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O. The evaluation of methods.

During the last 10 years there has been a growing interest in the

methodological aspects of software development and many new methods

have been proposed for improving the programming process. A new disci­

pline called software engineering has been created in the academic

field with the goal of providing a scientific base to the entire

endeavour.

Today, every programming manager is confronted with many alternate

methods for doing the same job and receives conflicting advise depen­

ding on who he is talking to. In fact, there is even no agreement on

what belongs to the so-called modern methods and what does not.

The properties to be considered for the eva1utation of methods are:

- applicability

affinity

adaptability

precision

effectiveness and

- cost.

The most basic property of a method is its applioability. In the same

sense that no mathematical algorithm is able to compute all possible

functions, there is no universal method that solves all problems and

tasks. Sometimes one gets the impression that people believe that, in

the~case of programming, they have found or should be able to find

this universal method. Whoever did an analysis of programming errors

soon will find out that the more errors he studies, the more different

reasons for errors become visible. For every different error reason a

different method will apply, either for its prevention of for its

detection. It is symptomatic of the entire software engineering lite­

rature that very little is being said as to which specific task within

a project and which specific problem is being addressed by a certain

method. Many methods also make the assumption that the normal pro­

gramming environment is one where all programs are written from

scratch.
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There is a relationship between tasks in a project, applicable

methods, and tools supporting the individual methods. Some methods may

have a very narrow and specific application only, others_ may apply to

a whole range of problems and tasks.

Any two methods may be completely unrelated to each other or they may

• form some close relationship. We use the term affinity to express

which are the other methods that a give method can coexist or interact

with. Sometimes methods support each other, they form a compatible

chain in the sense that the output of one can be used as input for the

other, or the strengths of one method compensates for the weakness of

another. Examples that complement each other are structured pro­

gramming and Nassi-Shneiderman charts, or RIPO and Pseudocode •

• The adaptability of a method describes the ease with which a method

can be adjusted to an environment different than the one it was origi­

nally conceived for. As an example, the benefits of the chief pro­

grammer team organisation can also be obtained if only partial aspects

of the Baker/Mills ideas are actually implemented. This also reduces

the level of commitment that is required to introduce a method and

makes it easier to back-out again.

eThe precision of a method indicates how predictable its results are.

Most methods are more or less imprecise. They give general guidelines

only. For several methods major subaspects are precise, which means

that part of the method can be formalized and hence mechanized. As an

example, in the case of program proving, whenever preconditions and

postconditions have been found, the correctness of a given program may

be demonstrated mechanically, i.e. with the aid of a verifier program.

In most cases, however, programs can only support minor aspects of the

method, e.g. editing of texts or diagrams. The practioner, of course,

has a strong preference for precise methods provided they have been

mechanized. This makes their results much less dependent on the skills

and motivations of the persons involved.
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• The property that is most frequently talked about is effectiveness. It

designates the degree to which the problem or task in question is

being solved. There are different and conflicting dimensions when

effectiveness should be expressed. For a programming project there are

usually three goals that count: product quality, development efficien­

cy and adherence to schedules. During the development process the pro­

duct quality is influenced by the rate of error occurrence and detec­

tion. Methods that prevent the occurrence of errors or facilitate

their detection contribute positively to the quality goal. Very little

quantitative data is available for any of the methods to express their

effectiveness in this respect. An ineffective method may only scratch

the surface of a problem, while an effective method may solve the

problem completely. Methods with a broad applicability may be very

effective for one problem but less effective for another •

• The final property to be evaluated is cost. With every method, certain

efforts are associated for introducing and using it. These may be

reflected in actual expenses, e.g. for tools or for people and machine

time. It may also show up in terms of the skills that are needed or

the flexibility that may be sacrificed. Whenever effectiveness is

measured in terms of development efficiency or productivity, the costs

for a new method are usually netted out immediately against the

savings. If the goal of the methods is something else, extra costs

accrue which are due to the particular method. It is astonishing how

little has been published in this respect.

The evaluation of methods can be done at different levels. Four levels

will be considered.

The first level would be a study of the proponents' claims This can

be done based on the appropriate literature. This will give some 1n­

formation on applicability, maybe also some on effectiveness, but

probably very little on adaptability and cost.

The next level would be to interrogate current users. This is some­

times done by user organisations. The additional information gained

maybe 1n the areas of adaptability and cost. It may also give more

reliable data on effectiveness.
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The third level would be a trial, period within the user organisation.

For this, a pilot project would be selected. It should be as much as

possible a project that in all other aspects is comparable with pre­

vious projects. Ideally the same project should be carried out, using

different methods thus giving equivalent control information. In prac­

tice, this is hardly possible. It is very difficult to exclude all

other parameters that may influence the result. Another risk in a

pilot project is the socalled Hawthorne effect. Whoever has been

selected from multiple candidates for a certain experiment has a ten­

dency to produce positive results.

The fourth level of evaluation would be one where we try to understand

why a certain method works and why it produces certain results. This

would require a "basic understanding of the cognitive processes and

problems involved" in programming. This today is still an area of

research in psychology, group dynamics and human problems solving

theory. It is doubtful whether this level of evaluation is both

necessary and possible.

Summary.

Software engineering as a discipline should not be satisfied by just

producing new methods for the development of programs, nor should

those methods be limited to the case thet programs are built from

scratch. What the practioner needs are methods that allow to make use

of existing products. This implies that we know how to evaluate' the

products that are offered.

It may be a goal of the industry to lower the cost of programs. This

goal is different from lowering the cost of programming. The road that

leads to this goal certainly involves taking a different attitude to­

wards commercial software packages.

Because of the number and variety of methods proposed for the pro­

gramming process a consistent methodology for the evaluation of

methods is needed. This would give a framework in which the scarce

results of empirical studies could be classified. As long as no agree­

ment exists between computer scientists as to how our methods should

be evaluated, we have not reached the status of a mature engineering

field.
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1. Software Development Methodology.

1.1. Software development methodology emerges as a mean to cope with the

growth in size and compexity of software. It can be considered as an

orderly way of developing software, which consists of a series of

well defined steps. The most important steps in software development

methodology are: requi~~~~~t~pecification,design, implementation

and validation. At each of these steps, the properties of

completeness, consistency, inarribiguity, as well as invariance, must

be validated before the next step can be started. Moreover, each

step is supported by analysis techniques, design aids, and sofware

tools. The methodology provides guidelines for design and pro­

gramming, and reduces validation and testing by constructive ana­

lysis.

1.2. Requirement can be defined as statements of constraints on the

entity, while specification is a structure form of requirements.

Specification is an important part of software development because

proper specification-of the system can prevent and detect some

(design) errors by early analysis and systematic decomposition.

Moreover, it can partically validate the system throughout the

development process, independent of implementation and hardware by

maintaining an abstract model of the system and performing analyses

on this data base. Further, specification can aid the software

development: It can help packaging according to logical properties,

performance requirements and availability in software design. It

leads to modularization, as well as complete and unambiguous inter­

faces in implementation. Also, it can assist interface checking in

integration and test case generation in evaluation. Lastly, speci­

fication can monitor system evolution by locating modules that

require to be changed and reassure that the new system will perform

properly.
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The specification methods can be classified according to the phase

in the software development cycle in which the method is most appli­

cable into: specification of objectives and needs~ specification of

system requirements, specification of data-pPOcessing subsystem/

software requirements, and specification of software process design

requvrements. The specification method of system objectives and

needs are usually in free form English. It is not formalized as well

as difficult to formalize. There are some semantic models in this

area~ specifically for software requirement analysis. There are also

not much formal methods in system requirement. Techniques for speci­

fication of the earlier phase (system objectives and needs) and the

later phase (software requirements) seem to be applicable in this

area. In software requirements, the specification methods are nume­

rous and can be classified according to the aspects of the system

being specified into functional specification, concurrent process

synchronization, data flow specification, control flow specification

and performance specification. In software process design require­

ments, specifications includes algorithm specification, data type

specification, as well as concurrency specification.

Although some techniques are available in requirement specification,

there is no standard or formal way of expressing them, and the soft­

ware methodology in this area is not well understood.

Program design involves the creation of forms that satisfy certain

predefined functionality with maximum economy and efficiency. The

many design methodologies in existence today include top-down,

bottom-up, composite/structured design, Jackson's method and SADT.

Top-down methodology is the prevalent methodology which involves

reducing a large complex problem by decomposition and partitioning

into modules which are simpler to solve. Through a series of ab­

stractions and elaborations, stepwise refinement, preserving uniform

control structures, modularized code results 1n a program which is

easier to understand, test and verify.
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In order to insure the quality of critical large scale software

systems, extensive validation and testing procedures are required

before they are implemented in their real operational environment.

Because exhaustive testing is not possible on implemented code,

intelligent testing strategies involve the use of test case genera­

tion. At present there is no acceptable theory of program testing.

Program va~idation involves the test and evolution of software aimed

at ensuring the compliance with the function performance and inter­

face requirements. The validation task can be quite extensive and

certain constrictive techniques like top-down design, structured

programming and imposing restrictions on the programmer's freedom

can ease the process considerably. Program validation include

proving methods and software evaluation methods. Verification­

proving techniques may be approached formally using predicate cal­

culus or informally-forming logical ass-ertiens about allowable

ranges of variables, inadmissable states and relations.
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2.1. Decomposition.

Decomposition is the process of dividing a system or a process into

several levels of subsystems and subprocesses based on certain cri­

teria. Decomposition is needed for orderly design of complex sys­

tems. It is used to identify tightly coupled processes, to minimize

the interactions among processes and to provide a clean interface

between various processes and better resource utilization. There are

two approaches in decomposition, namely, functional decomposition

and attribute decompositon.

2.2. Partitioning.

Partitioning can be defined as the process of dividing the decom­

posed subsystems or subprocesses into different modules. Partitions

must be well-defined, Le., it must be consistent, compl-ete,-unam-~-------­

bigious, testable and easily integrated. Also, several operational

requirements such a~ resource allocation, performance, reliability

have to be met. Partitioning can be achieved by exhaustive parti­

tioning, natural ways partitioning (physical or logical) or arti-

fical ways (centralized or distributed).

2.3. Specification Languages.

A precise statement of specifications is required to design a large

secure system. The obj~ctives of specification languages are to

prevent and detect some design errors, to partially validate the

system throughout the development process, to aid the software

development and to monitor system evolution. A good specification

language for software requirements should precisely, completely and

unambiguously state the following aspects: 1) functional specifi­

cation, 2) concurrent processes synchronization, 3) data flow speci­

fication, 4) control flow specification and 5) performance specifi­

cation.
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2.4. VaZidation.

Validation is the process of ensuring that the product satisfies all

originating requirements. Properties validated include completeness,

consistence, ambiguity and invariance. Some constructive techniques

in the design process are very helpful for validation, for instance,

top-down design, structured programming, decomposition and parti­

tioning methodologies. Verification techniques include checking

input/output consistency, logical consistency and proving some

specific properties like deadlock-free and security criteria. These

can be either verified by symbolic execution or proved by theorem.

Difficulties in this area result from complexity of the program,

lack of up-to-date documentation, hardness in simulating execution

time environment and imprecise or incomplete system specification.

2.5. Testing.
Testing can be classified into simulation testing or actual system

testing. There are several phases in testing: program analysis, test

data selection, formulation of testing strategy, environment simu­

lation, actual execution of programs and evaluation of the testing

process. Since exhaustive testing is not possible on implemented

codes, a good approach is to employ intelligent testing by test case

generation. Today there is no acceptable theory of testing. For

future works in testing, we may see more emphasis on constructive

approaches and combination of proving and testing.

2.6. CompZexity.

Time complexity of an algorithm is the measure of its execution time

as a function of its input size. Computational complexity of a

problem could be polynomial time, exponential time or NP-complete

(i.e., not likely to find a deterministic polynomial algorithm to

solve the problem). For NP-complete problems, some heuristic methods

have to be used to find the solution close to optimality. In addi­

tional to time complexity, processor and memory requirements of an

algorithm have also to be dealt with.
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2.7. Modeling.

Modeling is a formal abstraction and generalization for the descrip­

tion of some objects. A model is independent of representation and

implementation. The use of modeling can make problems easier to

understand and analyze. Moreover results obtained by studying the

models can be reused. There are two types of modeling, namely simu­

lation and analytic models. A number of different models can be con­

structed from different points of view and have different purposes

or contain different amounts of detail. The various models of a sys­

tem correspond to different ways of partitioning it into components,

of representing the interactions among them and with the system's

environment. A lot of models have been used and analyzed in computer

system design, such as Turing machines, finite state machines,

directed graph models, Petri-net models etc.

