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Abstract: 

SOME ALGORITHMS TO DECIDE THE EQUIVALENCE OF RECURSIVE TYPES 

H.M.M. ten Eikelder 

Department of Mathematics and Computing Science 

Eindhoven University of Technology 

P.O. Box 513, 5600 ME Eindhoven 

The Netherlands 

The paper gives a formal specification and a correctness proof of some more or 

less well-known algorithms for deciding the equivalence of recursive types. It 

turns out that these algorithms are based upon algorithms for computing the 

set of nodes reachable from a given node in a ·graph. 
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1. INTRODUCTION 

It is well known that the possibility of recursive types is a very useful 

property of a programming language. If we associate a tree with each type, 

then recursive types give (in general) rise to infinite trees. Two types are 

called equivalent if the corresponding trees are identical. The equivalence 

problem for recursive types has extensively been studied, see for instance 

Coppo [Col, Cardone and Coppo [CCl or Cardelli [Cal. The more general problem 

of the equivalence of solutions of systems of equations has been studied by 

Courcelle et al. [CKV). That paper contains an actual algorithm that can be 

used for deciding type equivalence. In this paper we discuss some other 

algorithms used for that purpose. These algorithms appeared already in 

connection with the programming language Algol 68. The first one is used in 

the defining report of Algol 68 (§7.3 of [Wijl); it is a formalization of an 

algorithm given by by Koster [Kol. A similar algorithm has more recently been 

described by Cardelli [Cal. After some experimenting with these algorithms one 

gets the strong impression that they are indeed correct. However, as far as we 

know, a formal specification and a simple correctness proof have never been 

given. 

In Section 2 we describe recursive types and we define the equivalence of 

recursive types. In fact the type-syntax used in Section 2 is only an example, 

various other type constructors can easily be added. In Section 3 we show that 

the equivalence of two types corresponds to the equivalence of two states in a 

fini te automaton. This relation has already, in a less formal way, been 

described by Kr~l [Krl. In Section 4 the problem is rewritten as the problem 

of determining whether all reachable states (from a given initial state) of a 

finite automaton satisfy a certain property. This leads to the reachability 

problem in directed graphs. In Sections 5, which is in fact the main section 

of this note, we discuss some (new?) algorithms for the reachability problem 

in a directed graph. In fact these algorithms are based upon recursive 

relations for the set of nodes reachable from a given node without passing 

through the nodes of some set. In Sections 6 and 7 these algorithms are 

adapted such that they can be used to check whether a predicate holds on all 

reachable nodes (from a given node). The application to type equivalence is 

given in Section 8. This ultimately results in algorithms which strongly 

resemble the ones used in [Wij, §7.3l, [Cal and [Kol. Finally in appendix 1 we 

give some definitions concerning trees and in the appendices 2 and 3 we prove 

some technical theorems. 
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2. EQUIVALENCE OF TYPES 

We shall illustrate the problem of type equivalence using the following 

type syntax. Let V be a set of type variables and C be a set of type constants 

not containing I,x,+ and ~ . The set of type expressions Texp is generated by 

the following rules. 

't' ::== U (ueVUC), 

-r ::= l-r, 

"t' ::= TXT, 

T ::= T + "'C, 

-r ::= /l(;l.s·-r) (s e V). 

This syntax is rather arbitrary, other type constructors like ~ may also be 

added. Type expressions which only differ in the names of their bound 

variables will be identified. The set of free variables of a type expression -r 

will be denoted by FV(-r). 

With every element of Texp a, possibly infinite, tree is associated in 

the following way. Let the functions d: Texp ~ IN and 0: Texp x IN ~ Texp be 

defined by 

d(u) = 0 (u e V U C), 

d(ll') = 1 o(I-r,O) = ,;, 

d(,; x -r ) = 2 0('; x'; ,1) = ,;, ' (0';i<2) 
0 1 0 1 

d(,; +",; ) = 2 0('; + "'C Ii) = -r, ' (0"i<2) 
0 1 0 1 

d(/lCAs '';)) = de,;) o(/l(;l.s·,;),i) = ( 0(,;,1) ):(;l.s.-r)· (O .. i< d(-r)) 

SO 0(T,1) is defined for O';i<d(T). The function 0 is extended way to a partial 

function 0: Texp x IN* ~ Texp by 

O(T,c) = T, 

o(T,ia) = o(o(T,i),a) for all i e IN and a e IN* such that 
the right hand side is defined. 

Further we introduce a function L: Texp ~ V U C U {I'x,+,~} by 
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L(u) = u (u e V U C), 

L C]'T) = j, 

L(T X T ) = x, 
0 1 

L(T + T ) = +, 
0 1 

L(Il(;\s. T» { ~(T) if LeT) # s 
= 

if LeT) = s 

The tree T(T) corresponding to the type expression T is defined by 

dom(T(T» = { a e N*I o(T,a) is defined }, 

for all a e dom(T(T)): T(T)(a) = L(o(T,a». 

