

An analytic mesh generation method based on elliptic systems

Citation for published version (APA):
Petrilli, M. A. (1989). An analytic mesh generation method based on elliptic systems. (IWDE report; Vol. 8907).
Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/1989

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://research.tue.nl/en/publications/70d93c18-da0b-4898-b840-782cb0fa8d33

•

Technische
Universiteit
Eindhoven

\\\\V(O
Den Dolech 2
Postbus 513
5600 MB Eindhoven

lnstituut
Wiskundige Dienstverlening
Eindhoven

REPORT IWDE 89-07

AN ANALYTIC MESH GENERATION METHOD

BASED ON ELLIPTIC SYSTEMS

Maria Angela Petrilli

June 1989

AN ANALYTIC MESH GENERATION
METHOD BASED ON ELLIPTIC SYSTEMS

Report IWDE 89-07

June 1989

Maria Angela Petrilli

The present work has been performed under contract with Zowel B.V. (Eindhoven) for the

Instituut voor Wiskundige Dienstverlening Eindhoven. The author is a student of

SASIAM/Tecnopolis (Bari, Italy). She visited the Eindhoven University of Technology from 1-4

to 30-6 1989 in the ECMI student exchange programme. IWDE supervisor was S.W. Rienstra

(TUE).

ABSTRACT

The basic ideas of the construction and use of numerically generated boundary coordinate sys­

tems for numerical grid generation are discussed. With such coordinate systems, all computations

can be done in a rectangular transformed region regardless of the shape of the physical boun­

daries. Furthermore, numerical solutions of partial differential equations on regions of arbitrary

shape can be constructed, and codes can be developed, that treat different physical configurations

and boundary shapes entirely as input. The method used to construct computational meshes will

be based on the solution of an elliptic boundary value problem. Additional interior grid control is

effected by a modified elliptic system containing "control functions" in two ways: either assign­

ing the values of such control functions in input, or computing them from the Dirichlet boundary

values by constraining the coordinate lines to be locally orthogonal to the boundary. The numeri­

cal algorithm is essentially a simple multigrid method, where the numbers of meshes in x and y

direction have to be powers of two, allowing an iteration based on halving the meshsize.

I .

-2-

1. INTRODUCTION

The motivation for grid generation is the numerical solution of partial differential equations by
either finite difference or finite element techniques.

The way the domain is subdivided is very important since the computational mesh largely affects
the stability and convergence of the numerical solution.

The present work has been done, primarily, to provide a mesh generator to be used with the
finite-volume package "Phoenix." for internal (tutbulent) heat and mass ftow calculations.

Although the impetus for these developments has come from fluid dynamical problems, the gen­
eral technique here illustrated is equally applicable to heat transfer, electromagnetics, solid
mechanics, etc.

In the last years the numerical generation of boundary-confOJrning curvilinear coordinate systems
has provided the key to the development of numerical grid generation techniques with arbitrarily
shaped boundaries (see [3]).

A boundary-conforming coordinate system is a curvilinear coordinate system having some coor­
dinate lines (surfaces in 3D) coincident with segments of the boundary of the region considered.

Boundary-conforming coordinate systems are generated numerically by determining the values of
the physical coordinates in the field from the values (and/or angles of intersection) on the boun­
dary. This can be done in two basic ways: by the Algebraic Generation Method and by the Ana­
lytic Generation Method.

The Algebraic Generation Method consists of an interpolation between the boundaries. Thus a
general coordinate line is given as a function of the curvilinear coordinates. This function con­
tains certain coefficients which are determined so that the function matches specified values of
the cartesian coordinates. Algebraic Grid Generation is discussed in detail in [1].

In the Analytic Generation Method the curvilinear coordinates are defined via suitable partial dif­
ferential equations producing, on the one hand, smooth coordinate lines and, on the other hand,
allowing us, by the boundary conditions, to impose the prescribed values at the boundaries.

Although the solution of such a boundary-value problem is a classic problem of partial differen­
tial equations, some care is of course to be taken with respect to which equations are applicable
and which solution method is appropriate.

In the following, an analytic method is presented for the generation of a general 20 mesh system.

~3-

l. ELLIPTIC GENERATION SYSTEMS

If the coordinate points are specified on the entire closed boundary of the physical region. the grid
generating system must be elliptic, while if the specification is on only a suitable ponion of the

boundary, the system would be parabolic or hyperbolic. This latter case would occur, for
instance, when an inner boundary of a physical region is specified, but a surrounding outer boun­
dary is arbitrary.
The present wolt, however, treats the case of a completely specified boundary. which requires an
elliptic partial differential system.

2.1. Laplace system

The most simple elliptic partial differential system is the Laplace system:

V2 'f'.;=o i=t.2

where 'f-.
1 = ~ and 'f-.

