

Some algorithms to decide the equivalence of recursive types

Citation for published version (APA):
Eikelder, ten, H. M. M. (1991). Some algorithms to decide the equivalence of recursive types. (Computing
science notes; Vol. 9131). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/1991

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://research.tue.nl/en/publications/d8842eae-1cdf-4be5-b649-39bd9a4c9a17

Eindhoven University of Technology

Department of Mathematics and Computing Science

Some algorithms to decide the equivalence
of recursive types

by

H.M.M. ten Eikelder

Computing Science Note 91/31
Eindhoven, December 1991

91/31

COMPUTING SCIENCE NOTES

This is a series of notes of the Computing
Science Section of the Department of
Mathematics and Computing Science
Eindhoven University of Technology.
Since many of these notes are preliminary
versions or may he published elsewhere, they
have a limited distribution only and are not
for review.
Copies of these notes are available from the
author.

Copies can be ordered from:
Mrs. F. van Neerven
Eindhoven University of Technology
Department of Mathematics and Computing Science
P.O. Box 513
5600 MB EINDHOVEN
The Netherlands
ISSN 0926-4515

All rights reserved
editors: prof.dr.M.Rem

prof.dr.K.M.van Hee.

Abstract:

SOME ALGORITHMS TO DECIDE THE EQUIVALENCE OF RECURSIVE TYPES

H.M.M. ten Eikelder

Department of Mathematics and Computing Science

Eindhoven University of Technology

P.O. Box 513, 5600 ME Eindhoven

The Netherlands

The paper gives a formal specification and a correctness proof of some more or

less well-known algorithms for deciding the equivalence of recursive types. It

turns out that these algorithms are based upon algorithms for computing the

set of nodes reachable from a given node in a ·graph.

CONTENTS

1 Introduction

2 Equivalence of Types

3 Relation with Finite Automata

Reformulation as Properties of Reachable States

Algorithms to Compute Reachable Nodes

Algorithms to Compute Predicates on Reachable Nodes I

Algorithms to Compute Predicates on Reachable Nodes II

4

5

6

7

8 Algorithms to Decide the Equivalence of Recursive Types

9 Appendix 1

10 Appendix 2

11 Appendix 3

1. INTRODUCTION

It is well known that the possibility of recursive types is a very useful

property of a programming language. If we associate a tree with each type,

then recursive types give (in general) rise to infinite trees. Two types are

called equivalent if the corresponding trees are identical. The equivalence

problem for recursive types has extensively been studied, see for instance

Coppo [Col, Cardone and Coppo [CCl or Cardelli [Cal. The more general problem

of the equivalence of solutions of systems of equations has been studied by

Courcelle et al. [CKV). That paper contains an actual algorithm that can be

used for deciding type equivalence. In this paper we discuss some other

algorithms used for that purpose. These algorithms appeared already in

connection with the programming language Algol 68. The first one is used in

the defining report of Algol 68 (§7.3 of [Wijl); it is a formalization of an

algorithm given by by Koster [Kol. A similar algorithm has more recently been

described by Cardelli [Cal. After some experimenting with these algorithms one

gets the strong impression that they are indeed correct. However, as far as we

know, a formal specification and a simple correctness proof have never been

given.

In Section 2 we describe recursive types and we define the equivalence of

recursive types. In fact the type-syntax used in Section 2 is only an example,

various other type constructors can easily be added. In Section 3 we show that

the equivalence of two types corresponds to the equivalence of two states in a

fini te automaton. This relation has already, in a less formal way, been

described by Kr~l [Krl. In Section 4 the problem is rewritten as the problem

of determining whether all reachable states (from a given initial state) of a

finite automaton satisfy a certain property. This leads to the reachability

problem in directed graphs. In Sections 5, which is in fact the main section

of this note, we discuss some (new?) algorithms for the reachability problem

in a directed graph. In fact these algorithms are based upon recursive

relations for the set of nodes reachable from a given node without passing

through the nodes of some set. In Sections 6 and 7 these algorithms are

adapted such that they can be used to check whether a predicate holds on all

reachable nodes (from a given node). The application to type equivalence is

given in Section 8. This ultimately results in algorithms which strongly

resemble the ones used in [Wij, §7.3l, [Cal and [Kol. Finally in appendix 1 we

give some definitions concerning trees and in the appendices 2 and 3 we prove

some technical theorems.

1

2. EQUIVALENCE OF TYPES

We shall illustrate the problem of type equivalence using the following

type syntax. Let V be a set of type variables and C be a set of type constants

not containing I,x,+ and ~ . The set of type expressions Texp is generated by

the following rules.

't' ::== U (ueVUC),

-r ::= l-r,

"t' ::= TXT,

T ::= T + "'C,

-r ::= /l(;l.s·-r) (s e V).

This syntax is rather arbitrary, other type constructors like ~ may also be

added. Type expressions which only differ in the names of their bound

variables will be identified. The set of free variables of a type expression -r

will be denoted by FV(-r).

With every element of Texp a, possibly infinite, tree is associated in

the following way. Let the functions d: Texp ~ IN and 0: Texp x IN ~ Texp be

defined by

d(u) = 0 (u e V U C),

d(ll') = 1 o(I-r,O) = ,;,

d(,; x -r) = 2 0('; x'; ,1) = ,;, ' (0';i<2)
0 1 0 1

d(,; +",;) = 2 0('; + "'C Ii) = -r, ' (0"i<2)
0 1 0 1

d(/lCAs '';)) = de,;) o(/l(;l.s·,;),i) = (0(,;,1)):(;l.s.-r)· (O .. i< d(-r))

SO 0(T,1) is defined for O';i<d(T). The function 0 is extended way to a partial

function 0: Texp x IN* ~ Texp by

O(T,c) = T,

o(T,ia) = o(o(T,i),a) for all i e IN and a e IN* such that
the right hand side is defined.

Further we introduce a function L: Texp ~ V U C U {I'x,+,~} by

2

L(u) = u (u e V U C),

L C]'T) = j,

L(T X T) = x,
0 1

L(T + T) = +,
0 1

L(Il(;\s. T» { ~(T) if LeT) # s
=

if LeT) = s

The tree T(T) corresponding to the type expression T is defined by

dom(T(T» = { a e N*I o(T,a) is defined },

for all a e dom(T(T)): T(T)(a) = L(o(T,a».