Some general definitions concerning trees are given in appendix 1. Note that 

if a e dom(T(,», then the type expression T' = o(T,a) describes the subtree 

of T(,) in a and L(,') is the tree label in a. The trees defined in this way 

are ranked trees: nodes with label in V U C U {~} have no subtrees, nodes with 

label i have one subtree and nodes with label x or + have two subtrees. For 

instance the trees corresponding to f.1(AS. a+s) and its unfolding 

a + Il(As.a+s) can both be depicted as 

.+ 

/\ 
a· .+ 

/\ 
a' .+ 

/\ 
a' .+ 

/\ 
a· .+ 

Also type expressions containing different recursive types can generate the 

same tree. For instance Il(As'a+(bxs» and a + Il(As'bx(a+s» both generate the 

following tree. 
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.+ 

/\ 
a· ·X 

/\ 
b· .+ 

/\ 
a· ·x 

/\ 
b· .+ 

Also the type expressions !-I(As.s) and !-I(As.!-I(At.s)) both yield the one node 

tree 

.j[ 

Two type expressions will be called equivalent (~) if the corresponding 

trees are equal, formally: 

(TC,o) = T(n)). 

3. RELATION WITH FINITE AUTOMATA. 

Since tree domains can be infinite, the equivalence of two type 

expressions cannot be computed by simply verifying whether the labels in all 

points of the corresponding tree domains are equal. Fortunately the trees turn 

out to be regular trees, i.e. the number of different subtrees is finite. For 

, e Texp let R(,) = { o("a) I a e ~*, o("a) is defined }. 

Theorem 3.1 

For all type expressions, the set R(,) is finite. 

Proof: 

see appendix 2. 

o 

In fact every type expression, can be seen as an encoding of its tree T(,). 

This theorem states that the number of encodings o("a) of the subtrees of the 

tree T(,) is finite. This implies that the number of different subtrees is 

finite, so T(,) is a regular tree. 
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The equivalence of type expressions can now be formulated in terms of the 

equivalence of states of a (slightly generalized) finite automaton. A finite 

automaton M is a tuple (Q,L,8,F,L) where 

Q is a finite set of states, 

L is a (finite) alphabet, 

8: Q x L ~ Q is the (partial) transition function, 

F is a set of labels, 

L: Q ~ F is a function, 

In fact a finite automata of this type can also be seen as a directed graph 

with nodes labeled by elements of F and edges labeled by elements of L. The 

classical finite automaton with accepting and non-accepting states can easily 

be simulated by this type of automaton. For q E Q we define 

D(q) = dom(8(q,·)) = {a ELI 8(q,a) is defined}. 

Again 8 is extended to a partial function (also denoted by) 8: Q x L* ~ Q in 

the usual way. Furthermore for q E Q we define 

D*(q) = { a E L* I 8(q,a) is defined }. 

* So D (q) is the set of strings which can be "fed" to the automaton, starting 

from state q. Two states in a finite automaton are called equivalent (~) if 

starting in both of them we can "feed" the same strings and encounter the same 

labels. Formally: 

( * * = D (q ) = D (q ) 
1 2 

* * ) A (Va e D (q ) n D (q ):: L(8(q ,a)) = L(8(q ,all) . 
1 2 1 2 

(3.2) 

A finite automaton will be called label ranked if D(q ) = D(q ) for all 
1 2 

states q ,q with L(q ) = L(q ). In words, in a label ranked automaton states 
1 2 1 2 

with the same label have the same possible transitions. It is shown in 

appendix 3 that for a label ranked automaton the equivalence of two states can 

be wr it ten as 

(3.3) * * ql ~ q2 - (Va e D (q ) n D (q ):: L(8(q ,a)) = L(o(q ,all ). 
1 2 1 2 
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To study the equivalence of types T and T we take the finite automaton 
o 1 

M = (Q,L,o,L,F) with 
1 

L={O,1}, 

F = vue u {i,x,+,~ }, 

o and L are the same functions as in Section 2. 

Then the type expressions TO and T1 are equivalent (~) if and only if they are 

equivalent (~) as states of the automaton M . 
1 

The automaton M given above is label ranked, i.e. if L(q ) = L(q ) then 
1 1 2 

o(q ,a) is defined iff o(q ,a) is defined (a e L). This amounts to the fact 
1 2 

that the trees corresponding to type expressions are ranked trees, i.e. nodes 

wi th the same labels have the same number of subtrees. Hence to decide the 

equivalece q and q it is sufficient to compute the right hand side of (3.3). 
1 2 

Note that due to theorem 3.1 the set Q is indeed a finite set. Further 

L = {O,l} since every node in the tree has at most two subtrees, or 

equivalently, every type constructor has at most two arguments. Of course this 

can easily be adapted for type constructors taking more (but finitely many) 

arguments. 

