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ABSTRACT 

The basic ideas of the construction and use of numerically generated boundary coordinate sys­

tems for numerical grid generation are discussed. With such coordinate systems, all computations 

can be done in a rectangular transformed region regardless of the shape of the physical boun­

daries. Furthermore, numerical solutions of partial differential equations on regions of arbitrary 

shape can be constructed, and codes can be developed, that treat different physical configurations 

and boundary shapes entirely as input. The method used to construct computational meshes will 

be based on the solution of an elliptic boundary value problem. Additional interior grid control is 

effected by a modified elliptic system containing "control functions" in two ways: either assign­

ing the values of such control functions in input, or computing them from the Dirichlet boundary 

values by constraining the coordinate lines to be locally orthogonal to the boundary. The numeri­

cal algorithm is essentially a simple multigrid method, where the numbers of meshes in x and y 

direction have to be powers of two, allowing an iteration based on halving the meshsize. 
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1. INTRODUCTION 

The motivation for grid generation is the numerical solution of partial differential equations by 
either finite difference or finite element techniques. 

The way the domain is subdivided is very important since the computational mesh largely affects 
the stability and convergence of the numerical solution. 

The present work has been done, primarily, to provide a mesh generator to be used with the 
finite-volume package "Phoenix." for internal (tutbulent) heat and mass ftow calculations. 

Although the impetus for these developments has come from fluid dynamical problems, the gen­
eral technique here illustrated is equally applicable to heat transfer, electromagnetics, solid 
mechanics, etc. 

In the last years the numerical generation of boundary-confOJrning curvilinear coordinate systems 
has provided the key to the development of numerical grid generation techniques with arbitrarily 
shaped boundaries (see [3]). 

A boundary-conforming coordinate system is a curvilinear coordinate system having some coor­
dinate lines (surfaces in 3D) coincident with segments of the boundary of the region considered. 

Boundary-conforming coordinate systems are generated numerically by determining the values of 
the physical coordinates in the field from the values (and/or angles of intersection) on the boun­
dary. This can be done in two basic ways: by the Algebraic Generation Method and by the Ana­
lytic Generation Method. 

The Algebraic Generation Method consists of an interpolation between the boundaries. Thus a 
general coordinate line is given as a function of the curvilinear coordinates. This function con­
tains certain coefficients which are determined so that the function matches specified values of 
the cartesian coordinates. Algebraic Grid Generation is discussed in detail in [1]. 

In the Analytic Generation Method the curvilinear coordinates are defined via suitable partial dif­
ferential equations producing, on the one hand, smooth coordinate lines and, on the other hand, 
allowing us, by the boundary conditions, to impose the prescribed values at the boundaries. 

Although the solution of such a boundary-value problem is a classic problem of partial differen­
tial equations, some care is of course to be taken with respect to which equations are applicable 
and which solution method is appropriate. 

In the following, an analytic method is presented for the generation of a general 20 mesh system. 



~3-

l. ELLIPTIC GENERATION SYSTEMS 

If the coordinate points are specified on the entire closed boundary of the physical region. the grid 
generating system must be elliptic, while if the specification is on only a suitable ponion of the 

boundary, the system would be parabolic or hyperbolic. This latter case would occur, for 
instance, when an inner boundary of a physical region is specified, but a surrounding outer boun­
dary is arbitrary. 
The present wolt, however, treats the case of a completely specified boundary. which requires an 
elliptic partial differential system. 

2.1. Laplace system 

The most simple elliptic partial differential system is the Laplace system: 

V2 'f'.;=o i=t.2 

where 'f-.
1 = ~ and 'f-.

2 = 11· 

(2.1) 

With this generating system the coordinate lines will tend to be equally spaced in the absence of 
boundary curvature because of the strong smoothing effect of the Laplacian. but will become 
more closely spaced over coocave boundaries, and less so over convex boundaries, as illustrated 
below for a boundary 11 = 0. 

I 

____ ________., 

'1:a > 0 
(concave) 

)( 

'1:a < 0 
(convex) 

In the left figure we have 11:a > 0 because of the concave curvature of the lines of constant 11 
{= 11-lines). Therefore it follows that 1111 < 0 and hence the spacing between the 11-Iines must 
increase withy. The 11-lines thus will tend to be more closely spaced over such a concave 
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boundary segment. 

For convex segments, illustrated in the right figure, we have 1\x:r < 0, so that 11, must be positive 
and hence the spacing of the 11-lines must decrease outward from this convex boundary. 

2.2. Poisson system 

Control of the coordinate line distribution in the field can be exercised by generalizing the elliptic 
generating system (2.1) to Poisson equations: 

v2 ~;=Pi ; = 1.2 

where~• =~. ~2 =11· pl =P • p2 =Q. 

