

Relational algebra and equational proofs

Citation for published version (APA):
Kogel, de, E. A. (1993). Relational algebra and equational proofs. (Computing science notes; Vol. 9323).
Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/1993

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://research.tue.nl/en/publications/20683d9b-5d5f-4623-9f9c-03b4941ac369

Eindhoven University of Technology

Department of Mathematics and Computing Science

Relational Algebrd and Equational Proofs

by

Eric de Kogel

Computing Science Note 93/23
Eindhoven, July 1993

93/23

COMPUTING SCIENCE NOTES

This is a series of notes of the Computing
Science Section of the Department of
Mathematics and Computing Science
Eindhoven University of Technology.
Since many of these notes are preliminary
versions or may be published elsewhere. they
have a limited distribution only and are not
for review.
Copies of these notes are available from the
author.

Copies can be ordered from:
Mrs. M. Philips
Eindhoven University of Technology
Department of Mathematics and Computing Science
P.O. Box 513
5600 MB EINDHOVEN
The Netherlands
ISSN 0926-4515

All rights reserved
editors: prof.dr.M.Rem

prof.dr.K.M. van Hee.

Relational Algebra and Equational Proofs

Eric de Kogel •

June 30, 1993

Abstract

We show that two concepts involving equational provability can be elegantly
formalized in terms of a relational algebra, equipped with two special-purpose
mappings. We derive some calculus in order to prove that these concepts are
equivalent, and that they are sound and complete.

We illustrate the use of the relational framework by a few examples. We show
how decidability of provability of an equation from a finite set of variable-free
equations, where all equations are variable-free. Then we discuss a method by
Reeves ([3]) to deal with equations in semantic tableaux, that we can now prove
to be complete in a very simple way.

Finally we discuss an equational proof format that is naturally induced by the
relational formulation, and serves as a guideline in finding proofs. The relation
between Reeves' rules and the construction of such proofs is made explicit.

1 Introduction

We present characterizations of equational provability in terms of a relational algebra.
These characterizations are very compact, yet intuitively clear, and they are subject to
formal manipulation. We can in fact easily establish equivalence of different characteri­
zations after deriving some simple relational calculus.

We shall restrict ourselves to equations between terms of first-order logic. In order
to keep the presentation clear we do not discuss the role of variables. As a starting
point of the discussion we take the well-known proof rule of 'replacing equals by equals'
(section 3). This can be formalized in terms of a relational algebra quite easily, yielding
a characterization of all equations that can be proved with this rule. We then go on,
transforming this characterization into a less redundant one.

Our description permits us to show that the problem of proving an equation from a
finite set of equations is decidable, again assuming that all equations are variable-free.

Then we discuss a method by Reeves ([3J) to handle equations in semantic tableaux.
Using the relational calculus we can easily prove it to be sound and complete.

·Co-operation Centre Tilburg and Eindhoven Universities (SOBU)
clo Dept. of Philosophy, Tilburg University, Tilburg, the Nethedands
.-mail koge1Gkub. n1

1

It is shown how the relational charactarization of equational provability naturally
induces a very compact format for actual equational proofs, and also sheds some light on
the heuristics of finding such a proof. It is shown that application of Reeves' rules can
be interpreted as a method of constructing such proofs. Moreover, Reeves' rules in their
original formulation tell what proof steps we are allowed to make, the heuristic guidance
provided by a description in terms of relational algebra also shows what proof steps are
worth trying.

2 Terms, Equations, Interpretations

We define terms, equations and interpretations as usual in first-order logic. We consider
terms without variables only.

2.1 Terms and Equations

We assume that for every natural number n an enumerable set Func,. exists, containing
n-ary function symbols. From these function symbols terms can be built.

Definition 2.1 The set Term of terms is defined to be the smallest set satisfying:

• If c E Funeo, then c() E Term. We shall abbreviate c()to c, and call c a constant.

• If f E Func,. and t., ... , tn E Term, then f(t., ... , tn) E Term.

We shall consider the former requirement to be a special case of the latter. Here we
specified them both, just to give a clear inductive definition.

1 is the outermost function symbol of I(t" ... , tn}. t" ... , tn are the arguments of
f(tlt ... ,tn). 0

Definition 2.2 A term 8 is a sub term of t iff it follows from the following rules.

• Every term is a subterm of itself.

• A subterm of an argument of t is also a subterm of t.

o

Definition 2.3 An equation is an expression of the form 8 == t, where sand t are terms.
o

Remark Note the distinction between the angled brackets () used in terms, and the
parentheses O. This must remind us that the angled brackets and terms are syntactic
objects. Parentheses serve to denote function applications and to avoid ambiguity in
expressions, as usual. For the same reason we distinguish between == and =. 0

2

2.2 Interpretations

Terms are supposed to refer to objects in some 'universe of discourse'. This universe can
be any non-empty set U. What object a term refers to is determined by an interpretation.

Definition 2.4 Let U be a non-empty set. An interpretation I with universe U maps
each n-ary function symbol /, to a function j1 : U" --+ U. I is naturally extended, to
map terms in U:

o

Definition 2.5 The symbol ~ can have three different meanings.

• An equation can be either true or false in an interpretation. II :, t is true in I iff
1(11) = I(t). In this case we write I ~ s :, t. If s :, t is false in I, i.e., 1(11) f I(t),
then we write I IF s :, t.

• If E is a set of equations, then we write I ~ E iff every equation in E is true in I.

• If II :, t is true in all interpretations I such that I ~ E, then we write E ~ II :, t.
We say that s :, t logica.lly follows from E.

o

3 Equational Provability

The intuitive meaning of equality in this context is that we may 'replace equals by equals'
in a term, without changing the interpretation of that term. That is, the original term
and the resulting term have the same interpretation. A proof rule based on this intuition
is the following: Start with a term II. If a subterm of s occurs on one hand of an equation
in E, then we may replace it by the other hand of the equation. Then we can proceed
with the resulting term, and so on, until we obta.in t. If and only if we can obta.in t this
way, we say that we can prove s :, t from E, and we write E f- II :, t.

We shall formalize this in terms of a relational algebra, and then show in theorem 3.2
that E f- II :, t iff E ~ II :, t. The relations in our algebra are subsets of Term x Term,
and if r is a relation, we shall write II [rJ t rather than (lI,t) E r. Further we sometimes
write to [rlJ tl h] t2 instead of to hJ tl /\ tl h] t 2 •

The first useful relation is associated with the set E. The relation itself is called eqnll,
and is defined by

8 [eqnll] t ¢? 8 :, tEE.

Please note that eqnll can be any arbitrary relation, it need not be reflexive, transitive
or symmetric.

Further we define the relation lIubst. II [subllt] t is true iff a subterm of II occurs as
one hand of an equation in E and t is the result of replacing this subterm by the other
hand of the equation. Following the structure of definition 2.2 we can define lIubllt.

3

Definition 3.1 s [subst] t is true iff it follows from the following rules:

• s [subst] t if s [eqns] t or t [eqns] S;

• s [subst] t if sand t have the same outermost function symbol, say I, 1 E Func,.,
i.e., we can write s = f(Sl' ... , sn} and t = l(t1, ... , tn}, and

- for some index i, 1 :s i :s n, a; [aub8t] t;, and

- for all indices i with j # i, 1 :s j :s n, 8j = tj.

Note that 8ubat depends on eqn8. In order to keep the notation compact we shall not
express this dependency explicitly. 0

Let SUb8t· he the reflexive and transitive closure of 8u6at. Hence, 8 [8ub8t*] t is true iff,
for some natural number n, there exist terms to, ... , t,. such that:

s = to [SUb8t] t, [subat] t 2 ••• tn_1 [SUb8t] tn = t.
That is, s [aub8t'J t is true iff E I- s :, t. Note that Sub8t is symmetric, so lJubst·
is an equivalence relation. The proof rule of 'replacing equals by equals' is sound and
complete: every equation that logically follows from E, can be proved this way.

