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Abstract 

The well-known problem of leader election in distributed systems is considered in a dynamic 
context where processes may participate and crash spontaneously. Processes communicate 
by means of buffered broadcasting as opposed to usual point-to-point communication. In this 
paper we design a leader election protocol in such a dynamic system. As the problem at 
hand is considerably complex we adopt a step-wise refinement design method starting from 
a simple leader election protocol. In a first refinement a symmetric solution is obtained and 
eventually a fault-tolerant protocol is constructed. This gives rise to three protocols. The 
worst case message complexity of all protocols is analyzed. 

A formal approach to the verification of the leader election protocols is adopted. The require­
ments are specified in a property-oriented way and the protocols are denoted by means of 
extended finite state machines. It is proven using linear-time temporal logic that the proto­
cols satisfy their requirements. Furthermore, the protocols are specified in more detail in the 
process algebra formalism ACP. 

Keywords & Phrases: communication protocols, finite-state machines, leader election, pro­
tocol specification and verification, temporal logic, process algebra. 
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1 Introduction 

In current distributed systems several functions (or services) are offered by some dedicated 
process(es) in the system. One might think of address assignment and registration, query 
co-ordination in a distributed database system, clock distribution, token regeneration after 
token loss, and so forth. Usually many processes in the system are capable to offer such a 
functionality. However, at any time only one process is allowed to actually offer the function. 
Therefore, one process -called the "leader"- must be elected to support that function. 
Sometimes it suffices to elect an arbitrary process, but for other functions it is important to 
elect the process which is best according to some suitable criteria to perform that function. 

In this paper we consider a distributed leader election (LE) protocol which elects the most 
favourable process (relative to some criteria explained later) as leader. Each process has a 
fixed unique identity and a total ordering exists on these identities, known to all processes. 
We assume a finite number of processes. The leader is defined as the process with the 
largest identity among all participating processes. Realistic distributed systems are subject 
to failures. The problem of leader election thus becomes of practical interest when failures are 
anticipated. In this paper, processes behave dynamically-they may participate at arbitrary 
moments and stop participating spontaneously without notification to any other process. 
Crashed processes may recover at any time. Thus, a leader has to be elected from a set of 
processes whose elements may change continuously. Processes communicate with each other 
by exchanging messages via a broadcast network. This network is considered to be fully 
reliable. A broadcast message is received by all processes except the sending process itself. 
Communication is asynchronous and order-preserving. 

Leader election is a special case of distributed consensus problems. Several impossibility 
results have been obtained for such problems. For instance, in [DDS87] a number of orthogonal 
characteristics are identified by which the existence of a solution for the distributed consensus 
problem is determined. According to this classification our problem is solvable since we 
consider order-preserving message delivery, broadcast communication and atomic send and 
receive. 

Due to the complexity of the design of a fault-tolerant LE protocol a step-wise refinement 
approach is adopted. That is, we develop a fault-tolerant protocol in three steps, each step 
resulting in a LE protocol. We start with rather strong -and unrealistic- assumptions about 
process and system behaviour. In each subsequent step these assumptions are weakened and 
a protocol is constructed starting from the protocol derived in the previous step. The steps 
of our design are as follows. In our initial design processes are considered to be perfect and a 
leader is assumed to be present initially. A process may participate spontaneously, but once 
it does it remains to do so and does not crash. In the second step, the assumption of an initial 
leader is dropped. This leads to a fully symmetric protocol which uses an (abstract) timeout 
mechanism to detect the absence of a leader. Finally, in the last step of our design processes 
may crash without giving any notification to other processes. 

As efficiency plays an important role in the design of leader election protocols a complexity 
analysis is given for each protocol presented in this paper. We focus our analysis on the 
worst case message complexity which indicates the maximum number of messages needed to 
elect a leader. For N participating processes the message complexity of our initial protocol 
is O(N'), which can be improved to O(N) by adopting a tricky way of message buffering. 
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Using this buffer mechanism the last two protocols have a message complexity of O(N) and 
O(N'), respectively, when no crashing processes are considered. 

Existing designs are mainly focussed on reducing message and time complexity, scarcely pay­
ing attention to protocol verification, let alone providing a formal approach to verification. 
However, for the design of complex communication protocols formal methods are indispens­
able. The starting-point of our designs is a requirements specification in linear-time temporal 
logic. Temporal logic is an appropriate and expressive language for specifying properties 
and behaviours of reactive systems, like communication protocols, in an abstract way. As a 
protocol specification language we adopt extended finite state machines. The combination 
of temporal logic and state-transition diagrams enables a formal verification of the designed 
protocols. Such a verification is carried out for all presented protocols. 

The protocols are also specified in the process algebra formalism ACP (Algebra of Commu­
nicating Processes). Both the separate components (protocol processes, buffers, the com­
munication medium) and the parallel composition of these components are specified, giving 
a complete formal specification of the whole distributed behaviour of the protocols. Some 
aspects of a formal verification of the protocols within the process algebra framework are 
discussed, but a complete verification of the protocols in ACP lies beyond the scope of this 
paper. A validation of the protocols is achieved by simulation runs of the specifications in 
the executable formalism PSF (Process Specification Formalism), which is close to ACP. 

The paper is further organized as follows. In section 2 the relation to existing work is pre­
sented. The requirements specification, design and complexity analysis of all three protocols 
is presented in section 3. Furthermore, an introduction to the protocol description language 
and to linear-time temporal logic is given in this section. In section 4 it is verified using tem­
porallogic that all protocols from section 3 satisfy the requirements. An introduction to ACP 
and a specification of the protocols in ACP is given in section 5. Verification and validation in 
ACP of the protocols is discussed in section 6. Finally, in section 7 some concluding remarks 
are given and future work is addressed. In the rest of this paper, we use the term protocol as 
a synonym for similar terms as distributed program, distributed algorithm, and so forth. 
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2 Relation to Other Work 

Leader Election algorithms 
The problem of leader election was originally coined by [LeL 77J in the late seventies and vari­
ous LE protocols have been developed since then. A broad range of solutions exists varying in 
network topology (ring [LeL 77, CR79, Pet82], mesh, complete network [KMZ84, AG9l, Sin9l], 
and so on), communication mechanism (asynchronous, synchronous), available topology in­
formation at processes [LMW86, AvLSZ89], and sO forth. A possible straightforward solution 
to a broadcast network is to superimpose a topology ~like a ring~ on it and to adopt a 
well-known solution for this topology. However, existing solutions are aimed at distributed 
systems that are assumed to behave perfectly~no failures are anticipated and a fixed number 
of participating processes is assumed. Moreover, the specific characteristics of broadcasting 
are not exploited. 

Realistic distributed systems are subject to failures. A few LE protocols are known that 
tolerate either communication link failures (see e.g. [AA88, SG87]) or process failures [GZ86, 
IKWZ90, MNHT89, DIM93J. In [GZ86J the LE problem with a similar failure model and using 
broadcast communication is considered, however, no ordering between processes is considered. 
[IKWZ90J and [MNHT89J only consider process crashes prior to the start of the protocol, but 
no crashes during protocol execution are taken into account. We consider processes to be able 
to crash at any moment of time. In [DIM93J a LE protocol is constructed which tolerates 
transient process failures. This protocol belongs to the category of self-stabilizing protocols 
[Dij74J. This protocol, however, assumes a complete network topology and does not require 
identities to be distinct. 

Complexity Results 
LE protocols vary in complexity. Early protocols for a ring network (as given in [CR79, 
LeL 77]) have a worst case message complexity of O(N2) and a worst case time complexity of 
O(N), N being the number of participants in the election. Later on these results have been 
improved (see e.g. [Pet82, vLT87]) to protocols with a message complexity of O(N log N) and 
a time complexity of O(log N). For a complete network LE protocols have been designed with 
a worst case message complexity of O(NlogN) and a worst case time complexity of O(N), 
see [AG9l, Att87, KKM85, LMW86J. In [Sin9lJ a number of LE protocols for asynchronous 
complete networks is given with a message complexity of O(Nk) and a time complexity of 
O(N/k), with k a constant, 10gN-::,k-::'N. 

Specification and Verification in Temporal Logic 
Existing LE protocols are mainly focussed on reducing message and time complexity, scarcely 
paying attention to problem specification and protocol verification. To our knowledge no 
formal specification of the (dynamic) LE problem is published elsewhere. In order to correctly 
design (and verify!) communication protocols such a formal specification is indispensable. 
The specification and verification techniques we use are well-known for almost a decade: 
protocol specification and verification using a combination of temporal logic [MP92J and state­
transition diagrams has been applied for a number of other protocols (see e.g. [Lam83, H083, 
SPE84]). However, the dynamic character of processes combined with a timeout mechanism 
so as to detect the absence of a leader makes the specification and verification more complex 
than traditionally considered communication protocols. 
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Specification and Validation in Process Algebra 
Many simple existing communication protocols have been specified and verified in ACP, see 
[Bae90] for examples. Such verifications imply many algebraic computations on process ex­
pressions, showing that the specified protocol has the required (external) behaviour. However, 
more complex protocols (like the leader election protocols in this paper) are too large for 
manual algebraic verification. These protocols can be validated by simulation runs of their 
behaviour. To this extent a protocol is translated to the executable formalism PSF[MV90], 
which is strongly related to ACP. See [MV93] for examples of protocol specification using 
PSF. 
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3 Design and Complexity Analysis of LE Protocols 

3.1 Introduction 

3.1.1 Communication 

Processes communicate with each other by exchanging messages via a broadcast network 
like Ethernet [MB76J. A broadcast message sent by some process P is received instanta· 
neously by all processes except P itself. In contrast with a multi-process rendez-vous in 
which several processes synchronize on a common communication, broadcasting is consid­
ered to be asynchronous. Broadcast messages are buffered by processes (so-called buffered 
broadcast [Geh84]). This buffering is order preserving. In this paper the only form of commu­
nication we consider between processes is broadcasting. Therefore, we often omit the prefix 
broadcast in terms like message, communication, and so on. 

lt is assumed that the communication network is perfect, that is, no duplication, loss or 
garbling of messages takes place. In this way we abstract from the design of a reliable 
broadcast facility on a faulty network and simply assume the existence of such a protocol 
(see e.g. [SGS84]). In order to avoid interference of transmissions of different processes it is 
assumed that at most one message may be transmitted via the network at any moment of 
time. 

The ability of broadcasting communication is often treated as a special feature of the commu­
nication network. As a result, existing notations for concurrent (and distributed) processes 
-like CSP [Hoa85J, Estelle [BD87], and so on- do not provide a primitive by which a process 
can explicitly broadcast a message. Here we consider broadcasting as part of our description 
language (see also [Geh84]). 

3.1.2 Protocol Description Language 

We denote our protocol by a Finite State Machine (FSM) diagram [vB78J, also called state 
transition diagram. Transitions consist of an (optional) guard and zero or more actions. 
Depending on the guard a transition is either enabled or disabled. In a state the process selects 
non-deterministically between all enabled transitions, it performs the actions associated with 
the selected transition (in arbitrary order) and goes to the next state. When there are no 
enabled transitions the process remains in the same state. Evaluation of a guard, taking a 
state transition and executing its associated actions constitute a single atomic event. 

A message consists of a message type and one or more parameters. m(PI,'" ,p,,) denotes a 
message of type m with parameters PI through p", The sending of this message is denoted by 
!!m(Ph' .. , Pn). At execution of the send statement by process P, say, the message is buffered 
instantaneously at each process except p. Since broadcasting is asynchronous, execution of 
!!m( ... ) is never delayed due to unreadiness of a receiving process. (Notice that this means 
that a process must always be able to buffer a message received via the network.) Execution of 
??m( . .. ) by a process delays that process until a message of type m is delivered. Messages sent 
by !!m( ... ) can be received only by ?·!rn( .. . ), so corresponding input and output actions must 
affeet the same message type and the same number of parameters (and the same parameter 
types). Communications can be viewed as (possibly delayed) distributed assignments, that is, 
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for processes p and g, variables Xi and expressions Ei (O<i~n) execution of !!m(E1 , • .• , En) 
in p and ??m(xl, ... , xn) in g establishes the multiple assignment xl> ... , Xn := E 1 , ••• , En (in 
g). 

Guards are boolean expressions. We allow receive actions to appear in guards. This part of 
a guard is true only when execution of the receive action causes no delay, that is, when the 
corresponding message is at the head of the process' buffer. An absent guard denotes a guard 
that is always true. 

When in a certain state a message type is received for which no corresponding transition is 
present this is considered to be an error. This situation is called unspecified reception and 
leads to a deadlock of the system. 

A process consists of a buffer process taking care of buffering messages received via the 
communication network, and a 'main' process. The buffer processes are left implicit-they 
operate according to the first-in first-out principle, and are at any moment of time ready to 
accept an input of the network and to offer an earlier received message to the main process. 
A main process is denoted by a FSM and the co-operation of these processes is considered to 
be the parallel composition of these FSMs. The reader should bear in mind that all processes 
in our system are equivalent (apart from their identity). Thus the system is the parallel 
composition of a number of equivalent FSMs. The individual FSMs co-operate by exchanging 
messages in the way described above. The parallel composition is based on a fair interleaving 
semantics where each process gets its turn infinitely often. Furthermore, a transition has to 
be taken eventually when it is continuously enabled ('weak fairness' [MP92]). 

3.1.3 Introduction to Temporal Logic 

For OliT formulation of the requirements of our protocol and the subsequent verification that 
our protocol meets these requirements we use a first-order temporal logic based on the tempo­
raloperators U and S (see also [MP92]). An extensive introduction to the use of temporal 
logic for communication protocols can be found in [Got92J. 

A temporal formula is constructed from predicates, boolean operators (such as ' and II) and 
temporal operators like 0 (pronounce 'always'), <> ('eventually'), U ('until'), W ('unless'), 
(') ('next'), • ('always in the past'),. ('some time in the past'), S ('since') and J ('just'). 
Let 'P and .p be arbitrary temporal formulas. We consider the future (and the past) in a 
strict sense, that is, the current moment is excluded. Informally speaking, D'P means that 'P 
will be true at every moment in the future. <> 'P means that 'P will be true at some moment 
in the future, and 'P U .p means that .p will become true eventually and that 'P will be true 
continuously until that moment. 'P W.p means that either 'P holds indefinitely or 'P U .p 
holds (weak until). (') 'P means that 'P holds at the next moment in time (our time domain is 
discrete since we use sequences, see below). The temporal operators which refer to the past 
are informally defined as follows. • 'P means that 'P has been true at every moment in the 
past, • 'P means that 'P has been true at some moment in the past, and finally, 'P S .p means 
that .p has been true at some moment in the past and that 'P has been true continuously 
since that moment. J'P means that 'P has just become true. At each moment of time the 
predicate true holds. Predicate false equivales ' true. 

The formal semantics of our form of temporal logic is defined by interpreting temporal for-
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mulas in a model. We consider a (possibly infinite) sequence s of states (so, SI,"" sn,· .. ) 
starting from the initial state so. A model is a sequence s together with a valuation function 
V assigning a subset of states to each predicate (giving the states in which the predicate is 
true). Given a model (s, V), the meaning of temporal formulas is defined by a satisfaction 
relation (denoted by F) between the model and the current state (represented by its number 
in s), and a temporal formula. This satisfaction relation holds if and only if the formula 
is true in that state in that model. For s=(SO,SI,'" ,sn, ... ) and cp,';; arbitrary temporal 
formulas, F is defined as follows: 

s, V,n F P 
s, V, n F ~ cp 

iff 
iff 

So. E V (P) for each predicate P 
s, V,n ~ cp 

s, V,n F cp/\.;; iff s, V,n F cp and s, V,n F '" 
soy, n F cp U '" iff there exists m > n such that s, V, m F '" and 

s, V, i F cp for all i with n < i < m 

s, V, n F <P S '" iff there exists m with 0 ::; m < n such that s, V, m F';; and 
s, V, i F <P for all i wi th m < i < n . 

In our requirements (section 3.2.1 below) and our verification (section 4), all formulas should 
be interpreted to hold for all states (i.e. 'if n : n2':O). The semantics of the remaining temporal 
operators can now be defined for arbitrary cp and';; as follows: 

Ocp = trueU cp 
Ocp = -,0 -''P 

0cp = false U cp 
cpW';; Ocp V cpU '" 
.cp = true S cp 
.'1' - -,. --, <p 

J'P = 'I' /\ ~'PS ~cp 

Predicate I characterizes the initial state (i.e., n=O) and is equivalent to ~ (true S true). 
As usual the unary operators bind stronger than the binary ones. The temporal operators 
S, U, and W bind equally strong and take precedence over /\, V, and =? =? binds 

weaker than /\ and V , and /\ and V bind equally strong. 

3.2 A First Stepping Stone 

In this section we design a leader election protocol assuming that a leader process is present 
initially and processes do not crash. We start by defining the precise requirements of the 
problem. 

3.2.1 Requirements in Temporal Logic 

The formulation of the requirements is as abstract as possible, that is, without reference to 
a possible protocol. In particular we refrain from mentioning certain states of the protocol. 
We only use a predicate leader( i) which represents the fact that the process with identity i 
is the current leader. This identity i is part of a countable set Id totally ordered by <. We 
use i, j, k to denote elements of I d. 
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In our requirements we use quantification over I d. We stress that this quantification should 
be interpreted in a restricted way in the sense that not all identifications are involved in 
this quantification (the whole set I d) but only those identifications corresponding to the 
processes actually participating at that moment (so, always a finite subset of Id). We could 
have made this explicit by introducing an auxiliary predicate participating and replacing 
every universal quantification (Vi :: ... ) by (Vi: participating(i) : ... ) and replacing every 
existential quantification (3i :: ... ) by (3i : participating(i) : ... ). For ease of notation we 
have left this intended form of quantification implicit. 

The requirements for the protocol are as follows. The most basic requirement states that 
there must always be at most one leader (since a change of leadership may take some time 
there can be temporarily no leader at all). 

Pl (3i:: leader(i) =? (Vj: i,pj: ~leader(j))) 

If we just take the above requirement we can easily devise a protocol by just not electing a 
leader at all. We should also state that there will be 'enough' leaders in due time. Because 
we are working in a framework using a qualitative notion of time this should be formulated 
by the liveness requirement below that there will be infinitely often a leader (this does not 
imply that there will be infinitely many leaders). 

P2 O(3i::leadcr(i)). 

The last two requirements make sense of the order < on Id. The idea is that processes with 
a higher identity have priority in being elected as leader over processes with a lower identity. 
P3 states that a leader in the presence of a process with a higher identity will capitulate 
eventually (we do not state anything about the possible future leadership of this 'better' 
process) 1 

P3 : (Vi:: leader(i) II (3j: i < j: ~leader(j)) =? 0 ~leader(i)) . 