4. REFORMULATION AS PROPERTIES OF REACHABLE STATES 

We show that the equivalence of two states in a finite automaton M can be 

rewritten as a property of reachable states in a product automaton derived 

from M. Let M = (Q,L,o,F,L) be a label ranked, finite automaton as described 

in Section 3. Define the product automaton M2 = (Q2,L,02,F2,L2 ) by 

Q
2 

= Q x Q, 

o ((q ,q ),a) 
2 1 2 

= { 
(o(q ,a), o(q ,all 

1 2 

undefined otherwise 

if both terms are defined 

F 
2 

=~, the set of booleans with the usual operations, 

= ( L(q ) = L(q ) ). 
1 2 

Let q ,q e Q and q = (q ,q ) e Q . Note that D*(q) = D*(q1) n D*(q2). Then, 
1 2 1 2 2 

since M is label ranked 

= 
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(\10'. " " L(o(q ,a» = L(o(q ,all e D (q ) n D (q ): = 1 2 1 2 

D" ( ) " L (o(q ,a),o(q ,a» (\10'. e n D (q ): = ql 2 2 1 2 

(\10'. e " (0 (q,a» D (q): L = 2 2 

(\Iq' e R(q): L (q') 
2 

) , 

where in the last step we used that the set of reachable states R(q) equals 

{ o(q,a)1 a e D"(q) }. Hence the states q and q of M are equivalent if all 
1 2 

points reachable from q in the product automaton M2 satisfy the predicate L . 
2 

5. ALGORITHMS TO COMPUTE REACHABLE NODES 

In the previous section we have seen that the equivalence problem of two 

states in a label ranked, finite automaton can be solved by determining 

whether all states reachable in a (product) automaton satisfy a certain 

condition. In fact from this latter automaton we only need its underlying 

graph structure. Hence we first discuss the reachability problem for directed 

graphs. For this problem several algorithms are known, see for instance 

Rem [Re]. Here we discuss some algorithms written in terms of recursive 

functions or procedures since they form the basis for the type equivalencing 

algorithms to be discussed in Section 8. 

We shall use a definition of directed graph which lies closely to the 

definition of finite automaton given before. A directed graph is a tuple 

(Q,d,o) where 

- Q is a finite set of nodes, 

d:Q ~ N is a function yielding the number of successors of a node, 

0: QXN ~ Q is the successor function, i. e. for O~i<d(q) the nodes 

o(q,i) are the successors of q. 

Note that, following this definition of a graph, loops and multiple edges 

between two nodes are allowed. Similarly to the case of finite automata we use 

elements of N" to describe walks through a graph and we extend 0 to a partial 

function 0: QXN" ~ Q such that o(q,a) is the node reached from q after a walk 

described by a. We also use again 

" " I D (q) = { a e N o(q,a) is defined }. 
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Consider a graph (Q,r,o). The set of states reachable from a state q can 

be written as 

R(q) = {q' E Q/ (3~ E D*(q): q' = o(q,~) )}. 

* Furthermore for q E Q, ~ E D (q) and V E T(Q) we define 

* B(q,~,V) = (V~ E ~ : ~ ~ ~ : o(q,~) ~ V), 

R(q,V) = {q' E Q/ (3~ E D*(q):: q' = o(q,~) A B(q,~,V) )}, 

where" denotes the prefix order on ~*. So B(q,~, V) means that during the 

walk, which starts in q and is described by ~, nodes from V are not met. Also 

R(q, V) is the set of nodes which can be reached from q without "passing 

through a node of V". Clearly R(q) = R(q,I1S). 

We now describe two recursive relations for the function R. Each of these 

relations gives rise to an algorithm to compute the function R. The properties 

of R given in theorems 5.2 and 5.3 give rise to algorithm 5.4. The properties 

of R given in theorems 5.3 and 5.6 give rise to the more efficient algorithms 

5.7 and 5.9. 

Theorem 5.1 

Let q,q' E Q, V E T(Q) with q F q' and q' E R(q,V). Then there exists an i 

with O<i<d(q) such that q' E R( o(q,i), V U {q} ). 

Proof: 

Let ~ be a row * in N with minimal length such that q' = o(q,~) and B(q,~,V) 

holds. Since q F q' the row ~ F c, hence there exist an i with O(i<d(q) and a 

* , E N such that f3 = i,. Then trivially B(o(q,il",V). Furthermore the 

minimality of /~/ implies that B(o(q,i)",{q}) also holds. Hence 

B(o(q,i)",V U {q}), which implies that q' E R( o(q,i), V U {q} ) . 

o 

The situation in this proof may be elucidated by the following figure. 
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• q 

/\ 
• o(q, il 

/\ 

• q' =o(q, il 

Theorem 5.2 

Let q E Q, V E ~(Q) with q ¢ V. Then 

R(q, V) = {q} U (Ui: O<a<d(q): R(o(q, il, V U {q})) . 

Proof: 

The "S" part follows immediately from theorem 5.1. Next we prove "2". First, 

from q ¢ V we conclude q E R(q,V). Further if q' E R(o(q,i), V U {q}) then, 

because R is antimonotonic in its second argument, also q' E R(o (q, i), V). 

Since q ¢ V this implies that q' E R(q,V). 

o 

Theorem 5.3 

Let q E Q, V E ~(Q) with q E V. Then 

R(q,V) = 16. 

Proof: 

In this case B(q,~,V) * is false for all ~ E D (q). 

o 

The theorems 5.2 and 5.3 now yield the following algorithm to compute R(q,V). 

Algorithm 5.4 

R(q, V) = if q E V ~ 16 

o 

o q ¢ V ~ {q} U (Ui: O(i<d(q): R(o(q, i), V U {q})) 

fi 
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Note that since V is always a subset of the finite set Q, this algorithm must 

terminate. The set of nodes reachable from a given state q can now be found by 

computing R(q,¢). 

