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The influence of the Wiener index on solution properties of trifunctional hyperbranched polymers
has been investigated using Brownian dynamics simulations with excluded volume and
hydrodynamic interactions. A range of degrees of polymerization~N! and degrees of branching~DB!
were used. For each DB andN, several molecules with different Wiener indices~W! were simulated,
where W depends on the arrangement of branch points. The intrinsic viscosity and the radius of
gyration (Rg) of HPs were both observed to scale with W at a constantN via a power law
relationship, as found in the literature. Through their relationships to W, an expression relating
intrinsic viscosity toRg was obtained. This relationship is found to fall centrally between the
predictions of Flory and Fox for linear polymers and that of Zimm and Kilb for branched polymers.
Molecular shape in solution is also found to depend on W andN, as observed through the W
dependence of the ratio ofRg to the hydrodynamic radius,Rh . © 2002 American Institute of
Physics. @DOI: 10.1063/1.1507774#
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I. INTRODUCTION

Molecular structural control has provided a wealth
new polymer properties in recent decades. Since the 19
highly branched dendrimer and hyperbranched polym
~HPs! have generated increasing interest as the search
new polymer properties intensifies.1–4 In general, these mol
ecules possess a recursively branched, treelike structure
dendrimer, repeat units are concentrically layered aroun
focal core to create a unique structure for a given degre
polymerization,N. A layer within a dendrimer is also calle
a generation. The degree of branching~DB! is defined such
that for a dendrimer DB is 1~completely branched! and for a
linear polymer DB is 0. The DB of HPs lies between 0 a
1,4 higher values of DB indicating a more compact structu
Dendrimers’ compact structure leads to remarkable pro
ties. For a givenN, low solution viscosities are measured f
dendrimers relative to their linear counterparts and d
drimer intrinsic viscosities~@h#! are observed to reach
maximum and decrease with increasing generation numb1,5

which earmarks them as viscosity modifiers. Not surp
ingly, dendrimers are expensive to synthesize due to the
uisite number of protection/deprotection steps requi
within their fabrication. Relaxing these controlled chemis
protocols allows the creation of HPs from a one-pot synt
sis. These reactions are more cost effective than dendr

a!Author to whom correspondence should be addressed. Electronic
d.b.adolf@leeds.ac.uk
7800021-9606/2002/117(16)/7802/11/$19.00
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syntheses and adapt well to large-scale production but off
final product that is doubly polydisperse inN and DB. A key
question surrounding the use of HPs is the extent to wh
they are able to mimic desired dendrimer properties. E
amples within the literature reveal varied behavior. In o
case,6 irregular HPs were reported to show a dendrimerl
peak in @h# with increasing degree of polymerization~N!.
Within other efforts, a monotonic increase of@h# with N
more akin to the Mark–Houwink behavior of linear poly
mers was observed, regardless of the degree
branching.7–10 The conflicting message of these measu
ments may in part be due to the difficulty associated w
characterizing these materials using size exclusion chro
tography ~SEC!. The noted polydispersities inN and DB
complicate the interpretation of SEC applied to HPs sinc
highly branched molecule with a large value ofN can have
the same hydrodynamic volume as a less branched or li
molecule with a smaller value ofN.

Computer simulations offer further insight into the sol
tion properties of branched molecules due to the ability
study the static and dynamic behavior of individual mo
ecules with knownN and DB values. Several simulatio
studies of HPs have been carried out to investigate@h# for
dendrimers and HPs. Aerts used the kinetic bead-rod mo
of Lescanec and Muthukumar,11,12Widmann and Davies per
formed RIS metropolis Monte Carlo~RMMC! simulations of
phantom chains in the absence of solvent,13 while Lyulin
et al. used Brownian dynamics~BD! with hydrodynamic in-
il:
2 © 2002 American Institute of Physics

P license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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FIG. 1. Structures of six of the twelve symmetric hy
perbranched molecules~HPs! simulated, labeled with
degree of polymerization,N, degree of branching, DB,
and Wiener index, W. These are based on dendrimer
generations 3, 4 and 5, which are pictured on the left
comparison.
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teractions and excluded volume.14 In each case, the author
simulated several families of HPs and, in addition, a fam
of linear molecules of increasing molecular weight and
family of dendrimers of increasing generation. Each HP fa
ily was composed of molecules with a constant DB~,1!, but
with the same increasingN values as the dendrimers. Th
facilitated comparisons of the HPs with the dendrimers a
linear molecules. All these efforts revealed a dendrimerl
maximum in@h# with increasingN for the highest DB family
~the most compact HPs!. A shallowing or disappearance o
the peak was observed for HPs with decreasing DB. T
behavior suggests DB as an effective index to distingu
different @h# behaviors of HPs on a qualitative basis. Ho
ever, DB only accounts for the relative number of bran
points and is insensitive to their distribution within the mo
ecule. The Wiener index, W, is a more suitable descripto
employ when increased topological sensitivity is desired
possesses established links with molecular properties.
wide range of W values possible for branched structures w
the same value ofN and DB attests to its enhanced resoluti
in structural characterization.
Downloaded 11 Mar 2008 to 131.155.151.13. Redistribution subject to AI
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The index was introduced by Wiener in 1947 and w
found to correlate with the boiling points of alkanes.15 Since
then, it has been found to correlate closely with bulk refra
tive index, density, viscosity, melting point, boiling poin
and surface tension of hydrocarbons,16,17 and specific
p-electronic energies and energy gaps of conjuga
polymers.18 W also correlates reasonably with refractive i
dex, density, melting point, and specific rotation of vario
chain chemistries with vinyl additions18 and has been linked
to the surface-to-volume ratio of molecules, implying a fu
ther correlation with molecular interactions.19

