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Modeling the Impact of Key Events on Long-Term Transport Mode Choice 
Decisions: A Decision Network Approach Using Event History Data1  

 
Marloes Verhoeven, Theo Arentze, Harry Timmermans and Peter van der Waerden  
Urban Planning Group, Eindhoven University of Technology, P.O. Box 513, 5600 MB 
Eindhoven, The Netherlands, phone +31 40 247 3315, fax +31 40 2438488, e-mail: 
m.v.d.sande@bwk.tue.nl 
 
Abstract. This paper describes the first phase of a study of the impact of key events on long-term transport mode 
choice decisions. The suggested complexity of transport mode choice is modeled using a Bayesian Decision 
Network (BDN). An Internet-based questionnaire was designed to measure the various Conditional Probability 
Tables and the Conditional Utility Tables of the BDN. In total seven different key events were implemented in 
the questionnaire: Change in residential location, Change in household composition, Change in work location, 
Change in study location, Change in car availability, Change in availability of public transport pass, and Change 
in household income. The data of 554 respondents was used to illustrate how the tables can be constructed based 
on event history data. 
 
Word count: 4701 + 7 * 250 = 6451 

 
 

1. INTRODUCTION 
 
It is a commonly held opinion and certainly a tradition that models about choice behavior 
should be kept simple. This principle of parsimony has led to a situation in transportation 
research that models of choice behavior (e.g. mode or destination choice) typically predict the 
probability that an individual will choose a particular choice option as a (often linear) function 
of the attributes of the choice alternatives and a set of socio-demographics. 

In reality, however, decision-making processes are much more complex. The choice of 
for example transport mode is rarely made in isolation [e.g., 1, 2]. Different sets of other 
decisions may trigger a shift in mode choice. Moreover, choice behavior is often context-
dependent: conditions beyond socio-demographics and the attributes of the choice alternatives 
influence the outcome of the decision. Also, some factors may have an impact on a particular 
choice option, but not on others. 

For these and other reasons, it means that the typical choice models capture statistical 
relationships between the dependent and a set of independent variables of the choice model. 
Often, the model is difficult to interpret in terms of some underlying theory. To capture the 
complexity of daily decision-making, a modeling approach that allows estimating direct and 
indirect effects, the inclusions of contextual and situation-specific variables and the 
specification and testing of causal mechanisms may offer some advantages. 
 In this present paper, such complexity will be modeled using Bayesian Decision 
Networks for the problem of transport mode choice. It is assumed that the choice of transport 
mode is influenced by critical incidents and key events that make individuals reconsider their 
choice of transport mode [3]. Within such regimes, the daily choice of transport mode is 
assumed to be influenced by attributes of the transport modes, individual and household 
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characteristics and situational and context variables. Both direct and indirect causal 
mechanisms are assumed. 

The primary aim of the study reported in this paper was to explore the suggested 
formalism in measuring, analyzing and predicting dynamic travel mode choice in relation to 
key events and critical incidents. As such, the study builds on previous descriptive studies [4, 
5]. The paper is organized as follows. First, we will outline some conceptual considerations 
including the definitions of key events and critical incidents. Next, we present the theory 
underlying Bayesian decision networks. This section is followed by a description of the data 
collection procedures. This is followed by a discussion of the results of the analysis. Finally, 
we will summarize the study and discuss some avenues of future research. 
 
 
2. CONCEPTUAL CONSIDERATIONS 
 
Over the years, a wealth of studies on transport mode choice has accumulated in the literature. 
Transport mode choice has been commonly conceptualized as a function of the characteristics 
of alternative travel modes and a set of personal and household characteristics. It is assumed 
that these attributes generate some utility and that individuals maximize their utility when 
choosing between alternative transport modes, subject to budget constraints. 