Theorem 3.2 For all terms 8 and t, a [8ub8t·] t ¢} (E 1= 8 :, t).

ProoC(=:-) 'Replacing equals by equals' is obviously a sound rule. Hence,8 [subst·] t =:­
(E 1= 8:' t).

(<=) Suppose that ,(a [aub8t'] t). Then we must prove that there is an interpretation
1 such that 1 1= E and 1 ~ s :, t. 5ub5t' is an equivalence relation, and if we denote the
equivalence class of a term t by ttl, then 1, defined by 1(t) = ttl, is such an interpretation,
with the set of equivalence classes as its universe. It follows from the definitions of 8ubst
and subat· that each equation in E is true in 1, while,s [8ubat'J t is equivalent to
1 ~ s :, t. We have not yet shown that I is indeed an interpretation. To do this,
we must show that, for all function symbols I, the interpretation F is well-defined by
F([t,], ... , [tn]) = [/(t1l •.• , t,.}J. Therefore we must show that

[a,] = [ttl /I ... /I [s"J = [t"J =:- [f (a1) •.. , s,,} J = [f (t" ... , tn)]

which is equivalent to

a, [aubst'] t, /I ... /\ an [aubat'] tn =:- I(a" ... , 8 n } [8ub8t'] I{t" ... , tn }.

In this formulation it will be proved in theorem 5.10.

4 Relational Algebra

Subjects of study are:

• the set Rei of relations on Term x Term,

• the set of mappings Rei ---> Rei.

o

Unless stated otherwise, the word relation refers to an element of Rei, and the word
mapping refers to a mapping Rel ---> Rei.

4

4.1 Elementary Operations

As basic operators on relations we use set union U, and 'matrix multiplication' o. If a
and b are relations, then the relation a 0 b is defined by

8 [a 0 b] t ¢? (3m E Term 8 [a] m [b] t)

o binds stronger than U. So aU b 0 c must be read aU (b 0 c).
Theorems 4.1, 4.2 and 4.3 list a few properties of o. Their proofs are straightforward

and therefore they are omitted.

Theorem 4.1 U is commutative, and 0 distributes over U. That is, for all relations a,
band c

ao(boc) = (aob)oc

(aUb)oc = aocUboc

ao(bUc) aobUaoc

Theorem 4.2 If, for some index set Ind, {ai liE Ind} is a set of relations, then

'(Ui E Ind a;) 0 b = Ui E Ind (ai 0 b),

b 0 (Ui E Ind ail Ui E Ind (b 0 ail.

Theorem 4.3 0 is monotonic, that is,

o

o

o

Definition 4.4 .1 is the empty set . .1 is the identity element of U, and the zero element
ofo. 0

Definition 4.5 id = {(t,t) I t E Term}. That is, id is the identity relation on Term x
Term. id is the identity element of o. 0

Definition 4.6 Define natural powers of a relation a by

o

Definition 4.7 As a convenient abbreviation we introduce, for every relation a

a· := id U aU a2 U a3 U ... = Un E IN a".

Hence, a' is the reflexive, transitive closure of a. o

5

Theorem 4.8 For all relations a and b, (a U b)' = (b' 0 a)' 0 b'.

Proof Suppose that 8 [(a U b)'J t is true, so there is an n E IN such that 8 [(a U b)"J t.
Find relations rt, ... ,r" E {a,b} such that 8 h 0 ..• or"J t. Writing out the sequence
rt, ... , r" symbolically we get a string of n characters, each character being an 'a' or a 'b'.
Suppose the string contains m 'a's, then obviously

rIo ... 0 r" ~ r 0 a 0 ... 0 b' 0 a,ob' = (b' 0 a)m 0 bO.
y

m times

This proves (a U b)* ~ (b' 0 a)' 0 b'.
similar argument.

The converse inclusion can easily be shown with a
o

4.2 Least Fixpoints

We often define a relation r by an inductive definition like: '8 [rJ t is true iff this follows
from the following rules , . .'. It will turn out that the rules that follow can often be
summarized as T(r) ~ r, where T is a mapping. Now there may be many relations r'
fulfilling T(r') ~ r'. Let us collect these solutions in the set S = {r' I T(r') ~ r'}, The

, definition of r then involves two requirements:

• rES, and

• 8 [rJ t is true iff for all r' E S 8 [r'J t is true.

It is not hard to see that this means that r is the 'smallest' element of S, where 'smallest'
refers to the partial ordering ~. Under certain conditions, that are always fulfilled in
those cases we are interested in, there will be such a smallest element, hence r is well·

, defined. Moreover, r will be the smallest relation satisfying r = T(r). Such an r is called
the least fixpoint of T. Hence, some theory about least fixpoints is interesting for us and
we discuss it here. All theorems and definitions in this subsection can also be found in
in [2J, though we adapted them to our purposes.

Definition 4.9 A relation r is a fixpoint of a mapping T iff r = T(r). o

Definition 4.10 A relation r is the least fixpoint of a mapping T iff r is a fixpoint of
T, and if r' is a fixpoint of T, then r ~ r'. The lea.st fixpoint of T is denoted p.T. 0

Definition 4.11 A mapping T is monotonic iff for all relations rl and r.,
rl ~ r2 =? T(rt} ~ T(r2)'

Theorem 4.12 Every monotonic mapping T has a least fixpoint.

o

Proof Define S = {r I T(r) ~ r}. Note that S is not empty: If T = Term x Term,
then T(T) ~ T. Let 1= nr E S r.

For a.ll rES we have T(r) ~ r and I ~ r. Monotonicity of T yields T(/) ~ T(r) ~ r.
So we find (Vr E S T(/) ~ r), which equivales T(/) ~ I. Monotonicity yields T(T(/)) ~
T(/), hence T(/) E S and therefore I ~ T(l).

6

All this implies I = T(I). As S contains all fixpoints of T, and I is smaller than every
element of S, I = /LT. 0

From the proof of theorem 4.12 we can immediately deduce:

Theorem 4.13 1fT is a monotonic mapping, then /LT is the least solution r ofT(r) ~ r.
In other words, for all relations r

T(r)~r=>/LT~r.

o

Theorem 4.14 If Sand T are monotonic mappings and S(r) ~ T(r) for all relations
r, then /LS ~ /LT.

Proof We find that S(/LT) ~ T(/LT) = /LT. Since /LS is the smallest relation r such that
S(r) ~ r, we find /LS ~ /LT. 0

Definition 4.15 A set R of relations is directed iff for every finite subset {rt, ... , rn} of
R there is an r E R such that r, ~ rand ... and rn ~ r. Note that R must be non-empty.
o

Theorem 4.16 Let R = {r" ... , Tn} be a finite, nonempty set of relations such that
r, ~ r2 ~ ... ~ rn or let R = {rO,r"r2, ... } be an enumerable set of relations such that
ro ~ r, ~ r2 ~ Then R is a directed set of relations.

Proof Let {ril' ... , Ti_} be a finite subset of R. If N is the largest number in {it, ... , im },

then ri, ~ rN and ... and ri_ ~ rN. 0

Definition 4.17 A mapping T is continuous iff for every directed set of relations R,
T(Ur ERr) = Ur E R T(r). 0

Theorem 4.18 A continuous mapping is also monotonic.

Proof Consider relations r, and T2 such that r, ~ r2, i.e., r2 = r, Ur2. {r" r2} is directed
(theorem 4.16). Continuity of T yields Th) = T(r, U r2} = T(r,} U T(r2} and hence,
T(r,) ~ T(r2}. 0

Definition 4.19 We define natural powers of a mapping F by:

Theorem 4.20 Let T be a continuous mapping, then

• .1 ~ T(.l) ~ T2(.l) ~ T3(.l) ~ ... ~ /LTj

• /LT = Un E IN Tn(.l).

7

Proof ..L ~ T(..L) ~ T2(..L) ~ Ta(..L) ~ ... ~ p.T follows easily from the monotonicity of
T and the obvious facts ..L ~ T(..L) and ..L ~ p.T.