The W value of a molecule is calculated as the cumu
tive sum of bond lengths along the shortest paths betwee
distinct pairs of units in the molecule. W is a direct measu
of molecular compactness.20 Converse to DB, W is lower for
more compact molecules at a givenN with more sprawled
out, linearlike structures having higher W values at a giv
N. Widmann and Davies13 and Lyulin et al.14 calculated
Wiener indices for the molecules they simulated. At a giv
degree of polymerization Widmann and Davies reported t
@h#;Wa, wherea52.1 to 2.7 witha increasing asN de-
P license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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7804 J. Chem. Phys., Vol. 117, No. 16, 22 October 2002 Sheridan et al.
creased. Lyulinet al. also obtained a power law relationsh
wherea51.1 to 1.6 following the same trend ofa with N.
Since the@h# values of Widmann and Davies are calculat
directly from simulatedRg’s through the assumption tha
@h#;Rg

3, it can be seen that their RMMC simulations ind
cateRg;Wc, wherec50.7 to 0.9. Analytical treatments ex
ist for correlations of the radius of gyration,Rg , and@h# with
W. Bonchevet al.21 and others13,22 derived a power law of
the formRg;W0.5 for branched ideal chains. Further analy

cal efforts13 revealed a scaling of@h#;W1.5, assumingRg

;W0.5 and the relationship@h#;Rg
3. Widmann and Davies

exponents from RMMC were larger than these. They att
uted this to their use of a simple simulated model of phant
chains without solvent and hydrodynamic interactions~HI!.

Other theoretical studies of the solution properties
polymers have resulted in a direct relationship between@h#
andRg . These approaches focus on particular architectu
rather than applying a general quantitative measure of to
ogy such as W or DB. Flory and Fox derived a relations
for linear polymers in au-solvent,23

@h#5F~63/2!Rg
3M 21, ~1.1!

whereM is the molecular weight andF was originally con-
sidered a universal constant. For branched molecules,F de-
viates from the ideal linear polymer value and varies stron
depending on the type and the extent of branching and
lecular weight.24–29

A theoretical treatment due to Zimm and Stockmay
focused on the parameterg defined as the ratio of the square
radius of gyration of a branched polymer to that of a line
polymer of the same molecular weight, inu-solution.30

Zimm and Kilb introducedg8 defined as the ratio of@h# of a
branched polymer to that of a linear polymer inu-solution at
the same molecular weight. Incorporating hydrodynamic
teractions into the derivation of@h# via the Kirkwood–
Risemann approximation, they found thatg8'g0.5 for a star
polymer model.31 They proposed this applies to all molecul
architectures, and found agreement with measurement
branched styrene-divinylbenzene copolymers.31 Previously,
Thurmond and Zimm used Eq.~1.1! to model the intrinsic
viscosity of branched polymers,32 in which case the relation
ship between contraction factors isg85g1.5. This approach
was less successful in achieving agreement with experim
tal data on branched polymers than the result of Zimm
Kilb.31,32 Experimental measurements of molecular weig
~M!, @h#, and Rg have since allowed the determination
relationships betweeng andg8. Exponents between 0.5 an
1.0 have been measured for various star polymers in diffe
solvents.29,33 For long chain branched polyethylene~LCB
PE!, Meira34 suggests a general value 1.260.2. However, an
exponent of 2.0 has been measured.35 Dependence of the
exponent on molecular weight has also been observed
LCB PE, where measured exponents fall from 1.0 to 0.536

1.9 to 1.2,37 and 1.5 to 1.0,37 for different polydisperse LCB
PE products as increases.

This manuscript summarizes a systematic computatio
investigation of trifunctional HP structural variants to clari
the relationship of@h# and Rg to the Wiener index~W!,
where W is a quantitative measure of topology that can
Downloaded 11 Mar 2008 to 131.155.151.13. Redistribution subject to AI
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applied to any structure. Section II presents simulation
tails dealing with the generation of the simulated structur
the simulation algorithm, and the background to analy
protocols used. Results are presented in Sec. III with a
cussion and conclusion contained in Sec. IV.