In this study, we advocate exploring a different (dynamic) perspective. We argue that 
mode choice decisions, at least long-term decisions, are causally related to a set of key events 
and critical incidents. In this context, a key event is defined as a major event in a personal life 
such as a marriage or move that will trigger a process of reconsideration of current behavior 
whereas a critical incident is defined as an event that may have a major impact on one’s 
attitude such as involvement in an accident and dismissal. The (anticipated) occurrence of a 
key event and a critical incident leads an individual to seriously reconsider his/her current 
mode choice. Key events may alleviate certain constraints. For example, becoming 18 in the 
Netherlands and getting a driver’s license implies that the individual can drive a car. Other key 
events may dramatically change the space-time context within which travel decisions are 
made. For example, moving house may imply that the spatial configuration of the current 
action space may shift. Consequently, accessibility and distance/travel time relationships may 
change, implying that the utility an individual derives from alternative travel modes may 
change as well. Likewise, changing jobs may lead to changes in travel modes. A final example 
is the expected arrival of a child, which may induce new activities (e.g. Day care) that are 
more difficult to complete using the current travel mode. 
 
 
3.  FORMALIZATION 
 
The conceptual considerations in section 2 suggest that transport mode choice decisions are 
causally linked with a set of key events. We argue that a Bayesian belief network or, more 
precisely a decision network or influence diagram constitutes an adequate formalization to 
represent these causal mechanisms (see [8]). A Bayesian network is a network representation 
of the interrelationships and conditional dependencies between a set of variables [10]. It 
consists of two components, namely a directed acyclic graph (DAG) in which nodes represent 
stochastic variables and directed arcs represent conditional dependencies between the 
variables, and a so-called conditional probability table (CPT) for each node describing the 
conditional dependencies. The arcs of the network represent cause-effect relationships and link 
a variable, called child variable, with the set of its immediate predecessors, called parent 
variables. The variables in a Bayesian network can be discrete, describing a limited set of 
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states, or continuous. In the first, discrete case, the CPT of the node defines a probability 
distribution across the states of the variable for each combined state of the parent nodes. In the 
latter, continuous case, the CPT describes the parameters of some distribution of the 
continuous variable for each combined state of the parents. In sum, the probabilities represent 
conditional beliefs about the likelihood of possible outcomes for each node. 
  As reviewed in Janssens et al. [8], learning Bayesian networks has traditionally been 
divided into two categories: i.e. structural and parameter learning. Parameter learning 
determines the conditional probability relationship at each node of the network, given the link 
structures and the data. Structural learning determines the dependence and independence of 
variables and suggests a direction of causation (or association), in other words, the position of 
the links in the network. As Janssens et al. [8] argue, experts can provide the structure of the 
network using domain knowledge. However, the structure can also be extracted from 
empirical data. Especially the last option offers important and interesting prospects for 
transportation travel demand modeling because it allows one to visually identify which 
variable or combination of variables influences the target variable of interest. Parameter 
learning can be used to examine quantitatively the strength of the identified effect. 

A decision network is an extended belief network. A belief network includes only so-
called nature nodes, i.e. variables of which the state is determined by ‘nature’ rather than the 
decision maker. In addition to nature nodes, a decision network also includes one or more 
decision nodes (in this case travel choices), and one or more utility nodes. The possible states 
of a decision node represent the options for that decision (i.e., a choice set). Since the  decision 
maker is free to decide which option to choose, the initial probability distribution across states 
of a decision node is uniform and, therefore, no CPT needs to be defined at the level of 
decision nodes. As belief networks, the links represent causal relationships between the nodes 
[e.g., 6]. Typically, a nature node represents a situational variable or a direct or indirect 
consequence of decision options that are relevant for making a choice. A utility node 
represents preferences of the decision maker. A so-called conditional utility table (CUT) is 
associated to each utility node. This table has a similar format as a CPT. However, rather than 
a probability distribution, it defines a utility value for each combined state of the parent nodes 
indicating how the decision maker evaluates that state.  

The example shown in Figure 1 has a layered structure that is useful to model the 
category of decision problems considered here. The decision nodes in the top layer represent 
the variables that involve a decision. Links between decision nodes are special as they do not 
represent cause-effect relationships. Rather, they indicate the sequence in which decisions are 
to be made. An arc is drawn from any decision node i to a given decision node j, if the 
decision on i is known at the moment the decision on j is to be made. For that reason the links 
are called ‘non-forgetting’ links. Nature nodes arranged in the second layer represent the 
variables over which the decision maker has no control. The outcomes of these nature nodes 
are typically uncertain to decision makers because nature decides on the value of outcome 
variables. The utility node in the bottom layer represents the utility values the decision maker 
assigns to outcomes. The network shown in Figure 1 has an idealized form. In reality, not 
necessary all decision and nature nodes are interconnected, nature nodes may be 
interconnected mutually, there may exist links directly between decision nodes and the utility 
node and the network may include multiple utility nodes. The only restrictions include that the 
graph is a-cyclic and that directions of the links are consistent with the direction of the causal 
or non-forgetting relationships. 

