

Design and analysis of dynamic leader election protocols in
broadcast networks
Citation for published version (APA):
Brunekreef, J. J., Katoen, J. P., Koymans, R. L. C., & Mauw, S. (1993). Design and analysis of dynamic leader
election protocols in broadcast networks. (Computing science notes; Vol. 9337). Technische Universiteit
Eindhoven.

Document status and date:
Published: 01/01/1993

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://research.tue.nl/en/publications/22a32ad8-2c3a-49f6-948a-a06f1dc418fc

Eindhoven University of Technology

Department of Mathematics and Computing Science

Design and Analysis of
Dynamic Leader Election Protocols

in Broadcast Networks

by

J. Brunekreef, J-P. Katoen, R. Koymans, S. Mauw

Computing Science Note 93/37
Eindhoven, November 1993

93/37

COMPUTING SCIENCE NOTES

This is a series of notes of the Computing
Science Section of the Department of
Mathematics and Computing Science
Eindhoven University of Technology.
Since many of these notes are preliminary
versions or may be published elsewhere, they
have a limited distribution only and are not
for review.
Copies of these notes are available from the
author.

Copies can be ordered from:
Mrs. M. Philips
Eindhoven University of Technology
Department of Mathematics and Computing Science
P.O. Box 513
5600 MB EINDHOVEN
The Netherlands
ISSN 0926-4515

All rights reserved
editors: prof.dr.M.Rem

prof.dr.K.M.van Hee.

Design and Analysis of
Dynamic Leader Election Protocols

in Broadcast Networks

Jacob Brunekreef
Programming Research Group

University of Amsterdam

Kruislaan 403, 1098 SJ Amsterdam, The Netherlands
jacob@fwi.uva.nl

J 008t-Pieter Katoen
Dept. of Computing Science

University of Twente

P.O. Box 217, 7500 AE Enschede, The Netherlands
katoen@cs.utwente.nl

Ron Koyman8
Philips Research Laboratories

P.O. Box 80.000, 5600 JA Eindhoven, The Netherlands

koymans@prl.philips.nl

Sjouke Mauw
Dept. of Mathematics and Computing Science

Eindhoven University·of Technology

P.O. Box 513, 5600 MB Eindhoven, The Netherlands
sjouke@win.tue.nl

Abstract

The well-known problem of leader election in distributed systems is considered in a dynamic
context where processes may participate and crash spontaneously. Processes communicate
by means of buffered broadcasting as opposed to usual point-to-point communication. In this
paper we design a leader election protocol in such a dynamic system. As the problem at
hand is considerably complex we adopt a step-wise refinement design method starting from
a simple leader election protocol. In a first refinement a symmetric solution is obtained and
eventually a fault-tolerant protocol is constructed. This gives rise to three protocols. The
worst case message complexity of all protocols is analyzed.

A formal approach to the verification of the leader election protocols is adopted. The require­
ments are specified in a property-oriented way and the protocols are denoted by means of
extended finite state machines. It is proven using linear-time temporal logic that the proto­
cols satisfy their requirements. Furthermore, the protocols are specified in more detail in the
process algebra formalism ACP.

Keywords & Phrases: communication protocols, finite-state machines, leader election, pro­
tocol specification and verification, temporal logic, process algebra.

1980 Mathematics Subject Classification (1985 revision): 68Q20, 68Q25, 68Q60.

CR Categories (1991 version): D.1.3, D.2.4, F.2.2.

Contents

1 Introduction

2 Relation to Other Work

3 Design and Complexity Analysis of LE Protocols

4

3.1 Introduction.......

3.1.1 Communication.

3.1.2 Protocol Description Language

3.1.3 Introduction to Temporal Logic.

3.2 A First Stepping Stone

3.2.1 Requirements in Temporal Logic

3.2.2 A First Protocol .

3.3 A Symmetric LE Protocol

3.4 A Fault-Tolerant LE Protocol

3.4.1 Requirements Revisited

3.4.2 Design of a Fault-Tolerant Protocol

3.5 Complexity Analysis of the Protocols.

3.5.1 Introduction

3.5.2 Complexity of Protocol 1

3.5.3 Complexity of Protocol 2

3.5.4 Complexity of Protocol 3

Verification by Temporal Logic

4.1

4.2

4.3

4.4

Introduction.

Verification of Protocol 1

Verification of Protocol 2

4.3.1 Timeout Semantics.

4.3.2 Timeou t Properties.

4.3.3 Proof of Requirements

Verification of Protocol 3

4.4.1 Timeout Properties.

4.4.2 Proof of requirements

5 ACP Specifications

5.1 Introduction to ACP

1

3

5

7

7

7

7

8

9

9

10

12

13

14

15

17

17

17

19

20

23

23

24

29

29

30

31

37

37

38

44

44

5.2 Protocoll 46

5.3 Intermezzo: timeout semantics and ACP - part 1 47

5.4 Protocol 2 49

5.5 Protocol 3 50

5.6 Action atomicity and complexity results 52

6 Verification and Validation in ACP 54

6.1 Introduction . 54

6.2 ACP axioms. 54

6.3 Protocol 1 .. 56

6.4 Intermezzo: timeout semantics and ACP - part 2 61

6.5 Protocol 2 62

6.6 Protocol 3 65

7 Conclusions 69

2

1 Introduction

In current distributed systems several functions (or services) are offered by some dedicated
process(es) in the system. One might think of address assignment and registration, query
co-ordination in a distributed database system, clock distribution, token regeneration after
token loss, and so forth. Usually many processes in the system are capable to offer such a
functionality. However, at any time only one process is allowed to actually offer the function.
Therefore, one process -called the "leader"- must be elected to support that function.
Sometimes it suffices to elect an arbitrary process, but for other functions it is important to
elect the process which is best according to some suitable criteria to perform that function.

In this paper we consider a distributed leader election (LE) protocol which elects the most
favourable process (relative to some criteria explained later) as leader. Each process has a
fixed unique identity and a total ordering exists on these identities, known to all processes.
We assume a finite number of processes. The leader is defined as the process with the
largest identity among all participating processes. Realistic distributed systems are subject
to failures. The problem of leader election thus becomes of practical interest when failures are
anticipated. In this paper, processes behave dynamically-they may participate at arbitrary
moments and stop participating spontaneously without notification to any other process.
Crashed processes may recover at any time. Thus, a leader has to be elected from a set of
processes whose elements may change continuously. Processes communicate with each other
by exchanging messages via a broadcast network. This network is considered to be fully
reliable. A broadcast message is received by all processes except the sending process itself.
Communication is asynchronous and order-preserving.

Leader election is a special case of distributed consensus problems. Several impossibility
results have been obtained for such problems. For instance, in [DDS87] a number of orthogonal
characteristics are identified by which the existence of a solution for the distributed consensus
problem is determined. According to this classification our problem is solvable since we
consider order-preserving message delivery, broadcast communication and atomic send and
receive.

Due to the complexity of the design of a fault-tolerant LE protocol a step-wise refinement
approach is adopted. That is, we develop a fault-tolerant protocol in three steps, each step
resulting in a LE protocol. We start with rather strong -and unrealistic- assumptions about
process and system behaviour. In each subsequent step these assumptions are weakened and
a protocol is constructed starting from the protocol derived in the previous step. The steps
of our design are as follows. In our initial design processes are considered to be perfect and a
leader is assumed to be present initially. A process may participate spontaneously, but once
it does it remains to do so and does not crash. In the second step, the assumption of an initial
leader is dropped. This leads to a fully symmetric protocol which uses an (abstract) timeout
mechanism to detect the absence of a leader. Finally, in the last step of our design processes
may crash without giving any notification to other processes.

As efficiency plays an important role in the design of leader election protocols a complexity
analysis is given for each protocol presented in this paper. We focus our analysis on the
worst case message complexity which indicates the maximum number of messages needed to
elect a leader. For N participating processes the message complexity of our initial protocol
is O(N'), which can be improved to O(N) by adopting a tricky way of message buffering.

3

Using this buffer mechanism the last two protocols have a message complexity of O(N) and
O(N'), respectively, when no crashing processes are considered.

Existing designs are mainly focussed on reducing message and time complexity, scarcely pay­
ing attention to protocol verification, let alone providing a formal approach to verification.
However, for the design of complex communication protocols formal methods are indispens­
able. The starting-point of our designs is a requirements specification in linear-time temporal
logic. Temporal logic is an appropriate and expressive language for specifying properties
and behaviours of reactive systems, like communication protocols, in an abstract way. As a
protocol specification language we adopt extended finite state machines. The combination
of temporal logic and state-transition diagrams enables a formal verification of the designed
protocols. Such a verification is carried out for all presented protocols.

The protocols are also specified in the process algebra formalism ACP (Algebra of Commu­
nicating Processes). Both the separate components (protocol processes, buffers, the com­
munication medium) and the parallel composition of these components are specified, giving
a complete formal specification of the whole distributed behaviour of the protocols. Some
aspects of a formal verification of the protocols within the process algebra framework are
discussed, but a complete verification of the protocols in ACP lies beyond the scope of this
paper. A validation of the protocols is achieved by simulation runs of the specifications in
the executable formalism PSF (Process Specification Formalism), which is close to ACP.

The paper is further organized as follows. In section 2 the relation to existing work is pre­
sented. The requirements specification, design and complexity analysis of all three protocols
is presented in section 3. Furthermore, an introduction to the protocol description language
and to linear-time temporal logic is given in this section. In section 4 it is verified using tem­
porallogic that all protocols from section 3 satisfy the requirements. An introduction to ACP
and a specification of the protocols in ACP is given in section 5. Verification and validation in
ACP of the protocols is discussed in section 6. Finally, in section 7 some concluding remarks
are given and future work is addressed. In the rest of this paper, we use the term protocol as
a synonym for similar terms as distributed program, distributed algorithm, and so forth.

4

2 Relation to Other Work

Leader Election algorithms
The problem of leader election was originally coined by [LeL 77J in the late seventies and vari­
ous LE protocols have been developed since then. A broad range of solutions exists varying in
network topology (ring [LeL 77, CR79, Pet82], mesh, complete network [KMZ84, AG9l, Sin9l],
and so on), communication mechanism (asynchronous, synchronous), available topology in­
formation at processes [LMW86, AvLSZ89], and sO forth. A possible straightforward solution
to a broadcast network is to superimpose a topology ~like a ring~ on it and to adopt a
well-known solution for this topology. However, existing solutions are aimed at distributed
systems that are assumed to behave perfectly~no failures are anticipated and a fixed number
of participating processes is assumed. Moreover, the specific characteristics of broadcasting
are not exploited.

Realistic distributed systems are subject to failures. A few LE protocols are known that
tolerate either communication link failures (see e.g. [AA88, SG87]) or process failures [GZ86,
IKWZ90, MNHT89, DIM93J. In [GZ86J the LE problem with a similar failure model and using
broadcast communication is considered, however, no ordering between processes is considered.
[IKWZ90J and [MNHT89J only consider process crashes prior to the start of the protocol, but
no crashes during protocol execution are taken into account. We consider processes to be able
to crash at any moment of time. In [DIM93J a LE protocol is constructed which tolerates
transient process failures. This protocol belongs to the category of self-stabilizing protocols
[Dij74J. This protocol, however, assumes a complete network topology and does not require
identities to be distinct.

Complexity Results
LE protocols vary in complexity. Early protocols for a ring network (as given in [CR79,
LeL 77]) have a worst case message complexity of O(N2) and a worst case time complexity of
O(N), N being the number of participants in the election. Later on these results have been
improved (see e.g. [Pet82, vLT87]) to protocols with a message complexity of O(N log N) and
a time complexity of O(log N). For a complete network LE protocols have been designed with
a worst case message complexity of O(NlogN) and a worst case time complexity of O(N),
see [AG9l, Att87, KKM85, LMW86J. In [Sin9lJ a number of LE protocols for asynchronous
complete networks is given with a message complexity of O(Nk) and a time complexity of
O(N/k), with k a constant, 10gN-::,k-::'N.

Specification and Verification in Temporal Logic
Existing LE protocols are mainly focussed on reducing message and time complexity, scarcely
paying attention to problem specification and protocol verification. To our knowledge no
formal specification of the (dynamic) LE problem is published elsewhere. In order to correctly
design (and verify!) communication protocols such a formal specification is indispensable.
The specification and verification techniques we use are well-known for almost a decade:
protocol specification and verification using a combination of temporal logic [MP92J and state­
transition diagrams has been applied for a number of other protocols (see e.g. [Lam83, H083,
SPE84]). However, the dynamic character of processes combined with a timeout mechanism
so as to detect the absence of a leader makes the specification and verification more complex
than traditionally considered communication protocols.

5

Specification and Validation in Process Algebra
Many simple existing communication protocols have been specified and verified in ACP, see
[Bae90] for examples. Such verifications imply many algebraic computations on process ex­
pressions, showing that the specified protocol has the required (external) behaviour. However,
more complex protocols (like the leader election protocols in this paper) are too large for
manual algebraic verification. These protocols can be validated by simulation runs of their
behaviour. To this extent a protocol is translated to the executable formalism PSF[MV90],
which is strongly related to ACP. See [MV93] for examples of protocol specification using
PSF.

6

3 Design and Complexity Analysis of LE Protocols

3.1 Introduction

3.1.1 Communication

Processes communicate with each other by exchanging messages via a broadcast network
like Ethernet [MB76J. A broadcast message sent by some process P is received instanta·
neously by all processes except P itself. In contrast with a multi-process rendez-vous in
which several processes synchronize on a common communication, broadcasting is consid­
ered to be asynchronous. Broadcast messages are buffered by processes (so-called buffered
broadcast [Geh84]). This buffering is order preserving. In this paper the only form of commu­
nication we consider between processes is broadcasting. Therefore, we often omit the prefix
broadcast in terms like message, communication, and so on.

lt is assumed that the communication network is perfect, that is, no duplication, loss or
garbling of messages takes place. In this way we abstract from the design of a reliable
broadcast facility on a faulty network and simply assume the existence of such a protocol
(see e.g. [SGS84]). In order to avoid interference of transmissions of different processes it is
assumed that at most one message may be transmitted via the network at any moment of
time.

The ability of broadcasting communication is often treated as a special feature of the commu­
nication network. As a result, existing notations for concurrent (and distributed) processes
-like CSP [Hoa85J, Estelle [BD87], and so on- do not provide a primitive by which a process
can explicitly broadcast a message. Here we consider broadcasting as part of our description
language (see also [Geh84]).

3.1.2 Protocol Description Language

We denote our protocol by a Finite State Machine (FSM) diagram [vB78J, also called state
transition diagram. Transitions consist of an (optional) guard and zero or more actions.
Depending on the guard a transition is either enabled or disabled. In a state the process selects
non-deterministically between all enabled transitions, it performs the actions associated with
the selected transition (in arbitrary order) and goes to the next state. When there are no
enabled transitions the process remains in the same state. Evaluation of a guard, taking a
state transition and executing its associated actions constitute a single atomic event.

A message consists of a message type and one or more parameters. m(PI,'" ,p,,) denotes a
message of type m with parameters PI through p", The sending of this message is denoted by
!!m(Ph' .. , Pn). At execution of the send statement by process P, say, the message is buffered
instantaneously at each process except p. Since broadcasting is asynchronous, execution of
!!m(...) is never delayed due to unreadiness of a receiving process. (Notice that this means
that a process must always be able to buffer a message received via the network.) Execution of
??m(. ..) by a process delays that process until a message of type m is delivered. Messages sent
by !!m(...) can be received only by ?·!rn(.. .), so corresponding input and output actions must
affeet the same message type and the same number of parameters (and the same parameter
types). Communications can be viewed as (possibly delayed) distributed assignments, that is,

7

for processes p and g, variables Xi and expressions Ei (O<i~n) execution of !!m(E1 , • .• , En)
in p and ??m(xl, ... , xn) in g establishes the multiple assignment xl> ... , Xn := E 1 , ••• , En (in
g).

Guards are boolean expressions. We allow receive actions to appear in guards. This part of
a guard is true only when execution of the receive action causes no delay, that is, when the
corresponding message is at the head of the process' buffer. An absent guard denotes a guard
that is always true.

When in a certain state a message type is received for which no corresponding transition is
present this is considered to be an error. This situation is called unspecified reception and
leads to a deadlock of the system.

A process consists of a buffer process taking care of buffering messages received via the
communication network, and a 'main' process. The buffer processes are left implicit-they
operate according to the first-in first-out principle, and are at any moment of time ready to
accept an input of the network and to offer an earlier received message to the main process.
A main process is denoted by a FSM and the co-operation of these processes is considered to
be the parallel composition of these FSMs. The reader should bear in mind that all processes
in our system are equivalent (apart from their identity). Thus the system is the parallel
composition of a number of equivalent FSMs. The individual FSMs co-operate by exchanging
messages in the way described above. The parallel composition is based on a fair interleaving
semantics where each process gets its turn infinitely often. Furthermore, a transition has to
be taken eventually when it is continuously enabled ('weak fairness' [MP92]).

3.1.3 Introduction to Temporal Logic

For OliT formulation of the requirements of our protocol and the subsequent verification that
our protocol meets these requirements we use a first-order temporal logic based on the tempo­
raloperators U and S (see also [MP92]). An extensive introduction to the use of temporal
logic for communication protocols can be found in [Got92J.

A temporal formula is constructed from predicates, boolean operators (such as ' and II) and
temporal operators like 0 (pronounce 'always'), <> ('eventually'), U ('until'), W ('unless'),
(') ('next'), • ('always in the past'),. ('some time in the past'), S ('since') and J ('just').
Let 'P and .p be arbitrary temporal formulas. We consider the future (and the past) in a
strict sense, that is, the current moment is excluded. Informally speaking, D'P means that 'P
will be true at every moment in the future. <> 'P means that 'P will be true at some moment
in the future, and 'P U .p means that .p will become true eventually and that 'P will be true
continuously until that moment. 'P W.p means that either 'P holds indefinitely or 'P U .p
holds (weak until). (') 'P means that 'P holds at the next moment in time (our time domain is
discrete since we use sequences, see below). The temporal operators which refer to the past
are informally defined as follows. • 'P means that 'P has been true at every moment in the
past, • 'P means that 'P has been true at some moment in the past, and finally, 'P S .p means
that .p has been true at some moment in the past and that 'P has been true continuously
since that moment. J'P means that 'P has just become true. At each moment of time the
predicate true holds. Predicate false equivales ' true.

The formal semantics of our form of temporal logic is defined by interpreting temporal for-

8

mulas in a model. We consider a (possibly infinite) sequence s of states (so, SI,"" sn,· ..)
starting from the initial state so. A model is a sequence s together with a valuation function
V assigning a subset of states to each predicate (giving the states in which the predicate is
true). Given a model (s, V), the meaning of temporal formulas is defined by a satisfaction
relation (denoted by F) between the model and the current state (represented by its number
in s), and a temporal formula. This satisfaction relation holds if and only if the formula
is true in that state in that model. For s=(SO,SI,'" ,sn, ...) and cp,';; arbitrary temporal
formulas, F is defined as follows:

s, V,n F P
s, V, n F ~ cp

iff
iff

So. E V (P) for each predicate P
s, V,n ~ cp

s, V,n F cp/\.;; iff s, V,n F cp and s, V,n F '"
soy, n F cp U '" iff there exists m > n such that s, V, m F '" and

s, V, i F cp for all i with n < i < m

s, V, n F <P S '" iff there exists m with 0 ::; m < n such that s, V, m F';; and
s, V, i F <P for all i wi th m < i < n .

In our requirements (section 3.2.1 below) and our verification (section 4), all formulas should
be interpreted to hold for all states (i.e. 'if n : n2':O). The semantics of the remaining temporal
operators can now be defined for arbitrary cp and';; as follows:

Ocp = trueU cp
Ocp = -,0 -''P

0cp = false U cp
cpW';; Ocp V cpU '"
.cp = true S cp
.'1' - -,. --, <p

J'P = 'I' /\ ~'PS ~cp

Predicate I characterizes the initial state (i.e., n=O) and is equivalent to ~ (true S true).
As usual the unary operators bind stronger than the binary ones. The temporal operators
S, U, and W bind equally strong and take precedence over /\, V, and =? =? binds

weaker than /\ and V , and /\ and V bind equally strong.

3.2 A First Stepping Stone

In this section we design a leader election protocol assuming that a leader process is present
initially and processes do not crash. We start by defining the precise requirements of the
problem.

3.2.1 Requirements in Temporal Logic

The formulation of the requirements is as abstract as possible, that is, without reference to
a possible protocol. In particular we refrain from mentioning certain states of the protocol.
We only use a predicate leader(i) which represents the fact that the process with identity i
is the current leader. This identity i is part of a countable set Id totally ordered by <. We
use i, j, k to denote elements of I d.

9

In our requirements we use quantification over I d. We stress that this quantification should
be interpreted in a restricted way in the sense that not all identifications are involved in
this quantification (the whole set I d) but only those identifications corresponding to the
processes actually participating at that moment (so, always a finite subset of Id). We could
have made this explicit by introducing an auxiliary predicate participating and replacing
every universal quantification (Vi :: ...) by (Vi: participating(i) : ...) and replacing every
existential quantification (3i :: ...) by (3i : participating(i) : ...). For ease of notation we
have left this intended form of quantification implicit.