2 = 11·

(2.1)

With this generating system the coordinate lines will tend to be equally spaced in the absence of
boundary curvature because of the strong smoothing effect of the Laplacian. but will become
more closely spaced over coocave boundaries, and less so over convex boundaries, as illustrated
below for a boundary 11 = 0.

I

____ ________.,

'1:a > 0
(concave)

)(

'1:a < 0
(convex)

In the left figure we have 11:a > 0 because of the concave curvature of the lines of constant 11
{= 11-lines). Therefore it follows that 1111 < 0 and hence the spacing between the 11-Iines must
increase withy. The 11-lines thus will tend to be more closely spaced over such a concave

I
! -

-4-

boundary segment.

For convex segments, illustrated in the right figure, we have 1\x:r < 0, so that 11, must be positive
and hence the spacing of the 11-lines must decrease outward from this convex boundary.

2.2. Poisson system

Control of the coordinate line distribution in the field can be exercised by generalizing the elliptic
generating system (2.1) to Poisson equations:

v2 ~;=Pi ; = 1.2

where~• =~. ~2 =11· pl =P • p2 =Q.

(2.2)

In the system (2.2) the terms pi can be fashioned to control the spacing of the coordinate lines

and for this reason they are called "control functions". They may be considered to be dependent
both on the dependent and independent variables.

Considering the equation

V2 ~=P,

positive values of the control function P will cause the ~-lines (=lines of constant~) to tend to
move in the direction of increasing ~ and viceversa. Similarly for 11·

Q>O P>O

With the boundary values fixed, as bere considered, the 11-lines and the ~-lines cannot cbange the

intersection with the boundary. So near the boundary the effect of the control functions P and Q
is to change the angle of intersection at the boundary. For instance, negative values of P will

cause the ~-lines to lean in the direction of decreasing~ and positive values of Q will cause the

-5-

tt-lines to lean in the direction of increasing TJ.
These effects are illustrated in the following pictures:

- -

I
I
\

I
I
\

,
I

In a word. the mesh lines can be dense or coarse depending on the negative or positive values of
the control functions.

Various forms of the source terms P and Q have been devised that contain adjustable parameters
but. however, the forms of these source terms and the values of the adjustable parameters require

artful selection and are problem dependent.

-6-

3. TRANSFORMED EQUATIONS

In order to make use of the Analytic Generation Method, the generating equations must first be

transfonned to the curvilinear coordinates.

Let us consider the Poisson system

~+~=P
Q.x2 ay2

(3.1a)

n+n=Q
ax1 ay2

(3.1b)

with the curvilinear coordinates ~(x,y) and T}(x,y) specified on a boundary curve r.
Then the system (3.1) generates the values ~(x,y) and T}{x,y) in the field bounded by r. This is
thus a boundary value problem on the physical field with the curvilinear coordinates (~.1\) as the
dependent variables and the canesian coordinates (x,y) as the independent variables, with boun­
dary conditions specified on a curved boundary r.

y

;((x,y) e r2)= 0
;((x,y)e r4)=m=const

T}((X,y) e rl) = 0

T}((x,y) e r3)=11 =const

Although linear, the problem has implicidy defined boundary conditions, which make it very hard
to handle.

The problem may be simplified for computation by first transforming it so that the physical
canesian coordinates (x,y) become the dependent variables, with the curvilinear coordinates ~. 1\)

as the independent variables.
Then, at the expense of a nm1inear system, the boundary conditions are simplified to explicidy
given values at a rectangle. 'Ibe boundary value problem in the transfonned field then generates
the values of the physical cartesian coordinates, x~.'l) and y(;,T}), in the transfonned field. The

boundary is now built up from segments of constant~ or 1\. i.e. vertical or horizontal lines.

I •

-7-

Example:

4

l 1

----------- --t X

Our task is now to rewrite the equations {3.1) in tenns of the new variables x~.'l\) and y(~.'l\).

Let us consider a function f = f(~(x,y), 1\(x.y)). Then

El iJf
iJx = f~ ~ + f,.'lz • ()y =I~~>'+ /11 'ly·

If f ba iJF -] and iJF = 0 =x we ve ~- ~ .

If f h iJf - 0 and iJf - 1 =y we ave ax- iJy - .