(2.2) 

In the system (2.2) the terms pi can be fashioned to control the spacing of the coordinate lines 

and for this reason they are called "control functions". They may be considered to be dependent 
both on the dependent and independent variables. 

Considering the equation 

V2 ~=P, 

positive values of the control function P will cause the ~-lines (=lines of constant~) to tend to 
move in the direction of increasing ~ and viceversa. Similarly for 11· 

Q>O P>O 

With the boundary values fixed, as bere considered, the 11-lines and the ~-lines cannot cbange the 

intersection with the boundary. So near the boundary the effect of the control functions P and Q 
is to change the angle of intersection at the boundary. For instance, negative values of P will 

cause the ~-lines to lean in the direction of decreasing~ and positive values of Q will cause the 
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tt-lines to lean in the direction of increasing TJ. 
These effects are illustrated in the following pictures: 

- - ...... 

I 
I 
\ 

I 
I 
\ 

, 
I 

In a word. the mesh lines can be dense or coarse depending on the negative or positive values of 
the control functions. 

Various forms of the source terms P and Q have been devised that contain adjustable parameters 
but. however, the forms of these source terms and the values of the adjustable parameters require 

artful selection and are problem dependent. 
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3. TRANSFORMED EQUATIONS 

In order to make use of the Analytic Generation Method, the generating equations must first be 

transfonned to the curvilinear coordinates. 

Let us consider the Poisson system 

~+~=P 
Q.x2 ay2 

(3.1a) 

n+n=Q 
ax1 ay2 

(3.1b) 

with the curvilinear coordinates ~(x,y) and T}(x,y) specified on a boundary curve r. 
Then the system (3.1) generates the values ~(x,y) and T}{x,y) in the field bounded by r. This is 
thus a boundary value problem on the physical field with the curvilinear coordinates (~.1\) as the 
dependent variables and the canesian coordinates (x,y) as the independent variables, with boun­
dary conditions specified on a curved boundary r. 

y 

;((x,y) e r2)= 0 
;((x,y)e r4)=m=const 

T}((X,y) e rl) = 0 

T}((x,y) e r3)=11 =const 

Although linear, the problem has implicidy defined boundary conditions, which make it very hard 
to handle. 

The problem may be simplified for computation by first transforming it so that the physical 
canesian coordinates (x,y) become the dependent variables, with the curvilinear coordinates ~. 1\) 

as the independent variables. 
Then, at the expense of a nm1inear system, the boundary conditions are simplified to explicidy 
given values at a rectangle. 'Ibe boundary value problem in the transfonned field then generates 
the values of the physical cartesian coordinates, x~.'l) and y(;,T}), in the transfonned field. The 

boundary is now built up from segments of constant~ or 1\. i.e. vertical or horizontal lines. 
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Example: 

4 

l 1 

----------- --t X 

Our task is now to rewrite the equations {3.1) in tenns of the new variables x~.'l\) and y(~.'l\). 

Let us consider a function f = f(~(x,y), 1\(x.y )). Then 

El iJf 
iJx = f~ ~ + f,.'lz • ()y =I~~>'+ /11 'ly· 

If f ba iJF - ] and iJF = 0 =x we ve ~- ~ . 

If f h iJf - 0 and iJf - 1 =y we ave ax- iJy - . 

So we get the following system: 

[ 
x~ x,.l [ ~ ~'] = [ 1 0 l. 
y~ y.,. 1\z 1\y 0 1 J 

Then it follows that 

[ ~ ~'] = [x~ x,.l-t = _ 1 [ y11 -x l 
1\z 1\y Y~ y.,. x~ y11 - x11 y~ -y~ x~'ll 

and we have the following relations: 

~= y,. 
J 

y~ 
'1\z=-­

J 

whereJ =x~y11 -x11 y~. 

x,. . ~,=-~. 
X~ 

• "' = T. 

a'-f a'-I 
Let us compute ax2 and iJy2 • 

{3.2) 

,.~ 

/ 
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= ifc.c. ~ + IF:r~ 'llx) ~ + lc, b +if rae.~+ I TfTI 'llx) 1lx +IT( Tttx· 

If I= x then ()2 { = 0 i.e. 
dx 

Xc,c, ;; + 2x't,T( ~ 'llx + Xc, ~ + XTfTI fli + X'llfl:a: = 0. 

Similarly, 

iPI 2 2 
Oy2 = lc,c, ;y + lc,TI fly ;y + lc, ;>'>' +I Tf. ;y fly+ I 'IITI11y +IT! fl)')'· 

iPI . 
If l=x then ()y2 =0 1.e. 

Xc,c, ~~ + 2xf;rl ~y Tty+ Xc, ~>'>' + XTfTI f);+ XT! 11>'>' = 0. 