The requirements for the protocol are as follows. The most basic requirement states that
there must always be at most one leader (since a change of leadership may take some time
there can be temporarily no leader at all).

Pl (3i:: leader(i) =? (Vj: i,pj: ~leader(j)))

If we just take the above requirement we can easily devise a protocol by just not electing a
leader at all. We should also state that there will be 'enough' leaders in due time. Because
we are working in a framework using a qualitative notion of time this should be formulated
by the liveness requirement below that there will be infinitely often a leader (this does not
imply that there will be infinitely many leaders).

P2 O(3i::leadcr(i)).

The last two requirements make sense of the order < on Id. The idea is that processes with
a higher identity have priority in being elected as leader over processes with a lower identity.
P3 states that a leader in the presence of a process with a higher identity will capitulate
eventually (we do not state anything about the possible future leadership of this 'better'
process) 1

P3 : (Vi:: leader(i) II (3j: i < j: ~leader(j)) =? 0 ~leader(i)) .

The last requirement states that the next leader will be an improvement over the previous
one (i.e., will have a higher identity).

P4 (Vi,j::leader(i) II 8 ~leader(i)

II (V k:: ~ leadcr(k)) U leader(j) =? i < j) ,

where we refer to the last moment of leadership of process i (first two conjuncts in premise)
and the moment of succession of process j (third conjunct).

The last two requirements impose constraints on the capitulation of a leader process and the
ordering of its successor. Note that P4 implies that a process that capitulates once, will not
become a leader any more.

3.2.2 A First Protocol

In this section we construct a LE protocol starting from requirements Pl through P4. To keep
the design manageable it is assumed that a leader is present initially and all other processes
are' asleep'.

1 Note that the assumption that j is no leader is superfluous in light of Pl. We have added this assumption
because we think the formulation of P3 is more clear in this way.

10

Each process has a fixed unique identity. Initially processes only have their own identity at
their disposal (my_id) and have no knowledge of other processes' identities. The processes
that do not yet take part in -the election decide -non-deterministically- whether to join the
election or not. Thus, a subset of all processes actually takes part in the election.

Initially a process does not know the identity of the leader, and, consequently it can not
decide whether it becomes a leader or not. Once the identity of the leader is known there are
two possible outcomes: the process should become (the new) leader or not. From the above
we conclude that a process may be in one of the following possible states: candidate, when it
does not yet know whether it will become a leader or not, leader when it actually is a leader,
and failed when it is defeated. A process starts in the start state.

Once a process joins the election, that is, when it becomes a candidate, it transmits its
identity my_id by means of an J(my_id) (Identify) message. On receipt of an identity a
leader compares this identity with its own identity. In case the received id is larger than its
own id the leader moves to the failed state (there is a 'better' process), and gives the candidate
the right of succession by transmitting the candidate's id with an R-message (Response). In
the other case, the leader remains leader and transmits its own id using R(my_id). The
actions of a candidate on receipt of an identity follow quite straightforward-when it receives
an R-message with its own id it becomes a leader, when it receives an R-message with a larger
id it becomes failed, and otherwise it remains a candidate.

There is however a little flaw in the above informally described protocol: when two (or more)
processes are in the candidate state and one of them causes the leader to capitulate (i.e., to
become failed) the rest of the candidates may not receive a response of the leader, remaining
candidate forever. This problem is resolved by letting a candidate (re-)transmit its own id
on receipt of an R(id) message with id<my_id. We thus obtain the following protocol (see
Figure 1).

Some notational remarks are in order. States are represented by rounded boxes and transitions
are denoted by arrows. The operator & should be read as "such that". Transition labels
consist of an optional guard and an optional set of actions separated by a horizontal straight
line. The initial state is indicated by having a grey color.

Notice that we deliberately have chosen to permit the leader process only to deal with suc­
cession inquiries. This is accomplished by distinguishing between messages originated by the
leader and those originated by candidates. When both the leader and candidates transmit
their identities by the same message type one should realize that candidates may force other
candidates to become failed which may cause violation of P2. This can be seen as follows.
Consider the following scenario of three processes, p, q, and r, one of which is a leader, r,
say. Assume p and q do not take part in the election yet. Let p>q>r. Suppose q joins the
election by transmitting its identity. Since p is still in the start state it ignores q's id. Before
r reacts on the receipt of q's id, p joins the election and transmits its id. This will force q
to become failed. As r capitulates (due to q's id received earlier) and as q will not become
its successor (due to p's id) no process is able to grant p the right of succession, and, conse­
quently, no leader process will ever be elected. The problem is that a candidate may not only
be forced to become failed by the leader process, but also by other candidates. Therefore, we
distinguish between id's originating from candidates and those submitted by leader processes.
Candidates become either failed or leader only on receipt of messages from leaders and they
ignore others. In the above example q will thus not become failed on receipt of p's id.

11

??ROd) & id < my_id

!!I(my_id)

??R(id)

??l(id) & id > my_id

!!R(id)

??I(id) & id < my_id

!!R(my_id)

Figure 1: Finite state machine diagram of Protocol l.

3.3 A Symmetric LE Protocol

We now drop the unnatural assumption of a leader being present initially. In this section we
design a LE protocol starting from the previous protocol in case no leader may be present
initially. As in the previous section processes are considered to be perfect and the protocol
has to be consistent with respect to requirements PI through P4.

Let us first remark that in thc current setting Protocol 1 does not suffice as it does not satisfy
P2-no leader will ever be present in case a leader is absent initially. The problem now is
that a candidate must be able to detect the absence of a leader.

A straightforward approach to detect the absence of a leader is to equip each process with
a timer process and to detcct the absence of a leader by means of a timeout mechanism. A
timer is started by the start-timer action. A timeout is modeled as an ordinary action and
may be used as (part of) a guard. In contrast to ordinary guards, timeout actions can be
used to detect the establishment of a global condition in a protocol. They are abstract in the
sense that they do not describe how the occurrence of this global condition can be detected
using a kind of clock mechanism. A similar treatment of timeout actions is recently given in
[Gou93J.

The idea now is that a process starts its timer when it becomes a candidate. When receiving
a response of the leader on its initial I(my_id) message the timer plays no role and the process
progresses as in the first protocol. In absence of a response of a leader, the candidate goes
to the leader state at the occurrence of a timeout. Thus, a timeout guard must be disabled
in case a leader is present. This leader process might be the leader at the start of the timer,
but might also be a 'fresh' one. Therefore, a timeout guard is defined to be true (the timer
expires) only when a process has received and processed all responses to its message sent
at starting the timer. This timeout mechanism is usually called non-premature. A precise

12

characterization of the timeout mechanism is given in section 4. We thus obtain the protocol
as depicted in Figure 2(a).

Recall that the reason for introducing two different messages types to exchange identities
in Protocol 1 was to avoid the violation of P2. We observe that -due to the timeout
mechanism- this problem docs no longer occur. Therefore, there is no objection against
replacing the response messages by I-messages. This results in the protocol as depicted in
Figure 2(b). As a consequence, candidates can now be forced to become failed by receiving
messages from other candidates. In Protocol 1 a candidate only reacts to messages sent by
the leader.

'!'!R(id)&id<my id .. r
!!I(my_id)

'!'!R(id) & id > my_id

!!Rlid)

(a)

'!'!I(id) & id < my_id

!!RCmy_id)

','II(id) & ill < my_id

!!I(my_id)

'!'!I{id)

!!I(id}

(b)

,!,!I(id) & id < my_id

!!ICmy_id)

Figure 2: Finite state machine diagrams of two derivates of Protocol!.

Some significant simplifications to the latter protocol can be made. Observe that there are
two possible transitions from the candidate state to the leader state, one of which may take
place when no leader is present (labelled with a timeout guard). The other transition is
enabled on receipt of an I(rny_id) message which is only sent when a leader capitulates. It is
not hard to see that the protocol's correctness is not affected by the removal of this message
transmission. So, in that case a leader moves without any notification to the failed state on
receipt of a larger id than its id. This implies that one of the transitions to the leader state
will never be enabled and, hence, may safely be eliminated. Thus we obtain the protocol
depicted in Figure 3, referred to as "Protocol 2".

3.4 A Fault-Tolerant LE Protocol

In this section we drop the assumption of perfect processes and revise our earlier designs
by considering processes that cease participation without notifying other processes. After
halting a process does not behave maliciously. This kind of failures is known as crash faults
(see e.g. [Fis91]). Crashed processes may recover and (re-)join at any time. It is assumed
that recovered processes restart in the start state. This should not be confused with "self­
stabilizing" systems [Dij74, Sch93] where processes may recover in any state. The number of

13

,?,?J(id)

??I(id) & id < my_id

!!J(my_id)

timeout

??I(id) & id < my id

!!l(my_id)

Figure 3: Finite state machine diagram of Protocol 2.

times a process can crash or recover during an election is unlimited. A process cannot crru;h
during the execution of an atomic event.

Recall the requirements as specified in section 3.2.1. Since the assumptions about process
behaviour are now strongly modified it needs to be checked whether the initial requirements
are still realistic. For instance, it is rather unrealistic to require P2 bearing in mind that all
processes may crash eventually. We, therefore, first reformulate the requirements.

3.4.1 Requirements Revisited

It is still essential that at any moment of time there is at most one leader:

Ql (3i:: leader(i) =;. ('V j: i i= j: ,lcader(j))) .

In order to distinguish between our initial requirements PI through P4 and the new ones we
label new requirements with Q. Again, all quantifications implicitly range over the processes
actually participating at that moment-including crashed processes.

As stated above, it is unrealistic to demand P2 since potentially all processes may fail. We
therefore only claim P2 in case there exists a process at some time which will definitely not
crash from then on and for which all better processes have (and remain) crashed. Predicate
dead(i) indicates the fact that process i has crashed. Formally,

Q2 0(3i:: o (,dead(i) /\ ('Vj: i <j: dead(j)))) =;. 00(3i:: leader(i))

Quite evidently, a crashed process can not act as a leader process (and vice versa).

Q3 : ('Vi:: ,(leader(i) /\ dcad(i))) .

14

The next requirement addresses the question in what circumstances a leader capitulates.
Well, a leader should be the process with the highest identity among all living participating
processes. This implies that a leader should capitulate as soon as there is some other (living)
process which is an improvement. However, when this better process crashes the above claim
is too strong. We, therefore, require the following weakened variant of P3:

Q4 : (I/i,j::leader(i) /\ ,dead(j) /\ i<j '* <),leader(i) V <)dead(j)) .

When a leader capitulates this may be caused by either the crash of this process or the fact
that there was a better (living) process. Formally,

Q5 : (Vi:: J ,leader(i) '* dead(i) V +(3j: i < j: ,dead(j))) .

Both Q4 and Q5 refer to the capitulation of a leader. It remains to require something about
the succession of leaders. Previously we required that leaders must be succeeded by better
ones. This claim is still valid. However, it needs a more careful formulation, since, it is
invalid in case, for instance, a leader capitulates by crashing. It, therefore, seems reasonable
to require

Q6 : (1/ i, j :: leader(i) /\ 8 ,lcader(i)

/\ ((V k:: ,leader(k)) /\ ,dead(i)) U leader(j) '* i:::: j) .

Informally formulated: given some leader process, i say, its immediate successor, process j, is
not less qualified than i provided that i does not crash in between the leaderships of i and j.
Q6 thus claims nothing about the relation between a leader and its successor when the leader
crashes in the meanwhile. Furthermore, crashes of other processes do not have any influence.
Notice that a leader may be succeeded by itself as it may capitulate due to the presence of a
better candidate that crashes before becoming a leader.

We may consider Q2 and Q4 as weakened variants of P2 and P3 respectively. This weakening
is needed since we now allow crashes. The relationship between Q6 and P4 is more subtle.
When processes may not crash Q6 boils down to the corresponding

(Vi:: lcader(i) '* 0 (1/ j :: leadcr(j) '* i:::: j)) .

This requirement, however, in the context of the previous protocols allows a leader to capit­
ulate (in presence of a better candidate, cf. P3), become a leader again, capitulate (there is
still a better candidate), and so on, in a repetitive way. In case processes do not crash this
is -in our opinion- not desirable as no real progress is made: when a leader capitulates
due to the presence of a better candidate one expects that at some time a new (and better)
leader emerges. Therefore, P4 was introduced. For Protocol 3 this situation is different as
each process, including candidates, may crash spontaneously. Thus a leader may capitulate
because a better candidate is noticed, but before this candidate becomes a leader it crashes.
Then it must be allowed that the capitulated leader becomes a leader again. This leads us to
Q6.

3.4.2 Design of a Fault-Tolerant Protocol

We take the previous protocol as a starting point for our design of a fault-tolerant LE protocol.
The crucial point now is that in absence of a leader after it crashes, a failed process might be
a valid successor.

15

So as to involve failed processes in the election we consider two cases. First, to avoid a
candidate to become a leader in case a leader crashed and a better failed process is present,
failed processes become a candidate on receipt of an I -message with a smaller id than their
own id-thus joining the competition about the leadership and thus avoiding violation of Q4.
Other I -messages are still ignored when being failed. It should be observed that this does not
suffice in case a leader crashes, at least one failed process is present (that will never crash),
and no candidate will ever appear. In this scenario no leader will ever be elected, although
there is some process that will never crash. This violates Q2. Therefore, we should have a
mechanism via which failed processes will rejoin the election in absence of a leader. Several
techniques can be applied to accomplish this'. Here we abstract from a specific tecbnique and
model this by adding a transition labelled with an absent guard from failed to the candidate
state, such that a failed process may (rc-)join the election spontaneously by identifying itself
and starting its timer'.

??I(id) & id > my_id

~!I(my-id) ;
start_timer

??I(id) & id > my_id

??I(id) & id < my_id

??I(id) & id > my-id

timeout

??Hid) & id < my_id

!!l(my_id)

Figure 4: Finite state machine diagram of Protocol 3.

We model the fact that processes may crash at arbitrary times by a possible transition from
each possible state to a new state, named dead state. We denote these transitions by dotted
arrows. The difference between transitions represented by dotted, respectively solid, arrowS
should be interpreted as follows. In case of a dotted arrow the transition is always possible

2For instance, a leader may transmit on a regular basis "I am here" messages and in absence of such
messages a timeout could expire in a failed process, thus forcing it to become starting (or candidate). Another
possibility would be to let a failed process regularly check whether a leader is present (see e.g. [GZ86]).

3It should be noted that we now have two transitions with equivalent actions, one of which has a true guard
from the failed state to the candidate state. These transitions can not be combined into a single transition with
a true guard as it would then be no lOIlger guaranteed that this transition is made on receipt of an I-message
with an identity larger than that of the recipient: a process may then perform the transition whenever it likes.

16

(and hence can be non-deterministically chosen), but not necessary (that is, it can be ignored
indefinitely). On the other hand, a solid arrow represents a necessary transition, that is, a
transition that eventually has to be taken whenever it is continuously enabled. Representing
crash transitions by solid arrows would imply that all processes crash eventually which is
rather unnatural. The dotted arrows and solid arrows are similar to the modal relations
-0, respectively -0 of modal transition systems (see e.g. [LT88]).

Similarly, the fact that processes may recover spontaneously after crashing is modeled by a
(dotted) transition from the dead to the start state. This yields the protocol depicted in
Figure 4, called "Protocol 3". For the sake of brevity, transition labels are omitted when
both its associated guard and set of actions arc absent.

3.5 Complexity Analysis of the Protocols

3.5.1 Introduction

Much work has been devoted in literature on designing efficient LE protocols. In general, the
following complexity measures are considered: message complexity (the number of messages
needed to elect a leader), time complexity (the number of time units needed to elect a leader)
and bit complexity (the number of bits in a message). The bit complexity of all presented
protocols is O(Iog N), where N is the total number of processes. For Protocol I we remark
that the time complexity is equal to the message complexity.

In this section we analyze the worst case message complexity of our protocols. In our protocols
all messages are broadcasted, so each message is received by all processes (except the sender).
In a dynamic broadcast protocol, with processes starting up during protocol execution, each
process at least has to send one (initial) message to the other processes so as to present itself,
so the message complexity is at least O(N). Due to the dynamic character of the protocol
each message needs an answer. If each process answers each message that has been received
so far by sending a new message, we may expect a worst case message complexity exponential
to N.

3.5.2 Complexity of Protocol 1

The following theorem holds for the message complexity of Protocol 1, where MCl(N, i)
represents the number of messages sent by N processes participating in the election, process
i being the initial leader. For reasons of simplicity an identity is represented by a positive
natural number.

Theorem 3.1 MC'I(N") 1 N' 1 N 1 ., 3 " 2 I J ~ ="2 + 2" -"2 t + -ZZ - .

Proof: Each process that becomes a candidate sends an initial I-message. For all processes
k with k<i this message will be answered by a message R(m) with m>k, which will bring
process k to the failed state. From this state no messages are sent, so these i-I processes
each contribute I message to MCf(N, i). In the worst case scenario process i sends i-I
R-messages in reaction on these I-messages.

In the worst case scenario all processes k with k>i send their initial I-message, with I(i+I)
first, and become candidate before the initial leader replies with its (final) message R(i+I).

17

Thus process i+l becomes the new leader. But R(i+1) also evokes an I-message from all
candidate processes with an id greater than i+1. If these messages are sent with I(i+2) first,
the whole story repeats itself, until finally process N becomes leader. In each "round" the
number of participants is reduced by one and the number of reactions on an R-message is
maximal. So the scenario described above indeed is the worst case.

Process k (i<k'SN) receives k-l R-messages before it becomes leader. The ids of the first
k-2 R-messages are smaller than k, so k-2 times an I(k)-message is sent from the candidate
state. The id of the last R-message is equal to k, which makes k the new leader. All processes,
except the final leader, will send an R-message when they capitulate. Together with the initial
I-message this leads to a total number of k transmitted messages for processes i<k<N and
N-l transmitted messages for process N.

The total number of messages for all processes now becomes

MCl(N, i) = (L~;;'\ 1) + i + (L~=i+l k) - 1 = ~N2 + ~N - ~i2 + %i - 2 o

One can easily infer that the worst case message complexity is reached for i=l or i=2 and is
equal to ~N2+tN -1. Contrary, if process N is the initial leader we get MC'/.(N, N) = 2N -2.
So, in that case the message complexity reduces to O(N). Figure 5 illustrates the worst case
behaviour of Protocoll for N = 4, i = 1. Each I-message and R-message is subscripted with
either an i (initial message) or a number k, indicating that this message is a reaction on the
k-th message transmitted so far. We suppose that a local buffer is empty at the moment the
initial message is sent.

COlnponcnl.

id

1(4); 1(4)4

3 1(3);

2 1{2)j

5 10

---_ Mf':/l/HL!}f:I< I<ent

Figure 5: Worst case behaviour of Protocol 1 with queueing.

The message complexity of O(N2
) can be improved significantly by the idea of 'smart' buffer­

ing. According to this principle messages are buffered depending on their parameter: at each
moment of time a process buffer only contains the I-message with the largest id received upon
then, but not processed until so far. In this way a buffer contains at most one I-message at a
time. Adopting this tricky buffering mechanism to Protocoll, reduces the message complexity
to O(N), independent of the initial leader:

Theorem 3.2 MC{(N) = 2N - 2.

Proof: Buffering of several initial I-messages now leads to a single R-message to the process
with the highest id, which makes this process the new leader and forces the other processes
to the failed state. Worst case protocol behaviour is now observed if each initial message is
separately answered by an R-message. It does not matter which process is the initial leader or

18

in which order the processes send their initial I-message. So, in the worst case 2(N -1)=2N-2
messages are needed. 0

Figure 6 shows this worst case behaviour, with the component with the highest id as the
initial leader.

Component

id

I

4

3

2

R(4Jt n(4):1

1(:);

1(2);

1(1);

[, 10
----~Mf:IIJHl!1f:1< I<tnt

Figure 6: Worst case behaviour of Protocol 1 with smart buffering.

3.5.3 Complexity of Protocol 2

Compared to Protocol 1 we may expect a worse message complexity, because in the candidate
state each reception of an I-message with a lower id evokes the transmission of a new I­
message. In Protocol 1 only the reception of an R-message evoked a new message in the
candidate state.

We assume that all processes are in the start state. The worst case message complexity of
this protocol is observed when all processes send their initial I-message within a short time
interval. To put it in a more quantitative way: all participating processes send their initial
I -message within a time interval that is smaller than the timeout interval of a timer in the
candidate state. We will also suppose that a process starts with an empty local buffer, local
history begins at the moment the initial I-message is sent.

Figure 7 shows the worst case behaviour of Protocol 2 for N =4.

Component.

id

4 1(4),

3 1(3);

2 /(2); 1(2)4

1(1);

5
----~ Mt:I<XlLyt:H I/ent

10

Figure 7: Worst case behaviour of Protocol 2 with simple buffering.

15

With simple buffering (queueing of all incoming messages) we obtain a complexity exponential
to N, whereas for smart buffering this reduces to O(N). This is stated in the following

19

theorems.

Theorem 3.3 MCi.(N) = 2N - 1.