So we get the following system:

[
x~ x,.l [~ ~'] = [1 0 l.
y~ y.,. 1\z 1\y 0 1 J

Then it follows that

[~ ~'] = [x~ x,.l-t = _ 1 [y11 -x l
1\z 1\y Y~ y.,. x~ y11 - x11 y~ -y~ x~'ll

and we have the following relations:

~= y,.
J

y~
'1\z=-­

J

whereJ =x~y11 -x11 y~.

x,. . ~,=-~.
X~

• "' = T.

a'-f a'-I
Let us compute ax2 and iJy2 •

{3.2)

,.~

/

-8-

= ifc.c. ~ + IF:r~ 'llx) ~ + lc, b +if rae.~+ I TfTI 'llx) 1lx +IT(Tttx·

If I= x then ()2 { = 0 i.e.
dx

Xc,c, ;; + 2x't,T(~ 'llx + Xc, ~ + XTfTI fli + X'llfl:a: = 0.

Similarly,

iPI 2 2
Oy2 = lc,c, ;y + lc,TI fly ;y + lc, ;>'>' +I Tf. ;y fly+ I 'IITI11y +IT! fl)')'·

iPI .
If l=x then ()y2 =0 1.e.

Xc,c, ~~ + 2xf;rl ~y Tty+ Xc, ~>'>' + XTfTI f);+ XT! 11>'>' = 0.

Summation of (3.3a) and (3.3b) yields

(3.3a)

(3.3b)

Xc,c,(~i +~~) + 2xc,T!(~ 'llx +~y Tty)+ Xc,(~xx; +;>'>') + XTITI(Tt; +Tt;) + XTf(Ttn +Tt>'>') = 0.

Taking into account the defining system (3.1) and the relations (3.2) we get

1 ~.1 2 1 1 2 2 Q 0 Xc,c, 2 (r,j +yTI) + 2xf;rl 2 (-XTI Xc, -yTI Jc,) + XTfTI 2 (Xc, +yc,) + Xc, p + XT! = .
J J J

The same for 1 = y after changing x into y.
Hence, after changing the dependent and independent variables with each other, the system (3.1)

takes the following fonn:

where:

{

g 11 xc,c, +2g 12 xc,11 + g22 x11'1l +xc,P +x'll Q =0

gll Yc,c, +2g12YC.'Il + g22y'IITI +yc,P +y'll Q =0
(3.4)

If we consider, as original generating system, the Laplace system (P = Q = 0), the system in the

new coordinates becomes

{

11 2 12 22 -0 g Xc,c, + g Xc,11 + g X1111 -

glly +2gl2y +g22y -0 ~ 't,T('IITI- .
(3.5)

The equations (3.4) and (3.5) are of the same type as the original ones, but are more complicated

-9-

in that they are non linear and contain more tenns. The domain, on the other hand, is greatly
simplified since it is, regardless of its shape, transfonned to a fixed rectangular region. This facili­
tates the imposition of boundary conditions and is the primary feature which makes grid genera­
tion such a valuable and important tool in the numerical solution of partial differential equations
on arbitrary domains. At the same time, the rectangular domain allows us to use well-known
finite difference algorithms for solving the equations for x andy.

-10-

4. ORmOGONALITY

When the boundary values are fixed, one way to change the angle of intersection of ~-lines and
1\-lines with the boundary is by a suitable choice of the control functions.

Such a technique enables us to constrain the transverse lines to be locally straight and orthogonal
to the boundary (see [2]).

Let us suppose that the source terms have the form

p = 4>(;.1\) <~i +~;).

Q = '1'(~.1\) (1\; +1\;)'

where the auxiliary functions CIJ and 'I' are yet to be specified.

If we rewrite P and Q in terms of the cartesian coordinates. we get:

p - cz, _1_ (y2 + x2) - cz, _1 g 11
- J2 'I 'I - J2 •

Q = cz,-+ (x~ +y~) ='I'-+ g22.
J J

Upon introducing these terms, the equations (3.4) assume the form

{

g 11 (x~~ + CIJ x~) + 2g 12 x~ + g22(x'~'~ +'I' x'll) = 0

g ll(y~ +CIJy;) + 2g 12 y~ + g22(y'l'l +'I' y'l) = 0.
(4.1)

Given a set of boundary values (x.y) on the boundary of the computational domain, we can deter­
mine the functions CIJ and 'I' by requiring that the given boundary values satisfy appropriate limit­
ing forms of equations (4.1) along the boundary of the computational domain.
We can obtain the equations that define CIJ and '¥ in terms of the boundary conditions by impos­
ing the two conditions that the transverse coordinate curves be locally straight and orthogonal to

the boundary.

Let + and 'I' denote the functions CIJ and 'I' along the boundary.
To find one equation that determines the function + along either of the horizontal boundaries
1\ = 'llb = const, we first eliminate 'I' between the two equations (4.1).

