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The influence of the Wiener index on solution properties of trifunctional hyperbranched polymers
has been investigated using Brownian dynamics simulations with excluded volume and
hydrodynamic interactions. A range of degrees of polymerizatiprand degrees of branchifB)

were used. For each DB aihj several molecules with different Wiener indid®¥) were simulated,
where W depends on the arrangement of branch points. The intrinsic viscosity and the radius of
gyration (Ry) of HPs were both observed to scale with W at a conshntia a power law
relationship, as found in the literature. Through their relationships to W, an expression relating
intrinsic viscosity toR, was obtained. This relationship is found to fall centrally between the
predictions of Flory and Fox for linear polymers and that of Zimm and Kilb for branched polymers.
Molecular shape in solution is also found to depend on W Binés observed through the W
dependence of the ratio &, to the hydrodynamic radiusy,. © 2002 American Institute of
Physics. [DOI: 10.1063/1.1507774

I. INTRODUCTION syntheses and adapt well to large-scale production but offer a
final product that is doubly polydispersefhand DB. A key

L . uestion surrounding the use of HPs is the extent to which
new polymer properties in recent decades. Since the 1980 9

. . ey are able to mimic desired dendrimer properties. Ex-
highly branched dendrimer and hyperbranched pOIymer§1mples within the literature reveal varied behavior. In one

(HPg have generated increasing interest as the search fcc):c':\see irregular HPs were reported to show a dendrimerlike
new polymer properties intensifiés? In general, these mol- k’ \reg it i . % f bol i atiai
ecules possess a recursively branched, treelike structure. InPgax n [7] with increasing degree of polymerizatidh).

dendrimer, repeat units are concentrically layered around X\hthm o_ther efforts, a monotqmc mcregse b’ﬂ_ with N
focal core to create a unique structure for a given degree dn°re akin to the Mark—Houwink behavior of linear poly-
polymerization N. A layer within a dendrimer is also called M€'S ~Was - observed, regardiess of the degree of
a generation. The degree of branchi@p) is defined such branching'™ _ The conflicting message of these measure-
that for a dendrimer DB is {completely branchedand for a ments may in part be due to the difficulty associated with
linear polymer DB is 0. The DB of HPs lies between 0 andcharacterizing these materials using size exclusion chroma-
1. higher values of DB indicating a more compact structure fography (SEQ. The noted polydispersities iN and DB
Dendrimers’ compact structure leads to remarkable propecomplicate the interpretation of SEC applied to HPs since a
ties. For a giverN, low solution viscosities are measured for highly branched molecule with a large value Mfcan have
dendrimers relative to their linear counterparts and denthe same hydrodynamic volume as a less branched or linear
drimer intrinsic viscosities([#]) are observed to reach a molecule with a smaller value di.

maximum and decrease with increasing generation number ~ Computer simulations offer further insight into the solu-
which earmarks them as viscosity modifiers. Not surpristion properties of branched molecules due to the ability to
ingly, dendrimers are expensive to synthesize due to the regtudy the static and dynamic behavior of individual mol-
uisite number of protection/deprotection steps requirececules with knownN and DB values. Several simulation
within their fabrication. Relaxing these controlled chemistrystudies of HPs have been carried out to investigafefor
protocols allows the creation of HPs from a one-pot synthedendrimers and HPs. Aerts used the kinetic bead-rod model
sis. These reactions are more cost effective than dendrimef Lescanec and Muthukum&r}?Widmann and Davies per-
formed RIS metropolis Monte Carl@MMC) simulations of
dauthor to whom correspondence should be addressed. Electronic maiphantom chains in the absence of SOIV]éth"e Lyu”n
d.b.adolf@leeds.ac.uk et al. used Brownian dynamic®BD) with hydrodynamic in-

Molecular structural control has provided a wealth of
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HYPERBRANCHED STRUCTURES BASED ON

INDICATED GENERATION, g.
DENDRIMER, DENDRIMER OF THE g

g=3

e
|4

N =46 N=70 N =67
DB =1.00 DB =0.65 DB =0.68
W = 5661 W = 15957 W = 19332
g=4
9=4
FIG. 1. Structures of six of the twelve symmetric hy-
perbranched molecule@iP9 simulated, labeled with
degree of polymerizatiorl, degree of branching, DB,
. and Wiener index, W. These are based on dendrimers of
< generations 3, 4 and 5, which are pictured on the left for
Y comparison.
N=94 N =166 N=115
DB =1.00 DB =0.56 DB =0.81
W =231293 W = 130725 W =70788
g=5
g=5
N =190 N =358 N=211
DB=1.00 DB =0.53 DB =0.90
W = 160893 W = 817605 W = 287460

teractions and excluded volumi&In each case, the authors The index was introduced by Wiener in 1947 and was
simulated several families of HPs and, in addition, a familyfound to correlate with the boiling points of alkarnfésSince

of linear molecules of increasing molecular weight and athen, it has been found to correlate closely with bulk refrac-
family of dendrimers of increasing generation. Each HP fam+ive index, density, viscosity, melting point, boiling point,
ily was composed of molecules with a constant 38l), but ~ and surface tension of hydrocarbdfid/ and specific
with the same increasinly values as the dendrimers. This m-electronic energies and energy gaps of conjugated
facilitated comparisons of the HPs with the dendrimers angbolymerst® W also correlates reasonably with refractive in-
linear molecules. All these efforts revealed a dendrimerlikedex, density, melting point, and specific rotation of various
maximum in[ 7] with increasing\ for the highest DB family  chain chemistries with vinyl additiof$and has been linked
(the most compact HPsA shallowing or disappearance of to the surface-to-volume ratio of molecules, implying a fur-
the peak was observed for HPs with decreasing DB. Thisher correlation with molecular interactiofis.