The algorithm given above is not very efficient. In fact the call of 

R(q,V) leads to a kind of depth first search, where the nodes encountered on 

the path from q to the present node are collected in the set V. The 

investigation of a branch terminates if a node is met which is already in the 

set V. In this form it can happen that parts of a graph may be visited several 

times. Consider for instance the following situation. 

Here, in computing R(q ,¢), the part of the graph reachable from q will be 
1 4 

investigated at least twice. We noW give stronger versions of the theorems 5.1 

and 5.2, which lead to a more efficient algor! thm to compute the reachable 

nodes. For q E Q, V E ~(Q) and O(i(d(q) define the sets W by 
1 

(5.5) 
W = ¢, 

o 

W = W U R(o(q,i), V U {q} U W). 
1+1 1 .1 

Then W is 
1 

the set of points reachable from 0 (q, 0) without passing through 

points from 

from O(q,1) 

consists of 

V U {q}. Next W is the extension 
2 

of W with the points reachable 
1 

without passing through points 

the points reachable from 

from V U {q} U W . 
1 

some o(q,j) with 

In general W 
1+1 

O"j(i without 

passing through a point from V U {q} U W So the sets W correspond to a 
j 1 

left to right search proces in which the investigation of a branch is stopped 

if a point from V U {q} or an earlier found point is met. 

Theorem 5.6 

Let q,q' E Q, V E ~(Q) with q ¢ q' and q' E R(q,V). Suppose that the sets W 
1 

are defined by as in (5.5). Then there exists an i with O"i<d(q) such that 

q' E R(o(q,i), V U {q} U w). 
1 
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Proof: 

Let ~ be a row with minimal length such that q' = 8(q,~) and B(q,~,V) holds. 

Since q ~ q' the row ~ ~ <>, hence there exist an i with O~i<d(q) and a , E N* 

such that ~ = i,. Then trivially B(8(q,i)",V). Furthermore the minimality of 

I~I implies B(8(q,i)",{q}) . Hence we have 

B(8(q,i)",V U {q}). 

We now consider two cases. 

il B(8(q,i)",W ) holds. This means that on the walk from 8(q,i) to q', 
i 

described by" no nodes from W are encountered. Then B(O(q,i)",V U {q} U 
i 

W ) holds and hence q' E R(8(q,i), V U {q} U W ). 
i 1 

ii) B(8(q,i)",W ) does not hold. This means that in going from 8(q,i) to q', 
i 

following the walk described by" a node from W is encountered. Let " be 
1 

the longest prefix of , where this happens, so 

8(q,i,') E W (**) 
i 

(Va: ,'<a .. ,: 8 (q, ia) II! W ). (***) 
1 

From (**) and the definition of the set W we conclude that there exists a 
1 

j: O .. j<i such that 

8(q,i,') E R( 8(q,j), V U {q} U W). 
J 

Furthermore from (*), (***) and WSW we conclude that 
J 1 

(Va: ,'<a(,: 8(q,ia) II! V U {q} U W ). 
J 

Together with (****) this implies that 

q' = o(q,i,) E R( o(q,j), V U {q} U W ) 
J 

which ends case ii). 

D 

The situation in case iil of this proof may be elucidated by the following 

figure. 
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o q 

/\ 
o(q,j)o 0 o(q, i) 

/\ 

:. o(q,ir') 
o • 

.. q'=o(q,ir) 

Theorem 5.7 

Let q e Q, V e ~(Q) with q ¢ V. Suppose that the sets Ware 
1 

defined as in (5.5). Then 

R(q,V) = {q} U W 
d(q) 

Proof: 

The "£" part follows immediately from theorem 5.6. Next we prove "~". First, 

from q ¢ V we conclude q e R(q,V). Further if q' e W . then trivially q' e 
d(q) 

R( o(q,l), V U {q} U W ) for some i with O(i<d(q) and, since R is 
1 

antimonotonic in its second argument, also q' e R( o(q,i), V ). Since q ¢ V 

this implies that q' e R(q,V). 

o 

The theorems 5.7 and 5.3 now give rise to the following more 

efficient algorithm to compute R(q,V). 

Algorithm 5.8 

R(q, V) = if q e V ~ S1l 

o q ¢ V ~ R(q, d(q), V) 

f1 

where the function R: QxINX~(Q)~ ~(Q) is given by 
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o 

R(q,k,V) = if k = 0 ~ {q} 

D k > 0 ~ R(q,k-1, V) U R( o(q,k-1), v U R(q,k-1, V) ) 

fi 

Clearly, in the context of (5.5), R(q,i,V) = W U {q}. An imperative version 
1 

of this algorithm is given by a procedure p1 with specification 

(5.9) 

Here value parameters are preceded by a t, result parameters are preceded by a 

l' and value-result parameters are preceded by a t. The annotated code of 

procedure p is given below. 