Hence the equation by which we will obtain + is the following:

g 11 [y11 (x~~ +cjlx~) -x11(y~ +cjly~)] =-y~ [2g 12 (x'l/y'l)~ + g 22(x11 /y11~]. (4.2)

If we consider the slope of the coordinate curves

dx x~ d; + x1\ d'f\

dy = y~ d; + y11 d'f\ '

then we can say that the ratio x '~' y 11 is the slope of the family of coordinate curves ~ = const that
are transverse to the horizontal boundaries 1\ = 1\b = const

-11-

We impose now the constraint that these coordinate curves;= const be locally straight (i.e. have
zero curvature) in the neighbourhood of the boundary, which is:

(4.3)

Let us impose the funher constraint that the coordinate curves ~ = const be locally orthogonal to

the boundary 11 = 11b·
Let r; denote the vector that is locally tangent to a coordinate curve 11 = const. i.e. r~ = (x~, y~).
Similarly, the local tangent vector to a coordinate curve ~ = const is r 'II = (x'll, y 'II).
The two families of coordinate curves are then orthogonal if and only if

r~ • r'll =0

i.e.:

(4.4)

When we evaluate the equation (4.2) at the boundary 11 = 11b• under the conditions (4.3) and (4.4),
we get

Now we solve this equation for the parameter q,.
From (4 .5) we have

From (4.4):

x'llly'll =-y~lx~;

hence the equation (4.6} takes the form

Y~ Yt
x~~+«!!x~;+-y~~;+-~P=O =¢>

x~; x~;

(x~;x~ +Y!iY~;e) • =- --"-=::---:~;.....
(x(+y(}

(4.5)

(4.6)

(4.7)

The latter is an universally valid equation that can be used to compute the numerical value of q, at
each grid point on the boundary in tenns of the boundary values of x and y.

In fact, numerically, the first and the second derivatives of x and y are computed in terms of the
values of x and y.

The corresponding expression that determines 'I' along the vertical boundaries ~ = ;b can be

obtained from equation (4.7) by putting 'I' and 11 in place of q, and~. i.e.:

-12-

(4.8)

Once 'I' is defined at each mesh point of the venical boundaries approximations of the

corresponding values of 'I' at interior mesh points can be computed by linear interpolation along

horizontal mesh lines.

Similarly, the internal values of~ are computed by interpolation along the venical mesh lines.

Equations (4.1) can then be solved and they will generate the grid in the physical domain.

The procedure for evaluating the functions ~ and 'I' in the source tenns insures that the

transverse grid lines will be locally near-onhogonal to the boundaries.

-13-

S. NUMERICAL IMPLEMENTATION

As said in section 3, for the ttansformed equations (3.S). the domain is always a fixed rectangular
region and, since the increments of the curvilinear coordinates are arbitrary, the computation can
always be done on a fixed uniform square grid. Spatial derivatives can therefore be represented by
conventional finite-difference expressions.

Implementation of an elliptic generation system then is accomplished by devising an algorithm

for the numerical solution of the partial differential equations comprising the generation system.
The usual approach is to replace all derivatives in the partial differential equations by second
order central difference expressions and then to solve the resulting system of algebraic difference
equations by iteration.

5.1. Discrete representation of derivatives

Approximate values of the spatial derivatives of the functions which appear in the ttansformed
equations (3.S) may be found at a given point in terms of the values of the fimctions at that point
and at neighbouring points.

As noted earlier, with the problem in the ttansformed space, only uniform square grids need be
considered, hence the standard forms for difference representation of derivatives may be used.
For example, in two dimensions, the first. second. and mixed partial derivatives with respect to

the curvilinear coordinates ~ and 11 are ordinarily represented at an interior point (t.j) by finite
difference expressions which contain function values at no more than the nine points shown

below.

(t.,,j,..) (:,) ... ,) (t +j. ,l)
• • •

ft-t,t) ..)
{ I. ,"7' aH,h

• • •

r:-.d·.t > (i,i-J) n H., !·:1 l • • •

-14-

Examples of finite difference approximations of this type are:

(X~)i,j =t (Xi+l,j-Xi-l,j)

(X'It'l)i,j = XiJ+I - 2x;J + Xi,j-1

(X~)i,j = t (Xi+l,j+l -Xi+l,j-1 -Xi-lJ+l + Xi-l,j-1).

(5.1a)

(5.1b)

(5.1c)

(S.ld)

(S.le)

Analogous formulas can also be written for the function y(;.TI) which appears in the equations
(3.5).

The centered difference representations (5.1) are second order accurate.

5.2. Convergence of finite difference scheme

As we can see from the equations (3.4) and (3.5), most generation systems are not linear, so that
the difference equations are non linear and convergence depends therefore on the initial guess in
iterative solutions. The algebraic grid generation procedures can serve, for instance, to generate
this initial guess.

Since the coordinate lines tend to concentrate near a concave boundary, very sharp concave
comers may cause problems with the convergence of the generation equations.