Standard algorithms can be used to compile the network and determine the expected 
utility of each decision option. Using the same algorithms, beliefs and expected utilities can be 
updated when evidence for certain nature nodes becomes available and is entered to the 
network. In case of a single decision node, the expected utility of a decision option is 
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calculated as the sum of the products of probability and utility across the possible direct and 
indirect outcomes of the decision option. In case of multiple decision nodes, the expected 
utility of a decision option is defined as the expected utility of that decision option under the 
condition of the best decisions on the next decision variables. Applications of the Bayesian 
network approach to model activity-travel choice are still scarce to date [7, 8]. 

 
 
 
4.  THE STRUCTURE OF THE ASSUMED DECISION NETWORK 
 
Figure 2 presents the assumed decision network for mode choice behavior that guided this 
study. The network models the transport mode decision for a given trip of a given individual. 
Hence, the network includes only a single decision node that concerns the transport mode 
choice for the trip (central rectangle node). The structure was determined based on the general 
literature on transport mode choice and common knowledge about logical relationships. The 
nature nodes are grouped in three clusters. The first cluster deals with the availability of 
certain transport modes (upper left corner). The links in this cluster represent logical 
relationships. To give some examples: (1) ‘feasibility’ indicates the feasibility of every 
combination of the states of mode choice, bike possession (y/n), drivers license (y/n) and car 
possession (y/n) and (2) ‘availability car’ represents the availability of the car as a transport 
mode for a given trip as a function of ‘cars’ (number of cars available in the household) and 
‘users’ (number of car users in the household). The utility node in this cluster – ‘utility 
feasibility’ – defines a penalty (i.e., a strongly negative utility) for an infeasible state and a 
zero utility for a feasible state, to make sure that infeasible choices are never made.  

The second cluster describes characteristics of the trip such as origin location, 
destination location, trip distance, trip purpose, etc (upper right corner). Again, the structure in 
this cluster represents logical relationships. To give some examples: 1) ‘shortest path’ 
represents for each combination of trip origin and trip destination beliefs regarding the shortest 
path between them. If no uncertainty would be involved, the beliefs would be represented by 
zero/one probabilities. 2) the shortest path determines or influences the distance traveled on 
the trip and the distance in turn determines in combination with ‘average speed’ the travel 
time.  

The third cluster represents some situational variables. In this particular specification, 
only weather conditions are taken into account. Depending on the application, other situational 
factors could be added such as for example available time for the activity, day of the week, 
etc..  

The fourth cluster deals with the individuals’ perceptions and evaluations of different 
aspects for the trip considered (arranged in a horizontal layer below the decision node). The 
aspects refer to  benefit variables, such as safety, comfort, privacy, costs, etc. The nature nodes 
represent the subjective assessments for the given trip on these benefit dimensions. Each 
benefit variable is dependent on the choice of transport mode. Other benefit variables are in 
addition influenced by situational factors or trip attributes. For example, beliefs regarding the 
amount of comfort experienced on a trip is considered to be dependent on combined states of 
‘transport mode choice’, ‘whether condition’, ‘average temperature’, and ‘changes’ (number 
of transfers).  

Related to each nature node is a utility node representing the subjective evaluation (a 
utility value) of each outcome of that benefit variable. In a decision network, the total 
(expected) utility is defined as the sum of (expected) utilities across utility nodes and, 
therefore, the utilities defined for each benefit outcome should take the relative weight of the 
benefit variable into account. The benefit nodes included in the network intend to cover the 
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most important considerations individuals generally have in making a choice between 
transport modes.  