behavior suggests DB as an effective index to distinguish  The W value of a molecule is calculated as the cumula-
different[ %] behaviors of HPs on a qualitative basis. How- tive sum of bond lengths along the shortest paths between all
ever, DB only accounts for the relative number of branchdistinct pairs of units in the molecule. W is a direct measure
points and is insensitive to their distribution within the mol- of molecular compactne$8 Converse to DB, W is lower for
ecule. The Wiener index, W, is a more suitable descriptor tanore compact molecules at a givehwith more sprawled
employ when increased topological sensitivity is desired anaut, linearlike structures having higher W values at a given
possesses established links with molecular properties. The. Widmann and Daviés and Lyulin et al}* calculated
wide range of W values possible for branched structures witWiener indices for the molecules they simulated. At a given
the same value dfl and DB attests to its enhanced resolutiondegree of polymerization Widmann and Davies reported that
in structural characterization. [7]~W?, wherea=2.1 to 2.7 witha increasing asN de-
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creased. Lyuliret al. also obtained a power law relationship TABLE |. Degrees of polymerization\, degrees of branching, DB, and

wherea=1.1to 1.6 foIIowing the same trend afwith N Wiener indices, W, of all symmetric HPs. Extrapolated zero-shear intrinsic

Sj the[ ] | ’ £ Wid d Davi | |. ¢ dviscosities,ao, and radii of gyrationRy, of all symmetric HPs(where
ince 7] values of Widmann and Davies are calculatedsimyated are shown.

directly from simulatedRy’s through the assumption that

[ 7]~R,S, it can be seen that their RMMC simulations indi- Degree of Wiener
cateR,~W°, wherec=0.7 to 0.9. Analytical treatments ex- branching, index, % R
) g . . . : N DB W (dimensionless
ist for correlations of the radius of gyratioR, , and[ »] with
W. Bonchevet al?! and others*?2 derived a power law of 49 0.94 7686 265
the formRy~WO*for branched ideal chains. Further analyti- 5 0.83 11376 332

A _ 15 ) 67 0.68 19332 410 273
cal efforts® revealed a scaling df»]~W?*?, assumingRy 103 0.91 50 400 701
~W?*and the relationship;]~Ry*. Widmann and Davies’ 115 0.81 70788 936 3.27
exponents from RMMC were larger than these. They attrib- 211 0.90 287 460 1722 3.83

uted this to their use of a simple simulated model of phantom

chains without so!vent anq hydrodynamic !nteract|QHS). ;g g:gg ;2 3% igé 263
Other theoretical studies of the solution properties of gg 051 34299 594

polymers have resulted in a direct relationship betwlegh 166 0.56 130725 1032

andRy. These approaches focus on particular architectures, 178 0.52 171201 1338 :

rather than applying a general quantitative measure of topol- 3°8 053 817605 2429 4.09

ogy such as W or DB. Flory and Fox derived a relationship
for linear polymers in &-solvent?

_ 32 o 3ng—1 applied to any structure. Section Il presents simulation de-

[7]=®(6"I)Rg™™ 7, (D tails dealing with the generation of the simulated structures,
whereM is the molecular weight and was originally con- the simulation algorithm, and the background to analysis
sidered a universal constant. For branched molecdiede-  protocols used. Results are presented in Sec. Ill with a dis-
viates from the ideal linear polymer value and varies stronglycussion and conclusion contained in Sec. IV.
depending on the type and the extent of branching and mo-
lecular weight*~2° Il. DETAILS OF SIMULATION