{Tft(..L) I n E IN} is a directed set of relations (theorem 4.16); the continuity of T
implies

=

=

..L U (Un E IN Tn+l(..L))

= {since ..L = TO(..L)}
Un E IN Tn(..L).

So Un E IN Tn(..L) is a fixpoint of T. It is also the least fixpoint: We already saw that
(Vn E IN Tn(..L) ~ p.T) and hence, Un E IN Tn(..L) ~ p.T. 0

Theorem 4.21 If T is a continuous mapping and a is a relation such that a ~ p.T, then
p.T = Un E IN Tn(a).

Proof For all n E IN we can prove Tn(l.) ~ Tn(a) ~ p.T, using the monotonicity of T
and ..L ~ a ~ p.T. Using theorem 4.20 we find

and we conclude that p.T = Un E IN Tn(a). o

4.3 Some Useful Fixpoints

The previous section taught us that an inductive definition of a relation r of the form
'8 [r] t is true iff this follows from the following rules .. .' is often equivalent to the
definition r = p.T for an appropriately chosen monotonic mapping T. We shall often
write this definition as

r := T(r)

which we call a defining equation for r. In the appendix it is shown that all mappings
that we shall actually use are continuous. Hence, we can use the 'fixpoint construction'
of theorems 4.20 and 4.21. A few important fixpoint definitions, and the relations they
actually define, will now be discussed.

Notation We use the symbol ~ to avoid introducing new names for mappings. For
instance, instead of 'the mapping H defined by H(r) = F(r) U G(r)' we shall simply
write 'the mapping r ~ F(r) U G(r)'. 0

Theorem 4.22 Let a and b be arbitrary, but fixed, relations.

1. p.(r 1-+ a U b 0 r) = b' 0 a.

8

2. JL(r aU rob) = a 0 b-.

3. 1'(r a U rob 0 r) = (a 0 b)- 0 a.

Proof We only discuss 1. One can prove 2 and 3 analogously.
According to the appendix, T = r a U b 0 r is a continuous mapping; hence, we

