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Introduction

The theory of topological algebras of operators arose from quantum

theory (cL [5], [18]).

Their topological and algebraic properties were studied by many

authors. (cL [1-6], [10], [11][13], [14][16], [17-18], E19]).

Operators belonging to these alebras are defined on common domains.

Frequently the domains are dense subspaces of a Hilbert space. The

theory of analyticity and trajectory spaces [7-10], [12], which is

a part of the theory of generalised functions, also leads to al­

gebras of, so called, extendible operators. The starting point of

this theory is a description of the underlying domain, here called

an initial space. Then, in a natural way, algebras of unbounded

operators appear.

In the present paper we study a general situation starting from an

abstract locally convex topological vector space S, called an initial

state space or, simply, initial space. In particular, in order to

be both as general as possible and as close as possible to known

examples, we assume that the initial space is semireflexive and

bornological with bornological strong dual.

In the frame of our approach the generalized function theory

appears by means of a so called positive embedding of S into S'.

Both Sand S' have identical topological properties and up to this

point each of them could be equivalently chosen as 'an ordinary
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function space'. Only the existence of an embedding j : S C+S'

gives an indication in which direction the generalization of

functions occurs. For this reason the initial space can not al-

ways be regarded as a test function space.

It is clear that such an embedding leads to Gelfand triples and

Hilbertian subspaces theory of L. Schwartz [22J, as well as to

some connections with the theory of regular operators [3J and

*Op -algebras [17,18J.

The theory of analyticity spaces [7,12J and its generalization

[10J is also based on the existence of an intermediate Hilbert

space H, with S c He S'.

Our main interest is concentrated on so called extendible maps

and their algebras. For a given embedding j : S C+S' we consider

continuous linear maps acting in S which can be extended to strong-

ly continuous maps acting in S'.

Such a concept appears already in papers of L. Schwartz [22J,

J.P. Antoine and F. Mathot [3J. Our present approach is modelled

after results of S.J.L. van Eijndhoven, J. de Graaf and the author

[7-10J, where topological algebras of extendible maps are intro-

duced.

The aim of the present paper is to unify and generalize certain

ideas which appear in the above references. Here we present an

introduction to our investigations which lead, as we hope, to
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physical applications. For this reason the paper contains not only

basic definitions and facts but also conjectures and problems.

In particular we expext that some mathematical aspects of Dirac's

formalism of quantum mechanics can be included into the frame of

our theory, as it is indicated in [9J. Quantum statistics also can

be described within this theory. Although we do not consider these

problems in the present paper we should mention here that the idea

of extendibility can be connected with the concept of Dirac's ob-

servables which act simultaneously both on ket and bra spaces. The

most difficult problem in such a physical interpretation is that the

algebras of extendible maps depend on the choice of the embedding j

i.e. on the choice of the representation. Hence a need of invariant

definition of extendibility arises.

Another possible extension of the present theory is an investigation

of groups of transformations in the Hilbert space H which leave

the initial space invariant.

Considering the 'extremal' case of a Hilbert space as an initial

space we see that our definition of the algebra of extendible maps

leads to the algebra of all bounded operators. Hence we see a

generalization of the theory of algebras of bounded operatos in

considering *-sub-algebras of algebras of extendible maps. (See

*e.g. V -algebras theory [4J, [llJ).
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We begin our paper with basic definitions and properties of initial

spaces, contained in Sect. 1. In Sect. 2 we introduce the embedding

j : S c+S' and discuss its properties. It turns out that it can be

studied equivalently in terms of the theory of Hilbertian subspaces

developed by L. Schwartz in [22].

In Sect. 3 we introduce the notion of extendible maps which depends

on the choice of the embedding j. In Sect. 5 we discuss relations

between extendibility of an operator with respect to different em-

beddings. We also study algebras of extendible maps as topological

*-algebras.

Sect. 4 contains an interesting example of an initial space, namely

the space ~ of all finite sequences of complex numbers [15]. It

provides us with a lot of illuminating observations.

An attempt to develop a topological spectral theory in the algebras

of extendible maps is made in Sect. 6. We follow here some ideas of

G.R. Allan [1,2]. We should mention however that our algebras are

*not GB -algebras. We prove that for the case of the space ~ the

usual spectral theory of Hilbert spaces gives the same spectra of

bounded normal operators as the spectral theory formulated for ex-

tendible maps.

In Sect. 7 we give some ideas on positive elements in algebras of

extendible operators. It opens a way to further investigations on

positive functionals, quantum statistics and Dirac's formalism.
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SECTION 1. PRELIMINARIES AND NOTATION

In [10] the locally convex topological vector spaces 5~(A) and

T~(A) have been constructed. Under suitable assumptions the pair

5~(A)' T~(A) becomes a dual pair of barreled, bornological, re-

flexive, complete locally convex spaces. Moreover, in many cases,

T~(A) or 5~(A) is a Frechet space.

Inspired by some ideas contained in [3], [7], [17], [22] we will

consider algebras of linear mappings defined on such l.c.t.v

spaces which a priori have the above topological properties of

5~(A) and T~(A)·

The space corresponding to 5~(A) we will denote by 5 and call an

initial space.

We need an explanation of the standard terminology and notation we

use. (cf. [21J).

By T we denote the locally convex topology that we originally im-

pose on the space 5. We assume that it is generated by a family of

seminorms P = {pl. The topological dual of 5 = 5 is denoted by 5'.
T

The strong topology S = S(5',5) on 5' is generated by the family

Q = {q} of all seminorms of the form: q (s') = sup 1< 5' Is >1 ,
B sEB

where s' E 5', Be S is weakly bounded and <-1-> denotes the bi-

linear duality between Sand 5'.

The space 5 is semi-reflexive if its second strong dual 5" (5' ) ,
S
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is identical with the set 5. It means that the natural embedding

5 c+5" is onto. The space 5 is reflexive if this embedding is a

homeomorphism i.e. S, = (SS)S . The space S is bornological if

every circled, convex subset A c S that absorbs every bounded set

in S is a neighborhood of 0, or equivalently S consists of all

bounded linear forms on its strong dual SS.

The space S is barreled if every circled convex and closed subset

B c S that absorbs every finite set in S (a barrel) is a neighbor-

hood of O. The space is infrabarreled if every circled, convex and

closed subset B c S that absorbs every bounded set in S is a neigh-

borhood of O. The Mackey topology ,(S,S') on S is the finest locally

convex topology on S for which the toplogical dual of S,(S,S') is

identical with S'. The space 5 is called a Mackey space if its,
original topology, is Mackey i.e. , = ,(S,S'). Any bornological

or barreled l.c.t.v. space is Mackey.

The weak topology with respect to the duality Sand S' is denoted

by 0(S,5'). The topology o( S' ,5) on S' is called *-weak.

1.1. Definition

A locally convex topological vector space S over the field of complex

numbers is called an initial (state) space if Sis:

i) bornological

ii) semi-reflexive

iii) the strong dual Ss of S is bornological.
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It is obvious that the space S~(A) (cf. [10J) is an initial space.

Also the spaces of functions such as V(n), E(n), S(IR
n
), where

n C IR
n , which appear in the theory of distributions, are initial

spaces.

It follows that an initial space and its strong dual have nice

topological properties:

1. 2. Proposition

Let 5 be an initial space and 5S its strong dual. Then:

i) 5 and 5' are barreled
l3

ii) 5 and 5' are complete
l3

iii) 5 and 5 ' are Mackey spaces
l3

iv) 5 and 5' are reflexive.
l3

Proof

By [15J Ch. I Sec. 8 Prop. 8.7 5 is infrabarreled and by [21J Ch. IV

§ 5 Corollary 5.5 5 is semi-reflexive hence by [21J Ch. IV § 5

Coroll. 5.3 5 is barreled. Again because 5 is semi-reflexive and

barreled it is reflexive (cf. [21J Ch. IV § 5 Thm. 5.6)). It follows

that also 5S is reflexive and barreled and both 5 and 5Sare Mackey

(cf. Ch. IV § 3.3.4, § 5.5.7 of [21J). Further 5 and 5Sare complete

since they are strong duals of bornological spaces (Cf. Ch. IV § 6

6.1 of [21J).

Q.E.D.
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In certain interesting cases considered in [7] and [10] the strong

dual of the space S is a Frechet space. In order to obtain this

property it is enough to assume that the locally convex topological

space S is the strong dual of a metrizable, semi-reflexive locally

convex topological vector space T.

