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1. INTRODUCTION AND PRELIMINARIES

Most extensively studied in the random censoring literature is the situation where the dis
tribution of the censoring variables is fixed. A fundamental result on the weak convergence
of empirical processes under fixed censoring was first obtained in Breslow & Crowley (1974).
Besides this standard case extremely heavy censoring is considered in Wellner (1985) where
the distribution of the censoring variables tends to the degenerate distribution at 0 at such a
high rate that the number of uncensored observations remains bounded and the usual asymp
totics cannot be performed. In this note we consider a type of censoring that still will be
called "heavy" in the sense that the censoring distribution is again degenerate at 0 in the
limit but at a sufficiently slow rate to ensure that the number of uncensored observations
tends to infinity so that asymptotic considerations remain possible.
Practically such censoring might provide a realistic alternative to Wellner's (1985) model
when items are tested for a certain defect that is only likely to occur in the long run and
when a relatively short amount of time is available for testing. Mathematically the ensuing
theory is based on the tail empirical process (see, e.g., Einmahl (1992)) generalized so as to
allow for censored observations. The weak convergence of the thus obtained processes will
be presented in Section 2. Two statistical applications are considered in Section 3. First we
construct a confidence band for the cumulative life distribution function of interest, locally,
near O. Asymptotically the data contain information about the density of the life distribution
only at the origin. Next we consider estimation of the density at the origin and the related
problem of testing on the slope of the cumulative life distribution at the origin. We conclude
this introduction with a specification of the assumptions.
For each n E IN let (X}, Ynd, ... , (Xn,Ynn ) be independent random vectors with XillYni for
each i = 1, ... ,n. We observe the random variables Zni 1\ Yni,bni = n{Xi$Yn ;} , i = 1, ... ,n.
The Xi represent the life time of interest and are consequently nonnegative; moreover, they
are i.i.d. with common continuous cumulative distribution function (c.d.f.) F that does not
depend on n. For one of the applications in Section 3 it will be required that F has a con
tinuous second derivative in a right neighborhood of O. The censoring variables Yni are also
nonnegative and i.i.d. but with a common continuous c.dJ. Gn that does depend on n. More
specifically we assume the existence of a. continuous c.dJ. G such that

for some sequence of strictly positive numbers (an)nEN satisfying

(1.2) an -+ 0 and nF(an) -+ 00, as n -+ 00 .

A further condition, rather natural in this context, is that F be regularly varying at 0,
meaning that

(1.3)
. F(xt) -

lim F( ) = F(t), t ~ 0 .
x10 x

In addition we want F to be a c.dJ. on [0,1] which necessarily entails that

(1.4) F(t) =P,O ~ t ~ 1, for some 1> O.
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2. WEAK CONVERGENCE OF CENSORED TAIL PROCESSES

We need to start this section with a short review of some basic concepts and relations and
some further notation for which the reader is referred to Shorack & Wellner (1986). We are
interested in estimating the left-hand tail of F. For this purpose we may use the product-limit
or Kaplan-Meier estimator

(2.1)
~ 1 -
Fn (t) = 1 - II (1 - . )'5n i

, t ~ 0 ,_ n-t+l
i:Zn i9

where the Zni denote the ordered Zni and 6n i the corresponding Oni. This estimator is not in
general unbiased. Another option is indirect estimation via the cumulative hazard function,
of interest in its own right, defined by

t

(2.2) A(t) =J1- ~_(s)dF(S), t ~ 0,
a

where for any right-continuous function with left-hand limits q, : [0,00) -+ IR we write q,
for the left-continuous version. The c.dJ. F can be recovered from A according to F(t)
= 1 - exp( -A(t)), t ~ O. Hence an estimator of A yields an estimator of F.
In order to describe a natural estimator of A let us introduce the notation

and the empirical processes

(2.5) Un(t) = y'ri(fin(t) - Hn(t)), U~(t) = y'ri(fi~(t) - H~(t)), t ~ 0 .

Since

t

(2.6) A(t) = J1- ~;;(S)dH~(S), t ~ 0,
o

let us consider the estimator

(2.7)
t

~ J 1 ~An(t) = ~ dH~(s), t ~ 0 .
1- H;;(s)a

Note that, indeed, fin and fi~ are known from the data.
We are now ready to introduce the tail product-limit process
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and the tail empirical cumulative hazard process

Furthermore let

t

(2.10) D(t) = J1- ~(S)dS"Y, 0::; t ::; 1 ,
o

denote a suitable time transformation, well defined because G(I) < 1, and W a standard
Wiener process. Although the weak convergence of the processes f3n, established below, is
a basic ingredient for statistical inference about the cumulative hazard function and the
hazard rate, here we will only use the result to conveniently deal with the related but more
complicated processes en. For statistical application we restrict ourselves to those related to
the latter processes.

