imply that G is unimodular and that V (r) = |B(g ; r)| is independent of g. For all j ∈ N

let g
′
j denote the span of the multiple commutators of order less than or equal to j in the

basis elements a1, . . . , ad′ . Then g
′
1 ⊂ . . . ⊂ g

′
r = g, where r is the rank of the algebraic

basis. This gives a corresponding direct sum decomposition g = V ′
1 ⊕ . . . ⊕ V ′

r of the Lie
algebra. The local dimension D′ is defined as

D′ =
r∑

j=1

j dim(V′
j) .

Then V (r) ≍ rD′
for all 0 < r ≤ 1 (see, for example, [NSW], Theorem 1).

It is easy to verify that the Lie group G with the distance d′( · ; · ) and bi-invariant Haar
measure dg is a space of homogeneous type in the sense of Coifman and Weiss [CoW]. The
measure has the doubling property. More specifically, there exists a c > 0 such that

V (λr) ≤ c λDV (r)

for all r > 0 and λ ≥ 1 where D = max(D,D′).

Consider the second order subelliptic operator H = −∑d′

i,j=1 cijAiAj , where C = (cij)
is a d′ × d′ matrix of complex coefficients. Assume

2−1(C + C∗) ≥ µI (1)

for some µ > 0. Then it follows from [ElR2] that the closure of the subelliptic operator H
generates a holomorphic contraction semigroup S which has a smooth kernel K. Moreover
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there exist a, b > 0, such that

|Kt(g)| +
d′∑

i=1

t1/2|(AiKt)(g)| ≤ a V (t)−1/2e−b|g|2t−1

(2)

for all t > 0 and all g ∈ G (see [DER] for details or [Dun] for a simpler derivation).
The operator H gives rise to various natural notions of Hardy space on G. First, for

each tempered distribution ϕ over G one can define Stϕ pointwise by convolution with the
kernel Kt, i.e., Stϕ = Kt ∗ ϕ. Secondly, for all α > 0 one may define the (nontangential)
maximal function ϕ∗

α,H :G→ [0,∞] by

ϕ∗
α,H(g) = sup

{(h,t)∈G×〈0,∞〉 : |gh−1|<αt1/2}

|(Stϕ)(h)| .

For simplicity we set ϕ∗
H = ϕ∗

1,H . Thirdly, for all p ∈ 〈0,∞〉 one defines the maximal Hardy
space Hp

max,H(G) = {ϕ : ϕ∗
H ∈ Lp(G) } with norm ‖ϕ‖Hp

max,H(G) = ‖ϕ∗
H‖p.

Similarly if γ ∈ 〈0, 1〉 then one may define the fractional power Hγ of H by various
standard algorithms (see, for example, [Yos]). Then Hγ generates a holomorphic contrac-
tion semigroup Sγ and this semigroup has an L1(G)-kernel Kγ. But one can extend the
definition of Sγ

t to the bounded tempered distributions ϕ over G (see [Ste], page 89) and
for all α > 0 define ϕ∗

α,Hγ :G→ [0,∞] by

ϕ∗
α,Hγ (g) = sup

{(h,t)∈G×〈0,∞〉 : |gh−1|<αt1/(2γ)}

|(Sγ
t ϕ)(h)| .

We set ϕ∗
Hγ = ϕ∗

1,Hγ . Then define Hp
max,Hγ(G) = {ϕ : ϕ∗

Hγ ∈ Lp(G)} with ‖ϕ‖Hp
max,Hγ (G) =

‖ϕ∗
Hγ‖p for all p ∈ 〈0,∞〉.
Next we introduce the atomic Hardy spaces. If p ∈ 〈0,∞〉 then a function a is defined

to be a p-atom if the following three conditions are valid.

i. The support of a is contained in a ball B(g0 ; r).

ii. |a| ≤ (V (r))−1/p almost everywhere.

iii.
∫
dg a(g) = 0.

Then we define the atomic Hardy space Hp
atom(G), for all p ∈ 〈0,∞〉, to be the space

of tempered distributions ϕ admitting an atomic decomposition ϕ =
∑∞

j=0 λjaj , where the
aj are p-atoms and

∑∞
j=0 |λj|p <∞. The norm ‖ · ‖p,atom is then defined by

‖ϕ‖p,atom = inf
( ∞∑

j=0

|λj |p
)1/p

where the infimum is over all possible atomic decompositions. (In fact these definitions are
only appropriate if p > D/(D + 1) and the definition of the atoms has to be modified for
smaller p [Ste]).

Finally we need some information on spaces of bounded mean oscillation, BMO-spaces.
Let ψ be a locally integrable function. For any ball B we define ψB = |B|−1

∫
B
dg ψ(g).

We say ψ belongs to BMO(G) if there exists a finite constant c such that
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|B|

∫

B

dg |ψ(g)− ψB| ≤ c (3)

holds for any ball B. Let N(ψ) denote the infimum of all c for which (3) holds. Then we
define the BMO(G) semi-norm by

‖ψ‖BMO(G) = N(ψ) .

Then (H1
atom(G))∗ = BMO(G) (see [CoW]).

Our main result is the following characterization of Hardy spaces with p = 1.

Theorem 1.1 Let ϕ ∈ L1(G). The following statements are equivalent.

I. There exists a γ ∈ [2−1, 1] such that ϕ ∈ H1
max,Hγ (G).

II. ϕ ∈ H1
max,Hγ(G) for all γ ∈ [2−1, 1].

III. supt>0 |Stϕ| ∈ L1(G).

IV. supt>0 |Sγ
t ϕ| ∈ L1(G) for all γ ∈ [2−1, 1].

V. ϕ ∈ H1
atom(G).

Moreover, if the coefficients cij of H are real then the conditions are equivalent to the

following.

III′. There exists a γ ∈ [2−1, 1] such that supt>0 |Sγ
t ϕ| ∈ L1(G).

The theorem is a natural generalization of results for the Laplacian on Rd insofar it
characterizes the atomic Hardy space in terms of the maximal functions associated with
the heat equation and the wave equation. Since the atomic space is defined independently
of the operator H it follows immediately that the various maximal spaces are independent,
up to equivalence, of the choice of H .

It is quite possible that Condition III′ of the theorem is equivalent to the other con-
ditions for the general case of complex coefficients. Clearly Iγ ⇒ III′γ where Iγ and III′γ
denote the first and last condition for the fixed value γ ∈ [2−1, 1], respectively. Our proof
that III′1/2 ⇒ I1/2 is, however, only valid for real coefficients although symmetry of the
coefficients is not necessary.

2 Hardy spaces

The proof of Theorem 1.1 depends on several lemmas. In the sequel we adopt the con-
vention that c denotes a positive constant whose value may change line by line but is
independent of all crucial variables.