Some general definitions concerning trees are given in appendix 1. Note that

if a e dom(T(,», then the type expression T' = o(T,a) describes the subtree

of T(,) in a and L(,') is the tree label in a. The trees defined in this way

are ranked trees: nodes with label in V U C U {~} have no subtrees, nodes with

label i have one subtree and nodes with label x or + have two subtrees. For

instance the trees corresponding to f.1(AS. a+s) and its unfolding

a + Il(As.a+s) can both be depicted as

.+

/\
a· .+

/\
a' .+

/\
a' .+

/\
a· .+

Also type expressions containing different recursive types can generate the

same tree. For instance Il(As'a+(bxs» and a + Il(As'bx(a+s» both generate the

following tree.

3

.+

/\
a· ·X

/\
b· .+

/\
a· ·x

/\
b· .+

Also the type expressions !-I(As.s) and !-I(As.!-I(At.s)) both yield the one node

tree

.j[

Two type expressions will be called equivalent (~) if the corresponding

trees are equal, formally:

(TC,o) = T(n)).

3. RELATION WITH FINITE AUTOMATA.

Since tree domains can be infinite, the equivalence of two type

expressions cannot be computed by simply verifying whether the labels in all

points of the corresponding tree domains are equal. Fortunately the trees turn

out to be regular trees, i.e. the number of different subtrees is finite. For

, e Texp let R(,) = { o("a) I a e ~*, o("a) is defined }.

Theorem 3.1

For all type expressions, the set R(,) is finite.

Proof:

see appendix 2.

o

In fact every type expression, can be seen as an encoding of its tree T(,).

This theorem states that the number of encodings o("a) of the subtrees of the

tree T(,) is finite. This implies that the number of different subtrees is

finite, so T(,) is a regular tree.

4

The equivalence of type expressions can now be formulated in terms of the

equivalence of states of a (slightly generalized) finite automaton. A finite

automaton M is a tuple (Q,L,8,F,L) where

Q is a finite set of states,

L is a (finite) alphabet,

8: Q x L ~ Q is the (partial) transition function,

F is a set of labels,

L: Q ~ F is a function,

In fact a finite automata of this type can also be seen as a directed graph

with nodes labeled by elements of F and edges labeled by elements of L. The

classical finite automaton with accepting and non-accepting states can easily

be simulated by this type of automaton. For q E Q we define

D(q) = dom(8(q,·)) = {a ELI 8(q,a) is defined}.

Again 8 is extended to a partial function (also denoted by) 8: Q x L* ~ Q in

the usual way. Furthermore for q E Q we define

D*(q) = { a E L* I 8(q,a) is defined }.

* So D (q) is the set of strings which can be "fed" to the automaton, starting

from state q. Two states in a finite automaton are called equivalent (~) if

starting in both of them we can "feed" the same strings and encounter the same

labels. Formally:

(* * = D (q) = D (q)
1 2

* *) A (Va e D (q) n D (q):: L(8(q ,a)) = L(8(q ,all) .
1 2 1 2

(3.2)

A finite automaton will be called label ranked if D(q) = D(q) for all
1 2

states q ,q with L(q) = L(q). In words, in a label ranked automaton states
1 2 1 2

with the same label have the same possible transitions. It is shown in

appendix 3 that for a label ranked automaton the equivalence of two states can

be wr it ten as

(3.3) * * ql ~ q2 - (Va e D (q) n D (q):: L(8(q ,a)) = L(o(q ,all).
1 2 1 2

5

To study the equivalence of types T and T we take the finite automaton
o 1

M = (Q,L,o,L,F) with
1

L={O,1},

F = vue u {i,x,+,~ },

o and L are the same functions as in Section 2.

Then the type expressions TO and T1 are equivalent (~) if and only if they are

equivalent (~) as states of the automaton M .
1

The automaton M given above is label ranked, i.e. if L(q) = L(q) then
1 1 2

o(q ,a) is defined iff o(q ,a) is defined (a e L). This amounts to the fact
1 2

that the trees corresponding to type expressions are ranked trees, i.e. nodes

wi th the same labels have the same number of subtrees. Hence to decide the

equivalece q and q it is sufficient to compute the right hand side of (3.3).
1 2

Note that due to theorem 3.1 the set Q is indeed a finite set. Further

L = {O,l} since every node in the tree has at most two subtrees, or

equivalently, every type constructor has at most two arguments. Of course this

can easily be adapted for type constructors taking more (but finitely many)

arguments.

4. REFORMULATION AS PROPERTIES OF REACHABLE STATES

We show that the equivalence of two states in a finite automaton M can be

rewritten as a property of reachable states in a product automaton derived

from M. Let M = (Q,L,o,F,L) be a label ranked, finite automaton as described

in Section 3. Define the product automaton M2 = (Q2,L,02,F2,L2) by

Q
2

= Q x Q,

o ((q ,q),a)
2 1 2

= {
(o(q ,a), o(q ,all

1 2

undefined otherwise

if both terms are defined

F
2

=~, the set of booleans with the usual operations,

= (L(q) = L(q)).
1 2

Let q ,q e Q and q = (q ,q) e Q . Note that D*(q) = D*(q1) n D*(q2). Then,
1 2 1 2 2

since M is label ranked

=

6

(\10'. " " L(o(q ,a» = L(o(q ,all e D (q) n D (q): = 1 2 1 2

D" () " L (o(q ,a),o(q ,a» (\10'. e n D (q): = ql 2 2 1 2

(\10'. e " (0 (q,a» D (q): L = 2 2

(\Iq' e R(q): L (q')
2

) ,

where in the last step we used that the set of reachable states R(q) equals

{ o(q,a)1 a e D"(q) }. Hence the states q and q of M are equivalent if all
1 2

points reachable from q in the product automaton M2 satisfy the predicate L .
2

5. ALGORITHMS TO COMPUTE REACHABLE NODES

In the previous section we have seen that the equivalence problem of two

states in a label ranked, finite automaton can be solved by determining

whether all states reachable in a (product) automaton satisfy a certain

condition. In fact from this latter automaton we only need its underlying

graph structure. Hence we first discuss the reachability problem for directed

graphs. For this problem several algorithms are known, see for instance

Rem [Re]. Here we discuss some algorithms written in terms of recursive

functions or procedures since they form the basis for the type equivalencing

algorithms to be discussed in Section 8.