For ease of presentation, key events are not depicted in the network shown in Figure 2. 
Key events are defined as nature nodes that have no causal relationship with the decision node 
(i.e., transport mode choice) but do affect the utilities directly or indirectly through the 
existing nature nodes. The following key events are implemented in the network: (a) Change 
in residential location, (b) Change in household composition, (c) Change in work location, (d) 
Change in study location, (e) Change in car availability, (f) Change in availability of public 
transport pass, and (g) Change in household income. A change in residential location means 
that a person is moving to a different location, for example moving in a student room, live on 
your own, and rent a house. A change in household composition means an increase/decrease 
of the number of persons in the household, for example the birth of a child, move in together, 
and getting married. A change in work location means that the location of your work is 
changed, for example by starting with your first job and transferring to a different location. A 
change in study location means that you change from study location, for example going to 
college, graduate, and quitting the education. A change in car availability means that the 
number of car users in the household or the number of cars in the household changes, for 
example more car users in the household, and less car users in the household. A change in 
public transport pass means that you buy or hand in a public transportation pass, for example 
getting a student travel pass, and buying a year subscription. A change in household income 
means that the total income increases or decreases, for example caused by more persons in the 
household who bring in money, and salary promotion. 

Some examples of key events and the way they are connected to the network are 
shown in Figure 3. For some key events the link in the decision network between the event 
itself (nature node) and an existing nature node is very obvious, as they have a direct relation 
with an existing node in the network. Other key events do not have an obvious relation, but we 
assume that al key events potentially have a certain impact on the benefit nature nodes 
(perceptions) and associated utility nodes (evaluations). We assume that some key events 
(events a, c, d, e and f) have a direct impact on the existing nature nodes of cluster 1 or 2 and 
cluster 4 (the benefit nodes). The other key events (events b and g) have only an impact on the 
benefit (nature and utility) nodes (cluster 4).For example, a change in car availability (event e) 
could affect the number of car users in the household and/or the number of cars in the 
household. A change in household composition (event b) could affect the layer of benefit 
nodes. For example change in household composition may affect the nature and utility nodes 
at the level of comfort, safety, environmental damage, privacy, expenses and time. The links 
are shown in figure 3. The whole network is built up in the software program Netica [9]. We 
emphasize that the links included in the network and in particular the links connecting events 
to benefit variables represent our stated hypotheses. Whether or not the influences exist is 
subject to testing based on data about events and choice behavior. 
 
 
5. DATA 
 
Sample 
To collect the required data a convenience sample was drawn using an Internet-based 
questionnaire. E-mail addresses were collected from a set of colleagues and universities in the 
Netherlands. Approximately 2500 emails were sent with a request to participate and to send 
the mail to three other persons. In total, 840 persons agreed to participate and were emailed the 
address of the web-based questionnaires. From this group of persons, 642 started and 554 
finished the questionnaire. 
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As for sample composition, 56 percent were males, while 44 percent were females. 
This illustrates previous findings that Internet-based samples tend to be biased in the sense 
that males are overrepresented in the group of internet users or more inclined to respond than 
females. Approximately 95 percent of the respondents owned a bicycle, 76 percent owned a 
car, while 91 percent had a drivers’ license. In total 47 percent had a full time job, 11 percent 
had no job, while the remainder had a part-time job. From all respondents 63 percent had no 
children, 7 percent had one, 21 percent had two children, while the remainder had more than 2 
children. 49 percent of the respondents was married or lived together. 
 
Questionnaire 
The questionnaire was designed to measure the CPT of each nature node (including the key 
events) and the CUT of each utility node of the network model (Figure 2). This means that the 
questionnaire consisted of the following components: 

a. Household and personal characteristics; 
b. Availability of transport mode; 
c. Event related questions for seven different events: How many times did the event 

occur, When did the events happen, What exactly changed by the event, and What 
was the reason for event; 

d. Current travel behavior per trip purpose: work, study, shopping, and sports; 
e. Perception of trip conditions: comfort, safety, privacy, environmental damage, 

expenses, and time (CPT-part); 
f. Stated preference part for evaluation of the selected trip conditions (see d.; CUT-

part). 
 