For every Borel measurable function Φ:G× 〈0,∞〉 → C define Φ∗
α,γ :G→ [0,∞] by

Φ∗
α,γ(g) = sup

{(h,t)∈G×〈0,∞〉 : |gh−1|<αtγ}

|Φ(h, t)|

for all α > 0 and γ ∈ 〈0, 1].
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Lemma 2.1 For all p ∈ 〈0,∞〉 there exists a c > 0 such that

‖Φ∗
α,γ‖p ≤ ‖Φ∗

β,γ‖p ≤ c (1 + α−1β)2D/p‖Φ∗
α,γ‖p

for all 0 < α ≤ β <∞, γ ∈ 〈0, 1] and Borel measurable functions Φ:G× 〈0,∞〉 → C.

Proof First if 0 < α ≤ β <∞ then ‖Φ∗
α,γ‖p ≤ ‖Φ∗

β,γ‖p by definition.
Secondly, by the Hardy–Littlewood maximal function theorem there exists a c1 > 0

such that
‖MHL(ϕ)‖2 ≤ c1 ‖ϕ‖2

for all ϕ ∈ L2(G). Moreover, let c2 ≥ 1 be as in the volume doubling property, i.e.,

V (λr) ≤ c2 λ
DV (r)

for all λ ≥ 1 and r > 0.
Let α, β ∈ 〈0,∞〉, γ ∈ 〈0, 1] and Φ:G×〈0,∞〉 → C Borel measurable. Define Φ∗∗

α :G→
[0,∞] by

Φ∗∗
α (g) = sup

h∈G, t>0
|Φ(h, t)|

( αtγ

|gh−1| + αtγ

)2D/p

.

Then

Φ∗∗
α (g) ≥ sup

{(h,t) : |gh−1|<βtγ}

|Φ(h, t)|
( 1

1 + α−1β

)2D/p

=
( 1

1 + α−1β

)2D/p

Φ∗
β,γ(g)

for all g ∈ G. So Φ∗
β,γ ≤ (1 + α−1β)2D/pΦ∗∗

α and ‖Φ∗
β,γ‖p ≤ (1 + α−1β)2D/p‖Φ∗∗

α ‖p.
Let g, h ∈ G and t ∈ 〈0,∞〉. Then |Φ(h, t)| ≤ Φ∗

α,γ(k) for all k ∈ B(h ;αtγ). Moreover,
B(h ;αtγ) ⊂ B(g ; |gh−1| + αtγ). Therefore

|Φ(h, t)|p/2 ≤ 1

V (αtγ)

∫

B(h;αtγ )

dk (Φ∗
α,γ(k))

p/2

≤ V (|gh−1| + αtγ)

V (αtγ)
MHL((Φ∗

α,γ)
p/2)(g)

≤ c2

( |gh−1| + αtγ

αtγ

)D

MHL((Φ∗
α,γ)

p/2)(g) .

Hence
(Φ∗∗

α )p/2 ≤ c2MHL((Φ∗
α,γ)

p/2) .

Then
‖Φ∗∗

α ‖p ≤ c
2/p
2 ‖MHL((Φ∗

α,γ)
p/2)‖2/p

2 ≤ c21 c
2/p
2 ‖Φ∗

α,γ‖p .

Combining these estimates completes the proof of the lemma. 2

As a consequence of Lemma 2.1 one obtains many implications in Theorem 1.1.

Lemma 2.2 I1 ⇒ II ⇒ Iγ ⇒ I1/2

⇓ ⇓
III ⇔ IV ⇒ III′γ ⇒ III′1/2

for all γ ∈ [2−1, 1].
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Proof Note that all the implications in the lemma are valid for complex coefficients.
The implications Iγ ⇒ III′γ , II ⇒ Iγ , IV ⇒ III and IV ⇒ III′γ are trivial.
The relation between the semigroups Sγ and S is given by

Sγ
t =

∫ ∞

0

ds µγ
t (s)Ss

where µγ
t is a positive smooth function with the scaling property µγ

t (s) = t−1/γµγ
1(st

−1/γ)
for all s, t > 0 (see, for example, [Rob] Section II.5). Therefore one calculates that

|(Sγ
t ϕ)(h)| ≤

∫ ∞

0

ds µγ
1(s) |(Sst1/γϕ)(h)| ≤

∫ ∞

0

ds µγ
1(s)ϕ

∗
s−1/2,H(g)

for all g, h ∈ G and t > 0 with |hg−1| < t1/(2γ). Therefore

ϕ∗
Hγ (g) ≤

∫ ∞

0

ds µγ
1(s)ϕ

∗
s−1/2,H(g)

for all g ∈ G. Hence

‖ϕ‖H1
max,Hγ

≤ c

∫ ∞

0

ds µγ
1(s) ‖ϕ∗

s−1/2,H‖1

and, by Lemma 2.1,

‖ϕ‖H1
max,Hγ

≤ c

∫ ∞

0

ds µγ
1(s) (1 + s−1/2)2D‖ϕ‖H1

max,H
.

But ∫ ∞

0

ds µγ
1(s) (1 + s−1/2)2D <∞

by the sixth property of the µγ
t given in [Rob] Section II.5. This establishes that I1 ⇒ Iγ .

Hence one also has I1 ⇒ II.
Using the identity H1/2 = (Hγ)1/(2γ), a similar argument establishes that Iγ ⇒ I1/2

Then the first row of implications has been proved. The proof of the second row is slightly
easier. 2

Therefore, in order to prove the first statement of Theorem 1.1 it suffices to prove
I1/2 ⇒ V ⇒ III ⇒ I1. The hardest proof is the first implication, on which we first
concentrate. It needs a lot of preparation. Let P be the holomorphic contraction semigroup
generated by H1/2.