A theoretical treatment due to Zimm and Stockmaye
focused on the parametgdefined as the ratio of the squared
radius of gyration of a branched polymer to that of a linear ~ The structures of the HPs simulated within this study fall
polymer of the same molecular weight, iérsolution®®  into two groups. The smaller of the two groups consisted of
Zimm and Kilb introducedy’ defined as the ratio gfy] of a ~ symmetric structures derived from dendrimer molecules.
branched polymer to that of a linear polymeréisolution at  These “symmetric HPs” were created by selectively extend-
the same molecular weight. Incorporating hydrodynamic ining some of the layers within a basic dendrimer structure by
teractions into the derivation dfz] via the Kirkwood— adding an additional linear bead between branching points.
Risemann approximation, they found thgit~g°®° for a star ~ As a result, the symmetric HPs have high¢rvalues and
polymer modef* They proposed this applies to all molecular lower DB than those of the molecule on which they are
architectures, and found agreement with measurements based. Their Wiener indices are also higher than those of
branched styrene-divinylbenzene copolym&r®reviously, —dendrimers with the same number of repeat units. Twelve
Thurmond and Zimm used Eq1.1) to model the intrinsic  variants of the structures were generated based on dendrim-
viscosity of branched polymeféin which case the relation- ers of generation 3, 4, and 5. Although these HPs retain
ship between contraction factorsdé=g®. This approach dendrimer symmetry, the decreased level of branching and
was less successful in achieving agreement with experimemonuniform distribution of branch points are in common
tal data on branched polymers than the result of Zimm anavith less regular HPs. Examples of the structures are pic-
Kilb.3132 Experimental measurements of molecular weighttured in Fig. 1, labeled witiN, DB, and W values. Den-
(M), [7], and Ry have since allowed the determination of drimer structures are included for comparison. DB and W
relationships betweeg andg’. Exponents between 0.5 and data on all symmetric molecules simulated are located in
1.0 have been measured for various star polymers in differentable 1.
solvents?®3 For long chain branched polyethylerfeCB DB is defined for all molecules according to Holter
PE), Meira® suggests a general value £@.2. However, an et al,*®
exponent of 2.0 has been measuteddependence of the 2D
exponent on molecular weight has also been observed for DB= )
LCB PE, where measured exponents fall from 1.0 t0°0.5, 2D+L
1.9 t0 1.2%” and 1.5 to 1.6/ for different polydisperse LCB D is the number of fully branche@dendritic” ) beads and.

r .
A. Generation of molecular structures

(2.9

PE products as increases. is the number of partially reactelinear”) beads. The
This manuscript summarizes a systematic computationalViener index is defined by the formula

investigation of trifunctional HP structural variants to clarify N N

the relationship off 7] and Ry to the Wiener index(W), Wzl S S 4, 2.2

where W is a quantitative measure of topology that can be = e '
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DB=0.8 DB =04

DB = 0.80, LFM DB = 0.40, LFM

W = 34511 W = 44872
FIG. 2. Structures of the 94-bead, BB.8 and DB
=0.4 irregular hyperbranched molecul@dP9 simu-
lated, labeled with Wiener indices, W.

DB = 0.80, MAX DB = 0.40, MAX

W = 36350 W =50150

< %/
DB = 0.80, RFM DB = 0.40, RFM
W =39010 W = 57069

whered;; is the number of bonds separating the beiagisd ~ Table Il contains DB and W data on all irregular HP mol-
j of the structure, counted along the shortest path betweescules simulated.

them. However, W was calculated for all structures using an In this figure, the less branched B#®.4 molecules con-
equivalent, more computationally efficient formula, which is tain longer linear sections relative to the BB.8 molecules.

applicable to molecules without loops, Meanwhile, W expresses the positioning of the branch
N-1 points. In higher W molecules at a given DB ai the
W=D, (VL X Vgy). (2.3  branch points are more dispersed relative to molecules with
s=1 ' '

lower W, where the branch points are relatively localized. In

This sums the product of the number of verticbsads to ~ Fig. 1, two molecules with very similaN (67 and 70 and
the right(R) and left(L) of the center of each bond, DB (0.68 and 0.6bhave highly distinct W values, despite