may construct JLT as in theorem 4.20: p.T = Un E IN Tn(..L). With induction one
can prove Tn+l(..L) = aU boa U ... U bn 0 a = ui E {O, ... ,n} (bi 0 a), and hence,
JLT = Un E IN (bn 0 a) = (Un E IN bn) 0 a = b- 0 a. Theorem 4.2 justifies the second
~~~ 0 

Example 4.23 We reconsider definition 2.2 of the notion subterm. If we define the 
relations Bubterm and argument by 

• B [subtermJ t iff 8 is a subterm of t, 

• 8 [argument] t iff 8 is an argument of t, 

then definition 2.2 happens to define subterm in terms of argument: A term II is a 
subterm of t iff it follows from the following rules: 

• Every term is a subterm of itself, hence, id ~ subterm. 

• A subterm of an argument of t is also a subterm of t. Hence, if there is a term t' 
such that s [subtermJ t' [argument) t, then s [subtermJ t. For short: 8ubterm 0 

argument ~ subterm. 

So subterm is the smallest relation including id and 8ubtermoargument, i.e., lIubterm = 
JL(r ..... id U r 0 argument). According to theorem 4.22 (part 2) Bubterm = id 0 

argument- = argument-, clearly showing that sub terms of tare t, arguments of t, 
arguments of arguments of t, etc .. Note that the same relation 8ubterm would have been 
defined by subterm = JL(r ..... id U argument 0 r), corresponding to a definition in which 
the second rule reads 'an argument of a subterm of t is also a subterm of t'. 0 

Unfortunately we shall encounter more complex fixpoint definitions than the ones in 
theorem 4.22, basically because the relations a and b mentioned there are replaced by 
relations depending on the relation that is being defined. We discuss such definitions in 
the next theorems. 

Theorem 4.24 Let T : Rei x Rel ---> Rel be such that for every relation a, the mappings 
r ..... T(a,r) and r ..... T(r, a) are monotonic. Then JL(r ..... T(r,r)) = JL(rl ..... JL(r2 ..... 
T(rl' r2))). 

Proof Define the relation a = JL(r ..... T(r,r)) and the mapping F = (rl ..... JL(r2 ..... 
T(rt, r2))). Finally let b = JLF. So we must prove b = a. 

Firstly, b = F(b) = p.h ..... T(b,r2)) = T(b,b). So b is a fixpoint ofr ..... T(r,r), and, 
since a is the least fixpoint of that mapping, a ~ b. 

Secondly, a = T(a,a), so a is a fixpoint of r2 ..... T(a,r2). Now, F(a) is by definition 
the least fixpoint of that mapping, so F( a) <;; a. According to theorem 4.13, this implies 
JLF = b <;; a.· 0 

9 



Theorem 4.25 Let A and B be monotonic mappings. Then 

1. p(r ...... A(r) U B(r) a r) = p(rt ...... Bh)' 0 Ah)), 

2. p(r ...... A(r) Ur a B(r)) = ph ...... A(rt) a Bh)'), 

3. p(r ...... A(r) U r a B(r) a r) = p(r, I-> (A(rt) a B(rt))' a Ah)). 

Proof 1 follows easily from theorem 4 .24, defining T by 

Then p(r2 ...... T(rt, r2)) = B(rt)' 0 A(rt), according to theorem 4.22. 
and 3 analogously. 

5 Back to Equational Proofs 

One can prove 2 
o 

Now we are ready to analyze the topics introduced in section 3 by means ofthe concepts 
of relational algebra. 

First we want to formalize definition 3.1, in which the relation subst is defined, in 
terms of the relational algebra. U nfort unately, we have no means yet to say anything 
about the arguments of terms, as is required in the second rule of definition 3.1. Hence, 
we define a special-purpose mapping Pick. 

Definition 5.1 For every relation r and terms sand t, s [Pick(r)] t is true iff 

• sand t have the same outermost function symbol, say f E Func.., i.e. we can 
write s = f(Sb ... ,Sn) and t = f(tt, ... ,tn). Further, 

• for exactly one index i, 1 :<::: i :<::: n, s, [r] t, is true, and finally 

• for all indices j with j oj i, 1 :<::: j :<::: n, Sj = tj. 

o 

We shall define the relation eqns as the symmetric closure of eqns, i.e., s [eqns] t iff 
s [eqns] t or t [eqns] s. Then we can restate definition 3.1 as: S [subst] t is true iff it 
follows from the rules's [subst] t if s [eqns] t' and's [subst] t if s [Pick(subst)] t'. This 
yields the following defining equation for subst: 

subst := eqns U Pick(subst). 

Remark One can prove subst = Un E IN Pickn(eqns). We shall not need this charac­
terization however. 

Now we have a simple and compact characterization of those equations that logically 
follow from E. Yet it has a disadvantage, as an example will show. 

10 



Example 5.2 Show that al = b1 ,a2 = b2 1= /(al,a2) = /(b .. b2 ). In this case E = 
{(aI, b.), (a2, b2)}, and we must prove /(al,a2) [subst-] /(b .. b2). This is not hard to do: 

But we might as well have written 

These two 'proofs' are essentially the same of course, but the characterization by subst­
does not bring this to light so clearly. 0 

In the example it is obvious that we can obtain /(b .. b2) from /(a .. a2) by replacing both 
arguments by a new term and the order in whiclt we do so doesn't matter. 

In general, since subst = eqns U Pick(subst), we can use theorem 4.8 to ob­
tain subst- = (eqns U Pick(substW = (Pick(subsf)- 0 eqns)- 0 Pick(subst}-. Now 
s [Pick(subst)] t is true, if t can be obtained by replacing a subterm of an argument of s 
by an appropriate term. Hence Pick( subst)- refers to an arbitrary number of such sub­
stitutions. The example suggests that the order of two such substitutions is irrelevant, if 
they apply to arguments on different positions. The following theorem makes this more 
explicit. 

Theorem 5.3 For all relations r, J(SI, ... ,Sn} [Pick(r)-] /(t ..... ,tn) is true iff SI [r-] tl 
and ... and Sn [r-] tn. 

Proof Suppose that /(SI, ... , sn) [Pick(r )N] J(t .. ... , tn} is true for some natural number 
N. This means that /(SI, ... , sn) can be transformed into J(t1 , ••• , tn} by N times replacing 
an argument by another term, such that whenever we replace a term s' by t', s' [r] t' 
holds. Now let the total number of replacements of an argument on the i-th position 
(1:::; i :::; n) be Ni • Hence, Nl + ... + Nn = Nand SI [rN,] tIll ... II Sn [rNa] tn. 

We can similarly show that SI [rN,] tl II ... II Sn [rNa] tn implies that 
J(SI, ... ,Sn} [Pick(r)N] /(t ..... ,tn), for N = Nl + ... + Nn. 0 

This can be expressed more easily if we define another special purpose mapping. 

Definition 5.4 Define the mapping Args. For every relation r, terms 8 and t, 
s [Args(r)] t is true iff 

• sand t have the same outermost function symbol, say / E Func,., i.e., we can 
write s = /(SI, ... ,Sn) and t = /(t ..... ,tn). Further, 

• SI [r] tl II ... II Sn [r] tn 

Note that c [Args( r)] c is true, if c E Funco. o 

Theorem 5.3 can now be restated as: 

Theorem 5.5 For all relations r, Pick(r)- = Args(r-). 

11 



Proof This follows from theorem 5.3, if we note that s [Pick(r)·] t can only be true if 
sand t have the same outermost function symbol: 

• Pick(r)O = id, and if s lid] t, sand t must of course have the same outermost 
function symbol. 

• For n 2: 1, it easily follows from the definition of Pick that s [Pick(r)n] t can only 
be true if sand t have the same outermost function symbol. 

Our characterization of subst· can now be further rewritten: 

subst· = (Pick( subst t 0 eqns t 0 Pick( subst t 
(Args(subst·) 0 eqnst 0 Args(subst·). 

o 

This yields a nice characterization of subst., since in theorem 5.9 we shall prove that 
subst· is not just a fixpoint of r I-> (Args(r)o eqns)·oArgs(r), but even the least fixpoint 
of that mapping. We shall name this fixpoint pr, a mnemonic for provable equation. 

Definition 5.6 pr := (Args(pr) 0 eqns)· 0 Args(pr). o 

Finally we show that pr is indeed a good characterization of provable equations. First 
we prove two convenient lemmas. 

Lemma 5.7 id is the only fixpoint of Args. 

Proof Define the depth It I of a term t by 

In particular, we define iel := 1 iff c E Funeo. 
Let r be a fixpoint of Args. Then, s [r] t equivales s [Args(r)] t, and hence can only 