If ϕ ∈ L2(G) then, as in [AuR], one has
∫

G

dg ψ(g)ϕ(g) = 4

∫

G

∫ ∞

0

dg dt

t
t(∂tP ∗

t ψ)(g) t(∂tPtϕ)(g) (4)

for all ψ ∈ Cc(G). By [CMS] Theorem 1 and Proposition 4 there is a c > 0 such that
∫

G×〈0,∞〉

dg dt

t
|Φ(g, t) Ψ(g, t)| ≤ c

∫

G

dg (AΦ)(g) (CΨ)(g) .

for all Borel measurable Φ,Ψ:G× 〈0,∞〉 → C with AΦ ∈ L1 and CΨ ∈ L∞, where for all
Borel measurable Φ:G× 〈0,∞〉 → C we define AΦ, CΦ:G→ [0,∞] by

(AΦ)(g) =
(∫

Γ(g)

dh dt

t V (t)
|Φ(h, t)|2

)1/2
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and

(CΦ)(g) = sup
B∋g

( 1

|B|

∫

B̂

dh dt

t
|Φ(h, t)|2

)1/2

,

with Γ(g) = {(h, t) ∈ G × 〈0,∞〉 : |gh−1| < t} and for any ball B the set B̂ = {(h, t) ∈
G× 〈0,∞〉 : d′(h,Bc) ≥ t} is the tent over B. Hence

∣∣∣
∫

G

dg ψ(g)ϕ(g)
∣∣∣ ≤ c

∫

G

dg
(∫

Γ1(g)

dh dt

t V (t)
|t(∂tPtϕ)(h)|2

)1/2

·

· sup
g∈G

(
sup
B∋g

1

|B|

∫

B̂

dh dt

t
|t(∂tP

∗
t ψ)(h)|2

)1/2

(5)

for all ϕ ∈ L2(G) and ψ ∈ Cc(G). We estimate both factors on the right hand side.
A key ingredient are the following Poisson bounds for the kernel p of P , together with

its derivative.

Lemma 2.3 There exists a c > 0 such that

t|(∂tpt)(g)| + |pt(g)| ≤ c
t

(t+ |g|)V (t+ |g|)
for all t > 0 and g ∈ G.

Proof By the subordination formula

Pt =
1√
π

∫ ∞

0

ds e−ss−1/2S t2

4s

(6)

one deduces that

|pt(g)| ≤
t

2
√
π

∫ ∞

0

du e−
t2

4uu−3/2|Ku(g)|

≤ ct

∫ ∞

0

du u−3/2e−
t2

4uV (u)−1/2e−b
|g|2

u

≤ ct

∫ ∞

0

du u−3/2e−br2/uV (u)−1/2 = c
t

r

∫ ∞

0

ds s−3/2e−b/sV (sr2)−1/2

where r2 = t2 + |g|2. By the doubling property one has

V (sr2)−1/2 ≤ c V (r2)−1/2(1 + s−D)1/2 . (7)

Therefore

|pt(g)| ≤ c
t

r

∫ ∞

0

ds s−3/2e−b/sV (r2)−1/2(1 + s−D)1/2 ≤ c
t

(t+ |g|)V (t+ |g|)
for all t > 0 and g ∈ G.

The bound on the derivative follows from the identity

t(∂tpt)(g) = pt(g) −
t3

4π

∫ ∞

0

du e−
t2

4uu−5/2Ku(g)

which is also valid for all t > 0 and g ∈ G. 2

The next lemma is a Lie group version of a standard estimate in Rd. Using the Poisson
kernel bounds of Lemma 2.3 we can estimate the second factor on the right hand side
of (5).
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Lemma 2.4 There exists a c > 0, such that for every ball B in G

( 1

|B|

∫

B̂

dh dt

t
|t(∂tPtϕ)(h)|2

)1/2

≤ c ‖ϕ‖BMO

for all ϕ ∈ BMO(G).

Proof Set ψ{B} = ϕ − ϕ2B, where 2B denotes the ball B(g ; 2r) if B = B(g ; r). Since
∂tPt anhilates the constants one has

( 1

|B|

∫

B̂

dh dt

t
|t(∂tPtϕ)(h)|2

)1/2

=
( 1

|B|

∫

B̂

dh dt

t
|t(∂tPtψ{B})(h)|2

)1/2

≤
( 1

|B|

∫

B̂

dh dt

t
|t(∂tPt(ψ{B}112B))(h)|2

)1/2

+
( 1

|B|

∫

B̂

dh dt

t
|t(∂tPt(ψ{B}11(2B)c))(h)|2

)1/2

= I1 + I2 .

Next, H is injective and is maximal accretive. Therefore H has an H∞-holomorphic calcu-
lus by [ADM], Theorem G. Hence H has square integral inequalities by [McI], Section 8,
and one estimates that

I1 ≤
( 1

|B|

∫ ∞

0

dt

t
‖t∂tPt(ψ{B}112B)‖2

2

)1/2

≤ c
( 1

|B|

∫

2B

dh |ψ{B}(h)|2
)1/2

≤ c ‖ϕ‖BMO .

The third inequality is the John–Nirenberg inequality (see, for example, [Ste] Section IV.1.3).
To estimate I2 we use Lemma 2.3 and the volume doubling property to deduce that

|t
(
∂tPt(ψ{B}11(2B)c)

)
(h)| ≤ c

∫

(2B)c

dk
t |ψ{B}(k)|

(t+ |hk−1|)V (t+ |hk−1|)

= c

∞∑

n=1

∫

2n+1B\2nB

dk
t |ψ{B}(k)|

(t+ |hk−1|)V (t+ |hk−1|)

≤ c
∞∑

n=1

t

V (2nB)
(2nr)−1

∫

2n+1B

dk |ψ{B}(k)|

≤ c
t

r

∞∑

n=1

n

2n
‖ϕ‖BMO ≤ c

t

r
‖ϕ‖BMO.

Thus

I2 ≤ c
( 1

|B|

∫

B̂

dh dt
t

r2

)1/2

‖ϕ‖BMO ≤ c‖ϕ‖BMO

and Lemma 2.4 is proved. 2

Next we turn to the first factor on the right hand side of (5).
For every bounded tempered distribution ϕ over G define Pϕ ∈ C∞(G × 〈0,∞〉) by

(Pϕ)(g, t) = (Ptϕ)(g) (see [Ste], page 90.) For all α > 0, 0 < ε < R < ∞ and each
bounded tempered distribution ϕ over G define Aαϕ,A

ε,R
α ϕ:G→ [0,∞] by

(Aαϕ)(g) =
(∫

Γα(g)

dh dt

t V (t)
|t(∇Pϕ)(h, t)|2

)1/2

,
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and

(Aε,R
α ϕ)(g) =

(∫

Γε,R
α (g)

dh dt

t V (t)
|t(∇Pϕ)(h, t)|2

)1/2

,

where (∇Φ)(g, t) = ((∇Φ)(g, t), (∂tΦ)(g, t)),

Γα(g) = {(h, t) ∈ G× 〈0,∞〉 : |gh−1| < αt}

and Γε,R
α (g) is the truncated cone defined by

Γε,R
α (g) = {(h, t) ∈ G× 〈ε, R〉 : |gh−1| < αt} .

Since |(∂tPtϕ)(g)| ≤ |(∇Pϕ)(g, t)| for every bounded tempered distribution ϕ one deduces
that ∫

G

dg
(∫

Γ1(g)

dh dt

t V (t)
|t(∂tPtϕ)(h)|2

)1/2

≤ ‖A1ϕ‖1 (8)

for every bounded tempered distribution ϕ. So the first factor on the right hand side of
(5) is bounded by ‖A1ϕ‖1.