1.3. Proposition

Let a l.c.t.v. space E be the strong dual of a metrizable, semi-

reflexive l.c.t.v. space T.

Then

i) E and T are barreled

ii) E and T are bornological

iii) E and T are complete

iv) E and T are Mackey

v) E and T are reflexive

vi) T = EI is Frechet.
S

Proof

The space T is bornological since it is metrizable (cf. [21] Ch. II

§ 8.8.1). Hence T is infrabarreled. So from the semi-reflexivity

of T the reflexivity of T and E follows (Cf. [21] Ch. IV § 5. Thm. 5.6

Coroll. 1, [15] I Sec. 8 Prop. 8.7). By [21] Ch. IV § 6 6.5 Coroll. 1

T is complete since it is metrizable and reflexive. Hence T is Frechet.
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From the metrizability of T the completeness of E = TS follows

(Cf. [21] IV § 6. 6.1). In virtue of [21] IV § 6. 6.6 Coroll. 1

E is bornological because it is the strong dual of the reflexive

Frechet space T. In this case it is equivalent to barreledness

of E (Cf. [21] IV § 6. 6.6).

Because every bornological 1. c . t. v. s. is ~1ackey Sand T are Mackey

(Cf. [21] IV § 3. 3.4).

Because T is reflexive and Mackey it is barreled (Cf. [21] IV § 5.7).

Q.E.D.

1.4. Corollary ([21] Ch. IV 5.7, p. 145; 6.1 p. 148).

If a reflexive l.c.t.v. space E is barreled, bornological, complete

and Mackey then

i) E' E' i.e. T(E',E) S(E',E)
T S

ii) E E
S

i.e. T(E,E') S(E,E')
T

iii) E' is barreled
T

iv) E I is complete.
13

1.5. Proposition ([21], Ch. III Thm. 4.2, p 83) .

Let E, F be l.c.t.v. spaces, E barreled, L(E,F) the set of all

continuous linear maps from E into F. Then every pointwise bounded

subset M of L(E,F) is equicontinuous i.e. for each neighborhood V

of a in F there exists a neighborhood U of a in E such that m(U) c V

for all m E M.
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In particular we have the following generalized version of uniform

boundedness principle.

1.6. Corollary (Uniform boundedness principle)

If E, Fare l.c.t.v. spaces then every pointwise bounded subset M

of L(E,F) is uniformly bounded on all convex, circled, bounded and

complete subsets of E.

i.e. For all seminorms q in F and BeE such that sup p(s) < 00 for
sEB

each seminorm p in E we have:

sup sup q(m(s» < 00

mEM sEB

1.7. Remark

If E and F are complete then M is uniformly bounded on closed bounded

convex circled subsets in E.

1.8. Remark

Taking E = $ F = $' we have a version of the Banach-Steinhaus

theorem: Each *-weakly bounded (i.e. 0($',5) bounded) subset B1 in 5'

is strongly bounded.

We recall that the *-weak topology is the topology 0(5',5) given

by the family of seminorms

s' -+ I <s', s> I s' E: $' , s E 5.
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We are interested in spaces of continuous linear mappings acting in

ST and Ss . We denote these spaces by L(S) and L(S').

Note that we can replace the Mackey topology T by the strong topology

s. Then L(ST) = L(SS) and L(SS) = L(S;) in virtue of Corollary 1.4.

We recall here a useful characterization of elements of L(S) and

l(S').

1.9. Remark ([21] Ch. II 8.3, p. 62)

Let E be a bornological l.c.t.v. space, F be a l.c.t.v space and let

u : E + F be a linear map. Then the following conditions are equivalent.

i) u is continuous

ii) The sequence {u(x )} is a null sequence for every null sequence
n

{x } in E.
n

iii) The set u(B) c F is bounded for every bounded subset B in E.

The above remark is applicable to the bornological spaces Sand S' by

Proposition 1.2.

We introduce the following I.e. topologies on the space L(S):

1.10. Definition ([10], [7], [24])

i) The uniform topology T ('strong' in [7]) is given by the family
s

of all seminorms:

q : X + sup p (xs)
p,B Es B

where x E L (S), B is a bounded subset of Sand pEP is a semi-

norm in S.
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T is equivalently given by the seminorms:
s

x + sup sup I <f I xs> I
fEB' sEB

where B' is a bounded subset of 5' and B a bounded subset of 5.

ii) The pointwise (or 'strong spatial') topology T is given by
p

the family of all seminorms of the form:

q :x + p(xs) where pEP is a seminorm in S, s E S.
p,s

or equivalently by the seminorms:

q, :x + sup
B ,s fEB'

<f I xs> I where s E S

iii)

iv)

and B' is a bounded subset of 5'.

The weak topology T is given by the family of all seminorms of
w

the form:

q . x + \1jJ (x) I1jJ •

where 1jJ is a linear functional on L(5) continuous with respect

to the uniform topology T i.e. ~ E L(5) '.
s

The weak spatial or 'weak pointwise' ([7]) topology T is given
wp

by all seminorms of the form:

q : x +I<f I xs>1
f,s

where f E 5', s E 5.

1.11. Proposition

The following relations hold:
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ii) t > t > t
S P wp

If $ is a dense domain in a Hilbert space H (see e.g. [17]) then

usually other topologies on L($) are introduced. However we do not

consider them here because those topologies refer to an explicit

embedding of $ into H. We shall discuss this problem later on.

Similarly we can introduce the following l.c. topologies in the

space L ($ I ) :

1.12. Definition ([10], [7], [24])

i) The uniform ('strong' [7]) topology G is given by the family
s

of all seminorms of the form

q : y -+ sup q(yf)
q,B fEB

where y E L(S') and B is a bounded subset of S', q E Q is a

seminorm in $', or equivalently by

y -+ sup sup I<yf I s>1
fEB' sEB

ii) The pointwise (or 'strong spatial') topology G
p

is given by the

family of all seminorms of the form

qf : y -+ q(yf),q

where q E Q is a seminorm in $' and f E $', or equivalently,

by the seminorms
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Y -to sup I<yf I s>1
sEB

where f E 5' and B is a bounded subset of 5.

iii) The weak topology a is generated by the family of all semi­
w

norms of the form:

qw : y -to Iw(y) I

where w is a linear functional on L(5') continuous with respect

to the uniform topology a i.e. w ~ L(5')'
s

iv) The weak pointwise (or 'weak spatial') topology a is generated
wp

by the following family of seminorms:

Y -to 1<yf 1 s> I

1.13. Proposition

The following relations hold:

f f 5' s E 5 y E L(5')

i)

ii)

a > a > a
s p wp

(J > a > a
s w wp

Bounded subsets of L(5) and L(S') are bounded in all topologies defined

above. We have:

1.14. Proposition

Let B be a subset of L(5) (or L(5') respectively). Then the following

conditions are equivalent:
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i) B is T -bounded (resp. cr -bounded)
s s

ii) B is T -bounded (resp. cr -bounded)
p p

iii) B is T -bounded (resp. cr -bounded)
w w

iv) B is T -bounded (resp. cr -bounded)
wp wp

Proof

We recall the standard proof only for Be L(5).

In virtue of Propositions 1.11 and 1.13 it is easy to see that

i) => ii) => iv) and i) => iii) => iv). Hence it is enough to prove that

iv => i) •

Let B c L(S) be T -bounded, i.e.
wp

sup I<f I xs>j < 00

xEB

for all f E 5' and s E 5. Hence for a fixed s ~ 5 the family

{mx}xEB of linear S-continuous maps:

5' 3 f 7 m (f)
x

I 1<f I xs> E <r:

is pointwise bounded. In virtue of Proposition (1.5) the family

{mx}xEB is equicontinuous and by Corollary (1.6) it is uniformly boun-

ded on bounded sets in 5'. So, for any bounded set B' c 5' we have

sup sup I m (f) I = sup sup I<f I xs>1 < 00x
fEB' xEB xEB fEB'

It follows that the set B is T bounded. Thus we have shown the
p
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implication: iv) ~ ii).

Suppose now that B c L(5) is T bounded, i.e. for any seminorm p
p

on 5 and any s E 5 sup p (xs) < 00. Hence the family of T -continuous
xEB

linear maps B is pointwise bounded. So it is also equicontinuous

(Proposition (1.5)). By Corollary 1.6 the set B is T -bounded.
s

Thus ii) ~ i) and it follows that iv) ~ i).