II. DETAILS OF SIMULATION

A. Generation of molecular structures

The structures of the HPs simulated within this study f
into two groups. The smaller of the two groups consisted
symmetric structures derived from dendrimer molecul
These ‘‘symmetric HPs’’ were created by selectively exten
ing some of the layers within a basic dendrimer structure
adding an additional linear bead between branching poi
As a result, the symmetric HPs have higherN values and
lower DB than those of the molecule on which they a
based. Their Wiener indices are also higher than those
dendrimers with the same number of repeat units. Twe
variants of the structures were generated based on dend
ers of generation 3, 4, and 5. Although these HPs re
dendrimer symmetry, the decreased level of branching
nonuniform distribution of branch points are in commo
with less regular HPs. Examples of the structures are
tured in Fig. 1, labeled withN, DB, and W values. Den-
drimer structures are included for comparison. DB and
data on all symmetric molecules simulated are located
Table I.

DB is defined for all molecules according to Holte
et al.,38

DB5
2D

2D1L
. ~2.1!

D is the number of fully branched~‘‘dendritic’’ ! beads andL
is the number of partially reacted~‘‘linear’’ ! beads. The
Wiener index is defined by the formula

W5
1

2 (
j 51

N

(
i 51

N

di j , ~2.2!

TABLE I. Degrees of polymerization,N, degrees of branching, DB, an
Wiener indices, W, of all symmetric HPs. Extrapolated zero-shear intrin
viscosities,a0 , and radii of gyration,Rg , of all symmetric HPs~where
simulated! are shown.

Degree of Wiener
branching, index, a0 Rg

N DB W ~dimensionless!

49 0.94 7686 265 •••
55 0.83 11 376 332 •••
67 0.68 19 332 410 2.73

103 0.91 50 400 701 •••
115 0.81 70 788 936 3.27
211 0.90 287 460 1722 3.83

70 0.65 15 957 331 •••
82 0.55 25 713 455 2.63
88 0.51 34 299 594 •••

166 0.56 130 725 1032 •••
178 0.52 171 201 1338 •••
358 0.53 817 605 2429 4.09
P license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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FIG. 2. Structures of the 94-bead, DB50.8 and DB
50.4 irregular hyperbranched molecules~HPs! simu-
lated, labeled with Wiener indices, W.
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wheredi j is the number of bonds separating the beadsi and
j of the structure, counted along the shortest path betw
them. However, W was calculated for all structures using
equivalent, more computationally efficient formula, which
applicable to molecules without loops,13

W5 (
s51

N21

~VL,s3VR,s!. ~2.3!

This sums the product of the number of vertices~beads! to
the right ~R! and left ~L! of the center of each bond,s.

The main group of HPs were irregular molecules res
ing from the same sequential addition process used by Ly
et al.14 Within this group, the HPs had the same degree
polymerization~N! as dendrimers of generations 4, 5, and
~i.e., N594, 190, 382!. Lyulin et al. revealed that simulated
intrinsic viscosity values for these dendrimers peak near g
eration 5 (N5190).14,39 At eachN, HP molecules with DB
50.4, 0.6, and 0.8 were specified. For each of these DB
eachN, two to three molecules were created having disti
Wiener indices selected according to a systematic proce
~detailed below!. Examples of irregular 94-bead HPs are
lustrated in Fig. 2 labeled with their respective DB and
Downloaded 11 Mar 2008 to 131.155.151.13. Redistribution subject to AI
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Table II contains DB and W data on all irregular HP mo
ecules simulated.

In this figure, the less branched DB50.4 molecules con-
tain longer linear sections relative to the DB50.8 molecules.
Meanwhile, W expresses the positioning of the bran
points. In higher W molecules at a given DB andN, the
branch points are more dispersed relative to molecules w
lower W, where the branch points are relatively localized.
Fig. 1, two molecules with very similarN ~67 and 70! and
DB ~0.68 and 0.65! have highly distinct W values, despit
the symmetry of both molecules. This again expresses
relative localization of branch points in the lower W mo
ecule.

The structure of every molecule took the form of a ‘‘co
nectivity tree,’’ specifying the bonded neighbors for ea
bead. For a symmetric HP, the generation of a connecti
tree for the desired structure is trivial. For the irregular HP
complete detail of the process of generating trees is fo
within Ref. 13. In brief, starting from a trifunctional core
B3 , with three free ‘‘B’’ ends, the molecule is grown outwar
by sequential addition of trifunctionalAB2 monomers to
available free ends untilN have been added. OnlyA and B
P license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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groups may react together, and cycles are not permitte
one of the two free ends of a branch-terminated mono
reacts with a probabilityP1 , the reaction probability of its
other free end is replaced byP2 . Applying this condition
allows alteration of the resulting average DB, depend
only on the ratiok5P2 /P1 as follows:13,40

DB5
4

31A~k18!/k
. ~2.4!

By use of the appropriatek values, large numbers (53106 to
13107) of different structures were generated at target D
of 0.4, 0.6, and 0.8, and their Wiener indices, W, record
The recorded W values formed a distribution at each ta
DB, as shown in Fig. 3. This shows that W takes ma
values at the same DB at constantN. However, specifying
DB localizes the range of possible W values a HP may h
at a givenN.