The main group of HPs were irregular molecules resultthe symmetry of both molecules. This again expresses the
ing from the same sequential addition process used by Lyulifielative localization of branch points in the lower W mol-
et al* Within this group, the HPs had the same degree ofcule.
polymerization(N) as dendrimers of generations 4, 5, and 6  The structure of every molecule took the form of a “con-
(i.e.,N=94, 190, 382 Lyulin et al. revealed that simulated nectivity tree,” specifying the bonded neighbors for each
intrinsic viscosity values for these dendrimers peak near gerbead. For a symmetric HP, the generation of a connectivity
eration 5 (N=190) **%°At eachN, HP molecules with DB tree for the desired structure is trivial. For the irregular HPs,
=0.4, 0.6, and 0.8 were specified. For each of these DBs, @omplete detail of the process of generating trees is found
eachN, two to three molecules were created having distincwithin Ref. 13. In brief, starting from a trifunctional core,
Wiener indices selected according to a systematic procedui®s, with three free B” ends, the molecule is grown outward
(detailed below. Examples of irregular 94-bead HPs are il- by sequential addition of trifunctionahB, monomers to
lustrated in Fig. 2 labeled with their respective DB and W.available free ends untMN have been added. Onk and B
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TABLE II. Degree of branching, DB, structure label and Wiener index, W,  2.0x10° . 1 . 1 . L
of all irregular HPs. Extrapolated zero-shear intrinsic viscositgs, and | N =190
radii of gyration,Ry, of all irregular HPs. MAX, LFM and RFM refer to ,| DB=08 STRUCTURES OF
structures selected from the distribution maximum and the left-hand and 16¥10"] LYULIN ET AL.
right-hand one-fourth maxima, respectively.
& 1.2x10°
Degree of Wiener S
branching, index, ay Rq 5 ,\
DB Structure W (dimensionless 2 8.0x10"1
N=94 .
4.0x10" 1
0.4 RFM 57 069 877 3.65
LFM 44872 699 3.10 0.0 - ; . ; . r .
150000 200000 250000 300000 350000
0.6 RFM 44 658 704 3.12 Wiener Index
MAX 40 600 633 3.01 o i - .
FIG. 3. Distributions of Wiener indices obtained Mt 190 for each DB.
LFM 37598 592 2.94 2 Rt
Distributions for othemN values are almost identical in appearance. Open,
crossed, and filled symbols superimposed on each distribution represent
08 RFM 39010 602 3.01 RFM, MAX, and LFM structures, respectively. Squares denote=DB},
MAX 36 350 571 2.91 diamonds DB=0.6, and up-triangles DBO0.8. + denotes the W position of
LFM 34511 539 2.74 HP structures used by Lyuliat al. (Ref. 14. Dendrimers and linear mol-
N=190 ecules aN=190 have W values 160 893 and 1 143 135, respectively.
0.4 RFM 300 889 2243 4.48 .
LEM 242 210 1817 3.05 For eachN and DB value, structures with W values cor-
responding to the maximum in the distribution and two ad-
0.6 RFM 233582 1748 3.92 ditional structures on either side of the maximum at one-
MAX 214931 1604 3.74 fourth the intensity of the maximum were saved for
LFM 200319 1472 3.63 simulation. For DB=0.4, however, the “maximum” struc-
0.8 REM 203 132 1533 376 tures were not simulated. The structures are termed LFM
MAX 190 772 1424 3.60 (left one-fourth maximum RFM (right one-fourth maxi-
LFM 181812 1400 3.43 mum) and MAX (maximum of the distributiondepending
N 382 on the position their W value takes in the parent distribution.
04 REM 1504 085 4628 537 Data for these structures_are Qenoted by filled, h0.||OW., and
LEM 1241169 3589 crossed symbols, respectively, in all plots. Also, as in Fig. 3,
the symbol shapes of square, diamond, and up-triangle are
0.6 RFM 1150234 3513 4.88 assigned to DB0.4, 0.6, and 0.8 data, respectively. For
MAX 1069 747 3211 4.54 fixed DB, the LFM structure possesses a lower W value than
LFM 1005819 3103 4.44 the REM structure,
0.8 REM 1002 350 3048 458 - Cartesian coordinates of initial conflguratlons were as-
MAX 949116 3029 4.36 signed to the beads of all the molecules according to a pro-
LFM 908 370 2810 4.19 cess by Murat and Gre&t.In this process, beads are added

sequentially from the core, in accordance with the connec-
tivity tree, at a random orientation with respect to the parent
bead to which they are bonded. This is repeated to build the
groups may react together, and cycles are not permitted. Entire molecule with conditions thét) bonded pairs are rig-
one of the two free ends of a branch-terminated monomeidly separated by a bond length,and (b) nonbonded pairs
reacts with a probabilityP,;, the reaction probability of its of beads are separated by at lelasthis prevents large pair
other free end is replaced Wy,. Applying this condition forces disturbing the start of the simulation. If a given bead
allows alteration of the resulting average DB, dependingcould not be added satisfying these conditions after 8000
only on the ratiok=P,/P; as follows34° attempts, the entire molecule was discarded and restarted.

4

8 3+\(k+8)/k _ _ _

The molecules were simulated using Brownian dynam-
By use of the appropriate values, large numbers ¢610°to  jcs. Submolecular structure was coarse grained so that the
1x10") of different structures were generated at target DBsnolecules consisted of spherical suburfiiseads”) repre-
of 04, 06, and 08, and their Wiener indiceS, W, recordedsenting monomers joined to neighbors by free|y rotating
The recorded W values formed a distribution at each targefigid bonds of lengtt. The following equation of motich
DB, as shown in Fig. 3. This shows that W takes manyywas employed
values at the same DB at constait However, specifying
DB localizes the range of possible W values a HP may have P F-°+<
at a givenN. b

(2.9 B. Simulation algorithm

At L N
k—T) - DY -FY+0PAt+DY(AL), (2.5
]
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wherei andj represent different beads from 1rtbFi° isthe A cutoff was imposed for this potential at a separation of

position vector of bead before a BD stepht (superscrip ~ 2.5¢. No valence or torsion angle potentials were employed.

represents prestep quantijig is Boltzmann’s constant and An ¢ value of 0.XT and ao value of 0.8 were used as

T is the simulated temperaturaﬂ is the diffusion tensor proposed by Rey and co-workétgo reproduce the mean-

while F{ represents interbead forceg. is the solvent veloc-  square end-to-end length of a linear chaingisolution. Di-

ity at the positionx?, y°, z° of beadi due to steady shear of mensionless reduced units were employed such Ithdt,

the system, Whereixzyio'y; Uioy:UiOZ:o. y is the dimen- KkT=1, and{=1. Hence, time is reduced byl 2/kT and

sionless shear rate. shear rate b;kT/gIZ. Quantities from this point onward are
The solvent is represented as a structureless continuugkpressed in these units unless otherwise stated. Minimum

with chain-solvent collisions mimicked by the vectbf(At) ~ and maximum dimensionless shear ratege0.024 and 1.2

which has a zero mean and a variance—covariance matriere used with dimensionless time-steps of 0™ and 2

given by X 104, respectively, foN= 94 irregular HP molecules. For
R R irregularN=190 and 382 moleculeg;=0.006 and 0.6 were
0 0 0
(PP (A D](AL)) =2AtDj;. (2.6)  the minimum and maximum dimensionless shear rates, using