We shall use a definition of directed graph which lies closely to the

definition of finite automaton given before. A directed graph is a tuple

(Q,d,o) where

- Q is a finite set of nodes,

d:Q ~ N is a function yielding the number of successors of a node,

0: QXN ~ Q is the successor function, i. e. for O~i<d(q) the nodes

o(q,i) are the successors of q.

Note that, following this definition of a graph, loops and multiple edges

between two nodes are allowed. Similarly to the case of finite automata we use

elements of N" to describe walks through a graph and we extend 0 to a partial

function 0: QXN" ~ Q such that o(q,a) is the node reached from q after a walk

described by a. We also use again

" " I D (q) = { a e N o(q,a) is defined }.

7

Consider a graph (Q,r,o). The set of states reachable from a state q can

be written as

R(q) = {q' E Q/ (3~ E D*(q): q' = o(q,~))}.

* Furthermore for q E Q, ~ E D (q) and V E T(Q) we define

* B(q,~,V) = (V~ E ~ : ~ ~ ~ : o(q,~) ~ V),

R(q,V) = {q' E Q/ (3~ E D*(q):: q' = o(q,~) A B(q,~,V))},

where" denotes the prefix order on ~*. So B(q,~, V) means that during the

walk, which starts in q and is described by ~, nodes from V are not met. Also

R(q, V) is the set of nodes which can be reached from q without "passing

through a node of V". Clearly R(q) = R(q,I1S).

We now describe two recursive relations for the function R. Each of these

relations gives rise to an algorithm to compute the function R. The properties

of R given in theorems 5.2 and 5.3 give rise to algorithm 5.4. The properties

of R given in theorems 5.3 and 5.6 give rise to the more efficient algorithms

5.7 and 5.9.

Theorem 5.1

Let q,q' E Q, V E T(Q) with q F q' and q' E R(q,V). Then there exists an i

with O<i<d(q) such that q' E R(o(q,i), V U {q}).

Proof:

Let ~ be a row * in N with minimal length such that q' = o(q,~) and B(q,~,V)

holds. Since q F q' the row ~ F c, hence there exist an i with O(i<d(q) and a

* , E N such that f3 = i,. Then trivially B(o(q,il",V). Furthermore the

minimality of /~/ implies that B(o(q,i)",{q}) also holds. Hence

B(o(q,i)",V U {q}), which implies that q' E R(o(q,i), V U {q}) .

o

The situation in this proof may be elucidated by the following figure.

8

• q

/\
• o(q, il

/\

• q' =o(q, il

Theorem 5.2

Let q E Q, V E ~(Q) with q ¢ V. Then

R(q, V) = {q} U (Ui: O<a<d(q): R(o(q, il, V U {q})) .

Proof:

The "S" part follows immediately from theorem 5.1. Next we prove "2". First,

from q ¢ V we conclude q E R(q,V). Further if q' E R(o(q,i), V U {q}) then,

because R is antimonotonic in its second argument, also q' E R(o (q, i), V).

Since q ¢ V this implies that q' E R(q,V).

o

Theorem 5.3

Let q E Q, V E ~(Q) with q E V. Then

R(q,V) = 16.

Proof:

In this case B(q,~,V) * is false for all ~ E D (q).

o

The theorems 5.2 and 5.3 now yield the following algorithm to compute R(q,V).

Algorithm 5.4

R(q, V) = if q E V ~ 16

o

o q ¢ V ~ {q} U (Ui: O(i<d(q): R(o(q, i), V U {q}))

fi

9

Note that since V is always a subset of the finite set Q, this algorithm must

terminate. The set of nodes reachable from a given state q can now be found by

computing R(q,¢).

The algorithm given above is not very efficient. In fact the call of

R(q,V) leads to a kind of depth first search, where the nodes encountered on

the path from q to the present node are collected in the set V. The

investigation of a branch terminates if a node is met which is already in the

set V. In this form it can happen that parts of a graph may be visited several

times. Consider for instance the following situation.

Here, in computing R(q ,¢), the part of the graph reachable from q will be
1 4

investigated at least twice. We noW give stronger versions of the theorems 5.1

and 5.2, which lead to a more efficient algor! thm to compute the reachable

nodes. For q E Q, V E ~(Q) and O(i(d(q) define the sets W by
1

(5.5)
W = ¢,

o

W = W U R(o(q,i), V U {q} U W).
1+1 1 .1

Then W is
1

the set of points reachable from 0 (q, 0) without passing through

points from

from O(q,1)

consists of

V U {q}. Next W is the extension
2

of W with the points reachable
1

without passing through points

the points reachable from

from V U {q} U W .
1

some o(q,j) with

In general W
1+1

O"j(i without

passing through a point from V U {q} U W So the sets W correspond to a
j 1

left to right search proces in which the investigation of a branch is stopped

if a point from V U {q} or an earlier found point is met.

Theorem 5.6

Let q,q' E Q, V E ~(Q) with q ¢ q' and q' E R(q,V). Suppose that the sets W
1

are defined by as in (5.5). Then there exists an i with O"i<d(q) such that

q' E R(o(q,i), V U {q} U w).
1

10

Proof:

Let ~ be a row with minimal length such that q' = 8(q,~) and B(q,~,V) holds.

Since q ~ q' the row ~ ~ <>, hence there exist an i with O~i<d(q) and a , E N*

such that ~ = i,. Then trivially B(8(q,i)",V). Furthermore the minimality of

I~I implies B(8(q,i)",{q}) . Hence we have

B(8(q,i)",V U {q}).

We now consider two cases.

il B(8(q,i)",W) holds. This means that on the walk from 8(q,i) to q',
i

described by" no nodes from W are encountered. Then B(O(q,i)",V U {q} U
i

W) holds and hence q' E R(8(q,i), V U {q} U W).
i 1

ii) B(8(q,i)",W) does not hold. This means that in going from 8(q,i) to q',
i

following the walk described by" a node from W is encountered. Let " be
1

the longest prefix of , where this happens, so

8(q,i,') E W (**)
i

(Va: ,'<a .. ,: 8 (q, ia) II! W). (***)
1

From (**) and the definition of the set W we conclude that there exists a
1

j: O .. j<i such that

8(q,i,') E R(8(q,j), V U {q} U W).
J

Furthermore from (*), (***) and WSW we conclude that
J 1

(Va: ,'<a(,: 8(q,ia) II! V U {q} U W).
J

Together with (****) this implies that

q' = o(q,i,) E R(o(q,j), V U {q} U W)
J

which ends case ii).