The stated preference part of the survey used an orthogonal fraction of a full factorial design to 
generate profiles in terms of the benefit variables. Respondents were asked to indicate their 
preference for each profile on a 0-100 scale. Based on this data, utility functions can be 
estimated which then can be used to define the utilities in a CUT. Requesting the respondent 
to specify a CUT directly was considered to be too cumbersome and demanding. 

For the purpose of this study, especially the event-history data were relevant. For the 
set of seven predefined key events, respondents were requested to indicate whether they 
experienced the event, and, if so, to indicate the timing of the event (month and year) and the 
nature of the change that took place. In particular, data on the following events were collected: 
residential career history, work career history, changes in household composition and changes 
in availability of public transport passes. In addition data were collected on transport mode 
decisions. 
 
 
6. ANALYSES AND ILLUSTRATION 
 
The event history data allow us to reconstruct the event history of each individual. To 
illustrate, Figure 4 shows the event history for three respondents. The figure shows the variety 
of events an individual is going through during a certain period of time (in this case 20 years). 

To give an indication of the aggregate distributions, Table 1 shows for different age 
categories the mean number of occurrences for each of the seven event categories. As 
expected the average number of events tends to increase with the age of the respondents. Two 
events show a different view: a change in study location and a change in availability of public 
transport pass. The reason for this might be that older people did not go to different schools in 
the past and did not use public transport frequently.  
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The event history data were used to construct the conditional probability tables. In the 
analysis of the data, the possible states of each key-event node were defined in terms of the 
time ago the last instance of that event had occurred. The time unit was defined dependent on 
the type of event using longer periods for events that occur less frequently and vice versa. The 
data allowed us to fill the CPT of each nature and utility node of the network. Here we 
consider an example of how CPTs can be constructed based on the questionnaire items. We 
consider assessments of  benefits as an example. For each benefit variable, respondents filled 
in the CPT by indicating the extent to which a trip under each relevant state of parent variables 
would perform on a zero-one scale. On this scale, the value of one represents a high 
performance and the value of zero a low performance. As an example, Table 2 shows results 
of respondents’ assessments related to Safety, Privacy, and Environmental damage . For these 
node, no situational and trip attributes are included as a parent, so that the conditions refer 
only to the transport mode variable. As an example of an event, average assessments are 
shown for each category of time ago the household composition had undergone a change. The 
impact of the history (time ago) of, in this example, a household composition change, can be 
measured by comparing the distributions of scores between the segments (i.e., horizontal 
sections of the table), for example, as the difference in entropy of the distributions. It appears 
that in general the effect of the event on the average scores is very small. Two scores change 
more over the different event classes than the others: average score for privacy when the train 
is used and the average score for environmental damage in case the bike is used. The 
differences may be statistically significant for none of the benefit variables, suggesting that 
there is no influence of history of a household change on the assessment of benefits on these 
aspects. The hypothesis that such links would exist then needs to be rejected. As another 
example, the same CPT’s are constructed for the event ‘Change in car availability’ (Table 3). 
Again, no large differences in average scores appear. The examples show how the data can be 
used to test hypothesized links in the network. In general, the data can be used to specify the 
CPT of each nature node and the CUT for each utility node in the network.  
 
 
7. CONCLUSIONS AND DISCUSSION 
 
In this paper we advocated the use of Bayesian decision networks to explore, analyze and 
predict dynamic transport mode decisions. We argued that transport mode decision choices are 
primarily triggered by a set of key events and critical incidents. We showed how the transport 
mode decision problem could be modeled in the framework of a Bayesian belief and decision 
network. The network represents the causal relationships between the decision, outcomes and 
perceived utilities and allows one to model the direct as well as indirect effects of key events. 
A questionnaire was designed to collect the data needed to specify the conditional probability 
tables and the conditional utility table involved. In the paper we focused on key events such as 
residential career history, work career history, changes in household composition and changes 
in availability of car and public transport passes. Through an Internet-based survey, the 
questionnaire was used to collect the data from a large sample of individuals. Some examples 
showed how the data could be used to estimate conditional probabilities.  