The last requirement states that the next leader will be an improvement over the previous 
one (i.e., will have a higher identity). 

P4 (Vi,j::leader(i) II 8 ~leader(i) 

II (V k:: ~ leadcr(k)) U leader(j) =? i < j) , 

where we refer to the last moment of leadership of process i (first two conjuncts in premise) 
and the moment of succession of process j (third conjunct). 

The last two requirements impose constraints on the capitulation of a leader process and the 
ordering of its successor. Note that P4 implies that a process that capitulates once, will not 
become a leader any more. 

3.2.2 A First Protocol 

In this section we construct a LE protocol starting from requirements Pl through P4. To keep 
the design manageable it is assumed that a leader is present initially and all other processes 
are' asleep'. 

1 Note that the assumption that j is no leader is superfluous in light of Pl. We have added this assumption 
because we think the formulation of P3 is more clear in this way. 
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Each process has a fixed unique identity. Initially processes only have their own identity at 
their disposal (my_id) and have no knowledge of other processes' identities. The processes 
that do not yet take part in -the election decide -non-deterministically- whether to join the 
election or not. Thus, a subset of all processes actually takes part in the election. 

Initially a process does not know the identity of the leader, and, consequently it can not 
decide whether it becomes a leader or not. Once the identity of the leader is known there are 
two possible outcomes: the process should become (the new) leader or not. From the above 
we conclude that a process may be in one of the following possible states: candidate, when it 
does not yet know whether it will become a leader or not, leader when it actually is a leader, 
and failed when it is defeated. A process starts in the start state. 

Once a process joins the election, that is, when it becomes a candidate, it transmits its 
identity my_id by means of an J(my_id) (Identify) message. On receipt of an identity a 
leader compares this identity with its own identity. In case the received id is larger than its 
own id the leader moves to the failed state (there is a 'better' process), and gives the candidate 
the right of succession by transmitting the candidate's id with an R-message (Response). In 
the other case, the leader remains leader and transmits its own id using R(my_id). The 
actions of a candidate on receipt of an identity follow quite straightforward-when it receives 
an R-message with its own id it becomes a leader, when it receives an R-message with a larger 
id it becomes failed, and otherwise it remains a candidate. 

There is however a little flaw in the above informally described protocol: when two (or more) 
processes are in the candidate state and one of them causes the leader to capitulate (i.e., to 
become failed) the rest of the candidates may not receive a response of the leader, remaining 
candidate forever. This problem is resolved by letting a candidate (re-)transmit its own id 
on receipt of an R(id) message with id<my_id. We thus obtain the following protocol (see 
Figure 1). 

Some notational remarks are in order. States are represented by rounded boxes and transitions 
are denoted by arrows. The operator & should be read as "such that". Transition labels 
consist of an optional guard and an optional set of actions separated by a horizontal straight 
line. The initial state is indicated by having a grey color. 

Notice that we deliberately have chosen to permit the leader process only to deal with suc­
cession inquiries. This is accomplished by distinguishing between messages originated by the 
leader and those originated by candidates. When both the leader and candidates transmit 
their identities by the same message type one should realize that candidates may force other 
candidates to become failed which may cause violation of P2. This can be seen as follows. 
Consider the following scenario of three processes, p, q, and r, one of which is a leader, r, 
say. Assume p and q do not take part in the election yet. Let p>q>r. Suppose q joins the 
election by transmitting its identity. Since p is still in the start state it ignores q's id. Before 
r reacts on the receipt of q's id, p joins the election and transmits its id. This will force q 
to become failed. As r capitulates (due to q's id received earlier) and as q will not become 
its successor (due to p's id) no process is able to grant p the right of succession, and, conse­
quently, no leader process will ever be elected. The problem is that a candidate may not only 
be forced to become failed by the leader process, but also by other candidates. Therefore, we 
distinguish between id's originating from candidates and those submitted by leader processes. 
Candidates become either failed or leader only on receipt of messages from leaders and they 
ignore others. In the above example q will thus not become failed on receipt of p's id. 
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??ROd) & id < my_id 

!!I(my_id) 

??R(id) 

??l(id) & id > my_id 

!!R(id) 

??I(id) & id < my_id 

!!R(my_id) 

Figure 1: Finite state machine diagram of Protocol l. 

3.3 A Symmetric LE Protocol 

We now drop the unnatural assumption of a leader being present initially. In this section we 
design a LE protocol starting from the previous protocol in case no leader may be present 
initially. As in the previous section processes are considered to be perfect and the protocol 
has to be consistent with respect to requirements PI through P4. 

Let us first remark that in thc current setting Protocol 1 does not suffice as it does not satisfy 
P2-no leader will ever be present in case a leader is absent initially. The problem now is 
that a candidate must be able to detect the absence of a leader. 

A straightforward approach to detect the absence of a leader is to equip each process with 
a timer process and to detcct the absence of a leader by means of a timeout mechanism. A 
timer is started by the start-timer action. A timeout is modeled as an ordinary action and 
may be used as (part of) a guard. In contrast to ordinary guards, timeout actions can be 
used to detect the establishment of a global condition in a protocol. They are abstract in the 
sense that they do not describe how the occurrence of this global condition can be detected 
using a kind of clock mechanism. A similar treatment of timeout actions is recently given in 
[Gou93J. 

The idea now is that a process starts its timer when it becomes a candidate. When receiving 
a response of the leader on its initial I(my_id) message the timer plays no role and the process 
progresses as in the first protocol. In absence of a response of a leader, the candidate goes 
to the leader state at the occurrence of a timeout. Thus, a timeout guard must be disabled 
in case a leader is present. This leader process might be the leader at the start of the timer, 
but might also be a 'fresh' one. Therefore, a timeout guard is defined to be true (the timer 
expires) only when a process has received and processed all responses to its message sent 
at starting the timer. This timeout mechanism is usually called non-premature. A precise 
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characterization of the timeout mechanism is given in section 4. We thus obtain the protocol 
as depicted in Figure 2(a). 

Recall that the reason for introducing two different messages types to exchange identities 
in Protocol 1 was to avoid the violation of P2. We observe that -due to the timeout 
mechanism- this problem docs no longer occur. Therefore, there is no objection against 
replacing the response messages by I-messages. This results in the protocol as depicted in 
Figure 2(b). As a consequence, candidates can now be forced to become failed by receiving 
messages from other candidates. In Protocol 1 a candidate only reacts to messages sent by 
the leader. 

'!'!R(id)&id<my id .. r ........... . 
!!I(my_id) 

'!'!R(id) & id > my_id 

!!Rlid) 

(a) 

'!'!I(id) & id < my_id 

!!RCmy_id) 

','II(id) & ill < my_id 

!!I(my_id) 

'!'!I{id) 

!!I(id} 

(b) 

,!,!I(id) & id < my_id 

!!ICmy_id) 

Figure 2: Finite state machine diagrams of two derivates of Protocol!. 

Some significant simplifications to the latter protocol can be made. Observe that there are 
two possible transitions from the candidate state to the leader state, one of which may take 
place when no leader is present (labelled with a timeout guard). The other transition is 
enabled on receipt of an I(rny_id) message which is only sent when a leader capitulates. It is 
not hard to see that the protocol's correctness is not affected by the removal of this message 
transmission. So, in that case a leader moves without any notification to the failed state on 
receipt of a larger id than its id. This implies that one of the transitions to the leader state 
will never be enabled and, hence, may safely be eliminated. Thus we obtain the protocol 
depicted in Figure 3, referred to as "Protocol 2". 

3.4 A Fault-Tolerant LE Protocol 

In this section we drop the assumption of perfect processes and revise our earlier designs 
by considering processes that cease participation without notifying other processes. After 
halting a process does not behave maliciously. This kind of failures is known as crash faults 
(see e.g. [Fis91]). Crashed processes may recover and (re- )join at any time. It is assumed 
that recovered processes restart in the start state. This should not be confused with "self­
stabilizing" systems [Dij74, Sch93] where processes may recover in any state. The number of 

13 



,?,?J(id) 

??I(id) & id < my_id 

!!J(my_id) 

timeout 

??I(id) & id < my id 

!!l(my_id) 

Figure 3: Finite state machine diagram of Protocol 2. 

times a process can crash or recover during an election is unlimited. A process cannot crru;h 
during the execution of an atomic event. 

Recall the requirements as specified in section 3.2.1. Since the assumptions about process 
behaviour are now strongly modified it needs to be checked whether the initial requirements 
are still realistic. For instance, it is rather unrealistic to require P2 bearing in mind that all 
processes may crash eventually. We, therefore, first reformulate the requirements. 

3.4.1 Requirements Revisited 

It is still essential that at any moment of time there is at most one leader: 

Ql (3i:: leader(i) =;. ('V j: i i= j: ,lcader(j))) . 

In order to distinguish between our initial requirements PI through P4 and the new ones we 
label new requirements with Q. Again, all quantifications implicitly range over the processes 
actually participating at that moment-including crashed processes. 

As stated above, it is unrealistic to demand P2 since potentially all processes may fail. We 
therefore only claim P2 in case there exists a process at some time which will definitely not 
crash from then on and for which all better processes have (and remain) crashed. Predicate 
dead(i) indicates the fact that process i has crashed. Formally, 

Q2 0(3i:: o (,dead(i) /\ ('Vj: i <j: dead(j)))) =;. 00(3i:: leader(i)) 

Quite evidently, a crashed process can not act as a leader process (and vice versa). 

Q3 : ('Vi:: ,(leader(i) /\ dcad(i))) . 
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The next requirement addresses the question in what circumstances a leader capitulates. 
Well, a leader should be the process with the highest identity among all living participating 
processes. This implies that a leader should capitulate as soon as there is some other (living) 
process which is an improvement. However, when this better process crashes the above claim 
is too strong. We, therefore, require the following weakened variant of P3: 

Q4 : (I/i,j::leader(i) /\ ,dead(j) /\ i<j '* <),leader(i) V <)dead(j)) . 

When a leader capitulates this may be caused by either the crash of this process or the fact 
that there was a better (living) process. Formally, 

Q5 : (Vi:: J ,leader(i) '* dead(i) V +(3j: i < j: ,dead(j))) . 

Both Q4 and Q5 refer to the capitulation of a leader. It remains to require something about 
the succession of leaders. Previously we required that leaders must be succeeded by better 
ones. This claim is still valid. However, it needs a more careful formulation, since, it is 
invalid in case, for instance, a leader capitulates by crashing. It, therefore, seems reasonable 
to require 

Q6 : (1/ i, j :: leader( i) /\ 8 ,lcader( i) 

/\ ((V k:: ,leader(k)) /\ ,dead(i)) U leader(j) '* i:::: j) . 

Informally formulated: given some leader process, i say, its immediate successor, process j, is 
not less qualified than i provided that i does not crash in between the leaderships of i and j. 
Q6 thus claims nothing about the relation between a leader and its successor when the leader 
crashes in the meanwhile. Furthermore, crashes of other processes do not have any influence. 
Notice that a leader may be succeeded by itself as it may capitulate due to the presence of a 
better candidate that crashes before becoming a leader. 

We may consider Q2 and Q4 as weakened variants of P2 and P3 respectively. This weakening 
is needed since we now allow crashes. The relationship between Q6 and P4 is more subtle. 
When processes may not crash Q6 boils down to the corresponding 

(Vi:: lcader(i) '* 0 (1/ j :: leadcr(j) '* i:::: j)) . 

This requirement, however, in the context of the previous protocols allows a leader to capit­
ulate (in presence of a better candidate, cf. P3), become a leader again, capitulate (there is 
still a better candidate), and so on, in a repetitive way. In case processes do not crash this 
is -in our opinion- not desirable as no real progress is made: when a leader capitulates 
due to the presence of a better candidate one expects that at some time a new (and better) 
leader emerges. Therefore, P4 was introduced. For Protocol 3 this situation is different as 
each process, including candidates, may crash spontaneously. Thus a leader may capitulate 
because a better candidate is noticed, but before this candidate becomes a leader it crashes. 
Then it must be allowed that the capitulated leader becomes a leader again. This leads us to 
Q6. 

3.4.2 Design of a Fault-Tolerant Protocol 

We take the previous protocol as a starting point for our design of a fault-tolerant LE protocol. 
The crucial point now is that in absence of a leader after it crashes, a failed process might be 
a valid successor. 
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So as to involve failed processes in the election we consider two cases. First, to avoid a 
candidate to become a leader in case a leader crashed and a better failed process is present, 
failed processes become a candidate on receipt of an I -message with a smaller id than their 
own id-thus joining the competition about the leadership and thus avoiding violation of Q4. 
Other I -messages are still ignored when being failed. It should be observed that this does not 
suffice in case a leader crashes, at least one failed process is present (that will never crash), 
and no candidate will ever appear. In this scenario no leader will ever be elected, although 
there is some process that will never crash. This violates Q2. Therefore, we should have a 
mechanism via which failed processes will rejoin the election in absence of a leader. Several 
techniques can be applied to accomplish this'. Here we abstract from a specific tecbnique and 
model this by adding a transition labelled with an absent guard from failed to the candidate 
state, such that a failed process may (rc- )join the election spontaneously by identifying itself 
and starting its timer'. 

??I(id) & id > my_id 

~!I(my-id) ; 
start_timer 

??I(id) & id > my_id 

??I(id) & id < my_id 

??I(id) & id > my-id 

timeout 

??Hid) & id < my_id 

!!l(my_id) 

Figure 4: Finite state machine diagram of Protocol 3. 

We model the fact that processes may crash at arbitrary times by a possible transition from 
each possible state to a new state, named dead state. We denote these transitions by dotted 
arrows. The difference between transitions represented by dotted, respectively solid, arrowS 
should be interpreted as follows. In case of a dotted arrow the transition is always possible 

2For instance, a leader may transmit on a regular basis "I am here" messages and in absence of such 
messages a timeout could expire in a failed process, thus forcing it to become starting (or candidate). Another 
possibility would be to let a failed process regularly check whether a leader is present (see e.g. [GZ86]). 

3It should be noted that we now have two transitions with equivalent actions, one of which has a true guard 
from the failed state to the candidate state. These transitions can not be combined into a single transition with 
a true guard as it would then be no lOIlger guaranteed that this transition is made on receipt of an I-message 
with an identity larger than that of the recipient: a process may then perform the transition whenever it likes. 
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(and hence can be non-deterministically chosen), but not necessary (that is, it can be ignored 
indefinitely). On the other hand, a solid arrow represents a necessary transition, that is, a 
transition that eventually has to be taken whenever it is continuously enabled. Representing 
crash transitions by solid arrows would imply that all processes crash eventually which is 
rather unnatural. The dotted arrows and solid arrows are similar to the modal relations 
-0, respectively -0 of modal transition systems (see e.g. [LT88]). 

Similarly, the fact that processes may recover spontaneously after crashing is modeled by a 
(dotted) transition from the dead to the start state. This yields the protocol depicted in 
Figure 4, called "Protocol 3". For the sake of brevity, transition labels are omitted when 
both its associated guard and set of actions arc absent. 

3.5 Complexity Analysis of the Protocols 

3.5.1 Introduction 

Much work has been devoted in literature on designing efficient LE protocols. In general, the 
following complexity measures are considered: message complexity (the number of messages 
needed to elect a leader), time complexity (the number of time units needed to elect a leader) 
and bit complexity (the number of bits in a message). The bit complexity of all presented 
protocols is O(Iog N), where N is the total number of processes. For Protocol I we remark 
that the time complexity is equal to the message complexity. 

In this section we analyze the worst case message complexity of our protocols. In our protocols 
all messages are broadcasted, so each message is received by all processes (except the sender). 
In a dynamic broadcast protocol, with processes starting up during protocol execution, each 
process at least has to send one (initial) message to the other processes so as to present itself, 
so the message complexity is at least O(N). Due to the dynamic character of the protocol 
each message needs an answer. If each process answers each message that has been received 
so far by sending a new message, we may expect a worst case message complexity exponential 
to N. 

3.5.2 Complexity of Protocol 1 

The following theorem holds for the message complexity of Protocol 1, where MCl(N, i) 
represents the number of messages sent by N processes participating in the election, process 
i being the initial leader. For reasons of simplicity an identity is represented by a positive 
natural number. 

Theorem 3.1 MC'I(N") 1 N' 1 N 1 ., 3 " 2 I J ~ ="2 + 2" -"2 t + -ZZ - . 

Proof: Each process that becomes a candidate sends an initial I-message. For all processes 
k with k<i this message will be answered by a message R(m) with m>k, which will bring 
process k to the failed state. From this state no messages are sent, so these i-I processes 
each contribute I message to MCf(N, i). In the worst case scenario process i sends i-I 
R-messages in reaction on these I-messages. 

In the worst case scenario all processes k with k>i send their initial I-message, with I(i+I) 
first, and become candidate before the initial leader replies with its (final) message R(i+I). 
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Thus process i+l becomes the new leader. But R(i+1) also evokes an I-message from all 
candidate processes with an id greater than i+1. If these messages are sent with I(i+2) first, 
the whole story repeats itself, until finally process N becomes leader. In each "round" the 
number of participants is reduced by one and the number of reactions on an R-message is 
maximal. So the scenario described above indeed is the worst case. 

Process k (i<k'SN) receives k-l R-messages before it becomes leader. The ids of the first 
k-2 R-messages are smaller than k, so k-2 times an I(k)-message is sent from the candidate 
state. The id of the last R-message is equal to k, which makes k the new leader. All processes, 
except the final leader, will send an R-message when they capitulate. Together with the initial 
I-message this leads to a total number of k transmitted messages for processes i<k<N and 
N-l transmitted messages for process N. 

The total number of messages for all processes now becomes 

MCl(N, i) = (L~;;'\ 1) + i + (L~=i+l k) - 1 = ~N2 + ~N - ~i2 + %i - 2 o 

One can easily infer that the worst case message complexity is reached for i=l or i=2 and is 
equal to ~N2+tN -1. Contrary, if process N is the initial leader we get MC'/.(N, N) = 2N -2. 
So, in that case the message complexity reduces to O(N). Figure 5 illustrates the worst case 
behaviour of Protocoll for N = 4, i = 1. Each I-message and R-message is subscripted with 
either an i (initial message) or a number k, indicating that this message is a reaction on the 
k-th message transmitted so far. We suppose that a local buffer is empty at the moment the 
initial message is sent. 

COlnponcnl. 

id 

1(4); 1(4)4 

3 1(3); 

2 1{2)j 

5 10 

---_ Mf':/l/HL!}f:I< I<ent 

Figure 5: Worst case behaviour of Protocol 1 with queueing. 