The diffusion tensor has diagonal elements, dimensionless time-steps ob®L0™* and 4x10°*, respec-
tively. Similar parameters were used for the symmetric HPs
kT ) with the y range depending on size while time-step was de-
?) Saps  1=0,..N, (2.7) creased for higher shear rates and smaller molecules. These
parameters are in keeping with work of Lyuk al. on simi-
wherea and 3 represent the, 'y, orzcomponents and,s  |ar molecules**°Simulation runs of X 10° to 1x 10° time-
is the Kronecker SymbOZ is the translational coefficient of Steps were used for equi”bration, depending on molecular
friction of each bead with the solvent defined & sjze. Typically, production runs spannes 20’ steps forN
=6m7sa, where 7 is the solvent viscosity and is the =94 molecules, X 10’ to 2x 10’ steps forN=190 mol-
Stoke’s hydrodynamic radius of a bead. The off-diagonal elecyles, and %10° to 6x 10° steps forN=382 molecules.
ements ofDj} represent the hydrodynamic interacticit)  This translates to runs at loi values requiring one or two
between beads. These are calculated rigorously according #ays of Origin 2000 CPU time whereas the lower shear rate

e

the Rotne—Prager—Yamakawa interaction tef&or, N=2382 systems required four months of CPU time on the
112 app same platform. Additional simulations were carried out to
ijaﬁ)ozh* — — || = gt o7 obtain average dimensionless radii of gyratidy) in the
3 40 J1Ryj Rij absence of shear. Here, the same time-step and equilibration
232 3RYRA length were used as for the lowest finite shear simulation of
+ 3R.2 Oap— R” 2”” (2.8 a given molecule, wittR, data being sampled from up to
ij ij

2x10° steps of subsequent production. Further simulation
Rij is the separation of beadsndj. h* sets the strength of details can be found in the work of Lyuliet al*” Error bars
the HI, where in all plots are smaller than the size of the data symbols used
and lines on graphs are guides to the eye, unless otherwise
h* = (E (2.9 indicated.
v

1/2 a

A value of h* =0.25 is used with the simulation which cor- C. Processing of results
responds to a bead hydrodynamic radass 0.257.%° For
overlapping beads, E@2.9) is rewritten®®

1. Viscosity
The simulated intrinsic viscosity was calculated ac-

N app ; i i
Di(-‘“ﬁ)(’:(k—T ~ 9Ryj st 3 R”F\’Z.J . (210 cording to the following expression,
! 4 32a 32a) R (17— 1)
- ()= (213
The direct interbead forces are represented:ﬁ,y nkT\ ’ '

N Jo U where\ is the characteristic time of orientational diffusion
20 k LJ . . . . .
Fi=- E )\k(?) o (2.11 of a single monomet® 7 is the shear viscosityys is the

k=1 17¢0 g viscosity of the solvent, and is the number density of mol-

o is an equation of rigid constraint for theth bond, and\, ecules. The shear viscosity was obtained through the nondi-

is the corresponding Lagrange multiplier. A modified version@donal component of the shear stress,

of the SHAKE* algorithm due to Allison and McCamm®h

is employed. n=——". (2.149
The second term on the right of E@.11) represents the

forces between nonbonded beddand j, expressed by a Figure 4 shows the shear thinning behavior at high shear rate

Lennard-Jones potential, for a selection of the molecules studied. Similar shear thin-
" . ning has been reported previously for dendritiand HP*
_ I N molecules. A Newtonian plateau exists, facilitating extrapo-
U=, 4s : (2.12 . Xtrapo
] Rij Rij lation to zero shear-rate to afford the zero shear intrinsic
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10000 +———r————— i ———rrrry

100 T —— T — ey
1E-3 0.01 0.1 i 10
dimensionless shear rate

FIG. 4. Simulated intrinsic viscosity vs shear rate for a selection of HPs of
differing degrees of polymerizatiofN) and structure. Circles denote sym-
metric HPs. Other symbols represent irregular HPs where squares denote
DB=0.4, diamonds DB-0.6, and up-triangles DB0.8. Open symbols and
filed symbols represent RFM and LFM structures, respectively. Dashed
lines indicate quadratic extrapolations to zero shear from the lowest three to
four shear rate points to obtai, values recorded in Tables | and II.

viscosity. The extrapolation process used to extract the zero
shear intrinsic viscosity employs at least three of the lowest
shear rate data points per molecule and the equation,