Lemma 2.5 For all α < 1 there exists a c > 0 such that

Aε,R
α ϕ ≤ c(1 + | log(R/ε)|)ϕ∗

H1/2

for all ϕ ∈ L2 and 0 < ε < R <∞.

Proof The proof is similar to the proof of Lemma 7 in [AuR], but now using the Cac-
cioppoli inequality in [ElR1]. 2

The next lemma uses ideas from [AuR] and [CMS]. In particular it is a Lie group
version of Proposition 8 in [AuR] and the proof follows closely the arguments of [AuR]
Lemmas 9 and 10 which in turn are based on arguments of [CMS].

Lemma 2.6 There exists a c > 0 such that

‖A1ϕ‖1 ≤ c‖ϕ‖H1

max,H1/2

for all ϕ ∈ H1
max,H1/2(G).

Proof The proof relies on Lemma 2.5 and a ‘good λ’ inequality. We shall prove the
following statement.

There exists a c > 0 such that

|{g ∈ G : (Aε,R
1/20ϕ)(g) > 2λ and ϕ∗

H1/2 ≤ γλ}| ≤ cγ2|{g ∈ G : (Aε,R
1/2ϕ)(g) > λ}| (9)

for all 0 < γ ≤ 1, λ > 0, 0 < ε < R <∞ and ϕ ∈ H1
max,H1/2 ∩ L2(G).

9



Define O = {g ∈ G : (Aε,R
1/2ϕ)(g) > λ}. Let O =

⋃∞
k=1 Ok be a Whitney decomposition

of O, such that Ok ⊂ O but 3Ok ∩ Oc 6= ∅ for all k. Since {g ∈ G : (Aε,R
1/20ϕ)(g) > 2λ} ⊂

{g ∈ G : (Aε,R
1/2ϕ)(g) > λ} it is enough to show that

|{g ∈ Ok : (Aε,R
1/20ϕ)(g) > 2λ and ϕ∗

H1/2 ≤ γλ}| ≤ c γ2|Ok| . (10)

From now on fix k and denote by r the radius of Ok.
If g ∈ Ok then (A

max(10r,ε),R
1/20 ϕ)(g) ≤ λ. Indeed, pick gk ∈ 3Ok ∩ Oc. Let h ∈

Γ
max(10r,ε),R
1/20 (g). Then |gh−1| < t/20 and t ≥ max(10r, ε). Hence one has |gkh

−1| < t/2 and

h ∈ Γ
max(10r,ε),R
1/2 (gk). Therefore

(A
max(10r,ε),R
1/20 ϕ)(g) ≤ (A

max(10r,ε),R
1/2 ϕ)(gk) ≤ (Aε,R

1/2ϕ)(gk) ≤ λ .

If ε ≥ 10r then (10) is obviously valid.
If ε < 10r, using (Aε,R

1/20ϕ)(g) ≤ (Aε,10r
1/20 ϕ)(g) + (A10r,R

1/20 ϕ)(g), it remains to prove that

|{g ∈ Ok ∩ Ω : l(g) > λ}| ≤ cγ2|Ok|, (11)

where l(g) = (Aε,10r
1/20 ϕ)(g) and Ω = {g ∈ G : ϕ∗

H1/2(g) ≤ γλ}.
To prove (11) we only need to prove

∫

Ok∩Ω

dg l(g)2 ≤ cγ2λ2|Ok| . (12)

If ε ≥ 5r, then by Lemma 2.5
∫

Ok∩Ω

dg l(g)2 ≤ c

∫

Ok∩Ω

dg (ϕ∗
H1/2(g))

2 ≤ cγ2λ2|Ok ∩ Ω| .

If ε < 5r then
∫

Ok∩Ω

dg l(g)2 =

∫

Ok∩Ω

dg

∫

Γε,10r
1/20

(g)

dh dt

t V (t)
|t(∇Pϕ)(h, t)|2

≤
∫

R

dh dt t|(∇Pϕ)(h, t)|2

where R = {(h, t) ∈ G× (ε, 10r) : d′(h ;Ok ∩ Ω) < t/20}.
If µ is the smallest eigenvalue of the real part of C = (cij) then

∫

R

dh dt t|(∇Pϕ)(h, t)|2 ≤ µ−1 Re

∫

R

dh dt t(B∇Pϕ)(h, t) · (∇Pϕ)(h, t)

where B is the (d′ + 1) × (d′ + 1) block diagonal matrix with components C and I. Since
Pϕ satisfies the equation ∇ ·B∇Pϕ = 0 we may integrate by parts and deduce that

∫

R

dh dt t(B∇Pϕ)(h, t) · (∇Pϕ)(h, t)

= −
∫

R

dh dt (∂tPtϕ)(h) (Ptϕ)(h) +

∫

∂R

dσ(h, t) t(B∇Pϕ)(h, t) ·N(h, t) (Ptϕ)(h) ,

10



where N(h, t) is the unit normal vector outward R and dσ is the surface measure over ∂R.
Moreover, integrating by parts again gives

Re

∫

R

dh dt (∂tPtϕ)(h) (Ptϕ)(h) = 2−1

∫

∂R

dσ(h, t) |(Ptϕ)(h)|2
(
N(h, t) · (0, . . . , 0, 1)

)
.

Finally,
∫

R

dh dt t|(∇Pϕ)(h, t)|2 ≤ c

∫

∂R

dσ(h, t) |(Ptϕ)(h)|2

+ c

∫

∂R

dσ(h, t) t|(Ptϕ)(h)| |(∇Pϕ)(h, t)| .

Since |(Ptϕ)(h)| ≤ λγ for all (h, t) ∈ ∂R we find

∫

∂R

dσ(h, t) |(Ptϕ)(h)|2 ≤ λ2γ2

∫

∂R

dσ(h, t) ≤ c λ2γ2|Ok| .

The last estimate follows by a crude estimate of the surface area of the truncated cone R
since r is the radius of Ok. Moreover,

∫

∂R

dσ(h, t) t|(Ptϕ)(h)| |(∇Pϕ)(h, t)|

≤ λγ

∫

∂R

dσ(h, t) t |(∇Pϕ)(h, t)|

≤ λγ
(∫

∂R

dσ(h, t) t2|(∇Pϕ)(h, t)|2
)1/2(∫

∂R

dσ(h, t)
)1/2

≤ cλγ|Ok|1/2r
(∫

∂R

dσ(h, t) |(∇Pϕ)(h, t)|2
)1/2

≤ cλγ|Ok|1/2
(∫

∂R

dσ(h, t) |(Ptϕ)(h)|2
)1/2

≤ cλ2γ2|Ok| .