Moreover, the finite difference equations involve only a few mesh values, while the total number
of mesh values can be very large so that the "geometric information" diffuses slowly. Therefore
there are points which are very slow to move from the initial guess. Convergence in such a case
can be very slow.

We have handled these problems by first converging the solution with a course grid and, after
convergence, the number of grid points has been increased and so on until the required grid was
reached. In order to apply such a multigrid method, the numbers of meshes in x and y direction
must be powers of two, allowing an iteration based on halving the meshsize.

In the appendix a listing is presented of a Turbo Pasca15.0 implementation.

- 15-

6.EXAMPLES

In the picture 1 a grid generated by solving the Laplace system is shown.

In the picture 2 we can see the effect of the source tenns in the Poisson system (the points where
the sources are applied are marked by small circles).

The third picture is obtained by solving the Poisson system and considering a doubled mesh-size.

In the pictures 4, S, 6 the same operations are applied to another region.

The picture 7 represents an attempt to apply the procedure for the orthogonality presented in sec­
tion 4.
It is immediate to realize that, for boundaries which have only comers and no smooth curvatures,
the orthogonality cannot be reached in the way previously suggested. The reason for that is that,
since the expressions of the control functions involve the curvature of the boundary which is con­
centrated here at the comers, the source tenns are zero everywhere apart from lines enumerating
from these corners.
This is, of course, a degenerate situation.

-16-

7. CONCLUSIONS

To summarize, the necessary basic information, from both the standpoint of mathematical back­

ground and from that of coding implementation, for an analytical method of constructing grids on

general regions, has bee provided.

A method for controlling grids generated by an elliptic system has also been presented and imple­

mented. Such a control is done by introducing source terms whose mathematical form is indepen­

dent of the boundary shape.

Apart from the density of the coordinate lines in general, such a procedure allows one to control

directly the angle of intersection between the two families of coordinate curves at boundaries.

In particular, we have imposed the constraint that the two families be locally orthogonal at the

boundaries. The source terms are written with free parameters that are evaluated locally at the

boundaries using limiting forms of the generating elliptic equations; then these parameters are

interpolated into the interior of the computational domain.

Finite difference representations of curvilinear coordinate systems have been constructed by first

transforming derivatives with respect to the cartesian coordinates into expressions involving

derivatives with respect to the curvilinear coordinates. The derivatives with respect to the curvi­

linear coordinates are then replaced by finite difference expressions on the uniform grid in the

transformed region. A fast convergence is obtained by implementing it as a multigrid scheme.

The technique that we have presented for the generation of curvilinear coordinate systems and

then of computational meshes, is characterized by both simplicity and power. In fact all computa­

tions are done on a fixed square grid without any restriction to certain boundary shapes.

- 17-

REFERENCES

[1] Eiseman, Peter R., "Automatic Algebraic Coordinate Generation", Numerical Grid Genera­

tion, Ed. Joe F. Thompson, Nonh Holland, 447 (1982).

(2] J.F. Middlecoff and P.O. Thomas, "Direct Control of the Grid Point Distribution in Meshes

Generated by Elliptic Equations", AIAA Journal, 18, 652 (1980).

[3] Joe F. Thompson, Z.U.A. Warsi, C. Wayne Mastin, "Numerical Grid Generation", Nonh

Holland.

I .

-18-

APPENDIX

program meshgen;

{positive source pushes the (curvilinear) coordinate to higher values,

uses
graph, crt;

label
einde;

const
geom = 1;
ni = 8;
nj = 32;
relax = 0.0;
eps = 0.0001;

{ geom = 1/2/3 are some test geometries}

{relaxation parameter 0.0 <= .. <= 1.0}
{ error level}

{ = True I False ; toggles source on/off }

negative to lower}

countmax = 15;
source = true ;
ortho = false; { =True I False ; toggles "orthogonal source" on/off}

type
arr = array[O .. ni,O .. nj] of real;

var
x,y ,p 1 ,p2,phi,psi :arr;
i,j,nsub,count :integer;
xmax,xmin,ymax,ymin :real;
diff,xO,yO :real;

procedure wait;
var

answ :char;
begin
repeat until keypressed;
answ:=readkey;

end;

I -

!

function chckpann:boolean;
var

ierr :integer;
begin

ierr:=O;