Proof: By induction on N. If N=1 only one initial message is sent, so MCi(I) = 1. Now
suppose MCi.(N - 1) = 2N - 1 - 1. In the worst case scenario initial I-messages are sent in
order of decrea,sing ids. After the transmission of its initial message process N will first buffer
the other N -1 initial messages and all replies from processes 2 ... N -1 before it replies by
sending an I-message to each of them separately. So we get MCi.(N) = 2MCi.(N-l)+1 =
2(2N - 1-l)+l = 2N_1. 0

Theorem 3.4 MC,(N) = 2N - 1.

Proof: Each process transmits an initial I-message. In the worst case all processes except
the future leader will have to be brought to the failed state by a separate I-message from a
process with a higher id. So N + N - 1 = 2N - 1 messages are needed. 0

Figure 8 shows a worst case behaviour of Protocol 2 with smart buffering for 4 components.

C071tlJOTH:nt

id

4 1(4);

3

,
1(3);

1(2).

/(1);

" ----~Me/lfjagel! /lent.
10

Figure 8: Worst case behaviour of Protocol 2 with smart buffering.

3.5.4 Complexity of Protocol 3

First we consider an election without crashing processes. With 'simple' buffering, the worst
case message complexity of Protocol 3 is the same as for Protocol 2. With smart buffering
the message complexity increases to O(N'). This is stated in the following theorems.

Theorem 3.5 MC!f(N) = 2N - 1.

Proof: See Protocol 2. Compared to Protocol 2, there are more situations in which the worst
case behaviour occurs. A process that wakes up from the failed state may evoke messages
from processes with a higher id. 0

Theorem 3.6 MCj(N) = ~N' + tN.

Proof: An initial I-message from a process with a lower id causes a transition from the failed
state to the candidate state for a process with a higher id. This transition is accompanied

20

by the transmission of an I-message. If a leader with a higher id is already present, an extra
message is needed to put the process back to the failed state again. This leads to a worst
case message complexity of '[;~I i = !N2 + !N. 0

Figure 9 shows an example of the worst case behaviour of Protocol 3 with 4 components
initially in the start state.

COTrtlmuent

id
4 1(4); 1(4)

3 1(3),

2 1(2);

5

---_ Messages /lent

1(3)8

1(1)i

10

Figure 9: Worst case behaviour of Protocol 3 with smart buffering.

15

Finally we analyze the complexity in case I< processes crash (O~I< <N). Many complex
scenarios are possible, dependent on what moment during an election a process crashes. For
simplicity, we assume that crashed processes do not recover and failed processes only return
spontaneously to the candidate state when a leader is actually absent. The worst case scenario
occurs when I< processes crash after the initial election has been completed (i.e., process N
is leader and all other processes are failed).

Protocol buffer MC

1 queue !N(N + 1) - 1
1 smart 2N -2
2 queue 2N -1
2 smart 2N -1
3 queue 2N -1

3 smart !N(N + 1)

Table 1: Overview of worst case message complexities of all protocols.

The worst case message complexity involving the crash of I< out of N participating processes
is given by

Theorem 3.7

Proof: The worst case scenario is as follows: the leader (process N) crashes, and failed
processes become candidate in decreasing order of ids. This leads to a new election with
N-l processes. From Theorem 3.6 we know that this requires '[;~~I i messages. If this
scenario is repeated for the subsequent crashes of processes N -1, N -2, ... , N -I< +1, we get

21

MC,(N, K) = L:~=1 (L:;:~k i). Elimination of the sum constructs leads to the result stated
above. 0

The results of this section are summarized in Table 1.

22

4 Verification by Temporal Logic

4.1 Introduction

In the previous section we informally motivated our design decisions. In this section we
formally prove that the protocols designed in section 3 satisfy their requirements. That is, we
prove that Protocols I and 2 satisfy requirements PI through P4 and Protocol 3 satisfies QI
through Q6. We, furthermore, prove that for all three protocols unspecified receptions cannot
occur. We stress that we do not intend to give a completely formalized proof. Such a proof
is well possible, but however, requires a formalization of the assumptions, a transformation
of the protocols to our proof formalism (temporal logic), and so on, which would make the
proofs too much involved. We, therefore, confine ourselves to presenting only the main ideas
of the proof.

In the rest of this section we use the following notations and conventions. The fact of being
a leader, that is leader(i), is identified with the fact that process i is in the leader state. To
distinguish between the conceptual state of being a leader and the internal protocol states, Li
is used to denote that i is in the leader state of the protocol. Similarly, predicates S" Ci, Di,
and Fi denote that process i is in the start, candidate, dead or failed state, respectively. The
local buffer of process i is symbolized by Qi' Assertion sEND,(m(PI,'" ,p,.)) is true (in some
state of the state sequence) only when process i executes !!m(PI,' .. ,Pn) at leaving that state.
Similarly, assertion RCVi(m(PI,." ,p,,)) is true if and only if guard ??m(plo'" ,Pn) evaluates
to true and the corresponding transition is taken.

We first formally define some relevant assumptions about the broadcast mechanism. Let m,
ml, and m, be unique messages, that is, both their originator and moment of origination are
unique. (It has been shown in [Koy89] that messages need to be uniquely identifiable so as
to specify communication mechanisms in temporal logic by axioms like those belOW.)

Assumption 4.1

(Vi :: sEND,(m) => (V j : i =I j : 0 RCVj(m))) .

Assumption 4.2

(Vi:: RCvi(m) => +(:3j: i =I j: SENDj(m))) .

Assumption 4.3

(Vi,j:: SENDi(md II OSENDj(m,)

=> (V k : k =I ill k =I j : 0 (Rcvk(md II 0 RCvk(m,)))) .

Assumption 4.1 states that messages are not lost by the communication network, 4.2 phrases
that messages are not spontaneously generated by the network, and 4.3 expresses that the
network is order-preserving. Observe that it immediately follows from 4.2 that a process does
not receive its own transmitted messages. That is, for all messages m

Property 4.4

(Vi:: RCvi(rn) => • ,sENDi(m)) .

23

4.2 Verification of Protocol 1

We now start with the proof of the correctness of Protocol 1. We deal with the requirements
one by one. As P4, stating that successive leaders are 'better', is the crux to the proofs of P2
and P3, we present the proof of P4 after the proof of PI. The first proof obligation is:

PI : (3i::Li =} (Vj:il-j: ~Lj))

Define predicate Q as follows:

where N, is defined by (#i :: Li) and N r equals (#i :: R(i) E Qi)' # denotes 'number of'.
By definition, O-:;'Nr and O-:;'N,. It immediately follows Q =} PI.

Initially we have assumed

Assumption 4.5

I =} (N, = 1 1\ (Vi:: Qi = empty)) ,

which implies that Q holds initially. The rest of the proof concentrates on establishing

Lemma 4.6

Q =} DQ

From this lemma we may then conclude PI.

Proof: Assume Q holds. By definition Q can only be falsified when either N, or N r (or
both) increases. We consider an increase of either N, or N r by one. Later on we show that
considering these cases suffices.

Consider an increase of Nr by 1. So there is one process, j say, that buffers an R(j) message.
We infer from the protocol description that only a leader process can transmit R-messages:

Property 4.7

(Vi,j :: SENDi(R(j)) =} Li)

According to our definition of broadcasting a sender does not receive its own messages. So,
for process j to buffer R(j), there must be another process, i say, which has transmitted this
message, and consequently (according to 4.7) Li holds at transmitting it. A leader i only
transmits R(j) (jl-i) when it capitulates:

Property 4.8

(Vi,j : i I- j : SEND,(R(j)) =} D Fi) .

Consequently, a leader transmits only once such a message. From the above, we may now
conclude that whenever N r is increased by one, N, must be decreased by one.

24

Now consider an increase of N, by one. By a similar reasoning as above we prove that this
must be accompanied by a decrease of N r by one. First, it can be inferred from the protocol
description that process i can only become a leader after receipt of message R(i). This can
be formalized as follows

Property 4.9

(Vi:: ~Li 1\ O~RCVi(R(i)) =? O~Li) .

Furthermore it is quite evident that process i can only perform Rcvi(m), for some message
type m, by extracting m from Qi,

Property 4.10

(Vi:: Rcv;(m) =? m ric Q;) .

Considering R-messages the above implies that N, can only be increased by one after a
decrease of N r by one.

Since an increase of N, (Nr) by one is coupled by a decrease of N, (N.) by one it follows
-given that 0 ::; N" N, ::; 1- that considering the above two cases suffices.
(End of proof P1.)

P4 : (Vi,j:: L, 1\ 8 ~Li 1\ (Vk:: ~Lk) U L j =? i < j) .

Proof: When a leader never capitulates P4 holds trivially. Consider the case that at some
time a leader will capitulate. Assume Li 1\ 8 ~ Li 1\ (V k :: ~ L.) U L j • According to 4.9 j
may only become a leader after receipt of R(j). Moreover, R-messages are only transmitted
by leader processes (see 4.7). The idea now is to show that process i must have transmitted
R(j), and i#j. From the protocol description i<j may then be concluded, due to

Property 4.11

(Vi,j : i # j : SEND,(R(j)) =? i < j) .

The proof ofP4 is as follows. It can easily be verified that i#j since we have from the protocol
description

Property 4.12

(Vi::Li 1\ 8 ~Li =? 8Fi) ,

Property 4.13

(Vi::F, =? OFi) ,

from which it immediately follows

25

Lemma 4.14

(lti::L, /\ (') ~L, '* D~L,)

Furthermore, from the invariance of Q (see proof PI) we have

L, '* ~Lj /\ (It k:: R(k) 'I- Qk) .

So, either process i or some successor of i must have transmitted R(j). Since j is the immediate
successor of i, i must have sent R(j), and thus (see 4.11) i<j.
(End of Proof P4.)

P2 : 0 (3 i :: L,) .

Proof: Since initially there is one leader process P2 holds trivially when a leader never
capitulates. Therefore consider the case when at some time a leader capitulates. From the
protocol it immediately follows that a leader i transmits R(j) at capitulation (see 4.8). We
prove that once R(j) is transmitted j will become a leader sooner or later. Formally:

Lemma 4.15

(It j :: R(j) E Qj '* 0 L i)

We have from the protocol

Property 4.16

(ltj::Oj /\ RCVj(R(j)) '* (')Lj) .

Informally, a candidate j becomes a leader once it receives an R(j) message. By proving

Lemma 4.17

(It j :: R(j) E Qj '* 0 (OJ /\ Rcvj(R(j)))) ,

we may -using 4.16 /\ 4.17 '* 4.15- conclude 4.15. Since transmitted messages are always
received and processed at some time (sec 4.1) we concentrate on proving that OJ holds on
processing R(j). We have that a leader i only transmits R(j) after receipt of an I(j) message
with i<j. Or,

Property 4.18

(Vi,j:: 0 ~(RcvJI(j)) /\ i < j) '* 0 ~SENDi(R(j))) .

Besides, only candidate and start processes may transmit I-messages.

Property 4.19

(It j :: SENDj(I(j)) '* OJ V 5j) .

26

After sending J(j) a start process j becomes a candidate immediately,

Property 4.20

(V j :: Sj " SEND;(I(i)) => 0 Gj) .

A stronger variant of lemma 4.17 is now proven. A process j that receives R(j) at some time
remains candidate from sending J(j) until receipt of R(j). Formally,

Lemma 4.21

(V j :: SENDj(I(j)) " <> RCYj(R(j)) => Gj U RCYj(R(j))) .

From the protocol we have that a candidate j only leaves the candidate state after receiving
R(i) with j $i.

Property 4.22

(V j :: Gj " 0, (3i: j $ i : RCYj(R(i))) => 0 Gj) .

We now prove

Lemma 4.23

(V j :: <> RCYj(R(j)) => ,(3 k : j ::::; k : RCYj(R(k))) U RCYj(R(j)))

By contradiction. Assume that process j receives R(k) (j$k) before receiving R(j). This is
impossible due to the following lemma.

Lemma 4.24

(Vi,j, k:: RCYj(R(i)) " <> RCYj(R(k)) => (j = i => i < k " j i- i => i $ k)) .

It immediately follows that 4.24 implies 1.23. Informally, process j receives at most once
R(j), and moreover, for any process the parameters ofreceived R-messages form an ascending
sequence. Lemma 4.24 can be proven as follows. It is already stated before that only leaders
transmit R-messages (sec 4.7). A leader i transmits zero or more times R(i) followed by
(at most) one time R(j) (i<j). So, a single leader generates an ascending sequence of R­
messages. From PI it follows that there is at most one leader at a time. We know from
P4 that subsequent leaders are increasing-leaders become 'better'. We may now conclude
lemma 4.24 since processes do not receive their own transmitted messages (property 4.4).
(End of Proof P2.)

P3 : (Vi::L;" (3j:i<j: ,Lj) => <>,L;) .

Proof: The remaining requirement to be proven is P3. The idea is to reformulate P3 in terms
of internal states of the protocol, using ,Lj == Sj V Gj V Fj . Since failed processes remain
failed indefinitely once they become failed (see property 4.13), and since failed processes are
'less' than leaders

27

Lemma 4.25

(lIi,j:: L, /\ Fj => i > j) ,

we do not have to consider failed processes. Of course it remains to prove lemma 4.25. There
are only two possible transitions by which a process can become failed

Property 4.26

(II j :: (:) J Fj => (Lj /\ (3 k : j < k : Rcvj(I(k))) V

(Gj /\ (3k: j < k: Rcvj(R(k))))

Property 4.26 follows directly from the protocol description. Now consider each transition in
isolation. In case L j /\ (:) Fj lemma 4.25 follows directly from the fact that, according to P4,
subsequent leaders will be better. In the other case j becomes failed on receipt of R(k), k>j.
From this reception we know that R(k) is transmitted some time ago (see 4.2). From lemma
4.15 we infer that k has (or will) become a leader. In case it has been or still is a leader 4.25
follows immediately from P4. From the invariance of Q (see proof of PI) and lemma 4.15 we
deduce that

Lemma 4.27

(Ilk:: R(k) E Qk => ~ (3i:: Li) U Ld .

In case k is not yet a leader this lemma implies that it will be the next leader, from which
-again using P4- lemma 4.25 can be inferred. This concludes the proof of lemma 4.25.

We now continue the proof of P3. According to the fair semantics of transitions each process
in the start state will become a candidate eventually. Or,

Property 4.28

(lIi::Si => <)Gi) .

Therefore, it is sufficient to consider the following variant of P3:

Lemma 4.29

(lIi::Li /\ (3j:i<j:Gj) => <)~Li)

The proof of lemma 4.29 is as follows. We have

Property 4.30

(IIi:: Si => ~ G, U SENDi(I(i))) .

That is, a process transmits an I (i) message before becoming a candidate. The crucial
property nOw is

Lemma 4.31

(IIi:: Li /\ (3j: i < j: Gj) => <) (3k: i < k: Rcv,(I(k)))) ,
28

and since a leader process i capitulates as soon as it receives J(k) (i<k) (see properties 4.8
and 4.18) we may conclude from lemmata 4.29 and 4.31 that P3 holds.

It remains, of course, to establish lemma 4.31. Assume L, A (3j : i<j : Cj). For i the initial
leader the lemma follows quite straightforward. Let i not be the initial leader. Then i has
become a leader on receipt of R(i) (see property 4.9). Since messages are broadcasted and j
has not itself transmitted R(i), due to

Property 4.32

("Ii:: L, => D,C,) ,

j must have received R(i) (cf. assumption 4.1). Now we have two possibilities, either Sj or
Cj holds on receipt of R(i). In both cases j transmits J(j) eventually: in case of Sj to reach
Cj and in case of Cj as a reaction on the receipt of R(i). In both cases process i will process
J(j) after it has processed R(i), so after i has become a leader.
(End of Proof P3.)

We have showed that the Protocol 1 satisfies PI through P4, and, consequently, conforms
to our requirements. Recall that unspecified receptions lead to abnormal termination of the
protocol. So, our remaining proof obligation is to prove that unspecified receptions can not
occur. For Protocol 1 this boils down to proving that a leader can not receive R-messages.
This can easily be verified using that only leader processes transmit R-messages (property
4.7), that at most a single leader exists (PI), and the fact that processes do not receive their
own messages (property 4.4). This completes the proof of Protocol 1.

4.3 Verification of Protocol 2

The purpose of this section is to prove that Protocol 2 satisfies requirements PI through P4,
and that no unspecified receptions can occur. We take a similar approach as in the previous
section. As 1'4 is the crux of the proofs of both P2 and P3 (as in Protocol 1), its proof is
presented just after the proof of PI.

4.3.1 Timeout Semantics

We first introduce some additional notations. For some protocol state guard TIMEOUT, for
process i evaluates to true whenever i's timeout occurs and the corresponding transition is
taken. The semantics of the timeout mechanism were informally defined in section 3.3. In
order to facilitate a formal proof we formalize this semantics. This formalization is essential
so as to prove the invariance of PI through P4.

We characterize in general terms, that is without reference to the protocol, a 'non-premature'
timeout in a broadcast network. A timer is started at the transmission of message m, say.
This message has to be received (and processed) by all its recipients before the timer may
expire. Formally,

29

Assumption 4.33

(lIi::SEND,(m") =;. ~TIMEouTl'W(lIj:i"'j:.RCVj(mP))) ,

where m P is a unique message. (It has been shown in [Koy89] that messages need to be
uniquely identifiable in order to specify communication mechanisms in temporal logic by
axioms like 4.33. In this verification we accomplish this by numbering of the messages by
the sender. From the context the dependence on the identification of the sender is explicit,
so for simplicity this dependence is omitted.) Strictly speaking, the timeout assertion is
associated to m", and as m 1' is unique, the occurrence of the timeout is considered to be
unique. When necessary this dependence on m" is explicitly indicated by referring to the
number p of m. In the sequel we use p, q as numbers of messages. As, in general, it is not
guaranteed that each process is capable of processing a message of type m in some state, we
use the W operator in stead of the U operator. In absence of unspecified receptions -as
in the presented protocols- we could equally well use the U operator.

Now, however, a timeout may be enabled without forcing the originator of mP to receive and
process all replies to m P. Let T""',j be a reply to m P transmitted by process j. We then
additionally require

Assumption 4.34

(IIi:: TIMEOUT; =;. (II j : i '" j : r""',j (j Q,)) ,

where it should be mentioned that processing a message and sending a reply to this message
is considered to constitute an atomic event4 . For the protocol at hand we should substitute
J1'(i) and I'(j) (i<j) for m P and T""',j, respectively in 4.33 and 4.34.

The formal semantics of a non-premature timeout in broadcasting networks is now defined
by axioms 4.33 and 4.34. Summarizing, according to 4.33 all processes (except the sender)
receive m, process this message and, if appropriate, send a reply. These replies are forced to
be received and processed by the originator of m as phrased by 4.34.

4.3.2 Timeout Properties

In the previous section we characterized the non-premature timeout in a rather general con­
text. For the protocol at hand we have some properties which hold for the timeout mechanism.
These properties are directly derived from the protocol specifications. As they are frequently
used in the verification we treat them separately.

The first property states that a timeout can only occur for candidate processes (and not in
other states)

Property 4.35

(IIi:: TIMEOUT, =;. C;) .

4This implies that a process must reply immediately on processing of a message and is not allowed to wait
arbitrarily long with replying. It can easily be verified that the presented protocols conform to this principle.

30

Another property which is used (implicitly) during the verification is that a process is only
a candidate once. That is, once a process has left the candidate state it will never become a
candidate anymore. This is formulated by

Property 4.36

(IIi:: ~C, 1\ +C, => 0 ~C,) .

Furthermore, once a process is in the candidate state and given that it performs a timeout
eventually it remains a candidate until this timeout happens,

Property 4.37

(II i :: C, 1\ <) TIMEOUT, => C, U TIMEOUT,) .

Using that a candidate i becomes failed on receipt of JU), i<j,

Property 4.38

(IIi:: C, 1\ (3j: i < j : RCV,(1U))) => 0 F,) ,

we conclude

Lemma 4.39

(lIi::C, 1\ OTIMEOUT, => ~(3j:i<j:RCV,(1U)))UTIMEOUT,)

Lemma 4.39 phrases that no J(j) message is received by process i (i<j) after entering the
candidate state until its tirneout occurs (provided its tiIneout occurs at some time)-otherwise
process i would be forced to the failed state (see 4.38).

One can now infer from 4.33, 4.34, and 4.39 that process j can prevent the occurrence of the
timeout of another process, i say, by transmitting JU) with i<j, as reply to the receipt of
J(i).

4.3.3 Proof of Requirements

We now start with proving the requirements one by one. The first proof obligation is:

PI : (3i:: L, => (lIj: i,pj: ~Lj)) .

Proof: From the protocol we immediately deduce that a process can only become a leader
after performing a timeout.

Property 4.40

(IIi:: 0 ~ TIMEOUT, => 0 ~ L i) .

Furthermore, we infer that on occurrence of a timeout a process becomes a leader immediately

31

Property 4.41

(Vi :: TIMEOUT, =:- (') L,) ,

and, after just becoming a leader the process has performed a timeout:

Property 4.42

(Vi :: (') J L, =:- TIMEOUT,) ,

The above three equations give the relation between performing a timeout and becoming a
leader.