Q.E.D.

We formulate now the following useful result:

1.15. Lemma

The space 5 (and 5') is weakly (*-weakly resp.) sequentially complete.

Proof.

Let {s } be a weak Cauchy sequence in 5. It follows that {s } is
n n

weakly bounded in 5" == 5. Hence it is uniformly bounded. The weak limit

of s , say s, is bounded on every bounded subset B' of 5'. Hence, in
n

virtue of Remark 1.9, s E 5" == 5.

The same arguments applied to the space 5' prove its *-weak sequential

completeness.
Q.E.D.

By standard arguments we also have

1.16. Proposition

The spaces L(5) and L(5') are sequentially complete with respect to
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uniform, pointwise, weak and weak spatial topologies.

Proof

It is sufficient to prove the result for the weakest topology among

the given four, i.e. for the weak spatial topology.

Let us consider a sequence {x } c L(S) such that for each s E S the
n

sequence {x s} has a weak limit, say xs.
n

The mapping s + xs is linear, and ,-bounded on ,-bounded sets, hence

,-continuous, i.e. x E L(S). Here we have used Corollary 1.6 and

Proposition 1.14.

Q.E.D.

The transposition map x + x' from L(S) into linear maps in S' is

defined by the relation: <x'f I s> = <f I xs> for all f E S', s E S.

We have x' E L(S) by Thm. 2 Ch. VII § 1. in [24]. It follows also

that x" = x.

1.17. Proposition

The transposition map L(S) 3 x + x' E L(S') is continuous if:

i) L(S') is endowed with the topology a and L(S) with one of the
wp

topologies, , , " or, (see 1.10).
s P w wp

ii) L(S') is endowed with one of the topologies (1.12):

or a and L(S) is endowed with the topology, .
wp s

Proof

a , a , a
s p w

Clearly the map x + x' is (, , a )-continuous hence it is ("a )-
wp wp wp
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continuous for all l.c. topologies l on L(S) stronger than l
wp

ii) The transposition is obviously (T ,a ) continuous hence it is
s- s

continuous with respect to topologies (T ,a), where a is a
s

l.c. topology on L(S') weaker than a .
s

Q.E.D.

1.18. Corollary

The map x 7 x' is a homeomorphism between L(S) and L(S') endowed

with topologies T and a or T and 0 respectively
wp wp s s

1.19. Remark

One should not expect continuity of the transposition with respect to

other pairs of topologies because it does not hold even if the space

S is a Hilbert space.
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§ 2. EMBEDDING S C+ S I

In this section we study the notion of embedding of S into S'.

2.1. Definition

An anti linear map j S 7 S' is called a positive embedding if

i) j is continuous as a map from S, into SS'

ii) j is positive i.e. "Is E S

<j(s) I s> > 0 ~ s ~ O.

2.2. Proposition

i)

ii)

iii)

(2.3)

j is injective

-1 1 df
j is closed on D(j- ) j (5)

the scalar product on S defined by

( s I. z) = <j (s) I z>

is hermitian and non-degenerate.

iv) j(S) is S-dense in 5'

v) j is continuous if we endow 5 and 5' with weak and *-weak

topologies, respectively.

Proof.

i) If j (s) = 0 then by positivity s 0

ii) Let {5'} c j (S) be a S-cauchy net in S' which tends to s' E 5 I ,
a.

and suppose that j-l(S') is ,-convergent in S to some s E 5.a.
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Then by the continuity of j the net s'
a

j (s) '= s' E: j (5) •

-1
j (j ( s ' » tends to

a

iii) It follows from the polarization formula for the sesquilinear

form <j (s) I z>.

iv) By contradiction: Suppose that there exists s' E 5' such that

s' ( j(5) S-closure of j ($) in $', s' ,,0. Then there

exists in 5 $" a S-continuous functional So f. a such that

<s' I sO> ,,0 and <j(s) I sO> '= O. In particular we have

<j(sO) I sO> '= 0, so So '= O.

The contradiction.

v) The result follows from the equality:

<j (s) I z> '= <j (z) IS>.

Q.E.D.

By the Schwarz inequality we have:

2.4. Remark

A continuous embedding j : $ + $' is a positive embedding iff one of

the following conditions holds:

i) j is injective and nonnegative i.e.: for each s E S

<j(s) I s> ~ O.

ii) j is non-negative and j(5) is dense in 5'.
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In virtue of iii) Proposition 2.2 the completion of the pre-Hilbert

space (5, ( I )) is the Hilbert space H = $1111 with the norm: II

extending the norm 5 :3 s -+ II s II = ( <j (s) I s»!. The embedding 5 c H

is T-II II continuous i.e. the norm topology induced on 5 by H is

weaker than the original topology T on 5.

2.5. Proposition

The positive embedding j

j : H -+ 5'

5 -+ 5' can be extended to the injection:

which is continuous with respect to the norm topology in Hand

S-topology in 5'.

Moreover for each s E 5, h E H

Proof

(h I s) <j(h) I s>

Observe that the map j : 5 -+ 5Sis norm continuous because for s,z E 5

I<j (s) I z> I ;;; II slill zll, hence it can be uniquely extended to the II II-S

continuous map j ([21] III § 1.). The formula (h I s) = <j(h) I s>

follows from the norm continuity of j on 5.

Q.E.D.

For further applications the problem of existence of a positive

embedding for a given initial space is very important. At first we

observe that the existence of a positive embedding j : 5 -+ 5' is
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equivalent to the existence of a non-degenerate separately continuous

positive sesqui-linear form on S.

2.6. Proposition

Let S be an initial space. Then there exists a positive embedding

j : S + S' if and only if there exists in the space S a non-degenerate

positive separately continuous sesqui-linear form.

Proof

The 'only if' part is contained in Proposition 2.2. For the 'if part'

let B : S x S + ~1 be a sesqui-linear, positive, non-degenerate form,

which is separately continuous.

For each z ( S the map:

S3s+B(z,S)

is a linear continuous form on S. Hence the formula

j(z) := B(z,o) gives a non-negative embedding j : S + S'.

To prove its continuity we should notice that it is T-*-weakly

continuous. By standard arguments applied to the bornological space

S it follows that j is (T,S)-continuous. Thus j(z) = B(z,o) is the

desired positive embedding.

Q.E.D.

2.7. Corollary

Any separately continuous sesqui-linear form on S is jointly continuous.
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Proof

It is enough to notice that the map 5 3 s + !B(S,S) I' is bounded on

bounded subsets of 5, hence it is a continuous seminorm on the borno­

logical space 5.

Q.E.D.

It is easy to see that the correspondence between positive embeddings

and Hilbert spaces is one-~o-one. (see [22]).

2.8. Proposition

For a given test space 5 there exists a positive embedding j : 5 + 5'

if and only if there exists in 5' a dense Hilbert subspace H, continuous­

ly embedded into 5'.

Proof

The 'only if' part follows from the previous result 2.5 and [22]

Prop. 1, if we put H =: j (II) •

Now for the 'if' part let HC+ S'. Taking strong duals we have 5 = 5" C+H'

and this natural embedding is (strongly-) continuous. Hence the desired

positive embedding is given by j (s) := (s I .), i.e. by the anti­

isomorphic Frechet-Riesz map applied to the elements of S. The positiv­

ity of j follows from its injectivity and from the positivity of the

scalar product in H.

Q.E.D.
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The above proposition gives a description of positive embeddings

by means of Hilbertian sub-spaces of 5' in the sense of L. Schwartz

[22]. We have then a one-to-one correspondence between positive

embeddings and dense Hilbertian subspaces of 5'. Thus the problem of

the existence of a positive embedding has been transformed into the

problem of the existence of Hilbertian subspaces of 5'. For certain

results in this direction we refer to [22].

For our purpose however it is more natural to consider the theory of

embeddings rather than the theory of Hilbertian subspaces. Nevertheless

the Hilbert space associated with an embedding will play an important

role in the present approach.

We should mention also that the topological aspects of our theory

are independent of the particular choice of the embedding j.
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§ 3. Extendible maps

For a given positive embedding j

L(5) we consider the mapping:

S + S' and for an element x of

j (S) :3 j (s) + j (xs) E j (5) .