Summation of (3.3a) and (3.3b) yields 

(3.3a) 

(3.3b) 

Xc,c,(~i +~~) + 2xc,T!(~ 'llx +~y Tty)+ Xc,(~xx; +;>'>') + XTITI(Tt; +Tt;) + XTf(Ttn +Tt>'>') = 0. 

Taking into account the defining system (3.1) and the relations (3.2) we get 

1 ~.1 2 1 1 2 2 Q 0 Xc,c, 2 (r,j +yTI) + 2xf;rl 2 (-XTI Xc, -yTI Jc,) + XTfTI 2 (Xc, +yc,) + Xc, p + XT! = . 
J J J 

The same for 1 = y after changing x into y. 
Hence, after changing the dependent and independent variables with each other, the system (3.1) 

takes the following fonn: 

where: 

{ 

g 11 xc,c, +2g 12 xc,11 + g22 x11'1l +xc,P +x'll Q =0 

gll Yc,c, +2g12YC.'Il + g22y'IITI +yc,P +y'll Q =0 
(3.4) 

If we consider, as original generating system, the Laplace system (P = Q = 0), the system in the 

new coordinates becomes 

{ 

11 2 12 22 -0 g Xc,c, + g Xc,11 + g X1111 -

glly +2gl2y +g22y -0 ~ 't,T( 'IITI- . 
(3.5) 

The equations (3.4) and (3.5) are of the same type as the original ones, but are more complicated 
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in that they are non linear and contain more tenns. The domain, on the other hand, is greatly 
simplified since it is, regardless of its shape, transfonned to a fixed rectangular region. This facili­
tates the imposition of boundary conditions and is the primary feature which makes grid genera­
tion such a valuable and important tool in the numerical solution of partial differential equations 
on arbitrary domains. At the same time, the rectangular domain allows us to use well-known 
finite difference algorithms for solving the equations for x andy. 



-10-

4. ORmOGONALITY 

When the boundary values are fixed, one way to change the angle of intersection of ~-lines and 
1\-lines with the boundary is by a suitable choice of the control functions. 

Such a technique enables us to constrain the transverse lines to be locally straight and orthogonal 
to the boundary (see [2]). 

Let us suppose that the source terms have the form 

p = 4>(;.1\) <~i +~;). 

Q = '1'(~.1\) (1\; +1\;)' 

where the auxiliary functions CIJ and 'I' are yet to be specified. 

If we rewrite P and Q in terms of the cartesian coordinates. we get: 

p - cz, _1_ (y2 + x2) - cz, _1 g 11 
- J2 'I 'I - J2 • 

Q = cz,-+ (x~ +y~) ='I'-+ g22. 
J J 

Upon introducing these terms, the equations (3.4) assume the form 

{ 

g 11 (x~~ + CIJ x~) + 2g 12 x~ + g22(x'~'~ +'I' x'll) = 0 

g ll(y~ +CIJy;) + 2g 12 y~ + g22(y'l'l +'I' y'l) = 0. 
(4.1) 

Given a set of boundary values (x.y) on the boundary of the computational domain, we can deter­
mine the functions CIJ and 'I' by requiring that the given boundary values satisfy appropriate limit­
ing forms of equations (4.1) along the boundary of the computational domain. 
We can obtain the equations that define CIJ and '¥ in terms of the boundary conditions by impos­
ing the two conditions that the transverse coordinate curves be locally straight and orthogonal to 

the boundary. 

Let + and 'I' denote the functions CIJ and 'I' along the boundary. 
To find one equation that determines the function + along either of the horizontal boundaries 
1\ = 'llb = const, we first eliminate 'I' between the two equations (4.1 ). 

Hence the equation by which we will obtain + is the following: 

g 11 [y11 (x~~ +cjlx~) -x11(y~ +cjly~)] =-y~ [2g 12 (x'l/y'l)~ + g 22(x11 /y11~]. (4.2) 

If we consider the slope of the coordinate curves 

dx x~ d; + x1\ d'f\ 

dy = y~ d; + y11 d'f\ ' 

then we can say that the ratio x '~' y 11 is the slope of the family of coordinate curves ~ = const that 
are transverse to the horizontal boundaries 1\ = 1\b = const 
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We impose now the constraint that these coordinate curves;= const be locally straight (i.e. have 
zero curvature) in the neighbourhood of the boundary, which is: 

(4.3) 

Let us impose the funher constraint that the coordinate curves ~ = const be locally orthogonal to 

the boundary 11 = 11b· 
Let r; denote the vector that is locally tangent to a coordinate curve 11 = const. i.e. r~ = (x~, y~). 
Similarly, the local tangent vector to a coordinate curve ~ = const is r 'II = (x'll, y 'II). 
The two families of coordinate curves are then orthogonal if and only if 

r~ • r'll =0 

i.e.: 

(4.4) 

When we evaluate the equation (4.2) at the boundary 11 = 11b• under the conditions (4.3) and (4.4), 
we get 

Now we solve this equation for the parameter q,. 
From ( 4 .5) we have 

From (4.4): 

x'llly'll =-y~lx~; 

hence the equation (4.6} takes the form 

Y~ Yt 
x~~+«!!x~;+-y~~;+-~P=O =¢> 

x~; x~; 

(x~;x~ +Y!iY~;e) • =- --"-=::---:~;..... 
(x( +y(} 

(4.5) 

(4.6) 

(4.7) 

The latter is an universally valid equation that can be used to compute the numerical value of q, at 
each grid point on the boundary in tenns of the boundary values of x and y. 