D

The situation in case iil of this proof may be elucidated by the following

figure.

11

o q

/\
o(q,j)o 0 o(q, i)

/\

:. o(q,ir')
o •

.. q'=o(q,ir)

Theorem 5.7

Let q e Q, V e ~(Q) with q ¢ V. Suppose that the sets Ware
1

defined as in (5.5). Then

R(q,V) = {q} U W
d(q)

Proof:

The "£" part follows immediately from theorem 5.6. Next we prove "~". First,

from q ¢ V we conclude q e R(q,V). Further if q' e W . then trivially q' e
d(q)

R(o(q,l), V U {q} U W) for some i with O(i<d(q) and, since R is
1

antimonotonic in its second argument, also q' e R(o(q,i), V). Since q ¢ V

this implies that q' e R(q,V).

o

The theorems 5.7 and 5.3 now give rise to the following more

efficient algorithm to compute R(q,V).

Algorithm 5.8

R(q, V) = if q e V ~ S1l

o q ¢ V ~ R(q, d(q), V)

f1

where the function R: QxINX~(Q)~ ~(Q) is given by

12

o

R(q,k,V) = if k = 0 ~ {q}

D k > 0 ~ R(q,k-1, V) U R(o(q,k-1), v U R(q,k-1, V))

fi

Clearly, in the context of (5.5), R(q,i,V) = W U {q}. An imperative version
1

of this algorithm is given by a procedure p1 with specification

(5.9)

Here value parameters are preceded by a t, result parameters are preceded by a

l' and value-result parameters are preceded by a t. The annotated code of

procedure p is given below.

Algorithm 5.10

o

proc p1 =

(tq: Q; :tv: 1'(Q) I
if q e V ~ (* R(q,V) = ¢ *) skip

D q fI! V ~

fi

[var i: INI

]

V:= V U {q}; i:= 0

(* invariant: V = V U R(q,i,V) *)
o 0

; do i " d(q) ~

p1(o(q, i), V)

(* V = V U R(q,i,V) U R(o(q,i),V U R(q,i,V)) ,
o a 0 a

so V = V U R(q,i+1,V) *)
o 0

;i:=i+1

ad

(* invariant A i = d(q) , so V = V U R(q,V) *)
o 0

13

6. ALGORITHMS TO COMPUTE PREDICATES ON REACHABLE NODES I

Let (Q,d,8) be a directed graph and let L:Q -7 B, where B denotes the set

of the booleans with the usual operations. So L is a predicate on the nodes of

the graph. We extend L to a function LS: ~(Q) -7 B by

(6.1) LS(V) = (Vq: q e V : L(q)) .

In this section and the next one we shall discuss several algorithms to

compute, for a given node q, the value of LS(R(q)). In other words we consider

algorithms which compute whether a predicate L holds on all nodes reachable

from a given node q.

A simple approach is to compute first the set R(q) using one of the

algorithms given in Section 5 and then to verify whether L holds for all

elements of R(q). The correctness of this type of algorithm is of course

trivial. Of course we can also compute the predicate L "on the fly", 1. e. as

soon as a new reachable point q' is found, the value of L(q') is computed. At

first instance this leads to a function g: Q x ~(Q) -7 ~(Q) x B with

specification

(6.2) g(q,V) = < R(q,V) , LS(R(q,V)) >.

Algorithms for the function g can be obtained by extending the algorithms for

the function R given in Section 5 with a "second component".

If R is computed with the (inefficient) algorithm 5.4 this leads to

Algorithm 6.3

o

g(q,V) =

if q e V -7 <¢, true>

D q ~ V A , L(q) -7 <{q} U (Ui:

D q ~ V A LCq) -7 <{q} U (Ui:
fi

where g = g(o(q,i), V U {q}).
1

O(i<d(q): n (g)), false>
1 1

O(i<d(q):n (g)) ,(Vi: O(i<d(q):
1 1

n (g)) >
2 1

If in fact one is only interested in the question whether L holds on all

nodes from a set R(q, V) and not in the set R(q, V) itself, only the second

component of g(q,V) is needed. In algorithm 6.3 the computation of this second

14

component is done without inspecting the first component. Hence we can

construct a function f: Q x ~(Q) -7 S with specification

(6.4) f(q,V) = LS(R(q,V)) .

From algorithm 6.3 we then obtain

Algorithm 6.5

f(q,V) = if q e V -7 true

D q ¢ V J\ , L(q) -7 false

D q ¢ V J\ L(q) -7 (Vi: O~i<d(q): f(il(q,iJ, V U {q}))

fi

o

The correctness of this algorithm follows immediately from the correctness of

algorithm 6.3.

7. ALGORITHMS TO COMPUTE PREDICATES ON REACHABLE NODES II

The algorithms given in the previous section were based on the

(inefficient) reachable points algorithm given in 5.4. More efficient

algori thms to compute the function g satisfying 6.2, can be obtained by

computing R with algorithms 5.8 or the imperative version 5.10. Starting

from 5.8 leads to

Algorithm 7. 1

o

g(q, V) = if q e V -7 <l1l, true>

D q ¢ V -7 g(q,d(q), V)

fi

where the function g:Q x IN x ~(Q) -7

g(q,k,V) = if" k = 0 -7 <{q}, L(q»

~(Q) x S is given by

{] k > 0 -7 <n (gl) Un (gl), n (g11 J\ n (gl»
1 1 2 2

fi

with gl = g(q,k-l,V) and gl = g(il(q,k-l), V U n (gl)) .
1

An imperative version of this algorithm is given by a procedure p2 with

15

specification

(7.2) p2(tq: Q; tv: ~(Q); i b:B)

(V = V U R(q,V)) A (b = LS(R(q,V))) *)
000

The annotated code of procedure p is given below.