The message complexity of O(N2
) can be improved significantly by the idea of 'smart' buffer­

ing. According to this principle messages are buffered depending on their parameter: at each 
moment of time a process buffer only contains the I-message with the largest id received upon 
then, but not processed until so far. In this way a buffer contains at most one I-message at a 
time. Adopting this tricky buffering mechanism to Protocoll, reduces the message complexity 
to O(N), independent of the initial leader: 

Theorem 3.2 MC{(N) = 2N - 2. 

Proof: Buffering of several initial I-messages now leads to a single R-message to the process 
with the highest id, which makes this process the new leader and forces the other processes 
to the failed state. Worst case protocol behaviour is now observed if each initial message is 
separately answered by an R-message. It does not matter which process is the initial leader or 
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in which order the processes send their initial I-message. So, in the worst case 2(N -1)=2N-2 
messages are needed. 0 

Figure 6 shows this worst case behaviour, with the component with the highest id as the 
initial leader. 

Component 

id 

I 

4 

3 

2 

R(4Jt n(4):1 

1(:); 

1(2); 

1(1); 

[, 10 
----~Mf:IIJHl!1f:1< I<tnt 

Figure 6: Worst case behaviour of Protocol 1 with smart buffering. 

3.5.3 Complexity of Protocol 2 

Compared to Protocol 1 we may expect a worse message complexity, because in the candidate 
state each reception of an I-message with a lower id evokes the transmission of a new I­
message. In Protocol 1 only the reception of an R-message evoked a new message in the 
candidate state. 

We assume that all processes are in the start state. The worst case message complexity of 
this protocol is observed when all processes send their initial I-message within a short time 
interval. To put it in a more quantitative way: all participating processes send their initial 
I -message within a time interval that is smaller than the timeout interval of a timer in the 
candidate state. We will also suppose that a process starts with an empty local buffer, local 
history begins at the moment the initial I-message is sent. 

Figure 7 shows the worst case behaviour of Protocol 2 for N =4. 

Component. 

id 

4 1(4), 

3 1(3); 

2 /(2); 1(2)4 

1(1); 

5 
----~ Mt:I<XlLyt:H I/ent 

10 

Figure 7: Worst case behaviour of Protocol 2 with simple buffering. 

15 

With simple buffering (queueing of all incoming messages) we obtain a complexity exponential 
to N, whereas for smart buffering this reduces to O(N). This is stated in the following 
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theorems. 

Theorem 3.3 MCi.(N) = 2N - 1. 

Proof: By induction on N. If N=1 only one initial message is sent, so MCi(I) = 1. Now 
suppose MCi.(N - 1) = 2N - 1 - 1. In the worst case scenario initial I-messages are sent in 
order of decrea,sing ids. After the transmission of its initial message process N will first buffer 
the other N -1 initial messages and all replies from processes 2 ... N -1 before it replies by 
sending an I-message to each of them separately. So we get MCi.(N) = 2MCi.(N-l)+1 = 
2(2N - 1-l)+l = 2N_1. 0 

Theorem 3.4 MC,(N) = 2N - 1. 

Proof: Each process transmits an initial I-message. In the worst case all processes except 
the future leader will have to be brought to the failed state by a separate I-message from a 
process with a higher id. So N + N - 1 = 2N - 1 messages are needed. 0 

Figure 8 shows a worst case behaviour of Protocol 2 with smart buffering for 4 components. 

C071tlJOTH:nt 

id 

4 1(4); 

3 

, 
1(3); 

1(2). 

/(1); 

" ----~Me/lfjagel! /lent. 
10 

Figure 8: Worst case behaviour of Protocol 2 with smart buffering. 

3.5.4 Complexity of Protocol 3 

First we consider an election without crashing processes. With 'simple' buffering, the worst 
case message complexity of Protocol 3 is the same as for Protocol 2. With smart buffering 
the message complexity increases to O(N'). This is stated in the following theorems. 

Theorem 3.5 MC!f(N) = 2N - 1. 

Proof: See Protocol 2. Compared to Protocol 2, there are more situations in which the worst 
case behaviour occurs. A process that wakes up from the failed state may evoke messages 
from processes with a higher id. 0 

Theorem 3.6 MCj(N) = ~N' + tN. 

Proof: An initial I-message from a process with a lower id causes a transition from the failed 
state to the candidate state for a process with a higher id. This transition is accompanied 
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by the transmission of an I-message. If a leader with a higher id is already present, an extra 
message is needed to put the process back to the failed state again. This leads to a worst 
case message complexity of '[;~I i = !N2 + !N. 0 

Figure 9 shows an example of the worst case behaviour of Protocol 3 with 4 components 
initially in the start state. 

COTrtlmuent 

id 
4 1(4); 1(4) .... 

3 1(3), 

2 1(2); 

5 

---_ Messages /lent 

1(3)8 

1(1 )i 

10 

Figure 9: Worst case behaviour of Protocol 3 with smart buffering. 

15 

Finally we analyze the complexity in case I< processes crash (O~I< <N). Many complex 
scenarios are possible, dependent on what moment during an election a process crashes. For 
simplicity, we assume that crashed processes do not recover and failed processes only return 
spontaneously to the candidate state when a leader is actually absent. The worst case scenario 
occurs when I< processes crash after the initial election has been completed (i.e., process N 
is leader and all other processes are failed). 

Protocol buffer MC 

1 queue !N(N + 1) - 1 
1 smart 2N -2 
2 queue 2N -1 
2 smart 2N -1 
3 queue 2N -1 

3 smart !N(N + 1) 

Table 1: Overview of worst case message complexities of all protocols. 

The worst case message complexity involving the crash of I< out of N participating processes 
is given by 

Theorem 3.7 

Proof: The worst case scenario is as follows: the leader (process N) crashes, and failed 
processes become candidate in decreasing order of ids. This leads to a new election with 
N-l processes. From Theorem 3.6 we know that this requires '[;~~I i messages. If this 
scenario is repeated for the subsequent crashes of processes N -1, N -2, ... , N -I< +1, we get 
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MC,(N, K) = L:~=1 (L:;:~k i). Elimination of the sum constructs leads to the result stated 
above. 0 

The results of this section are summarized in Table 1. 
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4 Verification by Temporal Logic 

4.1 Introduction 

In the previous section we informally motivated our design decisions. In this section we 
formally prove that the protocols designed in section 3 satisfy their requirements. That is, we 
prove that Protocols I and 2 satisfy requirements PI through P4 and Protocol 3 satisfies QI 
through Q6. We, furthermore, prove that for all three protocols unspecified receptions cannot 
occur. We stress that we do not intend to give a completely formalized proof. Such a proof 
is well possible, but however, requires a formalization of the assumptions, a transformation 
of the protocols to our proof formalism (temporal logic), and so on, which would make the 
proofs too much involved. We, therefore, confine ourselves to presenting only the main ideas 
of the proof. 

In the rest of this section we use the following notations and conventions. The fact of being 
a leader, that is leader(i), is identified with the fact that process i is in the leader state. To 
distinguish between the conceptual state of being a leader and the internal protocol states, Li 
is used to denote that i is in the leader state of the protocol. Similarly, predicates S" Ci, Di, 
and Fi denote that process i is in the start, candidate, dead or failed state, respectively. The 
local buffer of process i is symbolized by Qi' Assertion sEND,(m(PI,'" ,p,.)) is true (in some 
state of the state sequence) only when process i executes !!m(PI,' .. ,Pn) at leaving that state. 
Similarly, assertion RCVi(m(PI,." ,p,,)) is true if and only if guard ??m(plo'" ,Pn) evaluates 
to true and the corresponding transition is taken. 

We first formally define some relevant assumptions about the broadcast mechanism. Let m, 
ml, and m, be unique messages, that is, both their originator and moment of origination are 
unique. (It has been shown in [Koy89] that messages need to be uniquely identifiable so as 
to specify communication mechanisms in temporal logic by axioms like those belOW.) 

Assumption 4.1 

(Vi :: sEND,(m) => (V j : i =I j : 0 RCVj(m))) . 

Assumption 4.2 

(Vi:: RCvi(m) => +(:3j: i =I j: SENDj(m))) . 

Assumption 4.3 

(Vi,j:: SENDi(md II OSENDj(m,) 

=> (V k : k =I ill k =I j : 0 (Rcvk(md II 0 RCvk(m,)))) . 

Assumption 4.1 states that messages are not lost by the communication network, 4.2 phrases 
that messages are not spontaneously generated by the network, and 4.3 expresses that the 
network is order-preserving. Observe that it immediately follows from 4.2 that a process does 
not receive its own transmitted messages. That is, for all messages m 

Property 4.4 

(Vi:: RCvi(rn) => • ,sENDi(m)) . 
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4.2 Verification of Protocol 1 

We now start with the proof of the correctness of Protocol 1. We deal with the requirements 
one by one. As P4, stating that successive leaders are 'better', is the crux to the proofs of P2 
and P3, we present the proof of P4 after the proof of PI. The first proof obligation is: 

PI : (3i::Li =} (Vj:il-j: ~Lj)) 

Define predicate Q as follows: 

where N, is defined by (#i :: Li) and N r equals (#i :: R(i) E Qi)' # denotes 'number of'. 
By definition, O-:;'Nr and O-:;'N,. It immediately follows Q =} PI. 

Initially we have assumed 

Assumption 4.5 

I =} (N, = 1 1\ (Vi:: Qi = empty)) , 

which implies that Q holds initially. The rest of the proof concentrates on establishing 

Lemma 4.6 

Q =} DQ 

From this lemma we may then conclude PI. 

Proof: Assume Q holds. By definition Q can only be falsified when either N, or N r (or 
both) increases. We consider an increase of either N, or N r by one. Later on we show that 
considering these cases suffices. 

Consider an increase of Nr by 1. So there is one process, j say, that buffers an R(j) message. 
We infer from the protocol description that only a leader process can transmit R-messages: 

Property 4.7 

(Vi,j :: SENDi(R(j)) =} Li ) 

According to our definition of broadcasting a sender does not receive its own messages. So, 
for process j to buffer R(j), there must be another process, i say, which has transmitted this 
message, and consequently (according to 4.7) Li holds at transmitting it. A leader i only 
transmits R(j) (jl-i) when it capitulates: 

Property 4.8 

(Vi,j : i I- j : SEND,(R(j)) =} D Fi ) . 

Consequently, a leader transmits only once such a message. From the above, we may now 
conclude that whenever N r is increased by one, N, must be decreased by one. 
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Now consider an increase of N, by one. By a similar reasoning as above we prove that this 
must be accompanied by a decrease of N r by one. First, it can be inferred from the protocol 
description that process i can only become a leader after receipt of message R(i). This can 
be formalized as follows 

Property 4.9 

(Vi:: ~Li 1\ O~RCVi(R(i)) =? O~Li) . 

Furthermore it is quite evident that process i can only perform Rcvi(m), for some message 
type m, by extracting m from Qi, 

Property 4.10 

(Vi:: Rcv;(m) =? m ric Q;) . 

Considering R-messages the above implies that N, can only be increased by one after a 
decrease of N r by one. 

Since an increase of N, (Nr ) by one is coupled by a decrease of N, (N.) by one it follows 
-given that 0 ::; N" N, ::; 1- that considering the above two cases suffices. 
(End of proof P1.) 

P4 : (Vi,j:: L, 1\ 8 ~Li 1\ (Vk:: ~Lk) U L j =? i < j) . 

Proof: When a leader never capitulates P4 holds trivially. Consider the case that at some 
time a leader will capitulate. Assume Li 1\ 8 ~ Li 1\ (V k :: ~ L.) U L j • According to 4.9 j 
may only become a leader after receipt of R(j). Moreover, R-messages are only transmitted 
by leader processes (see 4.7). The idea now is to show that process i must have transmitted 
R(j), and i#j. From the protocol description i<j may then be concluded, due to 

Property 4.11 

(Vi,j : i # j : SEND,(R(j)) =? i < j) . 

The proof ofP4 is as follows. It can easily be verified that i#j since we have from the protocol 
description 

Property 4.12 

(Vi::Li 1\ 8 ~Li =? 8Fi ) , 

Property 4.13 

(Vi::F, =? OFi) , 

from which it immediately follows 
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Lemma 4.14 

(lti::L, /\ (') ~L, '* D~L,) 

Furthermore, from the invariance of Q (see proof PI) we have 

L, '* ~Lj /\ (It k:: R(k) 'I- Qk) . 

So, either process i or some successor of i must have transmitted R(j). Since j is the immediate 
successor of i, i must have sent R(j), and thus (see 4.11) i<j. 
(End of Proof P4.) 

P2 : 0 (3 i :: L,) . 

Proof: Since initially there is one leader process P2 holds trivially when a leader never 
capitulates. Therefore consider the case when at some time a leader capitulates. From the 
protocol it immediately follows that a leader i transmits R(j) at capitulation (see 4.8). We 
prove that once R(j) is transmitted j will become a leader sooner or later. Formally: 

Lemma 4.15 

(It j :: R(j) E Qj '* 0 L i ) 

We have from the protocol 

Property 4.16 

(ltj::Oj /\ RCVj(R(j)) '* (')Lj ) . 

Informally, a candidate j becomes a leader once it receives an R(j) message. By proving 

Lemma 4.17 

(It j :: R(j) E Qj '* 0 (OJ /\ Rcvj(R(j)))) , 

we may -using 4.16 /\ 4.17 '* 4.15- conclude 4.15. Since transmitted messages are always 
received and processed at some time (sec 4.1) we concentrate on proving that OJ holds on 
processing R(j). We have that a leader i only transmits R(j) after receipt of an I(j) message 
with i<j. Or, 

Property 4.18 

(Vi,j:: 0 ~(RcvJI(j)) /\ i < j) '* 0 ~SENDi(R(j))) . 

Besides, only candidate and start processes may transmit I-messages. 

Property 4.19 

(It j :: SENDj(I(j)) '* OJ V 5j ) . 
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After sending J(j) a start process j becomes a candidate immediately, 

Property 4.20 

(V j :: Sj " SEND;(I(i)) => 0 Gj ) . 

A stronger variant of lemma 4.17 is now proven. A process j that receives R(j) at some time 
remains candidate from sending J(j) until receipt of R(j). Formally, 

Lemma 4.21 

(V j :: SENDj(I(j)) " <> RCYj(R(j)) => Gj U RCYj(R(j))) . 

From the protocol we have that a candidate j only leaves the candidate state after receiving 
R( i) with j $i. 

Property 4.22 

(V j :: Gj " 0, (3i: j $ i : RCYj(R(i))) => 0 Gj ) . 

We now prove 

Lemma 4.23 

(V j :: <> RCYj(R(j)) => ,(3 k : j ::::; k : RCYj(R(k))) U RCYj(R(j)) ) 

By contradiction. Assume that process j receives R(k) (j$k) before receiving R(j). This is 
impossible due to the following lemma. 

Lemma 4.24 

(Vi,j, k:: RCYj(R(i)) " <> RCYj(R(k)) => (j = i => i < k " j i- i => i $ k)) . 

It immediately follows that 4.24 implies 1.23. Informally, process j receives at most once 
R(j), and moreover, for any process the parameters ofreceived R-messages form an ascending 
sequence. Lemma 4.24 can be proven as follows. It is already stated before that only leaders 
transmit R-messages (sec 4.7). A leader i transmits zero or more times R(i) followed by 
(at most) one time R(j) (i<j). So, a single leader generates an ascending sequence of R­
messages. From PI it follows that there is at most one leader at a time. We know from 
P4 that subsequent leaders are increasing-leaders become 'better'. We may now conclude 
lemma 4.24 since processes do not receive their own transmitted messages (property 4.4). 
(End of Proof P2.) 

P3 : (Vi::L;" (3j:i<j: ,Lj ) => <>,L;) . 

Proof: The remaining requirement to be proven is P3. The idea is to reformulate P3 in terms 
of internal states of the protocol, using ,Lj == Sj V Gj V Fj . Since failed processes remain 
failed indefinitely once they become failed (see property 4.13), and since failed processes are 
'less' than leaders 
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Lemma 4.25 

(lIi,j:: L, /\ Fj => i > j) , 

we do not have to consider failed processes. Of course it remains to prove lemma 4.25. There 
are only two possible transitions by which a process can become failed 

Property 4.26 

(II j :: (:) J Fj => (Lj /\ (3 k : j < k : Rcvj(I(k))) V 

(Gj /\ (3k: j < k: Rcvj(R(k)))) 

Property 4.26 follows directly from the protocol description. Now consider each transition in 
isolation. In case L j /\ (:) Fj lemma 4.25 follows directly from the fact that, according to P4, 
subsequent leaders will be better. In the other case j becomes failed on receipt of R(k), k>j. 
From this reception we know that R(k) is transmitted some time ago (see 4.2). From lemma 
4.15 we infer that k has (or will) become a leader. In case it has been or still is a leader 4.25 
follows immediately from P4. From the invariance of Q (see proof of PI) and lemma 4.15 we 
deduce that 

Lemma 4.27 

(Ilk:: R(k) E Qk => ~ (3i:: Li) U Ld . 

In case k is not yet a leader this lemma implies that it will be the next leader, from which 
-again using P4- lemma 4.25 can be inferred. This concludes the proof of lemma 4.25. 

We now continue the proof of P3. According to the fair semantics of transitions each process 
in the start state will become a candidate eventually. Or, 

Property 4.28 

(lIi::Si => <)Gi ) . 

Therefore, it is sufficient to consider the following variant of P3: 

Lemma 4.29 

(lIi::Li /\ (3j:i<j:Gj ) => <)~Li) 

The proof of lemma 4.29 is as follows. We have 

Property 4.30 

(IIi:: Si => ~ G, U SENDi(I(i))) . 

That is, a process transmits an I (i) message before becoming a candidate. The crucial 
property nOw is 

Lemma 4.31 

(IIi:: Li /\ (3j: i < j: Gj ) => <) (3k: i < k: Rcv,(I(k)))) , 
28 



and since a leader process i capitulates as soon as it receives J(k) (i<k) (see properties 4.8 
and 4.18) we may conclude from lemmata 4.29 and 4.31 that P3 holds. 

It remains, of course, to establish lemma 4.31. Assume L, A (3j : i<j : Cj ). For i the initial 
leader the lemma follows quite straightforward. Let i not be the initial leader. Then i has 
become a leader on receipt of R(i) (see property 4.9). Since messages are broadcasted and j 
has not itself transmitted R(i), due to 

Property 4.32 

("Ii:: L, => D,C,) , 

j must have received R(i) (cf. assumption 4.1). Now we have two possibilities, either Sj or 
Cj holds on receipt of R(i). In both cases j transmits J(j) eventually: in case of Sj to reach 
Cj and in case of Cj as a reaction on the receipt of R(i). In both cases process i will process 
J(j) after it has processed R(i), so after i has become a leader. 
(End of Proof P3.) 