In fact, numerically, the first and the second derivatives of x and y are computed in terms of the 
values of x and y. 

The corresponding expression that determines 'I' along the vertical boundaries ~ = ;b can be 

obtained from equation (4.7) by putting 'I' and 11 in place of q, and~. i.e.: 
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(4.8) 

Once 'I' is defined at each mesh point of the venical boundaries approximations of the 

corresponding values of 'I' at interior mesh points can be computed by linear interpolation along 

horizontal mesh lines. 

Similarly, the internal values of~ are computed by interpolation along the venical mesh lines. 

Equations (4.1) can then be solved and they will generate the grid in the physical domain. 

The procedure for evaluating the functions ~ and 'I' in the source tenns insures that the 

transverse grid lines will be locally near-onhogonal to the boundaries. 
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S. NUMERICAL IMPLEMENTATION 

As said in section 3, for the ttansformed equations (3.S). the domain is always a fixed rectangular 
region and, since the increments of the curvilinear coordinates are arbitrary, the computation can 
always be done on a fixed uniform square grid. Spatial derivatives can therefore be represented by 
conventional finite-difference expressions. 

Implementation of an elliptic generation system then is accomplished by devising an algorithm 

for the numerical solution of the partial differential equations comprising the generation system. 
The usual approach is to replace all derivatives in the partial differential equations by second 
order central difference expressions and then to solve the resulting system of algebraic difference 
equations by iteration. 

5.1. Discrete representation of derivatives 

Approximate values of the spatial derivatives of the functions which appear in the ttansformed 
equations (3.S) may be found at a given point in terms of the values of the fimctions at that point 
and at neighbouring points. 

As noted earlier, with the problem in the ttansformed space, only uniform square grids need be 
considered, hence the standard forms for difference representation of derivatives may be used. 
For example, in two dimensions, the first. second. and mixed partial derivatives with respect to 

the curvilinear coordinates ~ and 11 are ordinarily represented at an interior point (t.j) by finite 
difference expressions which contain function values at no more than the nine points shown 

below. 

(t.,,j,..) (:,) ... ,) (t +j. ,l .... ) 
• • • 

ft-t,t) .. ) 
{ I. ,"7' aH,h 

• • • 

r:-.d·.t > (i,i-J) n H., !·:1 l • • • 
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Examples of finite difference approximations of this type are: 

(X~)i,j =t (Xi+l,j-Xi-l,j) 

(X'It'l)i,j = XiJ+I - 2x;J + Xi,j-1 

(X~)i,j = t (Xi+l,j+l -Xi+l,j-1 -Xi-lJ+l + Xi-l,j-1 ). 

(5.1a) 

(5.1b) 

(5.1c) 

(S.ld) 

(S.le) 

Analogous formulas can also be written for the function y(;.TI) which appears in the equations 
(3.5). 

The centered difference representations (5.1) are second order accurate. 

5.2. Convergence of finite difference scheme 

As we can see from the equations (3.4) and (3.5), most generation systems are not linear, so that 
the difference equations are non linear and convergence depends therefore on the initial guess in 
iterative solutions. The algebraic grid generation procedures can serve, for instance, to generate 
this initial guess. 

Since the coordinate lines tend to concentrate near a concave boundary, very sharp concave 
comers may cause problems with the convergence of the generation equations. 

Moreover, the finite difference equations involve only a few mesh values, while the total number 
of mesh values can be very large so that the "geometric information" diffuses slowly. Therefore 
there are points which are very slow to move from the initial guess. Convergence in such a case 
can be very slow. 

We have handled these problems by first converging the solution with a course grid and, after 
convergence, the number of grid points has been increased and so on until the required grid was 
reached. In order to apply such a multigrid method, the numbers of meshes in x and y direction 
must be powers of two, allowing an iteration based on halving the meshsize. 

In the appendix a listing is presented of a Turbo Pasca15.0 implementation. 
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6.EXAMPLES 

In the picture 1 a grid generated by solving the Laplace system is shown. 

In the picture 2 we can see the effect of the source tenns in the Poisson system (the points where 
the sources are applied are marked by small circles). 

The third picture is obtained by solving the Poisson system and considering a doubled mesh-size. 