The idea behind the proof is now as follows. We consider two different cases. In case no
leader is present we must prove that it is not possible that two (or more) processes perform
a timeout simultaneously, and consequently, become a leader at the same time. This follows
directly from the interleaving semantics of our protocol description language which prevents
processes to perform transitions, and thus timeouts, simultaneously. The second case we have
to consider is the case in which we have a (set of) leader(s) and a new leader appears. Then
the proof obligation is to establish that this may not give rise to more than one leader. In
the rest of the proof we focus our attention on the latter case.

From the above relation between a timeout and becoming a candidate it immediately follows
that it suffices to prove

Lemma 4.43

(3 i :: TIMEOUT, =:- (V j : i "" j : ~ LJl) ,

According to property 4.35 a timeout can only occur when a process is in the candidate state.
Initially, all processes are in the start state. A process only becomes a candidate after sending
an I-message.

Property 4.44

(Vi::D~SEND,(I(i)) =:- D~C,) .

In our protocol TIMEOUT; is associated to the (initial) transmission of message l"(i). From
assumption 4.33 we infer that each process receives IP(i). The idea is to refer to the state of
the recipient, process j say, at the moment of processing this message and to deduce that,
for each possible state, this process j can not be a leader at the occurrence of TIMEOUT,.

Formally, we have:

Lemma 4.45

(Vi,j:: RCvj(IP(i)) 1\ OTIMEOUT; =:- 0 (TIMEOU'I'f =:- ~LJl) .

We now prove lemma 4.45 for each possible state of the recipient of IP(i), process j, given
that i becomes a leader once (i.e. 0 TIMEOUT:'). Implicitly we use that process i is still a
candidate when j receives I(i).

32

Property 4.46

(Vi:: (3j:: RCVj(J"(i))) /\ OTIMEOUT; =? G,) .

First, consider the case that j is failed. Once a process is failed it remains failed, and, hence
will never become a leader. Thus,

Property 4.47

(Vj::Fj =? OFj) .

Consequently,

Lemma 4.48

(Vi,j:: Fj /\ RCVj(J"(i)) /\ OTIMEOUTf =? 0 (TIMEOUTf =? Fj)) ,

which concludes the proof for failed processes.

Secondly, consider j to be either a leader or a candidate. Abbreviate Gj V L j by G L j . From
the protocol specification we directly infer

Property 4.49

(Vi,j :: GLj /\ RCVj(I(i)) =? (j < i =? 8 Fj) /\ (j > i =? SENDj(I(j)))) .

Property 4.49 suggests a case analysis between j<i and j>i. Consider j>i and 0 TIMEOUTf.
According to 4.49 j replies by sending J(j). According to 4.34 process i is forced to process
this message since J(j) is a reply to JP(i). But, as j>i this contradicts with 4.39. Hence, the
interesting case is j<i. Stated otherwise,

Lemma 4.50

(Vi,j:: GLj /\ RCVj(J1'(i)) /\ OTIMEOUT; =? j < i) .

From 4.50, 4.49, and 4.47 we now deduce

Lemma 4.51

(Vi,j :: GLj /\ RCVj(/"(i)) /\ 0 TIMEOUTl' =? 0 (TIMEOUTl' =? Fj)) ,

which concludes the proof for candidate and leader processes.

Finally, consider the case that j is in the start state at the moment of receipt of J(i). From
the protocol description it immediately follows that start processes ignore all messages

Property 4.52

(Vi::S, /\ Rcv.(md =? ~SEND;(m2) /\ 8S,) .

Distinguish between two cases. In the first case we assume that j remains in the start state
until i's timeout occurs. This immediately implies that j is not a leader at the moment i's
timeout occurs, and consequently we have

33

Lemma 4.53

('ti,j :: Sj II Rcvj(I"(i)) II Sj U TIMEOUTf =} 0 (TIMEOUTf =} S,ll .

In the second case we consider that j has left the start state after processing I(i) and before
i performs its timeout, that is ,(S, U TIMEOUTl'). According to

Property 4.54

('I j :: Sj II 0 ,Sj =} 0 Gj) ,

j has become a candidate and due to 4.44 must have sent I(j) in order to do so. According
to the broadcasting communication i will receive this message. As I(j) is not a reply on
I(i), process i is not forced to process this message before performing its own timeout. This
suggests the following case analysis. First, consider the case that i processes I(j) before
performing its timeout. According to 4.39 this implies that, given that i will perform its
timeout once, i>j. Due to 4.49 i replies by transmitting I(i), and as j is forced to wait for
this reply before becoming a leader it will not be able to perform its timeout (due to 4.39).
In the other case i processes I(j) after performing its timeout. But then, by definition jean
not be a leader too at the moment i performs its timeout as it is forced, according to 4.34 to
wait for the reply of i. So, we conclude

Lemma 4.55

('ti,j:: Sj II Rcv,(IP(i)) II ,(S, U TIMEOUTn =} o (TIMEOUTf =} ,Lj)) .

Lemmata 4.53 and 4.55 directly imply

Lemma 4.56

('ti,j::Sj II Rcvj(J1'(i)) II <>TIMEOU'I~ =} D(TIMEOUTf=} ,Lj)) .

From lemmata 4.48,4.51, and 4.56 we deduce (4.45). This completes the proof of PI.
(End of Proof Pl.)

P4: ('ti,j::Lill ,0Li ll('tk::,Lk)ULj =}i<j).

Proof: Assume Li II, 0 Li II ('I k :: 'L.) U Lj , so j is the immediate successor of i. We
have that iij in an equivalent way as in the proof of P4 for Protocoll (see previous section).
We now prove that for a leader i it is always the case that leaders in the future will be at
least as good as i (note that i may remain a leader for a while).

Lemma 4.57

('ti,j :: Li =} 0 (Lj =} i:O; j)) .

34

From lemma 4.57 and i#j we immediately deduce P4. The proof of 4.57 is as follows.
Assume L,. In case i never capitulates 4.57 holds trivially. Therefore, consider the case that
i capitulates once. Let j be i's successor and assume i>j. From 4.34, 4.39, and 4.49 we infer
that a process can not become a leader in presence of a better leader or candidate that has
received its original I-message:

Lemma 4.58

(V j :: :J Cj 1\ (3 k : j < k : <) (RCVk(I(j)) 1\ CLk)) =? -, <) L;) .

The idea of the proof is to show that i can not be succeeded by a smaller process, j say (i>j),
as there is always a better candidate or leader process than j that receives I(j)-and thus
prevents j of becoming a leader.

In order for i, i>j, to become a leader i has transmitted I(i). So, i has left the start state
before j becomes a candidate. From the following statement which is proven below

Lemma 4.59

(V j :: (3 k : j < k : SEND,,(I(k))) =? 0 (3 k : j < k : CLk)) ,

we infer that there is still a better process than j, k say, for which CLk holds. This process
receives I(j) and will prevent j of becoming a leader (according to 4.58). This contradicts
with j being a successor of i and completes the proof.

It remains to prove lemma 4.59. From the protocol description we infer that after the sending
of an I -message the sending process is in either the candidate or leader state. Formally,

Property 4.60

(V k :: SENDk(I(k)) =? (0) OL.) .

Moreover, we have that candidates and leaders leave their (combined) state if and only if they
receive an I-message with an identity larger than their own identity.

Property 4.61

(VI<::: CLk =? (0 -,(3m: k < m: RCVk(I(m))) ¢} DCLk)) .

From property 4.60 we infer that at the next moment process k, k>j, transmits I{k), there is
a better candidate or leader than j. Furthermore, from 4.61 we infer that as candidates and
leaders can only be forced to a state different from leader and candidate by better congeners
(as they only leave their state on receipt of I(m) with m>k, and as I-messages are only sent
by processes that are either candidate or leader) 4.59 holds. This completes the proof of P4.
(End of Proof P4.)

P2 : <) (3 i :: L i) .

Proof: The proof of this requirement is rather straightforward. As continuously enabled
transitions can not be ignored indefinitely (weak fairness assumption) each process in the
start state becomes a candidate eventually:

35

Property 4.62

(Irl i :: Si ~ <> Gi)

Moreover, according to 4.44 a process sends an I-message so as to become a candidate.
Consequently, eacb process sends an I-message sooner or later. Now consider the process
with the maximum identity, process maxid, say. Due to the finiteness of the set I d this
process exists. (We like to stress that the finiteness of I d is crucial for the correctness of
Protocol 2, whilst for the correctness of Protocol 1 this is irrelevant.) Once, this process
transmits its I-message and becomes a candidate. As there is no 'better' process that can
reply it follows from assumptions 4.33 and 4.34 that process maxid can perform its timeout
and becomes a leader. Thus, we have that process maxid becomes a leader sooner or later.
Furthermore, since leaders can only be succeeded by better processes (see P4), we have

Property 4.63

(Lmax;" ~ 0 Lmax;..) .

Thus we conclude

Lemma 4.64

which directly implies P2.
(End of Proof P2.)

P3 : (lrIi:: Li II (3j: i <j: ~Lj) ~ <> ~L;) .

Proof: The idea is to prove P3 along similar lines as in the previous section by first refor­
mulating P3 using ~ L j = Sj V Gj V Fj . Once a process becomes failed it remains failed
forever (4.47). A process only becomes failed after receipt of an I-message with a larger
identity. This follows from (the stronger):

Property 4.65

(lrIi:: 0 ~ (3j: i < j: Rcv;(I(j))) ~ 0 ~F;)

From lemma 4.59 and property 4.65 we conclude:

Property 4.66

(lrIi:: Fi ~ (3j: i < j : GL j)) ,

or, using P1:

Property 4.67

(lrIi,j:i<j:L i II Fj ~ (3k:j<k:G.))

36

Note that it is no longer guaranteed that failed processes are always smaller than the leader
process (like in the previous protocol). This is due to the fact that in Protocol 1 only the
leader process may force candidates to become failed, whereas in Protocol 2 also candidates
may force other candidates to become failed.

From 4.62 we deduce that each process becomes a candidate at some time. Therefore, we
may refine P3 (as for Protocol 1) into

Lemma 4.68

(1/ i :: L, A (3 j : i < j : Cj) '* 0 ,L;) .

It remains to establish lemma 4.68. This follows rather straightforward. Assume L, A Cj A
i<j. According to 4.44 j has transmitted [(j) so as to become a candidate. This message is
received by i when either Li or F, holds (otherwise i would not have become a leader). In case
L" 0 ,L, follows directly from property 4.49. For F, we already have, L,. This completes
the proof of P3.
(End of Proof P3.)

Likewise for Protocol 1, it remains to verify that no unspecified receptions can occur. As there
is only one message type involved, and as corresponding transitions exist for this message
type (for all possible parameters) in all states, and as processes do not receive their own
transmitted messages it is evident that no unspecified receptions are possible. This completes
the correctness proof of Protocol 2.

4.4 Verification of Protocol 3

The purpose of this section is to prove that Protocol 3 satisfies requirements Q1 through Q6,
and that no unspecified receptions can occur. We take a similar approach as in the previous
sections.

Like for the previous protocol the timeout mechanism plays a crucial role in establishing
the correctness of Protocol 3 with respect to requirements Q1 through Q6. We take as a
starting-point the semantics of the timeout mechanism as defined in the previous section (cf.
assumptions 4.33 and 4.34).

4.4.1 Timeout Properties

In Protocol 2 a process is only a candidate once (according to (4.36)) and as a timeout can
appear at most once the association between, for instance, C, and TIMEOUT, in a statement
like C, A 0 TIMEOUT, is unique: the timeout that eventually will occur is the timeout used
by i to leave the candidate state referred to by statement C,. Due to the intrinsic recursive
behaviour of Protocol 3 such is no longer true. When stating, for instance, C, A 0 TIMEOUTf

there is no formal relation between the first and second conjunct: process i may be a candidate
for a while, leave this state and become a candidate again and then leaving this state on
TIMEOUTf, Stating C, referring to the first period in the candidate state has no relation at all

37

with TIMEOUT:'. In order to establish such a relation the idea is to refer to the J(i) message
on which i has become a candidate-and which must have number p such that it corresponds
with the next timeout of i to occur'. Note that it is possible to refer to the J(i) message on
which i has become a candidate in the temporal logic formalism we use. However, we also
want to refer to the receipt of this message by some other process. This is not possible in
temporal logic, but is rather straightforward when introducing explicit labelling of I-messages.

We repeat the timeout properties and reformulate some of them when necessary.

Property 4.69

(1/ i :: TIMEOUT, => C;) .

Once a process enters the candidate state by transmission of IP(i) and the corresponding
timeout occurs eventually (i.e. 0 TIMEOUTn it does not leave the candidate state until this
timeout occurs. Note that this also implies that the process does not crash in between the
transmission and the corresponding timeout.

Property 4.70

(I/i:: SEND,(IP(i)) 1\ (') Ci 1\ OTIMEouTf => Ci U TIMEOUT;) .

As in Protocol 2, a candidate i becomes failed on receipt of J(j) with i<j,

Property 4.71

(I/i:: C, 1\ (3j: i < j : RCVi(I(j))) => (') F,) ,

From properties 4.70 and 4.71 we infer

Property 4.72

(I/i :: SEND,(/"(i)) 1\ (') Ci 1\ 0 TIMEOuT;'

=> ~ (3j : i < j : RCVi(I(j))) U TIMEOUTn

4.4.2 Proof of requirements

We now start with proving the requirements one by one. The first proof obligation is:

QI (3 i :: Li => (1/ j : i f= j : ~ L j)) .

Proof: Following an analogous reasoning as for the proof of PI for Protocol 2 we deduce
that the interesting case to prove is

5We remark that another possibility would be to equip the Ci predicates with a number as the TIMEOUT!'
predicates and let the relationship with the j1'(i)-message on which i has become a candidate implicit. For the
sake of clarity we prefer to give the explicit relation.

38

Lemma 4.73

(3i::TIMEOUT, => (Vj:ii=j: ~Lj)) .

According to 4.69 a timeout can only occur when a process is in the candidate state. A
process only becomes a candidate after sending an I-message.

Property 4.74

(Vi:: Ci => +SENDi(I(i))) .

Similarly to the proof of P 1 in the previous section the crux of our proof is

Lemma 4.75

(Vi,j::RCYj(JP(i)) /I OTIMEOUT; => O(TIMEOUT; => ~Lj)) .

We now prove lemma 4.75 for each possible state of the recipient of message IP(i), process j
say, given that i becomes a leader once (i.e. 0 TIMEOUT;).

First consider process j to be either leader, failed, or candidate. For convenience let CLFj
denote Cj V Lj V Fj • From the protocol description we immediately infer:

Property 4.76

(Vi,j :: CLFj /I RCYj(I(i)) => (j < i => 0 Fj) /I (j > i => SENDj(I(j)))) .

Using 4.34, 4.72, and 4.76 we obtain

Lemma 4.77

(Vi,j::CLFj /I RCYj(JI'(i)) /I OTIMEOUT; => j<i) .

In contrast with Protocol 2, we can not directly conclude 4.75 for candidate, leader, and
failed processes from lemma 4.77: in the previous protocol a failed process remains failed
indefinitely, whereas -due to its recursive behaviour- in Protocol 3 this is not the case.

So, we have to prove that although process j did not reply on JI'(i) it can not be a leader
when TIMEOUT; holds. From 4.76 and 4.77 we infer that, given 0 TIMEOUTf, we only have
to consider processes j for which j<i. According to 4.76 j becomes failed on receipt of IF(i).
It can only become a leader by transmitting Iq(j) on becoming a candidate. As process i is
still being a candidate, according to property 4.70, j is not able to become a leader before i
is becoming a leader: j has to wait for i's reply (see timeout semantics) and as j<i process i
will reply on receipt of Iq(j) thus preventing j becoming a leader. So, we conclude

Lemma 4.78

(Vi,j::CLFj /I RCYj(IP(i)) /I OTIMEOUT; => O(TIMEOUT; => ~Lj)) .

39

In the above reasoning we only have considered perfect processes, i.e. processes that do not
crash. However, when considering the crash of process j (i>j) it can be deduced in a similar
way that after recovering j can not become a leader before i is becoming a leader. Note that
due to 4.70 i does not crash before becoming a leader. So, crashes of i do not have to be
taken into account.

Finally, consider process j to be either start or dead on the moment of processing JP(i). Let
SDj denote Sj V Dj . From the protocol it immediately follows that start and dead processes
ignore all messages.

Property 4.79

(Vi:: S, 1\ Rcv,(m,) =} (') S, 1\ ~SENDi(m2)) ,

Property 4.80

(Vi:: D, 1\ Rcv,(m,) =} (') D, 1\ ~SEND,(m2)) ,

so j ignores JP(i). Now the same case analysis as in the proof of PI of Protocol 2 for start
processes can be made and by similar arguments it can be proven that

Lemma 4.81

(Vi,j::SDj 1\ Rcvj(J1'(i)) 1\ OTIMEOUT; =} O(TIMEOUT;=} ~Lj)) .

For the sake of brevity we here omit this case analysis. Again, when considering the crash of
process j it can also be verified rather easily that after recovering j can not become a leader
before i becomes a leader.

From lemmata 4.78 and 4.81 we conclude 4.75. This completes the proof of Ql.
(End of Proof Ql.)

Q2 0(3i:: O(~Di 1\ (Vj: i <j: Dj))) =} 00(3i:: L,) .

Proof: Consider the process with the maximum identity, i' say, for which 00 (~ D" 1\

(V j : i' < j : Dj)) holds. According to the premise of Q2 this process exists. The idea of the
proof is to establish that process i' will always become a leader sooner or later. That is, we
prove

Lemma 4.82

from which we directly deduce Q2. The proof is as follows. Consider process i' at the moment
that all better processes than i' are crashed for ever, that is, (V k : i' < k : 0 D.). Remark that
-although all better processes are crashed- process i' may still have messages originating
from these processes in its buffer, as processes may process buffered messages at their own
pace. Now refer to the moment at which i' has processed all messages from these processes.
That is, assume

40

Assumption 4.83

I => O('<Ik: i' < k: m. ¢ Qi' /\ DDk) ,

where mk denotes a message originating from process k. Distinguish between two cases: i' is
already a leader, or it is not. Consider the first case, so Li' holds. From the protocol descrip­
tion we immediately infer that leaders can only capitulate by either crashing or receiving an
J(k)-message with k larger than their own identity. Formally,

Property 4.84

('<Ii:::T ,Li => Di V +(3j: i <j: RCVi(I(j))))

Given that i' does not crash there is only one possibility to capitulate, namely by receiving
I(k), k>i'. It is straightforward to observe that I(k)-messages are only transmitted by process
k.

Property 4.85

('<Ii,k:: sEND,(I(k)) => i = k) .

Furthermore, crashed processes do not transmit messages. That is,

Property 4.86

('<I k :: sENDk(m) => 'D.) .

Using 4.83 and the above reasoning it can easily be deduced that it is impossible for i' to
receive a message I(k), k>i', and consequently, it is impossible for i' to capitulate. Thus, we
conclude:

Lemma 4.87

(L" /\ ('<I k : i' < k : 0 Dk /\ mk ¢ Q,,) => 0 L,,)

Secondly, we consider the case that i' is not a leader. Recall that 4.83 holds. From the
protocol specification we directly infer that processes that will never crash and are not leader
(yet) will become a candidate once.

Property 4.88

('<Ii::D,D, /\ ,Li => OC,) .

Once, process i' transmits its I-message and becomes a candidate. As there is no 'better'
process that can reply -they are all crashed for ever- it follows from assumptions 4.33 and
4.34 that i' can perform its timeout and becomes a leader. Using an analogous reasoning as
for the first case we conclude that i' will be a leader indefinitely. This concludes the proof of
Q2.
(End of Proof Q2.)

41

Q3 : (Vi:: ~(L, A D i)) .

Proof: This follows directly from the definition of finite state machines, where a process can
only be in one state 'at a time'.
(End of Proof Q3.)

Q4 : (Vi,j::Li A ~Dj A i<j =} O~Li V OD;) .

Proof: Assume Li A ~ D j A i<j. Distinguish between two cases: 0 ~ D j and 0 D j . The
latter case corresponds to the second disjunct of the conclusion of Q4. Consider 0 ~ Dj •

From (4.88) and Ql we infer that 0 Cj holds. According to a similar reasoning as for P3 of
the previous protocol we observe that it is sufficient to prove:

Lemma 4.89

(Vi,j::L, A Cj A D~Dj A i<j =} O~Li) .

It remains to establish lemma 4.89. Assume L, A Cj A 0 ~ D j A i<j. According to property
4.74 j has transmitted I(j) so as to become a candidate. This message is processed by i after
it became a leader-otherwise the message would have prevented i of becoming a leader. If
i has already capitulated 0 ~ Li follows directly. In case Li holds, i capitulates according to
4.76. This completes the proof of Q4.
(End of Proof Q4.)

Q5: (Vi::J~Li=}D,V+(3j:i<j:~Dj)).

Proof: According to 4.84 there are only two possible ways in which a leader can capitulate.
First, it may spontaneously crash. This corresponds to the first part of the conclusion of
Q5. Secondly, leader i capitulates on receipt of an J(j)-message with i<j. We prove that
this corresponds to the second alternative of the conclusion of Q5. From the communication
axioms we have that for all (unique) messages rn:

Assumption 4.90

(Vi:: RCvi(m) =} +(3j: i #- j: SENDj(m))) .