TABLE II. Degree of branching, DB, structure label and Wiener index,
of all irregular HPs. Extrapolated zero-shear intrinsic viscosities,a0 , and
radii of gyration,Rg , of all irregular HPs. MAX, LFM and RFM refer to
structures selected from the distribution maximum and the left-hand
right-hand one-fourth maxima, respectively.

Degree of Wiener
branching, index, a0 Rg

DB Structure W ~dimensionless!

N594

0.4 RFM 57 069 877 3.65
LFM 44 872 699 3.10

0.6 RFM 44 658 704 3.12
MAX 40 600 633 3.01
LFM 37 598 592 2.94

0.8 RFM 39 010 602 3.01
MAX 36 350 571 2.91
LFM 34 511 539 2.74

N5190

0.4 RFM 300 889 2243 4.48
LFM 242 210 1817 3.95

0.6 RFM 233 582 1748 3.92
MAX 214 931 1604 3.74
LFM 200 319 1472 3.63

0.8 RFM 203 132 1533 3.76
MAX 190 772 1424 3.60
LFM 181 812 1400 3.43

N5382
0.4 RFM 1 504 085 4628 5.37

LFM 1 241 169 3589 •••

0.6 RFM 1 150 234 3513 4.88
MAX 1 069 747 3211 4.54
LFM 1 005 819 3103 4.44

0.8 RFM 1 002 350 3048 4.58
MAX 949 116 3029 4.36
LFM 908 370 2810 4.19
Downloaded 11 Mar 2008 to 131.155.151.13. Redistribution subject to AI
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For eachN and DB value, structures with W values co
responding to the maximum in the distribution and two a
ditional structures on either side of the maximum at on
fourth the intensity of the maximum were saved f
simulation. For DB50.4, however, the ‘‘maximum’’ struc-
tures were not simulated. The structures are termed L
~left one-fourth maximum!, RFM ~right one-fourth maxi-
mum! and MAX ~maximum of the distribution! depending
on the position their W value takes in the parent distributio
Data for these structures are denoted by filled, hollow, a
crossed symbols, respectively, in all plots. Also, as in Fig
the symbol shapes of square, diamond, and up-triangle
assigned to DB50.4, 0.6, and 0.8 data, respectively. F
fixed DB, the LFM structure possesses a lower W value th
the RFM structure,

Cartesian coordinates of initial configurations were
signed to the beads of all the molecules according to a p
cess by Murat and Grest.41 In this process, beads are add
sequentially from the core, in accordance with the conn
tivity tree, at a random orientation with respect to the par
bead to which they are bonded. This is repeated to build
entire molecule with conditions that~a! bonded pairs are rig-
idly separated by a bond length,l, and ~b! nonbonded pairs
of beads are separated by at leastl. This prevents large pai
forces disturbing the start of the simulation. If a given be
could not be added satisfying these conditions after 8
attempts, the entire molecule was discarded and restarte

B. Simulation algorithm

The molecules were simulated using Brownian dyna
ics. Submolecular structure was coarse grained so that
molecules consisted of spherical subunits~‘‘beads’’! repre-
senting monomers joined to neighbors by freely rotat
rigid bonds of lengthl. The following equation of motion42

was employed

rW i5rW i
01S Dt

kTD •(
j

Di j
0
•FW j

01vW i
0Dt1FW i

0~Dt !, ~2.5!

,

d

FIG. 3. Distributions of Wiener indices obtained atN5190 for each DB.
Distributions for otherN values are almost identical in appearance. Op
crossed, and filled symbols superimposed on each distribution repre
RFM, MAX, and LFM structures, respectively. Squares denote DB50.4,
diamonds DB50.6, and up-triangles DB50.8. 1 denotes the W position of
HP structures used by Lyulinet al. ~Ref. 14!. Dendrimers and linear mol-
ecules atN5190 have W values 160 893 and 1 143 135, respectively.
P license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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wherei and j represent different beads from 1 toN. rW i
0 is the

position vector of beadi before a BD stepDt ~superscript0

represents prestep quantities!, k is Boltzmann’s constant an
T is the simulated temperature.Di j

0 is the diffusion tensor
while FW j

0 represents interbead forces.vW i
0 is the solvent veloc-

ity at the positionxi
0, yi

0, zi
0 of beadi due to steady shear o

the system, wherev ix
0 5yi

0ġ; v iy
0 5v iz

0 50. ġ is the dimen-
sionless shear rate.

The solvent is represented as a structureless contin
with chain-solvent collisions mimicked by the vectorFW i

0(Dt)
which has a zero mean and a variance–covariance m
given by

^FW i
0~Dt !FW j

0~Dt !&52DtDi j
0 . ~2.6!

The diffusion tensor has diagonal elements,

Dii
~ab!05S kT

z D dab , i 50,...,N, ~2.7!

wherea andb represent thex, y, or z components anddab

is the Kronecker symbol.z is the translational coefficient o
friction of each bead with the solvent defined asz
56phsa, where hs is the solvent viscosity anda is the
Stoke’s hydrodynamic radius of a bead. The off-diagonal
ements ofDi j

0 represent the hydrodynamic interactions~HI!
between beads. These are calculated rigorously accordin
the Rotne–Prager–Yamakawa interaction tensor,42

Di j
~ab!05h* S p

3 D 1/2S 3kT

4z D S l

Ri j
D F S dab1

Ri j
a Ri j

b

Ri j
2 D

1
2a2

3Ri j
2 S dab2

3Ri j
a Ri j

b

Ri j
2 D G . ~2.8!