We have showed that the Protocol 1 satisfies PI through P4, and, consequently, conforms 
to our requirements. Recall that unspecified receptions lead to abnormal termination of the 
protocol. So, our remaining proof obligation is to prove that unspecified receptions can not 
occur. For Protocol 1 this boils down to proving that a leader can not receive R-messages. 
This can easily be verified using that only leader processes transmit R-messages (property 
4.7), that at most a single leader exists (PI), and the fact that processes do not receive their 
own messages (property 4.4). This completes the proof of Protocol 1. 

4.3 Verification of Protocol 2 

The purpose of this section is to prove that Protocol 2 satisfies requirements PI through P4, 
and that no unspecified receptions can occur. We take a similar approach as in the previous 
section. As 1'4 is the crux of the proofs of both P2 and P3 (as in Protocol 1), its proof is 
presented just after the proof of PI. 

4.3.1 Timeout Semantics 

We first introduce some additional notations. For some protocol state guard TIMEOUT, for 
process i evaluates to true whenever i's timeout occurs and the corresponding transition is 
taken. The semantics of the timeout mechanism were informally defined in section 3.3. In 
order to facilitate a formal proof we formalize this semantics. This formalization is essential 
so as to prove the invariance of PI through P4. 

We characterize in general terms, that is without reference to the protocol, a 'non-premature' 
timeout in a broadcast network. A timer is started at the transmission of message m, say. 
This message has to be received (and processed) by all its recipients before the timer may 
expire. Formally, 
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Assumption 4.33 

(lIi::SEND,(m") =;. ~TIMEouTl'W(lIj:i"'j:.RCVj(mP))) , 

where m P is a unique message. (It has been shown in [Koy89] that messages need to be 
uniquely identifiable in order to specify communication mechanisms in temporal logic by 
axioms like 4.33. In this verification we accomplish this by numbering of the messages by 
the sender. From the context the dependence on the identification of the sender is explicit, 
so for simplicity this dependence is omitted.) Strictly speaking, the timeout assertion is 
associated to m", and as m 1' is unique, the occurrence of the timeout is considered to be 
unique. When necessary this dependence on m" is explicitly indicated by referring to the 
number p of m. In the sequel we use p, q as numbers of messages. As, in general, it is not 
guaranteed that each process is capable of processing a message of type m in some state, we 
use the W operator in stead of the U operator. In absence of unspecified receptions -as 
in the presented protocols- we could equally well use the U operator. 

Now, however, a timeout may be enabled without forcing the originator of mP to receive and 
process all replies to m P. Let T""',j be a reply to m P transmitted by process j. We then 
additionally require 

Assumption 4.34 

(IIi:: TIMEOUT; =;. (II j : i '" j : r""',j (j Q,)) , 

where it should be mentioned that processing a message and sending a reply to this message 
is considered to constitute an atomic event4 . For the protocol at hand we should substitute 
J1'(i) and I'(j) (i<j) for m P and T""',j, respectively in 4.33 and 4.34. 

The formal semantics of a non-premature timeout in broadcasting networks is now defined 
by axioms 4.33 and 4.34. Summarizing, according to 4.33 all processes (except the sender) 
receive m, process this message and, if appropriate, send a reply. These replies are forced to 
be received and processed by the originator of m as phrased by 4.34. 

4.3.2 Timeout Properties 

In the previous section we characterized the non-premature timeout in a rather general con­
text. For the protocol at hand we have some properties which hold for the timeout mechanism. 
These properties are directly derived from the protocol specifications. As they are frequently 
used in the verification we treat them separately. 

The first property states that a timeout can only occur for candidate processes (and not in 
other states) 

Property 4.35 

(IIi:: TIMEOUT, =;. C;) . 

4This implies that a process must reply immediately on processing of a message and is not allowed to wait 
arbitrarily long with replying. It can easily be verified that the presented protocols conform to this principle. 
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Another property which is used (implicitly) during the verification is that a process is only 
a candidate once. That is, once a process has left the candidate state it will never become a 
candidate anymore. This is formulated by 

Property 4.36 

(IIi:: ~C, 1\ +C, => 0 ~C,) . 

Furthermore, once a process is in the candidate state and given that it performs a timeout 
eventually it remains a candidate until this timeout happens, 

Property 4.37 

(II i :: C, 1\ <) TIMEOUT, => C, U TIMEOUT,) . 

Using that a candidate i becomes failed on receipt of JU), i<j, 

Property 4.38 

(IIi:: C, 1\ (3j: i < j : RCV,(1U))) => 0 F,) , 

we conclude 

Lemma 4.39 

(lIi::C, 1\ OTIMEOUT, => ~(3j:i<j:RCV,(1U)))UTIMEOUT,) 

Lemma 4.39 phrases that no J(j) message is received by process i (i<j) after entering the 
candidate state until its tirneout occurs (provided its tiIneout occurs at some time)-otherwise 
process i would be forced to the failed state (see 4.38). 

One can now infer from 4.33, 4.34, and 4.39 that process j can prevent the occurrence of the 
timeout of another process, i say, by transmitting JU) with i<j, as reply to the receipt of 
J(i). 

4.3.3 Proof of Requirements 

We now start with proving the requirements one by one. The first proof obligation is: 

PI : (3i:: L, => (lIj: i,pj: ~Lj)) . 

Proof: From the protocol we immediately deduce that a process can only become a leader 
after performing a timeout. 

Property 4.40 

(IIi:: 0 ~ TIMEOUT, => 0 ~ L i ) . 

Furthermore, we infer that on occurrence of a timeout a process becomes a leader immediately 
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Property 4.41 

(Vi :: TIMEOUT, =:- (') L,) , 

and, after just becoming a leader the process has performed a timeout: 

Property 4.42 

(Vi :: (') J L, =:- TIMEOUT,) , 

The above three equations give the relation between performing a timeout and becoming a 
leader. 

The idea behind the proof is now as follows. We consider two different cases. In case no 
leader is present we must prove that it is not possible that two (or more) processes perform 
a timeout simultaneously, and consequently, become a leader at the same time. This follows 
directly from the interleaving semantics of our protocol description language which prevents 
processes to perform transitions, and thus timeouts, simultaneously. The second case we have 
to consider is the case in which we have a (set of) leader(s) and a new leader appears. Then 
the proof obligation is to establish that this may not give rise to more than one leader. In 
the rest of the proof we focus our attention on the latter case. 

From the above relation between a timeout and becoming a candidate it immediately follows 
that it suffices to prove 

Lemma 4.43 

(3 i :: TIMEOUT, =:- (V j : i "" j : ~ LJl) , 

According to property 4.35 a timeout can only occur when a process is in the candidate state. 
Initially, all processes are in the start state. A process only becomes a candidate after sending 
an I-message. 

Property 4.44 

(Vi::D~SEND,(I(i)) =:- D~C,) . 

In our protocol TIMEOUT; is associated to the (initial) transmission of message l"(i). From 
assumption 4.33 we infer that each process receives IP(i). The idea is to refer to the state of 
the recipient, process j say, at the moment of processing this message and to deduce that, 
for each possible state, this process j can not be a leader at the occurrence of TIMEOUT,. 

Formally, we have: 

Lemma 4.45 

(Vi,j:: RCvj(IP(i)) 1\ OTIMEOUT; =:- 0 (TIMEOU'I'f =:- ~LJl) . 

We now prove lemma 4.45 for each possible state of the recipient of IP(i), process j, given 
that i becomes a leader once (i.e. 0 TIMEOUT:'). Implicitly we use that process i is still a 
candidate when j receives I(i). 
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Property 4.46 

(Vi:: (3j:: RCVj(J"(i))) /\ OTIMEOUT; =? G,) . 

First, consider the case that j is failed. Once a process is failed it remains failed, and, hence 
will never become a leader. Thus, 

Property 4.47 

(Vj::Fj =? OFj ) . 

Consequently, 

Lemma 4.48 

(Vi,j:: Fj /\ RCVj(J"(i)) /\ OTIMEOUTf =? 0 (TIMEOUTf =? Fj )) , 

which concludes the proof for failed processes. 

Secondly, consider j to be either a leader or a candidate. Abbreviate Gj V L j by G L j . From 
the protocol specification we directly infer 

Property 4.49 

(Vi,j :: GLj /\ RCVj(I(i)) =? (j < i =? 8 Fj ) /\ (j > i =? SENDj(I(j)))) . 

Property 4.49 suggests a case analysis between j<i and j>i. Consider j>i and 0 TIMEOUTf. 
According to 4.49 j replies by sending J(j). According to 4.34 process i is forced to process 
this message since J(j) is a reply to JP(i). But, as j>i this contradicts with 4.39. Hence, the 
interesting case is j<i. Stated otherwise, 

Lemma 4.50 

(Vi,j:: GLj /\ RCVj(J1'(i)) /\ OTIMEOUT; =? j < i) . 

From 4.50, 4.49, and 4.47 we now deduce 

Lemma 4.51 

(Vi,j :: GLj /\ RCVj(/"(i)) /\ 0 TIMEOUTl' =? 0 (TIMEOUTl' =? Fj )) , 

which concludes the proof for candidate and leader processes. 

Finally, consider the case that j is in the start state at the moment of receipt of J(i). From 
the protocol description it immediately follows that start processes ignore all messages 

Property 4.52 

(Vi::S, /\ Rcv.(md =? ~SEND;(m2) /\ 8S,) . 

Distinguish between two cases. In the first case we assume that j remains in the start state 
until i's timeout occurs. This immediately implies that j is not a leader at the moment i's 
timeout occurs, and consequently we have 
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Lemma 4.53 

('ti,j :: Sj II Rcvj(I"(i)) II Sj U TIMEOUTf =} 0 (TIMEOUTf =} S,ll . 

In the second case we consider that j has left the start state after processing I(i) and before 
i performs its timeout, that is ,(S, U TIMEOUTl'). According to 

Property 4.54 

('I j :: Sj II 0 ,Sj =} 0 Gj ) , 

j has become a candidate and due to 4.44 must have sent I(j) in order to do so. According 
to the broadcasting communication i will receive this message. As I(j) is not a reply on 
I(i), process i is not forced to process this message before performing its own timeout. This 
suggests the following case analysis. First, consider the case that i processes I(j) before 
performing its timeout. According to 4.39 this implies that, given that i will perform its 
timeout once, i>j. Due to 4.49 i replies by transmitting I(i), and as j is forced to wait for 
this reply before becoming a leader it will not be able to perform its timeout (due to 4.39). 
In the other case i processes I(j) after performing its timeout. But then, by definition jean 
not be a leader too at the moment i performs its timeout as it is forced, according to 4.34 to 
wait for the reply of i. So, we conclude 

Lemma 4.55 

('ti,j:: Sj II Rcv,(IP(i)) II ,(S, U TIMEOUTn =} o (TIMEOUTf =} ,Lj )) . 

Lemmata 4.53 and 4.55 directly imply 

Lemma 4.56 

('ti,j::Sj II Rcvj(J1'(i)) II <>TIMEOU'I~ =} D(TIMEOUTf=} ,Lj )) . 

From lemmata 4.48,4.51, and 4.56 we deduce (4.45). This completes the proof of PI. 
(End of Proof Pl.) 

P4: ('ti,j::Lill ,0Li ll('tk::,Lk )ULj =}i<j). 

Proof: Assume Li II, 0 Li II ('I k :: 'L.) U Lj , so j is the immediate successor of i. We 
have that iij in an equivalent way as in the proof of P4 for Protocoll (see previous section). 
We now prove that for a leader i it is always the case that leaders in the future will be at 
least as good as i (note that i may remain a leader for a while). 

Lemma 4.57 

('ti,j :: Li =} 0 (Lj =} i:O; j)) . 
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From lemma 4.57 and i#j we immediately deduce P4. The proof of 4.57 is as follows. 
Assume L,. In case i never capitulates 4.57 holds trivially. Therefore, consider the case that 
i capitulates once. Let j be i's successor and assume i>j. From 4.34, 4.39, and 4.49 we infer 
that a process can not become a leader in presence of a better leader or candidate that has 
received its original I-message: 

Lemma 4.58 

(V j :: :J Cj 1\ (3 k : j < k : <) (RCVk(I(j)) 1\ CLk)) =? -, <) L;) . 

The idea of the proof is to show that i can not be succeeded by a smaller process, j say (i>j), 
as there is always a better candidate or leader process than j that receives I(j)-and thus 
prevents j of becoming a leader. 

In order for i, i>j, to become a leader i has transmitted I(i). So, i has left the start state 
before j becomes a candidate. From the following statement which is proven below 

Lemma 4.59 

(V j :: (3 k : j < k : SEND,,(I(k))) =? 0 (3 k : j < k : CLk)) , 

we infer that there is still a better process than j, k say, for which CLk holds. This process 
receives I(j) and will prevent j of becoming a leader (according to 4.58). This contradicts 
with j being a successor of i and completes the proof. 

It remains to prove lemma 4.59. From the protocol description we infer that after the sending 
of an I -message the sending process is in either the candidate or leader state. Formally, 

Property 4.60 

(V k :: SENDk(I(k)) =? (0) OL.) . 

Moreover, we have that candidates and leaders leave their (combined) state if and only if they 
receive an I-message with an identity larger than their own identity. 

Property 4.61 

(VI<::: CLk =? (0 -,(3m: k < m: RCVk(I(m))) ¢} DCLk)) . 

From property 4.60 we infer that at the next moment process k, k>j, transmits I{k), there is 
a better candidate or leader than j. Furthermore, from 4.61 we infer that as candidates and 
leaders can only be forced to a state different from leader and candidate by better congeners 
(as they only leave their state on receipt of I(m) with m>k, and as I-messages are only sent 
by processes that are either candidate or leader) 4.59 holds. This completes the proof of P4. 
(End of Proof P4.) 

P2 : <) (3 i :: L i ) . 

Proof: The proof of this requirement is rather straightforward. As continuously enabled 
transitions can not be ignored indefinitely (weak fairness assumption) each process in the 
start state becomes a candidate eventually: 
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Property 4.62 

(Irl i :: Si ~ <> Gi ) 

Moreover, according to 4.44 a process sends an I-message so as to become a candidate. 
Consequently, eacb process sends an I-message sooner or later. Now consider the process 
with the maximum identity, process maxid, say. Due to the finiteness of the set I d this 
process exists. (We like to stress that the finiteness of I d is crucial for the correctness of 
Protocol 2, whilst for the correctness of Protocol 1 this is irrelevant.) Once, this process 
transmits its I-message and becomes a candidate. As there is no 'better' process that can 
reply it follows from assumptions 4.33 and 4.34 that process maxid can perform its timeout 
and becomes a leader. Thus, we have that process maxid becomes a leader sooner or later. 
Furthermore, since leaders can only be succeeded by better processes (see P4), we have 

Property 4.63 

(Lmax;" ~ 0 Lmax;..) . 

Thus we conclude 

Lemma 4.64 

which directly implies P2. 
(End of Proof P2.) 

P3 : (lrIi:: Li II (3j: i <j: ~Lj) ~ <> ~L;) . 

Proof: The idea is to prove P3 along similar lines as in the previous section by first refor­
mulating P3 using ~ L j = Sj V Gj V Fj . Once a process becomes failed it remains failed 
forever (4.47). A process only becomes failed after receipt of an I-message with a larger 
identity. This follows from (the stronger): 

Property 4.65 

(lrIi:: 0 ~ (3j: i < j: Rcv;(I(j))) ~ 0 ~F;) 

From lemma 4.59 and property 4.65 we conclude: 

Property 4.66 

(lrIi:: Fi ~ (3j: i < j : GL j )) , 

or, using P1: 

Property 4.67 

(lrIi,j:i<j:L i II Fj ~ (3k:j<k:G.)) 
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Note that it is no longer guaranteed that failed processes are always smaller than the leader 
process (like in the previous protocol). This is due to the fact that in Protocol 1 only the 
leader process may force candidates to become failed, whereas in Protocol 2 also candidates 
may force other candidates to become failed. 

From 4.62 we deduce that each process becomes a candidate at some time. Therefore, we 
may refine P3 (as for Protocol 1) into 

Lemma 4.68 

(1/ i :: L, A (3 j : i < j : Cj ) '* 0 ,L;) . 

It remains to establish lemma 4.68. This follows rather straightforward. Assume L, A Cj A 
i<j. According to 4.44 j has transmitted [(j) so as to become a candidate. This message is 
received by i when either Li or F, holds (otherwise i would not have become a leader). In case 
L" 0 ,L, follows directly from property 4.49. For F, we already have, L,. This completes 
the proof of P3. 
(End of Proof P3.) 

Likewise for Protocol 1, it remains to verify that no unspecified receptions can occur. As there 
is only one message type involved, and as corresponding transitions exist for this message 
type (for all possible parameters) in all states, and as processes do not receive their own 
transmitted messages it is evident that no unspecified receptions are possible. This completes 
the correctness proof of Protocol 2. 

4.4 Verification of Protocol 3 

The purpose of this section is to prove that Protocol 3 satisfies requirements Q1 through Q6, 
and that no unspecified receptions can occur. We take a similar approach as in the previous 
sections. 

Like for the previous protocol the timeout mechanism plays a crucial role in establishing 
the correctness of Protocol 3 with respect to requirements Q1 through Q6. We take as a 
starting-point the semantics of the timeout mechanism as defined in the previous section (cf. 
assumptions 4.33 and 4.34). 

4.4.1 Timeout Properties 

In Protocol 2 a process is only a candidate once (according to (4.36)) and as a timeout can 
appear at most once the association between, for instance, C, and TIMEOUT, in a statement 
like C, A 0 TIMEOUT, is unique: the timeout that eventually will occur is the timeout used 
by i to leave the candidate state referred to by statement C,. Due to the intrinsic recursive 
behaviour of Protocol 3 such is no longer true. When stating, for instance, C, A 0 TIMEOUTf 

there is no formal relation between the first and second conjunct: process i may be a candidate 
for a while, leave this state and become a candidate again and then leaving this state on 
TIMEOUTf, Stating C, referring to the first period in the candidate state has no relation at all 
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with TIMEOUT:'. In order to establish such a relation the idea is to refer to the J(i) message 
on which i has become a candidate-and which must have number p such that it corresponds 
with the next timeout of i to occur'. Note that it is possible to refer to the J(i) message on 
which i has become a candidate in the temporal logic formalism we use. However, we also 
want to refer to the receipt of this message by some other process. This is not possible in 
temporal logic, but is rather straightforward when introducing explicit labelling of I-messages. 

We repeat the timeout properties and reformulate some of them when necessary. 

Property 4.69 

(1/ i :: TIMEOUT, => C;) . 