In the pictures 4, S, 6 the same operations are applied to another region. 

The picture 7 represents an attempt to apply the procedure for the orthogonality presented in sec­
tion 4. 
It is immediate to realize that, for boundaries which have only comers and no smooth curvatures, 
the orthogonality cannot be reached in the way previously suggested. The reason for that is that, 
since the expressions of the control functions involve the curvature of the boundary which is con­
centrated here at the comers, the source tenns are zero everywhere apart from lines enumerating 
from these corners. 
This is, of course, a degenerate situation. 
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7. CONCLUSIONS 

To summarize, the necessary basic information, from both the standpoint of mathematical back­

ground and from that of coding implementation, for an analytical method of constructing grids on 

general regions, has bee provided. 

A method for controlling grids generated by an elliptic system has also been presented and imple­

mented. Such a control is done by introducing source terms whose mathematical form is indepen­

dent of the boundary shape. 

Apart from the density of the coordinate lines in general, such a procedure allows one to control 

directly the angle of intersection between the two families of coordinate curves at boundaries. 

In particular, we have imposed the constraint that the two families be locally orthogonal at the 

boundaries. The source terms are written with free parameters that are evaluated locally at the 

boundaries using limiting forms of the generating elliptic equations; then these parameters are 

interpolated into the interior of the computational domain. 

Finite difference representations of curvilinear coordinate systems have been constructed by first 

transforming derivatives with respect to the cartesian coordinates into expressions involving 

derivatives with respect to the curvilinear coordinates. The derivatives with respect to the curvi­

linear coordinates are then replaced by finite difference expressions on the uniform grid in the 

transformed region. A fast convergence is obtained by implementing it as a multigrid scheme. 

The technique that we have presented for the generation of curvilinear coordinate systems and 

then of computational meshes, is characterized by both simplicity and power. In fact all computa­

tions are done on a fixed square grid without any restriction to certain boundary shapes. 



- 17-

REFERENCES 

[1] Eiseman, Peter R., "Automatic Algebraic Coordinate Generation", Numerical Grid Genera­

tion, Ed. Joe F. Thompson, Nonh Holland, 447 (1982). 

(2] J.F. Middlecoff and P.O. Thomas, "Direct Control of the Grid Point Distribution in Meshes 

Generated by Elliptic Equations", AIAA Journal, 18, 652 (1980). 

[3] Joe F. Thompson, Z.U.A. Warsi, C. Wayne Mastin, "Numerical Grid Generation", Nonh 

Holland. 



I . 

-18-

APPENDIX 

program meshgen; 

{positive source pushes the (curvilinear) coordinate to higher values, 

uses 
graph, crt; 

label 
einde; 

const 
geom = 1; 
ni = 8; 
nj = 32; 
relax = 0.0; 
eps = 0.0001; 

{ geom = 1/2/3 are some test geometries} 

{relaxation parameter 0.0 <= .. <= 1.0} 
{ error level} 

{ = True I False ; toggles source on/off } 

negative to lower} 

countmax = 15; 
source = true ; 
ortho = false; { =True I False ; toggles "orthogonal source" on/off} 

type 
arr = array[O .. ni,O .. nj] of real; 

var 
x,y ,p 1 ,p2,phi,psi :arr; 
i,j,nsub,count :integer; 
xmax,xmin,ymax,ymin :real; 
diff,xO,yO :real; 

procedure wait; 
var 

answ :char; 
begin 
repeat until keypressed; 
answ:=readkey; 

end; 
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function chckpann:boolean; 
var 

ierr :integer; 
begin 

ierr:=O; 

-19-

ifni<> round(exp(round(ln(ni)/ln(2))*ln(2))) then ierr:=1; 
if nj<> round(exp(round(ln(nj)/ln(2))*ln(2))) then ierr:=2; 
if (geom<>1) and (geom<>2) and (geom<>3) then ierr:=3; 
if (relax<O) or (relax> 1) then ierr:=4; 
if countmax<1 then ierr:=5; 
if ierr<>O then 
begin 

chckpann :=False; 
case ierr of 

1: writeln('ni must be power of 2'); 
2: writeln('nj must be power of 2'); 
3: writeln('geom must be 1,2, or 3'); 
4: writeln('relax must be between 0 and 1 '); 
5: writeln('countmax must be> 0'); 

end; 
wait; 

end 
else chckpann:=True; 

end; 

function min(i,j:integer):integer; 
begin 
if i<j then min:=i else min:= j; 

end; 

procedure initsource; 
var 
i,j :integer; 

begin 
for i:=1 to ni-l do 
begin 
for j:=1 to nj-1 do 
begin 
phi[i,j]:= 0.0; 
psi[i,j]:= 0.0; 
p1[i,j] := 0.0; 
p2[i,j] := 0.0; 