Due to property 4.85 l(j)-messages can only be transmitted by process j. Furthermore,
crashed processes can not transmit messages (due to property 4.86). Thus, we conclude

Lemma 4.91

(Vi,j:i<j:RCV,(I(j)) =} +(~Dj A SENDj(1(j)))) .

42

Using 4.84 this concludes the proof of Q5.
(End of Proof Q5.)

Q6 : (Vi::L, /\ 0 ~L, /\ ((Vk:: ~L.) /\ ~D,)ULj =? i~j) .

Proof: Assume L, /\ 0 ~ L, /\ ((V k:: ~ L.) /\ ~ D,) U Lj . So, j is the immediate successor
of leader i and i does not crash in between the leaderships of i and j. The proof is by
contradiction. Assume i> j. From the protocol description we immediately infer that:

Property 4.92

(Vi::CLFi /\ D~Di =? DCLFi) .

So, in case a leader capitulates and does not crash it is either a candidate, leader or failed
process. From lemma 4.77 it follows that a process can not become a leader in presence of a
better candidate, leader or failed process. This implies that j (j <i) can not become a leader
when i is still in one of these states, which is, according to the premise ~ D, U L j and the
above property the case. This completes the proof of Q6.
(End of Proof Q6.)

The remaining proof obligation is the absence of unspecified receptions. As there is only one
message type involved, and as corresponding transitions exist for this message type (for all
possible parameter values) in all states, and as processes do not receive their own transmit­
ted messages, it is evident that no unspecified receptions are possible. This completes the
correctness proof of Protocol 3.

43

5 ACP Specifications

In this section the three protocols of section 3 are specified in ACP. We take the Finite
State Machine specifications as a starting-point. The ACP specifications are as close to these
specifications as possible.

We will give a specification of all separate processes that play a role (protocol processes,
buffers, timers, the transmission medium) and of the processes that are built from these
separate processes. These are a component (the parallel composition of a protocol process, a
buffer process and, if applied, a timer process) and the whole system (the parallel composition
of all components and the medium). Preceding the protocol specifications a short introduction
to ACP is provided.

5.1 Introduction to ACP

ACP, the Algebra of Communicating Processes, is an axiom based mathematical theory for
concurrency. ACP has been applied to a large domain of specification problems, ranging
from communication protocols, algorithms for systolic systems and electronic circuits up to
architectures for Computer Integrated Manufacturing.

This brief introduction is by no means intended to be complete, but merely gives an intuitive
notion of what we are dealing with. For a detailed treatment of ACP we refer to [BW90J.

ACP starts from a set of objects, called atomic actions, atoms or steps. Atomic actions are
the hasic and indivisible elements of ACP. In this introduction they will be represented by
the symbols a through f. In ACP all atomic actions are elementary processes. Moreover, we
have

• 8, deadlock. Deadlock is the state in which there is no possibility to proceed.

• T, silent step. T represents the process terminating after some time, without performing
observable actions.

Atomic actions may be parameterised with data. There are no strict syntactical constraints:
ad, ad and a(d) all three denote the atomic action a, parameterised with the data element d.

Processes, in this introduction denoted by the symbols x, y, z, are generated from atomic
actions and process terms by means of operators. Process names may also be parameterised
with data. The most important operators are:

• ., sequential composition or product.
x . y is the process that executes x first and continues with y upon termination of x.

• + I alternative composition or sunl.
x + y is the process that first makes a choice between its summands x and y, and then
proceeds with the execution of the chosen summand. In the presence of an alternative,
8 is never chosen.
The construct Ld E D x(d) is used for the generalised alternative composition x(d,) +
x(d2) + ... +x(d,,), with d" ... ,d" the elements of D.

44

• II , parallel composition or merge.
x II y is the process that represents the merged execution of x and y.

The construct IldE D x(d) is used for the generalised parallel composition x(d,) II x(d,) II
... II x(d,,), with d j , • •• , d" the elements of D.

• I , communication.
As stated above, x II y represents the merged execution of x and y. This means that
the first action of this composed process is a first action from x or from y or from both.
In the last case the two actions from x and y are part of a communication between x
and y, also called a synchronization of x and y. Such a communication has to be defined
explicitly by using the communication operator: a I b = c means that c is the action
that is the result of the communication between the actions a and b.

• 8H , encapsulation.
8H (x) is the process x without the possibility of performing actions from the set of
atomic actions H. Algebraically this is achieved by renaming all atomic actions from
H in x into o.

• 7/ , abstraction.
TJ(X) is the process x without the possibility of observing actions from the set of atomic
actions I. This is achieved by renaming all atomic actions from I in x into T.

• 0 , priority.
O(x) is the process in which the choice between alternative actions is made according
to an ordering on the atomic actions, defined somewhere else. If, in an alternative
composition, two atomic actions may be chosen on which an order relation is defined,
only the action with the highest priority will be enabled.

• <l t> , conditional process.
The construct x <l c t> y denotes a conditional process expression. If the boolean ex­
pression c evaluates to true the process expression reduces to x. If c evaluates to false
the process expression reduces to y.

Processes are specified by equations like
x=a·b+c·(e+f)
y = (a . b) II (c· d)

UInfinite" processes are specified by one or more recursive equations. A simple and meaning­
less example:

x=a·y+b·z
y = c· z
z=d·x+e·y

Possible execution traces of this process are: a· c . d . b . e ... , b· d· b . d ... , a· c· e . c . d

The executable formal specification language PSF [MV9al is based on ACP for its process
part. The definition of data in PSF is based on ASF [BHKS9J.

45

5.2 Protocol 1

We start with the specification of Protocol 1 from section 3.2.2. First the protocol process
and a local buffer process are specified. We will use the following naming convention for the
atomic actions involved in the communication between a protocol process, a buffer process
and the medium. The transmission of a message is denoted by send..xyi. X represents the
source and Y represents the destination: P for protocol process, B for buffer process or M for
medium process. The superscript i denotes the component id. In the same way the reception
of a message is denoted by read..xyi and the resulting communication action is denoted by
comm..xyi. I D represents the set of component ids. We consider the size of I D to be fixed
and finite. M represents the set of messages: M = {I(i),R(i) liE ID}.

Specification of the protocol process of component i:

= L",E M readJ3pi(m)· Starti

+ reseLbufferi . send_PMi(I(i))· Candidatei

C andidatei = Lj E ID readJ3pi(I(j)) . Candidatei

Leaderi

Failedi

+ Lj EID\(i) read_Bpi(R(j))·
(send_PMi(I(i))· Candidate' <l j < i Do Failedi)

+ readJ3pi(R(i))· Leaderi

Lj EID read_Bpi(I(j)).
(send_PM'(R(i)). Leader' <l j < i Do sendYMi(R(j))· Failedi)

L,,'EM readJ3pi(rn)· Failedi

The local buffer process is specified as a queue of unbounded size. The process Buffer' is
parameterised with a rnessage queue q. The queue operations enq (enqueue), serve and deq

(dequeue) need no further explanation. The buffer can be reset by the protocol process. This
reset is used in order to prevent the processing of messages enqueued before the component
enters the election.

Buffer'(q) = L", E M read_M Bi(m)· Bufferi(enq(m, q))
send_Bpi(serve(q))· Bl1.jJer'(deq(q)) <l q i= emptYJjueue Do (j

+ read_buffer]eseti . Bufferi(emptYJjueue)
+

The following communications are defined between a protocol process and its local buffer
process:

send_BP'(m) I read_Bpi(m) = cornrnJ3P'(rn)
reseLbufferi I read_buffer_reset' = buJIer_is_reset'

A component process consists of the encapsulated merge of the protocol process and the buffer
process. One component, say I (l E I D), starts in the leader state:

Component' = all, (Leader' II Buffer'(emptYJjueue))

The other components start in the start state (i E I D\{ I}):

Component' = all, (Start' II Bufferi(empty_queue))

Definition of the encapsulation set:

46

HI = {read..BP'(m),send-Bpi(m),reseLbuffer"read_buffer_reset' liE ID,m E M}

The medium process reads a message from a component and sends this message to all other
components, thus modelling a broadcast communication. The set I D contains all the com­
ponent ids, the set IDS is a variable set of component ids.

Medium = "L.'E/D.mE M read_PM'(m)· Medium(ID\{i}, m)
Medium{IDS, m) = (II'E IDS send_M Bi(m)) . Medium

The following communications are defined between a component and the medium process:

send_PMi(m) I read..PMi(m) = comm_PMi(m)
sendMB'(m) I readMBi(m) = commMBi(m)

The complete system consists of the encapsulated merge of all components and the medium:

System 1 = 8H ,((lIiE/D Component') II Medium)

Definition of the encapsulation set:

H2 = {send..PM'(m), read..PM'(m), sendMBi(m), read_MBi(m) liE ID, mE M}

Remark: at this point we notice an important difference between the execution model of the
Finite State Machines of section 3 and the ACP execution model. For a transition in an FSM
specification the evaluation of a guard and the related action are considered to be atomic:
the receiving of a message and the transmission of a reply on this message together form a
single atomic event. However, in ACP these are two separate actions. Due to the arbitrary
interleaving model, other actions may come in between these two actions. This difference has
some influence on the complexity results of section 3. This is discussed in section 5.6.

5.3 Intermezzo: timeout semantics and ACP - part 1

Protocols 2 and 3 make use of a timer, which may generate a timeout. In this section we will
discuss the modelling of a timeout in ACP, related to the protocols investigated here.

For certain classes of protocols the correctness of the protocol does not depend on the moment
a timeout is raised in relation to other actions in the protocol. For instance, Sliding Window
Protocols are robust with respect to premature timeouts. In an ACP specification of these
protocols a timeout is modelled by a non-deterministic choice between a timeout action and
other enabled actions, see [Bru91]. Other protocols are not robust with respect to premature
timeouts. A classical example is the simple PAR protocol, see [Vaa90J. (PAR stands for
Positive Acknowledgement with Retransmission.) From section 3 it may be clear that the
Leader Election protocols investigated in this document cannot deal with premature timeouts:
a timeout may not be enabled before all responses to the initial message are generated and
processed.

We distinguish three possible approaches to avoid premature timeouts in ACP. The first two
approaches are action oriented, the last approach is data oriented.

1. A timeout action is not enabled as long as certain actions are enabled. This can be
modelled with the priority operator (J. The timeout action gets a lower priority than
other actions, application of the priority operator prohibits the timeout as long as one
of the actions with a higher priority is enabled. This approach is used in [Vaa90J.

47

2. A timeout action is enabled after the execution of certain actions. These actions serve as
a kind of synchronization for the timeout. Usually this is the only role of these actions,
within the specified protocol these actions do not have any other meaning. Therefore
we will call them sync actions. In [Vaa90] this approach is shortly mentioned for the
PAR protocol, in [vW93] it is applied in a PSF specification of the same protocol.

3. In a data oriented approach a timeout action may be enabled if a certain boolean con­
dition is evaluated to true. This condition is based on data parameters of the specified
system. This requires a specification where state information is put in the data param­
eters of the process equation (s).

In the remaining part of this section we will investigate the usefulness of the first two al­
ternatives in the realm of the Protocols 2 and 3. In section 6 Protocol 2 and Protocol 3
are captured in a single recursive equation with data parameters. There we will discuss the
usefulness of the third alternative.

Application of the priority operator (alternative 1) implies the definition of a set of orderings
on actions in which a timeout of component i gets a lower priority than every action that
is related to the reply to the initial message from this component. A reply can be made
recognizable by labelling the initial I-message with its source and by attaching the same label
to all replies to this message.

Two problems arise when this approach is followed. The first problem has to do with the
buffering of incoming messages. When queueing is applied, a message in a queue is only
related with the comm_BP action if it is at the head of the queue, otherwise no enabled
actions are related with this message. When smart buffering is applied the message in the
buffer may be replaced by a better one. By this replacement the label of a message is lost.
This kind of buffering problems can be solved by a more complex labelling of the messages.
We will not go into the details of such a solution. The second problem has to do with the fact
that if the medium is in use (a message has been transmitted to the medium by a component,
but has not been buffered by all other components), a comm...PM action with a reply message
to a component i may temporarily be disabled although the timeout of a component i should
still be prohibited by this action.

The second problem can only be solved in a rather crude way by placing more restrictions
on a timeout action. The timeout of a component i is given a lower priority than every
comm_M B action in order to prevent a temporary blockade of a comm_P M action. The
timeout is also given a lower priority than every comm-.BP action in order to guarantee that
every component has had the possibility to react on a message. Finally, the timeout is given
a lower priority than every cammY M action from a component with an id higher than i
in order to ensure that every reply is received by component i before its timeout is enabled.
This leads to the following ordering relations:

timeout' < comm_MBk(m),
timeout' < camm_BP"(m)
timeout' < camm_PM;(m), with m E M, i,j, k E ID,j > i.

Labelling of messages is not useful any more. The atomic action timeout' is the result of
a communication between the protocol process and the timer process of a component i, see
below.

48

Application of sync actions for the synchronization of a timeout (alternative 2) can be based
on the observation that a timeout is permitted when every other component is in the start
state (has not yet entered the election), in the failed state (has already lost the election)
or has made a transition from the start state to the candidate state after the transmission
of the initial message of the component that is waiting for its timeout (is not expected to
prohibit the timeout). It is impossible to identify the last set of components without a
substantial expansion of the specification. Therefore it is reasonable to focus on a little
bit stronger condition which requires that a timeout action is only enabled when all other
components are in the start state or in the failed state. This leads to the addition of an action
send_timeouLenable in the start state and the failed state of a protocol process. A timer
process collects these permissions by communicating read_timeouLenable actions. Only when
all permissions are given a timeout is enabled. This approach leads to two extra actions in
the protocol process and a little bit more complicated timer process.

In the case of our Leader Election protocols there is no clear advantage of one alternative
above the other, both have their (dis)advantages. In the specification of Protocols 2 and 3
we have chosen to model the timeout semantics cf. alternative 1: a timeout is enabled if
certain other actions are disabled. We see this as more close to the dynamic character of the
protocols than alternati ve 2, where a timeout is only enabled if all other components are not
actively participating in the election (any more).

5.4 Protocol 2

We continue with the specification of Protocol 2 from section 3. We will give a new spec­
ification of the protocol process itself and of the buffer process. We now will use a "smart
buffer" in which only the message with the highest id is kept. A timer process, responsible
for the generation of a timeout, is also specified. In this protocol we have one message type,
M = {I(i) liE ID}. Specification of the protocol process of component i (i E ID):

Start' =

Candidate' =

Leader' =

Failed' =

L., UD read..Bpi(I(j)). Start'
J .

+ reset-buffer'· send..PM'(J(i))· starUimer'· Candidate'

L.,j E ID read..BP'(I(j))·
(send_PM'(I(i))· Candidate' <l j < i I> stop_timer'. Failed')

+ read.timeout'· Leader'

L E ID read..BP'(I(j))·
(send_PM'(I(i))· Leader' <l j < i I> Failed')

L.,j E ID read..BP'(I(j)) . Failed'

The local smart buffer process only stores the message with the highest id. The buffer can be
reset by the protocol process. The parameter b is used to keep the message with the highest
id stored. The function max(m" m2) takes two messages as input and produces the message
with the highest id as output.

Buffer' L.,mEM read..MB'(m)· Buffer'(m)
+ read_buffer_reset'· Buffer'

Buffer'(b) = L.,,,, E M read..MB'(m) . Buffer'(max(b, m))

49

•

+ send_B p' (b) . Buffer'
+ read_buffer]eset' . Buffer'

The local timer process is very simple: when a start signal is received the timer waits for a stop
signal. If this signal does not appear, a timeout is sent to the protocol process. The waiting
for a stop signal and the transmission of the timeout signal is specified as an alternative
composition of two process expressions. We will suppose that no start signal is given while
waiting for a stop signal or a timeout. As described in the previous section, the timeout
semantics will be modelled with the priority operator, see below.

Timer i = read-Biart i . Timer...sf.

Timer _sf. = read_stopi . Ti11wri + send_timeouti. . Timer;'

The communications between a protocol process and its local timer are defined as follows:

starLtimer' I read_start' = timer ~'tarted'
stop_timer' I read-Btop' = timer _stopped'
send_timeout' I read_timeout' = timeout'

In this protocol we assume that there is nO leader at the beginning, so all components are
initially in the start state:

Component' = 8H ,(Start' II Buffer' II Timer')

The encapsulation set is defined as follows:

H3 = HI U {startJimer', read-Btart', stop_timer', read_stop', send_timeout',
read_timeout' liE I D}

with H, as defined in section 5.2.

The medium process is the same as in the specification of Protocol l.

The semantics of the timeout are modelled with the priority operator (). This leads to the
following specification of the complete system:

System2 = () 0 811,((lliE/D Component') II Medium)

with H, as defined in section 5.2. From section 5.3 we recall the order relations for the priority
operator ():

timeout' < comm_MBk(m),
timeout' < comm_Bpk(m),
timeout' < comm_PMj(m), with m E M, i,j,k E ID,j > i.

5.5 Protocol 3

In this protocol components may crash. Such a crash has consequences not only for the
protocol process, but also for the local buffer process and the timer process. Therefore all
component processes need to be reconsidered. In the specification below we will use a simple
model of a component crash:

• Only the protocol process has the possibility to crash. The buffer process and the timer
process will simply continue (as far as possible) after a crash of the protocol process.

50

• The "revival" of a component is modelled by the revival of the protocol process. At its
revi val this process resets the local timer. The local buffer is reset in the start state,
which is entered after the revival .

• In the specification of the protocol process a transition from a state to the Dead state
is modelled by the atomic action crash. The transition from. the Dead state to the start
state is modelled by the atomic action revive. These actions do not communicate with
any action from any other process.

In ACP there is no distinction between must-actions and may-actions (the solid arrows and
the dashed arrows from the Finite State Machine Diagram of Protocol 3 in section 3). The
plus operator for alternative composition stands for a non-deterministic choice between the
alternatives. So we are not able to model this specific property of a process crash in ACP.

Specification of the protocol process of component i:

Start'

+
+

Candidate' =

+
+

Leader' =

+
Failed'

+
+

Dead' =

L,j ElD read.BP'(1(j)) ·Start' . .
reset-buffer'· send_PM'(I(i))· starUimer'· Candidate'
crash i . Deadi

L,j E ID read.BP'(1(j))·
(send_PM'(1(i))· Candidate' <l j < it> stop_timer'· Failed')

readJimeout' . Leader'
crash' . Dead'

L,jEIDread.BP'(1(j))· (send_PM'(1(i))· Leader' <l j < it> Failed')
crash' . Deadi

'£. E ID read.BP'(1(j))·
J

(send_PM'(1(i))· starUimer'· Candidate' <l j < it> Failed')
sendYM'(1(i))· starUimer'· Candidate'
crash' . Deadi

revive i . rcseLtimer i
. Starti

As in the previous protocol the local smart buffer process only stores the message with the
highest identity. A crash of the protocol process is not observed by the buffer. However,
after the reception of a reset signal the buffer goes to the initial state again. This is already
specified in the specification of the buffer process in the previous section. We will not repeat
this specification here.

In the timer process in each state the action read_timer_reset is added:

Timer i = read-Btart i . Timer -Bi + read_timer_re.'>eti . Timeri.

Timer _s' = readJ3top' . Timer' + sendJimeout' . Timer' + read_timer_reset' . Timer'

Definition of the additional communication between the protocol process and the timer pro­
cess:

reseLtimcr i I read_timer -Teset i = timer _is_reset i

In this protocol we assume that there is nO leader at the beginning, so all components are
initially in the start state:

51

Component' = 8H , (Start' II Buffer' II Timer')

Definition of the encapsulation set:

H4 = H3 U {reseLtimer',readJimer_reset' liE ID}

with H3 defined as before.

The medium process is the same as in the specification of Protocoll (and 2). The modelling
of the timeout is the same as in the specification of Protocol 2. So we get the following
definition of the Leader Election protocol:

System3 = IJ 0 8H,((IIiElD Component') II Medium)

The set H2 has been defined before.

5.6 Action atomicity and complexity results

We conclude this section with some remarks about the complexity results of section 3 and the
execution model of ACP. The complexity analysis in section 3 is based on the atomicity of the
action sequence event-plus-reaction, e.g. the reception of a message and the transmission of a
reply message. This kind of atomicity is common in Finite State Machine formalisms. How­
ever, in ACP read actions and send actions are atomic actions themselves. The interleaving
model of ACP allows other actions to be executed between a read action and the consecutive
send action. This means that, after reading a message from its buffer, a component may have
to wait until some actions from other components have been executed before it transmits a
reply message. Compared to the FSM model the finer interleaving execution model of ACP
introduces the possibility of a delayed reaction of a component process, which means that an
extra message buffer is introduced within a component. This has a certain influence on the
complexity results as derived in section 3.

With simple buffering (queueing of incoming messages) there will be no difference: the extra
message buffer can be regarded as an extension of the component buffer queue. However,
when we use a smart local buffer we get different results. In Protocol 1 we now get the same
worst case message complexity as in the case without smart buffering:

Theorem 5.1 In the ACP interleaving model MCi(N, i) = MCnN, i) = ~N2 + ~N - 1.