Algorithm 7.3

proc p2 =
(tq: Q; tv: ~(Q); jb:B /
if q e V -7 (* R(q,V): ¢ *) b:= true

D q¢V -7

[~ i: N, b1:B/

V:: V U {q}; i:: 0; b:= L(q);

invariant: (V = V U R(q,i,V)) A (b
o 0

; do i '" d(q) -7

p2(o(q,i),V,b1)

= LS(R(q,i,V)))
o

(* V = V U R(q,i,V) U R(o(q,i),V U R(q,i,V)) ,
a 0 0 0

od

]
fi

o

so V = V U R(q,i+1,V) ,
o 0

b1 = LS(R(o(q,i), V U R(q,i,V)))
o 0

*)

;b: = b A b1

b = LS(R(q,i+1,V))
o

;i:= i + 1

(* invariant *)

Finally, similarly to Section 6, we consider again the case that one is

only interested in LS(R(q, V)) and not in the set R(q, V) itself. In algorithm

6.3 the two components of g were computed independently of each other. This

observation resulted in algorithm 6.5, where only the the second component of

g waS computed. Unfortunately in the algorithms 7.1 and 7.3 the computation of

the second component of g depends essentially on its first component. Hence we

16

cannot extract from 7.1 and 7.3 algorithms to compute only the second

component. However, some improvement can be obtained by replacing g by the

function h: Q x l'(Q) --t l'(Q) x IB with specification

(7.4)

LS (R(q, V)) =} " (h(q, V)) = R(q, V)
1

" (h(q,V)) = LS(R(q,V))
2

So the second component of h yields again the desired result. Furthermore, if

the second component equals true, the first component of h yields again the

set R(q,V). If the second component of h equals false, the value of the first

component is unspecified. For h we can use the following algorithm.

Algorithm 7.5

D

h(q, V) = if q e V --t <¢, true>

o q ~ V --t h(q,d(q), V)

fi

where the function h: Q x IN x l'(Q) --t l'(Q) x IB is given by

h(q,k, V) = if k = 0 --t <{q},L<q»

Ok> 0 --t if , " (hl) --t <¢, false>
2

fi

with hl = h(q,k-l,V)

o ,,(hl) --t <" (hl) U " (hi), " (hl) A " (hl) >
2 112 2

fi

and hl = h(o(q,k-l), V U " (hl)).
1

The corresponding imperative version of this algorithm is the procedure p3

with the following specification.

(7.6)

(* V = V *)
o

p3(tq: Q; tv: l'(Q); i b:lB)

(* (b=LS(R(q,V))) " (b=} (V=V UR(q,V))) *)
o 0 0

The code of procedure p3 is simply derived from algorithm 7.3. Now however, as

soon as a node has been reached where L does not hold, the traversal of the

graph is terminated.

17

Algorithm 7.7

proc p3 :

(lq: Q; tv: ~(Q); jb: B I
if q E V ~ (* R(q,V) = ~ *) b:= true

D q ¢ V ~

[~ t: INI

V:= V U {q}; i:: 0; b:= L(q);

(* inv.: (b" LS(R(q, i, V))) "
o

; do b " i " d(q) ~

(* LS(R(q,i,V))" (V = V
o 0

p3(o(q,i),V,b)

(b -9 (V = V U R(q,i,V))) *)
o 0

U R(q,i,V)) *)
o

(* b "LS(R(o(q,i),V U R(q,i,V))
o 0

so b" LS(R(q,i+1,V)),
o

b -9 (V = V U R(q,i,V) U R(o(q,i),V U R(q,i,V))),
o a 0 0

so b -9 (V = V U R (q, i + 1 ,V)) ,
o 0

;i:=i+1

(* invariant *)

od

]
f1

Cl

8. ALGORITHMS TO DECIDE THE EQUIVALENCE OF RECURSIVE TYPES

We now combine the results of the previous sections to obtain algorithms

to determine the equivalence of (recursive) types. Let TO and T1 be two type

expressions. Then TO and T1 are equivalent as types iff they are equivalent as

states of the automaton M as given in Section 3.
1

automaton of M , as described in Section 4. Then type
1

Let M be the product
2

equivalence of T and T
o 1

means that L
2

holds for all states reachable from (T ,T) in
o 1

M (seen as
2

directed graph). Using

the recursive function

the algorithm given in 6.5 this can

f: Texp x Texp x ~(Texp x Texp) ~ B

18

be computed with

given by

f(p,O',V) = if (p,O') e V ~ true

D (p,O') ~ V 1\ L(p) ;0 L(O') ~ false

(8.1) D (p,O') ~ V 1\ L(p) = L(O') ~

(Vi: O(i<d(p): f(o(p,i),o(O',i),V U {(p,O')}))

fi

The equivalence of two types p and 0' can now be checked by the function call

f(p,O',J2S), i.e. f(p,O',J2S) .. (p £;(0'). This type equivalence algorithm strongly

resembles the ones given in [Wij, §7.3] and in [Cal. Note that the necessary

unfoldings of recursive types are hidden in the function O.

A more efficient algorithm for type equivalence can be obtained by

starting with the procedure p3 described in 7.7. This leads to

(8.2)

proc p3 =

(tp,O' : Texpq; lV: ~(TexpxTexp); jb: ~ I
if (p,O') e V ~ b:= true

D (p, 0') ~ V ~

fi

[~ i: INI

]

V:: V U {(p,O')}; i:: 0; b:= L(p):L(O');

; do b 1\ i ;0 d(p) ~

p3(0(p, i),o(O', i), V,b)

;1:=1+1

od

Now the equivalence of the types p and 0' can be found be calling the

procedure p3 with V : J2S, 1.e.

(* V: J2S *) p3(p,O',J2S,b) (* b" (p ~ 0') *)

Note that in procedure p3 we can replace V by a global variable. We then

obtain a type equivalence algorithm similar to the one given in [Ko].

19

APPENDIX 1

Here we define trees and some related notions. See also Barendregt[Bal.

Let N* be the set of rows of natural numbers. We shall not make a difference

between a natural number and a row of length 1 containing that number. The

concatenation of elements of N* will be denoted by juxtaposition. Elements of

N* will usually be denoted by Greek letters. The empty row will always be

denoted with the letter c. On N* we define the prefix order ~, i. e. (IX ~ 13) ..