Once a process enters the candidate state by transmission of IP(i) and the corresponding 
timeout occurs eventually (i.e. 0 TIMEOUTn it does not leave the candidate state until this 
timeout occurs. Note that this also implies that the process does not crash in between the 
transmission and the corresponding timeout. 

Property 4.70 

(I/i:: SEND,(IP(i)) 1\ (') Ci 1\ OTIMEouTf => Ci U TIMEOUT;) . 

As in Protocol 2, a candidate i becomes failed on receipt of J(j) with i<j, 

Property 4.71 

(I/i:: C, 1\ (3j: i < j : RCVi(I(j))) => (') F,) , 

From properties 4.70 and 4.71 we infer 

Property 4.72 

(I/i :: SEND,(/"(i)) 1\ (') Ci 1\ 0 TIMEOuT;' 

=> ~ (3j : i < j : RCVi(I(j))) U TIMEOUTn 

4.4.2 Proof of requirements 

We now start with proving the requirements one by one. The first proof obligation is: 

QI (3 i :: Li => (1/ j : i f= j : ~ L j )) . 

Proof: Following an analogous reasoning as for the proof of PI for Protocol 2 we deduce 
that the interesting case to prove is 

5We remark that another possibility would be to equip the Ci predicates with a number as the TIMEOUT!' 
predicates and let the relationship with the j1'(i)-message on which i has become a candidate implicit. For the 
sake of clarity we prefer to give the explicit relation. 
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Lemma 4.73 

(3i::TIMEOUT, => (Vj:ii=j: ~Lj)) . 

According to 4.69 a timeout can only occur when a process is in the candidate state. A 
process only becomes a candidate after sending an I-message. 

Property 4.74 

(Vi:: Ci => +SENDi(I(i))) . 

Similarly to the proof of P 1 in the previous section the crux of our proof is 

Lemma 4.75 

(Vi,j::RCYj(JP(i)) /I OTIMEOUT; => O(TIMEOUT; => ~Lj)) . 

We now prove lemma 4.75 for each possible state of the recipient of message IP(i), process j 
say, given that i becomes a leader once (i.e. 0 TIMEOUT;). 

First consider process j to be either leader, failed, or candidate. For convenience let CLFj 
denote Cj V Lj V Fj • From the protocol description we immediately infer: 

Property 4.76 

(Vi,j :: CLFj /I RCYj(I(i)) => (j < i => 0 Fj) /I (j > i => SENDj(I(j)))) . 

Using 4.34, 4.72, and 4.76 we obtain 

Lemma 4.77 

(Vi,j::CLFj /I RCYj(JI'(i)) /I OTIMEOUT; => j<i) . 

In contrast with Protocol 2, we can not directly conclude 4.75 for candidate, leader, and 
failed processes from lemma 4.77: in the previous protocol a failed process remains failed 
indefinitely, whereas -due to its recursive behaviour- in Protocol 3 this is not the case. 

So, we have to prove that although process j did not reply on JI'(i) it can not be a leader 
when TIMEOUT; holds. From 4.76 and 4.77 we infer that, given 0 TIMEOUTf, we only have 
to consider processes j for which j<i. According to 4.76 j becomes failed on receipt of IF(i). 
It can only become a leader by transmitting Iq(j) on becoming a candidate. As process i is 
still being a candidate, according to property 4.70, j is not able to become a leader before i 
is becoming a leader: j has to wait for i's reply (see timeout semantics) and as j<i process i 
will reply on receipt of Iq(j) thus preventing j becoming a leader. So, we conclude 

Lemma 4.78 

(Vi,j::CLFj /I RCYj(IP(i)) /I OTIMEOUT; => O(TIMEOUT; => ~Lj)) . 
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In the above reasoning we only have considered perfect processes, i.e. processes that do not 
crash. However, when considering the crash of process j (i>j) it can be deduced in a similar 
way that after recovering j can not become a leader before i is becoming a leader. Note that 
due to 4.70 i does not crash before becoming a leader. So, crashes of i do not have to be 
taken into account. 

Finally, consider process j to be either start or dead on the moment of processing JP(i). Let 
SDj denote Sj V Dj . From the protocol it immediately follows that start and dead processes 
ignore all messages. 

Property 4.79 

(Vi:: S, 1\ Rcv,(m,) =} (') S, 1\ ~SENDi(m2)) , 

Property 4.80 

(Vi:: D, 1\ Rcv,(m,) =} (') D, 1\ ~SEND,(m2)) , 

so j ignores JP(i). Now the same case analysis as in the proof of PI of Protocol 2 for start 
processes can be made and by similar arguments it can be proven that 

Lemma 4.81 

(Vi,j::SDj 1\ Rcvj(J1'(i)) 1\ OTIMEOUT; =} O(TIMEOUT;=} ~Lj)) . 

For the sake of brevity we here omit this case analysis. Again, when considering the crash of 
process j it can also be verified rather easily that after recovering j can not become a leader 
before i becomes a leader. 

From lemmata 4.78 and 4.81 we conclude 4.75. This completes the proof of Ql. 
(End of Proof Ql.) 

Q2 0(3i:: O(~Di 1\ (Vj: i <j: Dj ))) =} 00(3i:: L,) . 

Proof: Consider the process with the maximum identity, i' say, for which 00 ( ~ D" 1\ 

(V j : i' < j : Dj )) holds. According to the premise of Q2 this process exists. The idea of the 
proof is to establish that process i' will always become a leader sooner or later. That is, we 
prove 

Lemma 4.82 

from which we directly deduce Q2. The proof is as follows. Consider process i' at the moment 
that all better processes than i' are crashed for ever, that is, (V k : i' < k : 0 D.). Remark that 
-although all better processes are crashed- process i' may still have messages originating 
from these processes in its buffer, as processes may process buffered messages at their own 
pace. Now refer to the moment at which i' has processed all messages from these processes. 
That is, assume 
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Assumption 4.83 

I => O('<Ik: i' < k: m. ¢ Qi' /\ DDk ) , 

where mk denotes a message originating from process k. Distinguish between two cases: i' is 
already a leader, or it is not. Consider the first case, so Li' holds. From the protocol descrip­
tion we immediately infer that leaders can only capitulate by either crashing or receiving an 
J(k)-message with k larger than their own identity. Formally, 

Property 4.84 

('<Ii:::T ,Li => Di V +(3j: i <j: RCVi(I(j)))) 

Given that i' does not crash there is only one possibility to capitulate, namely by receiving 
I(k), k>i'. It is straightforward to observe that I(k)-messages are only transmitted by process 
k. 

Property 4.85 

('<Ii,k:: sEND,(I(k)) => i = k) . 

Furthermore, crashed processes do not transmit messages. That is, 

Property 4.86 

('<I k :: sENDk(m) => 'D.) . 

Using 4.83 and the above reasoning it can easily be deduced that it is impossible for i' to 
receive a message I(k), k>i', and consequently, it is impossible for i' to capitulate. Thus, we 
conclude: 

Lemma 4.87 

(L" /\ ('<I k : i' < k : 0 Dk /\ mk ¢ Q,,) => 0 L,,) 

Secondly, we consider the case that i' is not a leader. Recall that 4.83 holds. From the 
protocol specification we directly infer that processes that will never crash and are not leader 
(yet) will become a candidate once. 

Property 4.88 

('<Ii::D,D, /\ ,Li => OC,) . 

Once, process i' transmits its I-message and becomes a candidate. As there is no 'better' 
process that can reply -they are all crashed for ever- it follows from assumptions 4.33 and 
4.34 that i' can perform its timeout and becomes a leader. Using an analogous reasoning as 
for the first case we conclude that i' will be a leader indefinitely. This concludes the proof of 
Q2. 
(End of Proof Q2.) 
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Q3 : (Vi:: ~(L, A D i )) . 

Proof: This follows directly from the definition of finite state machines, where a process can 
only be in one state 'at a time'. 
(End of Proof Q3.) 

Q4 : (Vi,j::Li A ~Dj A i<j =} O~Li V OD;) . 

Proof: Assume Li A ~ D j A i<j. Distinguish between two cases: 0 ~ D j and 0 D j . The 
latter case corresponds to the second disjunct of the conclusion of Q4. Consider 0 ~ Dj • 

From (4.88) and Ql we infer that 0 Cj holds. According to a similar reasoning as for P3 of 
the previous protocol we observe that it is sufficient to prove: 

Lemma 4.89 

(Vi,j::L, A Cj A D~Dj A i<j =} O~Li) . 

It remains to establish lemma 4.89. Assume L, A Cj A 0 ~ D j A i<j. According to property 
4.74 j has transmitted I(j) so as to become a candidate. This message is processed by i after 
it became a leader-otherwise the message would have prevented i of becoming a leader. If 
i has already capitulated 0 ~ Li follows directly. In case Li holds, i capitulates according to 
4.76. This completes the proof of Q4. 
(End of Proof Q4.) 

Q5: (Vi::J~Li=}D,V+(3j:i<j:~Dj)). 

Proof: According to 4.84 there are only two possible ways in which a leader can capitulate. 
First, it may spontaneously crash. This corresponds to the first part of the conclusion of 
Q5. Secondly, leader i capitulates on receipt of an J(j)-message with i<j. We prove that 
this corresponds to the second alternative of the conclusion of Q5. From the communication 
axioms we have that for all (unique) messages rn: 

Assumption 4.90 

(Vi:: RCvi(m) =} +(3j: i #- j: SENDj(m))) . 

Due to property 4.85 l(j)-messages can only be transmitted by process j. Furthermore, 
crashed processes can not transmit messages (due to property 4.86). Thus, we conclude 

Lemma 4.91 

(Vi,j:i<j:RCV,(I(j)) =} +(~Dj A SENDj(1(j)))) . 
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Using 4.84 this concludes the proof of Q5. 
(End of Proof Q5.) 

Q6 : (Vi::L, /\ 0 ~L, /\ ((Vk:: ~L.) /\ ~D,)ULj =? i~j) . 

Proof: Assume L, /\ 0 ~ L, /\ ((V k:: ~ L.) /\ ~ D,) U Lj . So, j is the immediate successor 
of leader i and i does not crash in between the leaderships of i and j. The proof is by 
contradiction. Assume i> j. From the protocol description we immediately infer that: 

Property 4.92 

(Vi::CLFi /\ D~Di =? DCLFi) . 

So, in case a leader capitulates and does not crash it is either a candidate, leader or failed 
process. From lemma 4.77 it follows that a process can not become a leader in presence of a 
better candidate, leader or failed process. This implies that j (j <i) can not become a leader 
when i is still in one of these states, which is, according to the premise ~ D, U L j and the 
above property the case. This completes the proof of Q6. 
(End of Proof Q6.) 

The remaining proof obligation is the absence of unspecified receptions. As there is only one 
message type involved, and as corresponding transitions exist for this message type (for all 
possible parameter values) in all states, and as processes do not receive their own transmit­
ted messages, it is evident that no unspecified receptions are possible. This completes the 
correctness proof of Protocol 3. 
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5 ACP Specifications 

In this section the three protocols of section 3 are specified in ACP. We take the Finite 
State Machine specifications as a starting-point. The ACP specifications are as close to these 
specifications as possible. 

We will give a specification of all separate processes that play a role (protocol processes, 
buffers, timers, the transmission medium) and of the processes that are built from these 
separate processes. These are a component (the parallel composition of a protocol process, a 
buffer process and, if applied, a timer process) and the whole system (the parallel composition 
of all components and the medium). Preceding the protocol specifications a short introduction 
to ACP is provided. 

5.1 Introduction to ACP 

ACP, the Algebra of Communicating Processes, is an axiom based mathematical theory for 
concurrency. ACP has been applied to a large domain of specification problems, ranging 
from communication protocols, algorithms for systolic systems and electronic circuits up to 
architectures for Computer Integrated Manufacturing. 

This brief introduction is by no means intended to be complete, but merely gives an intuitive 
notion of what we are dealing with. For a detailed treatment of ACP we refer to [BW90J. 

ACP starts from a set of objects, called atomic actions, atoms or steps. Atomic actions are 
the hasic and indivisible elements of ACP. In this introduction they will be represented by 
the symbols a through f. In ACP all atomic actions are elementary processes. Moreover, we 
have 

• 8, deadlock. Deadlock is the state in which there is no possibility to proceed. 

• T, silent step. T represents the process terminating after some time, without performing 
observable actions. 

Atomic actions may be parameterised with data. There are no strict syntactical constraints: 
ad, ad and a(d) all three denote the atomic action a, parameterised with the data element d. 

Processes, in this introduction denoted by the symbols x, y, z, are generated from atomic 
actions and process terms by means of operators. Process names may also be parameterised 
with data. The most important operators are: 

• ., sequential composition or product. 
x . y is the process that executes x first and continues with y upon termination of x. 

• + I alternative composition or sunl. 
x + y is the process that first makes a choice between its summands x and y, and then 
proceeds with the execution of the chosen summand. In the presence of an alternative, 
8 is never chosen. 
The construct Ld E D x( d) is used for the generalised alternative composition x( d, ) + 
x(d2 ) + ... +x(d,,), with d" ... ,d" the elements of D. 
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• II , parallel composition or merge. 
x II y is the process that represents the merged execution of x and y. 

The construct IldE D x(d) is used for the generalised parallel composition x(d,) II x(d,) II 
... II x(d,,), with d j , • •• , d" the elements of D. 

• I , communication. 
As stated above, x II y represents the merged execution of x and y. This means that 
the first action of this composed process is a first action from x or from y or from both. 
In the last case the two actions from x and y are part of a communication between x 
and y, also called a synchronization of x and y. Such a communication has to be defined 
explicitly by using the communication operator: a I b = c means that c is the action 
that is the result of the communication between the actions a and b. 

• 8H , encapsulation. 
8H (x) is the process x without the possibility of performing actions from the set of 
atomic actions H. Algebraically this is achieved by renaming all atomic actions from 
H in x into o. 

• 7/ , abstraction. 
TJ(X) is the process x without the possibility of observing actions from the set of atomic 
actions I. This is achieved by renaming all atomic actions from I in x into T. 

• 0 , priority. 
O(x) is the process in which the choice between alternative actions is made according 
to an ordering on the atomic actions, defined somewhere else. If, in an alternative 
composition, two atomic actions may be chosen on which an order relation is defined, 
only the action with the highest priority will be enabled. 

• <l t> , conditional process. 
The construct x <l c t> y denotes a conditional process expression. If the boolean ex­
pression c evaluates to true the process expression reduces to x. If c evaluates to false 
the process expression reduces to y. 

Processes are specified by equations like 
x=a·b+c·(e+f) 
y = (a . b) II (c· d) 

UInfinite" processes are specified by one or more recursive equations. A simple and meaning­
less example: 

x=a·y+b·z 
y = c· z 
z=d·x+e·y 

Possible execution traces of this process are: a· c . d . b . e ... , b· d· b . d ... , a· c· e . c . d .... 

The executable formal specification language PSF [MV9al is based on ACP for its process 
part. The definition of data in PSF is based on ASF [BHKS9J. 
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5.2 Protocol 1 

We start with the specification of Protocol 1 from section 3.2.2. First the protocol process 
and a local buffer process are specified. We will use the following naming convention for the 
atomic actions involved in the communication between a protocol process, a buffer process 
and the medium. The transmission of a message is denoted by send..xyi. X represents the 
source and Y represents the destination: P for protocol process, B for buffer process or M for 
medium process. The superscript i denotes the component id. In the same way the reception 
of a message is denoted by read..xyi and the resulting communication action is denoted by 
comm..xyi. I D represents the set of component ids. We consider the size of I D to be fixed 
and finite. M represents the set of messages: M = {I(i),R(i) liE ID}. 

Specification of the protocol process of component i: 

= L",E M readJ3pi(m)· Starti 

+ reseLbufferi . send_PMi(I(i))· Candidatei 

C andidatei = Lj E ID readJ3pi(I(j)) . Candidatei 

Leaderi 

Failedi 

+ Lj EID\(i) read_Bpi(R(j))· 
(send_PMi(I(i))· Candidate' <l j < i Do Failedi) 

+ readJ3pi(R(i))· Leaderi 

Lj EID read_Bpi(I(j)). 
(send_PM'(R(i)). Leader' <l j < i Do sendYMi(R(j))· Failedi) 

L,,'EM readJ3pi(rn)· Failedi 

The local buffer process is specified as a queue of unbounded size. The process Buffer' is 
parameterised with a rnessage queue q. The queue operations enq (enqueue), serve and deq 

(dequeue) need no further explanation. The buffer can be reset by the protocol process. This 
reset is used in order to prevent the processing of messages enqueued before the component 
enters the election. 

Buffer'(q) = L", E M read_M Bi(m)· Bufferi(enq(m, q)) 
send_Bpi(serve(q))· Bl1.jJer'(deq(q)) <l q i= emptYJjueue Do (j 

+ read_buffer]eseti . Bufferi(emptYJjueue) 
+ 

The following communications are defined between a protocol process and its local buffer 
process: 

send_BP'(m) I read_Bpi(m) = cornrnJ3P'(rn) 
reseLbufferi I read_buffer_reset' = buJIer_is_reset' 

A component process consists of the encapsulated merge of the protocol process and the buffer 
process. One component, say I (l E I D), starts in the leader state: 

Component' = all, (Leader' II Buffer'(emptYJjueue)) 

The other components start in the start state (i E I D\{ I}): 

Component' = all, (Start' II Bufferi(empty_queue)) 

Definition of the encapsulation set: 
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HI = {read..BP'(m),send-Bpi(m),reseLbuffer"read_buffer_reset' liE ID,m E M} 

The medium process reads a message from a component and sends this message to all other 
components, thus modelling a broadcast communication. The set I D contains all the com­
ponent ids, the set IDS is a variable set of component ids. 

Medium = "L.'E/D.mE M read_PM'(m)· Medium(ID\{i}, m) 
Medium{IDS, m) = (II'E IDS send_M Bi(m) ) . Medium 

The following communications are defined between a component and the medium process: 

send_PMi(m) I read..PMi(m) = comm_PMi(m) 
sendMB'(m) I readMBi(m) = commMBi(m) 

The complete system consists of the encapsulated merge of all components and the medium: 

System 1 = 8H ,((lIiE/D Component') II Medium) 

Definition of the encapsulation set: 

H2 = {send..PM'(m), read..PM'(m), sendMBi(m), read_MBi(m) liE ID, mE M} 

Remark: at this point we notice an important difference between the execution model of the 
Finite State Machines of section 3 and the ACP execution model. For a transition in an FSM 
specification the evaluation of a guard and the related action are considered to be atomic: 
the receiving of a message and the transmission of a reply on this message together form a 
single atomic event. However, in ACP these are two separate actions. Due to the arbitrary 
interleaving model, other actions may come in between these two actions. This difference has 
some influence on the complexity results of section 3. This is discussed in section 5.6. 