This map is linear and densely defined in SI. Moreover if it is

S-continuous in j(S) then the element x is called an extendible

map. More precisely:

3.1. Definition

An element x of L(S) is called a j-extendible map iff there exists

i E L($'), such that the following diagram is commutative:

S

j 1

Le. j 0 x = x 0 j

J j

The set of all j-extendible elements is denoted by A,. (We usually
J

drop the index j if no confusion is likely to arise.)

The above definition is an abstract formulation of extendibility

related to the spaces Sand T , as described in [7,10,12].
X,A X,A

*Also the regular operators defined in [3] and elements of Op -

algebras [18] can be considered as a particular case of extendible
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maps. We can trace the idea of extendible maps back to the paper

by L. Schwartz [22J, although they are defined there for somewhat

different purpose. In particular they are connected there with

Neumann and Dirichlet problems. For this the assumption on density

of j(s) in $' should be dropped. We will not consider this case

here.

3.2. Lemma

If x f A then x I (j ($)) C j ($) and x I 0 j

Proof

j 0 (';{') I •

By the reflexivity of $, we have for all s,z f $:

<x I j (s) I z> <j (s) I xz>

Hence

Le.

x'j(s)

x' 0 j j 0 (';{') I •

Q.E.D.

3.3. Proposition

The set A C L($) of extendible maps is an involutive algebra with

+ df . -1 ,.
involution given by x J x J



- 23 -

Proof

It is easy to see that the map x -+ x is an injective antilinear

homomorphism, well defined on A. In particular if x,y E A then

x • y is the extension of x • y so x • yEA.

We have to show that x+ is a well defined element of L(S) and

that x+ E A. Because i" E L(S) we see that i" E A aI)d ((~)')""" x'.

Moreover we have x+ = j-1 0 x' 0 j = j-1 0 j 0 ~I = ~'.

+Thus x E A. This completes the proof of Proposition 3.3.

Q.E.D.

Now we collect some useful algebraic rules fulfilled by the maps

x-+x, x-+x', +x -+ x .

3.4. Corollary

E A, A F.
1

ThenLet x,y ([ .
+ ,-1

0 0i) x J x' j

+ ...... +
ii) x (x) I , (x ) ,= x

iii) ((~) ')
......

x'

iv) (x+) ...... x'

v)
++

X x" x.

vi) +(xy)
+ +

y x +
(x + y)

+ +
x + y

+(Ax)
- +
AX •

vii) xy x • y (x + y) ...... x + y,
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In [7] the involution x + XC was introduced on the wrole of L(S).

The embedding SeT was considered as a natural one because
X,A X,A

of the canonical choice of the Hilbert space X. The 'algebra of

c
extendible maps' E

A
was preserved by the map x + x .

Also in the present scheme we can formulate a similar result:

3.5. Proposition

i) Let x E L(S). Then x E A iff x'j(S) c j(S).

ii) Let y E L(S'). Then y = ~ for some x E A iff y' E A.

Proof

i) Let x'j(S) c j(S). Then j-1x 'j E L(S) in virtue of Proposition

2.2 ii) and of the continuity of x' OJ : S + S'.

-1
Hence it can be easily seen that (j x'j)' r L(S') is the ex-

tension of x, i.e. x E A.

On the other hand by Corollary 3.4 iv) if x E A then x'

and the result follows.

ii) Suppose that y = x for some x E A. Then y' = (;{') , = x + E .~.

+~

On the other hand if y' (A then y = y" = ((y'» maps j(S)

into j (5) .

Q.E.D.

Remark

In general y E L(S') and yj(S) c j(S) does not imply that y = x

for some x E A.
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The set 5 can be considered as a dense domain in the Hilbert space

H. Then the elements of L(5) can be regarded as unbounded operators

with common invariant dense domain 5. It is easy to see that

+ * *x x 1
5

, where x E A and where x is the operator in H adjoint to x.

*As 5 c D(x ) for every x E A we see that A consists of closable

operators in H. In this way we have a connection with the theory of

*Op -algebras (see [18J). However, we consider a more general des-

cription of the topology on 5 and A than given in [18J.

As we will see further on the hermitian elements x of A, i.e.
+x = x ,

need not be essentially self-adjoint in H. Also closabillty of an

*operator x such that x5 c S, x S c S, does not imply its extendibility.

up to now A has been considered from the algebraic standpoint. Next

we consider topological properties of it.

3.6. Lemma

i) The anti linear US)
+

US) Amap :3 x -+ x f defined on the domain

is closed with respect to each of the topologies T~ in US) ,

( G = s,w,wp,p) .

ii) The antilinear map L(S) :3 x -+ x ( L(S') defined on the domain A

is closed with respect to each of the topologies T~ and an in

L(S) and L(S') respectively. (~,n = s,w,wp,p).

Proof

i) +Let {x } rcA and x -+ X, x
N

-+ y,
a a<: J a u

x,y ( L(S) in a toplogy T~.
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In virtue of Proposition 1.17 i) x' -+ x'
a af J

in L(S') with topology Gwp

Hence for each s ( S we have jys = w . +
lim JX s
aE J a

*w -lim x'js = x'ojs.
aE J a

ii) Let {x } E C A, x -+ x, x E L(S) and ~ -+ z, z £ L(S') in
aaJ aa aa

(2.2. v)). It means that y € A and y x'.

By Corollary 3.4 ii) y+ = x hence x E A.

topologies respectively. Then we see that jxs

zjs for all s E S. Hence x ( A and x z.

w-lim jx s =
a a

Tt;; and on

*w -lim x js
a a

Q.E.D.

The above results give us a clue how to introduce a natural topology

on A, which makes A a topological *-algebra.

3.7. Corollary

Let p be a locally convex topology on A which is stronger than one of

the topologies TE.:' E;, = s,w,wp.

+Then A is sequentially p-closed if either the map A 3 x -+ x E L(S) is

p - T continuous or the map A 3 x -+ ; E L(S') is p - a continuous.s s

Proof

+The map x -+ x is T closed. Hence it is p - T closed as by assumptions s
p > T • Because this map is continuous its domain A must be sequentially

t,

p-closed. The latter part of the statement follows similarly.

We used here the sequential completeness of L(5) and L(5') respectively

(cf. Proposition 1.16).

Q.E.D.
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Now we introduce natural *-topologies for A.

3.8. Definition (see [7J)

The locally convex topology P~ on A is the weakest l.c. topology on A

which is stronger than the topology T~ and such that the map A 3 x + x ( L(5')

is still P~ - cr~ continuous. (By ~ we denote here any of the indices s,wp,p,w)

The existence of topologies P is given in the following:

3.9. Remark

i) The topology Ps
is given by all seminorms of the form:

PpB
x + sup p(xb)

bEB

+ q(i'b)PqB x + sup
bEB'

where B c 5 and B' c 5' are bounded subsets, p and q are seminorms in

5 and 5' respectively.

ii) The topology Pp is given by all seminorms of the form:

Pp x + p(xs)

where s E 5, s' ( 5' and p, q are seminorms in 5 and 5' respectively.

iii) The topology Pwp is given by the seminorms:



+
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+
Pf,s s>1

where f E 5', s f S.

iv) The topology Pw is given by the seminorms:

p'¥ x ~ I'¥ (x) I

p; x ~ I ep (';) I

where '¥ E L (S) " ep E L ( S' ) , .

3.10. Proposition

The map A3 x ~ x+ E A is continuous in the topologies p and p •
s wp

Proof

For all f E S', s ( 5, x ( A, we have:

<f I
+x s>

(Corollary 3.4 ii». From this relation the p -continuity follows.
wp

Observe now that for any pair of bounded subsets Be S, B' c S' we have:

sup supl<f I x+s> I
fEB' sEB

Thus the p -continuity follows.
s

Q.E.D.
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3.11. Remark

+ . t I.'f5In general the map x + x is not p , p -continuous, for I.ns ance
w p

is a Hilbert space. However there are examples (see below 5 = 5x,A'

or 5 = ¢) in which this map is p -continuous.
w

3.12. Proposition

Endowed with any of the topologies Ps' s = S,w,p,wp the algebra A c L (5)

of extendible maps is a locally convex sequentially complete topological

algebra. Moreover in the topologies p and p A is a l.c. involutive
s wp

topological algebra.

Proof

We have to notice only that the multiplication is separately p-continuous

in A. It follows easily from its continuity in each of the topologies

'"T
S

and the assumed Ps - as continuity of the homomorphism x + x.

