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On  the Sliding-Window Representation in Digital 
Signal  Processing 

MARTIN J. 

Abstract-The short-time Fourier transform of  a  discrete-time sig- 
nal, which is the Fourier transform of a “windowed” version of  the 
signal,  is interpreted as  a sliding-window spectrum.  This  sliding-win- 
dow spectrum is a function of two variables: a  discrete time index, which 
represents the position of  the window, and  a continuous frequency var- 
iable. It is shown that the signal can be reconstructed  from the sampled 
sliding-window spectrum, i.e., from the values at the points of a certain 
time-frequency lattice. This sampling lattice is rectangular, and the 
rectangular  cells occupy an area of 27r in the time-frequency domain. 
It is shown that an elegant way to represent the signal directly in terms 
of the sample values of  the sliding-window spectrum, is in the form of 
Gabor’s signal representation.  Therefore,  a  reciprocal window is in- 
troduced,  and it is shown how the window and the reciprocal window 
are  related. Gabor’s signal representation then expands the signal in 
terms  of properly shifted  and modulated versions of the reciprocal win- 
dow, and the expansion coefficients are just the values of the sampled 
sliding-window spectrum. 

S 
INTRODUCTION 

HORT-TIME  Fourier analysis [ l ]  of discrete-time sig- 
nals  is of considerable interest in a number of signal- 

processing  applications. In order  to study spectral  prop- 
erties of speech  signals, for instance, the concept of a 
short-time  Fourier  transform of the signal is very conve- 
nient [ 11, [2]. Such a short-time  Fourier  transform is usu- 
ally constructed by first multiplying the signal by a win- 
dow function that is  “slided”  to a certain position, and 
then Fourier  transforming the  “windowed”  signal.  There- 
fore, we like  to  consider’the short-time  Fourier  transform 
as a sliding-window representation of the signal. There 
are  other interpretations, of the short-time  Fourier  trans- 
form, including a well-knowPfilter bank interpretation [ 11. 
However, for  the  purpose of this paper, we  find the  sliding- 
window interpretation  to be  the most appropriate,  and, to 
emphasize this, we shall call the short-time  Fourier  trans- 
form the sliding-window  spectrum of the  signal. 

The sliding-window representation of a signal, which is 
a signal description  in  time  and  frequency simultaneously, 
is  complete  in  the sense that the signal can be recon- 
structed from its sliding-window spectrum [ 11.  However, 
to  reconstruct the signal, we need not know the  entire slid- 
ingwindow  spectrum. In this paper we show that it suf- 
fices to know the values of the sliding-window spectrum 
only  at the points of a certain rectangdar  lattice in the 
time-frequency  domain,  and we describe how the signal 
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can  be  expressed  directly in  terms of the values of this 
sampled sliding-window spectrum.  This will lead us in a 
natural way to Gabor’s representation [3] of a signal as a 
superposition of properly  shifted and modulated versions 
of a function  that  is  related  to the window. We show a way 
to  determine  this function from the knowledge of the win- 
dow, and we elucidate this with some simple examples of 
window functions. 

SLIDING-WINDOW REPRESENTATION OF 

DISCRETE-TIME SIGNALS 
Let x(n)  (n = + . - , - 1, 0, 1, - * a )  denote a one-di- 

mensional discrete-time signal and let w(n)  represent a 
window sequence; the signal and the window may take 
complex values and they need not have a finite extent. We 
multiply the signal by a shifted  and complex conjugated 
version of the window and  take the Fourier  transform of 
the product,  thus  constructing the function [cf. [l], (6.1)] 

f ( ~ ! ,  n) = C i (m> w*(m - n) exp [ - j ~ ! m ] .  (1) 

Unlike (6.1) in [ l ] ,  (1) uses a complex conjugated version 
of the window; moreover, the window has not been  time- 
reversed.  The only reason for doing this  is  to  get  more 
elegant formulas in the remainder of the paper. 

We shall callf(Q, n)  the sliding-window  spectrum [cf. 
[4],  Section 4.11 of the  discrete-time  signal; it is clearly a 
function of two variables: the  time index n ,  which is dis- 
crete and represents  the position of the window, and the 
frequency variable L!, which is continuous. Of course,  as 
in the  case of normal  Fourier  transforms of discrete-time 
signals, the sliding-window  spectrum f(Q, n) is periodic 
in L! with period 2n. Two choices of window sequences 
are of special interest.  If w(n)  vanishes for n # 0, then 
f ( 0 ,  n) is proportional to the signal x ( n ) ;  the sliding-win- 
dow spectrum  thus reduces to a pure  time representation 
of the  signal.  If, on the other hand, w(n)  does not depend 
on n,  thenf(Q, 0) is  proportional  to the Fourier  transform 
of x ( n ) ;  the sliding-window spectrum  then reduces to a 
pure frequency  representation of the  signal. In general, 
however, the sliding-window spectrum  is  an  intermediate 
signal description  between the  pure time  and  the pure  fre- 
quency representation. 