Proof: if the reply on the I-message with the lowest id is temporarily buffered within the
protocol process, a message sequence like in Figure 5 is possible. After the reception of the
I-message of component i + 1 the actual leader i can delay its reaction (the transmission of
the R-message) until all other I-messages have been sent. 0

For Protocol 2 we get a worst case message complexity that is still O(N):

Theorem 5.2
N>1.

In the ACP interleaving model MG;(l) = land MG;(N) = 4N - 5 for

Proof: The factor 4 comes from the fact that now every component may buffer two messages
and so may generate two replies on initial messages from components with a lower id. A third
reaction may be generated by another message from these components. Together with the

52

initial message this makes 4. The constant -5 comes from the initial values for MG:i(N):
MC;(l) = 1, MC2(2) =3. These initial values can easily be derived. 0

In Protocol 3 the worst case message complexity is the same as in the case without smart
buffering:

Theorem 5.3 In the ACP interleaving model MC3(N) = MCHN) = 2N - 1.

Proof: The delayed reaction now implies that every component that is about to send a
message to the medium cannot be stopped by a message from a component with a higher
id until this message is sent. This leads to a worst case behaviour in which every message
invokes a message from all components with a higher id. As we have seen before this leads
to an exponential worst case message complexity. 0

In complexity theory it is a well-known fact that the underlying machine model has a big
influence on the complexity of the algorithm [vEB90). Finite State Machines and ACP both
suppose an underlying parallel machine model. The results above show that the execution
model of a specification formalism sometimes also has a major influence on the complexity of
a distributed algorithm.

53

6 Verification and Validation III ACP

6.1 Introduction

In this section we will explore the power of ACP in the field of verification and validation of
the protocols that have been specified in section 5. With verification we refer to an algebraic
proof of the correctness of a protocol with respect to a set of requirements. If, for whatever
reason, we cannot produce such a proof we may try to validate a protocol, e.g. by simulation.

For the verification of the protocols we will put our specifications in the following "normal
form)):

P(D) = al' P(Dd <J Cl (> 8
+ a,· P(D,) <J C, (> 8

+
+ a,.' P(D,.) <J C,. (> 8

D denotes a parameter list. Di , 1 ::; i ::; n, denotes the same parameter list with substitutions
of data terms for some of the parameters. Ci , 1 ::; i ::; n, denotes a boolean condition, possibly
containing variables from D. If a condition is invariantly true, a summand may be written
as ai . P(Di)'

The advantage of this normal form lies in the simplification of the calculations that have to
be performed in expanding the merge of several processes to a single equation, which can be
used for verification and validation purposes. In ACP calculations are performed according
to axioms, see [BW90J. Before we turn to these calculations we will give a short introduction
to the ACP axioms.

6.2 ACP axioms

The axioms of Table 2 form the axiom system for ACP. As before, x, y and z denote process
terms, a and b denote atomic actions. We will use the ACP axioms first of all for the expansion
of the merge of two or more processes. The axiom for the merge operator in Table 2 expands
the merge of two process terms to the alternative composition of three terms. The process
term xlly (x leftmerge y) denotes the merge of x and y with the first action from x. The
process term x I y denotes the communication (synchronisation) between the processes x and
y.

The merge axiom can be generalized to the expansion theorem for n 2: 3:

Xl II··· II x,. = L1S;iS;,. xill(111S;js;,.,Ni Xj) + L1S;i<jS;,. (xdxj)ll(lhS;>S;,.,.;o!iJ x.)
From section 5 it is clear that in the specification of the protocols conditional process ex­
pressions are frequently used. In [BB92J several axioms are given for conditional process
expressions. From these axioms the following identities can be derived.

Lemma 6.1

1. x <J C (> x = x

2. x <J C (> Y = x <J C (> 8 + Y <J ,c (> 8

54

x+y-y+x
(x + y) + z = x + (y + z)
x+x=x
(x+y)·z=x·z+y·z
(x· y). z =x, (y. z)
x+o=x
o· X =0

X II y =xlly+yllx+x I y
allx=a·x
(a· x)lly = a· (x II y)
(x + y)llz = (xllz) + (yllz)
(a· x) I b = (a I b)· x
a I (b· x) = (a I b)· x
(a· x) I (b· y) = (a I b)· (x II y)
(x + y) I z = x I z + y I z
x I (y + z) = x I y + x I z

a I b = ,(a, b) if, defined
a I b = 6 otherwise

Table 2: ACP axioms.

3. (x <l Cl I> 0) <l C2 I> 0 = x <l C, II C2 I> 0

Proof: elementary, see [Bru]. 0

The axioms in Table 3, also from [BB92]' are concerned with the merge and encapsulation of
conditional process expressions. In the specification of the Protocols 2 and 3 in section 5 the

(x <l C I> y)llz = (xllz) <l C I> (yllz)
(x <l C I> y)lz = (xlz) <l C I> (Ylz)
xl(y <l c I> z) = (xly) <l C I> (xlz)
8}{(x <l c I> y) = 8}{(x) <l C I> 8}{(y)

Table 3: Axioms for communication and conditions.

priority operator e is used to model the desired timeout semantics. In [BW90] the axioms for
this operator are given. In this axiomatization an auxiliary operator is used: the binary unless
operator, denoted by <l. In order to avoid any confusion between this operator and the left
triangle of a conditional process expression, in this paper we will denote the unless operator
as <Cl. The axioms in Table 4 (from [BB92, BW90D are concerned with the unless operator
and the priority operator and with the distributivity of these operators over a conditional
process expression. From lemma 6.1 and the axioms for the priority operator the following
identity can be derived for the priority operator and the alternative composition of a finite
number of conditional process terms:

55

Lemma 6.2

aClb=a
aClb=6
XCly· Z = XCly
XCl(Y+Z) = (XClY)ClZ
X·yClZ=(XClZ)·y
(X+ y)ClZ = XClZ+YClZ

8(a) = a
8(x· y) = 8(x)· 8(y)

if,(a < b)
if a < b

8(x+y) = 8(X)Cly+8(y)ClX

x Cl (y <J e I> Z) = (X <Cl y) <J e I> (X Cl Z)
(x <J e I> Y)ClZ = (XClZ) <J e I> (yClZ)
8(x <J e I> y) = 8(x) <J C I> 8(y)

Table 4: ACPo with conditions.

8(Ll05i05,,(ai· Xi <J ei I> 6)) = Ll05i05,,(ai· 8(Xi) <J ei II ~(Vl05j05"A"j>"; eJI> 6)

Proof: See [Bru) for a proof with n = 2. o
Lemma 6.2 states that for an alternative composition of conditional process terms the priority
operator can be "translated" to extra conditions on process terms.

It can be foreseen that, in applying the axioms and rules to the process terms of our protocols,
we will meet an impassable problem. ACP has no formal semantics of data, so the evaluation
of the boolean conditions in the conditional process expressions (which, in our case, are based
on the data parameters of the various processes) cannot be formalized. This means that a
formal verification in a strict sense is impossible. In the remainder of this section we will give
the expansion of the three protocols to a single recursive equation with conditions and we will
discuss some requirements which should be met by these equations. We will shortly discuss
the necessarily informal verification of the protocols with respect to these requirements.

6.3 Protocol 1

We start with an adapted specification of the processes involved in Protocol 1. By adding
states and conditions we will give a specification of each basic process in the normal form
as introduced in section 6.1. The merge of these processes wiII also be expanded to a single
equation in this normal form.

First, we give a specification of the protocol process in the desired normal form. The pro­
cess Pli has two parameters: pSi represents a state of the protocol process, j' represents a
component-id. In this specification we distinguish seven states:

• S: the start state .

• B: the buffer is reset, no initial I-message has been sent yet.

56

• C: the candidate state, the initial I-message has been sent.

• T: an R-message is received by a candidate, but has not been processed yet.

• L: the leader state.

• R: an I-message is received by a leader, but has not been processed yet.

• F: the failed state.

Four states (S, C, L and F) are well-known from previous specifications. The three other
states are added in order to get a specification in the desired normal form.

Pl'(ps', j') =

+
+

+

+

+

+

Em EM readJ3P(m,,)· Pl'(ps''/) <l ps' = S I> 6
l' ,

+ reseLb1tjjer' . Pl'(B,j') <l ps' = S I> 6

send_PM'(I(i))· Pl'(C,j') <l ps' = B I> 15

L,j E ID readJ3P'(I(j)) . Pl'(ps''/) <l ps' = C I> 6
+ EjEID\{'j read_Bpi(R(j)). Pl'(T,j) <l ps' = C I> 6
+ readJ3pi(R(i))· Pli(L,ji) <l ps' = C I> 6

send_PMi(I(i))· Pli(C,j') <l j' < i 1\ pSi = T I> 6
+ Pli(F,j') <1 ji > i 1\ pSi = T I> 6

L,j E ID readJ3P'(1(j)) . Pl'(R,j) <l ps' = L I> 15

send_PM'(R(i))· Pli(L,j') <l j' < i 1\ ps' = RI>o
+ send_PMi(R(ji)). Pli(F,j') <l ji > i 1\ pSi = RI>o

" rcadJ3P'(m) . PI '(pSi J") <l pSi = F I> 15 L....tltpEM p' ,

The specification of the local buffer process is the same as in section 5. Only the name has
been shortened to Bl' and its data parameter now is denoted by q' in order to give each
component queue a unique name.

Bl'(qi) = L,"'E M read_M Bi(m) . Bl'(enq(m, qi))
+ send_Bpi(serve(q')). Bl'(deq(q')) <l q' i= emptY-IJueue I> 0
+ read_b1tjjer_reseti. Bl'(emptY-IJueue)

The medium process is also specified in a single conditional equation. The merge of the
send_M B actions (the broadcast to all components except the sender) is expanded to a sum
over IDS, a subset of I D. The name of the process has been shortened to M.

M(IDS,m) =

+
L,i OD"n", E M read_P M'(m",) . M(I D\{i}, m".) <l IDS = 0 I> 6
LODSsend_MB'(rn)· M(IDS\{i},m) <l IDS i= 01> 0

On our way to a specification of the whole system we first will derive a specification of the
merge of the local buffer processes and the medium. The sequence of component queues
qi, i E I D, is denoted by the parameter Q.

BMl(Q, IDS, m) = all, ((lliE ID Bli(q')) II M(IDS, m))

57

Definition of the encapsulation set:

HI = {send..MBi(m),read..MB'(m) liE ID,m EM}.

The expansion of this process leads to the following equation. In this equation the substitution
of a new value X for the old value q' in the sequence Q is denoted by Q[X/qi].

Lemma 6.3

BMl(Q,IDS,m) =
L:iE ID,m,. E M read_PMi(mm) . BMl(Q, I D\{i}, mm)." IDS = 0 ~ 6

+ L:i E IDS comm_M Bi(m) . BMl(Q[enq(m, qi)fq']' I DS\{i}, m) ~ IDS f 0 ~ 6
+ L:i E 1 D send_Bpi(serve(qi)) . BMl(Q[deq(qi)jq'J, IDS, m) ~ qi f empty_queue ~ 15
+ L:i E ID read_buffer_reseti . BMl(Q[empty_queuejqiJ, IDS, m)

Proof: First we look at the merge of the local buffer processes. We name this process B1(Q):

B1(Q) = lIiEID B1i(qi)

As these processes do not communicate with each other, by applying the expansion theorem
and the axioms of section 6.2, this merge expands to the alternative composition of three
sums over the set I D:

Bl(Q) = LEID(r;,"EMread_MB'(m). B1(Q[enq(m,qi)/qi]))
+ L:iEIDsend..Bpi(serve(qi)). Bl(Q[deq(qi)/qi]) <I qi f empty..queue t> {j

+ L:i E 1 D read_buffer_reset' . Bl(Q[empty..queue/qi])

The process BM1(Q, IDS, m) is equal to the encapsulated merge of the processes Bl(Q) and
M(IDS,m):

BM1(Q, IDS, m) = oH,(Bl(Q) II M(IDS,m))

By applying the axioms and lemma's of section 6.2 and the definition of the encapsulation
operator we get a result that is equal to the process expression as stated in lemma 6.3. We
will not show the straightforward calculations leading to this result. 0

Next we will derive a linear specification of the encapsulated merge of the process BM1
and the protocol processes of all components. The process S1 is parameterised with PS (a
sequence of individual protocol process states pSi), J (a sequence of component-ids ji), Q,
IDS and m.

S1(PS, J, Q, IDS, m) = oH,((II'ElD P1'(ps',j')) II BM1(Q, IDS, m))

Definition of the encapsulation set H,:

H, = {read..Bpi(m), send_PMi(m), readYMi(m), send_Bpi(m), reseLbuffer"
read_buffer -Te"eti liE I D , m E M}

The expansion of this process leads to the following equation:

Lemma 6.4

Sl(PS, J, Q,I DS,m) =

L:i E ID(L:"'" EM comm_Bpi(mp) . Sl(PS, J, Qldeq(qi)Jq'], IDS, m)
~ serve(qi) = ml' /I pSi = S ~ 6

+ buffer_is_reset· Sl(PS[BjpsiJ, J,Q[empty..queuejq'J,IDS,m) ~ pi = S ~ 6)

58

+ E, ElD(comm_PM'(I(i)) . SI(PS[C/pst J, Q, I D\{i},I(i)) ~ IDS = 0 f\ ps' = B ~ b)

+ E'ElD(E j ElD comm_BP'(I(j)) . SI(PS, J, Q[deq(q')/q'),I DS, m)
~ serve(q') = I(j) f\ pSi = C ~ b

+ E j E I D\{'} comm_BP'(R(j)) . SI(P SIT Ips'), Jli HI, Q[deq(q')/q'), IDS, m)
~ serve(q') = R(j) f\ ps' = C ~ b

+ comm_BP'(R(i)) . SI(PS[L/ps'), J, Q[deq(q')/q'), IDS, m)
~ serve(qi) = R(i) f\ psi = C ~ b)

+ LE ID(comm_PMi(I(i))· SI(PS[C/ps'), J, Q, ID\{i}, I(i))
~ IDS = 0 f\ J' < i f\ pSi = T ~ b

+ Sl(PS[F/ps'),J,Q,IDS,m) ~j' > i f\ pS' =T ~ b)

+ L E ID(E j E ID comm_Bpi(I(j)) . SI(PS[R/pSi), Jli/ji), Q[deq(qi)/q'), IDS, m)
~ serve(qi) = I(j) f\ pSi = L ~ b)

+ L ElD(comm_PMi(R(i)) . SI(PS[L/psi), J, Q,I D\{i}, R(i))
~ IDS = 0 f\ J' < i f\ psi = R ~ b

+ comm_PM'(R(ji)) . Sl(PS[F/ps'), J, Q,I D\{i}, R(j'))
~ IDS = 0 f\ j' > i f\ psi = R ~ b)

+ E, E ID(E""EM comm_Bpi(mp) . SI(PS, J, Q[deq(qi)/qi), IDS, m)
~ serve(q') = m" f\ psi = F ~ b

+ L ElDS(comm_M Bi(m) . SI(PS, J, Q[enq(m, qi)/q'), I DS\{i}, m) ~ IDS 'I 0 ~ b)

Proof: We start with the expansion of the merge of the protocol processes PIi(psi,j'). We
name this process PI(PS, J):

PI(PS, J) =lliEID PIi(pSi,j')

These processes have no communicating actions, so the merge expands to the alternative
composition of a number of sums over the set I D:

PI(PS, J) = EiE ID(E""EM readJ3pi(ml')' PI(PS, J) ~ pSi = S t> b)

Next we consider the encapsulated merge of PI(PS, J) and BMI(Q, IDS, m):

SI(PS, J, Q, IDS, m) = BJJ,(PI(PS, J) II BMI(Q,IDS, m))

As in the proof of lemma 6.3, the axioms of section 6.2 and the definition of the encapsulation
operator lead to the result as stated in lemma 6.4. For the sake of brevity the vast amount
of calculations that goes with this transformation is not shown. 0

We now will turn to the verification/validation of Protocol 1. As stated in section 6.2, it
is not possible to give a formal verification of the ACP specification of our protocols. The
following is a rather short and necessarily informal discussion of how a verification should
look like, apart from the restrictions.

In section 3 four requirements have been given for Protocol 1, stated in temporal logic. Here
we recall these requirements in natural language:

PI: "There is always at most one leader".

P2: "There will be infinitely often a leader".

59

P3: "If a component i is the leader and a component j is participating with j > i, then i
will capitulate sooner or later".

P4: "If j is the successor of i as a leader, then j > i".

In ACP there has been gained a lot of experience in verifying concurrent processes in terms
ofrequired process behaviour (required actions). Examples of such verifications can be found
in [Bae90]. The requirements P1-P4, as stated above, are primarily state oriented. PI and
P2 are concerned with the state of the system at this moment and in the future. P3 and P4
are concerned with transi tions from one state to another. In the A CP specifications in this
section state information is kept in the data parameters of the process equation. This leads
to requirements that are primarily based on statements about these data parameters. Due to
the lack of a formal data semantics, this is where the strictly formal ACP road ends and an
informal path of natural language reasoning, based on intuitions, begins. We will walk this
path for a short distance.

We capture requirement PI in the following condition RI:

RI: There exists at most one leader. Stated in terms of the data parameters of the process
S1: the number of leaders in PSis less than or equal to 1.

Requirement P2 is captured as follows. In the specification of the protocol process PI' we
add a summand to the leader state:

PI'(...) = ... + ... + is_leader'· PI'(...) <l ps' = L (> /j + ...
The atomic action isJeader' does not communicate with any other action from any other
process. By giving this action a lower priority than any other action in the system we
are certain that it only will be chosen if no other action is possible (any more). If the
action isJeader' is chosen, this means that i is the "final" leader that has won the election.
According to P4 (see below) we then have that "there will be infinitely often a leader" (P2).
If the final leader is the component with the highest id, together with PI this also implies
P3: all eventual leaders with an id < max(I D) apparently have capitulated. Stated more
formally:

R2: T/ a 8(SI(initial state)) = RSI with RSI = T' iB-ieader"",,(ID). RSI

The priority operator nOw is used in relation with the isJeader' actions. The abstraction set
1 contains all actions, except the action is_leader'. max(ID) stands for the highest id in the
set of participating components.

Requirement P4 can be captured by adding a queue SQ of subsequent leader ids to the data
parameters of Sl and by requiring that SQ forms a strict increasing row with respect to the
ordering on the ids:

R3: The queue SQ of subsequent leaders is strictly increasing with respect to the ordering
on the ids.

The "verification" of RI and R3 should imply the addition of III and R3 as extra conditions to
every action in S1. For every action it has to be proved that these conditions are invariantly

60

true from the beginning. The "verification" ofR2 can be performed by calculating the required
process equality. We will not try to give an informal proof of Rl - R3. Instead, we will point
out two possible ways back to a more formal approach:

• turn to a formalism which has a formal semantics of data as well as processes, e.g. the
formalism /LCRL ([GP91J). This way out has not been investigated, it is left for future
research .

• turn to the executable formal specification language PSF ([MV90J). PSF has a formal
semantics of both data (based on ASF [BHK89J) and processes (based on ACP). A PSF
specification can be simulated on a computer. In this way we get a validation of the
protocol, rather than a verification. This has been carried out for two specifications
of Protocol 1 with a few components. One specification was based on the equation for
Systeml in section 5, the other was based on the equation for SI from this section. A
number of simulation runs with both specifications all showed the desired behaviour of
the protocol.

6.4 Intermezzo: timeout semantics and ACP - part 2

In section 5.3 three alternati ves were stated for the modelling of a non-premature timeout.
In this section we will look at the third alternative, the data oriented approach.

Once we have a specification of a protocol in the normal form as given in section 6.1, we can
model the timeout semantics by the condition under which the timeout action is enabled: in
the summand .. . +timeout;.P(D) <l c t> 8+ ... we can formulate the condition c according to
the timeout semantics. We distinguish three possible alternatives in formulating this timeout
condition.

1. We can base this timeout condition on the conditions that enable the actions that have
a higher priority than the timeout. The timeout condition becomes true iff all these
conditions evaluate to false. This is the counterpart of modelling the timeout with the
priority operator 8, as discussed in section 5.3. Lemma 6.2 makes a formal translation
from priorities on actions to conditions on actions possible.

2. The condition on which a timeout is enabled can be based on conditions which are
related with specific states of certain constituent processes. Only if these processes are
in the desired staters) the timeout condition becomes true. In a certain sense this is the
counterpart of the modelling of the timeout with sync actions, as discussed in section
5.3.

3. We can base the condition directly on the desired timeout semantics. This means that
we try to find the most accurate translation of the timeout semantics as stated in
temporal logic into conditions on the data parameters under which the timeout may be
enabled.

Although alternative 3 probably gives the most accurate implementation of the desired time­
out semantics, in this section we will work out alternative 1. The reason is twofold. First, in
using alternative 3 the specification gets very complicated because of the required labelling of

61

messages: the problems mentioned in section 5.3 can be solved only if messages are labelled
with a set of ids. The operations required on this set will make the specification too compli­
cated. The second reason is that, by choosing alternative 1, we maintain the same approach
as with the specifications given in section 5.