Ri j is the separation of beadsi and j. h* sets the strength o
the HI, where

h* 5S 3

p D 1/2S a

l D . ~2.9!

A value of h* 50.25 is used with the simulation which co
responds to a bead hydrodynamic radiusa50.257l .39 For
overlapping beads, Eq.~2.8! is rewritten,43

Di j
~ab!05S kT

z D F S 12
9Ri j

32a D dab1S 3

32aD Ri j
a Ri j

b

Ri j
2 G . ~2.10!

The direct interbead forces are represented byFW j
0,

FW j
052 (

k51

N

lkS ]sk

]rW j
D

r 0

2
]ULJ

]rW j
0 . ~2.11!

sk is an equation of rigid constraint for thekth bond, andlk

is the corresponding Lagrange multiplier. A modified versi
of the SHAKE44 algorithm due to Allison and McCammon45

is employed.
The second term on the right of Eq.~2.11! represents the

forces between nonbonded beadsi and j, expressed by a
Lennard-Jones potential,

ULJ5(
i j

4«S S s

Ri j
D 12

2S s

Ri j
D 6D . ~2.12!
Downloaded 11 Mar 2008 to 131.155.151.13. Redistribution subject to AI
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A cutoff was imposed for this potential at a separation
2.5s. No valence or torsion angle potentials were employ
An « value of 0.3kT and as value of 0.8l were used as
proposed by Rey and co-workers46 to reproduce the mean
square end-to-end length of a linear chain inu-solution. Di-
mensionless reduced units were employed such thatl 51,
kT51, and z51. Hence, time is reduced byz l 2/kT and
shear rate bykT/z l 2. Quantities from this point onward ar
expressed in these units unless otherwise stated. Minim
and maximum dimensionless shear rates ofġ50.024 and 1.2
were used with dimensionless time-steps of 431024 and 2
31024, respectively, forN594 irregular HP molecules. Fo
irregularN5190 and 382 molecules,ġ50.006 and 0.6 were
the minimum and maximum dimensionless shear rates, u
dimensionless time-steps of 631024 and 431024, respec-
tively. Similar parameters were used for the symmetric H
with the ġ range depending on size while time-step was
creased for higher shear rates and smaller molecules. T
parameters are in keeping with work of Lyulinet al.on simi-
lar molecules.14,39Simulation runs of 33105 to 13106 time-
steps were used for equilibration, depending on molecu
size. Typically, production runs spanned 23107 steps forN
594 molecules, 13107 to 23107 steps forN5190 mol-
ecules, and 33106 to 63106 steps forN5382 molecules.
This translates to runs at lowN values requiring one or two
days of Origin 2000 CPU time whereas the lower shear r
N5382 systems required four months of CPU time on
same platform. Additional simulations were carried out
obtain average dimensionless radii of gyration (Rg) in the
absence of shear. Here, the same time-step and equilibr
length were used as for the lowest finite shear simulation
a given molecule, withRg data being sampled from up t
23106 steps of subsequent production. Further simulat
details can be found in the work of Lyulinet al.47 Error bars
in all plots are smaller than the size of the data symbols u
and lines on graphs are guides to the eye, unless other
indicated.

C. Processing of results

1. Viscosity

The simulated intrinsic viscosity39 was calculated ac-
cording to the following expression,

@h#* 5
~h2hs!

nkTl
, ~2.13!

wherel is the characteristic time of orientational diffusio
of a single monomer,39 h is the shear viscosity,hs is the
viscosity of the solvent, andn is the number density of mol
ecules. The shear viscosity was obtained through the no
agonal component of the shear stress,

h52
txy

ġ
. ~2.14!

Figure 4 shows the shear thinning behavior at high shear
for a selection of the molecules studied. Similar shear th
ning has been reported previously for dendrimer39 and HP14

molecules. A Newtonian plateau exists, facilitating extrap
lation to zero shear-rate to afford the zero shear intrin
P license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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viscosity. The extrapolation process used to extract the z
shear intrinsic viscosity employs at least three of the low
shear rate data points per molecule and the equation,

@h#* 5a02a1ġ2, ~2.15!

wherea0 is the zero shear intrinsic viscosity.39 This form is
justified since the intrinsic viscosity does not depend on
direction of the shear and the intrinsic viscosity decrea
with increasing shear rate~i.e., shear thinning!. Values ofa0

are found in Tables I and II for the symmetric and irregu
HPs, respectively. The experimental intrinsic viscosity use
concentration rather than a number density of molecu
within its definition. Translation of the data defined by E
~2.13! into a quantity consistent with an experimental intri
sic viscosity is accomplished by introducing@h̃#5a0 /N.
This procedure was followed for all simulated molecules
produce the intrinsic viscosity data within Figs. 5–8.