be true if sand t have the same outermost function symbol. If sand t have different 
outermost function symbols, then neither s [r] t nor s lid] t. 

By induction on N we prove that if lsi, It I ~ N, then s [r] tiff s = t. 

• If lsi = It I = 1, then sand t are constants, and, as they must have the same 
outermost function symbol, we find s = t. 

• Induction hypothesis: if lsi ~ Nand It I ::; N, then 8 [r] tiff s = t. 

Suppose If(sl, ... ,sn)1 ::; N + 1 and If(tll ... ,tn)1 < N + 1. Hence, 
1811, ... , ISnl, Itll, ... , Itnl ::; N. Then 

f(Sll .. ·,Sn) [r] f(tll ... ,tn) 
¢} {r = Args(r)} 

f(Sll···,Sn) [Args(r)] f(t1, ... ,tn) 

12 



8, [r] t, " ... " 8 n [r] tn 
{o} {Induction hypothesis} 

8, == t, " .. , " 8 n == tn 
{o} 

f(s" ... ,sn) == f(t" ... ,tn) 

We conclude that 8 [r] t iff 8 == t for all terms sand t, so r == id. Note that s, == 
t, " ... "an == tn {o} f(a" ... , an) == f(t" ... , tn) shows that id is indeed a fucpoint of Args. 

o 

Lemma 5.S id ~ pro 

Proof Let T be the mapping r t--> (Args(r) 0 eqns)' 0 Args( r), so pr == I-'T. Now we find 
that for all relations r 

Args(r) 

(Args(r) 0 eqns)O 0 Args(r) 

c 
(Args(r) 0 eqns)' 0 Args(r) 

T(r). 

So, theorems 4.14 and 5.7 yield id == I-'Args ~ I-'T = pro o 

Theorem 5.9 pr == subst·. 

Proof First consider a fixpoint construction of aubst. Let S be the mapping r ...... eqns U 
Pick(r), so aubat == I-'S. S is continuous and if subtn == sn(.1), then, by theorem 4.20, 
subat == I-'S == Un E INsn(.L) == Un E INsubstn. 

Because r >-+ r' is continuous, and {sUbstO,8ubst"subst2""} is a directed set of 
relations it follows that sub st' == (Un E INsubstn)· == Un E INsubst~. 

Now, consider a fixpoint construction of pro Let P be the mapping r --> (Args(r) 0 

eqns)' Args(r), so pr == pP. Then T is continuous, and by lemma 5.8, id ~ /SP == pro 
Define prn == pn(id). Then, by theorem 4.21 pr == I-'P == Un E INP"(id) == Un E INpr". 

So we have subst· == Un E IN 8ub8t~ and pr == Un E IN prA' If we prove that 
subst~ = prn for all n E IN, then we are done. We do so by induction: 

• pro == id = .1' = 8ubst~ 

• Induction hypothesis: prn == subst~. 

• Induction step. prn+! = P(prn) = S(substn)· == subst~+" since 

= 

13 



(Args(prn) 0 eqns)' 0 Args(prn) 

= {induction hypothesis} 

(Args( subst~) 0 eqns)' 0 Args( subst~) 

{theorem 5.5} 

(Pick( substn)' 0 eqns)' 0 Pick( substn)· 

= {theorem 4.8} 

(eqns U Pick( substn)}' 

We remark for later use that substo ~ subst, ~ subst2 ~ ... ~ subst implies 
subst~ ~ substi ~ subst; ~ ... ~ subst' and hence, pro ~ pr, ~ pr2 ~ ... ~ pro 0 

Reconsidering example 5.2, we find that f(a" a2) [prj f(b" b2) is true since 
f(a" a2) [Args(pr)] f(b" b2 ). There is no need to specify whether a, [prj b, is proved 
earlier or later than a2 [prj b2. 

As a by-product, we can now complete the proof of theorem 3.2 in a relatively easy 
way: 

Theorem 5.10 For all f E Funcn, and terms s" ... , Sn, t J , ••• , tn: 

Proof The theorem is equivalent to Args(subst') ~ subst'. Using subst' = pr this can 
be proved immediately: 

Args(pr) ~ (Args(pr) 0 eqns)' 0 Args(pr) = pro 

o 

6 An Application: Decidability 

It is well-known that one can decide whether or not 

A very simple decision procedure is discussed in [5]. Let T be the set of terms occurring in 
this problem, namely so, to, ... , Sn, tn and all of their subterms. Let idr = {(t, t) I t E T}. 

Then, for every relation r, s [idroroidr ] t equivales s [r] tAs,t E T. So, idroroidr 
is the restriction of r to TxT. As an abbreviation we write [r]r instead of idr 0 r 0 idr . 

For instance, eqns = [eqns]r, since s [eqns] t already implies that s, t E T. Further, 
[Args(r)]r = [Args([r]r)]r, since s [[Args(r)]r] t equivales s [Args(r)] t A s,t E T, and 
if 8 and t are in T, then so are all of their arguments. 

A more complicated property is stated in the next lemma. 

14 



Lemma 6.1 For all relations a,b,e, [tao [bl r )· oelr = ([alro b)· 0 [elr. 

Proof 

= 

idr 0 (a 0 idr 0 b 0 idr )· 0 e 0 idr 

{see remark below} 

(idr 0 a 0 idr 0 b)· 0 idr 0 e 0 idr 

([alr 0 W 0 [elr. 

Remark: We use an equality of the form idr 0 (r 0 idr)· = (idr 0 r)· 0 idr. The reader 
easily verifies that for all n E IN, idr 0 (r 0 idr)n = (idr 0 r)n 0 idr. 0 

Now we consider the fixpoint construction according to theorem 4.21, also used in the 
proof of theorem 5.9, pr = Un E IN prn, where 

The restriction to TxT of the relations involved in this construction is discussed in the 
next theorem. 

Theorem 6.2 [prn+llr is a function of [prnlr. 
Proof 

[(Args(prn) 0 eqns)· 0 Args(prn)Jr 

{eqns = [eqnslrl 
[(Args(prn) 0 [eqnslr)· 0 Args(prn)Jr 

= {lemma 6.1} 

([Args(prn)lr 0 eqns)· 0 [Args(prn)lr 

= {[Args(prn)Jr = [Args([prnJr)lrl 
([Args([prnlr) 0 eqns)· 0 [Args([prnlr)Jr. 

o 

Now we have pro <;; pr, <;; pr2 <;; •.. <;; pr (see the remark at the end of the proof of 
theorem 5.9) and hence, 

Since there are only finitely many relations on TxT, a.nd [prn+,lr depends on [prnJr 
only, we find that there must be an N such that 

15 



Here rl C r2 means that rl ~ r2 and rl of r2' Assume that there are M terms in T. For 
all equivalence relations r, let Irl be the number of equivalence classes on T with respect 
to r. Then we find Iprol = M, as pro = id, and for all n we find Iprnl ~ Iprn+ll. In fact, 
if [prnlr C [prn+dr, then Iprn/ > Iprn+l/' Of course there will always be at least one 
equivalence class, so /prN / ~ 1, and we find 

Obviously the maximum value for /pr,,/ is M - n, and, as /prN/ must be greater than, or 
equal to, 1, we find that the maximum value for N is M - 1. 

If E contains only finitely many equations, one can of course construct the equivalence 
classes on T with respect to prn explicitly, and thus decide whether or not E 1= So == to. 
The method described in [5J can be proved to do just that. 

Example 6.3 Let E = {a == f(a)} and prove that E 1= a == f(f(a)). So, T = 
{a,f(a),f(f(a))} and T contains M = 3 elements. The reader easily verifies that the 
equivalence classes on Tare 

• {a}, {f(a)}, {f(f(a))} with respect to pro, 

• {a,f(a)}, {f(f(a))} with respect to prl, 

• {a,f(a),f(f(a))} with respect to pr2, and [pr2Jr = [prJr. 

In this case we find the maximum value for N which is M - 1 = 2. o 

7 An Application: 
Equality in Semantic Tableaux 

In his paper [3J, Reeves proposes to extend the theorem proving method based on se­
mantic tableaux, tableaux method for short, with rules to deal with equations. We shall 
discuss this method only as far as equality is concerned, and, in theorem 7.3, recog­
nize our characterization of equational provability in it. For detailed discussions of the 
tableaux method see [1] or [4]. 

I Definition 7.1 A sequent S is a finite set of signed equations. A signed equation is 
an equation labeled with a + or a -. Hence, +s == t and -s == t are signed equations. 
An equation labeled with a + is a positive equation, an equation labeled with a - is a 
negative equation. A sequent is satisfiable iff there is an interpretation in which every 
positive equation is true, and every negative equation is false. 0 

The tableaux method is a refutation method, hence we hope to show that a sequent is 
not satisfiable. To do so, so-called tableau rules are given. If we can conclude that a 
sequent is not satisfiable by means of these rules, we say that the sequent closes. Reeves 
defines the following rules concerning equality: 

16 



rule 1: S closes if S contains a negative equation of the form -t = t, where t may be 
any term. 

rule 2: S closes if S contains a negative equation of the form - f (81, ••• , 8 n ) = f (t1, ... , tn), 
and the sequents S U {-SI = t1 } and ... and S U {-sn = tn} all close. 

rule 3: S closes if S contains a negative equation -s = t.and a positive equation +s' = t' 