THEOREM 2.1. Under assumptions (1.1)-(1.4) there exist a special construction of the pro
cesses en,{3n(n E IN) and tV, defined on one and the same probability space such that

(2.11) sUPo:$t$1len(t) - WoD(t)1 -p 0, as n ---+ 00 ,

(2.12) sUPo:::;t$1lf3n(t) - WoD(t)l-p 0, as n - 00 .

PROOF. Let us first prove (2.12). It is immediate from Shorack & Wellner (1986, formula
(16) of Section 7.1, Theorem 1 of Section 7.2), and (2.6) that f3n can be rewritten as

(2.13)

tan

+J U;;(s) ~ dA(s) 0 < t < 1
JF(an )(1 - H;(s» ,- - ,

o

provided that an ::; Znn. The obvious relation Hn = 1- (1- F)(I- Gn) and (1.1) and (1.2)
entail that Hn(t) =G(t/an) + F(t)(1 - G(t/an»and hence that Hn(tan) =G(t) +F(tan)(1
-G(t» - G(t),O::; t ::; 1, as n - 00. Hence it follows from standard empirical process
theory that {U;;(tan),O ::; t ::; I} converges weakly to {BoG(t), °::; t ::; I} on D[O, 1], as
n - 00, where B is a standard Brownian bridge. This yields

(2.14)

tan

J U;(s) ~ dA(s)
JF(an )(I- H;(s»o
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employing (2.2).
So we can focus on the first two terms on the right in (2.13). Another well-known relation,

t t

H~(t) = J(1- Gn(s»dF(s),O ~ t ~ 1, yields H~(tan)/F(an) - J(1- G(s»ds'Y = D(t),
o 0°~ t ~ 1, as n - 00. It has been shown in, e.g., Einmahl & Koning (1992) that U~(tan)

behaves like an ordinary empirical process based on n i.i.d. observations from the c.dJ.
H~(tan), which entails that U~(tan)/.jF(an)has variance H~(tan)(1- H~(tan»/F(an) 
D(t), as n - 00. This explains that there exist a special construction such that

(2.15)
I
U*(tan) - - I

sUPO<t<l~ - WeD(t) -p 0, as n - 00 ,- - F(an

where IV is a standard Wiener process. This implies

(2.16)

because

I
U~(tan) WeD(t)

sUPO$t=:;t .jF(an)(1 _ il;(tan)) - 1- G(t) -p 0, as n ---+ 00 ,

Using (2.15) again we see that

(2.18)

tan t

sUPO<t<l J~ d :_ - JWeD(s)d ~~ -p 0, as n - 00 •
- - F(an) 1- Hn (s) 1- Hn (san)o 0

Moreover, subtle application of the Helly-Bray theorem (cf. Shorack & Wellner (1986,
p. 309» yields

(2.19) Jt_- (1 1)~
sUPO<t<l WeD(s)d ~ - - G( )

- - 1 - H (sa) 1 - so n n

-p 0, as n - 00 •

Combining (2.13), (2.14), (2.16), (2.18), and (2.19) we obtain

(2.20)
(

WeD(t) Jt - - 1)
sUPO$t$l f3n(t) - 1- G(t) - 0 WeD(s)d 1 _ G(s) -p 0, as n - 00 •
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Finally, routine considerations show that the process

- - t
WoD(t) J- - 1

(2.21) WoD(t) = 1- G(t) - WoD(s)d 1 _ G(s)' 0::; t ::; 1 ,
o

is a zero mean Wiener process with covariance function D(s) A D(t) for s,t E [0,1]2 which
entails (2.12) using (2.20).
Next let us consider (2.11). We start with the well-known identity

t ~

(2.22) en(t) = (1- F(tan))J\-_~~::) df3n(s), 0::; t ::; 1 ;
o

see, e.g., Shorack & Wellner (1986, Proposition 1 of Section 7.2). Using (1.2) and the result
(2.12) that we just proved, it suffices to show that

(2.23) -"p 0, as n -" 00 •

This is equivalent with showing that

t ~

(2 2 ) JF(san) - F;;(san)df.l ( )
. 4 sUPO$t$l 1 _ F(san) fJn S -"p 0, as n -" 00 .