[7]*=ao— a1y, (2.15

wherea, is the zero shear intrinsic viscosityThis form is
justified since the intrinsic viscosity does not depend on the
direction of the shear and the intrinsic viscosity decreases
with increasing shear raigée., shear thinning Values ofa,

are found in Tables | and Il for the symmetric and irregular
HPs, respectively. The experimental intrinsic viscosity uses a
concentration rather than a number density of molecules
within its definition. Translation of the data defined by Eq.
(2.13 into a quantity consistent with an experimental intrin-
sic viscosity is accomplished by introduciig;]=aq/N.
This procedure was followed for all simulated molecules to
produce the intrinsic viscosity data within Figs. 5—8.
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DB=04
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[7]

10
(@)

DB=0.6
104

{71
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100

DB=0.8
10

7

A/A:

10
(©

FIG. 5. [7;] vs N for irregular HPs at constant DB in comparison to den-

drimers. Open symbols and filled symbols represent RFM and LFM struc-
tures, respectively. Squares denote 8B4, diamonds DB-0.6, up-

2. Hydrodynamic radius

A hydrodynamic radiusR;,) for a HP can be obtained
through the diffusion coefficient via mean-squared displace-
ment data. However, Lyuliet al!* reportR,, values for HPs
computed in this manner are quantitatively similaRpval-

triangles DB=0.8, and asterisks denote dendrimer data.

for the sake of clarity. The simulated data for the correspond-
ing dendrimers of Lyuliret al. are included, but Lyulin's HP

ues computed via

data are not displayed as they do not represent a consistent
specification of W.

Figures %a)—5(c) reveal tha{ 7] values for the HPs are
substantially higher than the corresponding denrimgt

Ry, values within this manuscript are computed using Eqvalues. Also, at a given DB anN, RFM structuresiopen

B 3N[’;]] 1/3
"l 10w
(2.16.
IIl. RESULTS

A. Comparison of HPs to dendrimers

symbolg have highef 7] than LFM structuresfilled sym-
bols). This corresponds with the higher W of the RFM struc-
tures, emphasizing the sensitivity oh] to molecular com-
pactness at the same DB.

The HP curves in each panel of Fig. 5 reflect a peak or

Figures %a)—5(c) illustrate the variation of the zero plateau in[7] at N values where a definite peak in the den-

shear intrinsic viscosity witiN. LFM and RFM structures for

drimer [ %] is observed. Within each curve, the difference

each DB are shown and MAX structures have been omittech [7] at N=190 andN=382 is small compared to the

Downloaded 11 Mar 2008 to 131.155.151.13. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



J. Chem. Phys., Vol. 117, No. 16, 22 October 2002

LFM l
104 /l ]
(7 e
/X
Y \*
¥
10 100
(a)
RFM f—-0
104 D/ : 5 ]
o?A A
A
[ x
/
> \x
P 3
10 100
(®) N

Simulations of hyperbranched polymers 7809

A AR
10 / / /, ]
A $ &
I~ &
[77] 2 ‘ﬁ
13 £N=190 4 N=382
£ n=04
S o
100000 1000000

w

FIG. 8. Correlation of 77] with Wiener index, W, for irregular HPs. All DBs
are shown. Squares denote BB.4, diamonds DB:0.6, and up-triangles
DB=0.8. Open, crossed, and filled symbols represent RFM, MAX, and
LFM structures, respectively. Dotted lines indicate a fit ugigg~W?2 for
eachN with the exponents reported in Table IlI.

qualitative[ ] behavior is more resilient to Wiener index
variation, since a narrower range[af] is explored by struc-
tures with different W Fig. 5(c)].

Figure 6 shows thdtz] increases with decreasing DB if
the Wiener index is consistently specified as LHNg. 6(a)]
or RFM [Fig. 6(b)]. The difference between adjacent DBs in
Fig. 6(a) or 6(b) is comparable to the interval in Figs(ab—
5(c) between LFM and RFM structures at the same DB. This

FIG. 6. [7] vs N data for HPs selected from the same part of the parent wmeans that substantially different DB molecules with the
distribution. Filled and open symbols represent LFM and RFM structuressgmeN may have the San{e}']] depending on the choice of

respectively. Squares denote BB.4, diamonds DB-0.6, up-triangles DB
=0.8, and asterisks denote dendrimers.

strength of the W dependence at BB.6 and 0.4. Hence for
a given DB, if one structure is chosen at eaghwithout
regard to its W value, the evidence of a peak ] with
increasingN is easily accentuated or eliminated. For ex-
ample, if in Fig. %a) at N=94 andN=190, the DB=0.4
LFM structures are selected with the BB.4 RFM structure
used atN= 382, an apparent scaling p%] with N results.
Alternatively, taking the LFM structures of Fig.(® at N
=94 andN =382, with the RFM structure ai =190 would
reveal a significant peak ifiz] versusN. At DB=0.8, the

101 —o
_ Zé/‘?‘ﬁ _
[l | '
/ x— x/¥\x
*
10 100
N

FIG. 7.[ %] vsNillustrating the overlap of various LFM and RFM data sets.
Squares denote DB0.4, diamonds DB-0.6, and up-triangles DB0.8.

Wiener index. Figure 7 illustrates this point where RFM
points of DB=0.8 virtually overlay with LFM points of DB
=0.6. DB=0.4 and 0.6 show a similar overlap.