Algorithm 5.10 

o 

proc p1 = 

(tq: Q; :tv: 1'(Q) I 
if q e V ~ (* R(q,V) = ¢ *) skip 

D q fI! V ~ 

fi 

[ var i: INI 

] 

V:= V U {q}; i:= 0 

(* invariant: V = V U R(q,i,V ) *) 
o 0 

; do i " d(q) ~ 

p1(o(q, i), V) 

(* V = V U R(q,i,V ) U R(o(q,i),V U R(q,i,V )) , 
o a 0 a 

so V = V U R(q,i+1,V ) *) 
o 0 

;i:=i+1 

ad 

(* invariant A i = d(q) , so V = V U R(q,V ) *) 
o 0 

13 



6. ALGORITHMS TO COMPUTE PREDICATES ON REACHABLE NODES I 

Let (Q,d,8) be a directed graph and let L:Q -7 B, where B denotes the set 

of the booleans with the usual operations. So L is a predicate on the nodes of 

the graph. We extend L to a function LS: ~(Q) -7 B by 

(6.1) LS(V) = (Vq: q e V : L(q)) . 

In this section and the next one we shall discuss several algorithms to 

compute, for a given node q, the value of LS(R(q)). In other words we consider 

algorithms which compute whether a predicate L holds on all nodes reachable 

from a given node q. 

A simple approach is to compute first the set R(q) using one of the 

algorithms given in Section 5 and then to verify whether L holds for all 

elements of R(q). The correctness of this type of algorithm is of course 

trivial. Of course we can also compute the predicate L "on the fly", 1. e. as 

soon as a new reachable point q' is found, the value of L(q') is computed. At 

first instance this leads to a function g: Q x ~(Q) -7 ~(Q) x B with 

specification 

(6.2) g(q,V) = < R(q,V) , LS(R(q,V)) >. 

Algorithms for the function g can be obtained by extending the algorithms for 

the function R given in Section 5 with a "second component". 

If R is computed with the (inefficient) algorithm 5.4 this leads to 

Algorithm 6.3 

o 

g(q,V) = 

if q e V -7 <¢, true> 

D q ~ V A , L(q) -7 <{q} U (Ui: 

D q ~ V A LCq) -7 <{q} U (Ui: 
fi 

where g = g(o(q,i), V U {q}). 
1 

O(i<d(q): n (g )), false> 
1 1 

O(i<d(q):n (g )) ,(Vi: O(i<d(q): 
1 1 

n (g )) > 
2 1 

If in fact one is only interested in the question whether L holds on all 

nodes from a set R(q, V) and not in the set R(q, V) itself, only the second 

component of g(q,V) is needed. In algorithm 6.3 the computation of this second 
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component is done without inspecting the first component. Hence we can 

construct a function f: Q x ~(Q) -7 S with specification 

(6.4) f(q,V) = LS(R(q,V)) . 

From algorithm 6.3 we then obtain 

Algorithm 6.5 

f(q,V) = if q e V -7 true 

D q ¢ V J\ , L(q) -7 false 

D q ¢ V J\ L(q) -7 (Vi: O~i<d(q): f( il(q,iJ, V U {q} )) 

fi 

o 

The correctness of this algorithm follows immediately from the correctness of 

algorithm 6.3. 

7. ALGORITHMS TO COMPUTE PREDICATES ON REACHABLE NODES II 

The algorithms given in the previous section were based on the 

(inefficient) reachable points algorithm given in 5.4. More efficient 

algori thms to compute the function g satisfying 6.2, can be obtained by 

computing R with algorithms 5.8 or the imperative version 5.10. Starting 

from 5.8 leads to 

Algorithm 7. 1 

o 

g(q, V) = if q e V -7 <l1l, true> 

D q ¢ V -7 g(q,d(q), V) 

fi 

where the function g:Q x IN x ~(Q) -7 

g(q,k,V) = if" k = 0 -7 <{q}, L(q» 

~(Q) x S is given by 

{] k > 0 -7 <n (gl) Un (gl), n (g11 J\ n (gl» 
1 1 2 2 

fi 

with gl = g(q,k-l,V) and gl = g(il(q,k-l), V U n (gl) ) . 
1 

An imperative version of this algorithm is given by a procedure p2 with 
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specification 

(7.2) p2(tq: Q; tv: ~(Q); i b:B) 

(V = V U R(q,V )) A (b = LS(R(q,V ))) *) 
000 

The annotated code of procedure p is given below. 

Algorithm 7.3 

proc p2 = 
(tq: Q; tv: ~(Q); jb:B / 
if q e V -7 (* R(q,V): ¢ *) b:= true 

D q¢V -7 

[ ~ i: N, b1:B/ 

V:: V U {q}; i:: 0; b:= L(q); 

invariant: (V = V U R(q,i,V )) A (b 
o 0 

; do i '" d(q) -7 

p2(o(q,i),V,b1) 

= LS(R(q,i,V ))) 
o 

(* V = V U R(q,i,V ) U R(o(q,i),V U R(q,i,V )) , 
a 0 0 0 

od 

] 
fi 

o 

so V = V U R(q,i+1,V ) , 
o 0 

b1 = LS(R(o(q,i), V U R(q,i,V ))) 
o 0 

*) 

;b: = b A b1 

b = LS(R(q,i+1,V )) 
o 

;i:= i + 1 

(* invariant *) 