The penultimate estimate follows from a covering argument and an application of Cac-
cioppoli’s inequality (see [AuR], proof of Lemma 9). Combining these estimates we obtain
(12). Hence we have proved (9).

Then Lemma 2.6 follows by standard reasoning (see, for example, [Ste] Chapter IV).
Again details of an almost identical argument can be found in [AuR]. 2

Proof of I1/2 ⇒ V It follows from (5) and (8) that

∣∣∣
∫

G

dg ψ(g)ϕ(g)
∣∣∣ ≤ c ‖A1ϕ‖1 sup

g∈G

(
sup
B∋g

1

|B|

∫

B̂

dh dt

t
|t(∂tP

∗
t ψ)(h)|2

)1/2

≤ c ‖ϕ‖H1

max,H1/2
(G)‖ψ‖BMO(G)

for all ϕ ∈ H1
max,H1/2(G) and ψ ∈ Cc(G), where the last step follows from Lemmas 2.6 and

2.4. Hence by duality
‖ϕ‖H1

atom(G)
≤ c ‖ϕ‖H1

max,H1/2
(G)

11



for all ϕ ∈ L2(G)∩H1
max,H1/2(G). Since H1

max,H1/2(G)∩L2(G) is dense in H1
max,H1/2(G) the

proof of the implication I1/2 ⇒ V in Theorem 1.1 is complete. 2

Proof of V ⇒ III This is a special case of the following lemma.

Lemma 2.7 If p ∈ 〈(D + 1)−1D, 1] then Hp
atom(G) ⊂ Hp

max,H(G).

Proof Again set ϕ+
H = supt>0 |Stϕ| for every tempered distribution ϕ. It suffices to prove

that there is a c > 0 such that a+
H ∈ Lp(G) and ‖a+

H‖p ≤ c uniformly for every p-atom a
on G. (Cf. [Ste], page 107.)

Let a be a p-atom on G. We may, without loss of generality, suppose that supp a ⊂
B(e ; r) for some r > 0. Write B∗ = B(e ; 2r). Then

∫

G

(a+
H)p =

∫

B∗

(a+
H)p +

∫

G\B∗

(a+
H)p .

For the first term one estimates
∫

B∗

(a+
H)p ≤ |B∗| ‖a+

H‖p
∞ ≤ |B∗| ‖a‖p

∞ ≤ V (2r)

V (r)
≤ c

where c is a constant independent of a.
To estimate the second term one needs a pointwise estimation of a+

H . If g ∈ G \B∗ and
t > 0 then it follows from (2) that

|(Sta)(g)| =
∣∣∣
∫

G

dhKt(gh
−1) a(h)

∣∣∣

=
∣∣∣
∫

G

dh
(
Kt(gh

−1) −Kt(g)
)
a(h)

∣∣∣

≤ c

∫

G

dh t−1/2|h| V (t)−1/2 e−b|g|2t−1 |a(h)|

≤ ct−1/2rV (r)1−p−1

V (t)−1/2 e−b|g|2t−1

.

Setting s−1 = |g|2 t−1 one has by (7)

(a+
H)(g) ≤ c r V (r)1−p−1|g|−1 sup

s>0
V (s|g|2)−1/2s−1/2e−bs−1

≤ c r V (r)1−p−1|g|−1V (|g|2)−1/2 .

Therefore
∫

G\B∗

(a+
H)p ≤ c

∫

G\B∗

dg rp V (r)p−1|g|−p V (|g|2)−p/2

≤ c

∞∑

k=1

V (2k+1r)V (r)p−1 2−pk V (2kr)−p .

We now consider two cases.

12



Case 1. If r ≥ 1 then

∫

G\B∗

(a+
H)p ≤ c

∞∑

k=1

(2kr)D rD(p−1) 2−pk (2kr)−Dp = c
∞∑

k=1

2k(D−p−Dp) ≤ c

where we used p > (D + 1)−1D.
Case 2. If 0 < r ≤ 1, let k0 be the integer such that 2r−1 < 2k0 ≤ r−1. Then

∫

G\B∗

(a+
H)p ≤

( k0∑

k=1

+
∞∑

k=k0+1

)
V (2k+1r)V (r)p−1 2−pk V (2kr)−p = I1 + I2 .

The estimate of I1 is similar to Case 1 except that D is replaced by the local dimension D′.
Next,

I2 ≤ c
∞∑

k=k0+1

(2kr)D rD′(p−1) 2−pk (2kr)−Dp

= c

∞∑

k=k0+1

2k(D−p−Dp) rD+D′(p−1)−Dp

≤ c 2k0(D−p−Dp) r(D−D′)(1−p) ≤ c r−D′+D′p+p ≤ c

where we used that p > (D + 1)−1D and that p > (D′ + 1)−1D′.
Combining these estimates one finds ‖a+

H‖p ≤ c with c independent of a. This completes
the proofs of Lemma 2.7 and the implication V ⇒ III in Theorem 1.1. 2 2

Proof of III ⇒ I1 This is a special case of the following lemma.

Lemma 2.8 If ϕ is a bounded tempered distribution over G and p ∈ 〈0,∞〉 then ϕ∗
H ∈

Lp(G) if and only if supt>0 |Stϕ| ∈ Lp(G).

Proof The ‘only if’ part is obvious. To prove the converse define ϕ+ = supt>0 |Stϕ|.
Then we need to prove that ‖ϕ∗

H‖p ≤ c ‖ϕ+‖p.
Fix N ∈ N with Np > D. Introduce ϕ∗

ε,∆ε:G→ [0,∞] by

ϕ∗
ε(g) = sup

{(h,t)∈G×〈0,∞〉 : |gh−1|<t1/2<ε−1}

( t1/2

t1/2 + ε

)N

(1 + ε|h|)−N |(Stϕ)(h)|

and

∆ε(g) = sup
h 6=h′, t

|gh−1|∨|gh′−1|<t1/2<ε−1

( t1/2

|h′h−1|
)( t1/2

t1/2 + ε

)N

(1 + ε|h|)−N |(Stϕ)(h) − (Stϕ)(h′)|

for all ε > 0.
First we prove that there is a c > 0 such that ‖∆ε‖p ≤ c ‖ϕ∗

ε‖p uniformly for all ε > 0.
Since the derivatives of the kernel satisfy Gaussian bounds [DER], Lemma V.2.10, there
are b, c1 > 0 such that

|Kt/2(h) −Kt/2(h
′)| ≤ c1

|h′h−1|
t1/2

V (t)−1/2e−5b|h|2t−1

(13)
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for all h, h′ ∈ G and t > 0 with |h′h−1| ≤ 2t1/2. Let ε > 0. Fix g ∈ G, let h, h′ ∈ G,
t > 0 and suppose that h 6= h′, |gh−1| < t1/2 < ε−1 and |gh′−1| < t1/2. Then the semigroup
property of S gives

|(Stϕ)(h) − (Stϕ)(h′)| ≤
∫

G

dk
∣∣∣Kt/2(hk

−1) −Kt/2(h
′k−1)