2. Hydrodynamic radius

A hydrodynamic radius (Rh) for a HP can be obtained
through the diffusion coefficient via mean-squared displa
ment data. However, Lyulinet al.14 reportRh values for HPs
computed in this manner are quantitatively similar toRh val-
ues computed via

Rh5S 3N@h̃#

10p D 1/3

. ~2.16!

Rh values within this manuscript are computed using E
~2.16!.

III. RESULTS

A. Comparison of HPs to dendrimers

Figures 5~a!–5~c! illustrate the variation of the zero
shear intrinsic viscosity withN. LFM and RFM structures for
each DB are shown and MAX structures have been omi

FIG. 4. Simulated intrinsic viscosity vs shear rate for a selection of HP
differing degrees of polymerization~N! and structure. Circles denote sym
metric HPs. Other symbols represent irregular HPs where squares d
DB50.4, diamonds DB50.6, and up-triangles DB50.8. Open symbols and
filled symbols represent RFM and LFM structures, respectively. Das
lines indicate quadratic extrapolations to zero shear from the lowest thr
four shear rate points to obtaina0 values recorded in Tables I and II.
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for the sake of clarity. The simulated data for the correspo
ing dendrimers of Lyulinet al. are included, but Lyulin’s HP
data are not displayed as they do not represent a consi
specification of W.

Figures 5~a!–5~c! reveal that@h̃# values for the HPs are
substantially higher than the corresponding denrimer@h̃#
values. Also, at a given DB andN, RFM structures~open
symbols! have higher@h̃# than LFM structures~filled sym-
bols!. This corresponds with the higher W of the RFM stru
tures, emphasizing the sensitivity of@h̃# to molecular com-
pactness at the same DB.

The HP curves in each panel of Fig. 5 reflect a peak
plateau in@h̃# at N values where a definite peak in the de
drimer @h̃# is observed. Within each curve, the differen
in @h̃# at N5190 andN5382 is small compared to th

f

ote

d
to

FIG. 5. @h̃# vs N for irregular HPs at constant DB in comparison to de
drimers. Open symbols and filled symbols represent RFM and LFM st
tures, respectively. Squares denote DB50.4, diamonds DB50.6, up-
triangles DB50.8, and asterisks denote dendrimer data.
P license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



r

x

x

if

in

his
he
f
M

wer

DB
er-

g.

h
a

s

t W
re

ts.

, r

nd

7809J. Chem. Phys., Vol. 117, No. 16, 22 October 2002 Simulations of hyperbranched polymers
strength of the W dependence at DB50.6 and 0.4. Hence fo
a given DB, if one structure is chosen at eachN without
regard to its W value, the evidence of a peak in@h̃# with
increasingN is easily accentuated or eliminated. For e
ample, if in Fig. 5~a! at N594 andN5190, the DB50.4
LFM structures are selected with the DB50.4 RFM structure
used atN5382, an apparent scaling of@h̃# with N results.
Alternatively, taking the LFM structures of Fig. 5~a! at N
594 andN5382, with the RFM structure atN5190 would
reveal a significant peak in@h̃# versusN. At DB50.8, the

FIG. 6. @h̃# vs N data for HPs selected from the same part of the paren
distribution. Filled and open symbols represent LFM and RFM structu
respectively. Squares denote DB50.4, diamonds DB50.6, up-triangles DB
50.8, and asterisks denote dendrimers.

FIG. 7. @h̃# vs N illustrating the overlap of various LFM and RFM data se
Squares denote DB50.4, diamonds DB50.6, and up-triangles DB50.8.
Open symbols and filled symbols represent RFM and LFM structures
spectively. Asterisks denote dendrimers.
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qualitative @h̃# behavior is more resilient to Wiener inde
variation, since a narrower range of@h̃# is explored by struc-
tures with different W@Fig. 5~c!#.

Figure 6 shows that@h̃# increases with decreasing DB
the Wiener index is consistently specified as LFM@Fig. 6~a!#
or RFM @Fig. 6~b!#. The difference between adjacent DBs
Fig. 6~a! or 6~b! is comparable to the interval in Figs. 5~a!–
5~c! between LFM and RFM structures at the same DB. T
means that substantially different DB molecules with t
sameN may have the same@h̃# depending on the choice o
Wiener index. Figure 7 illustrates this point where RF
points of DB50.8 virtually overlay with LFM points of DB
50.6. DB50.4 and 0.6 show a similar overlap.

B. Comparison of intrinsic viscosity and radius
of gyration with Wiener index

As discussed previously, the literature supports a po
law correlation of@h# with W and ofRg with W for a given
degree of polymerization,N. Up to now, simulations have
focused on the dependence of HP intrinsic viscosities on
at a givenN. For the present study, simulations were p
formed to allow the independent determination of both@h̃#
andRg of HP molecules, with a range of W at eachN value,
chosen systematically at different DBs.