Q.E.D.

§ 4. Example

We refer to [10J for a general description of spaces of type 5~(A)'

T<P (A) •

The simplest example of this construction is the space ¢ of all finite

sequences of complex numbers. We discuss it here.

The space 5 = ¢ with the inductive limit topology generated by the

n
increasing family of spaces {~ , n E IN} fulfils all assumptions im-

posed on an initial space. A representation of its dual is the space w

of all sequences of complex numbers, endowed with the Frechet topology
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generated by the countable family of seminorms:

\' 2 !
(Lls(n) I) .

Following [10] we can describe the inductive limit topology of ~ by the

family of seminorms:

(4.1)

00

( I If(n)S(n)1
2
),

n=l
Ilfslll!.

2

where s E ~t fEw.

The strong topology S in ~' w is described by the seminorms

(4.2) sup I<s' I b> I
b(B

00

sup I I s' (n)b(n) I
bEB n=l

where B is a weakly bounded subset of ¢. We recall that a subset of

~ is bounded iff it is in a finite dimensional space ~n and bounded in

the euclidean norm of ~n.

A subset B' of 5' = w is S-bounded if and only if all its finite

dimensional projections into ~n are bounded, (i.e. B' c w is bounded

iff for each n E IN B' n ~n is bounded in ~n) .

We consider the natural embedding j : 5 ~ $' realized by j (s) ={s (n) AfJN E w

where s = {s(n)} E E~. It is positive.
nlN

The Hilbert space associated with it is just ~2'

It is easy to see ([20]) that continuous linear maps from H = ~2 into

5 = ~ are of a matrix form. Moreover we have the following description

of them:
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4.3. Lemma

If a : H 7 S is a continuous linear map, H = t
2

, S = ~, then the

columns of its matrix {a(i,j)}, '-12 are equallY limited Le.
1.,J- , , •.

there exists a number nO E IN such that a(i,j) = 0 for all j = 1,2, ...

and all i > nO'

Proof

It follows from the theory of sequence spaces [20] that a continuous

map a : t
2

7 ~ c t
2

has a matrix representation {a(i,j)}. Moreover it

is easy to see that any matrix mapping from t
2

into the space ~ must

have finite columns. Suppose then that the columns of {a(i,j)} are

not equally finite. It means that for each m E IN there exists n > m
m

where e
k

= (0,0, ... 1,0 ... ) = {ok(n)}, belongs to t
2

.

o in t 2 but {asm}mEIN = {{; a(nk , i(nk)}kEIN}mEIN is

s
m

:mch that for some i (n ) E IN a (n ,i (n » I- O. Then
m m m

1
'fi0 e i (n )'

m
Clearly s 7

m Il}-+<:o

the sequence

not bounded in ¢. Hence the sequence {asm}mEIN is not convergent

«a s ) (m)
m

4.4. Corollary

1
a(n, i(n » I- 0).

m m m

Contradiction.
Q.E.D.

The above description of continuous mappings from H into S shows that

the space S = ~ is not of the type S because there is no continuous
X,A

-tAinjection from t
2

into ~ (such as e in the Sease).
X,A
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4.5. Corollary ([20J)

i) For S = cp, x E L( 5) if and only if it has a matrix form with

finite columns.

ii) Y C l( S' ), where 5 = cp, 5'

form with finite rows.

4.6. Proposition

w, if and only if y has a matrix

An element x C L(S) is j-extendible for the natural embedding

j : cp ~ w if and only if it has a matrix form with finite rows and

columns.

Proof

Let us notice that if x has a matrix representation then its j-extension,

if it exists, has also the same matrix form, with complex conjugate

entries.

Because x : cp + cp, it has finite columns. On the other hand because

x : W + w so i has finite rows ([20J). Since x = {X(i,j)}i,j=1,2'

where x {x(i,j)}. 0' the result follows.
~,J

Q.E.D.

The description of the j-extendible map algebra A is very simple here:

A consists of all matrices of finite rows and columns. The involution

is just the hermitian adjoint of matrices.

The topologies p , p and p are equivalent because they are described
s wp p

by seminorms on finite dimensional sUbspaces.
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p , p , p -convergent if the sequences
s p wp
+x
n

Pk}nEIN are convergent in the algebra of

k x k matrices Mkxk ' for all k E IN.

The above example is interesting as a source of counterexamples in

the general theory.

4.7. Remark

The assumption that an element A E A is hermitian, i.e. A+ = A, is not

sufficient for essential self-adjointness of A as an operator in H

with the domain D(A) = S.

Proof

It is easy to see this in the general case of an initial space. The

well known example of S = D W) , + d
~ C IR . and the operator A = i

dx

shows that an operator can be symmetric on S but not essentially

selfadjoint.

In order to show this in the case of the space ~ of all finite

seuqences we consider the following matrix:

0, -a1 ' 0

a 1 ' 0, -a2
A i

0, a
2

, 0

where a
n

a
n

n 1
(n + i)! I . Clearly A

k=O k!

o -a
n+1

+
~ + ~, A E L(S), A A.
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However, A, as an operator in t
2

with the domain D(A) = ~, is not

essentially selfadjoint. Indeed,
1 a n _ 1

by xl = 1, x
n

= ---- x +a
n

_
1

n-l a
n

_
2

the following:

the vector x

x
n

_
2

where Xo = 0, a
O

= 1, fulfils

* *xED (A) A x Ax -ix

To see that x E t
2

we observe that

Ix In

1 an_1
:;; max (x l' x

n
_

2
)· (-a--- + --)

n- n-l a n _2

1
max(x l' x ).-n- n-2 n

By induction it follows that Ix I
n

1
< -

n

Now for any s E ¢

*xED (A ).

<x I As> = <A+x s> <Ax I s> i<x I s>, hence

Q.E.D.

We notice that the above operator A has a cyclic vector e
1

= (l,O,O, ... ).

Namely for each n E IN

the recurrence: P l(A)
n+

e = P (A}e
1

where P are polynomials fulfilling
n n n
an-l i

a P
n

-
1

(A) - ~ A Pn(A), with P 1 (A) = 1,
n n

It is also easy to see that the operator A has selfadjoint extensions.

k-
Let C be the conjugation in H defined by CAe

k
= (-1) Ae

k
. We have

C : ~ + ~ and CA = AC, thus using the theorem of von Neumann we ob-

tain the existence of self-adjoint extensions of A.

4.8. Remark

No element of A is closed on S ~ as an operator in the Hilbert space
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Proof. Let x E A. Then its matrix form has finite rows and columns.

Let for each j E IN N(j) denote the length of j-th column. Let us

choose a sequence of non-zero columns of x with indices jk such

that the jk-th column begins below the end of jk_1-th column,

x(i,jk) = 0 for all i ~ N(jk_1) where x(i,jk_l) = 0 for all i > N(jk_l)'

Let us consider a vector h E H = i 2 such that h(j) = 0 for j ~ j1,j2"" •

The action of x on h can be reduced to the action of the matrix x

consisting only of j -th columns of x and such that its rows contain
k

at most one non-zero element of each j-th column. So we may consider

only those x E A which already have this form.

( .) dfLet x ] =

Put

max Ix (i , j) I .
N(j -1 ) <i~N ( j )

h(j)dl 1 1 1
x(j) + 1 • N(j)! • 2 j /2

Then h E H = i
2

, because 1
• To show that xh E H we notice that:

2
j

(xh) (i) x(i,j.)h(i)
l

where j. is the index of this column of x to which the only non-zero
l

element of the i-th row belongs.

We have

jN (j . ) = ..... =:: j. 1 ji jN(j .-1)l-
l l

and so
00 00 002 L \(xh)(i)j2 L __1__1_ ~ I 1 1Ilxhll = ~ N(k) --.-< 00

N(j . )
2
j

i
N(k) 2ki=1 i=1 l k=l
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D(x) •

i > n

i ~ nr(i)
o

h (i)
n

Q.E.D.

Moreover xh ~ xh in H, but h ~ ¢ = D(x), i.e. x is not closed on
n

Now let us take the sequence {h } C ~ defined by:
n

The sequence {h } converges in H to h.
n
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§ 5. Relations between embeddings and extendibility

In the previous sections we have considered a fixed embedding

j : 5 c+5' which gave rise to the algebra of extendible maps in

L(5). However this construction essentially depends on the choice

of j.