Finally, similarly to Section 6, we consider again the case that one is 

only interested in LS(R(q, V)) and not in the set R(q, V) itself. In algorithm 

6.3 the two components of g were computed independently of each other. This 

observation resulted in algorithm 6.5, where only the the second component of 

g waS computed. Unfortunately in the algorithms 7.1 and 7.3 the computation of 

the second component of g depends essentially on its first component. Hence we 
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cannot extract from 7.1 and 7.3 algorithms to compute only the second 

component. However, some improvement can be obtained by replacing g by the 

function h: Q x l'(Q) --t l'(Q) x IB with specification 

(7.4) 

LS (R(q, V)) =} " (h(q, V)) = R(q, V) 
1 

" (h(q,V)) = LS(R(q,V)) 
2 

So the second component of h yields again the desired result. Furthermore, if 

the second component equals true, the first component of h yields again the 

set R(q,V). If the second component of h equals false, the value of the first 

component is unspecified. For h we can use the following algorithm. 

Algorithm 7.5 

D 

h(q, V) = if q e V --t <¢, true> 

o q ~ V --t h(q,d(q), V) 

fi 

where the function h: Q x IN x l'(Q) --t l'(Q) x IB is given by 

h(q,k, V) = if k = 0 --t <{q},L<q» 

Ok> 0 --t if , " (hl) --t <¢, false> 
2 

fi 

with hl = h(q,k-l,V) 

o ,,(hl) --t <" (hl) U " (hi), " (hl) A " (hl) > 
2 112 2 

fi 

and hl = h(o(q,k-l), V U " (hl) ). 
1 

The corresponding imperative version of this algorithm is the procedure p3 

with the following specification. 

(7.6) 

(* V = V *) 
o 

p3(tq: Q; tv: l'(Q); i b:lB) 

(* (b=LS(R(q,V))) " (b=} (V=V UR(q,V))) *) 
o 0 0 

The code of procedure p3 is simply derived from algorithm 7.3. Now however, as 

soon as a node has been reached where L does not hold, the traversal of the 

graph is terminated. 
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Algorithm 7.7 

proc p3 : 

(lq: Q; tv: ~(Q); jb: B I 
if q E V ~ (* R(q,V) = ~ *) b:= true 

D q ¢ V ~ 

[~ t: INI 

V:= V U {q}; i:: 0; b:= L(q); 

(* inv.: (b" LS(R(q, i, V ))) " 
o 

; do b " i " d(q) ~ 

(* LS(R(q,i,V))" (V = V 
o 0 

p3(o(q,i),V,b) 

(b -9 (V = V U R(q,i,V ))) *) 
o 0 

U R(q,i,V)) *) 
o 

(* b "LS(R(o(q,i),V U R(q,i,V )) 
o 0 

so b" LS(R(q,i+1,V )), 
o 

b -9 (V = V U R(q,i,V ) U R(o(q,i),V U R(q,i,V )) ), 
o a 0 0 

so b -9 (V = V U R (q, i + 1 ,V )) , 
o 0 

;i:=i+1 

(* invariant *) 

od 

] 
f1 

Cl 

8. ALGORITHMS TO DECIDE THE EQUIVALENCE OF RECURSIVE TYPES 

We now combine the results of the previous sections to obtain algorithms 

to determine the equivalence of (recursive) types. Let TO and T1 be two type 

expressions. Then TO and T1 are equivalent as types iff they are equivalent as 

states of the automaton M as given in Section 3. 
1 

automaton of M , as described in Section 4. Then type 
1 

Let M be the product 
2 

equivalence of T and T 
o 1 

means that L 
2 

holds for all states reachable from (T ,T ) in 
o 1 

M (seen as 
2 

directed graph). Using 

the recursive function 

the algorithm given in 6.5 this can 

f: Texp x Texp x ~(Texp x Texp) ~ B 
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f(p,O',V) = if (p,O') e V ~ true 

D (p,O') ~ V 1\ L(p) ;0 L(O') ~ false 

(8.1) D (p,O') ~ V 1\ L(p) = L(O') ~ 

(Vi: O(i<d(p): f(o(p,i),o(O',i),V U {(p,O')})) 

fi 

The equivalence of two types p and 0' can now be checked by the function call 

f(p,O',J2S), i.e. f(p,O',J2S) .. (p £;( 0'). This type equivalence algorithm strongly 

resembles the ones given in [Wij, §7.3] and in [Cal. Note that the necessary 

unfoldings of recursive types are hidden in the function O. 

A more efficient algorithm for type equivalence can be obtained by 

starting with the procedure p3 described in 7.7. This leads to 

(8.2) 

proc p3 = 

(tp,O' : Texpq; lV: ~(TexpxTexp); jb: ~ I 
if (p,O') e V ~ b:= true 

D (p, 0') ~ V ~ 

fi 

[ ~ i: INI 

] 

V:: V U {(p,O')}; i:: 0; b:= L(p):L(O'); 

; do b 1\ i ;0 d(p) ~ 

p3(0(p, i),o(O', i), V,b) 

;1:=1+1 

od 

Now the equivalence of the types p and 0' can be found be calling the 

procedure p3 with V : J2S, 1.e. 