2.8 • Concurrency.

Processes are concurrent if their executions could overlap in time.

In a multiprocessor or distributed system, the executions of con­

current processes overlap in time. But in a uniprocessor system,

concurrent processes can only execute in interleaved time slots.

However, the logical problems turn out to be the same in both cases.

We need some mechanisms to deal with synchronization of interactions

to resolve or prevent deadlocks of resource allocation, etc.

Especially, concurrency among processes has to be precisely identi­

fied and represented in specification languages.
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3. Software Requirements and Specifications: Status and Perspectives.

3.1. Introduction.

3.1.1. Motivations and Software Specification Problems.

Data processing systems are being entrusted with increasingly com­

plex and critical functions. The cost of softw~ in these systems

is becoming dominant, being more than 50% currently and expected

to rise rapidly.

The main problem with software systems is their compZexity. Lack

of a systematic design and development methodology to handle the

complexity has given rise to high costs, slippage of production

schedules and inadequate operation and maintenance.

Among the various classes of erros that have been documented in

studies of software systems, design errors have been found to

account for a large fraction of the total. Design errors are those
. ',. errors that involve changes in the design specification or a

reinterpretation of it.

Design errors orginate in the phase of system design known as

requirement engineering. The activities in this phase are con­

cerned with defining the functional needs, performance and other

requirements. Many problems may originate in this phase, e.g., in­

consistent requirements, ambigiously expressed requirements, in­

complete statements, etc.

3.1.2. Importance of Specification Methodology Development.

The main objective of a specification methodology is to tackle the

above-mentioned problems by providing a means to precisely state

the system requirements and provide analytic procedures to check

their consistency and completeness. In addition it:

a) facilitates coordination of programmers by providing precise

specifications

b) supports unit and integration testing with testing

specifications

c) reduces maintenance costs by providing monitoring functions and

provides traceability for problems which develop during the

operational phase.
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3.2. Multiphased Development.

In a large and complex design situation, the transformation of the

problem needs to the final.product takes on a number of distinct

forms which progress from the general to the specific, from the ab­

stract to the concrete and from the aggregate to the detailed. The

form resulting from one phase of the transformation is regarded as

the specifications or requirements for the next. Within the context

of this multiphased development the following issues arise:

a) Specification Languages: Because of differences among the

development phases, a single language does not suffice to express

all forms. The languages must be easy to use and comprehend and

adapted to the expression of the class of objects involved.

b) Validation: To support validation the forms must be expressed in

a precise notation with unique interpretations for the expres­

sions used. We must be able to show that each requirement in one

form is satisfied by some combination of the specifications in

the next.

c) Feasibility: It is desirable to show that each form is feasible

so that the specification process does not have to be backed up.

At present, the only techniques available are prototype testing

and simulation.

3.3. Software System Life Cycle.

Institutionalized software development projects are usually divided

into phases similar to those shown in Figure 1. We describe a typi­

cal and somewhat simplified software life cycle below to orient the

later use of terminology.

The least disputable aspects of the cycle is that it begins with the

conception of some needs to be fulfilled, and there are feelings and

indications that a significant portion of the solution is using the

information processing power of modern computer systems. It under­

goes the process of development, and then the operational product is

used in the actual environment, sUnultaneously modified, and adapted

to new needs.
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Figure 1. Software System Life Cycle

The development phase is subdivided into design and implementation.

The end of design is generally regarded as the end of the more crea­

tive activities, and the rest (implementation) is a relatively

straightforward procedure. In software development, a complete

design is the definition of all program modules on a specific data

processor, plus the support documentation.

The design process is further partitioned into three subphases of

Data Processing System Definition, Software Architecture Design, and

Detailed Software Design. The key phases and forms are identified in

Figure 2.

This figures shows only the essence of the process. In the develop­

ment of a large system, the process can be much more complicated.

There will be inevitable feedback from one phase back to previous

phases, when errors and other difficulties are discovered. Another

deviation from the simple scheme is in the incremental development

approach for some systems. (A part of the system is built to the

operational stages, and then some other functions and performance

capabilities are added onto the existing operational parts.) This

can be viewed as a series of the above basic process.
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Software Development

System Requirements
Data Processing System Definition

Data Processing Subsystem Requirements
Software Architecture Design

Software Architecture Specifications
Detailed Software Design

Software Design Specifications
Software Implementation'

Implemented Source Code

Figure 2. Software Life Cycle

The following paragraphs discuss in more detail the major activities

and design decision in each of the development phases.

3.3.1. Data Processing System Definition.

Data processing system definition consists of anaZyzing and

decomposing the system needs and objectives into system engineering

terms' System objectives can be very vague, and the fulfillment

may not be objectively verfiable. For instance, to improve natio­

nal defense can be the overall objective of a missile defense sys­

tem, and to increase corporate profitability can be the objective

of the real-tnne management information system of a manufacturing

firm. The objectives must be decomposed, elaborated, and stated in

precise terms.
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Furthermore, in most system developments we are considering, the

data processing functions only constitute a subsystem of a larger

complex involving other hardware facilities. In these situations,

the total system requirements must be analyzed and part of them

allocated to the data processing subsystem. The minimal activities

to be performed are: 1) identification of all the entities inter­

acting between the system and its environment; 2) statements of

the expected functional responses to system stimuli; 3) identifi­

cation of system performance parameters and the expected system

performance in terms of these paramters (e.g., response time,

cost); and 4) specific characteristics of the system (e.g., flexi­

bility) formulated formally in terms of the system elements.

3.3.2. Software Architecture Design and Detailed Software Design.

Software system architecture design has much in common with the

later phase of detailed software design. The general design

process, as well as software system design, has been- the focus of

much research. An extensive discussion of the subject is beyond

our scope here. We know of no better method to design and develop

large system other than the divide-and-conquer and hierarchical

structuring approaches (these include the top-down design, step­

wise refinement, abstract machine layers, etc.). Thus in the pro­

cess hierarchy approach, a system is organized as a sequence of

hierarchical levels of processes. In each level we observe a group

of interacting processes--each of which is accomplished by yet

another group at a lower level (Figure 3).
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Figure 3. Hierarchical Design Approach

In these design approaches, the system is designed using a set of

"subentities" whose behaviors and properties are specified and

their detail is to be developed in a later stage. The specifica­

tions of these "subentities" should, therefore, include all the

properties necessary for establishing the behavior and properties

at the current level and only those properties necessary without

restricting their construction at the later levels.

Another important concept has been developed recently in the area

of system design is the family of systems approach. The essential

concept is that when we are developing a system conceptually in a

hierarchy of levels, we are starting out with a broad class of

systems, and as we go along and make design decisions, the class

of systems is limited to meet more specific requirements. If a

system is designed with this philosophy, requirements changes and,

in general, system modifications can be accommodated much more

easily by zeroing in the proper level at which a design decision

must be changed. A new branch on the system family is developed to

meet the new or additional requirements.
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The distinction we make between the software architecturedesi~

and the detailed software design is that software architecture

design is more concerned with the logic of the problJem and~ among

other things~ is predominantly harihuare independent; whereas

detailed software design is concerned with the design decisions of

realizing the system on a specific data processor. The major

design decisions in software architecture design are:

1) identification of the functions the system must provide to

respond to the environmental stUnuli; 2) specification of the per­

formance requirement of each system function; 3) identification

of the major subsystems or subfunctions, information sets, and

their interactions and coordinations; and 4) specification of

requirement for reliability, maintainability, availability, etc.

The major design decisions in software design, for comparison, are:

1) choosing the algorithms for Unplementing the system functions

conforming to the functional and performance specifications;

2) choosing the major data structures (logical rather than

Unplementational); and 3) designing operating system functions and

scheduling of the functions (processes) on a specific computing

system or systems.

The principles of hierarchy and abstractions apply also to the

detailed software design level. Much of the effort of the software

designer is occupied by the effort to coordinate the many activi­

ties in the system under stringent tUne constraints. The general

problem is the correct and efficient coordination and synchroni­

zation of parallel processes. Most of the synchronization tra­

ditionally has been done by a general-purpose operating system.

Because of efficiency considerations and the desire for decentra­

lized control, more and more of these functions have to be per­

formed at the application software level. System design methodo­

logies involving parallel processes are being intensively inves­

tigated.
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3.3.3. Software Implementation.

This'Pfla.S€£ isj;h:ecoding step, normaUy done in high-level_

programming languages because of its demonstrated superiority over

assembly languages. More and more efficient languages for the pro­

grammer are being developed, supporting structured code and data

abstractions. The programming phase is actually beyond the realm

of discussion in this paper; therefore, we are not going to ex­

plore further into its issues.

3.3.4. Operation and Maintenance.

System operation and maintenance refer to the phase of the Ufe

cycle after the initial release of the system. Requirements and

the external environment of the system continuously change even

after the system is operational. Furthermore, errors are found so

that the original system must be changed. There has not been much

attention paid to this phase of the life cycle; consequently, most

of the system modifications are performed by ad hoc approaches.

These have been characterized as design, implementation, and

testing allover again. In principle, during the requirement defi­

nition and specification phases of the development stage, further

modifications should be anticipated. In all the techniques sur­

veyed, however, this aspect has not been addresses adequately.

3.4. Specification Techniques Classification and Evaluation.

This section prevents a framework within which the specification

techniques that have been investigated can be categorized and eva­

luated. The "technique" we refer to is generaUy a language or a

scheme to express certain aspects of the system under deve lopment

(e.g., specifications, requirements), and the associated too~s,

support, and Zogistics for analyzing them. Occasionally, some tech­

niques surveyed have a much wider scope. Under those circumstances,

we extract their most significant features and discuss them along

with others at the proper places.
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We broadly classify all the techniques according to the form

throughout the system development process with which it is best

suited to be expressed. Thus we classify them as techniques for Sys­

tem Requirements, Data Processing Subsystem Requirements, Software

Architecture Specifications, and Software Design Specifications.

Within each category, subcategories are identified based on some of

their characteristic features; they are then briefly described and

evaluated as a group.

3.4.1. Specification Techniques for System Requirements (Overall Needs

and Objectives).

As indicated in Section 3.3.1., system requirements, needs, and

objectives are generally vague and ambigious, chiefly because they

are at the top-level and arise directly from the application area

problems. In practice, system requirements may also include the

whole design context of the system, such as environmental design

constraints and criteria for evaluating alternative designs. This

information is stated in free form English and sometimes not ex­

plicitly stated at all.

Formalization is most difficult at this level. It requires com­

plete codification of all knowledge relevant to the design of the

system. However, we may hope to be able to formalize certain im­

portant aspects. Research work of special relevance here is in

semantic nets and fUzzy systems. Semantic nets studies are mostly

within the area of artificial intelligence. The main objective is

to represent in the computer a body of knowledge so that computer

retrieval and manipulation of this knowledge is possible. Infor­

mation Automat is the only example initiated specifically for

application in system requirements analysis. The method is still

at a relatively early research stage. We expect it is best applied

in small- to medium-scale system projects.
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Fuzzy concepts and systems, pioneered by Zadeh, have now grown

into a large body of knowledge. The chief objective of fuzzy con­

cepts is to precisely formulate imprecise notions and relations

that are characteristic of all large and complex systems. Although

no specific work has been done on software system requirements

analysis using this body of knowledgee, we do recognize that this

is a new avenue worthwhile exploring. A design methodology sugges­

ted by Becker relies quite heavily on fuzzy concepts. (Becker dis­

cusses more of the philosophy than the methodology itself.) This

seems to be useful in relatively small-scale system designs. The

methodology is developed within the context of structural design

in civil engineering. However, it is discussed in general design

terminology so that its usefulness in software system design can

be assessed without much difficulty and give a favorable impres-
-----fian_- _

3.4.2. Specification Techniques for Data Processing Subsystem

Requirements •

The form ~nd content, and hence the language, for data processing

system requirements are the least agreed upon aspects compared to

that of software architecture specification and software design

specification. The requirements must serve two purposes. First,

the user must be able to tell from the requirements whether he

will accept the system and make other similar decisions such as

evaluating certain specified properties of the system. Second, the

system designer must be able to develop a set of software archi­

tecture specifications from the requirements and demonstrate that

if a design is created satisfying the architecture specification,

then the data processing system requirements are satisfied. The

basic requirement is that both the user and the system designer

must be able to understand the document and perform meaningful

evaluation. We can narrow down the concepts and terminology in

which the data processing system requirements can be stated. These

must be in the overlap of the area of competence of the appli­

cation-area experts and the system designer system concepts.
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Several methods have been investigated and/or used, ranging from

the unstructured form used to state the system objectives and

requirements discussed in Section 3.4.1. to highly structured

forms used to describe specific properties of the target system.