5.3 Intermezzo: timeout semantics and ACP - part 1 

Protocols 2 and 3 make use of a timer, which may generate a timeout. In this section we will 
discuss the modelling of a timeout in ACP, related to the protocols investigated here. 

For certain classes of protocols the correctness of the protocol does not depend on the moment 
a timeout is raised in relation to other actions in the protocol. For instance, Sliding Window 
Protocols are robust with respect to premature timeouts. In an ACP specification of these 
protocols a timeout is modelled by a non-deterministic choice between a timeout action and 
other enabled actions, see [Bru91]. Other protocols are not robust with respect to premature 
timeouts. A classical example is the simple PAR protocol, see [Vaa90J. (PAR stands for 
Positive Acknowledgement with Retransmission.) From section 3 it may be clear that the 
Leader Election protocols investigated in this document cannot deal with premature timeouts: 
a timeout may not be enabled before all responses to the initial message are generated and 
processed. 

We distinguish three possible approaches to avoid premature timeouts in ACP. The first two 
approaches are action oriented, the last approach is data oriented. 

1. A timeout action is not enabled as long as certain actions are enabled. This can be 
modelled with the priority operator (J. The timeout action gets a lower priority than 
other actions, application of the priority operator prohibits the timeout as long as one 
of the actions with a higher priority is enabled. This approach is used in [Vaa90J. 
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2. A timeout action is enabled after the execution of certain actions. These actions serve as 
a kind of synchronization for the timeout. Usually this is the only role of these actions, 
within the specified protocol these actions do not have any other meaning. Therefore 
we will call them sync actions. In [Vaa90] this approach is shortly mentioned for the 
PAR protocol, in [vW93] it is applied in a PSF specification of the same protocol. 

3. In a data oriented approach a timeout action may be enabled if a certain boolean con­
dition is evaluated to true. This condition is based on data parameters of the specified 
system. This requires a specification where state information is put in the data param­
eters of the process equation (s). 

In the remaining part of this section we will investigate the usefulness of the first two al­
ternatives in the realm of the Protocols 2 and 3. In section 6 Protocol 2 and Protocol 3 
are captured in a single recursive equation with data parameters. There we will discuss the 
usefulness of the third alternative. 

Application of the priority operator (alternative 1) implies the definition of a set of orderings 
on actions in which a timeout of component i gets a lower priority than every action that 
is related to the reply to the initial message from this component. A reply can be made 
recognizable by labelling the initial I-message with its source and by attaching the same label 
to all replies to this message. 

Two problems arise when this approach is followed. The first problem has to do with the 
buffering of incoming messages. When queueing is applied, a message in a queue is only 
related with the comm_BP action if it is at the head of the queue, otherwise no enabled 
actions are related with this message. When smart buffering is applied the message in the 
buffer may be replaced by a better one. By this replacement the label of a message is lost. 
This kind of buffering problems can be solved by a more complex labelling of the messages. 
We will not go into the details of such a solution. The second problem has to do with the fact 
that if the medium is in use (a message has been transmitted to the medium by a component, 
but has not been buffered by all other components), a comm...PM action with a reply message 
to a component i may temporarily be disabled although the timeout of a component i should 
still be prohibited by this action. 

The second problem can only be solved in a rather crude way by placing more restrictions 
on a timeout action. The timeout of a component i is given a lower priority than every 
comm_M B action in order to prevent a temporary blockade of a comm_P M action. The 
timeout is also given a lower priority than every comm-.BP action in order to guarantee that 
every component has had the possibility to react on a message. Finally, the timeout is given 
a lower priority than every cammY M action from a component with an id higher than i 
in order to ensure that every reply is received by component i before its timeout is enabled. 
This leads to the following ordering relations: 

timeout' < comm_MBk(m), 
timeout' < camm_BP"(m) 
timeout' < camm_PM;(m), with m E M, i,j, k E ID,j > i. 

Labelling of messages is not useful any more. The atomic action timeout' is the result of 
a communication between the protocol process and the timer process of a component i, see 
below. 
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Application of sync actions for the synchronization of a timeout (alternative 2) can be based 
on the observation that a timeout is permitted when every other component is in the start 
state (has not yet entered the election), in the failed state (has already lost the election) 
or has made a transition from the start state to the candidate state after the transmission 
of the initial message of the component that is waiting for its timeout (is not expected to 
prohibit the timeout). It is impossible to identify the last set of components without a 
substantial expansion of the specification. Therefore it is reasonable to focus on a little 
bit stronger condition which requires that a timeout action is only enabled when all other 
components are in the start state or in the failed state. This leads to the addition of an action 
send_timeouLenable in the start state and the failed state of a protocol process. A timer 
process collects these permissions by communicating read_timeouLenable actions. Only when 
all permissions are given a timeout is enabled. This approach leads to two extra actions in 
the protocol process and a little bit more complicated timer process. 

In the case of our Leader Election protocols there is no clear advantage of one alternative 
above the other, both have their (dis)advantages. In the specification of Protocols 2 and 3 
we have chosen to model the timeout semantics cf. alternative 1: a timeout is enabled if 
certain other actions are disabled. We see this as more close to the dynamic character of the 
protocols than alternati ve 2, where a timeout is only enabled if all other components are not 
actively participating in the election (any more). 

5.4 Protocol 2 

We continue with the specification of Protocol 2 from section 3. We will give a new spec­
ification of the protocol process itself and of the buffer process. We now will use a "smart 
buffer" in which only the message with the highest id is kept. A timer process, responsible 
for the generation of a timeout, is also specified. In this protocol we have one message type, 
M = {I(i) liE ID}. Specification of the protocol process of component i (i E ID): 

Start' = 

Candidate' = 

Leader' = 

Failed' = 

L., UD read..Bpi(I(j)). Start' 
J . 

+ reset-buffer'· send..PM'(J(i))· starUimer'· Candidate' 

L.,j E ID read..BP'(I(j))· 
(send_PM'(I(i))· Candidate' <l j < i I> stop_timer'. Failed') 

+ read.timeout'· Leader' 

L E ID read..BP'(I(j))· 
(send_PM'(I(i))· Leader' <l j < i I> Failed') 

L.,j E ID read..BP'(I(j)) . Failed' 

The local smart buffer process only stores the message with the highest id. The buffer can be 
reset by the protocol process. The parameter b is used to keep the message with the highest 
id stored. The function max(m" m2) takes two messages as input and produces the message 
with the highest id as output. 

Buffer' L.,mEM read..MB'(m)· Buffer'(m) 
+ read_buffer_reset'· Buffer' 

Buffer'(b) = L.,,,, E M read..MB'(m) . Buffer'(max(b, m)) 
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+ send_B p' (b) . Buffer' 
+ read_buffer ]eset' . Buffer' 

The local timer process is very simple: when a start signal is received the timer waits for a stop 
signal. If this signal does not appear, a timeout is sent to the protocol process. The waiting 
for a stop signal and the transmission of the timeout signal is specified as an alternative 
composition of two process expressions. We will suppose that no start signal is given while 
waiting for a stop signal or a timeout. As described in the previous section, the timeout 
semantics will be modelled with the priority operator, see below. 

Timer i = read-Biart i . Timer...sf. 

Timer _sf. = read_stopi . Ti11wri + send_timeouti. . Timer;' 

The communications between a protocol process and its local timer are defined as follows: 

starLtimer' I read_start' = timer ~'tarted' 
stop_timer' I read-Btop' = timer _stopped' 
send_timeout' I read_timeout' = timeout' 

In this protocol we assume that there is nO leader at the beginning, so all components are 
initially in the start state: 

Component' = 8H ,(Start' II Buffer' II Timer') 

The encapsulation set is defined as follows: 

H3 = HI U {startJimer', read-Btart', stop_timer', read_stop', send_timeout', 
read_timeout' liE I D} 

with H, as defined in section 5.2. 

The medium process is the same as in the specification of Protocol l. 

The semantics of the timeout are modelled with the priority operator (). This leads to the 
following specification of the complete system: 

System2 = () 0 811,((lliE/D Component') II Medium) 

with H, as defined in section 5.2. From section 5.3 we recall the order relations for the priority 
operator (): 

timeout' < comm_MBk(m), 
timeout' < comm_Bpk(m), 
timeout' < comm_PMj(m), with m E M, i,j,k E ID,j > i. 

5.5 Protocol 3 

In this protocol components may crash. Such a crash has consequences not only for the 
protocol process, but also for the local buffer process and the timer process. Therefore all 
component processes need to be reconsidered. In the specification below we will use a simple 
model of a component crash: 

• Only the protocol process has the possibility to crash. The buffer process and the timer 
process will simply continue (as far as possible) after a crash of the protocol process. 
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• The "revival" of a component is modelled by the revival of the protocol process. At its 
revi val this process resets the local timer. The local buffer is reset in the start state, 
which is entered after the revival . 

• In the specification of the protocol process a transition from a state to the Dead state 
is modelled by the atomic action crash. The transition from. the Dead state to the start 
state is modelled by the atomic action revive. These actions do not communicate with 
any action from any other process. 

In ACP there is no distinction between must-actions and may-actions (the solid arrows and 
the dashed arrows from the Finite State Machine Diagram of Protocol 3 in section 3). The 
plus operator for alternative composition stands for a non-deterministic choice between the 
alternatives. So we are not able to model this specific property of a process crash in ACP. 

Specification of the protocol process of component i: 

Start' 

+ 
+ 

Candidate' = 

+ 
+ 

Leader' = 

+ 
Failed' 

+ 
+ 

Dead' = 

L,j ElD read.BP'(1(j)) ·Start' . . 
reset-buffer'· send_PM'(I(i))· starUimer'· Candidate' 
crash i . Deadi 

L,j E ID read.BP'(1(j))· 
(send_PM'(1(i))· Candidate' <l j < it> stop_timer'· Failed') 

readJimeout' . Leader' 
crash' . Dead' 

L,jEIDread.BP'(1(j))· (send_PM'(1(i))· Leader' <l j < it> Failed') 
crash' . Deadi 

'£. E ID read.BP'(1(j))· 
J . .. . 

(send_PM'(1(i))· starUimer'· Candidate' <l j < it> Failed') 
sendYM'(1(i))· starUimer'· Candidate' 
crash' . Deadi 

revive i . rcseLtimer i 
. Starti 

As in the previous protocol the local smart buffer process only stores the message with the 
highest identity. A crash of the protocol process is not observed by the buffer. However, 
after the reception of a reset signal the buffer goes to the initial state again. This is already 
specified in the specification of the buffer process in the previous section. We will not repeat 
this specification here. 

In the timer process in each state the action read_timer_reset is added: 

Timer i = read-Btart i . Timer -Bi + read_timer_re.'>eti . Timeri. 

Timer _s' = readJ3top' . Timer' + sendJimeout' . Timer' + read_timer_reset' . Timer' 

Definition of the additional communication between the protocol process and the timer pro­
cess: 

reseLtimcr i I read_timer -Teset i = timer _is_reset i 

In this protocol we assume that there is nO leader at the beginning, so all components are 
initially in the start state: 
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Component' = 8H , (Start' II Buffer' II Timer') 

Definition of the encapsulation set: 

H4 = H3 U {reseLtimer',readJimer_reset' liE ID} 

with H3 defined as before. 

The medium process is the same as in the specification of Protocoll (and 2). The modelling 
of the timeout is the same as in the specification of Protocol 2. So we get the following 
definition of the Leader Election protocol: 

System3 = IJ 0 8H,((IIiElD Component') II Medium) 

The set H2 has been defined before. 

5.6 Action atomicity and complexity results 

We conclude this section with some remarks about the complexity results of section 3 and the 
execution model of ACP. The complexity analysis in section 3 is based on the atomicity of the 
action sequence event-plus-reaction, e.g. the reception of a message and the transmission of a 
reply message. This kind of atomicity is common in Finite State Machine formalisms. How­
ever, in ACP read actions and send actions are atomic actions themselves. The interleaving 
model of ACP allows other actions to be executed between a read action and the consecutive 
send action. This means that, after reading a message from its buffer, a component may have 
to wait until some actions from other components have been executed before it transmits a 
reply message. Compared to the FSM model the finer interleaving execution model of ACP 
introduces the possibility of a delayed reaction of a component process, which means that an 
extra message buffer is introduced within a component. This has a certain influence on the 
complexity results as derived in section 3. 

With simple buffering (queueing of incoming messages) there will be no difference: the extra 
message buffer can be regarded as an extension of the component buffer queue. However, 
when we use a smart local buffer we get different results. In Protocol 1 we now get the same 
worst case message complexity as in the case without smart buffering: 

Theorem 5.1 In the ACP interleaving model MCi(N, i) = MCnN, i) = ~N2 + ~N - 1. 

Proof: if the reply on the I-message with the lowest id is temporarily buffered within the 
protocol process, a message sequence like in Figure 5 is possible. After the reception of the 
I-message of component i + 1 the actual leader i can delay its reaction (the transmission of 
the R-message) until all other I-messages have been sent. 0 

For Protocol 2 we get a worst case message complexity that is still O(N): 

Theorem 5.2 
N>1. 

In the ACP interleaving model MG;(l) = land MG;(N) = 4N - 5 for 

Proof: The factor 4 comes from the fact that now every component may buffer two messages 
and so may generate two replies on initial messages from components with a lower id. A third 
reaction may be generated by another message from these components. Together with the 
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initial message this makes 4. The constant -5 comes from the initial values for MG:i(N): 
MC;(l) = 1, MC2(2) =3. These initial values can easily be derived. 0 

In Protocol 3 the worst case message complexity is the same as in the case without smart 
buffering: 

Theorem 5.3 In the ACP interleaving model MC3(N) = MCHN) = 2N - 1. 

Proof: The delayed reaction now implies that every component that is about to send a 
message to the medium cannot be stopped by a message from a component with a higher 
id until this message is sent. This leads to a worst case behaviour in which every message 
invokes a message from all components with a higher id. As we have seen before this leads 
to an exponential worst case message complexity. 0 

In complexity theory it is a well-known fact that the underlying machine model has a big 
influence on the complexity of the algorithm [vEB90). Finite State Machines and ACP both 
suppose an underlying parallel machine model. The results above show that the execution 
model of a specification formalism sometimes also has a major influence on the complexity of 
a distributed algorithm. 
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6 Verification and Validation III ACP 

6.1 Introduction 

In this section we will explore the power of ACP in the field of verification and validation of 
the protocols that have been specified in section 5. With verification we refer to an algebraic 
proof of the correctness of a protocol with respect to a set of requirements. If, for whatever 
reason, we cannot produce such a proof we may try to validate a protocol, e.g. by simulation. 

For the verification of the protocols we will put our specifications in the following "normal 
form)): 

P(D) = al' P(Dd <J Cl (> 8 
+ a,· P(D,) <J C, (> 8 

+ 
+ a,.' P(D,.) <J C,. (> 8 

D denotes a parameter list. Di , 1 ::; i ::; n, denotes the same parameter list with substitutions 
of data terms for some of the parameters. Ci , 1 ::; i ::; n, denotes a boolean condition, possibly 
containing variables from D. If a condition is invariantly true, a summand may be written 
as ai . P(Di)' 

The advantage of this normal form lies in the simplification of the calculations that have to 
be performed in expanding the merge of several processes to a single equation, which can be 
used for verification and validation purposes. In ACP calculations are performed according 
to axioms, see [BW90J. Before we turn to these calculations we will give a short introduction 
to the ACP axioms. 

6.2 ACP axioms 

The axioms of Table 2 form the axiom system for ACP. As before, x, y and z denote process 
terms, a and b denote atomic actions. We will use the ACP axioms first of all for the expansion 
of the merge of two or more processes. The axiom for the merge operator in Table 2 expands 
the merge of two process terms to the alternative composition of three terms. The process 
term xlly (x leftmerge y) denotes the merge of x and y with the first action from x. The 
process term x I y denotes the communication (synchronisation) between the processes x and 
y. 

The merge axiom can be generalized to the expansion theorem for n 2: 3: 

Xl II··· II x,. = L1S;iS;,. xill(111S;js;,.,Ni Xj) + L1S;i<jS;,. (xdxj)ll(lhS;>S;,.,.;o!iJ x.) 
From section 5 it is clear that in the specification of the protocols conditional process ex­
pressions are frequently used. In [BB92J several axioms are given for conditional process 
expressions. From these axioms the following identities can be derived. 

Lemma 6.1 

1. x <J C (> x = x 

2. x <J C (> Y = x <J C (> 8 + Y <J ,c (> 8 
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x+y-y+x 
(x + y) + z = x + (y + z) 
x+x=x 
(x+y)·z=x·z+y·z 
(x· y). z =x, (y. z) 
x+o=x 
o· X =0 

X II y =xlly+yllx+x I y 
allx=a·x 
(a· x)lly = a· (x II y) 
(x + y)llz = (xllz) + (yllz) 
(a· x) I b = (a I b)· x 
a I (b· x) = (a I b)· x 
(a· x) I (b· y) = (a I b)· (x II y) 
(x + y) I z = x I z + y I z 
x I (y + z) = x I y + x I z 

a I b = ,(a, b) if, defined 
a I b = 6 otherwise 

Table 2: ACP axioms. 

3. (x <l Cl I> 0) <l C2 I> 0 = x <l C, II C2 I> 0 

Proof: elementary, see [Bru]. 0 

The axioms in Table 3, also from [BB92]' are concerned with the merge and encapsulation of 
conditional process expressions. In the specification of the Protocols 2 and 3 in section 5 the 

(x <l C I> y)llz = (xllz) <l C I> (yllz) 
(x <l C I> y)lz = (xlz) <l C I> (Ylz) 
xl(y <l c I> z) = (xly) <l C I> (xlz) 
8}{(x <l c I> y) = 8}{(x) <l C I> 8}{(y) 

Table 3: Axioms for communication and conditions. 

priority operator e is used to model the desired timeout semantics. In [BW90] the axioms for 
this operator are given. In this axiomatization an auxiliary operator is used: the binary unless 
operator, denoted by <l. In order to avoid any confusion between this operator and the left 
triangle of a conditional process expression, in this paper we will denote the unless operator 
as <Cl. The axioms in Table 4 (from [BB92, BW90D are concerned with the unless operator 
and the priority operator and with the distributivity of these operators over a conditional 
process expression. From lemma 6.1 and the axioms for the priority operator the following 
identity can be derived for the priority operator and the alternative composition of a finite 
number of conditional process terms: 
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Lemma 6.2 

aClb=a 
aClb=6 
XCly· Z = XCly 
XCl(Y+Z) = (XClY)ClZ 
X·yClZ=(XClZ)·y 
(X+ y)ClZ = XClZ+YClZ 

8(a) = a 
8(x· y) = 8(x)· 8(y) 

if,(a < b) 
if a < b 

8(x+y) = 8(X)Cly+8(y)ClX 

x Cl (y <J e I> Z) = (X <Cl y) <J e I> (X Cl Z) 
(x <J e I> Y)ClZ = (XClZ) <J e I> (yClZ) 
8(x <J e I> y) = 8(x) <J C I> 8(y) 

Table 4: ACPo with conditions. 