∣∣∣ |(St/2ϕ)(k)| =

∞∑

n=0

In

where

In =

∫

Gn

dk |Kt/2(hk
−1) −Kt/2(h

′k−1)| |(St/2ϕ)(k)|

for all n ∈ N0 with
G0 = {k ∈ G : |hk−1| ≤ t1/2}

and
Gn = {k ∈ G : 2n−1t1/2 < |hk−1| ≤ 2nt1/2}

for all n ∈ N. Then it follows from (13) that

( t1/2

|h′h−1|
)∫

Gn

dk |Kt/2(hk
−1) −Kt/2(h

′k−1)| ≤ c2 e
−b22n

for all n ∈ N0, where c2 = c1e
b sups>0

∫
G
dl V (s)−1/2e−b|l|2s−1

. Next (1 + ε|k|)N ≤ (1 +

ε|h|)N(1 + 2n)N for all n ∈ N and k ∈ G, since εt1/2 < 1. Therefore

( t1/2

|h′h−1|
)( t1/2

t1/2 + ε

)N

(1 + ε|h|)−NIn

≤ c2 e
−b22n

(1 + 2n)N
( t1/2

t1/2 + ε

)N

sup
k∈Gn

(1 + ε|k|)−N |(St/2ϕ)(k)|

≤ c2 e
−b22n

(1 + 2n)NΦ∗
2n+1,1/2(g)

where Φ:G× 〈0,∞〉 → C is defined by

Φ(k, s) = (Ssϕ)(k) (1 + ε|k|)−N
( s1/2

s1/2 + ε

)N

11[0,1](εs
1/2) .

Hence

∆ε(g) ≤ c2

∞∑

n=0

e−b22n

(1 + 2n)NΦ∗
2n+1,1/2(g) .

Therefore

‖∆ε‖p ≤ c2

∞∑

n=0

e−b22n

(1 + 2n)N‖Φ∗
2n+1,1/2‖p ≤ c ‖Φ∗

1,1/2‖p = c ‖ϕ∗
ε‖p (14)

by Lemma 2.1. The value of c is independent of ε.
Now we are ready to prove that ‖ϕ∗

H‖p ≤ c‖ϕ+‖p.
Set B = 21/pc where c > 0 is as in (14) and assume ϕ+ ∈ Lp. Then since (Stϕ)(y) =∫

Rd dz Kt/2(y ; z)(St/2ϕ)(z) and K satisfies Gaussian bounds one verifies that ϕ∗
ε ∈ Lp.

Next define
Gε = {g ∈ G : ∆ε(g) ≤ B ϕ∗

ε(g)}
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Then one has ∫

Gc
ε

dg ϕ∗
ε(g)

p ≤ 1

Bp

∫

Gc
ε

dg∆ε(g)
p ≤ 1

2

∫

G

dg ϕ∗
ε(g)

p .

In particular ∫

Gc
ε

dg ϕ∗
ε(g)

p ≤
∫

Gε

dg ϕ∗
ε(g)

p

and ∫

G

dg ϕ∗
ε(g)

p ≤ 2

∫

Gε

dg ϕ∗
ε(g)

p . (15)

Now fix g ∈ Gε. Since ϕ∗
ε ∈ Lp we may assume that ϕ∗

ε(g) < ∞. Then there exist h ∈ G
and t > 0 such that |gh−1| < t1/2 < 1/ε and

( t1/2

t1/2 + ε

)N

(1 + ε|h|)−N |(Stϕ)(h)| ≥ 2−1ϕ∗
ε(g) . (16)

Therefore for all k ∈ G with |kg−1| < t1/2 one has

t1/2

|hk−1|
( t1/2

t1/2 + ε

)N

(1 + ε|h|)−N |(Stϕ)(k) − (Stϕ)(h)|

≤ ∆ε(g) ≤ B ϕ∗
ε(g) ≤ 2B

( t1/2

t1/2 + ε

)N

(1 + ε|h|)−N |(Stϕ)(h)| .

Hence, t1/2

|hk−1|
|(Stϕ)(k)−(Stϕ)(h)| ≤ 2B|(Stϕ)(h)|. It follows that |(Stϕ)(k)| ≥ 2−1|(Stϕ)(h)|

for all k ∈ Ω = {k : |kg−1| < t1/2 and |kh−1| < t1/2

4B
}. Therefore, for all k ∈ Ω one has

|(Stϕ)(k)| ≥ 2−1
( t1/2

t1/2 + ε

)N

(1 + ε|h|)−N |(Stϕ)(h)| ≥ 4−1ϕ∗
ε(g)

by (16).
Next define

Mq(g) = sup
Q∋g

( 1

V (Q)

∫

Q

dhϕ+(h)q
)1/q

where q = 2−1p. Then

Mq(g)
q ≥ 1

V (2t1/2)

∫

B(g;2t1/2)

dk ϕ+(k)q

≥ 1

V (2t1/2)

∫

B(g;2t1/2)

dk |(Stϕ)(k)|q

≥ |Ω|
V (2t1/2)

(4−1ϕ∗
ε(g))

q ≥ V ((4c)−1t1/2)

V (2t1/2)
(4−1ϕ∗

ε(g))
q ≥ c′ ϕ∗

ε(g)
q

by the volume doubling property. Using (15) one immediately deduces that

∫

G

dg ϕ∗
ε(g)

p ≤ 2

∫

Gε

dg ϕ∗
ε(g)

p ≤ c

∫

G

dgMq(g)
p ≤ c

∫

G

dg ϕ+(g)p
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where c is independent of ε. Letting ε → 0 yields ‖ϕ∗‖p ≤ c‖ϕ+‖p by the monotone
convergence theorem. 2 2

At this stage we have established the first statement of Theorem 1.1. Lemma 2.2 also
establishes that the first five conditions of the theorem imply Condition III′. Therefore to
complete the proof of the theorem it suffices to prove that III′1/2 ⇒ I1/2 for operators with
real coefficients. From now on the coefficients cij are real and all functions are real valued.
For this we follow an argument of [Lu] based on the mean value theorem.