The following example shows that in general for two different em-

beddings the corresponding algebras of extendible maps are essentially

different.

5. 1. Example

Let 5 = <1>, 5'

<I> c w. Let

w as in Sect. 4. Let j denote the natural embedding

1

1

1

1

2

o

1

a

1

a

..................
be an infinite matrix. Then the associated linear map 0

0
: <I> + w is

(T,S)-continuous. Let o(s) = {(OOS) (n)} be the anti-linear embedding

connected with 00. The antilinear mapping 0 : <I>

embedding, fulfilling definition (2.1), because

for all n ( IN and <o(s) I s> > 0 iff s t o.

+ w is a positive
n(n-1)

det (P oOP ) = 2-2­
n n

> a

We can construct the algebra of o-extendible maps A c L(5).
o

Let us take a ( L (5) of the form
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a' t... ~...~.J
i.e. the projection on e

1
in ~2. Clearly a is j-extendible. Suppose

that 0 0 a = ~ 00 for some ~ E L(S'). Then a is of a matrix form

([20J, Prop. 1.2 p.98) as a continuous map ~ : w + w.

Let ~ = {~( i, j)}. .E Then for each s E Sao a (s)
1.,] IN

i.e. a 0 a is described by the matrix ~ 0 aO. But

~

a 0 aa

I'"
L a(1,i),

i=l

'"

~ ~ ~ n-1~
a(1,l) + 2a(l,2), ... ,a(l,l) + 2 a(1,n), ...

La (2 , i), a (2 , 1) + 2a ( 2 , 2) , ...
i=l

etc.

and

Hence

a

o

o

o

o

etc.

1
'"La(1,i)

i=l
~(1,1) (1

'"L _1)

n=l 2
n

0,

which is a contradiction. It means that a is not a-extendible.

This example shows the need of studying relations between different

embeddings.
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The following result gives us an useful approximation of extendible

maps:

5.2. Proposition

Let j : S c+ S' be a positive embedding, H. the Hilbert space
J

associated with j, A. c L(S) the algebra of j-extendible elements.
J

Let P
s

be the orthogonal projection on a vector s E S in H
j

. Then

i) for each s ESp E A
J
.

s

ii) the set {p : s E S} is total in A. with respect to the topology
s J

p •
wp

Proof

i) For any s E S, h E H. we have
J

P h (s I h) s •
s

In particular for h E S we have

P h = < j (s) I h> s E S .s

It is clear that PEL (S).
s

Now consider (j 0 P ) (h) = <~>j(s)
s

where P z = <z I s>j(s) for all z E S'.
s

We have P E L(S') and thus PEA ..
s s J

<j (h) I s>j (s) (P °j)(h)
s

ii) Let a E A.. Any P -neighbourhood of a is determined by finite
J wp

sequences {sl""'s } c Sand {f , ... ,f } c S'.
n 1 n
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Consider the at most 3n dimensional subspace X of H
j

spanned by

+ +
{s1""'s , as

1
,···,as , a s , ... ,a s }.

n n 1 n

Let S
n

al s ED
n

in the

= span{s1, ... ,sn}' Then al s : Sn ~ X and the operator
n

01 X\S has a representation in the Hilbert space X of Hj
n

form of a finite linear combination of one-dimensional

S ~ S' of j by:

projections onto some elements of X Le. for any Z E Sn az = LGkPZkZ

zk E X. In particular <fi I (a - LGkPzk)Si> = 0

<f i I (a+ - Lak PZk ) s i > = o.

Q.E.D.

Let u be a densely defined linear map from 5' into 5, with S-dense

domain D(u) c S'.

t
Let D(u ) := {g E 5' : f ~ <g I uf> is S-continuous f E D(u)}.

We can define the transposition u
t

of u by <f I Utg> = <g I uf> for

t t t
all f E D(u) g E D(u ) as a linear map u : D(u ) ~ S.

t tt
If D(u ) is dense in 5' then we have u c u i.e. for all h E D(u),

Similarly we define transposition of maps from 5 into S'. As a particular

case we will consider the maps j : S ~ S' and j-1 : j(S) ~ S.

We define the antilinear transposed map, jt

<jts I z> qf <~>.

Thus we have <j t (s) I Z> = <j (s) I z> i . e . j t j .

-1 -1 t I -1Defining D(j ) = j(S) we have D«j ) ) = {g E 5' : f ~ <g j f>

is S-continuous for f ( j(S)}.
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Let z,h ( j(5) and let h = j(s) for some s E S. Then

<h I j-l (z» = <j ($0) I j-l (z» -1 I<j(j (z» s> = <TzS>.

< j (s) I (j -1) t h >

i.e. D«j-l) t) c: j (5)

Thus we see that the map j(5) 3 z ~ <h I j-l(z»iS s-continuous

-1tit
i . e. h E D ( (j ». Hence j (S) c: D ( (j - ) ).

h d 1 « ,-1 t) d 1 (,-l)th 'dOn t e other han et h E D J ) an et v = J • ConS1 er

-1
the map j(S) 3 z ~ <h j (z». It is S-continuous in virtue of

the definition of D( (j-l) t). So <h I j-l (z» = <ZTV> for all

z E j(S). For each s E 5 we have <j(v) I s> = <j«j-l)th ) I s>

-1
<h I j j(s» = <h 1 S>. Thus h = j(v) E j(S)

and (j-l)t = j-l.

In this way we proved

5.3. Lemma

If j : S ~ $' is a positive embedding then jt
-1

j

Let us now consider two positive embeddings jl : S ~ 5' and j2 : 5 ~ SI,

and associated with them algebras of extendible maps Ai ,A
2

. We discuss

now certain technical results concerning extendibility with respect to these

two embeddings.

5.4. Lemma

Let jl,i 2 be two positive embeddinqs of S into S'. Then the following

conditions are equivalent:

i) For each s ( 5 the orthogonal projection P on the vector s in
s

the Hilbert space H, is j2-extendible ..
Jl



iii) The map 6
12

= j1 0

Proof
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.-1
J 2 is ~-continuous on j2(S) in S'.

In virtue of lemma 5.3 ii) is equivalent to the condition

j 1 (S)
-1 t

c D((j2 ) ).

i) "* ii) . Let s E S and P be j2-extendible then there exists
s

~

P
s

0 j2' For each s,z E S we have:

(5.5)

Then using again the equalities

~

From the assumed S-continuity of P
s

on j2(S) we have

j 1 (s) E D( (j; 1) t) = j 2 (S) .

ii) ~ i). We have .-1 _ (.-l)ttJ 2 - J 2 .

5.5 we obtain continuity of the map:

~

P h
s

~ ~

In this way, by the continuity, P extends to the whole S' and we have pEL ( S' ) •
s s

Hence Ps is j2-extendible.

ii) "* iii). By the definition of D((j;l)t)

map is ~-continuous for each s E S:

j2(Sl the following

It means that the linear map
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is S-*-weak continuous_ Its unique S-*-weak continuous extension on

S', denoted also by 6
12

, is a S-continuous map in S, i.e. 6 12 E L{S').

(see Lemma 1.15, Remark 1.9).

iii) ~ii) Let b
12

E L{S') and let s E S. Then the map

j;l{h»

is S-continuous because

s>

Q.E.D.

5.6. Proposition

Let jl,j2 be two positive embeddings. Let Al , A2 be the corresponding

algebras of jl and j2-extendible maps. Suppose that Al c A2 -

Proof

By Proposition 5.2 i) everyone-dimensional projection P on a vectors

s E S in H. is jl-extendible. By the assumption it is j2-extendible
Jl

and the result follows by Lemma 5.4 ii).

Q.E.D.

There arises the natural problem whether the inclusion ji (S) c j2{S)

implies the inclusion Al c P'2. Although the set Pi = lin.span{ps E B{H
ji

);

P is the projection on s E S} is p -dense in A
l

, in general it is not
s ~
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sequentially pwp-dense in A
1

. On the other hand P1 is 'p-dense in

L(S). Hence A1 is pp-dense in A
2

, independently of a relation between

embeddings.

Let ~ be the j1-extension of a E A
1

. Then the formal equality:

(5.7)

shows that the following holds:

5.8. Corollary

as sets.