(or a positive equation +t' = 8') and the sequents S U {-8 = s'}, S U {-t' = t} 
both close. 

All rules happen to have the form'S closes if the sequents S U {-SI = tt} and ... and 
S U {-sn = tn} all close, under certain conditions'. (In rule 1 n = 0, in rule 2 n is 
the arity of a function symbol, and in rule 3 n = 2.) We call S the input sequent, the 
S U {-80 = to} are the output sequents. 

Every rule involves exactly one negative equation in the input sequent, and every 
output sequent contains the same positive equations as the input sequent. Then it is 
easily seen that, loosely speaking, a sequent closes iff at least one negative equation 
is individually responsible for this. More formally, if ST is a set of positive equations 
then the sequent ST U {-SI = tt, ... , -Sn = tn} closes iff at least one of the sequents 
ST U {-SI = t 1}, ... , ST U {-sn = tn} closes. This is a good starting point for a 
formalization in terms of the relational algebra. 

Choose a fixed arbitrary set ST of positive equations. ST is represented by the relation 
eqns: s [eqns] t is true iff +s = tEST. As before eqns denotes the symmetric closure 
of eqns. Further we define the relation pr': s [pr'] t is true iff the sequent ST U {-s = t} 
closes. As the reader might expect, pr' will turn out to be equal to pr. 

We translate the tableau rules to a definition of pT'. Consider rule 3: 

rule 3: ST U {-s = t} closes if ST contains a positive equation +s' = t' (or a positive 
equation +t' = s') and the sequents ST U {-a = a', -a = t}, ST U {-t' = t, -8 = t} 
both close. 

Translating this literally, using that ST U {-al = tt, -a2 - t2} closes iff 81 [pr'] tl V 
a2 [pr'] t2 we obtain 

rule 3: s[pr'] t if there are terms a' and t' such that s' [eqna] t' and (a [pr'] t V a [pr'] s') 
and (s [pT'] tv t' [pr'] t). 

If we leave out the tautological conditions we get: 

rule 3: a [pr'] t if there are terms a' and t' such that 8 [pr'] a' [eqn8] t' [pr'] t. That is, 
pr' 0 eqns 0 pr' ~ pr' 

Translating all rules this way we get the following definition of pr': 

Definition 7.2 a [pr'] t is true iff it follows from the following rules: 

rule 1: id ~ pr'. 

rule 2: Arga(pr') ~ pr'. 

17 



rule 3: pr' 0 eqns 0 pr' c:;; pr'. 

Hence, pr' is defined by pr' := id U Arga(pr') U pr' 0 eqna 0 pr'. o 

Now we can prove pr' = pr, and then the completeness of Reeves' rules immediately 
follows. 

Theorem 7.3 pr' = pro 

Proof In definition 5.6 pr is defined by pr = p(r ...... (Args(r) 0 eqns)* 0 Args(r)). 
According to theorem 4.25 this is equivalent to pr = p( r ...... Args( r) U r 0 eqns 0 r). 
Lemma 5.8 states that id c:;; pr, so, pr might as well have been defined by pr = p(r ...... 
id U Arga(r) U r 0 eqna 0 r). Since pr' is defined by the same equation, we conclude 
~=~. 0 

Theorem 7.4 Reeves'rules are sound and complete. That is, a sequent closes iff it is 
not satisfiable. 

Proof If the sequent ST U SF, SF = {-al = t l , ... , -an = tn}, does not close, then 

Since pr = aubat*, and there is an interpretation I such that I F= s = t equivales 
s [subat*J t (see the proof of theorem 3.2), we find that all equations in ST are true in I, 
while those in SF are false. 

On the other hand, if ST U SF does close, then at least one of the negative equations 
follows from the positive equations. Hence, it is impossible that all positive equations 
are true, while all negative equations are false. 

Thus, ST U SF is satisfiable iff it docs not close. 0 

8 Actual Proofs 

Until now we have only discussed equational provability, while it is important of course 
to give actual proofs. Fortunately, the definitions of pr almost immediately induce a 
very compact proof format, which is also a guideline in finding such proofs. 

As an example the definition of pr according to Reeves' rules is discussed here: pr := 
idU Arga(pr) U pr 0 eqns 0 pro Assume that s [prj t is true, because s [Args(pr)J t is. In 
that case for some n and some n-ary function symbol f we can write s = f(st, ... , sn) and 
t = f(t 1 , ••• , tn}. Assume there are proofs PI, "',Pn for 81 [prj tl, ... ,an [prj tn, respectively. 
Now we propose to consider f(Pl, ... ,Pn} as a proof for a [Arga(pr)J t. Note that this 
implies that each term t is a proof for t [id] t, if id is considered to be defined as a fixpoint 
of Args. 

Another possibility is that s [prj t is true because a [pr 0 eqns 0 ~J t is, in which case 
there are terms s' and t' such that s [prj a' [eqnaJ t' [prj t. There will be a proof p for 
s [prj a' and a proof q for t' [prj t, and p and q are 'glued' together by an equation. We 
define p = q to be a proof for a [prj t indicating this. 

18 



We shall always identify proofs (PI = P2) = P3 and PI = (P2 = P3), and write 
PI = P2 = P3 in both cases. All proofs for s [pr] t yielded by the definition will then be 
of the form 

Po= .. ·=P; 

where there are terms S=So, to, ... , s;, t;=t such that each pj is a proof for 
Sj [Args(pr)] tj, and Pj is linked to PHI by an equation in E, that is, Sj [eqns] tj+1' 

It is noteworthy that this description directly reflects the definition of pr by pr := 
(Args(pr) 0 eqns)" 0 Args(pr). 

Example 8.1 Consider the problem of finding a proof of f(e) = g(c) from E = {a = 
b,c = d,J(a) = g(c),b = f(b),e = g(d)}. (The example is also discussed in [3]. It is 
originally due to [5].) We start with a framework of this proof, that we denote 

f(e)oo· g(c). 

We can obviously not have f(e) [Args(pr)] g(c) because f -# g, so we have to find terms 
sand t, such that s [eqns] t. If proofs p and q can be found for f(e) [pr]s and t [prj g(c), 
respectively, then p = q is a proof for f(e) [prj g(c). As a framework for p we write 
f(e)··· s, and as a framework for q we write t··· g(c). So, the framework for the entire 
proof becomes f(e) ... s = t··· g(c). 

To direct the search, we shall assume that p is a proof for f(e) [Args(pr)] s. In that 
case p = q will be a proof for f(e) [Args(pr) 0 eqns 0 prj g(c). This corresponds to a 
definition of pr by pr := id U Args(pr) U Args(pr) 0 eqns 0 pr, which is equivalent to 
the other definitions of pr we have discussed, as can be proved using lemma 5.8 and 
theorem 4.25. 

This leaves two possibilities for the choice of sand t. Either s = f(b) = band t = b 
or s = f(a) and t = g(c). The first possibility does not lead to a proof, so we develop 
the second one. It yields the framework 

f(e) ... f(a) = g(c) ... g(c). 

So the framework for p is f(e) ... f(a). We wanted p to be a proof for 
f(e) [Args(pr)] f(a), so if there is a proof p' for e [prj a, then p = f(p') for which 
f(e··· a) is the framework. The framework g(c) ... g(c) can immediately be completed 
to the proof g(c). This yields the framework 

f(eoo. a) = g(c). 

If we proceed the same way we can find a proof with the following steps: 

f(eoo·e =g(d)oo.a) =g(c) 
f(e = g(d)··· g(c) = f(a) ... a) = g(c) 

f(e = g(doo ·c) = f(a)oo. f(b) = boo·a) = g(c) 
f(e = g(doo. d = coo. c) = f(aoo. b) = boo. b = a .. · a) = g(c) 

f(e = g(d = c) = f(aoo.a = boo.b) = b = a) = g(c) 
f(e = g(d = c) = f(a = b) = b = a) = g(c). 

19 



The proof that is obtained is f(e == g(d == c) == f(a == b) == b == a) == g(c). 
Note how we can still recognize in this proof the principle of 'replacing equals by 

equals'. Reading it from left to right it simply tells us to start with f(e), replace e by 
g(d), replace d by c, etc. in order to finally obtain g(c). 

It is not so hard to implement a proof search procedure (in Prolog, for instance), that 
finds proofs along these lines. We shall address this topic again in section 9. 0 

Example 8.2 The way a proof was obtained in example 8.1 can immediately be trans­
lated into a way to show that the sequent ST U {- f(e) == g(c)}, where ST = {+a == 