The formal methods will now be discussed.

To tie together the numerous methods and techniques, the notion of

a general model of a large-scale, real-time system (emphasizing

the data processing functions) is developed.

The most general view of any system is to take it as a relation:

ScCxY.

We restrict the class of systems to functional systems to simplify

the notation (without loss of generality). Thus every system is

characterized by a function

S: X -+ Y

where X is the set of inputS-and Y--[s the set of outputs--;---To-model

dynamic systems, we interpret X and Y as functions of real time,

T, i.e., patterns of inputs and outputs (or input and output

trajectories in the terminology of Wymore).

X: T -+ X

Y: T -+ Y

An example may make the abstract notation introduced so far more

concrete.

Suppose system S has only one input X and one output, Y. Figure 4

shows a partial specification of S:

X( t)
'-- .... T

s I--~ yet)

y

T

Figure 4: Functional Specification Example
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A complete specification of S involves specifying all possible

X(t) and the corresponding yet).

Performance requirements and other special attributes of the sys­

tem can be specified by identifying the vector of performance

parameters, W. The parameters may be implicit functions of X and

Y. Thus the complete system requirements become:

s: X + Y x W.

There have been a number of studies conducted for methods of

stating data processing system requirements (e.g., SREM, ISOOS).

None of them is' satisfactory for application in really large­

scale, real-time systems development. We classify the requirements

statement methods into three broad categories:

1) functional requirements; 2) performance requirements; and

3) specific attributes, with further subcategories wherever

appropriate. Significant techniques in each subcategory are intro­

duced and assessed. However, both the classification and assess­

ment are somewhat subjective.

3.4.2.1. Functional Requirements.

Statements of functional requirements are specifications of the

function S: X + Y. Informally, it states the response the system

should produce in reaction to a given stimulus. We identify

three subclasses of methods.

3.4.2.1.1. Explicit Specification of S.

These methods usually employ rigorous mathematical statements.

The most straightforward way is to define the domain and range

of S, i.e., input and output spaces X and Y explicitly, and

exhibit the function S by tabulation or a set of mathematical

expressions. The method is, of course, limited by the ability

of the user to state the function, S. In any real-word system,

the complete specification of S is likely to be impossible.

However, an explicit statement in such a rigorous form is most

readily testable. Hence, formulating the critical functions of

a system in this way to the extent possible may be of signi­

ficant value for system level function validation.
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Because of the difficulty in stating the complete function,

another approach is taken by Fitzwater and Hamilton and

Zeldin. The system function S is stated by a series of decom­

positions according to some decomposition rules. Thus S is

composed of Sl' ••• , Sn' and Sl is composed of Sll'

••• , Slm' etc. The ability of the user to formulate his

problem in the associated language is different, yet the rigor

of precise mathematical statements permits certain properties

of the function at various stages of decomposition to be

checked. Apart from being less formal, the Structured Analysis

and Design Technique (SADT) and a few others can be included

in this category. These latter ones usually employ a graphical

notation for better human communication with less emphasis on

rigorous formalism.

There can be certain reservations in classifying the decompo­

sition approach in the explicit specification category. The

decomposition represents certain design decisions (non­

arbitrary restrictions); the later design steps may be severe­

ly dictated by these early choices. We have made an assumption

that design freedom should be maintained as far as possible.

With regard to this, the function decomposition approach may

as well be classified in the following category of implicit

specifications of S.

3.4.2.1.2. Implicit Specification of S.

Methods in this category define the function S by exhibiting a

procedure or structure to show how a certain output response

of the system is generated in response to system stimuli and

inputs. This can be done by a definition of the subsystem

structures, functional partitions, etc. Generally speaking, it

is more appropriate to regard this as the software architec­

ture specification. A detailed discussion of this large cate­

gory of methods is deferred to Section 3.4.3.
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A comment as to the suitability for requirement statements,

however, is appropriate here. Specifying a system structure as

system functional requirements may be regarded as a limitation

of design freedom. On the other hand, we may consider whether

the limitation is unnecessarily constraining or not, and

whether the nature of the application problem naturally

suggests a particular system structure, and at what level of

detail the system structure is specified as functional re­

quirements.

A stronger argument for accepting them as appropriate specifi­

cation techniques at this level is the recognition of a class

of desgins as "wicked problems", and software system design is

argued to be wicked. The term "wicked problem" was coined by

Rittel, referring to design situations having the following

characteristics (among others):

- Every formulation of the wicked problem corresponds to the

formulation of the solution (and vice versa). The informa­

tion needed to understand the problem is determined by one's

idea or plan of a solution. In other words, whenever a

wicked problem is formulated, there already must be a solu­

tion in mind.

Wicked problems have no stopping rule. Any time a solution

is formulated, it could be improved or worked on more. One

can stop only because one has run out of resources,

patience, etc.

- No wicked problem and no solution to it has a definitive

test. In other words, any time a test is "successfully"

passed, it is still possible that the solution will fail in

some other respect.
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If indeed we are dealing with wicked problems, specifying S

(the problem) by exhibiting its structure (a solution) is the

only means. Our position is that we should not consider

"wicked" as a boolean attribute; different problems have

different degrees of wickedness. It appears that in many

cases, software system development is very wicked so that im­

plicit specification of S is necessary in certain aspects but

should be employed with careful considerations.

·3.4.2.1.3. Optimization Model Formulation of S.

In many cases we do not have a functional requirement in the

sense that given an input X, a specific Y should be produced.

Instead, a large number of outputs would be acceptable, except

that we prefer one to the others.

This type of situation is best formulated as an optimization

probl~m. An example of system requirements specification of

this form is:

The set of alternatives, M, is specified (or to be investi­

gated) •

The outcome function, C, specifying what would be the system

behavior given an alternative

C: X x M -+ Y.

- A valuation function, V, specifying how the combination of a

certain choice and behavior (output) is valued

V: M x Y -+ R.

Then the system functional requirements S: X -+ Y is specified

by S(x) = y = C(m, x) if Vm. E M,
~

V[m, C(x, m) J ~ V[m., C(x, m.) J.
~ ~

Other variations of this formulation are possible.

The above example is in a very crude form because there is no

investigation of this nature within the discipline of software

engineering. Nonetheless, fruitful results may be obtained

with some investigation. Another remark applicable here is

that the performance requirements of the system are even more

naturally formulated in this class of models (this will not be

repeated in the following paragraphs).
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2.4.2.2. Performance Requirements.

Performance Requirements need additional information for the

complete specification of S: X + Y x W,·where W is the vector of

the performance parameters.

The most difficult part of the requirements statement is the

definition of all the relevant performance parameters. There is

essentially no notion of completeness as far as performance

requirements are concerned. Functional requirements can be

regarded as complete if S: X + Y is defined for every possible

x € X. However, W is essentially an open-ended list of para­

meters. For a chemical process plant control system, the pollu­

tion level can be a performance parameter. Leaving it out in the

requirement specification does not constitute logical incom­

pleteness unless it is already recognized that the factor is

relevant.

In practice, there is currently no formal method of stating per­

formance requirements except in free-form English descriptions.

The most important performance requirements seem to have been

timing (response time, deadline specification, etc.) and loading

factor (the amount, frequency, and distribution of inputs and

outputs) •

Methodologies that include special provisions to state (partial)

performance requirements are the System Requirements Engineering

Methodology (SREM) , ISDOS, ADS, etc. In SREM, the performance

requirements are stated by specifying "validation points" in the

R-nets and the performance information to be collected at these

validation points. Performance requirements specification 1n

other methods are more or less similar, including the specifi­

cation of the frequency and distribution of certain data, the

deadline for certain outputs, etc.

As an overall remark, performance requirements specification is

another area that has not been addressed adequately in the past

work.
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3.4.2.3. Specification of Special System Attributes.

A typical requirement statement regarding system flexibility may

be as follows: "System growth against evolving external load

shall be achieved without major subsystem redesign, without

major impact on other subsystem components, and without exten­

sive system inoperability".

The above statement exhibits both the ambiguity ("major", "ex­

tensive") and untestabi1ity of requirements statements. Attri­

butes such as flexibility, security, re1abi1ity, etc., must be

formulated precisely for meaningful analysis; otherwise, the

decision as to whether a system has these attributes will be

highly judgmental. Work in this direction of formalizing special

system attributes is now emerging, mostly originated from

operating systems research. Notions such as deadlock free,

security, and integrity have been investigated. It is not yet

certain whether this can be applied in a more general context.

3.4.3. Specification Techniques for Software Architecture.

Currently, there is not a generally accepted theory of what should

be considered as the basic concepts and objects of a system and

how they should be organized as a "structure". In any event, the

software architecture specifications should be an implicit

definition of the system fUnction s as introduced in Section

3.4.2. Furthermore, a method (or language) for the specification

of large-scale software architecture at the system level should

reflect the way a system is conceived by the requirement analysts.

In principle, the formal algorithm specification of both sequen­

tial and parallel processes, and data abstraction to be discussed

in Section 3.4.4. may be applied at this leven also. However, the

current state of development of these techniques is considered as

impractical at the system level.

Other software architecture specification techniques center on two

dominant features of a real-time system: the data flow and the

control flow. In some systems, the flow of data is so dominant

that having a clear picture of the flow and interrelation of the

system elements almost completely tells us all about the system.
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In others, with intricate synchronization and timing, the control

aspects plays the more important role. Many systems, of course,

consist of both aspects. Techniques for specifying the data flow

type of systems are considerably more developed and numerous than

the control flow type, although increasing efforts are being

directed to the control flow type as real time, control, and

planning systems are becoming more complex and critical. Discus­

sions of the software architecture techniques that have been and

are being investigated are divided into two categories dealing

separately with the two types of systems.

We must, however, emphasize that the classification should be

considered as loose, because many techniques address both features

together. Features other than the above two (though not justifying

separate categories) may also be included in some techniques.

3.4.3.1. Methods for Specifying Data Dominant Systems.

The typical data flow dominant or data driven systems are busi­

ness oriented information processing systems. In this type of

systems, a set of output documents is required to be produced at

specific times or at regular intervals. The main concern of

these systems is how these output documents are derived from the

input data, and internally, what data are to be retained for

later use, etc. Once the process of getting the output from the

input is specified, the structure and the rest of the system

become apparent. An example is a simple payroll system. The

required output is a weekly paycheck to every employee, and the

inputs are daily work records and new employee records. The data

flow requirements are shown in Figure 5. The control aspect

follows naturally from the data flow requirements.
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Figure 5. Simple Payroll System Data Flow

Most of the previous work in system specification deals with

this class of systems. These approaches, however, have different

motivations and objectives. A large portion of them are for

documentation purposes only. These stem from the need for

unambiguous communication among people involved in the system

development and ease in systematically cross-referencing a large

volume of information. There is little analysis performed on the

specifications. In almost all cases, a language, a set of forms,

or a discipline is developed.

The following provides an overview of their basic common fea­

tures, rather than emphasizing their differences. References to

a specific approach are made when its unique features are dis­

cussed. Special attention is placed on the techniques for ana­

lysis of the specifications.

A typical approach usually has provision for specifying one or

more of three groups of information: 1) the data flow network,

2) process or function specifications, and 3) other information.
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3.4.3.1.1. Data Flow Network.

The specification or requirement statement language provides

the basic capabilities for stating what data or documents are

required of the system, and the data requirements and pro­

cesses for the derivation of each output. For example, 1n

Figure 6, c is the required output and a specification state­

ment may be as follows: Process P, with inputs a and b, is

needed to generate c.

Figure 6. Example Data Flow Requirement

Some of the inputs to the process may be internal file data

(usually referred to as history-type data). This procedure is

continued until conceptually a network of data flow is con­

structed (Figure 7).

Figure 7. Example Data Flow Network
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In Figure 7, the squares represent processes; and circles,

data items. A graphical representation of their relationship

is amenable to a number of basic analyses--typically connecti­

vity and completeness (all data not feeding to some processes

must be external output and all data with no source must be

external inputs or history data). Other analyses that can be

performed include identification of strongly interacting sub­

systems, restructuring, dynamics, etc. These are based on cri­

teria that are less universally adopted.