B. Comparison of intrinsic viscosity and radius
of gyration with Wiener index

As discussed previously, the literature supports a power
law correlation off 7] with W and of Ry with W for a given
degree of polymerization\. Up to now, simulations have
focused on the dependence of HP intrinsic viscosities on DB
at a givenN. For the present study, simulations were per-
formed to allow the independent determination of bpiH
andRy of HP molecules, with a range of W at ealdhvalue,
chosen systematically at different DBs.

1. Intrinsic viscosity

The[7] values from Fig. 5 are plotted against W in Fig.
8. A power law relationship of the form

[7]1~Wa(3.D)

clearly exists for each set of data whétés held constant, as
was observed in the previous effotfs*

The three groups representing differéhvalues in Fig.
8 involve structures with different DBs. All data in each
group fall onto a single line. DB does not therefore play a
guantitative role in setting the value p%]. However, DB
localizes W at constantl (see Fig. 3, placing limits on the
value[7] can take.

Fitting Eqg. (3.1) to the data within theN=94, N= 190,

Open symbols and filled symbols represent RFM and LFM structures, re@NdN =382 systems in turn yields values @f 1.0 in every

spectively. Asterisks denote dendrimers.

case within errofsee Table IlJ. The separation of the groups

Downloaded 11 Mar 2008 to 131.155.151.13. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



7810

J. Chem. Phys., Vol. 117, No. 16, 22 October 2002

TABLE Ill. Exponents in the power law relationships;]~W?3x N and
Rg~\N“><Wd. a andc are obtained from fits for irregular HPs at constiint
b andd are obtained from fits for all HPs after settingo 0.5 anda to 1.0.

N a c
94 0.99-0.04 0.52-0.03
190 0.99:0.03 0.510.02
382 1.00£0.02 0.50:0.03
b d
All —2.20+0.01 —0.85+0.01

by N is indicative of arN dependence, which is added to Eq.
(3.1) following Widmann and Davies as

[7]~Wax NP, (3.2
The bareN dependence is obtained as,

(7] .

WWN , (3.3

wherea has been set to 1.0. TH&] data of Fig. 6 were
recalculated as the left-hand side of E§.3), and plotted
versusN as shown in Fig. 9.

The data are observed to collapse onto a single lin
Points can be seen in Fig. 9 in between the discret
dendrimer-equivalenN values of 94, 190, and 382. These

data were calculated from simulations of the symmetric HP

structures introduced earlier. Fitting all of the data to Eq

(3.3 allows the determination of the second exponent of Eq

(3.2 asb=—-2.20+0.01, affording the final relationship
[7]~WIOxN~—22 (3.4

2. Radius of gyration

R, data were obtained for the HP molecules by perform
ing simulations in the absence of shear. ValuesRgfare
located in Tables | and Il. Scaling &y with W is investi-
gated for HPs using the simulatd®}, values, following a
similar approach to the previous section.

The plots ofR, data versus W in Fig. 10 are qualitatively
similar to the plots of 77] versus W in Fig. 8. For each data
set grouped bW, a power law relationship of the form

10° T
N-2A20
1 0»3 J 4
Co.,
D.
- Y
71 10*4 oo, .
w X,
10° - 4
10° T
100
N

FIG. 9. Correlations of %]/W with N. Symmetric(open symbolsand ir-
regular(filled symbolg HPs are shown. The dotted line indicates a fit of the
data using 77]/W~ N® which yieldsb= —2.20+0.01.
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, —
5 Q
y
? N = 382
> 4 0 /'
o |j ﬁ ~W0.5
A N=190
s &
A N =94
100000 1000000
w

FIG. 10. Correlation oR, with W for irregular HPs. All DBs are shown.
Squares denote DB0.4, diamonds DB-0.6, and up-triangles DB0.8.
Open, crossed, and filled symbols represent RFM, MAX, and LFM struc-
tures, respectively. Dotted lines correspond to a fit ustgg W° at eachN
value with the exponents reported in Table IlI.

Rg~W° (3.5

is clearly observed. Fitting each group of data with E35)
affords ac value of 0.5 for all three cases within err@ee
Table I1l). The increase oRy with W at constaniN is ex-

epected, since a higher W molecule should be less compact

than a molecule with a lower W. TH¢ dependence is incor-

porated into Eq(3.5) as

Ry~Wex N¢ (3.6

in the spirit of Eq.(3.2). The Ry data were recalculated ac-
cording to the left-hand side of E¢B.7) obtained by setting
cto 0.5 in Eq.(3.6),

Ry NG

Wo5 (3.7

.and plotted in Fig. 11 versus.

The data are observed to collapse onto a single line with
a slope ofd= —0.85+0.01. Again, data from simulations of
the symmetric HPs are included within this plot. In light of
Figs. 10 and 11, a relationship betweRy, W, andN for all
of the molecules considered can be cast as

Ry~ WOSx N~085 (3.9

100
N

FIG. 11. Correlation oRy /WO with N. Symmetric(open symbolsand
irregular (filled symbolg HPs are shown. The dotted line indicates a fit of
the formR, /W°->~N¢ affordingd=—0.85=0.01.
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The fitted exponents of Eq$3.4) and (3.8) are empiri- AR i
cal, but reflect the sensitivity of7] and Ry of highly 1.5
branched molecules to topology via W and to the number of N
repeat unitsN. This contrasts with the simpld dependence
of linear polymers.