b,+c == d,+f(a) == g(c),+b == f(b),+e == g(d)}, can be closed by means of Reeves' rules. 

First we apply rule 3 with respect to + f(a) == g(c) and - f(e) == g(c), yielding the 
two sequents 

ST U {- f(e) == g(c), - f(e) == f(a)} 
ST U {- f(e) == g(c), -g(c) == g(c)} 

Note that the negative equations that are added to the sequent correspond to the empty 
spaces in the framework f(e) ... f(a) == g(c) ... g(c). 

The second sequent is immediately closed by rule 1, so we consider the first sequent, 
and apply rule 2 to - f (e) == f (a). This corresponds to the replacement ofthe framework 
f(e) ... f{a) by f(e· .. a), and yields the following sequent: 

ST U {- f{e) == g(c), - f(e) == f(a), -e == a} 

In this way the entire derivation of a proof in example 8.1 can be translated in terms of 
Reeves' rules. 0 

9 Discussion 

We are interested in equational proofs, since we wish to extend an existing tablea\!x based 
theorem prover, implemented in Prolog (see [4]), with rules to deal with~Y. In fact 
we have already implemented a simple prototype of such an extended theorem prover. 
In this prototype we find the relation pr implemented in a straightforward manner. Only 
slight adaptations were necessary to cope with the use of logic variables, and to prevent 
the theorem prover from getting into infinite loops. Having the proof search guided by 
the definition of pr, more or less as it happens in example 8.1, has the advantage of 
being goal directed, as the theorem prover attempts to complete the framework of a 
proof, whereas this proof can be output when it is completed. 

Future research will aim at further improving the extended theorem prover, such that 
it is provided with better heuristics. An interesting issue in this respect is that a simple 
Knuth-Bendix-like completion procedure, completing a finite set of equations, can also 
be described in terms of the relational algebra. We hope to be able to generalize this 
description to cope with the use of logic variables in the tableaux method. We hope to 
report on this subject in a forthcoming paper. 

20 



A Appendix: Continuity 

Theorem A.I All mappings that we can construct using the operators we defined, are 
continuous and hence monotonic. We specify this: 

• For every relation a, the constant mapping r >--> a is continuous. 

• The mapping r I--> r is continuous. 

• If F and G are continuous mappings, then so are 

r I--> F(r)UG(r), 
r I--> F(r) 0 G(r), 

r >--> F(G(r)). 

• If:F is a set of continuous mappings, then r I--> UF E :F F(r) is also continuous. 

• Pick and Args are continuous. 

Proof We shall discuss a few examples. Let R be a directed set of relations. 

• Let F and G be continuous mappings, then r I--> F(r) 0 G(r) is continuous. 

= 

F(Ur ERr) 0 G(Ur ERr) 
{F and G are continuous} 

(Ur E R F(r)) 0 (Ur E R G(r)) 
{theorem 4.2, rename dummies} 

Urt,r2 E R F(rt) 0 G(r2) 
{see remark below} 

Ur E R F(r) 0 G(r) 

Remark: R is directed, so for the subset {rt,r2} of R there is an r E R such 
that rt <:;; rand r2 <:;; r. Monotonicity of F and G implies F(rt) <:;; F(r) and 
G(r2) <:;; G(r). Theorem 4.3 implies F(rt) 0 G(r2) C;; F(r) 0 G(r). 

• Let F and G be continuous mappings, then r I--> F(G(r)) is also continuous. 
G( R) = {G( r) IrE R} is also a directed set ofrelations, since all its finite subsets 
can he written as {G(rt), ... ,G(rn)}' where {rt, ... ,rn} C;; R. Since R is directed, 
there is an r E R such that rt C;; r /I ... /I rn C;; r. Since G is monotonic this implies 
G(rt} <:;; G(r) /I ... /\ G(rn) C;; G(r). 

= 

F(G(Ur ERr)) 
{G is continuous} 

F(Ur E R G(r)) 

21 



F(Ug E G(R) g) 

= {F is continuous, G(R) is directed} 

Ug E G(il) F(g) 

= 

Ur E R F(G(r)) 

• If:F is a set of continuous mappings, then r I--> UF E :F F(r) is also continuous. 

= 

UF E :F F(Ur ERr) 
{each F is continuous} 

UF E :F (Ur E R F(r)) 

Ur E R (UF E:F F(r)) 

• Pick is continuous. For simplicity we shall prove this using terms with a binary 
outermost function symbol I. Generalization is straightforward. 

I(SI,82) [Pick(Ur ERr)] l(t l ,t2) 
¢} {definition of Pick} 

¢} 

(81 fUr ERr] tl /I 82 = t2)V 

V (81 = tl /I 82 fUr ERr] t2 ) 

((3r r E R 81 [r] tJ) /I 82 = t2}V 

V (81 = tl /I (3r r E R 82 [r] t 2 )} 

¢} {predicate calculus} 

(3r r E R (81 [r] tl /I 82 = t2}V 

V (81 = tl /I 82 [r] t 2 )) 

¢} {definition of Pick} 

1(8il82) fUr E R Pick(r}] l(tl ,t2) 

Note that we did not use the fact that R is directed. 

o 

Consequences For all n E IN, the mapping r ..... rn is continuous. The mapping r ..... r· 
is continuous. 
Proof According to theorem A.i, r ..... id = rO and r ..... r = rl are continuous. Given 
that r ..... rand r ..... rk are continuous we find that r ..... r 0 rk = rk+1 is also continuous. 
Finally, given that for all n E IN, r ..... rn is continuous, we find that r ..... Un E IN rn = r· 
is continuous. 0 

22 



References 

[1] Fitting, M.: 'First-Order Logic and Automated Theorem Proving, Springer Verlag, (1990). 

[2] Lloyd J.W.: 'Foundations of Logic Programming', Springer Verlag, (1984). 
id., Second, Extended Edition, (1987). 

[3] Reeves S.V.: 'Adding Equality to Semantic Tableaux', Journal of Automated Reasoning 
3, pp. 225-246, (1987). 

[4] Swart, H.C.M. de and Ophelders W.M.J.: 'Tableaux versus Resolution; A Comparison', 
Fundamenta Informaticae 18, pp. 109-127, (1993). 

[5] Shostak, R.E.: 'An Algorithm for Reasoning about Equality', C.A.C.M. 21, pp. 583-585, 
(1978). 

23 



In this series appeared: 

91/01 D. Alstein 

91/02 R.P. NederpeJt 
H.C.M. de Swan 

91/03 J.P. Katoen 
L.A.M. Schocnmakers 

91/04 E. v.d. Sluis 
A.F. v.d. Stappen 

91/05 D. de Reus 

91/06 K.M. van Hee 

91/07 E.Poll 

91/08 H. Schepers 

91/09 W.M.P.v.d.Aalst 

91/10 R.C.Backhouse 
PJ. de Bruin 
P. Hoogendijk 
G. Malcolm 
E. Voennans 
J. v.d. Woude 

91/11 R.c. "Backhouse 
P.J. de Bruin 
G.Malcolm 
E.Voennans 
J. van der Woude 

91/12 E. van der Sluis 

91/13 F. Rietman 

91/14 P. Lemmens 

91/15 A.T.M. Aerts 
K.M. van Hee 

91/16 A.J.J .M. Marcelis 

91/17 A.T.M. Aerts 
P.M.E. de Bra 
K.M. van Hee 

Dynamic Reconfiguration in Distributed Hard Real-Time 
Systems. p. 14. 

Implication. A survey of the different logical analyses 
.. iL.then ...... p. 26. 

Parallel Programs for the Recognition of P-invariant 
Segments. p. 16. 

Perfonnance Analysis of VLSI Programs. p. 31. 

An Implementation Model for GOOD. p. 18. 

SPECIFICATIEMETHODEN. een overzicht. p. 20. 

CPO-models for second order lambda calculus with 
recursive types and subtyping. p. 49. 

Tenninology and Paradigms for Fault Tolerance. p. 25. 

Interval Timed Petri Nets and their analysis. p.53. 

POL YNOMIAL RELATORS. p. 52. 

Relational Catamorphism. p. 31. 

A parallel local search algorithm for the travelling 
salesman problem. p. 12. 

A note on Extensionality. p. 21. 

The PDB Hypennedia Package. Why and how it was 
built. p. 63. 

Eldorado: Architecture of a Functional Database 
Management System. p. 19. 

An cxample of proving attribute grammars correct: 
the representation of arithmetical expressions by DAGs. 
p. 25. 

Transfonning Functional Database Schemes to Relational 
Representations. p. 21. 



91/18 Rik van Geldrop 

91/19 Erik Poll 

91/20 A.E. Eiben 
R.V. Schuwer 

91/21 J. Coenen 
W.-P. de Roever 
J.Zwiers 

91/22 G. Wolf 

91/23 K.M. van Hee 
L.J. Somers 
M. Voorhocve 

91/24 A.T.M. Aerts 
D. de Reus 

91/25 P. Zhou 
J. Hooman 
R. Kuiper 

91/26 P. de Bra 
G.1. Houben 
J. Paredaens 

91/27 F. de Boer 
C. Palamidessi 

91/28 F. de Boer 

91/29 H. Ten Eikelder 
R. van Geldrop 

91/30 J.C.M. Baeten 
F.W. Vaandrager 

91/31 H. ten Eikelder 

91/32 P. Struik 

91/33 W. v.d. Aalst 

91/34 J. Coenen 

91/35 F.S. de Boer 
J.W. Klop 
C. Palamidessi 

Transformational Query Solving, p. 35. 