-19-

ifni<> round(exp(round(ln(ni)/ln(2))*ln(2))) then ierr:=1;
if nj<> round(exp(round(ln(nj)/ln(2))*ln(2))) then ierr:=2;
if (geom<>1) and (geom<>2) and (geom<>3) then ierr:=3;
if (relax<O) or (relax> 1) then ierr:=4;
if countmax<1 then ierr:=5;
if ierr<>O then
begin

chckpann :=False;
case ierr of

1: writeln('ni must be power of 2');
2: writeln('nj must be power of 2');
3: writeln('geom must be 1,2, or 3');
4: writeln('relax must be between 0 and 1 ');
5: writeln('countmax must be> 0');

end;
wait;

end
else chckpann:=True;

end;

function min(i,j:integer):integer;
begin
if i<j then min:=i else min:= j;

end;

procedure initsource;
var
i,j :integer;

begin
for i:=1 to ni-l do
begin
for j:=1 to nj-1 do
begin
phi[i,j]:= 0.0;
psi[i,j]:= 0.0;
p1[i,j] := 0.0;
p2[i,j] := 0.0;

end;
end;

end;

procedure boundary (m:integer);
var

ni 1 ,ni2,i,j :integer;
nj 1 ,nj2,nj3,nj4,nj5,nj6,nj7 :integer;

begin
case m of

1: begin
xmax :=2.5;
xmin :=-0.5;
ymax := 2.5;
ymin :=-0.5;
nil := ni div 2;
njl := nj div 2;
ni2 := ni-nil;
nj2 := nj-njl;
for i:=O to ni do
begin
x[i,O] := ifni;
y[i,O] := 0.0;

end;
for i:=O to ni 1 do
begin
x[i,nj] := l+i/nil;
y[i,nj] := 2.0;

end;
for i:=nil + 1 to ni do
begin
x[i,nj] := 2.0;
y[i,nj] := 2-(i-nil)/ni2;

end;
for j:=l to njl do
begin
x[O,j] := 0.0;
y[Oj] := 2*j/nj 1;

end;
for j:=nj1+1 to nj-1 do
begin
x[O,j] := G-njl)/nj2;
y[O,j] := 2.0;

end;
for j:=1 to njl do
begin
x[ni,j] := 1.0;
y[ni,j] := j/nj 1;

end;
for j:=nj 1 + 1 to nj-1 do
begin
x[ni,j] := l+G-njl)/nj2;
y[ni,j] := 1.0;

end;
if source then
begin
for j:=njl-3 to nj1+3 do
begin

-20-

p1[1,j] := -20.0; {pushes xi to lower "i"};
p1[2,j] := -10.0;
pl[ni-l,j] := -20.0;
pl[ni-2,j] := -10.0;

end;

for i:=nil-2 to ni1+2 do
begin

-21-

p2[i,nj-l] := 20.0; {pushes eta to higher "j"};
p2[i,nj-2] := 10.0;

end;
end;

end;
2: begin

xmax := 3.5;
xmin :=-0.5;
ymax := 3.5;
ymin :=-0.5;
njl := round(nj/10);
nj2 := round(nj*2/l0);
nj3 := round(nj*3/10);
nj4 := round(nj*4/10);
nj5 := round(nj*5/10);
nj6 := round(nj*6/10);
nj7 := round(nj*7 /1 0);
for i:=O to ni do
begin

x[i, 0] := ifni;
y[i, 0] := 0;

end;
for i:=O to ni do
begin

x[i,nj] := 0;
y[i,nj] := 2+i/ni;

end;
for j:=l to nj2 do
begin
x[O,j] := 0;
y[O,j] := 2*j/nj2;

end;
for j:=nj2+ 1 to nj6-2 do
begin
x[O,j] := 2*G-nj2)/(nj6-nj2);
y[O,j] := 2;

end;
x[O,nj6-1]:=1.9;
y[O,nj6-1]:=1.9;
x[O,nj6] :=2;
y[O,nj6] :=2;
x[O,nj6+1]:=1.9;
y[O,nj6+ 1]:=2.1;
for j:=nj6+2 to nj-1 do
begin
x[O,j] := 2-2*G-nj6)/(nj-nj6);
y[O,j] := 2;

end;
for j:=l to nj3 do
begin
x[ni,j] := 1;
y[nij] := j/nj3;

end;
for j:=nj3+ 1 to nj5 do
begin
x[ni,j] := 1 +2*G-nj3)/(nj5-nj3);
y[ni,j] := 1;

end;

for j:=nj5+ 1 to nj7 do
begin
x[ni,j] := 3;
y[ni,j] := 1+2*G-nj5)/(nj7-nj5);

end;
for j:=nj7+1 to nj-1 do
begin

x[ni,j] := 3-3*Q-nj7)/(nj-nj7);
y[ni,j] := 3;

end;
if source then
begin
for j:=nj3-1 to nj3+ 1 do
begin
pl[ni-1,j] := -20;
p1{ni-2,j] := -10;
p2[ni-l,j] :=-20;
p2[ni-2,j] := -10;