Proposition 2.9 Suppose that D′ ≤ D. Let

L = −∂2
t +H = −∂2

t −
d′∑

i,j=1

cijAiAj .

Then for all p > 0 there is a C > 0 such that

max
(g,t)∈B(ρ)

u(g, t) ≤ c
( 1

|B(2ρ)|

∫

B(2ρ)

|u|p
)1/p

.

for all ρ ∈ 〈0,∞〉 and any non-negative subsolution u of Lu = 0 in a ball B(9ρ) ⊂ G×R.

Proof Let ρ ∈ 〈0,∞〉 and u a non-negative subsolution of Lu = 0 in a ball B(9ρ) ⊂ G×R.
For all p > 0 and r ∈ 〈0, 9ρ〉 define

ϕ(p, r) =
( 1

|B(r)|

∫

B(r)

|u|p
)1/p

and ϕ(∞, r) = max
(g,t)∈B(r)

u(g, t) .

Hence we need to prove that there is a c > 0, independent of ρ and u, such that

ϕ(∞, ρ) ≤ cϕ(p, 2ρ) .

We first prove that
ϕ(∞, r) ≤ cλ−(D′+1)/pϕ(p, (1 + λ)r) (17)

uniformly for all p ∈ [2,∞〉, ρ, u, r ∈ 〈0, 2ρ] and λ ∈ 〈0, 1].
Let ∇u = (A1u, . . . , Ad′u, ∂tu) and

M = (

d′∑

j=1

c1jAju, . . . ,

d′∑

j=1

cd′jAju, ∂tu) .

Then one easily finds ∇u ·M ≥ µ|∇u|2 and |M | ≤ a |∇u|, where a = maxi,j |cij| and µ is
the ellipticity constant.

Next let q ≥ 1, r ∈ 〈0, 4ρ] and ξ ∈ C∞
c (B(2r)) with ξ ≥ 0. Set ψ = ξ2 uq. Then

∇ψ = q ξ2 uq−1∇u+ 2ξ uq ∇ξ .

Since u is a subsolution one has
∫

B(9ρ)
∇ψ ·M ≤ 0. Therefore

q

∫

B(2r)

ξ2 · uq−1 ∇u ·M + 2

∫

B(2r)

ξ uq ∇ξ ·M ≤ 0 .
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Then
∫

B(2r)

ξ2 uq−1 |∇u|2 ≤ µ−1

∫

B(2r)

ξ2 uq−1 ∇u ·M

≤ −2(µq)−1

∫

B(2r)

ξ uq ∇ξ ·M

= −2(µq)−1

∫

B(2r)

ξ u(q−1)/2 (M · ∇ξ) u(q+1)/2

≤ 2a(µq)−1
(∫

B(2r)

ξ2 uq−1 |∇u|2
)1/2( ∫

B(2r)

uq+1 |∇ξ|2
)1/2

≤ 1

2

∫

B(2r)

ξ2 uq−1 |∇u|2 +
2a2

µ2q2

∫

B(2r)

uq+1 |∇ξ|2 .

Therefore, ∫

B(2r)

ξ2 uq−1 |∇u|2 ≤ c q−2

∫

B(2r)

uq+1 |∇ξ|2 .

Set v = u(q+1)/2. Then |∇v|2 = 4−1(q + 1)2 uq−1 |∇u|2. Hence

‖ ξ |∇v| ‖L2(B(2r)) ≤ c(q + 1) q−1 ‖ v |∇ξ| ‖L2(B(2r)) ≤ c‖ v |∇ξ| ‖L2(B(2r)) (18)

since q ≥ 1.
Next we use the Sobolev inequality on G× R,

( 1

|B|

∫

B

|f |2ν
)1/(2ν)

≤ c r(B)
( 1

|B|

∫

B

|∇f |2
)1/2

,

where ν = (D′ + 1)(D′ − 1)−1 > 1. Here we use that D′ ≤ D. Then one obtains from the
foregoing estimate

‖ξv‖L2ν(B(2r)) ≤ cρ |B(2r)| 1
2ν

− 1
2 ‖∇(vξ)‖L2(B(2r))

≤ cρ |B(2r)| 1
2ν

− 1
2 ‖v∇ξ + ξ∇v‖L2(B(2r)) ≤ cρ |B(2r)| 1

2ν
− 1

2 ‖ v |∇ξ| ‖L2(B(2r)) ,

where we used (18) in the last step.
Let R ∈ 〈r, 2r], select ξ as a cut-off function such that ξ = 1 on B(r) and ξ = 0 outside

B(R) and |∇ξ| ≤ c(R− r)−1. Then

‖v‖L2ν(B(r)) ≤ c(R− r)−1r |B(2r)| 1
2ν

− 1
2‖v‖L2(B(R)) ,

or, equivalently,

( 1

|B(r)|

∫

B(r)

u(q+1)ν
)1/(2ν)

≤ c (R− r)−1r
( 1

|B(R)|

∫

B(R)

|u|q+1
)1/2

.

Taking the (q+1)/2-th root of both sides one finds

ϕ(pν, r) ≤
(
c(R− r)−1r

)2/p

ϕ(p, R) (19)
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with p = q + 1.
Now fix a p0 ∈ [2,∞〉, λ ∈ 〈0, 1] and ρ0 ∈ 〈0, 2ρ], and for all j ∈ {0, 1, . . .} define

pj = p0ν
j and rj = (1 + 2−jλ)ρ0. Then it follows by iteration from (19) applied with

p = pj , r = rj+1 and R = rj that

ϕ(pj+1, rj+1) ≤
(
c(2−(j+1)λρ0)

−12ρ0

)2p−1
0 ν−j

ϕ(pj, rj)

≤ . . . ≤ (2cλ−1)2p−1
0

∑j
k=0 ν−k

22p−1
0

∑j
k=0(k+1)ν−k

ϕ(p0, (1 + λ)ρ0)

for all j ∈ N. In the limit j → ∞ one deduces that

ϕ(∞, ρ0) ≤ c λ−(D′+1)/pϕ(p0, (1 + λ)ρ0) .