3.4.3.1.2. Process or Function Specification.

To specify the process or function is to define the functional

relationship between the inputs and outputs of the process. If

these are simple data elements, the functional specifications

are easy, especially in management information systems where

the relationships are typically arithmetical.

More complicated situations arise when the inputs or outputs

are aggregates of simple data elements (e.g., a file of

records). For instance, a process has to calculate the total

net pay of an employee from a file of pay rate and a file of

work time.

There are attempts to develop a language that is capable of

expressing these relationships among data (without specifying

implementation). A formal approach is the information algebra

developed by the CODASYL Development Committee.

Among the key concepts introduced are lines, areas, bundles,

glumps, and functions of them. Lines correspond (roughly) to

records and areas to files. A bundle or a glump specifies a

new file based on data in other files. These descriptions

given here are vague because the original notions are built up

from a rather elaborate basis.

Some additional concepts are yet to be developed beyond simple

lines and areas for more general applications. In the end,

this can be extended to a comprehensive data base language.

The possibility of using such a language for specification of

data flow and manipulation should not be ignored.
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3.4.3.1.3. Other Information.

Besides the data flow and processing function specification,

some additional information can be specified within the

existing framework. Among these, the most common ones are

timing and system load information. Timing specification deals

with requirements of the following types: 1) some output

documents must be provided before a certain deadline,

2) certain outputs have to be produced periodically, and

3) certain outputs have to be produced after an input event

within a specified response time. System load specifications

include size of file, maximum, mean, minimum, frequency of

usage of data, etc.

Analysis of this information may be important in some systems.

Information such as a calendar of events or the volume of data

flow among subsystems can be extracted from these specifica­

tions. More elaborate analyses are based on a graphical model

of the static flow and volume information. We illustrate the

approach with an example. Given a network of data flow as in

Figure 7, let PI' ••• , Pn be the set of processes and

d1 , ••• , dk be the set of data sets. An incidence matrix

of the processes and data sets can be obtained, which is de­

fined as follows:

{

I if d. is an input to P.
J 1

e.. -1 if d. is an output from P.
1J J 1

o if there is no direct incidence between d. and P.
J 1

Let v. be the volume (e.g., storage size) of d.; e. be
J J 1

the number of inputs and outputs for P.; and m. be the
1 J

number of times d. is used either as input or output, then
J

k
e. = I Ie. ·1 , 1 = 1, 2, n... ,

1 j=l 1J

n
m. = I Ie .. I, ] = 1, 2, ... , k

J i=l 1)
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The transport volume for d. is t. = m.v., and the
J J J J

transport volume for the whole network is
i

T= L m.v.
j=l J J

This may be taken as a measure of the amount of data movement

necessary between the main and secondary storages.

3.4.3.2. Methods for Specifying Control Dominant Systems.

In some real-time systems, the control flow or the sequence of

operations of the system becomes the dominant feature for con­

sideration. Many important aspects of a system are characterized

by its control flow. The operation sequence, the interaction

pattern of the subsystems, the deadlock situation, etc., are

among the more important ones.

In designing a system, it is desirable to have these features

validated before commitment to further design and implemen­

tation. Therefore, specification of the control flow of a system

is important even at the earliest stage of thedes~gn.

An approach in this category generally develops a graph model of

the system abstracting the structural aspects, so that some

formal properties of the system can be analytically examined,

and desirable and undesirable features identified.

Here we will examine the theoretical bachground of this group of

specification techniques without going into details of their

specific setup.

Graph models have been developed to study various aspects of

computer systems and other more general systems. Originally, the

more important issues considered are assignment and sequencing

of computations, harmonious cooperation of processes, memory

allocation, transformation of sequential processes into parallel

ones, etc. Currently, much interest has developed for extending

these studies to model system level requirements of large-scale

software.
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The major advantages of using a graph model for the represen­

tation and analysis of system specifications and requirements

are fourfold: 1) many graph models are capable of modeling very

general features of large systems, especially the asynchronous

interactions of parallel subsystems; 2) abstractions--a graph

model retains certain properties and leaves out irrelevant

detail (this makes them particularly attractive for formal ana­

lyses); 3) the existence of a variety of theoretical techniques

for studying the models; and 4) visual convenience--a graph can

be an excellent aid for visual understanding, which is very use­

ful for human analysts.

To improve the concreteness of the discussion, we will use the

Petri net as an example for sampling the available analysis

techniques on the model. (Many of the theoretical considerations

ha~a direct-analog in other models.)

A Petri net is a bipartite directed graph,which means that it

consists of two types or sets of nodes (usually represented by

circles and bars) and a set of directed arcs going from a member

of one set of nodes to a'member in the other set. The two sets

of nodes are places (circles) to be interpreted as conditions or

events, and transitions (bars) to be interpreted as processes or

actions. A dot (token) mayor may not be present at each place.

When there is a token in a particular place, the place is

referred to as a condition being true or the condition holds.

Figure 8 shows a Petri net. The places are c1, ••• , Cs and

the transitions are t l , ••• , t
4

• Conditions c2 , c 3 are

holding while the rest are not. The pattern of tokens in a net

is called the marking. A net models the following situation: for

each transistion, if every input place (places with a directed

arc to the transition) is holding, then the transition is en­

abled and can fire. After it fires, the output conditions will

hold, i.e., each of the output places receives a token. Thus a

net represents all the potential asynchronous actions.
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Figure 8. Petri Net Example

Many properties of a net ca~pe studied. A net is live if all
---~--~-'-----._._._~.._....-

its transitions are live. A transition is live given a parti-

cular marking if there exists a sequence of firings that fire it

for every marking reachable from the given marking. A marking is

reachable from another marking if there exists a sequence of

firings transforming the latter into the former. A live net

roughly corresponds to the situation of the absence of dead­

locks. A net is safe if all places are safe. A place if safe

given a particular marking if every marking reachable from the

given marking has at most one token on that place. Other theo­

retical problems pertaining to Petri nets and generalized Petri

nets are the reachability problem and the liveness problems that

address the problem of whether a particular marking can be

reached and whether a given marking of a net is live, respec­

tively. Many of these problems are difficult decidability

problems.
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3.4.3.3. Specification Analysis System.

The techniques already covered in this section are intended to

be used over the extended period of softwar~ architecture

design. For a large project, very voluminous information is

generated among a large group of system designers. Automated

aids are needed for managing this situation. In more recent

research, it usually takes the form of a specification analysis

system so that the system designers can input their specifica­

tions, which are deposited in a central data base. A collection

of automated tools will be available to perform various analyses

on the specifications. The most representative of this type of

system is found in ISDOS and SREM. In the following we will

briefly describe some of the technical features of a typical

specification analysis system--a schematic diagram of which is

shown in Figure 9.

3.4.3.3.1. Monitor.

The monitor is the interface between the user and the analysis

system itself. Instrumental to the success of a specification

system is the nature and extent of interaction provided by the

system. For this reason, considerable attention must be given

to the development of suitable feedback mechanisms and for­

mats. An important design consideration of the monitor is that

it should be able to guide the user through a complete speci­

fication analysis, while the system automatically maintains a

partially entered of changing set of specifications.

Other supplementary functions performed by the monitor may in­

clude configuration and management control of the development

project, and automatic generation of documentation in human

readable form, etc.
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Figure 9. Specification Analysis System

3.4.3.3.2. Language Processor.

The language processor will perform the usual function of ana­

lyzing the input statements written in the specification

language accepted by the system. Syntactic analysis and other

diagnosis results are immediately feed back to the user. The

accepted input is deposited to the central data base via the

language translator.

3.4.3.3.3. System Data Base.

The most important part of the system data base should contain

a computer representation or model of the target system under

development. This model will be continuously modified under

appropriate configuration controls, including addition,

deletion, modification, and entry of alternative versions. The

representation is directly submitted for analysis.
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3.4.3.3.4. Automated Tools.

A collection of analysis tools of the system data base is

usually the key component of the specification analysis sys­

tem. These tools, however, are strongly dependent on the spe­

cific techniques used for specification and their underlying

concepts. The general features include the static analysis

tools that check out the necessary and desirable features of

the data base such as consistency and completeness. A variety

of dynamic analysis of the target system can be performed

depending on the system model use.

The most side1y used analysis technique for studying the dyna­

mic behavior and performance of a system at its specification

stage is simulation. Simulation can be generated either auto­

matically or manually. The specific analysis tools have been

discussed along with the specification techniques in para­

graphs 3.4.3.1. and 3.4.3.2.

3.4.4. Specification Techniques for Detailed Software Design.

Because the level of detail in specifying a detailed software

design is much lower when compared to specifying the software

architecture, the techniques ~n this section are applicable to

higher levels if not limited by the complexity and by minute

details. We will examine those techniques that try to describe the

entities concerned down to the most primitive details, although

they may be built up hierarchically by a number of levels.

There are, loosely speaking, two aspects for specification--a unit

of action and a class of objects. A unit of action, in current

high-level programming language terminology, may be a procedure,

block, or subroutine. The overall system functions are ultimately

built up of these basic units of acion, e.g., a sorting routine, a

Kalman filter procedure, etc.
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Specification of a unit of action, which we will later refer to as

process specification, is to specify succinctly all the effects

that the action will have on its environment. The primary objec­

tive is to satisfy the minimality criterion that all the relevant,

and only that, information needed to use the unit is stated. In

general, the implementation information is not relevant.

The second criterion is comprehensibility, i.e., the user should

be able to understand all the effects explicitly. This also re­

quires that the specification be unambiguous. The specification

should also allow a unique interpretation. The two aspects are

simultaneously satisfied only by a formal but natural notation.

The third criterion is whether the method allows formal manipu­

lation, in particular, proving that an implementation satisfies

the specification and that the specification itself satisfies some

consistency requirements.

A unit of action may belong to one of the two classes requiring

very different specification techniques because of a fundamental

difference between them. These two classes are sequential process

specification and parallel process specification. A sequential

process can be thought of as one that will be in action alone

(although some other processes may be active concurrently, they

have no influence on one another). On the other hand, in speci­

fying parallel processes, specific attention must be paid to their

interactions with one another.

The idea of "data type" or data abstraction is to treat the ob­

jects in programming as abstract entities instead of their physi­

cal implementation. The objects are treated as primitives and

their semantics are completely defined in terms of the set of pri­

mitive operations and relations on them. These are similar to the

definition of mathematical objects, treated as undefined concepts,

and constructed inductively by primitive constructors.

In the following, specific classes of techniques are outlined

under the headings of methods for specifying sequential processes,

parallel processes, and data types.
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3.4.4.1. Methods for Specifying Sequential Processes.

3.4.4.1.1. Enumeration of Input/Output Pairs.

In this method, the function is stated as a list of input/

output pairs. For example, to define the square function on

the integers: f = ••• (-1,1),(0,0),(1,1),(2,4) •••• Although

this form is regarded as a specification, it is impractical in

almost all situations and is theoretically impossible in some

cases (e.g., for infinite input domain funcions).

3.4.4.1.2. Exhibiting a Procedure to Obtain the Output From the Input.

A procedural description may be used as a specification with

emphasis on clarity of expression, whereas the actual imple­

mentation emphasizes the efficiency of the process so that a

completely different algorithm may be used. The specification

(p.ossib1y simpler in structure) is taken as "correct" or as

"what is desired". The correctness of the actual implemen­

tation is validated against the specification.

In terms of the desirable criteria of a specification method,

minimality is not satisfied since the specification of a pro­

cedure includes much information that is not needed. This is

the major criticism of the procedural specification method.

The user, say a programmer, may make use of some specific

detail of the procedure, which may be changed in a new ver­

sion. Substantial changes in a large portion of the system are

necessary in this situation.

Furthermore, rigorous verification cannot begin until the

whole program or system has been completed. This implies that

the verification effort is complex and no corrective action

can be taken until the very end.

With regard to comprehensibility, it depends on the pro­

gramming style, structure, and more importantly, the size of

the procedure. In general, this is not a critical problem

because we are becoming aware of some principles of program

clarity and readability.
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3.4.4.1.3. Input/Output Assertion.

The actual procedure of how to derive the output from the

input is not stated. Instead, the relation between the input

and output variables is specified in terms of more primitive

relations and notions.

In the approaches within this category, the actual implemen­

tation detail is left out. Only the entry and exit conditions

are stated; the user only needs to ascertain that the input

condition is satisfied on the invocation of the procedure, and

it is guaranteed that the exit condition is satisfied on ter­

mination. Verification involves showing that the implemen­

tation has this property.

Because the conditions are stated in terms of more primitive

notions, the criterion of minima1ity may not be satisfied in

that the choice of the particular primitive notions to imple­

ment the algorithms is arbitrary and may be a specific one

from among many possibilities.