end;
for j :=nj2-1 to nj2+ 1 do
begin
pl [l,j] := -20;
pl[2,j] := -10;
p2[1,j] := -20;
p2[2,j] := -1 0;

end;
for j:=nj5-1 to nj5+2 do
begin
pl[ni-l,j] := 20;
pl[ni-2,j] := 10;
p2[ni-l ,j] := 5;
p2[ni-2,j] := 5;

end;
for j:=nj6-1 to nj6+ 1 do
begin
pl[l,jl := 40;
pl[2,j] := 20;
pl[3,jJ := 10;
p2[1 ,j] := 0;
p2[2,j] := 0;

end;
for i:=nj7-2 to nj7+1 do
begin
pl[ni-l,j] := 20;
pl[ni-2,j] := 10;
p2[ni-l,j} := -5;
p2[ni-2,j] := -5;

end;
end;

end;
3: begin

xmax := 2.5;
xmin :=-0.5;
ymax := 2.5;
ymin :=-0.5;
nj 1 := round(nj/3);
nj2 :::::: round(nj*2/3);
for i:=O toni do
begin
x[i,O] := ifni;

-22-

y[i,O] := 0;
end;
for i:=O to ni do
begin
x[i,nj] := 1 +ifni;
y[i,njJ := 2;

end;
for j:=l to nj2 do
begin
x[O,j] := 0;
y[OJ] := 2*j/nj2;

end;
for j:=nj2+ 1 to nj-1 do
begin
x[O,j] := G-nj2)/(nj-nj2);
y[OJ] := 2;

end;
for j:=l to njl do
begin
x[ni,j] := 1;
y[ni,j] :=j/njl;

end;
for j:=njl+l to nj2 do
begin
x[ni,j] := l+G-njl)/(nj2-njl);
y[niJ] := 1;

end;
for j:=nj2+ 1 to nj-1 do
begin
x[ni,j] := 2;
y[ni,j] := 1 +G-nj2)/(nj-nj2);

end;
if source then
begin
for j:=nj2-3 to nj2+3 do
begin
pl[l,j] := -20;
pl[2,j] := -10;

end;
for j:=njl-3 to nj1+3 do
begin
pl[ni-l,j] :=20;
pl[ni-2,j] := 10;

end;
end;

end;
end;

end;

-23-

procedure xynew (ij,k:integer;r:real);
var

-24-

xdi,xdj ,ydi,ydj,xdij,ydijjac2,g ll,g 12,g22,g,xnw .ynw :real;
begin
xdi := (x[i+k,j]-x[i-k,j])/2;
xdj := (x[i,j+k]-x[ij-k])/2;
ydi := (y[i+k,j]-y[i-kJ])/2;
ydj := (y[i,j+k]-y[i,j-k])/2;
xdij := (x[i+k,j+k]-x[i-k,j+k]-x[i+k,j-k]+x[i-k,j-k])/4;
ydij := (y[i+k,j+k]-y[i-k,j+k]-y[i+k,j-k]+y[i-k,j-k])/4;
jac2 := sqr(xdi*ydj-xdj*ydi);
gll := ydj*ydj+xdj*xdj;
gl2 :=-ydj*ydi-xdj*xdi;
g22 := ydi*ydi+xdi*xdi;
g := 2*(gll+g22);
xnw := (gll *(x[i+k,j]+x[i-k,j]+phi[i,j]*xdi)+

g22*(x[ij+k]+x[i,j-k]+psi[i,j]*xdj)+
2*g12*xdij+jac2*(pl[i,j]*xdi+p2[i,j]*xdj))/g;

ynw := (gll *(y[i+k,j]+y[i-k,j]+phi[i,j]*ydi)+
g22*(y[i,j+k]+y[i,j-k]+psi[i,j]*ydj)+
2*g12*ydij+jac2*(pl[i,j]*ydi+p2[i,j]*ydj))/g;

x[i,j] := (1-r)*xnw+r*xnw;
y[i,j] := (1-r)*ynw+r*ynw;

end;

procedure orthog;
var

l,J :integer;

-25-

xd.i,xdii,xdj,xdjj,ydi,ydii,ydj,ydjj :real;
begin
j:=O;
while j<=nj do
begin
for i:=l to ni-l do
begin
xdi := (x[i+l,j]-x[i-lj])/2;
xdii := x[i+ lj]-2*x[ij]+x[i-l,j];
ydi := (y[i+ 1 ,j]-y[i-1 ,j])/2;
ydii := y[i+lj]-2*y[i,j]+y[i-l,j];
phi[i,j] :=-(xd.i *xd.ii+ydi *ydii)/(xdi *xdi+ydi *ydi);

end;
inc(j,nj);