Proof

. -1 .-1
By Lemma 5.4 the maps 612 = jl 0 J

2
' 6 21 = j2 0 J

1
are S-continuous,

a is S-continuous by definition, thus by (5.7) 6
21

a 6
12

E L{S') is

the j2-extension of a. i.e. Al C A
2

• The inverse is alsc true by the

same argument.

The converse implication follows from proposition 5.6.

Q.E.D.

then it is sufficient to assume

on j1 (5) to obtain j1 (S) = j2(S},

i.e. A1 = A
2

. Hence the continuity condition imposed on j2 0 j~1

Let us observe that if jl (S) C

continuity of the map 6
21

= j2

seems to be too strong. Although we know that j1 (S) = j2(S) if and

only if A
1

= A2 , we do not know whether A
1

C A
2

if j1 (S) C j2{S).
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We conclude this section with a natural definition of equivalence

between embeddings.

5.9. Definition

Two positive embeddings ji and j2 are equivalent iff jl (5)

(or Ai = A2)·
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§ 6. Spectral theory

In this section we present an approach to spectral theory in the

algebras of extendible maps on initial spaces.

Considering the particular case that j(S) equals st, we see that

all elements of A. are bounded as operators in the Hilbert space
]

H.. Moreover we have A. = B(H.) i.e. in this case an operator in
] ] ]

H. is j-extendible if and only if it is bounded. It easily follows
]

from the closed graph theorem [21J IV § 8 applied to the map

--1
j : S~ + H. that S = H. as topological vector spaces.

~ ] ]

In this case our theory reduces itself to the theory of bounded

operators in Hilbert space. The topologies T , T , T , T defined
s wp p w

on L(S) = B(H.) become the norm topology, weak operator and strong
]

operator topologies and weak topology on B(H.) respectively. The
]

topologies p on A. are now the *-topologies on B(H.).
] ]

This shows that from the topological point of view the theory of

algebras of bounded operators in a Hilbert space is a very special

case of our theory.

This suggests that we have to look for such a spectral theory of

extendible maps which would be compatible with the theory in Hilbert

space. We can use some elements of the spectral theory ofGB*-algebras

[1,2J, although the extendible map algebras are not GB*-algebras in

general. (see Remark 4.7.)

We will discuss Allan's concept of spectra applied to our case and
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compare it with the usual definition of spectra of operators in

Hilbert space. In this context we consider also possible definitions

of positive elements in A. Henceforth we assume that for a given

initial space 5 we have fixed a positive embedding j. Hence the

Hilbert space H and the algebra A = A. are fixed too.
J

First we notice an interesting relation between closedness of an

operator in H and its continuity in 5.

6.1. Lemma

Let S be an initial space for which the general closed graph theorem

holds (e.g. S is metrizable or its dual 5' is metrizable). Let a be
S

a closable operator in H, S c D(a) and a S + 5 . Then a E L(5).

If moreover 5 c D(a*) and a*

Proof

S + 5 then a E: A.

At first we will show that a is closed as a mapping acting in S.

Let {S } c S be a net converging in 5 to s E 5, and let {as} converge
a a

in 5 to h E S. Then by Proposition 2.2 s + s in H and {as} is
a a

convergent to h.

By closability of a we have h = as i.e. a is closed map in 5. It

is defined on the whole 5. Thus by Theorem 8.5 [21J Ch. IV we have

a E L(5). Applying this result to a* we have a* 1 5 ( L(S) and then

applying Proposition 3.5 to a*1 S we have a' = a*l s E: LlS') i.e. a E A.

Q.E.D.
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We recall the definition of bounded elements in topological algebras.

6.2. Definition ([2])

Let A be a topological algebra. Then an element y of A is called

bounded if there exists a complex number ~ ~ 0 such that the set

{(~y)n} E is bounded in A. The subset of all bounded elements
n ~IN

of A is denoted by AO'

In general the set A
O

is neither an algebra nor a vector space. However

we have the following result:

6.3. Proposition

Let A be the algebra of extendible maps acting in an initial space

S. Let AO be its bounded part in the topology ps' Let x,y E AO and

xy = yx . Then:

i) xy E Ao'

ii) x + y E Ao '

Proof

i) Consider xy, let ~1'~2 E ~1 be such that the sets {(~lx)n}nEIN'

n
{ (~2x) }nE:N are bounded in A.

Let B c S be a bounded set, then for any seminorm p in S and for

each n E IN:
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n n n
sup P(~1~2(xy) s)
sEB

df 00 k
Observe that B

1
= U «~2Y) B) is bounded. Indeed for any seminorm

k=l

P1 in S

< 00

since y E AO.

In particular, because x E AO,we have:

n
sup sup P«~lx) t)
nErn tEB

1

element of L (5) •

< 00 • It means that xy is a L -bounded
s

'" '" "'"Applying a similar argument to x,y E L(S') we have eventually xy

Os bounded, hence xy E AO.

ii) Assume for simplicity that ~1 1. We have

n
(x + y)

and for any seminorm p in S, s E S

-n n
p(2 (x + y) s) ~

n n n-k kI (k)P«X y) s) ~
k=O

n-k k
~ max p(x y s) ~

k~n

m
sup p (x t)
tEB

1
mErn

df
Here B

1 uy~ and B is any bounded set in S containing s.
k=O
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Therefore for a given bounded set B c 5 we have:

sup p«(x + y)/2)ns ) < 00 •

sEB, nElli

Applying the same argument to x,y E L(S') we see that the set

{( (x + y)/2)n} is bounded in A, Le. x + y E A
O

'
aElli

Q.E.D.

It turns out that the normal elements of AO are bounded also as

operators in the Hilbert space H:

6.4. Lemma

+
xx x+x then the closure x of the operator x with the

domain D(x) == 5 is bounded in H, Le. x E B(H).

Proof

Let ~ E ~1 be such that {(~x)n} E is p -bounded in A. i.e. for any
n lli s

seminorm p in 5 and a bounded subset B C 5 there exists a constant

M B > a such thatP,

n
sup sup p «~x) s) ;;;;
nElli sEB

< 00 •

In particular for each s E 5 such that Us" 1

n
sup II (~x) 511 ;;;; M < 00 •

nElli s

+Because from x x E B(I1) it follows that x E B(H) and because



2
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1 ~1211xs112 =< I 1
2 11 * II~ ~ x xs

we can assume that x

Put z = ~x. Then

+x by Proposition 6.3.

2 2
II zs II ~ II z s II

x E B (H) such

Indeed: put f

As the LHS does not depend on n we have: I~ IlIxs II ;;; 1 for all s f S,

- 1 -lis II ;;; 1. Thus by continuity Ilxll ;;; m and x E B (H) •

Q.E.D.

6.5. Remark

i.) The assumption xy = yx in Proposition 6.3 is essential as the

following example will show. Let S = ~ (see § 4).and put

x = (0 0) n E IN.n n 0

IfI)xn •
2 +

Put x = Then clearly x E AO
as x = 0 but x + x f. AO

x+)2
2

0because (x (n +
~ H (H) either.+ = 2) . Observe that x + xn n a n

ii) The converse to the Lemma 6.4 is not true: Take S = ~ and

that xe = e . Then clearly x ( A but x f. AO.
n n+1

2= {exp(n )}nEIN E w. Then it gives rise to the

continuous seminorm Pf in S ([10J):

2
II {exp (n ) s (n) }nEIN II 1

2

but for instance:

n 2 n
II fx e 1111 = exp (n + 1) f, ~ for any ~ > O.

2
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+ +In this case x + x is a normal element of A, x + x E B(H)

but x + x+ ~ A
O

'

6.6. Corollary

If x E A
O

and x

Proof

+
x then i* = x E B(H).

By Lemma 6.4 x E B(H) and it is sYmmetric on the domain D(x) S

which is dense in H.

Q.E.D.

We recall now Allan's definition of regular set and of spectrum of an

element of the topological algebra A.

6.7. Definition

Let A be a topological algebra, AO its bounded part, ~* the extended

complex plane, x E A. Then the set:

is called the "regular set of x".

is called "the spectrum of x with respect to AO".

is called "the A-regular set of x".

is called the" A-spectrum of x".
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If x E A then the regular set and the spectrum of its unique

closure x in the Hilbert space Hwill be denoted by p(x) and o(x)

respectively.