We can  reconstruct the signal x(n)  from  its sliding-win- 
dow spectrum f(Q, n )  in the usual way [cf. [ l ] ,  (6.6)] by 
inverse Fourier  transforming  and  taking m = n,  which 

03 

m - m  
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yields the inversion formula 

in which j2= dQ * represents  integration  over  one  period 
2s; of course,  the  rather mild  requirement  that w(0)  be 
nonzero  should  be satisfied. There exists another way  of 
reconstructing  the signal from its sliding-window spec- 
trum,  viz. by means of the,inversion  formula [cf. [ 5 ] ,  (2) 
and [ 6 ] ,  (27.12.1.5)l 

03 

x(m) = m c L s  dQ 
Iw(n>I 

2 n = - m  2~ 2n 

n =  --m 

f ( Q ,  n) w(m - n) exp UQm], (3) 

which represents  the signal as  a linear combination of 
shifted and modulated versions of the window. However, 
this  linear  combination  is  not'  unique [cf. [ 6 ] ,  Section 
27.12.11; indeed,  there  are  many  kernels@, n) ,  periodic 
in Q with  period 27r, that satisfy the relationship 

1 m 

x(m) = m 'i dQ 
Iw(n)l 

2 n = - c o  2~ 2a  

n = - m  (4)  

The  representation ( 3 ) ,  i.e., choosing  the kernel p ( Q ,  n) 
in (4) equal to  the sliding-window spectrumf(Q, n) ,  is the 
best possible one in the  sense that for this choice the L2- 
norm of p(Q,  n) takes its minimum value. To see  this, we 
multiply both sides of ( 3 )  and (4) by x*(m), sum  up  over 
all m, and  conclude  from  the  equivalence of the right-hand 
sides of the resulting equations that f ( Q ,  n) and p ( Q ,  n) - 
f (Q,  n) are orthogonal in the  sense 

- p(fl, n) w(m - n) exp uf lm] .  

5 -!- 1 dfl { p ( Q ,  n) - f (Q, n) )  f*(Q, n)  = 0; 
n = - a  2~ 2a 

hence,  the relationship 

= -!-. dQ - I f ( f l ,  n)I2 
n=-m 21r 2* 

holds. It will be clear that  the  L2-norm of p ( Q ,  n) ,  i.e., 
the left-hand side of (6 ) ,  takes its minimum value if  we 
choose  the kernel p(Q,  n) equal to  the  sliding-window 
spectrum f ( Q ,  n) . 

We can  reconstruct  the signal from  its  sliding-window 
spectrum via the inversion formulas (2)  or (3). However, 
in order to reconstruct  the  signal, we need not know the 
entire sliding-window spectrum; it suffices to know its 

values at  the points of a  certain  lattice  in the fl-n domain. 
This will be shown  in  the next section. 

SIGNAL RECONSTRUCTION FROM ITS SAMPLED 
SLLDING-WINDOW  SPECTRUM 

Let N be  a positive integer, let the sliding-window  spec- 
trumf(Q, n) be known at  the points { Q  = k(27r/N), n = 
mN)  ( k ,  m = - * , - 1 ,  0, 1 ,  * * e ) ,  and let the values at 
these points be  denoted by&,; hence, 

m 

n = - m  

Of course,  the  array of coefficientshm is periodic  in'k with 
period N. Note  that  the  sampling  lattice ($2 = k(27r/N), 
n = mN)  is  rectangular,  and that the  rectangular cells 
occupy  an area of 27r in the time-frequency  domain. We 
shall now demonstrate how the signal can  be found when 
we  know the values f k m  of the  sampled  sliding-window 
spectrum (cf. [4, Section 4.21). 