Some categorical properties for a model for second order 
lambda calculus with subtyping, p. 21. 

Knowledge Base Systems, a Formal Model, p. 21. 

Assertional Data Reification Proofs: Survey and 
Perspective, p. 18. 

Schedule Management: an Object Oriented Approach, p. 
26. 

Z and high level Petri nets, p. 16. 

Formal semantics for BRM with examples, p. 25. 

A compositional proof system for real-time systems based 
on explicit clock temporal logic: soundness and complete 
ness, p. 52. 

The GOOD based hypertext reference model, p. 12. 

Embedding as a tool for language comparison: On the 
CSP hierarchy, p. 17. 

A compositional proof system for dynamic proces 
creation, p. 24. 

Correctness of Acceptor Schemes for Regular Languages, 
p. 31. 

An Algebra for Process Creation, p. 29. 

Some algorithms to decide the equivalence of recursive 
types, p. 26. 

Techniques for designing efficient parallel programs, p. 
14. 

The modelling and analysis of queueing systems with 
QNM-ExSpect, p. 23. 

Specifying fault tolerant programs in deontic logic, 
p. 15. 

Asynchronous communication in process algebra, p. 20. 



92/01 1. Coenen 
J. Zwiers 
W.-P. de Roever 

92/02 J. Coenen 
J. Hooman 

92/03 J.C.M. Baeten 
J .A. Bergstra 

92/04 1.P.H. w. v .d.Eijnde 

92/05 J.P.H.W.v.d.Eijnde 

92/06 J.C.M. Baeten 
J.A. Bergstra 

92/07 R.P. Nederpelt 

92/08 R.P. NederpeJt 
F. Kamareddine 

92/09 R.C. Backhouse 

92/10 P.M.P. Rambags 

92/11 R.C. Backhouse 
J.S.C.P.v.d.Woude 

92/12 F. Kamareddine 

92/13 F. Kamareddine 

92/14 J.CM. Baeten 

92/15 F. Kamareddine 

92/16 R.R. Seljee 

92/17 W.M.P. van der Aalst 

92/18 R.Nederpelt 
F. Kamareddine 

92/19 J.CM.Baeten 
J .A.Bergstra 
S.A.Smolka 

92/20 F.Kamareddine 

92/21 F.Kamareddine 

A note on compositional refinement, p. 27. 

A compositional semantics for fault tolerant real-time 
systems, p. 18. 

Real space process algebra, p. 42. 

Program derivation in acyclic graphs and related 
problems, p. 90. 

Conservative fixpoint functions on a graph, p. 25. 

Discrete time process algebra, pA5. 

The fine-structure of lambda calculus, p. 110. 

On stepwise explicit substitution, p. 30. 

Calculating the Warshall/Floyd path algorithm, p. 14. 

Composition and decomposition in a CPN model, p. 55. 

Demonic operators and monotype factors, p. 29. 

Set theory and nominalisation, Part I, p.26. 

Set theory and nominalisation, Part II, p.22. 

The total order assumption, p. 10. 

A system at the cross-roads of functional and logic 
programming, p.36. 

Integrity checking in deductive databases; an exposition, 
p.32. 

Interval timed coloured Petri nets and their analysis, p. 
20. 

A unified approach to Type Theory through a refined 
lambda-calculus, p. 30. 

Axiomatizing Probabilistic Processes; 
ACP with Generative Probabilities, p. 36. 

Are Types for Natural Language? P. 32. 

Non well-foundedness and type freeness can unify the 
interpretation of functional application, p. 16. 



92/22 R. Nederpelt 
F.Kamareddine 

92/23 F.Kamareddine 
E.Klein 

92/24 M.Codish 
D.Dams 
Eyal Yardeni 

92/25 E.pon 

92/26 T.H.W.Beelen 
WJJ.Stut 
P.A.C. Verkoulen 

92/27 B. Watson 
G. Zwaan 

93/01 R. van Geldrop 

93/02 T. Verhoeff 

93/03 T. Verhoeff 

93/04 E.H.L. Aarts 
J.H.M. Korst 
PJ. Zwietering 

93/05 J.C.M. Baeten 
C. Verhoef 

93/06 J.P. Veltkamp 

93/07 P.D. Moerland 

93/08 J. Verhoosel 

93/09 K.M. van Hce 

93/10 K.M. van Hee 

93/11 K.M. van Hee 

93/12 K.M. van Hee 

93/13 K.M. van Hee 

A useful lambda notation. p. 17. 

Nominalization. Predication and Type Containment. p. 40. 

Bottum-up Abstract Interpretation of Logic Programs. 
p. 33. 

A Programming Logic for Fro. p. 15. 

A modelling method using MOVIE and SimCon/ExSpect. 
p. 15. 

A taxonomy of keyword pattern matching algorithms. 
p. 50. 

Deriving the Aho-Corasick algorithms: a case study into 
the synergy of programming methods. p. 36. 

A continuous version of the Prisoner's Dilemma. p. 17 

Quicksort for linked lists. p. 8. 

Deterministic and randomized local search. p. 78. 

A congruence theorem for structured operational 
semantics with predicates. p. 18. 

On the unavoidability of metastable behaviour. p. 29 

Exercises in Multiprogramming. p. 97 

A Formal Deterministic Schcduling Model for Hard Real­
Time Executions in DEDOS. p. 32. 

Systems Engincering: a Formal Approach 
Part I: System Concepts. p. 72. 

Systems Engineering: a Formal Approach 
Part II: Framcworks. p. 44. 

Systems Engineering: a Formal Approach 
Part 1lJ: Modeling Methods. p. 101. 

Systems Engineering: a Formal Approach 
Part IV: Analysis Methods. p. 63. 

Systems Engineering: a Formal Approach 
Part V: Specification Language. p. 89. 



I 

, 

92/22 R. Nederpelt 
F.Kamareddine 

92/23 F .Kamareddine 
E.Klein 

92/24 M.Codish 
D.Dams 
Eyal Yardeni 

92/25 E.Poll 

92/26 T.H.W.Beelen 
W.J.J.Stut 
P.A.C.Vertoulen 

92/27 B. Watson 
G. Zwaan 

93/01 R. van Geldrop 

93/02 T. Verhoeff 

93/03 T. Verhoeff 

93/04 E. H.L. Aarts 
J.H.M. Korst 
PJ. Zwietering 

93/05 J.C.M. Baeten 
C. Verhoef 

93/06 J.P. Veltkamp 

93/07 P.O. Moerland 

93/08 J. Verhooscl 

93/09 K.M. van Hee 

93/10 K.M. van Hee 

93/11 K.M. van Hee 

93/12 K.M. van Hee 

93/13 K.M. van Hee 

93/14 J.C.M. Baeten 
J. A. Bergstra 

A useful lambda nolation, p. 17. 

Nominalization, Predication and Type Containment, p. 40. 

BOllum-up Abstract Interpretation of Logic Programs, 
p. 33. 

A Programming Logic for Fro, p. 15. 

A modelling method using MOVIE and SimCon!ExSpect, 
p. 15. 

A taxonomy of keyword pattern matching algorithms, 
p.50. 

Deriving the Aho-Corasick algorithms: a case study into 
the synergy of programming methods, p. 36. 

A continuous version of the Prisoner's Dilemma, p. 17 

Quicksort for linked lists, p. 8. 

Detcnninistic and randomized local search, p. 78. 

A congruence theorem for structured operational 
semantics with predicates, p. 18. 

On the unavoidability of metastable behaviour, p. 29 

Exercises in Multiprogramming, p. 97 

A Fonnal Detenninistic Scheduling Model for Hard Real­
Time Executions in DEDOS, p. 32. 

Systems Engineering: a Fonnal Approach 
Part I: System Concepts, p. 72. 

Systems Engineering: a Fonnal Approach 
Part II: Frameworks, p. 44. 

Systems Engineering: a Fonnal Approach 
Part III: Modeling Methods, p. 101. 

Systems Engineering: a Fonnal Approach 
Part IV: Analysis Methods, p. 63. 

Systems Engineering: a Fonnal Approach 
Part V: SpeCification Language, p. 89. 

On Sequential Composition, Action Prefixes and 
Process Prefix, p. 21. 



93/15 

93/16 

93/17 

93/18 

93/19 

93/20 

93/21 

93122 

J.C.M. Baeten 
J .A. Bergstra 
R.N. Bol 

H. Schepers 
J. Hooman 

D. Alstein 
P. van der Slok 

C. Verhoef 

O-J. Houbcn 

F.S. de Boer 

M. Codish 
D. Dams 
O. File 
M. Bruynooghe 

E. Poll 

A Real-Time Process Logic, p. 31. 

A Trace-Based Compositional Proof Theory for 
Fault Tolerant Distributed Systems, p. 27 

Hard Real-Time Reliable Multicast in the DEDOS system, 
p. 19. 

A congruence theorem for structured operational 
semantics with predicates and negative premises, p. 22. 

The Desih'll of an Online Help Facility for ExSpect, p.21. 

A Process Algebra of Concurrent Constraint Program­
ming, p. 15. 

Freeness Analysis for Logic Programs - And Correct­
ness?, p. 24. 

A Typechecker for Bijective Pure Type Systems, p. 28. 


	Abstract
	1. Introduction
	2. Terms, Equations, Interpretations
	2.1 Terms and Equations
	2.2 Interpretations
	3. Equational Provability
	4. Relational Algebra
	4.1 Elemantary Operations
	4.2 Least Fixpoints
	4.3 Some Useful Fixpoints
	5. Back to Equational Proofs
	6. An Application: Decidability
	7. An Application: Equality in Semantic Tableaux
	8. Actual Proofs
	9. Discussion
	A Appendix: Continuity
	references