The resolvent of x E A is the map: ~* 3 A + RA

6.8. Proposition ([2J Theorem 3.8)

-1
(A - x) •

i) If ~* 3 A + R
A

E A is weakly holomorphic in a point f.I ( ~*

then 11 ( Po (x) .

ii) ([2], Corollary 3.9). 00(x) ~ 0 and it is closed in ~*.

iii) ([2] Corollary 3.11). Let K c PO(x) be a compact subset of

~*. Then there exists a bounded subset B of A such that for

each A E K

A(B) •

2
The set B is absolutely convex, closed and moreover B c B, ~ ( B.

iv) ([2J Theorem 3.12). Let x E A and let

be "the radius of boundedness" and

df
rex) = sup {isiis E 0o(x)}

be "the spectral radius" of x.

Then Sex) = rex).

6.9. Remark

In [2] it has been assumed that A is pseudo-complete. The algebra



- 54 -

Aof extendible maps is pseudo-complete because it is p -sequentially
s

complete (see Proposition 3.12 and [2] proposition 2.6).

6.10. Corollary

i) x E A
O

iff 0
0

(X) is bounded.

ii) For each x E A

Proof

+
0

0
(X ) = 0

0
(X) (complex conjugate).

i) follows from Proposition 6.8 i.v).

ti) follows from the equality:

-1 +
((>.. - x) )

+ -1
(>.. - x ) for >.. E PO(x).

Q.E.D.

6.11. Corollary ([2] Theorem 1.4)

-1
If the map A 3 x + x E A is Ps continuous then 0

0
(X)

where the closure is taken in ~*.

O(X)cl
A

As we mentioned before one should not expect that elements of A were

closed as operators in H with domain S (See Remark 4.8). On the

other hand all elements of A are closable and the spectra of their

closures are well defined ([23J).

6.12. Theorem

Let A be the algebra of extendible maps in a test space S. Then
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ii) + +If x x = xx then o(x) C 00(x).

Proof

i)

ii)

follows from the inclusion po(x) C PA(x).

-1
Let A f. PO(x). Then (A - x) (A

O
.

-1
Since (A - x) is normal in A and since x is closable in H,

it follows from Lemma 6.4 that (A - x)-l (B(H). (See [23]

Theorem 5.2 p. 90). and so A ( p(x).

Q.E.D.

The relation o(x) C 00(x) shows that the description of x as an

element of A gives too little information about its Hilbert space

spectral properties. However it seems to be interesting whether there

exist conditions giVing the relation o(x) = 00(x).

In the particular case of the initial space t (see § 4) we have found

such conditions:

6.13. Theorem

Let S = t (see § 4) and let A be the algebra of extendible maps

associated with the natural embedding ¢ cwo Then:

i) x ( AO if x E A, x E B(H) and 00(x) C o(x).

ii) x E B(H) and o(x) = 00(x) if x ( A
O

and xx+ +x x.
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f Ao' Moreover by Proposition

Taking z E S,z ~ cm(p) in Q,2

and hence for each n ( IN (z

n E: IN, s ( ~p we have xns (
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Proof

i) We have p(x) c PO(x).

We can choose a compact set K C p(x) - {a} with non-empty interior

- -1 \' 1 n+l - n .and such that the series (A - x) = L (->:) (x) converges ln

norm in B(H) for all A F K.

By the assumption K c PO(x) hence for each A E K, s ( 5

-1 \' 1 n+l n
RAs = (A - x) s = L(i) x s

6.8 iii) there exists the bounded set B
k

c A such that RA ~ A(Bk )

for all A E K. It follows that for any p E IN there exists m(p) r IN

such that RAs f ~m(p) for all A E K and s f ~p.

For any z,s E S the function

00

~ -+ (z I R
1

s) Q, = L ~n+l(z I xns) ~f F (~)

- 2 k=O
z,s

~

-1
{~ 1 I 1is defined and analytic on K = E: ~ - (' K} and it can be

~ .

analytically continued on 'some open disc containing O.

we have F (~) = 0 for all ~ E K-
1

z,s

I Xns)Q, = O. It means that for each
2

~m(p)

By a similar argument and Corollary 6.10 ii) we have also:

Because each bounded subset B
1

c S is contained in some ~P, for

p E IN, we see that for all f E: w •



#
« x )n)

qfB iGtlf
1
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#x n
sup II f (w) sll Q, :;;;
sEB

1
2

maxlf(j)1
j:;;;m(p)

sup IIsllQ,
sEB

1
2

< 00

Here x# denotes x or x+.

It follows that x E A
O

'

ii) +Suppose that x E A
O

and xx

Then by Lemma 6.4 x E B(H).

+x x.

Let A E p(x) with IAI sufficiently large. Then the series

00 -

1 \ x n - -1- ~ (-) = (A - x) is uniformly convergent in B(H). For a given
A n=O A

p E IN there exists m(p) E IN such that for each s E ~P, n E IN

we have (I)ns E ~m(p). Hence we have (A - x)-l s E ~m(p). By an

argument of analyticity we have (A - x)-l s E ~m(p) for all A E p(x).

Similarly we can show that for all A f:; p (x), all m E IN and each

s f ~p we have (A - x)-m E ~m(p).

Using an analogous argument for x
+

= x*l s we have (A _ x*)-m E ~m(p).

It is clear that -m S -+ S (~
+ -1 - -ml s(A - x) : and - x ) = (A - x*) S : S -+

These -moperators are bounded in H. Hence by Lemma 6.1 (A - x) EA.

# +Let x = x or x . Then for any fEW and any bounded subset B c S

with B c ~p we have:

:;;; sup If(j)lsup s < 00 •

j~m(p) s(B

-1
We conclude that (A - x) E A

O
i.e. A E Po (x) .

Q.E.D.
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For the initial space S = ~ we have:

i) x E A, x E B(H), + + and 0
0

(x) o (}<) if and only if x f Aoxx x x

+ +and xx = x x

ii) If x E A
O

+ + then 0A(x) o (}<) •x x xx c
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§ 7. Concluding remarks

It seems worthwhile to introduce some order structure in the algebra

A, which would be a counterpart of the order structure in von Neumann

algebras. However we meet here some ambiguity in defining positive

elements. In the case of von Neumann algebras the spectral definition

and the definition by means of expectation values are equivalent.

That is not the case here. By the example in § 4, Remark 4.7 we see

that there exist hermitian elements in A which do not have real

spectrum. On the other hand we have the following result for S = ~.

7.1. Proposition

If x E AO and <j(s) I xs> ~ 0 for all s E S

Proof

+
~, then °0 (x) C IR .

It is obvious that x = x+ hence x E B(H) and x* x by Lemma 6.4 and

Corollary 6.6. By Theorem 6.13 ii) we have 00(x) = o(x) C IR.

Positivity follows from the continuity of the scalar product in H.

Q.E.D.

On the other hand the following general result is a corollary to

Theorem 6.12.

7.2. Proposition

If x E A, 00 (x) C IR + and x

s E S.

x+ then x* X and <j(s) I xs> ~ 0 for all



- 60 -

We can say that an element x ( A is "positive" if <j(s) I xs> ?; 0,

for all s E S and it is "spectrally positive" if it is hermitian in

Hence the spectral positivity implies positivity and in particular

cases e.g. S = ~ it is equivalent to the positivity.

We conclude with the following simple result.

7.3. Proposition

Let x ( A then

i) + and
+

x x xx are positive.

ii) if is positive then +x x = x.

iii) if
+ 1.(1 2

x = x then x + x) and x
+ 2

and x = x - x
+

) 2 . t'+ x - x are pos~ ~ve

From the above Proposition it follows that there are many positive

elements in A.

Each x E A can be decomposed into a linear combination of four of them.

This leads to the following open problems.

7.4. Problems

1. In the nuclear case (see [7,8]) continuous linear functionals on A

are fully characterized. The same would be useful in the general

case of initial spaces.
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2. We can define positive elements of L(S),not only of A. How does

depend this definition on the choice of the embedding j?

3. Dirac's formalis~ as formulated in [9] is based on a family of

positive maps from S' into S. It is desirable to develop such a

scheme in our theory.

4. Physical interpretation can be based on Dirac's idea of an ob­

servable,adapted to our scheme. What a physical meaning has the

embedding j? Is it possible to characterize those embeddings for

which a given algebra of observables is the algebra of extendible

maps? What is a characterization of subalgebras of L(S) which are

exactly the algebras of extendible maps associated with some

positive embedding?
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