o

Integration by parts shows that the expression on the left in (2.24) is bounded by

First let us note that

To see this observe that Fn(tan) - F(tan) equals the expression on the right in (2.22) with

I3n(t) replaced by 13;(') = JF~n) I3n(')' From (2.12) we obtain tbat tbe three terms in (2.25)

with f3n replaced by f3: converge to 0 in probability, so that (2.23) holds true with f3~ instead
of f3n, and hence (2.26) follows.
Now (2.24), and hence (2.11), easily follows by combining (2.26) and the facts that sUPo<t<llf3n(t)1
= Op(l), and F(an ) -+ 0, as n -+ 00. Q.E.D. - -
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3. A CONFIDENCE BAND AND A TEST

For the construction of a confidence band for F near 0 it turns out that we need to estimate
the value of the function D in (2.10) at the point t = 1. For this purpose we estimate the
c.d.f. G(s) = Gn(san) by Gn(san),O ~ s ~ 1, where Gn is the product-limit estimator of
Gn. This estimator is obtained by formally considering the Yni as the variables censored by
the Xi, in other wordt Gn is obtained from the expression on the right in (2.1) by replacing
the 'ini with 1 - 'ini . Estimating "f is essentially the problem of estimating the extreme value
index of a c.d.f. in the domain of min-attraction of a c.d.f. of Weibull type. Various choices
for the estimator are possible, a particularly simple one being

It is not overly hard to show that

(3.2) 9n -p "f, as n - 00 .

For us 9n is just any estimator satisfying (3.2). Finally we propose

(3.3)

as an estimator of D(I). As before let lV be a standard Wiener process and let c = c(a) be
such that

(3.4) 1P{suPo$t9IW(t)1 ~ c} = a, 0< a < 1 .

THEOREM 3.1. Under assumptions (1.1)-(1.4) and (3.2) we have

(3.5)

PROOF. From (2.11) it is immediate that

Noticing that D is an increasing function, mapping [0,1] onto [0, D(I)], it follows that
sUPo~t~lIWoD(t)1= SUPO$t~D(l)IW(t)1 =d JD(I}suPo$t~lIW(t)1and hence (3.6) implies
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The theorem follows if it can be shown that

(3.8)

The first of these statements is immediate from (2.11). For the second one, observe that

(3.9)

1

! 1 d(::Yn 'Y)+ 1- G(s) s - s .
o

The product-limit estimator Gn is very close to the empirical c.dJ. for uncensored Yni and
it is easy to prove that sUP09:'S:an IGn(t) - Gn(t)1 -p 0, as n - 00, which entails

(3.10)

Consequently, to prove the second part of (3.8) it suffices to show that for arbirary € > 0 and
n sufficiently large

(3.11)

Without loss of generality we may and will assume that in > O. Integration by parts yields

(3.12)

Let us first note the simple fact that sUPo<7)<s<llsa - 11 ~ l1]a - 11 for each a E JR. Now let
1 - -

us choose 6 = £!{4! s'Yd«I- G(s))-l)} for € sufficienlty small to ensure that 6 ~ ~, and let

o ~

us define 17n = (1 - 6)1/hn-'YI. We have

(3.13)
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J
l . 1 Jl 1

~ {~ax 1(1- 6)' - II}s'Yd G() ~ 20 s'Yd G() = c/2 .,=±1 1- s 1 - s
o 0

Since fin -p 0, as n - 00, for any 0 < 6 < 1 we also have with arbitrary high probability for
sufficiencly large n that

~ ~

'In 'In ~

(3 ) JI ;Yn-'Y -11 'Yd 1 Jd 1 - G(77n) /2
.14 s .. s 1- G(s) ~ 1 _ G(s) - 1- G(1}n) ~ c .

o 0

This completes the proof of (3.11) and hence of (3.5). Q.E.D.