We first define the  functionf(n, w )  by a  Fourier  series 
with coefficients fkm, 

m 

f ( n ,  w )  = m = - m  k = ( N )  f k m  exp [-j(wmN - k -  N n 

(8) 

where  represents  summation  over  one  period N .  
Note that the  functionf(n, w)  is periodic in n and w ,  with 
periods Nand 27rlN, respectively. The'inverse relationship 
has  the  form 

wmN - k 
N 

Furthermore, we define the function Z(n, w )  by 
00 

2(n, w )  = x(n f mN) exp [ -jwmN].  (10) 

Note  that  the  function X(n, w)  is periodic in w ,  with  period 
2alN, and quasi-periodic in n,  with quasi-period N: 

m= - w  

X(n + N,  w )  = Z(n, w )  exp I jwN] .  (1 1 )  

Equation (10) provides  a  means of representing a one-di- 
mensional  discrete-time signal x(n)  by a  two-dimensional 
time-frequency function a(n, w )  on  a  rectangle  withJinite 
area 27r. The  inverse relationship has  the  form 

n(n + mN) = - d o  * Z(n, w )  exp UwmN]. 

(12) 
It will be clear that  the variable n in (12) can be  restricted 
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to an  interval of length N ,  with m taking on all  integer 
values. 

With the help of the functions f(n, w) ,  X(n, w )  and  a 
similar function @(a,  w )  associated with the window w(n) ,  
(7) can  be  rewritten  as 

f(n, w )  = NX(n, w) @'"(a, w). (13) 

In fact, we  have now solved the problem of reconstructing 
the signal from its sampled  sliding-window  spectrum: 

1) from  the  sample values f k m  we determine the function 
f ( n ,  w )  via (8); 

2) from the window w (n) we derive  the  associated  func- 
tion @(n,  w) by (10); 

3) under  the  assumption that division by @*(n, w )  is 
allowed, the function X(n, w )  can be found  with  the help 
of (13); and 

4) finally, the signal follows from X(n, w )  by means of 
the inversion formula (12). 

A simpler reconstruction  method will be derived in the 
next section. 

Problems may arise in the case that @(n,  w )  has zeros. 
In that case homogeneous solutions h"(n, w) may occur, for 
which the relation 

Nh"(n, w)  @"(n, w )  = 0 (14) 

holds. Equation (14),  which  is similar to (13) with f(n, 
w )  = 0, can  be  transformed  into  the relation 

which is similar to (7) with f k m  = 0. Equation (15) shows 
that  the  sliding-window  spectrum of a  homogeneous so- 
lution h(n) vanishes at the sampling points (Q = k ( 2 ~ / N ) ,  
n = mN f . We conclude  that the  existence of homogene- 
ous solutions makes the reconstruction of the signal from 
its sampled  sliding-window spectrum nonunique: if x(n)  
is a possible reconstruction,  then x ( n )  + h(n) is a possible 
reconstruction, too. 

RECONSTRUCTION  VIA  GABOR'S 
SIGNAL REPRESENTATION 

In the  previous section we showed  a way to  reconstruct 
the signal from its sampled  sliding-window spectrum; in 
this section we shall  elaborate this a little further, and show 
a different way of signal reconstruction [cf. [4], Section 
4.31. We therefore  introduce  a reciprocal window se- 
quence g(n),  say, which is defined via its associated  func- 
tion g ( n ,  w )  by 

Ng(n, w )  @"(n, w )  = 1. (16) 

w ,  w) = f@, w)g(n,  w),  (17) 

On substituting from (16) into (13)  we get 

which relationship can  be  transformed into 
m 

m=--Qi k = ( N )  

by expressing f(n, w )  in terms of f k m  via (8), expressing 
g ( n ,  w )  in terms of g(n) via  (lo), and using the inversion 
relationship (12). Note  the  strong  resemblance  between 
(18) and the inversion formula  (3).  Equation (18), which 
expresses the signal as  a combination of properly shifted 
and  modulated versions of the  reciprocal  window, is in the 
form of Gabor's signal representation [cf. [3], (1.29)]. 
Gabor's signal representation  thus  provides  a way to ex- 
press  the signal directly in terms of the sample values of 
the sliding-window spectrum. 

Equation (16) can be  transformed  into 
m 

g(n) w*(n - mN) 
n= -m 

exp [ - j k z n ]  2T = 1  for k = m = O  
(19) 

0 elsewhere. 

From (19)  we conclude  that  the  discrete  set of shifted  and 
modulated versions of the window, w(n - mN) exp 
[jk(2n/N) n], and  the  corresponding set of versions of the 
reciprocal  window, g(n - mN) exp [ j k ( 2 a / N )  n] ,  are, in 
a  certain  sense, biorthonormal. 