end; 
end; 

end; 



procedure boundary (m:integer); 
var 

ni 1 ,ni2,i,j :integer; 
nj 1 ,nj2,nj3,nj4,nj5,nj6,nj7 :integer; 

begin 
case m of 

1: begin 
xmax :=2.5; 
xmin :=-0.5; 
ymax := 2.5; 
ymin :=-0.5; 
nil := ni div 2; 
njl := nj div 2; 
ni2 := ni-nil; 
nj2 := nj-njl; 
for i:=O to ni do 
begin 
x[i,O] := ifni; 
y[i,O] := 0.0; 

end; 
for i:=O to ni 1 do 
begin 
x[i,nj] := l+i/nil; 
y[i,nj] := 2.0; 

end; 
for i:=nil + 1 to ni do 
begin 
x[i,nj] := 2.0; 
y[i,nj] := 2-(i-nil)/ni2; 

end; 
for j:=l to njl do 
begin 
x[O,j] := 0.0; 
y[Oj] := 2*j/nj 1; 

end; 
for j:=nj1+1 to nj-1 do 
begin 
x[O,j] := G-njl)/nj2; 
y[O,j] := 2.0; 

end; 
for j:=1 to njl do 
begin 
x[ni,j] := 1.0; 
y[ni,j] := j/nj 1; 

end; 
for j:=nj 1 + 1 to nj-1 do 
begin 
x[ni,j] := l+G-njl)/nj2; 
y[ni,j] := 1.0; 

end; 
if source then 
begin 
for j:=njl-3 to nj1+3 do 
begin 
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p1[1,j] := -20.0; {pushes xi to lower "i"}; 
p1[2,j] := -10.0; 
pl[ni-l,j] := -20.0; 
pl[ni-2,j] := -10.0; 

end; 



for i:=nil-2 to ni1+2 do 
begin 
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p2[i,nj-l] := 20.0; {pushes eta to higher "j"}; 
p2[i,nj-2] := 10.0; 

end; 
end; 

end; 
2: begin 

xmax := 3.5; 
xmin :=-0.5; 
ymax := 3.5; 
ymin :=-0.5; 
njl := round(nj/10); 
nj2 := round(nj*2/l0); 
nj3 := round(nj*3/10); 
nj4 := round(nj*4/10); 
nj5 := round(nj*5/10); 
nj6 := round(nj*6/10); 
nj7 := round(nj*7 /1 0); 
for i:=O to ni do 
begin 

x[ i, 0] := ifni; 
y[i, 0] := 0; 

end; 
for i:=O to ni do 
begin 

x[i,nj] := 0; 
y[i,nj] := 2+i/ni; 

end; 
for j:=l to nj2 do 
begin 
x[O,j] := 0; 
y[O,j] := 2*j/nj2; 

end; 
for j:=nj2+ 1 to nj6-2 do 
begin 
x[O,j] := 2*G-nj2)/(nj6-nj2); 
y[O,j] := 2; 

end; 
x[O,nj6-1]:=1.9; 
y[O,nj6-1]:=1.9; 
x[O,nj6] :=2; 
y[O,nj6] :=2; 
x[O,nj6+1]:=1.9; 
y[O,nj6+ 1]:=2.1; 
for j:=nj6+2 to nj-1 do 
begin 
x[O,j] := 2-2*G-nj6)/(nj-nj6); 
y[O,j] := 2; 

end; 
for j:=l to nj3 do 
begin 
x[ni,j] := 1; 
y[nij] := j/nj3; 

end; 
for j:=nj3+ 1 to nj5 do 
begin 
x[ni,j] := 1 +2*G-nj3)/(nj5-nj3); 
y[ni,j] := 1; 

end; 



for j:=nj5+ 1 to nj7 do 
begin 
x[ni,j] := 3; 
y[ni,j] := 1+2*G-nj5)/(nj7-nj5); 

end; 
for j:=nj7+1 to nj-1 do 
begin 

x[ni,j] := 3-3*Q-nj7)/(nj-nj7); 
y[ni,j] := 3; 

end; 
if source then 
begin 
for j:=nj3-1 to nj3+ 1 do 
begin 
pl[ni-1,j] := -20; 
p1{ni-2,j] := -10; 
p2[ni-l,j] :=-20; 
p2[ni-2,j] := -10; 

end; 
for j :=nj2-1 to nj2+ 1 do 
begin 
pl [l,j] := -20; 
pl[2,j] := -10; 
p2[1,j] := -20; 
p2[2,j] := -1 0; 

end; 
for j:=nj5-1 to nj5+2 do 
begin 
pl[ni-l,j] := 20; 
pl[ni-2,j] := 10; 
p2[ ni-l ,j] := 5; 
p2[ni-2,j] := 5; 