1. Intrinsic viscosity

The @h̃# values from Fig. 5 are plotted against W in Fi
8. A power law relationship of the form

@h̃#;Wa~3.1!

clearly exists for each set of data whereN is held constant, as
was observed in the previous efforts.13,14

The three groups representing differentN values in Fig.
8 involve structures with different DBs. All data in eac
group fall onto a single line. DB does not therefore play
quantitative role in setting the value of@h̃#. However, DB
localizes W at constantN ~see Fig. 3!, placing limits on the
value @h̃# can take.

Fitting Eq. ~3.1! to the data within theN594, N5190,
andN5382 systems in turn yields values ofa51.0 in every
case within error~see Table III!. The separation of the group

s,

e-

FIG. 8. Correlation of@h̃# with Wiener index, W, for irregular HPs. All DBs
are shown. Squares denote DB50.4, diamonds DB50.6, and up-triangles
DB50.8. Open, crossed, and filled symbols represent RFM, MAX, a
LFM structures, respectively. Dotted lines indicate a fit using@h̃#;Wa for
eachN with the exponents reported in Table III.
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by N is indicative of anN dependence, which is added to E
~3.1! following Widmann and Davies as

@h̃#;Wa3Nb. ~3.2!

The bareN dependence is obtained as,

@h̃#

W
;Nb, ~3.3!

where a has been set to 1.0. The@h̃# data of Fig. 6 were
recalculated as the left-hand side of Eq.~3.3!, and plotted
versusN as shown in Fig. 9.

The data are observed to collapse onto a single l
Points can be seen in Fig. 9 in between the discre
dendrimer-equivalentN values of 94, 190, and 382. Thes
data were calculated from simulations of the symmetric
structures introduced earlier. Fitting all of the data to E
~3.3! allows the determination of the second exponent of
~3.2! asb522.2060.01, affording the final relationship

@h̃#;W1.03N22.2. ~3.4!

2. Radius of gyration

Rg data were obtained for the HP molecules by perfor
ing simulations in the absence of shear. Values ofRg are
located in Tables I and II. Scaling ofRg with W is investi-
gated for HPs using the simulatedRg values, following a
similar approach to the previous section.

The plots ofRg data versus W in Fig. 10 are qualitative
similar to the plots of@h̃# versus W in Fig. 8. For each dat
set grouped byN, a power law relationship of the form

TABLE III. Exponents in the power law relationships@h̃#;Wa3Nb and
Rg;Wc3Wd. a andc are obtained from fits for irregular HPs at constantN.
b andd are obtained from fits for all HPs after settingc to 0.5 anda to 1.0.

N a c

94 0.9960.04 0.5260.03
190 0.9960.03 0.5160.02
382 1.0060.02 0.5060.03

b d

All 22.2060.01 20.8560.01

FIG. 9. Correlations of@h̃#/W with N. Symmetric~open symbols! and ir-
regular~filled symbols! HPs are shown. The dotted line indicates a fit of t
data using@h̃#/W;Nb which yieldsb522.2060.01.
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Rg;Wc ~3.5!

is clearly observed. Fitting each group of data with Eq.~3.5!
affords ac value of 0.5 for all three cases within error~see
Table III!. The increase ofRg with W at constantN is ex-
pected, since a higher W molecule should be less com
than a molecule with a lower W. TheN dependence is incor
porated into Eq.~3.5! as

Rg;Wc3Nd ~3.6!

in the spirit of Eq.~3.2!. The Rg data were recalculated ac
cording to the left-hand side of Eq.~3.7! obtained by setting
c to 0.5 in Eq.~3.6!,

Rg

W0.5;Nd, ~3.7!

and plotted in Fig. 11 versusN.
The data are observed to collapse onto a single line w

a slope ofd520.8560.01. Again, data from simulations o
the symmetric HPs are included within this plot. In light
Figs. 10 and 11, a relationship betweenRg , W, andN for all
of the molecules considered can be cast as

Rg;W0.53N20.85. ~3.8!

FIG. 10. Correlation ofRg with W for irregular HPs. All DBs are shown.
Squares denote DB50.4, diamonds DB50.6, and up-triangles DB50.8.
Open, crossed, and filled symbols represent RFM, MAX, and LFM str
tures, respectively. Dotted lines correspond to a fit usingRg;Wc at eachN
value with the exponents reported in Table III.

FIG. 11. Correlation ofRg /W0.5 with N. Symmetric~open symbols! and
irregular ~filled symbols! HPs are shown. The dotted line indicates a fit
the formRg /W0.5;Nd affording d520.8560.01.
P license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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The fitted exponents of Eqs.~3.4! and ~3.8! are empiri-
cal, but reflect the sensitivity of@h̃# and Rg of highly
branched molecules to topology via W and to the numbe
repeat units,N. This contrasts with the simpleN dependence
of linear polymers.