The comprehensibility of this method again depends on the com­

plexity of the procedure and also on the choice of the suit­

able level of the primitive notions used.

There are two difficulties to the approach: (1) The growth in

the complexity of the condition when the system or procedure

to be specified becomes complex. Even with the best design of

a hierarchy of the primitive notions, the complexity may still

get out of hand; (2) The "naturalness" of stating the entry

and exit conditions. While it seems natural to express some

function, for other functions it may not. A good example is a

"differentiate" function, it is more natural to show how to do

it than telling what it is all about. On the other hand,

stating the entry and exit conditions is far simplier in the

case of matrix inversion, etc.
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3.4.4.2. Methods for Specifying Parallel Processes.

Specification techniques for parallel processes have not been

studied as extensively as those for sequential processes. Their

Unportance is now apparent since actual parallel hardware is

gradually being employed. More importantly, a system viewed as a

society of parallel processes is conceptually cleaner and more

elegant. Principato has performed an extensive survey of these

techniques; The techniques are classified into three categories.

3.4.4.2.1. Parallel Constructs in Programming Languages.

Program languages are extended with special primitives to in­

dicate interactions among parallel processes. Thus, for

example,

cobegin PI' ••• , Pn coend

indicates that the process PI through Pn will be executed

concurrently. If any of these processes refers to some common

data, the computation results are usually indeterminate.

For a specific application, these random interactions must be

restrected. The most common example cited is the reader and

writer problem. Two groups of processes, designated readers

and writers, are working on a shared data base; the readers

only refer to information in the data base,while a writer may

modify it. To guarantee predictable results, whenever a writer

is working on the data base, no other processes may be per­

mitted to use it, even for reading only. However, any number

of readers may use the data base simultaneously. This and

other problems of synchronization and communication, and other

criteria such as fair and deadlock free scheduling, etc., lead

to the development of the semaphore, critical region and con­

ditional critical region, and monitor primitives.

Using these primitives to specify parallel processes is ana­

logous to the techniques described in paragraph 3.4.4.1.2. for

the sequential case. They share the same comment that an

actual solution is exhibited rather than stating just what is

intended.
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3.4.4.2.2. Event Approach.

Techniques in the last category integrate the sequential pro­

cessing aspects with the parallel synchronization aspects. It

is possible to isolate the latter so that they can be examined

separately. A method using the event approach, such as

Habermann's path expressions, tries to identify the allowable

sequences of events from all the processes. For example, in

the reader/writer problem described in the last paragraph, the

sequences of events allowed are those in which an exit from

the shared data by a writer i immediately follows an entry of

the same process 1.

These techniques have the merit of exhibiting the synchroni­

zation explicitly, so that their properties can be proved

formally. Deadlocks and other undesirable situations can be

uncovered.

3.4.4.2.3. State Variable Approach.

In the state variable approaches, variables are introduced

sometUnes additional to the normal program variables to speci­

fy the states of the system of the parallel processes. Con­

straints on the possible states that can be taken are stated

as a set of invariants involving the state variables. These

invariants are supposed to characterize the synchronization. A

simple example is the synchronization of a producer and con­

sumer sharing a buffer. A set of state variables may be the

number of units produced, p, number of units consumed, c, and

number of units in the buffer, b. Assuming that the buffer

size is N, the constraints are:

b ~ Nand c ~ p - b.

Although formal proofs of desirable properties of the synchro­

nization and the correctness of implementation can be ob­

tained, it may be difficult to specify correctly the desired

synchronization intended.

Specific techniques in this category are those of Robinson and

Holt and Owicki.
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3.4.4.3. Methods for Specifying Data Types.

There are a large number of researchers in this area.

An abstract data type is a collection of objects with a set of

permissible operations specified. Any manipulations on these

objects must be done via the permissible operations, and con­

versely, the characteristics of the objects are completely de­

fined by these operations alone. The exact representation of the

object is not part of the specification.

An illustrative example is the definition of a stack

(Figure 10). The primitive notions are stack, item, boolean; and

the primitive operations are MTSTACK (which creates an empty

stack), PUSH, POP, TOP, and ISMTSTACK. The complete specifica­

tion of the stack consists of six axioms (Figure 10).

declare MTSTACK()~stack '''''>!,

PUSH(stack, item)---stack
POP(stack)-stack
TOP(stack)~item

ISMTSTACK(stack)-..boolean;
for all s ~,stack, i E 1tern,
Axiom 1 'ISMTSTACK(MTSTACK) = true

2 ISMTSTACK(PUSH(s,i)) = false
3 POP(MTSTACK) = MTSTACK
4 POP(PUSH(s,i)) = s
5 TOP (MTSTACK) = undefined
6 TOP(PUSH(s,i)) = ;

Figure 10. Algebraic Axiom Specification of Stack

The most salient features of the stack are: POPing a stack

results in the one just before the last PUSH operation, and

examining the stack gives the last item pushed in.

These are captured minimally by the axiom system. It is minimal

because it only involves those concepts that are relevant at the

level of consideration of the stack.
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The comprehensibility of this form of definition depends on

whether the object being specified has operations with simple

relations among them. It can be very complex, difficult to under­

stand, and may involve more than it requires to state explicitly

the algorithms of the individual operations themselves.

Currently we know of no effective (general) method either to

verify whether an implementation of a given data structure satis­

fies the specification or to verify automatically certain

"correctness" or "consistency" properties of a set of axioms.

3.4.4.4. Assessment of Software Design Specification Techniques.

After this survey of the variety of techniques, a summary state­

ment about the whole class can be made. So far we have been

dealing with the specification of units of relatively small

sizes. The information specified is complete and precise in the

sense that everything needed is given. Because of this property,

the complexity and comprehensibility become a stumbling block.

The same problem of complexity exists even in a greater mag­

nitude in the verification of the specification. Special tech­

niques by relaxing the preciseness and completeness must be used

in large systems. Some aspects of all the information is given

up for concentration on more important features, namely, the

structural aspects of the system.

Another major problem is in the construction of larger and

larger units from basic blocks. We have seen roughly how this

can be achieved in a hierarchical fashion in the discussion of

algorithm specification. However, emphasis is not placed on the

coordination and performance aspects of the subsystems of a

system. All techniques discussed so far do not address these

aspects. They become the prominent feature of a large system,

and special techniques have to be developed for them, as have

been discussed in Sections 3.4.1. through 3.4.3.
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4.1. Code Level Concepts.

4.1.1. Abstraction.

The concept of abstraction ranks as one of the most impor1;ant

advances in progrCJJ77l'f'ring which has occurred in the "last 20 years.

It is the basis for high level languages, virtual machines, vir­

tual I/O devices, data abstractions, and a host of other concepts.

The whole concept of bottom up design consists of building up

layers of abstract machines which get more and more powerful until

only one instruction is needed to solve the problem. In most cases

people stop far short of defining that one super-powerful instruc­

tion, but they do significantly enhance the environment in which

they have to program. Device drivers, operating system primitives,

I/O routines and userdefined macros all are built on the concept

of abstraction and all raise the level at which the programmer

thinks and programs.

In many cases the objective is to abstract out many of complicated

interactions which can occur when many users or user programs are

sharing the same machine. In other cases a virtual machine is

created to hide the idiosyncrasies of a particular machine from

the user so that the resulting program will be more portable.

When the Modular Programming era began in the 1960's many people

had the hope that hundreds of reusable buildingblock programs

could be abstracted and added to their programming library and

that they could finallyu begin to "build on the work of others".

Unfortunately, as Weinberg noted, program libraries are unique,

everyone wants to put something on but no one wants to take any­

thing out.

4.1.2. Communication.

A program communicates with both peop le, 'and machines.

A program is meant to communicate its structure to the programmer

as well as to give instructions to the machine. The life-cycle

cost of operating a program in most cases depends far more on how

well it communicates with people than on how much it was opti­

mized.
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4.1.3. Clarity.

It has been said that a person who writes English clearly can

write a program clearly. In studying English we are first taught

to read and then taught to write. In programming we are usually

only taught to write. In fact one language which is famous for its

"one liners lf has been affectionately called a "write-onlylf

language.

The structure of a good article, paper, or book is very important

for clearly communicating ideas. The struoture of a prog~is

equaUy important for oommunioating both the aZgorithm and ,the

oontext of a probZem soZution. A good program should readily re­

veal its structure to the reader.

The concept of "data hygiene" has been around for quite a while

now. That is, you should leave data as you would like to find it.

The concept of "program structure hygiene" has never quite caught

on. Every new change seems likely to increase the unstructuredness

of a program.

The "structuredness" of a program, of course, is not very well

defined. There is still no generally accepted metric for measuring

the goodness or badness of a program structure.

In the best of all worlds the criterion of clarity could be

applied quantitatively. Lacking that, we'll have to stick with

peer pressure applied in design reviews and code walkthroughs.

4.1.4. Control Flow Constructs.

The concept of limiting the number and type of control flow con­

structs is now pretty generally accepted.

4.2. Module Level Concepts.

4.2.1. Cohesion.

Cohesion is the "glue" that holds a module together. It can also

be thought of as the association between the component eZements of

a moduZe. Generally one wants the highest level of cohesion

possible. While no quantititive measure of cohesion exists, a

qualitative set of levels of cohesion has been suggested by

Constantine and proposed in modified form by Myers. The levels

proposed by Constantine are the following.
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Coincidental cohesion is Constantine's lowest level of cohesion.

In this case the component parts of a module are just there by

coincidence. There is no meaningful relationship among them.

Logical cohesion is present when a module performs one of a set of

logically related functions. An example might be a module composed

of ten different types of print routines. The routines do not work

together or pass work to each other but logically perform the same

function of printing.

Temporal cohesion is present when a module performs a set of

functions that are related in time. An INITIALIZATION module per­

forms a set of operations at the beginning of a program. The only

connection between these operations is that they are all performed

at essentially the same point in time.

Procedural cohesion occurs when a module consists of functions
--~--~---

that are related to the proceduraTprocesses--i.naprogram.-

Communicational cohesion results when functions which operate on

common data are grouped together. A data abstraction is a good

example of a module with communicational st!ength.

Sequential cohesion often results when a module represents a par­

tition of a data flow diagram. Typically the modules so formed

accept data from one module, modify or transform it and then pass

it on to another module.

Functional cohesion results when every function within the module

contributes directly to performing one single function. The module

often transforms a single input into a single output. An example

often used is SQUARE ROOT. This is the highest level of cohesion

in the hierarchy and as such is desirable whenever it can be

achieved.

A program of any reasonable size will usually contain modules of

several different levels of cohesion. In fact many modules exhibit

characteristics of a multipli~ity of levels simultaneously. Where

possible, functional, sequential, and communicational strength

modules should be given preference over modules with lower levels

of cohesion.



THE-RC 41789 - 54 -

While levels of cohesion can be useful guides in evaluating the

stru.ature of a progiMJTl, they don't provide a clear aut methodology_

for attaining high levels of cohesion. Also, levels of cohesion do

not allow us to say that program A is right and program B is

wrong. They do, however, represent a definite step forward. Before

levels of cohesion were introduced there was no recognized basis

for compariason. Now one can say in some inexact way that struc­

ture A is probably better than structure B.

4.2.2. Coupling.

Coupling is a measure of the strength of interconnection between

modules.

High coupling among program modules results when a problem is de­

composed jI in a relatively arbitrary way. Often, this method of

chopping up a large program complicates the total-job be~<9.~se_oL

the resultant tight coupling between the pieces. This latter type

of decomposing has been called "mosaic" modularity.

The other extreme in structuring a program is to consider only

pure tree structures. These structures give rise to the concept of

hierarchical modularity and provide many advantages for abstrac­

tion, testing and subsequent modification. Jackson would accuse

you of "Arboricide" (the killing of trees) whenever you deviate

from a pure hierarchical tree structure.

Brooks said that: "I am persuaded that top down design (incorpo­

rating hierarchy, modularity and stepwise refinement) is the most

important new programming formalization of the decade."

Dijkstra said: "The sooner we learn to limit ourselves to hierar­

chical program constructs the faster we will progress".

Modular programs can be characterized as:

1) Implementing a single independent function.

2) Performing a single logical task.

3) Having a single entry and exit point.

4) Being separately testable.

5) Satisfying a number of other rules which have been listed at

length in the literature.
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When these rules are followed, the result is a set of nested

modules which can be connected together in a hierarchy to form

very large programs.