end; 
for j:=nj6-1 to nj6+ 1 do 
begin 
pl[l,jl := 40; 
pl[2,j] := 20; 
pl[3,jJ := 10; 
p2[ 1 ,j] := 0; 
p2[2,j] := 0; 

end; 
for i:=nj7-2 to nj7+1 do 
begin 
pl[ni-l,j] := 20; 
pl[ni-2,j] := 10; 
p2[ni-l,j} := -5; 
p2[ni-2,j] := -5; 

end; 
end; 

end; 
3: begin 

xmax := 2.5; 
xmin :=-0.5; 
ymax := 2.5; 
ymin :=-0.5; 
nj 1 := round(nj/3); 
nj2 :::::: round(nj*2/3); 
for i:=O toni do 
begin 
x[i,O] := ifni; 
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y[i,O] := 0; 
end; 
for i:=O to ni do 
begin 
x[i,nj] := 1 +ifni; 
y[i,njJ := 2; 

end; 
for j:=l to nj2 do 
begin 
x[O,j] := 0; 
y[OJ] := 2*j/nj2; 

end; 
for j:=nj2+ 1 to nj-1 do 
begin 
x[O,j] := G-nj2)/(nj-nj2); 
y[OJ] := 2; 

end; 
for j:=l to njl do 
begin 
x[ni,j] := 1; 
y[ni,j] :=j/njl; 

end; 
for j:=njl+l to nj2 do 
begin 
x[ni,j] := l+G-njl)/(nj2-njl); 
y[niJ] := 1; 

end; 
for j:=nj2+ 1 to nj-1 do 
begin 
x[ni,j] := 2; 
y[ni,j] := 1 +G-nj2)/(nj-nj2); 

end; 
if source then 
begin 
for j:=nj2-3 to nj2+3 do 
begin 
pl[l,j] := -20; 
pl[2,j] := -10; 

end; 
for j:=njl-3 to nj1+3 do 
begin 
pl[ni-l,j] :=20; 
pl[ni-2,j] := 10; 

end; 
end; 

end; 
end; 

end; 
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procedure xynew (ij,k:integer;r:real); 
var 
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xdi,xdj ,ydi,ydj,xdij,ydijjac2,g ll,g 12,g22,g,xnw .ynw :real; 
begin 
xdi := (x[i+k,j]-x[i-k,j])/2; 
xdj := (x[i,j+k]-x[ij-k])/2; 
ydi := (y[i+k,j]-y[i-kJ])/2; 
ydj := (y[i,j+k]-y[i,j-k])/2; 
xdij := (x[i+k,j+k]-x[i-k,j+k]-x[i+k,j-k]+x[i-k,j-k])/4; 
ydij := (y[i+k,j+k]-y[i-k,j+k]-y[i+k,j-k]+y[i-k,j-k])/4; 
jac2 := sqr(xdi*ydj-xdj*ydi); 
gll := ydj*ydj+xdj*xdj; 
gl2 :=-ydj*ydi-xdj*xdi; 
g22 := ydi*ydi+xdi*xdi; 
g := 2*(gll+g22); 
xnw := (gll *(x[i+k,j]+x[i-k,j]+phi[i,j]*xdi)+ 

g22*(x[ij+k]+x[i,j-k]+psi[i,j]*xdj)+ 
2*g12*xdij+jac2*(pl[i,j]*xdi+p2[i,j]*xdj))/g; 

ynw := (gll *(y[i+k,j]+y[i-k,j]+phi[i,j]*ydi)+ 
g22*(y[i,j+k]+y[i,j-k]+psi[i,j]*ydj)+ 
2*g12*ydij+jac2*(pl[i,j]*ydi+p2[i,j]*ydj))/g; 

x[i,j] := (1-r)*xnw+r*xnw; 
y[i,j] := (1-r)*ynw+r*ynw; 

end; 



procedure orthog; 
var 

l,J :integer; 
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xd.i,xdii,xdj,xdjj,ydi,ydii,ydj,ydjj :real; 
begin 
j:=O; 
while j<=nj do 
begin 
for i:=l to ni-l do 
begin 
xdi := (x[i+l,j]-x[i-lj])/2; 
xdii := x[i+ lj]-2*x[ij]+x[i-l,j]; 
ydi := (y[i+ 1 ,j]-y[i-1 ,j])/2; 
ydii := y[i+lj]-2*y[i,j]+y[i-l,j]; 
phi[i,j] :=-(xd.i *xd.ii+ydi *ydii)/(xdi *xdi+ydi *ydi); 

end; 
inc(j,nj); 