3. Comparisons with other results

Equations~3.4! and~3.8! may be assessed in the light
other work. The theoretical value for the exponent in t
power law relationship betweenRg and W was reported ear
lier as 0.521 and is in excellent agreement with current fin
ings ~see Table III!. An analytically predicted exponent o
1.513 in the power law relationship between@h# and W is
higher than the finding from this study which places th
value around 1.0~see Table III!. However, the analytica
method used the relationship@h#;Rg

3, in a limiting case for
hard uniform spheres. In contrast, the present results for@h#
andRg were obtained by independent methods from solut
state simulations. Widmann and Davies’ RMMC work ge
erated higher exponents ofa52.7 to 2.1, c50.9 to 0.7,
whose deviations above the theoretical values were ratio
ized in terms of shortcomings of the model, which us
phantom chains without solvent or HI13. The BD work of
Lyulin et al. founda51.2 to 1.1 forN594 to 382, agreeing
with the values found in this work within error.14

In a recent Brownian dynamics simulation by Lee a
McHugh using phantom chains and trumbell-FENE spr
subunits, zero shear viscosities of HPs were correlated
the average number of unbranched units between bra
points.48 However, several pairs or triplets of molecules we
simulated, in which each molecule had the same numbe
branch units and the same degree of polymerization~or
equivalently the same DB andN!, but different branching
arrangements~i.e., different W!. Members within each pai
or triplet were found to have viscosity values varying by
to 25%.48

4. Molecular conformation

The ratio Rg /Rh is related to molecular conformation
having a value 1.504 for ideal linear polymers and 0.775
hard uniform spheres respectively. Its value is found to v
strongly for different branched polymers.24,25 Simulations
and experiments reveal dendrimers exhibit ratios near or
low the sphere value, especially at higher generations.24,49,50

Furthermore, dendrimers’ radial density distribution in so
tion becomes more like that of a uniform sphere with
creasing generation number.39,41,49,51–53 Rg /Rh ratios are
plotted in Fig. 12 for the simulated irregular HP molecule
Dotted and solid lines represent the values for linear id
chains and hard uniform spheres, respectively.

The simulated molecules straddle the value 1.00. T
ratio decreases toward the spherelike value overall asN in-
creases. Also,Rg /Rh decreases at a givenN value as W
decreases, suggesting a more compact branching config
tion leads to a more compact conformation. This underli
the importance of an approach encompassing the Wiene
dex when considering the conformation of HP molecules
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IV. DISCUSSION AND CONCLUSION

A. Direct relationship between intrinsic viscosity and
radius of gyration

Equations~3.4! and~3.8! allow @h̃# andRg to be related
through the elimination of either W orN. This process af-
fords

@h̃#;Rg
2.63W20.3, ~4.1!

@h̃#;Rg
23N20.5, ~4.2!

which apply to both the symmetric and irregular HPs.
Zimm and Kilb proposedg8'g0.5 for the intrinsic vis-

cosity and radius of gyration contraction factors of branch
polymers. Before this, Thurmond and Zimm compared
intrinsic viscosity of branched and linear polymers, using E
~1.1! for the branched molecules,32 which implies31 g8
5g1.5. A relation of g and g8 may be constructed for the
present HPs. Equation~4.2! expresses their intrinsic viscos
ties, @h̃#HP. Furthermore, Eq.~1.1! is assumed to apply to
the intrinsic viscosity,@h̃#L , and the radius of gyration,RgL ,
of linear molecules. Thus, at a constantN,

@h̃#HP

@h̃#L
;

RgHP
2N20.5

RgL
3N21 ;

RgHP
2

RgL
3N20.5. ~4.3!

AssumingRgL;N0.5 for a u-solution of linear molecules
Eq. ~4.3! simplifies to

@h̃#HP

@h̃#L
;

RgHP
2

RgL
2 , ~4.4!

reflectingg85g1.0. This exponent value of 1.00 is within th
range 0.5–2.0 found experimentally for LCB PE37 and falls
centrally between the two theoretical predictions for po
mers.

B. Conclusion

The dependence of intrinsic viscosity onN for HPs has
traditionally been investigated by the use of a range of str
tures with different DB andN. This reveals that HPs have@h#

FIG. 12. Ratio of radius of gyration to hydrodynamic radius,Rg /Rh , vs
Wiener index, W, for the irregular HPs. Squares denote DB50.4, diamonds
DB50.6, and up-triangles DB50.8. Open, crossed, and filled symbols re
resent RFM, MAX, and LFM structures, respectively. Values of 0.775 fo
hard, uniform sphere~solid! and 1.504 for an unperturbed linear chain~Ref.
29! are shown for comparison.
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values which are lower than linear molecules of the samN
and higher than dendrimers of the sameN. Higher DB mol-
ecules are found to have@h# values closer to those of corre
sponding dendrimers, relative to lower DB molecules.11,13,14

This investigation reveals an important dependence of@h̃#
on W at a givenN. A systematic approach to W yielde
results which reflect a peak or plateau in@h̃# of HPs asN
increases. The analysis carried out illustrates that witho
strict specification of W at eachN when initially selecting HP
structures, the results at a given DB could easily exhib
significant dendrimerlike peak in@h̃# with increasingN, or a
linear polymerlike @h̃#;Na behavior. The empirical rela
tionships obtained in this study for HPs are based on syst
which are monodisperse inN, DB, and W. Future investiga
tions will tackle systems polydisperse in one or more
these parameters.
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