The network model offers a framework for analysis in which direct and indirect effects 
of key events on choice behavior can be estimated and, in that sense, the approach is 
comparable to more quantitative methods of path analysis (i.e., structural equation models). 
Defining the states of a key event in terms of the time ago the last event occurred, the impact 
of history can be measured both at the level of assessments of probabilities (perception) and 
evaluations (preferences). In addition to analysis, the network model can also be used for 
prediction. Algorithms for probability propagation through the network have emerged recently 
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from the combined work of AI, statistics and other disciplines and incorporated in software 
tools for constructing and using the networks. Once the parameters (probabilities and utilities) 
of the network have been specified, such a tool can be used to derive consequences of 
scenarios in terms of frequencies of key events. We hope to report on findings from such 
applications in the near future. 
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Year Respondent 1 Respondent 2 Respondent 3 
Gender 
Year of birth 
Educational level 
Marital status 

Female 
1972 
Middle 
Married 

Female 
1983 
High 
Single 

Male 
1965 
High 
Married 

2004 Change household composition Change home address 
Change car availability 

 

2003    
2002    
2001 Change household composition Change home address 

Change study location 
Change pt-card 
availability 

 

2000   Change home address 
Change work location 

1999    
1998 Change home address 

Change household composition 
  

1997 Change home address 
Change household composition 

  

1996    
1995   Change household composition 

Change work location 
1994 Change work location   
1993   Change work location 
1992    
1991   Change home address 

Change work location 
1990    
1989   Change home address 

Change work location 
1988    
1987   Change home address 

Change work location 1 
Change work location 2 
Change car availability 

1986    
Figure 4: Event histories of three different respondents 
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Table 1: Average number of events per age category 

Age category  
 
Event 

Younger than 
25 years 

 
26-35 years 

 
36-45 years 

Older than 
45 years 

Change of home address 1.15 2.78 4.03 4.54 
Change of household composition 0.10 0.98 2.57 3.41 
Change of work location 0.20 1.42 3.54 3.97 
Change of study location 1.20 1.73 0.59 0.00 
Change of car availability 0.31 0.73 1.17 1.41 
Change of pt-card availability 0.94 1.59 1.39 0.44 
Change in household income 0.12 0.98 1.44 1.88 
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Table 2: Example of results of assessments for safety, privacy, and environmental damage per 

change in household composition 
Period Transportation mode Average score for 

safety 
Average score 

for privacy 
Average score for 

env. damage 
One year ago 
(N=45) 

Car driver 
Car passenger 
Bike 
Bus 
Train 

0.76 
0.74 
0.70 
0.75 
0.80 

0.91 
0.78 
0.77 
0.35 
0.36 

0.46 
0.46 
0.69 
0.54 
0.62 

More than one year ago 
(N==274) 

Car driver 
Car passenger 
Bike 
Bus 
Train 

0.77 
0.73 
0.71 
0.76 
0.79 

0.92 
0.77 
0.80 
0.41 
0.42 

0.43 
0.47 
0.83 
0.55 
0.63 

Never 
(N=245) 

Car driver 
Car passenger 
Bike 
Bus 
Train 

0.75 
0.72 
0.73 
0.78 
0.82 

0.91 
0.76 
0.76 
0.40 
0.44 

0.39 
0.42 
0.78 
0.52 
0.60 
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Table 3: Example of results of assessments of safety, privacy, and environmental damage per 
change in car availability 

Period Transportation mode Average score for 
safety 

Average score 
for privacy 

Average score for 
env. damage 

One year ago 
(N=43) 

Car driver 
Car passenger 
Bike 
Bus 
Train 

0.78 
0.74 
0.73 
0.77 
0.77 

0.89 
0.73 
0.82 
0.39 
0.41 

0.35 
0.37 
0.73 
0.50 
0.57 

More than one year ago 
(N==239) 

Car driver 
Car passenger 
Bike 
Bus 
Train 

0.79 
0.74 
0.73 
0.77 
0.81 

0.94 
0.78 
0.80 
0.40 
0.41 

0.43 
0.48 
0.81 
0.55 
0.63 

Never 
(N=280) 

Car driver 
Car passenger 
Bike 
Bus 
Train 

0.73 
0.71 
0.71 
0.76 
0.80 

0.89 
0.76 
0.77 
0.40 
0.43 

0.41 
0.44 
0.80 
0.54 
0.61 

 
 
 