(* V: J2S *) p3(p,O',J2S,b) (* b" (p ~ 0') *) 

Note that in procedure p3 we can replace V by a global variable. We then 

obtain a type equivalence algorithm similar to the one given in [Ko]. 
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APPENDIX 1 

Here we define trees and some related notions. See also Barendregt[Bal. 

Let N* be the set of rows of natural numbers. We shall not make a difference 

between a natural number and a row of length 1 containing that number. The 

concatenation of elements of N* will be denoted by juxtaposition. Elements of 

N* will usually be denoted by Greek letters. The empty row will always be 

denoted with the letter c. On N* we define the prefix order ~, i. e. (IX ~ 13) .. 

(3 r e N*: IXr = 13) . As usual we define (IX < 13) .. (IX ~ 13) A ,(IX = f3l. The 

* length of the row IX e N will be denoted as IIXI. Next we consider tree 

domains. A subset A of N* will be called a tree domain if 

il) IX e A A 13 ~ IX =} 13 e A 

iii) IX(n+l) e A=} IXn e A 

Let F be some set and d:F~N. The pair (F,d) is called a graded alphabet. A 

(ranked) tree over (F,d) is a partial function T: N* ~ F such that 

i) dom(T) is a tree domain, 

ii) if IX e dom(T), then IXi e dom(T) for all i: O(i<d(T(IX)). 

So if IX e dom(T), then T(IX) is the label in IX and d(T(IX)) is the number of 

subtrees emerging from IX. Note that, since a tree domain is not empty, c is 

an element of dom(T) for every tree T. A tree T will be called finite if 

dom(T) is a finite set. 

APPENDIX 2 

We prove that for all types T the set R(T) is finite. If this does not 

hold the set of states of the automata Ml described in Section 3 may not be 

finite and the algorithms given in Section 7 do not necessarily terminate 

(since the set V of pairs of types and hence the recursion depth are not 

bounded). If T does not contain a recursive type, R(T) consist of all sub 

expressions of T and is trivially bounded. However if T is a recursive type 

then (in the computation of o(T,i) for suitable i) an unfolding takes place 

thus generating possibly new and longer type expressions. 

Similar to the case of automata we introduce for every type expression T 
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Then 

D(1:) = dom(o(1:,'» = UIO';;i<d(1:)}, 

D*(1:) = {~ e ~* 10(1:,~) is defined}. 

R(1:) = {o(1:,~) I~ e D*(1:)}. 

In the following theorems we investigate the behaviour of D"(1:) and 0(1:,') 

under substitutions in 1:. 

Theorem 10. 1 

Let 1:,~ e Texp, t e V and i e 

OC1:t ,il = ( o(1:,i) )t 
~ ~ 

Proof: 

~. If i e D(1:) then i e D(1: t ) and 
~ 

Induction with respect to 1:. The other cases being trivial, we only consider 

the case that 1: = ~(AS·p). If t = s then 1: does not contain the free variable 

t and the result becomes trivial. Next consider the case t ¢ s. Without loss 

of generality we may assume that s ¢ FV(~). Then 

i e D(1:) 

i e D(p) 

i e D(pt) 
~ 

t i e D( ~(AS'P ) 
~ 

i t eD(1:). 
~ 

Furthermore for i e D(1:) 

o(1: t ,il 
~ 

O(~(AS.pt), 1) 
~ 

o(p;,il ):(AS.pt) 
~ 

[def. of 0] 

[induction hypothesis] 

[def. of 0] 

[s ¢ FV(~), s ¢ t] 

= [s ¢ FV(~), s ¢ t] 

= [def. of 0] 

= [i e D(p),induction hypothesis] 

= [s ¢ FV(~), s ¢ t] 

= [prop. of subst., s ¢ FV(~), s ¢ t] 
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o 

( o(~(As·p).i) )! 
o( .... il! 

Theorem 10.2 

= 

= 

* *( ) D*(~t) Let a e ~ , .... ~ e Texp and t e V. If a e D ... then a e • and 
~ 

Proof: 

Induction with respect to lal using the previous theorem. 

o 

[def. of 0] 

* So D ( ... ) * t * is always a subset of D ( ... ) and for a in D ( ... ) 
cr 

the operations 

"compute 

commute. 

for rows 

expression that describes the subtree at 
* * t In general D ( ... ) is a proper subset of D ( ... ). 

~ 

a in D*( ... t) \ D*( ... ). 
~ 

Theorem 10.3 

IX" and "substitution" 
t Next we study 0( ... . a) 
cr 

Let ... e Texp with n*( ... ) = {c}. Then there exist an u e vue and k e ~ 

mutually different variables s , ... ,s such that 
1 k 

T = ,.!CAs .... Il(i\.s ·u). .. ). 
1 k 

Proof: 

Induction with respect to .... 

o 

In terms of trees this theorem describes the general form of a type expression 

that describes a single node tree (labeled u or ~ if u = s for some i). 
1 

Theorem 10.4 

Let .... ~ e Texp, t e V and a e ~*. If a e n*( ... t) \ n*( ... ). then there exists a r 
* cr e n (~). 0 < Irl ( lal. such that 

t 0( .... a) = o(~,r). 
~ 
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Proof: 