The class of c.dJ.'s F satisfying (1.3) and (1.4) contains c.d.f.'s with derivative F'(O) = f(O)
which is either zero, finite nonzero, or infinite, partly depending on 'Y. Henceforth we will
restrict ourselves to the subclass F of c.dJ.'s with the following properties: (1.3) and (1.4)
are fulfilled: a continuous second derivative exists on (O,c], for some c > 0; limf(t) exists

t!O
(I = F' ) and equals f(O), say, where f(O) = 00 is admitted; lim f'(t) is finite if f(O) is finite.

t!O
It should be noted that finiteness of f(O) entails that F'(O) = f(O) so that F' is continuous
on [0, c] with continuous bounded derivative f' on (0, c] in that case.
For practical purposes it is interesting to know that failure is unlikely to occur immediately.
Consequently for some 0 < c < 00 we are interested in testing the null hypothesis Ho :
f(O) ~ c (including f(O) = (0) versus the alternative HI : f(O) < c (including f(O) = 0).
Furthermore we introduce a kernel J( : JR - JR which is of bounded variation on [0, :I.], zero

1

outside [0,1], and which satisfies JJ(t)dt = 1. As a test statistic we introduce

o

(3.15)

which is an estimator for the density f at the point zero. Write also (d. (3.3)):

(3.16)

THEOREM 3.2. In addition to (1.1) - (1.4) and (3.2), let us assume that na~ - 0, as n - 00.
An asymptotically size 0' E (0,1) test for testing Ho : f(O) ~ c E (0,00) versus HI : f(O) < c
is obtained when we reject H0 if

(3.17)
na2 ~

1 n (In(O) - c) ~ ~-I(O') ,

Fn(an)JDn(t)dJ(2(t)
o

8



where <I> is the standard normal c.d.f. The test is consistent against any alternative covered
by HI.

00

PROOF. Let us introduce fn(O) = (llan) j K(tlan)dF(t), and note that via integration by
-00

parts (2.11) entails

1

(3.18) JF(:n)an(!n(O) - fn(O» -d - j WoD(t)dK(t), as n - 00 ,

o

since integration with respect to K is a continuous functional on D[O, 1]. The random variable
1

on the right in (3.18) is normal with mean 0 and variance j D(t)d[(2(t). A weakly consis

o
1

tent estimator for this variance is given by j Dn(t)dK2(t). Since sUPo99IDn(t) - D(t)1
o

is bounded by the sum of the expressions on the right in (3.10) and (3.12) it follows at
once from the last part of the proof of Theorem 3.1 that sUPo<t<IIDn(t) - D(t)1 -p 0, as

1 1 - -

n - 00. Hence we have I j Dn(t)dK 2(t) - j D(t)dK2(t)1 :::; sUP099MIDn(t) - D(t)l-p 0,
o 0

as n - 00, where Af is the mass assigned to [0,1] by the total variation measure determined
by [(2. Jointly with the first statement in (3.8) this yields

(3.19)

Next let us replace fn(O) with c in the expression on the left in (3.19) and first show that

(3.20) JF(:n) {l K(t)dF(tan) - can } ~ {
00 ,f(O) > c
o ,f(O) =c,

-00 ,f(O) < c
asn-oo .

If f(O) = c we have

1 1

(3.21) j I((t)dF(tan) - can = - j F(tan)dK(t) - can
o 0

1

= - j(cant +D(a;»dK(t) - can = D(a;), as n - 00 .

o

Because JnlF(an) = D( Jnlan) it follows that the expression on the left in (3.20) is of order
D( Jna~) = 0(1), as n - 00. The remaining two cases can be dealt with in a similar manner.
It is clear that (3.8), (3.19), and (3.20) imply the claims of the theorem. Q.E.D.
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4. SOME REMARKS

4.1. Tail empirical processes are of theoretical interest in their own right and the same could
be said about the present generalization to the censored case. For censored tail empirical
processes it turns out that only the kind of heavy censoring that we consider here makes
sense.

4.2. Theorem 2.1 can be extended to the case where the processes ~n, f3n and W 0 Dare
divided by a weight function; also functional laws of the iterated logarithm for ~n and f3n are
readily derived similarly, cf. Einmahl (1992).

4.3. An admissible choice for the kernel K in (3.15) is the indicator function 1[0,1] in which

case in(O) reduces to Fn(an)/an.

1

4.4. An alternative estimator of D(t) in the variance j D(t)dK2(t) of the random variable
o

t

on the right in (3.18) is given by Dn(t) = j(1- Gn(sa n ))-lds, since, = 1 under R o.
o

4.5. The condition na~ -. 0, as n -. 00, in Theorem 3.2 is in fact a restriction on the model.
If the condition is not fulfilled a result like the one in Theorem 3.2 does not exist. Further
smoothness of F, however, can be used to relax this restriction.

4.6. Local confidence bands for A and tests on .x(0) = N(O) follow along similar lines from
(2.12), but since .x(0) = f(O), Theorem 3.2 can also be used directly for testing on .x(0).
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