When modularity is used without hierarchy, one is only able to

implement independent functions which can be executed in sequence.

This approach tends to work on small programs but can seldom be

applied to complex programs without seriously compromising module

independence, connectivity and testability. Only when the concepts

of modular programming are combined with the concepts of hierar­

chical program structure can one preserve the capability for both

implementing arbitrarily complex functions and maintaining module

integrity.

Modularity can be applied without hierarchy in cases which lend

themselves very naturally to the efficient use of a very high

level language. Very high level language statements are examples

of functions which can be implemented relatively independent of

each other but can still be strung together sequentially in a use­

ful form. Unfortunately for most applications, the design of a

convenient, efficient, very high level language is very difficult.

Hierarchical modularity forms an extremely atractive foundation.

for most of the other Software Engineering Techniques. While some

of these techniques can be used without having a hierarchical

program structure, the primary benefit can only be gained when the

techniques are all used as a unit and build upon each other. Spe­

cifically, a hierarchical modular program structure enhances top­

down development, programming teams, modular programming design

walkthroughs, and other techniques which deal with improving the

development process.

4.2.3. Complexity.

The control of program complexity is perhaps the underlying objec­

tive of most of the Software Engineering Techniques. The concept

of divide and conquer as an answer to complexity is very important

provided it is done correctly. When a program can be divided into

two independent parts, complexity is reduced dramatically as shown

in Figure 11.
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Figure 11

Consider program A where you have access to only the input and the

output. A noble goal would be to "completely" test this program by

executing each unique path. In the example shown there are

approximatelY~billionunique paths through this module. If you

were capable of performing one test each millisecond, it would
I~O

take you j years to completely test all of the unique paths. If,

however, you had knowledge of what was inside the program, and

recognized that it could be partitioned into two independent

modules Band C which have very low connectivity and coupling,

your testing job could be reduced. To test both of these modules

1 "h h two "II" "separate y requ~res t at you only test t e pae'" m~ ~on un~que

paths through each module. At one millisecond per test, these

tests would take a total of only ~minutes.
2~



THE-RC 41789 - 57 -

.' .

In this particular example from a testing viewpoint it is clearly

worth trying to partition the problem so that small independently

testable modules can be dealt with instead of just the input and

output of a large program.

It should be clear from this example that the testing problem is

best solved during the design stage. It is impossible to exhaus­

tively test any program of meaningful size. Testing is experimen­

tal evidence. It does not verify correctness. It raises your con­

fidence and may in fact increase reliability, but not very much.

4.2.4. Correctness.

A "correct program" is one which accurately implements the speci­

fication. In many cases a "correct program" is of limited value

since the "specifications are in error". In many cases the speci­

fication is either excessive, incomplete, of inconsistent.

As discussed previously, correctness cannot be verified by

testing. Its like searching for mermaids. Just because you haven't

seen one doesn't mean they don't exist.

It is also unfortunate that for most problems mathematical proofs

of correctness are as difficult to produce as a correct program.

They have the additional disadvantage that a program must be

reproven each time it is modified. You must write and prove your

programs simultaneously.

Therefore the most promising approach for the near future may lie

in finding a constructive proof of correctness. We will really

have something if a design methodology can be found which leads

one through the design process step by step and guarantees the

correctness of the final program if each of the steps has been

done correctly. While I don't remember that 321 x 25 is 8025, I do

remember that 5 x 1 = 5,5 x 2 = 10,5 x 3 = 15, etc. Knowing these

values and the steps of multiplication, I can rest assured that

8025 is indeed the correct answer. If only a design process

existed which was as foolproof and easy to apply.

Without such a process we must live with a limitless capacity for

producing errors.
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4.2.5. Correspondence.

In Jackson's view, perhaps the most crusiaZ factor in determining

the Ufe-cycle cost. of a program is the degree to which it faithfuUy

modeLs the problem environment. That is, the degree to which the

program model corresponds to the real world. All too often we are

faced with a situation in which a small local change in the pro­

blem environment results in a large diffuse change in the program

which purports to model that environment.

The world is always bigger than the program specification says it

is, but the specification can always be extended if it corresponds

to reality.

Since users tend to be gradualists, the changes in a realistic

problem model will tend to be gradual. If the program is built

around the static versus the dynamic properties of the problem, it

can prove to be resilient to changes which occur over many years.

While the program's model of the world cannot be complete, it must

as a minUnum be useful and true. If these criteria are met, many

future maintenance and feature enhancement problems are avoided.

4.3. System Level Concepts.

4.3.1. Consistency.

One important objective of a good design methodology should be

that of producing a consistent program structure independent or

who is applying it. Given the same problem environment, three

different programs which model that environment using the same

design methodology should essentially be the same. Unless consis­

tent designs can be achieved by different people, there can never

be a true right or a wrong structure for a given problem.

One of the problems with design methodologies like Stepwise

Refinement is that there is no one preferred, consistently obtain­

able solution. Instead, each designer seems to pull his own unique

solution out of the air. There can never be a discussion of it

being right or wrong, there can only be a discussion of my style

versus your style.
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4.3.2. Connectivity.

The harmful effects of high connectivity on system modifiablility

can best be illustrated aby using an analogy.

Consider a system composed of 100 light bulbs. Each light in the

system can either be on or off. Connections are made between light

bulbs such that if the light is on, it has a 50-percent chance of

going off in the next second; if the light bulb is off, it has a

50-percent chance of going on in the next second provided one of

the lights it is connected to is on. If none of the lights con­

nected to it is on, the light stays off. Sooner or later this

system of light bulbs will reach an equilibrium state in which all

of the lights go off ~d stay off.

The average length of t~e required for this system to reach equi­

librium is solely a function of the interconnection pattern of the

lights. The most trivial interconnection pattern is one in which

all of the lights operate independently. None of them is connected

to any of its neighbors. In this case, the average time for the

system to reach equilibrium is approximately the time required for

any given lamp to go off. The t~e for this to occur is approxi­

mately 2 seconds, and thus, the system can be expected to reach

equilibrium in a matter of seconds.

At the other extreme, consider a case in which each light is fully

connected to all of the other lights. In this case the length of

time required for the system to reach equilibrium is 1022 years.

It is clear that this is a very long time when you consider that

the current age of the universe is only 1010 years.

Now consider one final interconnection pattern in which the set of

100 lights is partitioned into ten sets of ten lights each, with

no connections between the sets, but full interconnection within

each set. In this case, the time required for the complete system

of lights to reach equilibrium is approximately 17 minutes. This

dramatically shows the effect of connectivity. In terms of the

concepts described earlier, this example represents very high co­

hesion within each module and very low coupling between modules.
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Much as proper physical partitioning can dramatically reduce the

tUne required for the system of lights to reach equilibrium,

proper functional partitioning can dramitically reduce the time

required for a program which must be changed to reach stability.

4.3.3. Concurrency.

Often, the proper model of a system will include concurrent asyn­

chronous processes. Thus a program which properly models the sys­

tem should consist of concurrent, asynchronous programs. There is

often a producer-consumer relationship between processes. For

example, process A could produce data which process B consumes.

4.3.4. Continuity/Change/Chaos.

As noted by Belady and Lehman a large program often appears to

live a life of its own, idependent of the noble intensions of

those trying to control it. Two important observations are sum­

marized in the Law of Continuing Change and the Law of Increasing

Entropy:

Law of Continuing Change: A system that is used undergoes con­

tinuing change until it is judged more cost effective to freeze

and recreate it.

Law of Increasing Unstructuredness: The entropy (disorder) of a

system increases with tUne unless specific work is executed to

maintain or reduce it.

These laws dramatize the key role played by the program structure

during the life-cycle of software systems. The natural order of

things is to produce disorder. If the program structure is unclear

from the beginning, things will only get worse later. It is these

two laws coupled with a poor program structure that have produced

the maintenance cost horror stories.

4.3.5. Costs.

Michael Slavin has proposed that there is a fundamental truth of

programmer arithmetic coming into play. That is, if it takes one

programmer one year to do a job it will take two programmers two

years to do the same job.
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The magnitude of the problem is hitting people right where it

hurts: in the pocketbook. Between $15 and $25 billion is now spent

annually in the United States on software. People are gaining a

life-cycle awareness which says that:

1) Software is a much bigger problem than hardware.

2) Maintenance costs often greatly exceed the cost of the initial

development.

3) Design. and Analysis is a much more difficult problem than

coding.

This says that a good design methodology should catch errors early

in the development cycle. The relative cost of fixing an error

increases dramatically as one gets further along. The cost of

fixing an error in the field can be two orders of magnitude

greater than the cost of fixing the error during a requirements

review.

4.3.6. Optimization/Partitioning.

All too often people confuse partitioning and design. Design is

the process of deviding a problem and its solution into meaningful

pieces. Optimization and partitioning consist of clustering pie.ces··

of a problem solution into computer load modules which run within

system space and time requirements without unduly compromising the

integrety of the original design.

There are at least three different types of modules which must be

considered in programming. They are functional modules, data

modules, and physical modules. Partitioning is concerned with

placing functional modules and data modules into physical modules.

In partitioning a program, several of these pieces of the program

may be put together as one load module or even written together as

one program.
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It is in the packaging phase of a design where optimization should

be considered for the first time. This phase is done at the very

end and great care should be taken to preserve the program struc­

ture which you have worked so hard to create. In Jackson's words

it is very easy to make a program that is right, faster. It is

very difficult to make a program that is fast, right. Once an

optimization has been cast in code it is like concrete. It's very

difficult to undo.
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5. Software Design Strategies.

5.1. Introduction.

Software design strategies exist today which can reduce the problems

of software analysis, development, and maintenance and lead to less

expensive, more reliable programs. Unfortunately, for many people

these benefits have remained either nebulous or elusive. An attempt

is made to explain and demonstrate the best techniques available

and, where possible compare the results of using different design

strategies on the same problem. We hope that this approach will make

you aware of the new software techniques, such as it is, and may

even help you to take a short but significant step toward writing

correct, maintainable programs.

One format for discussing recent advances in the field of software

engineering is to consider their effect on each phase of the soft­

ware development cycle. That is, one could consider the effect of

program teams and walkthroughs on problem specification. The effect

of data abstractions on design, the effect of high-level languages

on implementation, etc •.

HeI'e these advances have been divided into thI'ee differ>ent types· of

categoPies (see Figure 12).

PROCESS

STRUCTURE

Figure 12.
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The first category has to do with programming techniques and design

strategies which directly affect the stru.cture of the final. program.

Deriving a well-structured program which is an accurate model of the

problem being solved and its environment is the single most im­

portant goal of the software design process. If the program has a

structure with many random interfaces which do not properly model

reality, no amount of effort or money expended in walkthroughs,

high-level languages, or development support systems can keep that

program out of trouble. It is only within the context of a we11~

structured program that walkthroughs, code reading, programmer

teams, and development support libraries can be properly exploited.

Given strategies for designing weU-stPuatured programs, then.'one's

attention can turn to improving the program devel.opment prooess. A

number of techniques which are organizational or management oriented

are described which make sense if the design is done properly.

Without a proper design, these techniques run the risk of becoming

inefficient, ineffective, and expensive to administer.

Once methods for achieving! proper designs have been found, and a

process for impl.ementing these ;designs has been achieved, onl.y then

shoul.d these procedures be automated and supported by devel.opment

support tooZs. Too often the tools are the first thing developed,

without a proper understanding of what design strategies and

development processes they are to support. This is wrong. The tools

should support and enforce the design and development process after

a conscious decision is made as to what that process is. If the

tools come first, too often the design and development methods end

up accommodating the tools instead of vice versa. The power of tools

in determining what and how things get done was recognized early by

Eli Whitney: "I will form the tools such that the tools themselves

shall fashion the work." The approach taken here is to emphasize

proper design strategies first and then note the requirements which

they place on your development support environment.
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Unfortunately, even though "structured programming" has been with us

for more than a decade, we are still far from having all of the

answers or for that matter even all of the questions. While it is

clear that progress has been made, there is still much to be done.

5.2. Software Structuring Concepts.

Software design strategies which determine the structure of a pro­

gram form the foundation for choosing and applying all of the other

software engineering techniques. The development process can also be

structured to exploit a clear and modular design. Development sup­

port tools can allow one to concentrate on real structural design

issues instead of the more peripheral issues of scheduling~ documen­

tation and so on. In this section, some of the software engineering

techniques which have their greatest impact on program structure

will be introduced.

5.2.1. Modular Programming.

When modular programming became fashionable in the 1960's, it was

characterized as: "Construction of a complete software system from

a number of small functional units where there is a formal set of

standards which control the characteristics of those units."