8(Ll05i05,,(ai· Xi <J ei I> 6)) = Ll05i05,,(ai· 8(Xi) <J ei II ~(Vl05j05"A"j>"; eJI> 6) 

Proof: See [Bru) for a proof with n = 2. o 
Lemma 6.2 states that for an alternative composition of conditional process terms the priority 
operator can be "translated" to extra conditions on process terms. 

It can be foreseen that, in applying the axioms and rules to the process terms of our protocols, 
we will meet an impassable problem. ACP has no formal semantics of data, so the evaluation 
of the boolean conditions in the conditional process expressions (which, in our case, are based 
on the data parameters of the various processes) cannot be formalized. This means that a 
formal verification in a strict sense is impossible. In the remainder of this section we will give 
the expansion of the three protocols to a single recursive equation with conditions and we will 
discuss some requirements which should be met by these equations. We will shortly discuss 
the necessarily informal verification of the protocols with respect to these requirements. 

6.3 Protocol 1 

We start with an adapted specification of the processes involved in Protocol 1. By adding 
states and conditions we will give a specification of each basic process in the normal form 
as introduced in section 6.1. The merge of these processes wiII also be expanded to a single 
equation in this normal form. 

First, we give a specification of the protocol process in the desired normal form. The pro­
cess Pli has two parameters: pSi represents a state of the protocol process, j' represents a 
component-id. In this specification we distinguish seven states: 

• S: the start state . 

• B: the buffer is reset, no initial I-message has been sent yet. 
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• C: the candidate state, the initial I-message has been sent. 

• T: an R-message is received by a candidate, but has not been processed yet. 

• L: the leader state. 

• R: an I-message is received by a leader, but has not been processed yet. 

• F: the failed state. 

Four states (S, C, L and F) are well-known from previous specifications. The three other 
states are added in order to get a specification in the desired normal form. 

Pl'(ps', j') = 

+ 
+ 

+ 

+ 

+ 

+ 

Em EM readJ3P(m,,)· Pl'(ps''/) <l ps' = S I> 6 
l' , 

+ reseLb1tjjer' . Pl'(B,j') <l ps' = S I> 6 

send_PM'(I(i))· Pl'(C,j') <l ps' = B I> 15 

L,j E ID readJ3P'(I(j)) . Pl'(ps''/) <l ps' = C I> 6 
+ EjEID\{'j read_Bpi(R(j)). Pl'(T,j) <l ps' = C I> 6 
+ readJ3pi(R(i))· Pli(L,ji) <l ps' = C I> 6 

send_PMi(I(i))· Pli(C,j') <l j' < i 1\ pSi = T I> 6 
+ Pli(F,j') <1 ji > i 1\ pSi = T I> 6 

L,j E ID readJ3P'(1(j)) . Pl'(R,j) <l ps' = L I> 15 

send_PM'(R(i))· Pli(L,j') <l j' < i 1\ ps' = RI>o 
+ send_PMi(R(ji)). Pli(F,j') <l ji > i 1\ pSi = RI>o 

" rcadJ3P'(m ) . PI '(pSi J") <l pSi = F I> 15 L....tltpEM p' , 

The specification of the local buffer process is the same as in section 5. Only the name has 
been shortened to Bl' and its data parameter now is denoted by q' in order to give each 
component queue a unique name. 

Bl'(qi) = L,"'E M read_M Bi(m) . Bl'(enq(m, qi)) 
+ send_Bpi(serve(q')). Bl'(deq(q')) <l q' i= emptY-IJueue I> 0 
+ read_b1tjjer_reseti. Bl'(emptY-IJueue) 

The medium process is also specified in a single conditional equation. The merge of the 
send_M B actions (the broadcast to all components except the sender) is expanded to a sum 
over IDS, a subset of I D. The name of the process has been shortened to M. 

M(IDS,m) = 

+ 
L,i OD"n", E M read_P M'(m",) . M(I D\{i}, m".) <l IDS = 0 I> 6 
LODSsend_MB'(rn)· M(IDS\{i},m) <l IDS i= 01> 0 

On our way to a specification of the whole system we first will derive a specification of the 
merge of the local buffer processes and the medium. The sequence of component queues 
qi, i E I D, is denoted by the parameter Q. 

BMl(Q, IDS, m) = all, ((lliE ID Bli(q')) II M(IDS, m)) 
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Definition of the encapsulation set: 

HI = {send..MBi(m),read..MB'(m) liE ID,m EM}. 

The expansion of this process leads to the following equation. In this equation the substitution 
of a new value X for the old value q' in the sequence Q is denoted by Q[X/qi]. 

Lemma 6.3 

BMl(Q,IDS,m) = 
L:iE ID,m,. E M read_PMi(mm) . BMl(Q, I D\{i}, mm)." IDS = 0 ~ 6 

+ L:i E IDS comm_M Bi(m) . BMl(Q[enq(m, qi)fq']' I DS\{i}, m) ~ IDS f 0 ~ 6 
+ L:i E 1 D send_Bpi(serve(qi)) . BMl(Q[deq(qi)jq'J, IDS, m) ~ qi f empty_queue ~ 15 
+ L:i E ID read_buffer_reseti . BMl(Q[empty_queuejqiJ, IDS, m) 

Proof: First we look at the merge of the local buffer processes. We name this process B1(Q): 

B1(Q) = lIiEID B1i(qi) 

As these processes do not communicate with each other, by applying the expansion theorem 
and the axioms of section 6.2, this merge expands to the alternative composition of three 
sums over the set I D: 

Bl(Q) = LEID(r;,"EMread_MB'(m). B1(Q[enq(m,qi)/qi])) 
+ L:iEIDsend..Bpi(serve(qi)). Bl(Q[deq(qi)/qi]) <I qi f empty..queue t> {j 

+ L:i E 1 D read_buffer_reset' . Bl(Q[empty..queue/qi]) 

The process BM1(Q, IDS, m) is equal to the encapsulated merge of the processes Bl(Q) and 
M(IDS,m): 

BM1(Q, IDS, m) = oH,(Bl(Q) II M(IDS,m)) 

By applying the axioms and lemma's of section 6.2 and the definition of the encapsulation 
operator we get a result that is equal to the process expression as stated in lemma 6.3. We 
will not show the straightforward calculations leading to this result. 0 

Next we will derive a linear specification of the encapsulated merge of the process BM1 
and the protocol processes of all components. The process S1 is parameterised with PS (a 
sequence of individual protocol process states pSi), J (a sequence of component-ids ji), Q, 
IDS and m. 

S1(PS, J, Q, IDS, m) = oH,((II'ElD P1'(ps',j')) II BM1(Q, IDS, m)) 

Definition of the encapsulation set H,: 

H, = {read..Bpi(m), send_PMi(m), readYMi(m), send_Bpi(m), reseLbuffer" 
read_buffer -Te"eti liE I D , m E M} 

The expansion of this process leads to the following equation: 

Lemma 6.4 

Sl(PS, J, Q,I DS,m) = 

L:i E ID(L:"'" EM comm_Bpi(mp) . Sl(PS, J, Qldeq(qi)Jq'], IDS, m) 
~ serve(qi) = ml' /I pSi = S ~ 6 

+ buffer_is_reset· Sl(PS[BjpsiJ, J,Q[empty..queuejq'J,IDS,m) ~ pi = S ~ 6) 
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+ E, ElD(comm_PM'(I(i)) . SI(PS[C/pst J, Q, I D\{i},I(i)) ~ IDS = 0 f\ ps' = B ~ b) 

+ E'ElD(E j ElD comm_BP'(I(j)) . SI(PS, J, Q[deq(q')/q'),I DS, m) 
~ serve(q') = I(j) f\ pSi = C ~ b 

+ E j E I D\{'} comm_BP'(R(j)) . SI(P SIT Ips'), Jli HI, Q[deq(q')/q'), IDS, m) 
~ serve(q') = R(j) f\ ps' = C ~ b 

+ comm_BP'(R(i)) . SI(PS[L/ps'), J, Q[deq(q')/q'), IDS, m) 
~ serve( qi) = R( i) f\ psi = C ~ b) 

+ LE ID(comm_PMi(I(i))· SI(PS[C/ps'), J, Q, ID\{i}, I(i)) 
~ IDS = 0 f\ J' < i f\ pSi = T ~ b 

+ Sl(PS[F/ps'),J,Q,IDS,m) ~j' > i f\ pS' =T ~ b) 

+ L E ID(E j E ID comm_Bpi(I(j)) . SI(PS[R/pSi), Jli/ji), Q[deq(qi)/q'), IDS, m) 
~ serve(qi) = I(j) f\ pSi = L ~ b) 

+ L ElD(comm_PMi(R(i)) . SI(PS[L/psi), J, Q,I D\{i}, R(i)) 
~ IDS = 0 f\ J' < i f\ psi = R ~ b 

+ comm_PM'(R(ji)) . Sl(PS[F/ps'), J, Q,I D\{i}, R(j')) 
~ IDS = 0 f\ j' > i f\ psi = R ~ b) 

+ E, E ID(E""EM comm_Bpi(mp) . SI(PS, J, Q[deq(qi)/qi), IDS, m) 
~ serve(q') = m" f\ psi = F ~ b 

+ L ElDS(comm_M Bi(m) . SI(PS, J, Q[enq(m, qi)/q'), I DS\{i}, m) ~ IDS 'I 0 ~ b) 

Proof: We start with the expansion of the merge of the protocol processes PIi(psi,j'). We 
name this process PI(PS, J): 

PI(PS, J) =lliEID PIi(pSi,j') 

These processes have no communicating actions, so the merge expands to the alternative 
composition of a number of sums over the set I D: 

PI(PS, J) = EiE ID(E""EM readJ3pi(ml')' PI(PS, J) ~ pSi = S t> b) 

Next we consider the encapsulated merge of PI(PS, J) and BMI(Q, IDS, m): 

SI(PS, J, Q, IDS, m) = BJJ,(PI(PS, J) II BMI(Q,IDS, m) ) 

As in the proof of lemma 6.3, the axioms of section 6.2 and the definition of the encapsulation 
operator lead to the result as stated in lemma 6.4. For the sake of brevity the vast amount 
of calculations that goes with this transformation is not shown. 0 

We now will turn to the verification/validation of Protocol 1. As stated in section 6.2, it 
is not possible to give a formal verification of the ACP specification of our protocols. The 
following is a rather short and necessarily informal discussion of how a verification should 
look like, apart from the restrictions. 

In section 3 four requirements have been given for Protocol 1, stated in temporal logic. Here 
we recall these requirements in natural language: 

PI: "There is always at most one leader". 

P2: "There will be infinitely often a leader". 
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P3: "If a component i is the leader and a component j is participating with j > i, then i 
will capitulate sooner or later". 

P4: "If j is the successor of i as a leader, then j > i". 

In ACP there has been gained a lot of experience in verifying concurrent processes in terms 
ofrequired process behaviour (required actions). Examples of such verifications can be found 
in [Bae90]. The requirements P1-P4, as stated above, are primarily state oriented. PI and 
P2 are concerned with the state of the system at this moment and in the future. P3 and P4 
are concerned with transi tions from one state to another. In the A CP specifications in this 
section state information is kept in the data parameters of the process equation. This leads 
to requirements that are primarily based on statements about these data parameters. Due to 
the lack of a formal data semantics, this is where the strictly formal ACP road ends and an 
informal path of natural language reasoning, based on intuitions, begins. We will walk this 
path for a short distance. 

We capture requirement PI in the following condition RI: 

RI: There exists at most one leader. Stated in terms of the data parameters of the process 
S1: the number of leaders in PSis less than or equal to 1. 

Requirement P2 is captured as follows. In the specification of the protocol process PI' we 
add a summand to the leader state: 

PI'( ... ) = ... + ... + is_leader'· PI'( ... ) <l ps' = L (> /j + ... 
The atomic action isJeader' does not communicate with any other action from any other 
process. By giving this action a lower priority than any other action in the system we 
are certain that it only will be chosen if no other action is possible (any more). If the 
action isJeader' is chosen, this means that i is the "final" leader that has won the election. 
According to P4 (see below) we then have that "there will be infinitely often a leader" (P2). 
If the final leader is the component with the highest id, together with PI this also implies 
P3: all eventual leaders with an id < max(I D) apparently have capitulated. Stated more 
formally: 

R2: T/ a 8(SI(initial state)) = RSI with RSI = T' iB-ieader"",,(ID). RSI 

The priority operator nOw is used in relation with the isJeader' actions. The abstraction set 
1 contains all actions, except the action is_leader'. max(ID) stands for the highest id in the 
set of participating components. 

Requirement P4 can be captured by adding a queue SQ of subsequent leader ids to the data 
parameters of Sl and by requiring that SQ forms a strict increasing row with respect to the 
ordering on the ids: 

R3: The queue SQ of subsequent leaders is strictly increasing with respect to the ordering 
on the ids. 

The "verification" of RI and R3 should imply the addition of III and R3 as extra conditions to 
every action in S1. For every action it has to be proved that these conditions are invariantly 

60 



true from the beginning. The "verification" ofR2 can be performed by calculating the required 
process equality. We will not try to give an informal proof of Rl - R3. Instead, we will point 
out two possible ways back to a more formal approach: 

• turn to a formalism which has a formal semantics of data as well as processes, e.g. the 
formalism /LCRL ([GP91J). This way out has not been investigated, it is left for future 
research . 

• turn to the executable formal specification language PSF ([MV90J). PSF has a formal 
semantics of both data (based on ASF [BHK89J) and processes (based on ACP). A PSF 
specification can be simulated on a computer. In this way we get a validation of the 
protocol, rather than a verification. This has been carried out for two specifications 
of Protocol 1 with a few components. One specification was based on the equation for 
Systeml in section 5, the other was based on the equation for SI from this section. A 
number of simulation runs with both specifications all showed the desired behaviour of 
the protocol. 

6.4 Intermezzo: timeout semantics and ACP - part 2 

In section 5.3 three alternati ves were stated for the modelling of a non-premature timeout. 
In this section we will look at the third alternative, the data oriented approach. 

Once we have a specification of a protocol in the normal form as given in section 6.1, we can 
model the timeout semantics by the condition under which the timeout action is enabled: in 
the summand .. . +timeout;.P(D) <l c t> 8+ ... we can formulate the condition c according to 
the timeout semantics. We distinguish three possible alternatives in formulating this timeout 
condition. 

1. We can base this timeout condition on the conditions that enable the actions that have 
a higher priority than the timeout. The timeout condition becomes true iff all these 
conditions evaluate to false. This is the counterpart of modelling the timeout with the 
priority operator 8, as discussed in section 5.3. Lemma 6.2 makes a formal translation 
from priorities on actions to conditions on actions possible. 

2. The condition on which a timeout is enabled can be based on conditions which are 
related with specific states of certain constituent processes. Only if these processes are 
in the desired staters) the timeout condition becomes true. In a certain sense this is the 
counterpart of the modelling of the timeout with sync actions, as discussed in section 
5.3. 

3. We can base the condition directly on the desired timeout semantics. This means that 
we try to find the most accurate translation of the timeout semantics as stated in 
temporal logic into conditions on the data parameters under which the timeout may be 
enabled. 

Although alternative 3 probably gives the most accurate implementation of the desired time­
out semantics, in this section we will work out alternative 1. The reason is twofold. First, in 
using alternative 3 the specification gets very complicated because of the required labelling of 
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messages: the problems mentioned in section 5.3 can be solved only if messages are labelled 
with a set of ids. The operations required on this set will make the specification too compli­
cated. The second reason is that, by choosing alternative 1, we maintain the same approach 
as with the specifications given in section 5. 

6.5 Protocol 2 

We will follow the same line as with Protocol 1: first we will give a single equation for the 
constituent processes of the protocol, then we will derive an equation for the encapsulated 
merge of these processes. 

The specification of the protocol process P2' looks very much like the adapted specification 
of the process PI' in the previous section. By adding states and conditions we get a single 
equation with several summands. The process P2i has two parameters: pSi represents a state 
of the protocol process, j' represents a component-id. In this specification we distinguish 
eight states: 

• S: the start state. 

• B: the buffer is reset, no initial I -message has been sent. 

• I : the initial I-message has been sent, the timer has not been started yet. 

• C: the candidate state, the timer has been started. 

• T: an I-message is received by a candidate, but has not been processed yet. 

• L: the leader state. 

• R: an I-message is received by a leader, but has not been processed yet. 

• F: the failed state. 

Compared to the states of Protocol 1, only the state 1 is new. 

p2i(pSi,j') = L,jEID read~pi(I(j)). P2i(pSi,j') <l pSi = S [> 6 
+ reseLbujJer'. P2i(B,ji) <l pSi = S [> 6 

+ sendYM'(I(i)). P2i(I,j') <l pSi = B [> 8 

+ starLtimer'· P2i(C,j') <l pSi = I [> 6 

+ L,jEIDread~pi(I(j))· P2i(T,j) <l pSi = C [> 6 
+ read_timeauti . P2'(L, j') <l psi = C [> 6 

+ sendYMi(I(i))· p2i(C,j') <l ji < i /I pSi = T [> 6 
+ stop_timer'· P2i(F, j') <l j' > i /I pSi = T [> 6 

+ L,j E ID read_Bpi(I(j)). P2i(R,j) <l pSi = L [> 6 

+ sendYM'(I(i)). P2i(L,j') <l j' < i /I pSi = R [> 8 
+ P2'(F,j') <l j' > i /I pSi = R [> 8 

+ L,jEID read~pi(I(j)). P2i(ps',j') <l ps' = F [> 6 
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We transform the specification of the smart buffer process of section 5 into a single equation 
of the desired normal form by adding a default "empty message". If the buffer contains this 
message it is considered to be empty. This implies that max( m, empty_message) = m for all 
incoming messages. We do not consider this empty message to be an element of the message 
set M. The name of the buffer process has been shortened to B2', the name of the stored 
message is now mi. 

2:"'EM read_MB'(m). B2'(max(m',m)) 
send_BP'(m'). B2'(empty_message) <] m' f. empty_message t> 15 

+ read_buffer _reset' . B2' (empty _message) 

From the specification of process P2' it is clear that a local timer will only be started in 
the I-state, after which it will cause a timeout in the C-state or it will be stopped in the 
T -state. It will never be started again. Therefore we will not give a re-specification of the 
timer process, we will leave the timer state implicit in the specification of the forthcoming 
system. The medium process is the same as in section 6.3. 