Gabor's signal representation may be nonunique in the 
case  that g ( n ,  w )  has  zeros.  In that case functions Z(n, w )  
may occur, for which the relation 

2(n, w)  g(n,  w )  = 0 (20) 

holds. Equation  (20), which is similar to (17) with T(n,  
w )  = 0, can be  transformed  into  the relation 

which is similar to (18) with x(n)  = 0. Equation (21) shows 
that  certain arrays of nonzero coefficients in Gabor's sig- 
nal representation may  yield a  zero  result. We conclude 
that  Gabor's signal representation may be  nonunique: if 
the  array of coefficients fkm yields the signal x(n) ,  then 
f k m  + zkm yields the  same  signal. 

It is easy to  formulate Parseval's energy theorem 
m 

which  follows directly  from (10) or (12). When we apply 
Parseval's  energy  theorem  to  the  reciprocal  window g(n)  
and  substitute  from (16), we get the relationship 

m 

c lg(m)I2 = c - N 
m= -m n=<N) 2T 

From (23) we conclude that in the  case  that @(n,  w )  has 
zeros, the reciprocal  window may not be quadratically 
summable.  This  consequence of the occurrence of zeros 
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in @ ( n ,  w) is even worse  than the  fact  that  homogeneous 
solutions may be  present; it may cause  a  very  bad conver- 
gence of Gabor’s signal representation. 

We conclude  this section with an. interpolation  formula 
that enables us to express  the  sliding-window spectrum 
f ( Q ,  n) directly in terms of its sample  valuesfkm. On sub- 
stituting  from (18) into (l) ,  we get indeed the relationship 

- exp [ -jQmN] , (24) 

where we  have introduced  the  interpolation  jknction 
rn -. 

q(Q, n) = g(m) w*(m - n) exp [-jQm], (25) 
m = - a  

which is, in fact,  the sliding-window spectrum of the  re- 
ciprocal window. 

SPECIAL CASES: MAXIMUM AND MINIMUM  OVERLAP 
The  cases of maximum and minimum overlap deserve 

special  attention.  Maximum overlap occurs for N = 1: in 
that case  there  is  maximum overlap between  the  window 
w ( n )  and its direct  neighbors w (n N ) .  In the  maximum- 
overlap case,  the  formulas of the previous  two  sections 
can be simplified. Without loosing any  information, we 
can  take k = 0 in (7), (15), (18), (19), and (21), and  take 

(20), (22),  and  (23). Equation (7), for instance, then re- 
duces to  a simple  correlation, 

= 0 in (81,  (91, (lo), (111,  (121,  (131, ( W ,   ( W ,  (1% 

m 

hm = x(n)  w*(n - m>, (26) 
n= -a 

and so do (15) and (19); note  that, moreover,  the coeffi- 
cients fom become real when  the signal x(n) and  the  win- 
dow w (n) are  real. Equation (18), on the  other  hand,  re- 
duces to  a simple convolution, 

m 

x(n> = f~mg(n - m), (27) 
m = - m  

and so does (21). Furthermore, (8) and (9) then  constitute 
a  normal  Fourier  transform pair, and so do (10) and (12). 
Note  that if in  the  maximum-overlap case the window w (n) 
vanishes for n # 0, then (7) or (26) tell us that the array 
of coefficientsfom is proportional to  the signal x@), as can 
be  expected. 

Minimum overlap occurs when the  window  has afinite 
extent  and  the  shifting  distance N is chosen equal to  this 
finite extent.  In  that  case  the  formulas of the previous two 
sections again simplify drastically, and  the relationship 
between the window w (n)  and  the  reciprocal  window  g(n) 
takes the simple  form 

inside the extent of w(n) 

l o  outside the extent of w(n). 

T ’  

see E q .  ( 3 2 )  

(b) 

2 

I . .” 

(dl 
Fig. 1.  Sketches of (a) a three-point,  symmetrical window w ( n ) ,  and its 

corresponding  reciprocal  window g(n)  in the case of (b) maximum over- 
lap, (c) minimum overlap, and (d) partial overlap. 

It will be  clear  that inside its finite extent,  .the window 
w(n)  should  take  nonzero values. Note that if in the  min- 
imum-overlap case  the window is uniform  inside its finite 
extent, and  if the signal x(n) vanishes  outside the extent 
of the window, then (7) tells us that  the  array of coeffi- 
cients fko is proportional to  the  discrete  Fourier  transform 
of the  signal,  as  can  be  expected. 