6.5 Protocol 2

We will follow the same line as with Protocol 1: first we will give a single equation for the
constituent processes of the protocol, then we will derive an equation for the encapsulated
merge of these processes.

The specification of the protocol process P2' looks very much like the adapted specification
of the process PI' in the previous section. By adding states and conditions we get a single
equation with several summands. The process P2i has two parameters: pSi represents a state
of the protocol process, j' represents a component-id. In this specification we distinguish
eight states:

• S: the start state.

• B: the buffer is reset, no initial I -message has been sent.

• I : the initial I-message has been sent, the timer has not been started yet.

• C: the candidate state, the timer has been started.

• T: an I-message is received by a candidate, but has not been processed yet.

• L: the leader state.

• R: an I-message is received by a leader, but has not been processed yet.

• F: the failed state.

Compared to the states of Protocol 1, only the state 1 is new.

p2i(pSi,j') = L,jEID read~pi(I(j)). P2i(pSi,j') <l pSi = S [> 6
+ reseLbujJer'. P2i(B,ji) <l pSi = S [> 6

+ sendYM'(I(i)). P2i(I,j') <l pSi = B [> 8

+ starLtimer'· P2i(C,j') <l pSi = I [> 6

+ L,jEIDread~pi(I(j))· P2i(T,j) <l pSi = C [> 6
+ read_timeauti . P2'(L, j') <l psi = C [> 6

+ sendYMi(I(i))· p2i(C,j') <l ji < i /I pSi = T [> 6
+ stop_timer'· P2i(F, j') <l j' > i /I pSi = T [> 6

+ L,j E ID read_Bpi(I(j)). P2i(R,j) <l pSi = L [> 6

+ sendYM'(I(i)). P2i(L,j') <l j' < i /I pSi = R [> 8
+ P2'(F,j') <l j' > i /I pSi = R [> 8

+ L,jEID read~pi(I(j)). P2i(ps',j') <l ps' = F [> 6

62

We transform the specification of the smart buffer process of section 5 into a single equation
of the desired normal form by adding a default "empty message". If the buffer contains this
message it is considered to be empty. This implies that max(m, empty_message) = m for all
incoming messages. We do not consider this empty message to be an element of the message
set M. The name of the buffer process has been shortened to B2', the name of the stored
message is now mi.

2:"'EM read_MB'(m). B2'(max(m',m))
send_BP'(m'). B2'(empty_message) <] m' f. empty_message t> 15

+ read_buffer _reset' . B2' (empty _message)

From the specification of process P2' it is clear that a local timer will only be started in
the I-state, after which it will cause a timeout in the C-state or it will be stopped in the
T -state. It will never be started again. Therefore we will not give a re-specification of the
timer process, we will leave the timer state implicit in the specification of the forthcoming
system. The medium process is the same as in section 6.3.

The route to a linear specification of the complete system is the same as in section 6.3. We
will not give all intermediate results, but we will state the final result at once in the following
lemma. The process S2 is parameterised with PS (a sequence of individual protocol process
states ps'), J (a sequence of component-ids j'), MS (a sequence of messages m', kept in the
local buffers; mi can also be the empty message), IDS(a variable set of ids) and a single
message m.

S2(P,J,MS,IDS,m) =
lioBH,(II'E/D (P2'(pS',ji) II B2'(m') II Timer') II M(IDS,m))

with H3 as defined in section 5. The expansion of this process equation leads to the following
equation. The condition for the enabling of the timeout, TO_COND', is derived afterwards.

Lemma 6.5

S2(PS, J, M S,IDS, m) =

2:, E ID(2: j E I D comm_BP'(I(j)) . S2(PS, J, M S[empty_message/m'], IDS, m)
<lm' = I(j) /\ps' = S ~ b

+ buffer_issesel.· S2(PS[B/ps'], J, M S[emptYJnessage/m'], IDS, m) <l ps' = S ~ b)

+ 2:i EI D(comm_P Mi(I(i)) . S2(P Sri Ips'], J, M S,I D\{ i}, I(i)) <l IDS = 0 /\ ps' = B ~ b)

+ 2:i EI D(timer _started' . S2(P SIC /ps'], .1, M S,I DS, m) <l ps' = I ~ b)

+ 2:'E I D(2: j E I D comm_BP'(I(j)) . S2(PS[T/ps'], JUfj'], M S[empty_message/m'], IDS, m)
<lmi=I(j) /\ psi=C~b

+ timeout' . S2(PS[L/ps'),J,MS,IDS,m) <l TO_COND' /\ ps' = C ~ b)

+ 2:, E I D(comm_PMi(I(i)) . S2(PS[C Ips']' J, M S,I D\{i},I(i))
<l IDS = 0 /\ j' < i /\ ps' = T ~ b

+timer_stoppedi ·S2(PS[F/psi),J,MS,IDS,m) <l j' > i /\ ps' =T ~ b)

+ 2:, E ID(2: j E ID comm_BP'(I(j)) . S2(PS[R/ps'], .1[jfj'], M S[empty_message/m'], IDS, m)
<lmi = I(j) /\ psi = L ~ b)

+ 2:'E ID(comm_PM'(I(i)). S2(PS[L/ps'], J, MS, I D\{i},I(i))
<l IDS = 0 /\ ji < i /\ pSi = R ~ b

+ S2(PS[F/ps'], J, M S, IDS, m) <l j' > i /\ psi = R ~ b)

63

+ :L E ID(E j E ID comm_BP'(I(j)) . S2(PS, J, M S[empty_messagejm'], IDS, m)
~m' = l(j) /\ ps' = F ~ ti)

+ E'ElDS(comm_M B'(m). S2(PS, J, MS[max(m', m)jm'],IDS\{i}, m)
~IDS/0~ti)

Proof: by lengthy but straightforward calculations, based on the axioms and lemmas of
section 6.2. 0

In section 5 the timeout semantics was modelled by the definition of a priority relation between
certain actions. In lemma 6.2 the relation between the ordering between actions and conditions
in a process expression was stated. From this lemma and the action orderings as given in
section 5.3 we derive the following lemma concerning the condition for the enabling of the
timeout.

Lemma 6.6

TO_COND' = (IDS = 0)/\
!\kEID(,(mk oF empty_message 1\ (pSk = S V pSk = C V pSk = Lv pSk = F))) 1\

!\jEID,j~,(,(psj = B V (jj < j 1\ (psj = T V psj = R))))

Proof: We split the proof in three parts, for each of the three order relations we will derive
a condition.

1. time aut' < commMBk(m) with m E M, i,k E ID.
In the equation of S2 there is only one condition under which a commMBk(m) action is
enabled: IDS oF 0. According to lemma 6.2 this leads to the following condition for the
enabling of a timeout:

C; = ,(IDS oF 0) = (IDS = 0)

So the first ordering leads to the condition that the medium must be empty before a timeout
is enabled.

2. timeaut' < comm~pk(m) with m E M, i, k E ID.
In the equation of S2 there are four conditions under which a comm_BP action is enabled.
In each condition it is required that the buffer holds a certain message which is not equal
to the empty message. So the second ordering leads to four conditions for the enabling of a
timeout:

cia = !\kEID(' (m k I empty_message /\ psk = S))
Ci, = !\kEID(' (m k oF empty_message /\ ps' = C))
ci" = !\kEID(' (m k oF empty_message /\ pSk = L))
cid = !\kEID(' (m k oF empty_message 1\ pSk = F))

c~ = C~a 1\ C;b 1\ C;t; 1\ C;d =
= !\kEID(' (mk oF empty_message 1\ (pSk = S V pSk = C V pSk = L V pSk = F)))

3. time aut' < commYMj(m) with m E M, i,j E ID,j ;::: i.
In the equation of S2 there are three conditions under which a commYM'(m) action is
enabled. According to lemma 6.2 this leads to three conditions for the enabling of a timeout:

C~a = !\jEID,j~,(,(1DS = 0 1\ psj = B))

64

C~b = !\iEID,i>,(.(IDS = 0 1\ ji < j 1\ psi = T))
C~c = !\iElD,i;,(.(IDS = 0 1\ ji < j 1\ psi = R))

C~ = C~a /\ C~b 1\ C~c =
= .(IDS = 0) v !\iEID,i?.('(psi = B v (ji < j 1\ (psi = T V psi = R))))

Finally we get TO_CON D' = C; 1\ cj 1\ C; which, after some boolean calculations, leads
to the result as stated. 0

The requirements for the verification are the same as for Protocol 1. As with Protocol 1
we halt our investigations of the verification of the protocol at this point. With respect to
the validation of the protocol we refer to a number of successful simulation runs of a PSF
specification of S2. The PSF formalism does not provide the priority operator, so System2
from section 5 could not be specified and simulated in PSF.

6.6 Protocol 3

The required specification of Protocol 3 will be derived in a few big steps. First we give a
specification of the protocol process, then we will give a specification of the whole system.
From section 3 it will be clear that the requirements need special attention. We will discuss
a revision of the requirements RI-R3 at the end of this section.

The specification of the protocol process P3' has the same parameters as P2': ps' (protocol
state) and j' (a component-id). In the specification we distinguish eleven states:

• S: the start state.

• B: the buffer is reset, no initial I-message has been sent.

• I : the initial I-message has been sent, the timer has not been started yet.

• C: the candidate state, the timer has been started.

• T: an I-message is received by a candidate, but has not been processed yet.

• L: the leader state.

• R: an I -message is received by a leader, but has not been processed yet.

• F: the failed state.

• X: an I-message is received by a failed process, but has not been processed yet.

• D: the dead state.

• A: the component becomes alive again (the revive action has been executed), the timer
has not been reset yet.

Compared to the states of Protocol 2 the last three states are new. In the specification below
the transition to the dead state is not added to the process term for each separate state S ... X.
Instead, a single summand with the action crash' is added with the condition .(ps' = D).

65

P3'(ps',j') = L,jElDread_BP'(I(j)). P3'(ps',j') <l ps' = S I> 15
+ reseLbujJeri . P3'(B, j') <l ps' = S I> 15

+ send.PM'(I(i))· P3'(I,j') <l ps' = B I> 15

+ starUimer'· P3'(C,j') <l ps' = 1 I> 15

+ L,jElDread_BP'(I(j)). P3'(T,j) <l ps' = C I> 15
+ readjimeout'· P3'(L,j') <l ps' = C I> 15

+ send.PM'(1(i)). P3'(C,j',) <l j' < i /\ ps' = T I> 15

+ stopjimer'· P3'(F,j') <l j' > i /\ ps' = T I> 15

+ L,jEIDread_BP'(I(j)). P3'(R,j) <l ps' = L I> 15

+ send.PM'(I(i)). P3'(L,j') <l j' < i /\ ps' = R I> 15

+ P3'(F,j') <l ji > i /\ ps' = R I> 15

+ L,jElDread_BP'(I(j)). P3'(X,j) <l ps' = F I> 15

+ P3'(B,j') <l ps' = F I> 15

+ P3'(B,j') <l j' < i /\ ps' = X I> 15

+ P3'(F,j') <l j' > i /\ ps' = X I> 15

+ crashi . P3'(D, ji) <l ~(ps' = D) I> 15

+ revive'· P3'(A,ji) <l ps' = D I> 15

+ reseUimer'· P3'(S,j') <l ps' = A I> 15

The (smart) buffer process and the medium process are the same as in the previous section.
As with Protocol 2, we will not give a re-specification of the simple timer process, although
for this protocol in each state a reset action has been added.

The process S3 has the same data parameters as S2 in the previous section. So we get

S3(PS, J, MS,lDS, m) =

(io8H ,(II'EID (P3'(ps',j') II B2'(m') II Timer i) II M(IDS,m))

with H3 as defined before. The expansion of this equation leads to the following equation.
The condition TO_CON Di for the enabling of the timeout is the same as in the previous
protocol.

Lemma 6.7

S3(PS, J, MS,IDS,m) =
L" E ID(L,j E ID comm_Bpi (l(j)) . S3(PS, J, M Slempty_message/m'], IDS, m)

~m'=I(j) 1\ ps'=S~ 15
+ buffer_is_reset· S3(PS[B/ps'], J, M S[empty.:message/m'j, 1 DS, m) ~ ps' = S ~ 15)

+ LEI D(comm_PM'(I(i)) . S3(PS[J /pSi], J, M S, 1 D\{i}, l(i)) ~ IDS = 0 1\ ps' = B ~ 15)

+ L" ElD(timer _started' . S3(PS[C/ps'], J, M S,1 DS, m) ~ ps' = [~ 15)

+ L" E ID(L,' E ID cornrrLBP'(I(j)) . S3(PS[T/psi], J[jli'], M S[empty_message/m'], IDS, m)
J. .

~ m' = [(j) 1\ ps' = C ~ 15
+ timeout' . S3(PS]L/pSi], J, M S,I DS, m) ~ TO_CON D' 1\ pSi = C ~ 15)

+ L ElD(comm_PMi([(i)) . S3(PS[C /pSi], J, M S,1 D\{i},1(i))

66

"I DS = 0 1\ ji < i 1\ pSi = T ~ 6
+timer_stoppedi . S3(PS[F/ps'],J,MS,IDS,m) "j' >i 1\ ps' =T ~ 6)

+ E'E ID(E; E ID comm_Bpi(I(j» . S3(PS[R/ps'], J[jfj'], M S[empty_message/mi], IDS, m)
"mi = I(j) 1\ psi = L ~ 6)

+ E,ElD(comm_PMi(I(i». S3(PS[L/ps'],J,MS,ID\{i},I(i»
"IDS=0 1\ i'<i 1\ psi=R~ 6

+S3(PS[F/ps'],J,MS,IDS,m) "j' >i 1\ ps' =R ~ 6)

+ Ei E ID(E; E ID comm-Bpi(I(j» . S3(PS[X/ps'], J[jfj'], M S[empty_message/m'], IDS, m)
"m'=I(j) 1\ ps'=F~ 6

+ S3(PS[B/ps'],J,MS,IDS,m) 0 psi = F ~ 6)

+ E'ElD(S3(PS[B/ps'],J,MS,IDS,m)"j'<i 1\ ps'=X~6
+ S3(PS[F/ps'], J, M S, IDS, m) " i' > i 1\ psi = X ~ 6)

+ E'EID(crashi . S3(PS[D/ps'], J, MS,IDS,m) ".(psi = D) ~ 6)

+ E'ElD(revivei . S3(PS[A/pSi], J, MS,IDS, m) "psi = D ~ 6)

+ EiElD(timer_is_reset'. S3(PS[S/psi], J, MS,IDS, m) "ps' = A ~ 6)

+ E'ElDS(comm_M Bi(m)· S3(PS, J, MS[max(mi, m)/m'], IDS\{i},m)
oIDS,<0 ~ 6)

Proof: by lengthy but straightforward calculations, based on the axioms and lemmas of
section 6.2. 0

The correctness requirements for this protocol were given in section 3, stated in temporal
logic formulae. We recall these requirements in natural language:

QI: "There is always at most one leader".

Q2: "If there is a component that never crashes and all better components are crashed for
ever, there will be infinitely often a leader".

Q3: "A component cannot be both leader and crashed".

Q4: "If there is a better living component than the leader, eventually this component will
crash or the leader will abdicate".

Q5: "The abdication of a leader is caused by a crash of the leader or the existence of a better
living component in the past".

Q6: "If a leader abdicates, but does not crash before a new leader emerges, then the identity
of the new leader is equal to or higher than the identity of the old leader".

In the following we will try to give a kind of translation of these requirements to ACP
requirements. QI is the same as PI and can be captured by RI, as given with Protocol l.
Q3 is obvious: in the process parameter P S each element pSi can only have one single value.
So nO component can be both leader and crashed. The requirements Q2, Q4, Q5 and Q6 all
contain statements about the behaviour of the system during (subsequent) moments of time.
In ACP the only notion we have in this field is a notion of fairness, which guarantees that,
under certain circumstances, an action will be chosen sooner or later. As already mentioned
in section 5, in ACP no difference exists between may and must transitions. So, in ACP we

67

can never model a component that never crashes (Q2). In an informal way Q5 is obvious:
from the specification of 53 it is immediately clear that a leader only abdicates after the
reception of a message from a better component or on behalf of a crash. We consider Q4 and
Q6 as too complex to handle in an ACP setting. Instead, we present a weakened variant of
R2: R2' which states that a leader can be observed infinitely often, when abstracting from all
other actions and when an isJeader' action has a lower priority than all actions concerned
with message passing.

R2': T[0 O(53(initial state)) = R53 with R53 = L'UD T· is_leader'· R53

As with the previous protocols we will not try to give any verification of Protocol 3 with
respect to the requirements. The protocol has been validated by a number of successful
simulation runs of a PSF specification of 53.

68

7 Conclusions

In this paper we have designed, specified and verified a series of dynamic leader election
protocols in broadcast networks. From this extensive case study in protocol design and
verification we make the following remarks.

We started our design by formally capturing the protocol requirements. Rather surprisingly,
no such precise -and abstract- problem specification for dynamic leader election currently
exists in literature. When considering the protocol's correctness this is even more remarkable
as a formal problem specification is indispensable for a formal verification.

Linear-time temporal logic was used so as to express the requirements and to perform the
verification. The formalism turned out to be very convenient for specifying the requirements
in a rather abstract way. Due to the dynamic character of processes it is not straightforward
to give such a specification in, for instance, a process algebraic formalism without aiming at
a particular protocol.

The protocols are constructed in a step-wise fashion starting from the formal requirement
specification. The step-wise approach aids not only in the clarity and conciseness of the pro­
tocols, but also -and more importantly- in reasoning about them ('separation of concerns').
Due to our experience, we believe that this is a feasible approach for the design of complex,
dynamic communication protocols.

A possible (and interesting) extension to the Leader Election problem is to consider identities
that may change during operation opposed to fixed identities. We remark that the final,
fault-tolerant protocol is also applicable in this context.

The use of temporal logic for the specification and verification of communication protocols
is well-known for almost a decade (see e.g. [Lam82, H083, SPE84]). This case study shows
-once more- that this technique combined with the state transition approach is very conve­
nient. In fact, we have shown that these techniques are also applicable when designing a new
protocol whereas most case studies focus on already existing protocols with commonly agreed
requirements. Furthermore, the dynamic character of processes makes the problem consid­
erably more complex (e.g. the addition of timeouts and presence of two kinds of transitions)
than traditionally verified protocols.

Ideally, detailed proofs of complex protocols are required in which each step of the proof is
formalized and for which informal arguments are minimized. Such detailed proofs are well
possible in our framework and require a formalization of the assumptions, translation of the
protocols into the proof formalism, and so on. The proofs in this paper constitute a useful
stepping-stone towards such a detailed proof. Obtaining a completely formalized proof is
considered to be an interesting subject for further research.

A specification of the protocols in ACP contains a complete formal description, not only of
the various processes but also of the complete distributed behaviour of the protocols. To
this extent ACP has more expressive power than state transition diagrams. The protocols in
this paper are too large for manual algebraic verification. Automated verification in a related
formalism as fLCRL is left for future research. PSF simulation runs of the protocols appeared
to be very helpful during the various stages of the protocol design.

In general an algebraic verification in ACP consists of a proof that two ACP specifications
define the same process, seen from an appropriate level of abstraction. One specification

69

is considered as the requirement specification, while the other serves as the protocol spec­
ification. In some cases, as in our LE protocol, it is very haxd to provide a requirement
specification in ACP. This is due to the fact that such a specification must contain a descrip­
tion of all possible admitted behaviours. This is the main reason why we were not able to
give a complete correctness proof in ACP. Instead, we calculated a normal form, which in
general is an important step in most ACP proofs. Further research should point out whether
there is a way to obtain a requirement specification for this kind of protocols in ACP, or that
this problem is intrinsic to ACP.

We think that a combination of the techniques used in this paper may show adequate to give
a correctness proof which is completely formal. This would consist of a specification of the
complete system (induding the communication media) in ACP, followed by a transformation
to a normal form in ACP, on which a verification of the requirements using temporal logic is
based. It should be studied how to link ACP and temporal logic formally.

In the first instance the construction of the protocols was aimed at correctness with respect
to the requirements and minimizing the number of transitions -rather than optimizing their
efficiency. As efficiency, though, plays an important role in the field of leader election proto­
cols we analyzed the protocols' worst case message complexity, that is, the maximum number
of messages needed to elect a leader. During this analysis the use of protocol simulation
facilities [MV90) was of considerable help. With the aid of these tools it turned out that the
introduction of an alternative buffering mechanism reduces the message complexity signifi­
cantly.

This case study shows the usefulness of manual verification for a non-trivial protocol problem
and is helpful in gaining experience of how such a verification is best conducted. Application
to other protocols must show how useful this information turns out to be. This is left for
further study.

Acknowledgements: The authors gratefully acknowledge Jan Bergstra (Univ. of Amsterdam &
Univ. of Utrecht) for initiating and stimulating our fruitful cooperation. We are also grateful to Jan
Friso Groote (Univ. of Utrecht) for his assistance during the beginning of our work. Finally, Henk
Eertink (Univ. of Twente), Ruurd Kuiper (Univ. of Eindhoven), Yat Man Lau (Philips Research), and
Marnix Vlot (Philips Research) are kindly acknowledged for commenting on parts of a draft version
of this paper.