That formal set of standards usually included requirements like:

1) Modules implement a single independent function.

2) Each module performs a single logical task.

3) Modules have a single entry and a single exit point.

4) Modules are separately testable.

5) Modular programs are entirely constructed of modules.

In many cases the objective was to define a set of powerful, re­

usable modules which had the freedom and flexibility of a very

high level programming language. The hope was to build on the work

of others. Unfortunately, in most cases programmers were all too

happy to share their modules with others but seldom sought out

other people's programs to use themselves.
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5.2.2. Structured Coding.

The next phase of structured programming started with concerns at

a more microscopic level. That is, it addressed questions like "Is

the code within a module easier to read, write, and maintain when

it is constructed out of a limited number of control constructs

which do not permit wild gotos." It was shown that the three basic

constructs of sequence, iteration, and selection were sufficient

to impelement the most complex programs and in fact formed the

basis for writing more understandable, correct programs.

The major structured coding controversy occurred in 1972 and

thereafter, partly in response to Dijkstra's widely acclaimed

Turing Lecture. While much of this controversy, in retrospect, was

blown completely out of proportion, it did serve to publicize the

fact that the "software problem" might be amenable to change after

all.

5.2.3. Hierarchical Modular Programming.

The concept of hierarchical modular programming gained a following

in tpe early 1970's since it was viewed as carrying the advantages

of structured coding above the module level. A hierarchical modu­

lar program structure is perhaps ideal in the sense that the con­

nectivity of program modules is clearly limited and delineated.

Subsequent inspection of modification of the program can be made

in a straightforward manner since it is quite clear what parts of

the program must be altered and affected. When diagrammed, the

structure of such a program resembles an inverted tree structure.

A faithfully implemented design will preserve this tree structure

and with it obtain many advantages which will ease subsequent

modification. An implementation which commits "arboricide" (the

killing of trees) results in a disordered pile of leaves.
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The modular part of hierarchical modular programming is applied in

much the same manner discussed earlier. That is, one is still in­

terested in implementing single endependent functions, performing

single logical tasks, etc., but all of these constraints are

applied to subtrees instead of single boxes on the structure dia­

gram. The chief difference lies in defining the problem and its

solution as nested modules which can become arbitrary complex

rather than as an interconnected sequence of modules. While this

approach limits one's options, it promises great rewards in easing

later modification.

Note that many of the advantages of hierarchical modular program

structure are topological. The connectivity of the program is

severely restricted. Each module can be designed, tested, and

modified independently. All connections with the rest of the sys­

tem are-clearly-de-tineated- and- can- be aeeounted f~nal

benefit is that the ripple effect of errors caused by program

modifications can be dramatically reduced.

Note also that a final hierarchical modular program structure sel­

dom reveals how it was derived. The following discussions focus on

strategies for deriving program structures.

5.2.4. Bottom-up Design.

Bottom-up Design is the process of enhancing the capabilities of

your machine by successively giving it more and more powerful in­

structions which hide more and more of the detail. In effect one

builds up layers of virtual machines by forming data abstractions,

resource abstractions, or high-level functional calls.

A popular example is the definition of a stack via data abstrac­

tion. The stack can be dealt with only through specially defined

procedure calls (create, push" top, etc.). These procedure calls

"know about" the location and format of the data stored within,

but hide that information from user programs.__!f the physical im­

plementation or layout of data within the stack is subsequently

changed, only the procedure-call programs must be modified. Since

the user programs know nothing about the physical implementation

of the stack, they are not affected.
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Other physical input/output or storage devices can also be viewed

as abstract resources. An example is the typical layered configu­

ration of virtual machines in which an operating system kernel and

operating system utilities insulate the user programs form dealing

with the peculiarities of the hardware. Terminals are typically

interfaced with user programs through "driver" programs. The con­

cept of a virtual terminal which presents a uniform interface to

application programs is an appealing one, since it can dramati­

cally reduce the number of special cases the application program

must deal with. Clearly, an application programmer wants to write

information to a terminal without knowing or caring whether it is

displayed on a CRT screen or printed or paper. Thus data abstrac­

tions are simply one example of abstract resources which are

developed within the virtual machine seen by the application pro-
---

grammer.

The goal in most cases is to carry botto~up design as far as

possible while keeping a high degree of application independence.

That is, the application programmer should build up a friendly

virtual machine environment before solving anyone application

program in detail. If the virtual machine is designed properly, it

can later facilitate moving (or porting) programs from one piece

of hardware to another. Hopefully, the same virtual machine en­

vironment can be created on a nULber of physical machines, making

the applications programs quite portable.

The whole concept of bottom-up design is very useful and powerful

as long as one keeps in mind the fact that each program is mode­

ling some aspect of the real world. One program should generally

model only one type of terminal and this model should be detailed

enough to support the functions it will later be called upon to

perform. A program which models two different kinds of terminals

will have unnecessary cross coupling, control interactions, etc.
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5.2.5. Top-down Design.

Strong proponents of top-down design will encourage you to start a

design by simply defining one super instruction which will solve

the whole problem and then implementing that instruction with less

and less abstract semi-super instructions. Sooner or later one

gets down to instructions which will actually execute on the phy­

sical machine. This procedure is usually called functional deco~

position, meaning that the main function is decomposed into suc­

cessively simpler and simpler functions. Alternatively one can

think of performing stepwise refinement, meaning that the solution

is successively refined into more and more detailed explanations

of how that solution is to be brought about. In either case, a

parallel objective is to identify reusable functional modules

wherever possible. In an ideal world, a very high level applica­

tion-language or application oriented virtual machine would be

defined along the way.

While this is a very noble objective, in practice it is extremely

difficult to identify reusable modules in a top-down fashion, and

what usually happens is that a fair amount of bottom-up design is

done parallel. This gives the top-down designer the tools needed

to solve the problems and provides a certain separation of con­

cerns. Implementing the virtual machine and solving the applica­

tion problem should be addresses as separate concerns even though

they often have to be solved concurrently.

In doing top-down design, two questions must be confronted imme­

diately:

1) What criterion do I use for identifying the top?

2) What is the basis for decomposing the problem and its solution?

Three strategies which have evolved for answering these questions

in a reasonable way are discussed below.

,
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5.2.5.1. Functional Decomposition.

In using this approach, the top is defined as the ultimate

function to be performed and this function is divided into sub­

functions by decomposing with respect to time order, data flow,

logical groupings, access to a common resource, control flow, or

some other criterion. The choice of "what to decompose with res­

pect toll has a major impact on the Ilgoodness ll of the resulting

program and is often the subject of much controversy.

The major advantage of functional decomposition is its general

applicability. The disadvantages are its unpredicatability and

variability (inconsistency, imprecision). The chances of two

programmers independently solving a given problem in the same

way are practically nil.

5.2.5.2. Data-flow Method.

The data-flow design method is essentially functional decompo­

sition with respect to data flow. Each block of the structure

diagram is viewed as a small lib lack boxll which transforms an

input data stream into an output data stream. When these are

linked together appropriately, the computational process can be

modeled and implemented much like an assembly line merging

streams of input parts and outputing streams of final products.

The only problem with this decomposition is that it tends to

produce a network of programs and not a hierarchy of programs.

This shortcoming is solved by Yourdon and Constantine by simply

picking this network up in the middle and letting the input and

output data streams Ilhang downll from the middle. At each level a

module can be further decomposed into a "getll module, a "trans­

formll module, and a "putll module.
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Where as in the data-flow context the relation between modules

was motivated by a "consumes/produces" relationship, this trans­

formation procedure results in modules which are related by a

"calls/is called by" relationship. Thus the hierarchy formed is

really being artificially imposed by the scheduling and has

nothing to do with modeling the problem in a hierarchical

fashion. This contrasts with the "uses" relationshiop of decom­

position with respect to functions, and the "is composed of"

relationship which motivates a data structure design.

We feel that the system flow diagram which forms the basis for

decomposing with respect to data flow is a very useful contri­

bution and in fact may be the best approach currently available

at the system design level. We are not convinced that the second

step of putting things into a "calls" hierarchy using "transform

centered design" is as useful. In fact it seems to produce a
. ,

structure with a log of data passing and artificial "afferent"

(input) and "efferent" (output) ears while reverting back to

standard functional decomposition for decomposing the "central

transform" which is the heart of the problem. It isn't clear

that anything is gained over simply using functional decompo­

sition from the start.

5.2.5.3. Data-structured Method.

When the program structure is derived from the data structure,

the relationship between different levels of the hierarchy tends

to be a "is composed of" relationship. That is, an output record

is composed of a header followed by a report body, followed by a

report summary. This relationship is generally a static rela­

tionship which does not change during the execution of the pro­

gram and thus forms a firm base for modeling the problem.

Since a data-structure specification usually tends itself well

to being viewed as correct or incorrect, the program structure

based on data-structure specification can likewise be viewed to

be correct or incorrect. This means that two people solving the

same problem should come up with essentially identical program

s truc tures •
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Michael Jackson, the inventor of the data structure design

method, claims that it encourages a proper modeling of the

problem environment and provides for a separation of concerns

during the problem solution. Specifically, the programming pro­

cess can be partitioned into the following steps:

1) Specify the virtual machine.

2) Define the data-stream structures.

3) Derive and verify the program structures.

4) Derive and allocate the elementary operations.

5) Write the structured text.

These steps can usually be performed and verified independently,

effectively partitioning the design process as well as the

problem solution. The resulting program structure for large

problems is a network of hierarchies. That is, each simple pro­

gram is implemented as a true hierarchical modular struct~~~,

but these simple programs are connected together in a data-flow

network. The network can be placed into a "calls" or "is called

by" hierarchy by a process called "program inversion", but this

is considered to be a matter of scheduling which is independent

of the structure of the program.

Both Jackson's and Warnier's data structure design methods were

applied first in the area of business data processing. At this

point they have also been applied to a number of on-line

problems but are still unproven for most real-time applications.

5.2.5.4. A Programming Calculus.

While a "proof of correctness" is disappointingly difficult to

develop after a program has been written, the constructive proof­

of-correctness discipline taught by Dijkstra and Gries is encou­

raging. Dijkstra's design descipline can be methodically applied

to obtain a modest-sized "elegant" program with "a deep logical

beauty". Using this method, the program is produced as a by-pro­

duct of the correctness proof instead of vice versa.
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The initial design task consists of formally representing the

required result as an assertion stated in the predicate calcu­

lus. This result assertion is then weakened to form an invariant

relation which must hold true throughout the computation. The

method is a top-down method to the extent that both the result

and invariant should be formed in stages by a sequence of step­

wise refinements, but the ultimate result is a host of logical

assertions which must be specified formally, using the predicate

calculus.

Many people call it a disadvantage of this methodology that a

relatively high degree of logical and mathematical proficiency

is required.

A second disadvantage is that this method admits the existence

of multiple solutions to the same problem. Each different choice

of an invariant assertion can lead to a different program struc­

ture. The resulting programs do not necessarily portray accurate

and consistent models of the problem's environment or its solu­

tion. That is, a "correct" program may still have the "wrong"

structure.

In spite of these problems, we view Dijkstra's programming cal­

culus design discipline as an encouraging step forward on the

road to developing correct programs. It is a method which you

should be aware of, for it definitely holds promise for the

future.

5.3. Managing the Development Process.

A number of software engineering techniques focus on improving the

software development process rather than improving the software

developed by the process. They consist of a collage of management

and organizatonal strategies plus procedures for integrating and

testing the final software product. The techniques discussed here

tend to complement the design strategies discussed earlier. That is,

given a good design strategy which results in a good program struc­

ture, software development techniques exist which can be fruitfully

applied to obtain a correct program faster. When these techniques

are not used in the context of a good program structure, however,

they can become both cumbersome and unmanagable.
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5.3.1. Teams.

Programming teams can complement the hierarchical program design

with a hierarchical people organization. Given any organization

which must work toward a COmmon goal, a certain number of inter­

actions must occur among the people doing the work. As shown 1n

Figure 13 the number of interactions required within a given team

is a strong function of team size. As the number of people which

must interact gets larger, the number of potential interactions

grows quadratically and can take a larger and larger portion of

each person's time. Teams of three to five people have generally

been regarded as "about right", while teams of 10 to 12 have usu­

ally been regarded as "too large".