94 N =190 N =382

R/R,

3. Comparisons with other results 1.0 » ﬁ? °

Equations3.4) and(3.8) may be assessed in the light of
other work. The theoretical value for the exponent in the
power law relationship betwee®, and W was reported ear- v T
X 1 o . ) 100000 1000000
lier as 0.5 and is in excellent agreement with current find- W
ings (see Table Ill. An analytically predicted exponent of
1.5 in the power law relationship betwedm] and W is  FIG. 12. Ratio of radius of gyration to hydrodynamic radigg,/Ry,, vs
higher than the finding from this study which places thisWiener index, W, for the irregular HPs. Squares denote=DB, diamonds

; DB=0.6, and up-triangles DB0.8. Open, crossed, and filled symbols rep-
value around 1.(Isee Table Ill. However, the analytlcal resent RFM, MAX, and LFM structures, respectively. Values of 0.775 for a

. 3 . . g
method _USEd the relationsHig ]~ Ry, in a limiting case for a4 uniform spherésolid) and 1.504 for an unperturbed linear chéref.
hard uniform spheres. In contrast, the present resultf;fbr  29) are shown for comparison.

andRy were obtained by independent methods from solution

state simulations. Widmann and Davies’ RMMC work gen-

erated higher exponents @=2.7 to 2.1,c=0.9 to 0.7, V. DISCUSSION AND CONCLUSION

whose deviations above the theoretical values were rationaly, pirect relationship between intrinsic viscosity and
ized in terms of shortcomings of the model, which usedradius of gyration

h hai ith | HI The BD k of . -
phantom chains without solvent or N work o Equationg(3.4) and(3.9) allow [ 7] andR, to be related

Lyulin et al.founda=1.2 to 1.1 forN=94 to 382, agreeing o . )
with the values found in this work within errét. through the elimination of either W aX. This process af-

In a recent Brownian dynamics simulation by Lee andfordS
McHugh using phantom chains and trumbell-FENE spring  [7]~R2%< W03, (4.2
subunits, zero shear viscosities of HPs were correlated with 205
the average number of unbranched units between branch [7]~RgxXN""%, (4.2

points?® However, several pairs or triplets of molecules werewhich apply to both the symmetric and irregular HPs.
simulated, in which each molecule had the same number of  Zimm and Kilb proposed)’ ~g°-° for the intrinsic vis-
branch units and the same degree of polymerization  cosijty and radius of gyration contraction factors of branched
equivalently the same DB anh), but different branching polymers. Before this, Thurmond and Zimm compared the
arrangementsi.e., different W. Members within each pair intrinsic viscosity of branched and linear polymers, using Eq.
or triplet were found to have viscosity values varying by up(1.1) for the branched moleculé, which implies® g’
to 25%"° =g!>. A relation of g andg’ may be constructed for the
present HPs. Equatiod.2) expresses their intrinsic viscosi-
ties, [7]yp. Furthermore, Eq(1.1) is assumed to apply to
the intrinsic viscosity] 7], , and the radius of gyratiomy, ,

The ratioRy/Ry, is related to molecular conformation, of linear molecules. Thus, at a constait
having a value 1.504 for ideal linear polymers and 0.775 for ~ 2N - 05 2
hard uniform spheres respectively. Its value is found to vary [7]up _ Rgre N Ryrie

’ AT 3N-1T 3\ —05"
strongly for different branched polyme#$?® Simulations [7l. Rg°N Ry°N
and experiments reveal dendrimers exhibit ratios near or bexssuming RyL~ N°-> for a #-solution of linear molecules,
low the sphere value, especially at higher generafiéf$>  gq. (4.3 simplifies to
Furthermore, dendrimers’ radial density distribution in solu- ~ 2
tion becomes more like that of a uniform sphere with in- [”]HPN Rgnp (4.4)
; ; 1,49,51-53 ; 7 20 :

creasing generation numbg&r4%: Ry/R, ratios are [7]l.  Rgu

plotted in Fig. 12 for the simulated irregular HP m°|eCU|es-reerctingg’=gl-°. This exponent value of 1.00 is within the

Dotted and solid lines represent the values for linear idear'ange 0.5-2.0 found experimentally for LCB Br&nd falls

chains and hard uniform spheres, respectively. centrally between the two theoretical predictions for poly-
The simulated molecules straddle the value 1.00. Theygrs.

ratio decreases toward the spherelike value overal &%
creases. AlsoRy /R, decreases at a giveN value as W
decreases, suggesting a more compact branching configu
tion leads to a more compact conformation. This underlines  The dependence of intrinsic viscosity dhfor HPs has
the importance of an approach encompassing the Wiener irtraditionally been investigated by the use of a range of struc-
dex when considering the conformation of HP molecules. tures with different DB and\. This reveals that HPs haye]

4. Molecular conformation

4.3

3. Conclusion
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