(3 r e N*: IXr = 13) . As usual we define (IX < 13) .. (IX ~ 13) A ,(IX = f3l. The

* length of the row IX e N will be denoted as IIXI. Next we consider tree

domains. A subset A of N* will be called a tree domain if

il) IX e A A 13 ~ IX =} 13 e A

iii) IX(n+l) e A=} IXn e A

Let F be some set and d:F~N. The pair (F,d) is called a graded alphabet. A

(ranked) tree over (F,d) is a partial function T: N* ~ F such that

i) dom(T) is a tree domain,

ii) if IX e dom(T), then IXi e dom(T) for all i: O(i<d(T(IX)).

So if IX e dom(T), then T(IX) is the label in IX and d(T(IX)) is the number of

subtrees emerging from IX. Note that, since a tree domain is not empty, c is

an element of dom(T) for every tree T. A tree T will be called finite if

dom(T) is a finite set.

APPENDIX 2

We prove that for all types T the set R(T) is finite. If this does not

hold the set of states of the automata Ml described in Section 3 may not be

finite and the algorithms given in Section 7 do not necessarily terminate

(since the set V of pairs of types and hence the recursion depth are not

bounded). If T does not contain a recursive type, R(T) consist of all sub

expressions of T and is trivially bounded. However if T is a recursive type

then (in the computation of o(T,i) for suitable i) an unfolding takes place

thus generating possibly new and longer type expressions.

Similar to the case of automata we introduce for every type expression T

20

Then

D(1:) = dom(o(1:,'» = UIO';;i<d(1:)},

D*(1:) = {~ e ~* 10(1:,~) is defined}.

R(1:) = {o(1:,~) I~ e D*(1:)}.

In the following theorems we investigate the behaviour of D"(1:) and 0(1:,')

under substitutions in 1:.

Theorem 10. 1

Let 1:,~ e Texp, t e V and i e

OC1:t ,il = (o(1:,i))t
~ ~

Proof:

~. If i e D(1:) then i e D(1: t) and
~

Induction with respect to 1:. The other cases being trivial, we only consider

the case that 1: = ~(AS·p). If t = s then 1: does not contain the free variable

t and the result becomes trivial. Next consider the case t ¢ s. Without loss

of generality we may assume that s ¢ FV(~). Then

i e D(1:)

i e D(p)

i e D(pt)
~

t i e D(~(AS'P)
~

i t eD(1:).
~

Furthermore for i e D(1:)

o(1: t ,il
~

O(~(AS.pt), 1)
~

o(p;,il):(AS.pt)
~

[def. of 0]

[induction hypothesis]

[def. of 0]

[s ¢ FV(~), s ¢ t]

= [s ¢ FV(~), s ¢ t]

= [def. of 0]

= [i e D(p),induction hypothesis]

= [s ¢ FV(~), s ¢ t]

= [prop. of subst., s ¢ FV(~), s ¢ t]

21

o

(o(~(As·p).i))!
o(.... il!

Theorem 10.2

=

=

* *() D*(~t) Let a e ~ , ~ e Texp and t e V. If a e D ... then a e • and
~

Proof:

Induction with respect to lal using the previous theorem.

o

[def. of 0]

* So D (...) * t * is always a subset of D (...) and for a in D (...)
cr

the operations

"compute

commute.

for rows

expression that describes the subtree at
* * t In general D (...) is a proper subset of D (...).

~

a in D*(... t) \ D*(...).
~

Theorem 10.3

IX" and "substitution"
t Next we study 0(... . a)
cr

Let ... e Texp with n*(...) = {c}. Then there exist an u e vue and k e ~

mutually different variables s , ... ,s such that
1 k

T = ,.!CAs Il(i\.s ·u). ..).
1 k

Proof:

Induction with respect to

o

In terms of trees this theorem describes the general form of a type expression

that describes a single node tree (labeled u or ~ if u = s for some i).
1

Theorem 10.4

Let ~ e Texp, t e V and a e ~*. If a e n*(... t) \ n*(...). then there exists a r
* cr e n (~). 0 < Irl (lal. such that

t 0(.... a) = o(~,r).
~

22

Proof:

Let a = ~1 where ~ is the longest

= {c} and 0 < 111 (lal. Further

* * prefix of a with ~ e D (T). Then D (O(T,~»

=

= [~ e D 1T), theorem 10.21

* t * So 1 e D (O(T,~)~). Now since D (O(T,~» = {c} , the previous theorem implies

the existence of a keN, variables s , ... ,s and an u e vue such that
1 k

O(T,~) = fleAS fleAS ·u) ...).
1 k

Of course the variables s , ... ,s can be chosen such that they are no elements
1 k

of FV(~). Now t e FV(O(T,~» otherwise D*(O(T,~)t) = D*(O(T,~» = {c} which
~

cannot contain 1 ~ <>. So u = t and s ~ t for i = 1, ... ,k. Then, with 1 =
1

j!;,

o

t
o(O(T,~) , 1)

~

o((fl(AS fleAS ·t). ..)) t, 1)
1 k ~

o (fl(AS fl(AS .~). ..) , 1)
1 k

O(O(~,j),!;)

0(~,1)·

=

= [8 ~ FV(u) u {t} for i = 1 .. k]
1

=

=

=

[1 = j!;, def. 01

[def. of 0,
s ~ FV(~) for i = 1 .. k1

1

Now we are able to give a relation for R(T) if T is a recursive type.

Theorem 10.5

Let p e Texp and s e V. Then

23

Proof:

Let A = {/l(AS·p)} U {O"S(A) I 0" e R(p) }. We prove with induction to 1(31
* /l s·p

that for all (3 e D (/l(AS·p))

The induction basis 1(31 = 0 is trivial. Next suppose n e N and assume as

induction hypothesis that (*) holds for all (3 with 1(31 (n. Let i~ e

* D (/l(AS·p)) with I~I = n. Then, with, = ~(p,i),

~(/l(As·p),i~) =
~(o(Il(As·p),i) , ~) =
o(o(p, iJ\A) /l s·p

, ~) =
o(s , ~) ,

/l(AS·p)

So ~ e * s D (, (')). To show that (**)
/l "s·p

cases.

iJ * ~ e D (,). Then

s
o ('(')'~) /l "s·p

s
o("~) (') /l "s·p

O(P,i~)s(,)
/l "s·p

=

=

e A

[def. ~)

[def. 0)

[def ,)

(**)

is an element of A we consider two

[theorem 10.2)

[def. of ,)

* * ii) ~ ~ D (,). Then theorem 10.4 yields the existence of reD (/l(AS·p)) with

Irl (I~I such that

s
o ('(')'~) Il "s·p =

Since Irl ~ lal = n, the induction hypothesis now implies that the right hand

side is an element of A.