This proves (17). In particular it follows by setting p0 = 2 that

ϕ(∞, r) ≤ c λ−αϕ(2, (1 + λ)r)

for all λ ∈ 〈0, 1] and r ∈ 〈0, 2ρ], where α = (D′ + 1)/2 > 0.
Now fix p ∈ 〈0, 2〉. Set t = 1 − p/2 ∈ 〈0, 1〉. Then

ϕ(2, r)2 =
1

|B(r)|

∫

B(r)

|u|2 ≤
( 1

|B(r)|

∫

B(r)

|u|p
)(

sup
(g,t)∈B(r)

u(g, t)2−p
)

= ϕ(p, r)p ϕ(∞, r)2t

for all r ∈ 〈0, 9ρ〉. Therefore

ϕ(∞, r) ≤ c λ−αϕ(p, (1 + λ)r)p/2 ϕ(∞, (1 + λ)r)t

≤ c λ−αϕ(p, 2ρ)p/2 ϕ(∞, (1 + λ)r)t

for all r ∈ 〈0, ρ〉 and λ ∈ 〈0, 2−1]. Choosing λ = 2−j with j ∈ N one deduces that

ϕ(∞, ρ) ≤ c 2αϕ(p, 2ρ)p/2 ϕ(∞, (1 + 1
2
)ρ)t

≤ c 2αϕ(p, 2ρ)p/2
(
c 4αϕ(p, 2ρ)p/2ϕ(∞, (1 + 1

2
+ 1

4
)ρ)t

)t

≤ . . . ≤
(
c ϕ(p, 2ρ)p/2

)∑j−1
k=0 tk

2α
∑j−1

k=0(k+1)tk
(
ϕ(∞,

j∑

k=0

2−kρ)
)tj

≤
(
c ϕ(p, 2ρ)p/2

)∑j−1
k=0 tk

2α
∑j−1

k=0(k+1)tk
(
ϕ(∞, 2ρ)

)tj

for all j ∈ N. Since t < 1 the last factor tends to 1 if j → ∞. Moreover,
∑∞

k=0 t
k = 2/p.

So ϕ(∞, ρ) ≤ c ϕ(p, 2ρ) and the proof of the proposition is complete. 2

Proof of III′1/2 ⇒ I1/2 This is a special case of the next proposition.

Proposition 2.10 There is a c > 0 such that, for any ϕ satisfying supt>0 |S1/2
t ϕ| ∈ L1(G)

one has ϕ ∈ H1
max,H1/2(G) and

‖ϕ‖H1

max,H1/2
≤ c‖ sup

t>0
|S1/2

t ϕ| ‖1 .
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Proof First suppose that D′ ≤ D. Fix p ∈ 〈0, 1〉. Note that the function u: (g, t) 7→
|(e−tH1/2

ϕ)(g)| is a non-negative subsolution of Lu = 0, where L is as in Proposition 2.9.
Let t > 0 and g ∈ G. Then for all h with |gh−1| ≤ t one has (h, t) ∈ B((g ; t) ; t). Therefore

|(e−tH1/2

ϕ)(h)| ≤ c
( 1

t |B(g ; 2t)|

∫ 2t

0

ds

∫

B(g ;2t)

dh′ |(e−sH1/2

ϕ)(h′)|p
)1/p

by Proposition 2.9. Hence

ϕ∗
H1/2(g)

p ≤ c sup
t>0

1

t |B(g ; 2t)|

∫ 2t

0

ds

∫

B(g ;2t)

dh′ |(e−sH1/2

ϕ)(h′)|p

≤ c sup
t>0

1

|B(g ; 2t)|

∫

B(g ;2t)

dh′ sup
s>0

|(S1/2
s ϕ)(h′)| ≤ cMH−L(sup

t>0
|S1/2

t ϕ|p) .

The statement of the proposition follows immediately if D′ ≤ D.
Now we consider the case D′ > D. Define G′ = HD′−D × R

3 where H is the three-
dimensional Heisenberg group. Let G̃ = G×G′. Choose H̃ = H ⊗ I + I ⊗ ∆′ where ∆′ is
the full Laplacian on G′. Then S̃t = St ⊗S ′

t, and P̃t = Pt ⊗P ′
t , where Pt = S

1/2
t . Moreover,

choose ϕ′ ∈ C∞
c (G′) such that ϕ′ ≥ 0 and

∫
G′ dg

′ ϕ(g′) = 1. Then
∫

G′ dg
′ (P ′

tϕ
′)(g′) = 1

Now let ϕ ∈ L1(G) and suppose that supt>0 |Ptϕ| ∈ L1(G). Then

sup
t>0

|(P̃t(ϕ⊗ ϕ′))(g, g′)| = sup
t>0

|(Ptϕ)(g)| · |(P ′
tϕ

′)(g′)| ≤ sup
t>0

|(Ptϕ)(g)| sup
t>0

|(P ′
tϕ

′)(g′)| .

It follows that supt>0 |(P̃t(ϕ⊗ ϕ′))| ∈ L1(G̃), and (ϕ⊗ ϕ′)∗
H̃1/2

∈ L1(G̃) by the first part of
the proof. Therefore,

∫

G

dg ϕ∗
H1/2(g) =

∫

G

dg sup
|gh−1|<t

∫

G′

dg′ |(Ptϕ)(h) (P ′
tϕ

′)(g′)|

≤
∫

G

dg

∫

G′

dg′ sup
|gh−1|<t

|(Ptϕ)(h) (P ′
tϕ

′)(g′)|

≤
∫

G

dg

∫

G′

dg′ sup
|(g,g′)(h,h′)−1|<t

|(P̃t(ϕ⊗ ϕ′)(h, h′)| .

It follows that ϕ∗
H1/2 ∈ L1(G), i.e., III′1/2 ⇒ I1/2 for the general case. 2 2

Acknowledgements

This work was supported by the Australian Research Council’s Discovery Grant Program.
The majority of the work was completed in 2002 whilst the third author was an ARC
Research Associate at the ANU. Parts of the work were carried out whilst the first author
was visiting the Centre of Mathematics and its Applications at the ANU and the second
author was visiting the Eindhoven University of Technology.

References

[ADM] Albrecht, D., Duong, X. and McIntosh, A., Operator theory and har-
monic analysis. In Instructional Workshop on Analysis and Geometry, Part

19



III, vol. 34 of Proceedings of the Centre for Mathematics and its Applications.
Australian National University, Canberra, 1996, 77–136.

[AuR] Auscher, P. and Russ, E., Hardy spaces and divergence operators on strongly
Lipschitz domains of Rn. J. Funct. Anal. 201 (2003), 148–184.

[CMS] Coifman, R.R., Meyer, Y. and Stein, E.M., Some new function spaces and
their applications to harmonic analysis. J. Funct. Anal. 62 (1985), 304–335.

[CoW] Coifman, R.R. and Weiss, G., Extensions of Hardy spaces and their use in
analysis. Bull. Amer. Math. Soc. 83 (1977), 569–645.

[Dun] Dungey, N., On Gaussian kernel estimates on groups, 2004.

[DER] Dungey, N., Elst, A.F.M. ter and Robinson, D.W., Analysis on Lie

groups with polynomial growth, vol. 214 of Progress in Mathematics. Birkhäuser
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