EXAMPLES 
To elucidate  the  concepts of this paper, we consider two 

simple examples of window  sequences,  and  determine  the 
corresponding  reciprocal  window  sequences for different 
values of the  ‘shifting  distance N .  Our first example is the 
three-point,  symmetrical  window  [see Fig. ](a)] 

I f  elsewhere; 

(29) 
note that for a = 0.16,  we are  dealing  with  a three-point 
Hamming  window.  For the maximum-civerlap case ( N  = 
l ) ,  we  find 
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*(O, 0) = 1 + a cos w ,  (30) 

and,  hence,  the  reciprocal  window g(n) takes the  form 
[see Fig. I(b)] 

For the minimum-overlap case (N = 3) the  reciprocal  win- 
dow becomes  [see Fig. l(c)] 

- for n = 0 

for n = + 1  

0 elsewhere. 

(33) 
For  the  case of partial overlap ( N  = 2) we  find 

(b) 
Fig. 2. Sketches of (a) a one-sided,  exponential  window w ( n ) ,  and (b) its 

corresponding  reciprocal  window g(n). 

Our  second  example is  the one-sided, exponential win- 
dow [see Fig. 2(a)] 

exp [an]  for n I 0 (a > 0)  
w(n) = 

( 0  
(39) 

In  the  interval - ( N  - 1) 5 n 5 0, the  associated func- 
tion N ( n ,  w )  takes the form 

for n > 0. 

\ *(I, w> = - (1 + exp ~ 2 w l ) ,  
a 

(34) 2 N ( n ,  w)  = exp [an] 
1 

1 - exp [-(a - jw)N]’ (40) 

(2g(O, w )  = 1 and the  function Ng(n, w )  in this interval thus reads 
2 1 
a 1 + exp  [-j2w]’ 

2f( l ,  w)  = - (35) 

and  the  reciprocal  window now takes the  form  [see Fig. 
1(d)l 

for m = 0 

for m # 0 

(36) 
Note  that in the  case of partial overlap, the  function N ( n ,  
w)haszerosforw = a/2 + m ( r =  , -1,0, 1, * e ) ,  

and  hence  a  homogeneous solution h(n) arises.  Its  asso- 
ciated  function &, w )  is given by 

240,  w)  = 0 

2q1, 0) = Rh c 6 w - - - P R  , (37) 
QD 

r= -CQ ( ; )  
where 6( - )  represents  the  Dirac delta function.  The  ho- 
mogeneous solution h(n) thus takes the form 

h(2m) = 0 

h(2m + 1) = (-1)”h. (38) 

Ng(n, w)  = exp [-an] (1 - exp [-(a + j w ) N ] ) .  (41) 

The  reciprocal  window g(n) now takes the  form  [see Fig. 
2(b) 

1; - exp  [-an] for - (N  - 1) I n 5 0 

\ O  elsewhere. (42) 
We use  this  example  to  show  the possible nonuniqueness 
of Gabor’s signal representation.  In  the limiting case CY = 
0, the  function g(n, w )  has zeros for w = r(2a/N) ( r  = . . .  , - 1, 0, 1, e), and an  array of coefficients Zkm 

arises  whose  associated function Z(n, w )  in  the  interval 
0 I n 5 N - 1, say, is given by 

The  array Zk,,, thus takes the  form 

and yields a  zero result when  substituted in Gabor’s signal 
representation. 

CONCLUSION 
In  this  paper we  have studied the short-time Fourier 

transform of a  discrete-time  signal, or, as we prefer to call 
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it,  the sliding-window spectrum. This  sliding-window 
spectrum  is  a  function of two  variables:  a  discrete  time 
index, which represents  the  position of the window, and  a 
continuous  frequency  variable. We have shown  that  the 
signal  can  be  reconstructed  from  the  sliding-window 
spectrum, when we know its  values  at  the  points of a  cer- 
tain  time-frequency  lattice.  This  lattice  is  rectangular,  and 
the  rectangular  cells occOpy an  area of 27r; hence,  the 
coarser  the  sampling  in  time,  the  finer  the  sampling in 
frequency,  and  vice  versa. 

The most elegant  form  to  represent  the  signal in terms 
of the  sample  values of the  sliding-window spectrum, is 
by means of Gabor’s  signal  representation. We therefore 
had to  introduce  a  reciprocal window, and we  have shown 
how the window and  the  reciprocal  window  are  related. 
Gabor’s  signal  representation  then  expresses  the  signal  as 
a  superposition of properly  shifted  and  modulated ver- 
sions of the  reciprocal window. 
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