D

Finally we can prove the desired result.

Theorem 10.6

For all t e Texp the set R(,) is finite.

Proof:

Induction with respect to ,. Assume as induction hypothesis that R(p) is

24

finite for all sub expressions of T. We consider the following cases.

i) T e V U C. Then R(T) = {T}.

ii) T = jp. Then R(T) = {T} U R(p), which is finite by the induction

hypothesis.

iii) T = Po x Po or T = Po + Pl'

finite by the induction hypothesiS.

= {T} U R(p) U R(p). which is
o 1

iv) T = ~(AS·p). Theorem

R(T) ~ {T} U { u slu
T

10.5 yields

e R(p)},

which is finite since by the induction hypothesis

o

APPENDIX 3

R(p) is finite.

Let M = (Q.~,o,L,F) be a finite automaton which is label ranked, i.e. if

L(q) = L(q) then D(q) = D(q). We prove that for all states q and q
1 2 1 2 1 2

(1I<x e D*() n D*(q): L(o(q ,<X)) = L(o(q ,<X)))
ql 2 1 2

* * D (q) = D (q).
1 2

* * Assume that (*) holds and suppose that for instance D (q) ~ D (q). Let <X e
1 2

* \ * * * D (q) D (q) with 1<x1 minimal. From c e D (q) and c e D (q) we conclude
1 2 1 2

1<x1 > O. So there exist ~ e D*(q) and a e ~ such that <X = ~a. Since 1<x1 is
* 1 minimal, ~ e D (q). Then (*) implies that L(o(q ,~)) = L(o(q ,~)), hence

2 1 2

o(q ,~) and o(q ,~) have the same transitions. Now o(o(q .~),a) = o(q ,<X), so
1 2 1 1

o(q ,~) has a transition under a. Then also o(q ,~) has a transition
1 2

* * = ~a ¢ D (q). So D (q) ~
2 1

which yields a contradiction with <X

* * Similarly we can prove D (q2) S D (q,),

o

25

under a

* D (q).
2

REFERENCES

[Sa) Barendregt, H. P., The Lambda calculus, its syntax and semantics,

revised edition, North Holland, Amsterdam (1984).

[Ca) Cardelli, L., Typechecking Dependent Types and Subtypes, in:

Foundations of Logic and Functional Programming, 45-57, LNCS 306

(1986) .

[CC) Cardone, F. and Coppo, M., Type inference with recursive types:

Syntax and Semantics, to appear in: Information and Computation.

[Cp] Coppo, M., A completeness theorem for recursively defined types, in:

[CKV]

Automata, Languages and Programming, 120-129, LNCS 194 (1985).

Courcelle, B., Kahn, G. and Vuillemin, J., Algorithmes d'equivalence

et de reduction a des expressions minimales dans un classe

d'equations recursives simples, in: International Conference on

Automata, Languages and Programming, 200-213, LNCS 14 (1974).

[Ko) Koster, On infinite modes, Algol Bulletin 30, 86-89 (1969).

[Kr] Kr~l, The Equivalence of Modes and the Equivalence of Finite

Automata, Algol Bulletin 35, 34-35 (1973).

[Re) Rem, M., Small programming exercises5, Sci Comput. Programming 4,

323-333 (1984 J.

[Wij) Van Wijngaarden, Revised report on the algorithmic language Algol

68, Mathematical Centre Tracts 50, Amsterdam (1976).

26

In this series appeared:

89/1 E.Zs.Lepoeter-Molnar

89/2 R.H. Mak
P.struik

89/3 H.M.M. Ten Eikelder
C. Hemerik

89/4 J.Zwiers
W.P. de Roever

89/5 Wei Chen
T.Verhoeff
J.T.Udding

89/6 T. Verhoeff

89n P.Struik

89/8 E.H.L.Aarts
A.E.Eiben
K.M. van Hee

89/9 K.M. van Hee
P.M.P. Rambags

89/10 S.Ramesh

89/11 S.Ramesh

89/12 A.T.M.Aerts
K.M. van Hee

89/13 A.T.M.Aerts
K.M. van Hee
M.W.H. Hesen

89/14 H.C.Haesen

89/15 J.S.C.P. van
der Woude

89/16 A.T.M.Aerts
K.M. van Hee

89/17 MJ. van Diepen
K.M. van Hee

Reconstruction of a 3-D surface from its normal vectors.

A systolic design for dynamic programming.

Some category theoretical properties related to
a model for a polymorphic lambda-calculus.

Compositionality and modularity in process
specification and design: A trace-state based
approach.

Networks of Communicating Processes and their
(De-)Composition.

Characterizations of Delay-Insensitive
Communication Protocols.

A systematic design of a parallel program for
Dirichlet convolution.

A general theory of genetic algorithms.

Discrete event systems: Dynamic versus static
topology.

A new efficient implementation of CSP with output
guards.

Algebraic specification and implementation of infinite
processes.

A concise formal framework for data modeling.

A program generator for simulated annealing
problems.

ELDA, data manipulatie taal.

Optimal segmentations.

Towards a framework for comparing data models.

A formal semantics for Z and the link between
Z and the relational algebra.

90/1 W.P.de Roever-
H.Barringer-
C.Courcoubetis-D.Gabbay
R.Gerth-B.Jonsson-A.Pnueli
M.Reed-J.Sifakis-J.Vytopil
P.Wolper

90/2 K.M. van Hee
P.M.P. Rambags

90/3 R. Gerth

90/4 A. Peeters

90/5 J.A. Brzozowski
J. C. Ebergen

90/6 A.J.J.M. Marcelis

90n A.J.J.M. Marcelis

90/8 M.B. Josephs

90/9 A.T.M. Aerts
P.M.E. De Bra
KM. van Hee

90/10 M.J. van Diepen
KM. van Hee

90/11 P. America
F.S. de Boer

90/12 P.America
F.S. de Boer

90/13 KR. Apt
F.S. de Boer
E.R. Olderog

90/14 F.S. de Boer

90/15 F.S. de Boer

90/16 F.S. de Boer
C. Palamidessi

90/17 F.S. de Boer
C. Palamidessi

Fonnal methods and tools for the development of
distributed and real time systems, p. 17.