end; 
i:=O; 
while i<=ni do 
begin 
for j:=l to nj-1 do 
begin 
xdj := (x[i,j+l]-x[i,j-l])/2; 
xdjj := x[i,j+ll-2*x[i,j]+x[i,j-1]; 
ydj := (y[i,j+l]-y[i,j-1])/2; 
ydjj := y[i,j+l]-2*y[i,j]+y[i,j-1]; 
psi[i,j] :=-(xdj*xdjj+ydj*ydjj)/(xdj*xdj+ydj*ydj); 

end; 
inc(i,ni); 

end; 
for j:=l to nj-1 do 
begin 
for i:=l to ni-l do 
begin 
psi[i,j] := psi[O,j] + i*(psi[ni,j]-psi[O,j])/ni; 

end; 
end; 
for i:=l to ni-l do 
begin 
for j:=l to nj-1 do 
begin 
phi[i,j] := phi[i,O] + j*(phi[i,nj]-phi[i,O])/nj; 

end; 
end; 

end; 



I ~ 

procedure interpol (k:integer); 
var 
i,j,k2 :integer; 

begin 
k2 :=k div 2; 
i := k; 

while i<=ni-k do 
begin 
j := k2; 
while j<=nj-k2 do 
begin 
x[i,j] := (x[i,j-k2]+x[i,j+k2])/2; 
y[i,j] := (y[i,j-k2]+y[i,j+k2])/2; 
incG,k); 

end; 
inc(i,k); 

end; 
j:=k2; 
while j<=nj-k2 do 
begin 
i:=k2; 
while i<=ni-k2 do 
begin 
x[i,j] := (x[i-k2,j]+x[i+k2,j])/2; 
y[i,j] := (y[i-k2,j]+y[i+k2,j])/2; 
inc(i,k); 

end; 
inc(j,k2); 
end; 

end; 
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function fystoscr(i:integer;c:real):integer; 
begin · 

if i=l then fystoscr := round(getmaxx*(c-xmin)/(xmax-xmin)); 
if i=2 then fystoscr := round(getmaxy*(ymax-c)/(ymax-ymin)); 

end; 

procedure gopoint(xc,yc:real); 
begin 

move to( fystoscr(l ,xc ),fystoscr(2,yc) ); 
end; 

procedure draw line (xc,yc:real); 
begin 

lineto(fystoscr( 1 ,xc ),fystoscr(2,yc) ); 
end; 

procedure startgraf; 
var 

graphdriver,graphmode :integer; 
begin 
graphdriver:=detect; { att400;} 
{ graphmode:=att400hi;} 
initgraph(graphdriver,graphmode, 'c:\turbo5\' ); 

end; 



procedure picture (m,k:integer); 
var 

i,j :integer; 
begin 
clearviewport; 
ifm=O then 
begin 
gopoint (x[O,O],y[O,O]); 
for i:=l toni do 
begin 
drawline (x[i,O],y[i,O]); 

end; 
for j:=l to nj do 
begin 
drawline (x[ni,j],y[nij]); 

end; 
for i:=ni-1 downto 0 do 
begin 
drawline (x[i,nj],y[i,nj]); 

end; 
for j:=nj-1 downto 0 do 
begin 
drawline (x[O,j],y[Oj]); 

end; 
end; 
ifm=l then 
begin 
i:=O; 
while i<=ni do 
begin 

gopoint(x[i,O],y[i,O]); 
j:=O; 
while j<=nj do 
begin 
drawline (x[i,j],y[i,j]); 
inc(j,k); 

end; 
inc(i,k); 

end; 
j:=O; 
while j<=nj do 
begin 
gopoint (x[O,j],y[O,j]); 
i:=O; 
while i<=ni do 
begin 
drawline (x[i,j],y[i,j]); 
inc(i,k); 

end; 
inc(j,k); 

end; 
end; 

end; 
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i 
; . 
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begin {main program} 
if chckparm then 
begin 
initsource; 
startgraf; 
nsub := min(ni,nj); 
boundary(geom); 
if ortho then orthog; 
picture (0, 1 ); { picture of geometry } 
wait; 
repeat 
interpol(nsub); {interpolation for new points} 
nsub := nsub div 2; 
count:= 0; 
repeat 
count :=count+ 1; 
diff := 0; 
picture (1 ,nsub ); 
i := nsub; 
while i<=ni-nsub do 
begin 
j := nsub; 
while j<=nj-nsub do 
begin 

xO := x[i,j]; 
yO := y[i,j]; 
xynew(i,j,nsub,relax); { central algorithm } 
diff := diff+sqr(x[i,j]-xO)+sqr(y[i,j]-yO); 
if keypressed then begin wait; go to einde;end; {user's interruption} 
inc(j,nsub ); 

end; 
inc(i,nsub ); 

end; 
diff := sqrt(diff)*nsub/(ni+nj)/(xmax-xmin+ymax-ymin); { scaled error} 

until (diff < eps) or (count> countmax); 
until nsub= 1; 
einde: 
wait; 
close graph; 

end; 
end. 
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