end;
i:=O;
while i<=ni do
begin
for j:=l to nj-1 do
begin
xdj := (x[i,j+l]-x[i,j-l])/2;
xdjj := x[i,j+ll-2*x[i,j]+x[i,j-1];
ydj := (y[i,j+l]-y[i,j-1])/2;
ydjj := y[i,j+l]-2*y[i,j]+y[i,j-1];
psi[i,j] :=-(xdj*xdjj+ydj*ydjj)/(xdj*xdj+ydj*ydj);

end;
inc(i,ni);

end;
for j:=l to nj-1 do
begin
for i:=l to ni-l do
begin
psi[i,j] := psi[O,j] + i*(psi[ni,j]-psi[O,j])/ni;

end;
end;
for i:=l to ni-l do
begin
for j:=l to nj-1 do
begin
phi[i,j] := phi[i,O] + j*(phi[i,nj]-phi[i,O])/nj;

end;
end;

end;

I ~

procedure interpol (k:integer);
var
i,j,k2 :integer;

begin
k2 :=k div 2;
i := k;

while i<=ni-k do
begin
j := k2;
while j<=nj-k2 do
begin
x[i,j] := (x[i,j-k2]+x[i,j+k2])/2;
y[i,j] := (y[i,j-k2]+y[i,j+k2])/2;
incG,k);

end;
inc(i,k);

end;
j:=k2;
while j<=nj-k2 do
begin
i:=k2;
while i<=ni-k2 do
begin
x[i,j] := (x[i-k2,j]+x[i+k2,j])/2;
y[i,j] := (y[i-k2,j]+y[i+k2,j])/2;
inc(i,k);

end;
inc(j,k2);
end;

end;

-26-

function fystoscr(i:integer;c:real):integer;
begin ·

if i=l then fystoscr := round(getmaxx*(c-xmin)/(xmax-xmin));
if i=2 then fystoscr := round(getmaxy*(ymax-c)/(ymax-ymin));

end;

procedure gopoint(xc,yc:real);
begin

move to(fystoscr(l ,xc),fystoscr(2,yc));
end;

procedure draw line (xc,yc:real);
begin

lineto(fystoscr(1 ,xc),fystoscr(2,yc));
end;

procedure startgraf;
var

graphdriver,graphmode :integer;
begin
graphdriver:=detect; { att400;}
{ graphmode:=att400hi;}
initgraph(graphdriver,graphmode, 'c:\turbo5\');

end;

procedure picture (m,k:integer);
var

i,j :integer;
begin
clearviewport;
ifm=O then
begin
gopoint (x[O,O],y[O,O]);
for i:=l toni do
begin
drawline (x[i,O],y[i,O]);

end;
for j:=l to nj do
begin
drawline (x[ni,j],y[nij]);

end;
for i:=ni-1 downto 0 do
begin
drawline (x[i,nj],y[i,nj]);

end;
for j:=nj-1 downto 0 do
begin
drawline (x[O,j],y[Oj]);

end;
end;
ifm=l then
begin
i:=O;
while i<=ni do
begin

gopoint(x[i,O],y[i,O]);
j:=O;
while j<=nj do
begin
drawline (x[i,j],y[i,j]);
inc(j,k);

end;
inc(i,k);

end;
j:=O;
while j<=nj do
begin
gopoint (x[O,j],y[O,j]);
i:=O;
while i<=ni do
begin
drawline (x[i,j],y[i,j]);
inc(i,k);

end;
inc(j,k);

end;
end;

end;

-27-

i
; .

-28-

begin {main program}
if chckparm then
begin
initsource;
startgraf;
nsub := min(ni,nj);
boundary(geom);
if ortho then orthog;
picture (0, 1); { picture of geometry }
wait;
repeat
interpol(nsub); {interpolation for new points}
nsub := nsub div 2;
count:= 0;
repeat
count :=count+ 1;
diff := 0;
picture (1 ,nsub);
i := nsub;
while i<=ni-nsub do
begin
j := nsub;
while j<=nj-nsub do
begin

xO := x[i,j];
yO := y[i,j];
xynew(i,j,nsub,relax); { central algorithm }
diff := diff+sqr(x[i,j]-xO)+sqr(y[i,j]-yO);
if keypressed then begin wait; go to einde;end; {user's interruption}
inc(j,nsub);

end;
inc(i,nsub);

end;
diff := sqrt(diff)*nsub/(ni+nj)/(xmax-xmin+ymax-ymin); { scaled error}

until (diff < eps) or (count> countmax);
until nsub= 1;
einde:
wait;
close graph;

end;
end.

-29-

-30-

-31-

F1 G-. 3
..

•

-32-

•

/ /

•

F 16. Lt

-33-

I ..

I •
'

•

-34-

-35-

I •

I •

..