The route to a linear specification of the complete system is the same as in section 6.3. We 
will not give all intermediate results, but we will state the final result at once in the following 
lemma. The process S2 is parameterised with PS (a sequence of individual protocol process 
states ps'), J (a sequence of component-ids j'), MS (a sequence of messages m', kept in the 
local buffers; mi can also be the empty message), IDS(a variable set of ids) and a single 
message m. 

S2(P,J,MS,IDS,m) = 
lioBH,(II'E/D (P2'(pS',ji) II B2'(m') II Timer') II M(IDS,m)) 

with H3 as defined in section 5. The expansion of this process equation leads to the following 
equation. The condition for the enabling of the timeout, TO_COND', is derived afterwards. 

Lemma 6.5 

S2(PS, J, M S,IDS, m) = 

2:, E ID(2: j E I D comm_BP'(I(j)) . S2(PS, J, M S[empty_message/m'], IDS, m) 
<lm' = I(j) /\ps' = S ~ b 

+ buffer_issesel.· S2(PS[B/ps'], J, M S[emptYJnessage/m'], IDS, m) <l ps' = S ~ b) 

+ 2:i EI D( comm_P Mi(I(i)) . S2(P Sri Ips'], J, M S,I D\{ i}, I( i)) <l IDS = 0 /\ ps' = B ~ b) 

+ 2:i EI D(timer _started' . S2(P SIC /ps'], .1, M S,I DS, m) <l ps' = I ~ b) 

+ 2:'E I D(2: j E I D comm_BP'(I(j)) . S2(PS[T/ps'], JUfj'], M S[empty_message/m'], IDS, m) 
<lmi=I(j) /\ psi=C~b 

+ timeout' . S2(PS[L/ps'),J,MS,IDS,m) <l TO_COND' /\ ps' = C ~ b) 

+ 2:, E I D(comm_PMi(I(i)) . S2(PS[C Ips']' J, M S,I D\{i},I(i)) 
<l IDS = 0 /\ j' < i /\ ps' = T ~ b 

+timer_stoppedi ·S2(PS[F/psi),J,MS,IDS,m) <l j' > i /\ ps' =T ~ b) 

+ 2:, E ID(2: j E ID comm_BP'(I(j)) . S2(PS[R/ps'], .1[jfj'], M S[empty_message/m'], IDS, m) 
<lmi = I(j) /\ psi = L ~ b) 

+ 2:'E ID(comm_PM'(I(i)). S2(PS[L/ps'], J, MS, I D\{i},I(i)) 
<l IDS = 0 /\ ji < i /\ pSi = R ~ b 

+ S2(PS[F/ps'], J, M S, IDS, m) <l j' > i /\ psi = R ~ b) 
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+ :L E ID(E j E ID comm_BP'(I(j)) . S2(PS, J, M S[empty_messagejm'], IDS, m) 
~m' = l(j) /\ ps' = F ~ ti) 

+ E'ElDS(comm_M B'(m). S2(PS, J, MS[max(m', m)jm'],IDS\{i}, m) 
~IDS/0~ti) 

Proof: by lengthy but straightforward calculations, based on the axioms and lemmas of 
section 6.2. 0 

In section 5 the timeout semantics was modelled by the definition of a priority relation between 
certain actions. In lemma 6.2 the relation between the ordering between actions and conditions 
in a process expression was stated. From this lemma and the action orderings as given in 
section 5.3 we derive the following lemma concerning the condition for the enabling of the 
timeout. 

Lemma 6.6 

TO_COND' = (IDS = 0)/\ 
!\kEID(,(mk oF empty_message 1\ (pSk = S V pSk = C V pSk = Lv pSk = F))) 1\ 

!\jEID,j~,(,(psj = B V (jj < j 1\ (psj = T V psj = R)))) 

Proof: We split the proof in three parts, for each of the three order relations we will derive 
a condition. 

1. time aut' < commMBk(m) with m E M, i,k E ID. 
In the equation of S2 there is only one condition under which a commMBk(m) action is 
enabled: IDS oF 0. According to lemma 6.2 this leads to the following condition for the 
enabling of a timeout: 

C; = ,(IDS oF 0) = (IDS = 0) 

So the first ordering leads to the condition that the medium must be empty before a timeout 
is enabled. 

2. timeaut' < comm~pk(m) with m E M, i, k E ID. 
In the equation of S2 there are four conditions under which a comm_BP action is enabled. 
In each condition it is required that the buffer holds a certain message which is not equal 
to the empty message. So the second ordering leads to four conditions for the enabling of a 
timeout: 

cia = !\kEID(' (m k I empty_message /\ psk = S)) 
Ci, = !\kEID(' (m k oF empty_message /\ ps' = C)) 
ci" = !\kEID(' (m k oF empty_message /\ pSk = L)) 
cid = !\kEID(' (m k oF empty_message 1\ pSk = F)) 

c~ = C~a 1\ C;b 1\ C;t; 1\ C;d = 
= !\kEID(' (mk oF empty_message 1\ (pSk = S V pSk = C V pSk = L V pSk = F))) 

3. time aut' < commYMj(m) with m E M, i,j E ID,j ;::: i. 
In the equation of S2 there are three conditions under which a commYM'(m) action is 
enabled. According to lemma 6.2 this leads to three conditions for the enabling of a timeout: 

C~a = !\jEID,j~,(,(1DS = 0 1\ psj = B)) 
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C~b = !\iEID,i>,(.(IDS = 0 1\ ji < j 1\ psi = T)) 
C~c = !\iElD,i;,(.(IDS = 0 1\ ji < j 1\ psi = R)) 

C~ = C~a /\ C~b 1\ C~c = 
= .(IDS = 0) v !\iEID,i?.('(psi = B v (ji < j 1\ (psi = T V psi = R)))) 

Finally we get TO_CON D' = C; 1\ cj 1\ C; which, after some boolean calculations, leads 
to the result as stated. 0 

The requirements for the verification are the same as for Protocol 1. As with Protocol 1 
we halt our investigations of the verification of the protocol at this point. With respect to 
the validation of the protocol we refer to a number of successful simulation runs of a PSF 
specification of S2. The PSF formalism does not provide the priority operator, so System2 
from section 5 could not be specified and simulated in PSF. 

6.6 Protocol 3 

The required specification of Protocol 3 will be derived in a few big steps. First we give a 
specification of the protocol process, then we will give a specification of the whole system. 
From section 3 it will be clear that the requirements need special attention. We will discuss 
a revision of the requirements RI-R3 at the end of this section. 

The specification of the protocol process P3' has the same parameters as P2': ps' (protocol 
state) and j' (a component-id). In the specification we distinguish eleven states: 

• S: the start state. 

• B: the buffer is reset, no initial I-message has been sent. 

• I : the initial I-message has been sent, the timer has not been started yet. 

• C: the candidate state, the timer has been started. 

• T: an I-message is received by a candidate, but has not been processed yet. 

• L: the leader state. 

• R: an I -message is received by a leader, but has not been processed yet. 

• F: the failed state. 

• X: an I-message is received by a failed process, but has not been processed yet. 

• D: the dead state. 

• A: the component becomes alive again (the revive action has been executed), the timer 
has not been reset yet. 

Compared to the states of Protocol 2 the last three states are new. In the specification below 
the transition to the dead state is not added to the process term for each separate state S ... X. 
Instead, a single summand with the action crash' is added with the condition .(ps' = D). 
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P3'(ps',j') = L,jElDread_BP'(I(j)). P3'(ps',j') <l ps' = S I> 15 
+ reseLbujJeri . P3'(B, j') <l ps' = S I> 15 

+ send.PM'(I(i))· P3'(I,j') <l ps' = B I> 15 

+ starUimer'· P3'(C,j') <l ps' = 1 I> 15 

+ L,jElDread_BP'(I(j)). P3'(T,j) <l ps' = C I> 15 
+ readjimeout'· P3'(L,j') <l ps' = C I> 15 

+ send.PM'(1(i)). P3'(C,j',) <l j' < i /\ ps' = T I> 15 

+ stopjimer'· P3'(F,j') <l j' > i /\ ps' = T I> 15 

+ L,jEIDread_BP'(I(j)). P3'(R,j) <l ps' = L I> 15 

+ send.PM'(I(i)). P3'(L,j') <l j' < i /\ ps' = R I> 15 

+ P3'(F,j') <l ji > i /\ ps' = R I> 15 

+ L,jElDread_BP'(I(j)). P3'(X,j) <l ps' = F I> 15 

+ P3'(B,j') <l ps' = F I> 15 

+ P3'(B,j') <l j' < i /\ ps' = X I> 15 

+ P3'(F,j') <l j' > i /\ ps' = X I> 15 

+ crashi . P3'(D, ji) <l ~(ps' = D) I> 15 

+ revive'· P3'(A,ji) <l ps' = D I> 15 

+ reseUimer'· P3'(S,j') <l ps' = A I> 15 

The (smart) buffer process and the medium process are the same as in the previous section. 
As with Protocol 2, we will not give a re-specification of the simple timer process, although 
for this protocol in each state a reset action has been added. 

The process S3 has the same data parameters as S2 in the previous section. So we get 

S3(PS, J, MS,lDS, m) = 

(io8H ,(II'EID (P3'(ps',j') II B2'(m') II Timer i) II M(IDS,m)) 

with H3 as defined before. The expansion of this equation leads to the following equation. 
The condition TO_CON Di for the enabling of the timeout is the same as in the previous 
protocol. 

Lemma 6.7 

S3(PS, J, MS,IDS,m) = 
L" E ID(L,j E ID comm_Bpi (l(j)) . S3(PS, J, M Slempty_message/m'], IDS, m) 

~m'=I(j) 1\ ps'=S~ 15 
+ buffer_is_reset· S3(PS[B/ps'], J, M S[empty.:message/m'j, 1 DS, m) ~ ps' = S ~ 15) 

+ LEI D(comm_PM'(I(i)) . S3(PS[J /pSi], J, M S, 1 D\{i}, l(i)) ~ IDS = 0 1\ ps' = B ~ 15) 

+ L" ElD(timer _started' . S3(PS[C/ps'], J, M S,1 DS, m) ~ ps' = [ ~ 15) 

+ L" E ID(L,' E ID cornrrLBP'(I(j)) . S3(PS[T/psi], J[jli'], M S[empty_message/m'], IDS, m) 
J. . 

~ m' = [(j) 1\ ps' = C ~ 15 
+ timeout' . S3(PS]L/pSi], J, M S,I DS, m) ~ TO_CON D' 1\ pSi = C ~ 15) 

+ L ElD(comm_PMi([(i)) . S3(PS[C /pSi], J, M S,1 D\{i},1(i)) 
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"I DS = 0 1\ ji < i 1\ pSi = T ~ 6 
+timer_stoppedi . S3(PS[F/ps'],J,MS,IDS,m) "j' >i 1\ ps' =T ~ 6) 

+ E'E ID(E; E ID comm_Bpi(I(j» . S3(PS[R/ps'], J[jfj'], M S[empty_message/mi], IDS, m) 
"mi = I(j) 1\ psi = L ~ 6) 

+ E,ElD(comm_PMi(I(i». S3(PS[L/ps'],J,MS,ID\{i},I(i» 
"IDS=0 1\ i'<i 1\ psi=R~ 6 

+S3(PS[F/ps'],J,MS,IDS,m) "j' >i 1\ ps' =R ~ 6) 

+ Ei E ID(E; E ID comm-Bpi(I(j» . S3(PS[X/ps'], J[jfj'], M S[empty_message/m'], IDS, m) 
"m'=I(j) 1\ ps'=F~ 6 

+ S3(PS[B/ps'],J,MS,IDS,m) 0 psi = F ~ 6) 

+ E'ElD(S3(PS[B/ps'],J,MS,IDS,m)"j'<i 1\ ps'=X~6 
+ S3(PS[F/ps'], J, M S, IDS, m) " i' > i 1\ psi = X ~ 6) 

+ E'EID(crashi . S3(PS[D/ps'], J, MS,IDS,m) ".(psi = D) ~ 6) 

+ E'ElD(revivei . S3(PS[A/pSi], J, MS,IDS, m) "psi = D ~ 6) 

+ EiElD(timer_is_reset'. S3(PS[S/psi], J, MS,IDS, m) "ps' = A ~ 6) 

+ E'ElDS(comm_M Bi(m)· S3(PS, J, MS[max(mi, m)/m'], IDS\{i},m) 
oIDS,<0 ~ 6) 

Proof: by lengthy but straightforward calculations, based on the axioms and lemmas of 
section 6.2. 0 

The correctness requirements for this protocol were given in section 3, stated in temporal 
logic formulae. We recall these requirements in natural language: 

QI: "There is always at most one leader". 

Q2: "If there is a component that never crashes and all better components are crashed for 
ever, there will be infinitely often a leader". 

Q3: "A component cannot be both leader and crashed". 

Q4: "If there is a better living component than the leader, eventually this component will 
crash or the leader will abdicate". 

Q5: "The abdication of a leader is caused by a crash of the leader or the existence of a better 
living component in the past". 

Q6: "If a leader abdicates, but does not crash before a new leader emerges, then the identity 
of the new leader is equal to or higher than the identity of the old leader". 

In the following we will try to give a kind of translation of these requirements to ACP 
requirements. QI is the same as PI and can be captured by RI, as given with Protocol l. 
Q3 is obvious: in the process parameter P S each element pSi can only have one single value. 
So nO component can be both leader and crashed. The requirements Q2, Q4, Q5 and Q6 all 
contain statements about the behaviour of the system during (subsequent) moments of time. 
In ACP the only notion we have in this field is a notion of fairness, which guarantees that, 
under certain circumstances, an action will be chosen sooner or later. As already mentioned 
in section 5, in ACP no difference exists between may and must transitions. So, in ACP we 
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can never model a component that never crashes (Q2). In an informal way Q5 is obvious: 
from the specification of 53 it is immediately clear that a leader only abdicates after the 
reception of a message from a better component or on behalf of a crash. We consider Q4 and 
Q6 as too complex to handle in an ACP setting. Instead, we present a weakened variant of 
R2: R2' which states that a leader can be observed infinitely often, when abstracting from all 
other actions and when an isJeader' action has a lower priority than all actions concerned 
with message passing. 

R2': T[ 0 O(53(initial state)) = R53 with R53 = L'UD T· is_leader'· R53 

As with the previous protocols we will not try to give any verification of Protocol 3 with 
respect to the requirements. The protocol has been validated by a number of successful 
simulation runs of a PSF specification of 53. 
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7 Conclusions 

In this paper we have designed, specified and verified a series of dynamic leader election 
protocols in broadcast networks. From this extensive case study in protocol design and 
verification we make the following remarks. 

We started our design by formally capturing the protocol requirements. Rather surprisingly, 
no such precise -and abstract- problem specification for dynamic leader election currently 
exists in literature. When considering the protocol's correctness this is even more remarkable 
as a formal problem specification is indispensable for a formal verification. 

Linear-time temporal logic was used so as to express the requirements and to perform the 
verification. The formalism turned out to be very convenient for specifying the requirements 
in a rather abstract way. Due to the dynamic character of processes it is not straightforward 
to give such a specification in, for instance, a process algebraic formalism without aiming at 
a particular protocol. 

The protocols are constructed in a step-wise fashion starting from the formal requirement 
specification. The step-wise approach aids not only in the clarity and conciseness of the pro­
tocols, but also -and more importantly- in reasoning about them ('separation of concerns'). 
Due to our experience, we believe that this is a feasible approach for the design of complex, 
dynamic communication protocols. 

A possible (and interesting) extension to the Leader Election problem is to consider identities 
that may change during operation opposed to fixed identities. We remark that the final, 
fault-tolerant protocol is also applicable in this context. 

The use of temporal logic for the specification and verification of communication protocols 
is well-known for almost a decade (see e.g. [Lam82, H083, SPE84]). This case study shows 
-once more- that this technique combined with the state transition approach is very conve­
nient. In fact, we have shown that these techniques are also applicable when designing a new 
protocol whereas most case studies focus on already existing protocols with commonly agreed 
requirements. Furthermore, the dynamic character of processes makes the problem consid­
erably more complex (e.g. the addition of timeouts and presence of two kinds of transitions) 
than traditionally verified protocols. 

Ideally, detailed proofs of complex protocols are required in which each step of the proof is 
formalized and for which informal arguments are minimized. Such detailed proofs are well 
possible in our framework and require a formalization of the assumptions, translation of the 
protocols into the proof formalism, and so on. The proofs in this paper constitute a useful 
stepping-stone towards such a detailed proof. Obtaining a completely formalized proof is 
considered to be an interesting subject for further research. 

A specification of the protocols in ACP contains a complete formal description, not only of 
the various processes but also of the complete distributed behaviour of the protocols. To 
this extent ACP has more expressive power than state transition diagrams. The protocols in 
this paper are too large for manual algebraic verification. Automated verification in a related 
formalism as fLCRL is left for future research. PSF simulation runs of the protocols appeared 
to be very helpful during the various stages of the protocol design. 

In general an algebraic verification in ACP consists of a proof that two ACP specifications 
define the same process, seen from an appropriate level of abstraction. One specification 
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is considered as the requirement specification, while the other serves as the protocol spec­
ification. In some cases, as in our LE protocol, it is very haxd to provide a requirement 
specification in ACP. This is due to the fact that such a specification must contain a descrip­
tion of all possible admitted behaviours. This is the main reason why we were not able to 
give a complete correctness proof in ACP. Instead, we calculated a normal form, which in 
general is an important step in most ACP proofs. Further research should point out whether 
there is a way to obtain a requirement specification for this kind of protocols in ACP, or that 
this problem is intrinsic to ACP. 

We think that a combination of the techniques used in this paper may show adequate to give 
a correctness proof which is completely formal. This would consist of a specification of the 
complete system (induding the communication media) in ACP, followed by a transformation 
to a normal form in ACP, on which a verification of the requirements using temporal logic is 
based. It should be studied how to link ACP and temporal logic formally. 

In the first instance the construction of the protocols was aimed at correctness with respect 
to the requirements and minimizing the number of transitions -rather than optimizing their 
efficiency. As efficiency, though, plays an important role in the field of leader election proto­
cols we analyzed the protocols' worst case message complexity, that is, the maximum number 
of messages needed to elect a leader. During this analysis the use of protocol simulation 
facilities [MV90) was of considerable help. With the aid of these tools it turned out that the 
introduction of an alternative buffering mechanism reduces the message complexity signifi­
cantly. 

This case study shows the usefulness of manual verification for a non-trivial protocol problem 
and is helpful in gaining experience of how such a verification is best conducted. Application 
to other protocols must show how useful this information turns out to be. This is left for 
further study. 
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