70

References

[AA88]

[AG91]

[Att87]

H.H. Abu-Amara. Fault-tolerant distributed algorithm for election in complete networks.
IEEE Transactions on Computers, 37(4):449-453, 1988.

Y. Afek and E. Gafni. Time and message bounds for election in synchronous and asyn­
chronous complete networks. SIAM Journal on Computing, 20(2):376-394, 1991.

H. Attiya. Constructing efficient election algorithms from efficient traversal algorithms.
In J. van Leeuwen, editor, Distributed Algorithms, LNCS 312, pages 337-344. Springer-
Verlag, 1987.

[AvLSZ89] H. Attiya, J. van Leeuwen, N. S,mtoro, and S. Zaks. Efficient elections in chordal ring
networks. Algorithmica, 4(3):437-446, 1989.

[Bae90]

[BB92]

[BD87]

J .C.M. Baeten, editor. Applications of Process Algebra. Cambridge Tracts in Theoretical
Computer Science 17. Cambridge University Press, 1990.

J .C.M. Baeten and J .A. Bergstra. Process algebra with signals and conditions. In M. Broy,
editor, Programming and Mathematical Methods, Proceedings Summer School Marktober-
dorf 1991, pages 273-323. Springer, 1992.

S. Budkowski and P. Dembinski. An introduction to Estelle: A specification language for
distributed systems. Computer Networks and ISDN Systems, 14:3-23, 1987.

[BHK89] J.A. Bergstra, J. Heering, and P. Klint, editors. Algebraic specification. ACM Press
Frontier Series. Addison Wesley, 1989.

[Bru]

[Bru91]

[BW90]

[CR79]

[DDS87]

[Dij74]

[DIM93]

[Fis91]

[Geh84]

[Got92]

[Gou93]

J.J. Brunekreef. Data oriented process specification. (To appear in autumn 1993).

J.J. Brunekreef. A formal specification of three sliding window protocols. Technical Report
P9102b, Programming Research Group, University of Amsterdam, 1991.

J.C.M Baeten and W.P. Weijland. Process Algebra. Cambridge Tracts in Theoretical
Computer Science 18. Cambridge University Press, 1990.

E. Chang and R. Roberts. An improved algorithm for decentralized extrema-finding in
circular configurations of processors. Communications of the ACM, 22(5):281-283, 1979.

D. Dalev, C. Dwork, and L. Stockmeyer. On the minimal synchronism needed for dis­
tributed consensus. Journal of the ACM, 34(1):77-97, 1987.

E.W. Dijkstra. Self-stabilizing systems in spite of distributed control. Communications of
the ACM, 17:634-644, 1974.

S. Dolev, A. Israeli, and S. Moran. Uniform dynamic self-stabilizing leader election part
1: Complete graph protocols. (Preliminary version appeared in Proc. 6th Int. Workshop
on Distributed Algorithms, (S. Toueg et. aI., eds.), LNCS 579, 167-180, 1992), 1993.

M.J. Fischer. A theoretician's view of fault tolerant distributed computing. In Fault­
Tolerant Distributed Computing, LNCS 448, pages 1-9. Springer-Verlag, 1991.

N.H. Gehani. Broadcasting sequential processes. IEEE Trans. on Software Engineering,
10(4):343-351, 1984.

R. Gotzhein. Temporal logic and its applications-a tutorial. Computer Networks and
ISDN Systems, 24:203-218, 1992.

M.G. Gouda. Protocol verification made simple: a tutoriaL Computer Networks and ISDN
Systems, 25:969-980, 1993.

71

[GP91] J.F. Groote and A. Ponse. MCRL: A base for analyzing processes with data. In E. Best
and G. Rozenberg, editors, Proceedings of the :;rod Workshop on Concurrency and Compo~
sitionality, pages 125-130. Universitat Hildesheim, 1991.

[GZ86] R. Gusella and S. Zatti. An election algorithm for a distributed clock synchronization
program. In Proc. 6th IEEE Int. Conf. on Distributed Computing Systems, pages 364-
371, 1986.

[H083] B. T. Hailpern and S. Owicki. Modular verification of computer communication protocols.
IEEE Transactions on Computers, 31(1):56-68, 1983.

[HoaS5] C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

[IKWZ90] A. Itai, S. Kutten, Y. Wolfstahl, and S. Zaks. Optimal distributed t-resilient election in
complete networks. IEEE Transactions on Software Engineering, 16(4):415--420, 1990.

[KKM85] E. Korach, S. Kutten, and S. Moran. A modular technique for the design of efficient
distributed leader finding algorithms. In Proc. 4th Annual ACM Symp. on Principles of
Distributed Computing, pages 163-174. ACM, 1985.

[KMZ84] E. Korach, S. Moran, and S. Zaks. Tight lower and upper bounds for some distributed
algorithms for a complete network of processors. In Proc. 3rd Annual ACM Symp. on
Principles of Distributed Computing, pages 199-207. ACM, 1984.

[Koy89] R.L.C. Koymans. Specifying message passing systems requires extending temporal logic.

[Lam82]

[Lam83]

[LeL77]

[LMW86]

[LT88]

[MB76]

[MNHT89]

[MP92]

[MV90]

[MV93]

[Pet82]

In B. Banieqbal (et. al.), editor, Proc. Colloquium on Temporal Logic and Specification,
LNCS 398, pages 213-223. Springcr-Verlag, 1989.

L. Lamport. An assertional correctness proof of a distributed algorithm. Science of
Computer Programming, 2:175-206, 1982.

L. Lamport. Specifying concurrent program modules. A CM Transactions on Programming
Languages ~nd Systems, 5(2):190-222, 1983.

G. LeLann. Distributed systems-towards a formal approach. In B. Gilchrist, editor,
Information Processing (vol. 77) (IFIP), pages 155-160. North-Holland, Amsterdam, 1977.

M.e. Loui, T .A. Matsushita, and D.B. West. Election in a complete network with a sense
of direction. Information Processing Letters, 22:185-187,1986. (see also Inf. Proc. Letters,
28:327, 1988).

K.G. Larsen and B. Thomsen. A modal process logic. In Proc. of 3rd Annual Symp. on
Logic in Computer Science, pages 203-210. IEEE Computer Society Press, 1988.

R.M. Metcalfe and D.R. Boggs. Ethernet: Distributed packet switching for local computer
networks. Communications of the ACM, 19(7):395-404, 1976.

T. Masuzawa, N. Nishikawa, K. Hagihara, and N. Tokura. Optimal fault-tolerant dis­
tributed algorithms for election in complete networks with a global sense of direction. In
J .-C. Bermond and M. Raynal, editors, Distributed Algorithms, LNCS 392, pages 171-182.
Springer-Verlag, 1989.

Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems­
Specification. Springer-Verlag, New York, 1992.

S. Mauw and G.J. Veltink. A process specification formalism. Fundamenta Informaticae,
VIII:85-139, 1990.

S. Mauw and G.J. Veltink, editors. Algebraic specification of communication protocols.
Cambridge Tracts in Theoretical Computer Science 36. Cambridge University Press, 1993.

G.L. Peterson. An O(n log n) unidirectional algorithm for the circular extrema problem.
ACM Trans. Progr. Lang. Syst., 4:758-762, 1982.

72

[Sch93]

[SG87]

[SGS84]

[Sin91]

[SPE84]

[Vaa90]

[vB78]

[vEB90]

[vLT87]

[vW93]

M. Schneider. Self-stabilization. ACM Computing Surveys, 25(1):45-67, 1993.

L. Shrira and O. Goldreich. Electing a leader in a ring with link failures. Acta Informatica,
24:79-91, 1987.

F.B. Schneider, D. Gries, and R.D. Schlichting. Fault-tolerant broadcasts. Science of
Computer Programming, 4(1):1-16, 1984.

G. Singh. Efficient distributed algorithms for leader election in complete networks. In
Proc. 11th IEEE Int. Con/. on Distributed Computing Systems, pages 472-479, 1991.

D.E. ShashaJ A. Pnueli, and W. Ewald. Temporal verification of carrier-sense local area
network protocols. In Proc. A CM Symp. on Principles of Programming Languages, pages
54-65, 1984.

F.W. Vaandrager. Two simple protocols. In Baeten [Bae90].

G. v. Bachmann. Finite state description of communication protocols. Computer Networks,
2:361-372, 1978.

P. van Emde Boas. Machine models and simulations. In J. van Leeuwen, editor, Handbook
of Theoretical Computer Science (vol. 1). Elsevier Science Publishers, 1990.

J. van Leeuwen and R.B. Tan. An improved upper bound for distributed election in bidi­
rectional rings of processors. Distributed Computing, 2:149-160, 1987.

J.J. van Warne!. Simple protocols. In Mauw and Veltink [MV93].

73

In this series appeared:

91/01 D. Alstein

91/02 R.P. Nederpelt
H.C.M. de Swart

91/03 J.P. Katoen
L.A.M. Schoenmakers

91/04 E. v.d. Sluis
A.F. v.d. Stappen

91/05 D. de Reus

91/06 K.M. van Hee

91/07 E.Poll

91/08 H. Schepers

91/09 W.M.P.v.d.Aalsl

91/10 R.C.Backhouse
PJ. de Bruin
P. Hoogendijk
G. Malcolm
E. Voermans
J. v.d. Woude

91/11 R.C. Backhouse
P.J. de Bruin
G.Malcolm
E.Voermans
J. van der Woude

91/12 E. van der Sluis

91/13 F. Rietman

91/14 P. Lemmens

91/15 A. T.M. Aerts
K.M. van Hee

91/16 AJJ.M. Marcelis

91/17 A.T.M. Aerts
P.M.E. de Bra
K.M. van Hee

Dynamic Reconfiguration in Distributed Hard Real-Time
Systems, p. 14.

Implication. A survey of the different logical analyses
"if ... ,then ... ", p. 26.

Parallel Programs for the Recognition of P-invariant
Segments, p. 16.

Performance Analysis of VLSI Programs, p. 31.

An Implementation Model for GOOD, p. 18.

SPECIFICATIEMETHODEN, een overzicht, p. 20.

CPO-models for second order lambda calculus with
recursive types and subtyping, p. 49.

Terminology and Paradigms for Fault Tolerance, p. 25.

Interval Timed Petri Nets and their analysis, p.53.

POLYNOMIAL RELATORS, p. 52.

Relational Catamorphism, p. 31.

A parallel local search algorithm for the travelling
salesman problem, p. 12.

A note on Extensionality, p. 21.

The PDB Hypermedia Package. Why and how it was
built, p. 63.

Eldorado: Architecture of a Functional Database
Management System, p. 19.

An example of proving attribute grammars correct:
the representation of arithmetical expressions by DAGs,
p. 25.

Transforming Functional Database Schemes to Relational
Representations, p. 21.

91(18 Rik van Geldrop

91/19 Erik Poll

91(20 A.E. Eiben
RY. Schuwer

91121 J. Coenen
W.-P. de Roever
J.Zwiers

91(22 G. Wolf

91(23 K.M. van Hee
L.J. Somers
M. Yoorhoeve

91/24 A.T.M. Aerts
D. de Reus

91/25 P. Zhou
J. Hooman
R Kuiper

91/26 P. de Bra
G.J. Houben
J. Paredacns

91/27 F. de Boer
C. Palamidessi

91/28 F. de Boer

91/29 H. Ten Eikelder
R van Geldrop

91(30 J.C.M. Baeten
F.W. Yaandrager

91/31 H. ten Eikelder

91(32 P. Struik

91(33 W. v.d. Aalst

91(34 J. Coenen

91(35 F.S. de Boer
J.W. Klop
C. Pa1amidessi

Transfonnational Query Solving, p. 35.

Some categorical properties for a model for second order
lambda calculus with subtyping, p. 21.

Knowledge Base Systems, a Fonnal Model, p. 21.

Assertional Data Reification Proofs: Survey and
Perspective, p. 18.

Schedule Management: an Object Oriented Approach, p.
26.

Z and high level Petri nets, p. 16.

Fonnal semantics for BRM with examples, p. 25.

A compositional proof system for real-time systems based
on explicit clock temporal logic: soundness and complete
ness, p. 52.

The GOOD based hypertext reference model, p. 12.

Embedding as a 1001 for language comparison: On the
CSP hierarchy, p. 17.

A compositional proof system for dynamic proces
creation, p. 24.

Correctness of Acceptor Schemes for Regular Languages,
p. 31.

An Algebra for Process Creation, p. 29.

Some algorithms to decide the equivalence of recursive
types, p. 26.

Techniques for designing efficient parallel programs, p.
14.

The modelling and analysis of queueing systems with
QNM-ExSpect, p. 23.

Specifying fault tolerant programs in deontic logic,
p. 15.

Asynchronous communication in process algebra, p. 20.

92/01 J. Coenen
J. Zwiers
W.-P. de Roever

92/02 J. Coenen
J. Hooman

92/03 J.C.M. Baeten
J .A. Bergstra

92/04 J.P.H.W.v.d.Eijnde

92/05 lP.H. W.v.d.Eijnde

92/06 J.C.M. Baeten
J.A. Bergstra

92/07 RP. Nederpelt

92/08 RP. Nederpelt
F. Kamareddine

92/09 RC. Backhouse

92/10 P.M.P. Rambags

92/11 RC. Backhouse
J.S.C.P.v.d.Woude

92/12 F. Kamareddine

92/13 F. Kamareddine

92/14 J.C.M. Baeten

92/15 F. Kamareddine

92/16 RR Seljee

92/17 W.M.P. van der Aalst

92/18 R.Nederpelt
F. Kamareddine

92/19 J.c.M.Baeten
J .A.Bergstra
S.A.Smolka

92/20 F.Kamareddine

92/21 F.Kamareddine

A note on compositional refinement, p. 27.

A compositional semantics for fault tolerant real-time
systems, p. 18.

Real space process algebra, p. 42.

Program derivation in acyclic graphs and related
problems, p. 90.

Conservative fixpoint functions on a graph, p. 25.

Discrete time process algebra, pA5.

The fine-structure of lambda calculus, p. 110.

On stepwise explicit substitution, p. 30.

Calculating the Warshall/Floyd path algorithm, p. 14.

Composition and decomposition in a CPN model, p. 55.

Demonic operators and monotype factors, p. 29.

Set theory and nominalisation, Part I, p.26.

Set theory and nominalisation, Part II, p.22.

The total order assumption, p. 10.

A system at the cross-roads of functional and logic
programming, p.36.

Integrity checking in deductive databases; an exposition,
p.32.

Interval timed coloured Petri nets and their analysis, p.
20.

A unified approach to Type Theory through a refined
lambda-calculus, p. 30.

Axiomatizing Probabilistic Processes:
ACP with Generative Probabilities, p. 36.

Are Types for Natural Language? P. 32.

Non well-foundedness and type freeness can unify the
interpretation of functional application, p. 16.

92/22 R. Nederpelt
F.Kamareddine

92/23 F.Kamareddine
E.Klein

92/24 M.Codish
D.Dams
Eyal Yardeni

92/25 E.Poll

92/26 T.H.W.Beelen
W.J.lStut
P.A.C.Vcrkoulen

92/27 B. Watson
G. Zwaan

93/01 R. van Geldrop

93/02 T. Verhoeff

93/03 T. Verhoeff

93/04 E.H.L. Aarts
J.H.M. Korst
PJ. Zwietering

93/05 J.C.M. Baeten
C. Verhoef

93/06 J.P. Veltkamp

93/07 P.D. Moerland

93/08 J. Verhoosel

93/09 K.M. van Hee

93/10 K.M. van Hee

93/11 K.M. van Hee

93/12 K.M. van Hee

93/13 K.M. van Hee

93/14 J.eM. Baeten
lA. Bergstra

A useful lambda notation. p. 17.

Nominalization, Predication and Type Containment, p. 40.

Bottum -up Abstract Interpretation of Logic Programs,
p. 33.

A Programming Logic for Fro, p. IS.

A modelling method using MOVIE and SimCon/ExSpect,
p. IS.

A taxonomy of keyword pattern matching algorithms,
p. SO.

Deriving the Aho-Corasick algorithms: a case study into
the synergy of programming methods, p. 36.

A continuous version of the Prisoner's Dilemma, p. 17

Quicksort for linked lists, p. 8.

Deterministic and randomized local search, p. 78.

A congruence theorem for structured operational
semantics with predicates, p. 18.

On the unavoidability of metastable behaviour, p. 29

Exercises in Multiprogramming, p. 97

A Formal Deterministic Scheduling Model for Hard Real­
Time Executions in DEDOS, p. 32.

Systems Engineering: a Formal Approach
Part I: System Concepts, p. 72.

Systems Engineering: a Formal Approach
Part II: Frameworks, p. 44.

Systems Engineering: a Formal Approach
Part III: Modeling Methods, p. 101.

Systems Enginecring: a Formal Approach
Part IV: Analysis Methods, p. 63.

Systems Engineering: a Formal Approach
Part V: Specification Language, p. 89.

On Sequential Composition, Action Prefixes and
Process Prefix, p. 21.

93/15 J.C.M. Baeten
J.A. Bergstra
R.N. Bol

93/16 H. Schepers
J. Hooman

93/17 D. Alstein
P. van der Stok

93/18 C. Verhoef

93/19 G-J. Houben

93/20 F.S. de Boer

93/21 M. Codish
D. Dams
G. File
M. Bruynooghe

93/22 E. Poll

93/23 E. de Kogel

93/24 E. Poll and Paula Severi

93/25 H. Schepers and R. Gerth

93/26 W.M.P. van der Aalst

93/27 T. Kloks and D. Kratsch

93/28 F. Kamareddine and
R. Nederpelt

93/29 R. Post and P. De Bra

93/30 J. Deogun
T. Kloks
D. Kratsch
H. Miiller

93/31 W. Korver

93/32 H. ten Eikelder and
H. van Gcldrop

93/33 L. Loyens and J. Moonen

A Real-Time Process Logic, p. 31.

A Trace-Based Compositional Proof Theory for
Fault Tolerant Distributed Systems, p. 27

Hard Real-Time Reliable Multicast in the DEDOS system,
p. 19.

A congruence theorem for structured operational
semantics with predicates and negative premises, p. 22.

The Design of an Online Help Facility for ExSpect, p.21.

A Process Algebra of Concurrent Constraint Program­
ming, p. 15.

Freeness Analysis for Logic Programs - And Correct­
ness?, p. 24.

A Typechecker for Bijective Pure Type Systems, p. 28.

Relational Algebra and Equational Proofs, p. 23.

Pure Type Systems with Definitions, p. 38.

A Compositional Proof Theory for Fault Tolerant Real­
Time Distributed Systems, p. 31.

Multi-dimensional Petri nets, p. 25.

Finding all minimal separators of a graph, p. 11.

A Semantics for a fine A-calculus with de Bruijn indices,
p.49.

GOLD, a Graph Oriented Language for Databases, p. 42.

On Vertex Ranking for Permutation and Other Graphs,
p. II.

Derivation of delay insensitive and speed independent
CMOS circuits, using directed commands and
production rule sets, p. 40.

On the Correctness of some Algorithms to generate Finite
Automata for Regular Expressions, p. 17.

ILIAS, a sequential language for parallel matrix
computations, p. 20.

93/34 J.C.M. Baeten and
J.A. Bergstra

93/35 W. Ferrer and
P. Severi

93/36 J.C.M. Baeten and
J.A. Bergstra

Real Time Process Algebra with Infinitesimals, p.39.

Abstract Reduction and Topology, p. 28.

Non Interleaving Process Algebra, p. 17.

	Abstract
	Contents
	1. Introduction
	2. Relation to other work
	3. Design and Complexity Analysis of LE Protocol
	3.1 Introduction
	3.1.1 Communication
	3.1.2 Protocol Description Language
	3.1.3 Introduction to Temporal Logic
	3.2 A First Stepping Stone
	3.2.1 Requirements in Temporal Logic
	3.2.2 A First Protocol
	3.3 A Symmetric LE Protocol
	3.4 A Fault-Tolerant LE Protocol
	3.4.1 Requirements Revisited
	3.4.2 Design of a Fault-Tolerant Protocol
	3.5 Complexity Analysis of the Protocols
	3.5.1 Introduction
	3.5.2 Complexity of Protocol 1
	3.5.3 Complexity of Protocol 2
	3.5.4 Complexity of Protocol 3
	4. Verification by Temporal Logic
	4.1 Introduction
	4.2 Verification of Protocol 1
	4.3 Verification of Protocol 2
	4.3.1 Timeout Semantics
	4.3.2 Timeout Properties
	4.3.3 Proof of Requirements
	4.4 Verification of Protocol 3
	4.4.1 Timeout Properties
	4.4.2 Proof of requirements
	5. ACP Specifications
	5.1 Introduction to ACP
	5.2 Protocol 1
	5.3 Intermezzo: timeout semantics and ACP - part 1
	5.4 Protocol 2
	5.5 Protocol 3
	5.6 Action atomicity and complexity results
	6. Verification and Validation in ACP
	6.1 Introduction
	6.2 ACP axioms
	6.3 Protocol 1
	6.4 Intermezzo: timeout semantics and ACP - part 2
	6.5 Protocol 2
	6.6 Protocol 3
	7. Conclusions
	References