Let a = ~1 where ~ is the longest 

= {c} and 0 < 111 ( lal. Further 

* * prefix of a with ~ e D (T). Then D (O(T,~» 

= 

= [~ e D 1T), theorem 10.21 

* t * So 1 e D (O(T,~)~). Now since D (O(T,~» = {c} , the previous theorem implies 

the existence of a keN, variables s , ... ,s and an u e vue such that 
1 k 

O(T,~) = fleAS .... fleAS ·u) ... ). 
1 k 

Of course the variables s , ... ,s can be chosen such that they are no elements 
1 k 

of FV(~). Now t e FV(O(T,~» otherwise D*(O(T,~)t) = D*(O(T,~» = {c} which 
~ 

cannot contain 1 ~ <>. So u = t and s ~ t for i = 1, ... ,k. Then, with 1 = 
1 

j!;, 

o 

t 
o( O(T,~) , 1 ) 

~ 

o( (fl(AS .... fleAS ·t). .. ) ) t, 1 ) 
1 k ~ 

o ( fl(AS .... fl(AS .~). .. ) , 1 ) 
1 k 

O(O(~,j),!;) 

0(~,1)· 

= 

= [8 ~ FV(u) u {t} for i = 1 .. k] 
1 

= 

= 

= 

[1 = j!;, def. 01 

[def. of 0, 
s ~ FV(~) for i = 1 .. k1 

1 

Now we are able to give a relation for R(T) if T is a recursive type. 

Theorem 10.5 

Let p e Texp and s e V. Then 
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Proof: 

Let A = {/l(AS·p)} U {O"S(A ) I 0" e R(p) }. We prove with induction to 1(31 
* /l s·p 

that for all (3 e D (/l(AS·p)) 

The induction basis 1(31 = 0 is trivial. Next suppose n e N and assume as 

induction hypothesis that (*) holds for all (3 with 1(31 (n. Let i~ e 

* D (/l(AS·p)) with I~I = n. Then, with, = ~(p,i), 

~(/l(As·p),i~) = 
~( o(Il(As·p),i) , ~) = 
o( o(p, iJ\A ) /l s·p 

, ~) = 
o( s , ~) , 

/l(AS·p) 

So ~ e * s D (, (' )). To show that (**) 
/l "s·p 

cases. 

iJ * ~ e D (,). Then 

s 
o ( '(' )'~) /l "s·p 

s 
o("~) (' ) /l "s·p 

O(P,i~)s(, ) 
/l "s·p 

= 

= 

e A 

[def. ~) 

[def. 0) 

[def ,) 

(**) 

is an element of A we consider two 

[theorem 10.2) 

[def. of ,) 

* * ii) ~ ~ D (,). Then theorem 10.4 yields the existence of reD (/l(AS·p)) with 

Irl ( I~I such that 

s 
o ( '(' )'~) Il "s·p = 

Since Irl ~ lal = n, the induction hypothesis now implies that the right hand 

side is an element of A. 

D 

Finally we can prove the desired result. 

Theorem 10.6 

For all t e Texp the set R(,) is finite. 

Proof: 

Induction with respect to ,. Assume as induction hypothesis that R(p) is 
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finite for all sub expressions of T. We consider the following cases. 

i) T e V U C. Then R(T) = {T}. 

ii) T = jp. Then R(T) = {T} U R(p), which is finite by the induction 

hypothesis. 

iii) T = Po x Po or T = Po + Pl' 

finite by the induction hypothesiS. 

= {T} U R(p ) U R(p ). which is 
o 1 

iv) T = ~(AS·p). Theorem 

R(T) ~ {T} U { u slu 
T 

10.5 yields 

e R(p)}, 

which is finite since by the induction hypothesis 

o 

APPENDIX 3 

R(p) is finite. 

Let M = (Q.~,o,L,F) be a finite automaton which is label ranked, i.e. if 

L(q ) = L(q ) then D(q ) = D(q ). We prove that for all states q and q 
1 2 1 2 1 2 

(1I<x e D*( ) n D*(q ): L(o(q ,<X)) = L(o(q ,<X)) ) 
ql 2 1 2 

* * D (q ) = D (q ). 
1 2 

* * Assume that (*) holds and suppose that for instance D (q ) ~ D (q ). Let <X e 
1 2 

* \ * * * D (q) D (q ) with 1<x1 minimal. From c e D (q ) and c e D (q ) we conclude 
1 2 1 2 

1<x1 > O. So there exist ~ e D*(q ) and a e ~ such that <X = ~a. Since 1<x1 is 
* 1 minimal, ~ e D (q). Then (*) implies that L(o(q ,~)) = L(o(q ,~)), hence 

2 1 2 

o(q ,~) and o(q ,~) have the same transitions. Now o(o(q .~),a) = o(q ,<X), so 
1 2 1 1 

o(q ,~) has a transition under a. Then also o(q ,~) has a transition 
1 2 

* * = ~a ¢ D (q ). So D (q) ~ 
2 1 

which yields a contradiction with <X 

* * Similarly we can prove D (q2) S D (q,), 

o 
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