Dynamic process creation in high-level Petri nets,
pp. 19.

Foundations of Compositional Program Refinement
- safety properties - , p. 38.

Decomposition of delay-insensitive circuits, p. 25.

On the delay-sensitivity of gate netwOlks, p. 23.

Typed inference systems : a reference document, p. 17.

A logic for one-pass, one-attributed grammars, p. 14.

Receptive Process Theory, p. 16.

Combining the functional and the relational model,
p. 15.

A formal semantics for Z and the link between Z and the
relational algebra, p. 30. (Revised version of CSNotes
89/17).

A proof system for process creation, p. 84.

A proof theory for a sequential version of POOL, p. 110.

Proving tennination of Parallel Programs, p. 7.

A proof system for the language POOL, p. 70.

Compositionality in the temporal logic of concurrent
systems, p. 17.

A fully abstract model for concurrent logic languages, p.
p.23.

On the asynchronous nature of communication in logic
languages: a fully abstract model based on sequences, p.
29.

90/18 J.Coenen
E.v.d.S1uis
E.v.d.Velden

90/19 M.M. de Brouwer
P.A.C. Verkoulen

90/20 M.Rem

90/21 K.M. van Hee
P.A.C. Verkoulen

91/01 D. Alstein

91/02 R.P. Nederpelt
H.C.M. de Swart

91/03 J.P. Katoen
L.A.M. Schoenrnakers

91/04 E. v.d. Sluis
A.F. v.d. Stappen

91/05 D. de Reus

91/06 K.M. van Hee

91/07 E.Poll

91/08 H. Schepers

91/09 W.M.P.v.d.Aalst

91/10 R.C.Backhouse
P.J. de Bruin
P. Hoogendijk
G. Malcolm
E. Voennans
J. v.d. Woude

91/11 R.C. Backhouse
P.J. de Bruin
G.Malcolm
E.Voennans
J. van der Woude

91/12 E. van der Sluis

91/13 F. Rietrnan

91/14 P. Lernrnens

Design and implementation aspects of remote procedure
calls. p. 15.

Two Case Studies in ExSpect. p. 24.

The Nature of Delay-Insensitive Computing. p.18.

Data. Process and Behaviour Modelling in an integrated
specification framework. p. 37.

Dynamic Reconfiguration in Distributed Hard Real-Time
Systems. p. 14.

Implication. A survey of the different logical analyses
.. iL .• then p. 26.

Parallel Programs for the Recognition of P-invariant
Segments. p. 16.

Perfonnance Analysis of VLSI Programs. p. 31.

An Implementation Model for GOOD. p. 18.

SPECIFICATIEMETHODEN. een overzicht, p. 20.

CPO-models for second order lambda calculus with
recursive types and subtyping. p. 49.

Tenninology and Paradigms for Fault Tolerance. p. 25.

Interval Timed Petri Nets and their analysis. p.53.

POLYNOMIAL RELATORS. p. 52.

Relational Catamorphism. p. 31.

A parallel local search algorithm for the travelling
salesman problem. p. 12.

A note on Extensionality. p. 21.

The PDB Hypennedia Package. Why and how it was
built. p. 63.

91/15 AT.M. Aerts
K.M. van Hee

91/16 AI.I.M. Marcelis

91/17 AT.M. Aerts
P.M.E. de Bra
K.M. van Hee

91/18 Rik van Ge1drop

91/19 Erik Poll

91/20 A.E. Eiben
R.Y. Schuwer

91/21 I. Coenen
W.-P. de Roever
J.Zwiers

91/22 G. Wolf

91/23 K.M. van Hee
L.I. Somers
M. Yoorhoeve

91/24 AT.M. Aerts
D. de Reus

91/25 P. Zhou
I. Hooman
R. Kuiper

91/26 P. de Bra
G.I. Houben
I. Paredaens

91/27 F. de Boer
C. Palamidessi

91/28 F. de Boer

91/29 H. Ten Eike1der
R. van Ge1drop

91/30 I.C.M. Baeten
F.W. Yaandrager

Eldorado: Architecture of a Functional Database
Management System, p. 19.

An example of proving attribute grammars correct:
the representation of arithmetical expressions by DAGs,
p.25.

Transforming Functional Database Schemes to Relational
Representations, p. 21.

Transformational Query Solving, p. 35.

Some categorical properties for a model for second order
lambda calculus with subtyping, p. 21.

Knowledge Base Systems, a Formal Model, p. 21.

Assertional Data Reification Proofs: Survey and
Perspective, p. 18.

Schedule Management: an Object Oriented Approach, p.
26.

Z and high level Petri nets, p. 16.

Formal semantics for BRM with examples, p. 25.

A compositional proof system for real-time systems based
on explicit clock temporal logic: soundness and complete
ness, p. 52.

The GOOD based hypertext reference model, p. 12.

Embedding as a tool for language comparison: On the
CSP hierarchy, p. 17.

A compositional proof system for dynamic proces
creation, p. 24.

Correctness of Acceptor Schemes for Regular Languages,
p. 31.

An Algebra for Process Creation, p. 29.

91/31 H. ten Eikelder

91/32 P. Struik

91/33 W. v.d. Aalst

91/34 J. Coenen

91/35 F.S. de Boer
J.W. Klop
C. Palamidessi

92/01 J. Coenen
J. Zwiers
W.-P. de Roever

92/02 1. Coenen
J. Hooman

92/03 J.C.M. Baeten
J.A. Bergstra

Some algorithms to decide the equivalence of recursive
types, p. 26.

Techniques for designing efficient parallel programs, p.
14.

The modelling and analysis of queueing systems with
QNM-ExSpect, p. 23.

Specifying fault tolerant programs in deontic logic,
p. 15.

Asynchronous communication in process algebra, p. 20.

A note on compositional refmement, p. 27.

A compositional semantics for fault tolerant real-time
systems, p. 18.

Real space process algebra, p. 42.

	Contents
	1. Introduction
	2. Equivalence of types
	3. Relation with finite automata
	4. Reformulation as properties of reachable states
	5. Algorithms to compute reachable nodes
	6. Algorithms to compute predicates on reachable nodes I
	7. Algorithms to compute predicates on reachable nodes II
	8. Algoritms to decide the equivalance of recursive types
	Appendix 1
	Appendix 2
	Appendix 3
	References