3 PEOPLE

3 INTERACTIONS

INTERACTIONS ~ (PEOPLE)2

5 PEOPLE

10 INTERACTIONS

10 PEOPLE

45 INTERACTIONS

Figure 13. Programming Team Interactions
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The concept of assigning programming teams to particular functio­

nal modules within a large system localizes most of the people

interactions to the team itself and minimizes the communication

required between teams. If the program structure has low coupling

between modules, the program teams require relatively few inter­

actions with other teams. Conversely, a program module which is

coupled tightly to many other modules will place a significant

communication burdon on each implementation team.

In most cases, programming teams are staffed with graduate engi­

neers and computer scientists who have long-term career potential

with the company. These people are often supported by program

librarians or programming secretaries who perform the clerical and

administrative functions, freeing up the programmers for solving

the technical problems. This partitioning of work is carried even

further in a "chief programmer team". Part of the motivation be­

hind chief programmer teams is that the requirements and design

part of the job, using structured programming techniques, far

overshadowed the coding part of the job. Thus, many people have

moved away from the concept of having one designer feed work to

three or four less qualified coders. The coding is less than 15

percent of the total effort and in many cases it is easier to do

than to delegate. This is especially true when the capabilities of

the designer and the implementers differ by nearly an order of

magnitude.

While the "chief programmer team" concept sounds nice in theory,

most structured programmer teams tend to be teams of peers with

the possible exception of a team leader and a program librarian.

This team is encouraged to identify as a group with the total job,

not individually with pieces of tricky code or a particular part

of the job.
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In projects where this approach is not taken, an individual is

often assigned the responsibility for maintaining a particular

segment of code. These people become experts at living with and

fielding questions about the idiosyncrasies of their own parti­

cular segment of code. In this organizational structure only the

person responsible for the code must know how to read the program,

so there is no strong incentive to make it understandable to

others. A poorly written piece of code tends to stay with its

creator for a long period of time. Since changing assignments

would require costly apprenticeships, people become relatively

immobile. In this environment, comments concerning the quality of

a particular program are usually viewed as reflecting on the

quality of the programmer.

This contrasts with the concept of having a team responsible for a

major program subsystem which tends to allow one to move toward

Weinberg's "ego1ess" programming concept where everybody is expec­

ted to. know and be able to read all of the programs in their sub­

system. The team works toward making all of the programs easy to

understand and easy to modify for the sake of both new users and

new team members. People outside the team are encouraged and sup­

ported in the use of the programs. Since in this environment a

single team can carry a new feature from specification through to

first application, it tends to provide a good environment a 1a

Ford's "motivation through the work itself".

A concept which has some similarities with ego1ess teams is called

the buddy system. In this system, a group of people is responsible

for a group of programs as before, but no one person follows any

given program all of the way through the development cycle. A

person on the team might design one program, code another, and

test a third. Thus, of necessity, a program must be designed and

written so that it can be understood by at least two other

buddies.
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5.3.2. Walkthroughs.

Walkthroughs were one of the first things implemented by most

organizations in trying to adopt structured programming. In seve­

ral large organizations, it quickly seemed as if every hour of

every day, some kind of walkthrough was being held by someone.

A typical scenario involved some poor programmer trying dutifully

to explain his or her program to a dozen or more people who

couldn't care less. Soon the size of the audiences diminished, but

still is was a painful tUne for all.

Programming walkthroughs build on having clearly understandable

specifications, program designs, and code to-walk through. They

complement the concept of working in programming teams.

The program walkthrough process is defined in Figure 14 as pre­

paring for and holding a series of meetings in which problems are

identified but not resolved. These meetings are normally held when

system requirements have been determined, when the system design

is completed, and when the code has been written. Walkthroughs. are

normally called by members of each programming team, with only

those people directly involved in the topic at hand being invited.

The major motivation for having walkthroughs is to try to find .

errors earlier in the development process. The earlier an error is

found, the easier it is to correct, and the less it impacts the

rest of the program development process. A secondary bene~t of

program walkthroughs results from the interactions within the·

walkthrough meetings themselves 3 in whicha new kind .of'i.nj'orriiiil-­

classroom situation often developeB. In ~any cases, the older, more

experienced programmers can give the benefit of their experience

to the newer programmers, and the newer programmers can share the

recent advances in computer science which they just learned in

school with the older programmers.
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Figure 14. The Walkthrough Process

NO

As noted earlier, there is a potential hazard in holding program

walkthroughs if the size of the group attending ends up being

quite large. Just going to the meetings associated with the walk­

throughs can be a very time consuming activity for the program

development team members. One guard against this is to strictly

adhere to the rule that problems are only identified and not re­

solved in the meeting. The second safeguard relies on having a

well-structured program. If the program is structured 1n a fashion

which minimizes connectivity and maximizes independence, then the

number of people involved in any given program walkthrough will be

naturally small.
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Given a hierarchical design, the people who have major interfaces

with any given program are relatively easy to identify: thus, the

number of people involved can be kept relatively small. A program

which can be characterized as "spaghetti" coding would require

that larger audiences be present at each walkthrough, since any

given program is capable of directly affecting a large number of

other programs.

Program walkthroughs, management reviews, and project checkpoints

all share the aim of trying to find errors early in the develop­

ment cycle to reduce development costs.

5.3.3. Top-down Implementation.

Top-down implementation and testing and top-down design are com­

pletely separate issues. The first procedure concerns order of

implementation and the second is a design strategy.

Top-down implementation can reportedly reduce the effort required

for program integration and reduce the effort required for program

testing. It is a testing and integration philosophy which can

capitalize on the modular hierarchical design discussed earlier.

Given a hierarchical program design, one can implement the program

by starting at the bottom of the hierarchy (that is, by implemen­

ting the leaves of the tree structure), writing drivers to exer­

cise these modules, and gradually work one's way up by considering

larger and larger subtrees. The problem with this approach is that

one often starts by testing and implementing the most detailed,

change-prone modules first. Naturally, a series of small changes

in the requirements will occur steadily throughout the life of the

project. Since the most detailed modules are implemented first,

they must be modified the most over the longest period of time.

This can lead to severe compatibility problems later, in the pro­

gram integration phase. It also requires that a significant. number

of program drivers which are not deliverable software will be pro­

duced and- debugged and tested along with the main program.
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In top-down development the idea is to write and execute the most

critical high-level code first and to stub functions which are not

yet completed. This is shown schematically in Figure 15. The ad­

vantages of this approach are that:

1) No separate drivers are required.

2) The critical programs are tested the most.

3) The code which is the least likely to change is developed first

instead of last.

~- ---~
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Figure 15. Top-down Implementation.

A related implementation strategy goes under the name "phased

builds". With some planning, program modules can be implemented in

an order which allows partial processing of certain inputs almost

~ediately. More complicated inputs are handled in succeeding

versions.
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5.4. Software Development Tools.

Software development spans many different types of activities, from

system requirements analysis through the production, maintenance,

and administration of the system itself. When these activities can

be organized into a design methodology and a development process

that works, the next step is to automate those things which are rou­

tine so that more time can be spent on the most creative parts of

the design. Design is essentially a proble~solving procedure, and

problem solving is by nature a trial-and-error process. By automa­

ting the routine parts of the design process, more trials can be

made with fewer errors.

5.4.1. Development Support Library.

The concept of a development support library (Figure 16) is a

major step toward moving--programmin8- from~a priyate._ art to __a

public science. It has the advantage of relieving the programmers

from the clerical duties associated with programming, and keeps

the progress, quality, and interfaces visible to team members and

and supervisors throughout the development cycle.

TECHNICAL:
'''OJECT '''OO''AMMINQ

D-------
~

CLI"ICAL:
IIECO"O KEEPINO

Figure 16. Development Support Library Interface
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A successful development support library is based largely on

following a set of logicqal, orderly procedures during the deve­

lopment process. These procedures are often aided and enforced by

automated support tools for controlling and manipulating the text

and code associated with the software system. The intent is to

keep the programmer working on the problem to be solved and to

automate or at least standardize the procedure for integrating

each program into its environment. In many cases, a programming

secretary is involved who interfaces the programmer with the deve­

lopment support library. In more sophisticated computer-aided

design systems such as the PSL/PSA system many of the clerical,

bookkeeping, and documentation functions are performed automati­

cally by the computer.

5.4.2. High-level Languages.

High-level languages have long been recognized as an aid to impro­

ving both the quantity and quality of a programmer's output.

A noble long-term objective for high-level language continues to

be that of preventing the writing of bad programs.

A practical near-term objective might be that programming langua­

ges should at least allow you to write good programs if you choose

to. Any higher-level language uses in the context of new software

engineering techniques should provide as a min~um those control

and data constructs which support structured programming. Propo­

nents of higher-level languages state that the increase in under­

standability which results allows the programmer to optimize in

the large, rather than in the small. Thus, there may be the hope

of gaining back any reduction in code efficiency which results

from the use of a higher-level language.

Other advantages claimed include the conjecture that even though

the best assembly-language programmers can often write signifi­

cantly more efficient code than the best high-level-language pro­

grammers, the programs written by average assembly-language pro­

grammers and average high-level-language programmers do not vary

greatly.
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We have progressed to the point that the most pressing language

problems seem to be in the area of requirement specification

languages. The object is to specify the problem in an easy-to-use,

problem-oriented language which is written at a very high level

but is still machine executable. This is both a noble and a diffi­

cult task.

5.4.3. Documentation.

There are almost as many documentation techniques as there are

design methodologies. For discussion, they can be sorted into

general categories depending on whether they are primarily text

oriented or graphical, on-line or off-line, mechanized or manual,

etc.

Text-oriented documentation strategies have the advantage that

they can be easily stored and updated on a computer using only a

simple text editor. They are also relatively easy to adapt to

automatic test generation schemes or program consistency checking.

Structured English and pseudo code have the advantage of being

able to be stored conveniently and compactly in the same file as

the ~ode itself. In cases where the pseudo code is itself a very

high-level language which is executable, one can substantially

reduce if not eliminate the age old problem of having the documen­

tation and the code out of phase. Unfortunately, however, the

closer the documentation format comes to a programming language,

the worse it becomes at providing a clear view of the overall pro­

gram structure. The completeness required by an executable

1anguage seems to be at odds with the clarity which a good docu­

mentation technique should provide.
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At this point in time, there is nearly universal agreement that

flowcharts represent an inferior method of documenting a program.

This consensus very nearly coincided with the time that automatic

flowchard-drawing programs became widely available. An improved

form of telescoping sets of hierarchical flow graphs is present in

the documentation technique that is called the Structured Analysis

and Design Technique (or SADT). While it appears to involve a lot

of detailed art-work, much of the effort can be automated. It has

found application in both business data processing and real-time

control applications.

Graphical techniques usually provide a clearer view of the program

but usually suffer from requiring manual updating. This leads to

"documenation lag" which can cause no end of trouble.

5.4.4. Structured Testing Aids.

Structured design and development imply a testing effort which

proceeds step-by-step in parallel with the application program

development effort. This function mayor may not be performed by a

separate organization. A library of tests which can be applied

repeatedly for regression testing, and a library of stubs which

stand in for program modules which have yet to be developed, are

crucial at each stage of the top-down development process.

When testing is considered as an integral part of the development

process, the possibility - indeed, the probability - of finding

errors early is increased. In this case the testing philisophy and

programs are carried through the specification, design, and coding

walkthroughs concurrently with the application programs.

Automated testing has progressed to the point that a "cover set"

of tests can be generated automatically which will guarantee that

every leg of code is executed at least once. This is of course

much different than testing every combination of paths which could

be taken through the program, which would be necessary for "ex­

haustive" testing. Exhaustive testing is just not feasible for

many problems of interest.
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At this point it should be clear that tests can be written and

automated which will give you some degree of confidence in the

program if the initial design is done properly. It should also be

clear that, in most cases, there is no way that the correctness of

a the program can be verified by testing. Exhaustive testing is

usually impractical, and without exhaustive testing the correct­

ness of the program cannot be guaranteed.



THE-RC 41789

6. Software Validation.

- 86 -

6.1. Introduction.

The phrase "reliable software" has two distinct shades of meaning.

On the one hand, it Unplies correctness. A piece of softwa~ is

cor~ct if it meets its functionaZ specifications. This implies that

as long as the inputs satisfy the specifications, the software will

produce the desired outputs. On the other hand, reliable software

Unplies robustness. A piece of software is robust~ or fauZt

toZerant~ if it can be expected to de liver a certain rrrinimum Zeve Z

of services even when faces with an unexpected orhostiZe

environment (such as hardware failure or bad data). Thus a piece of

software is reliable if it is both consistent with respect to the

stated specifications and able to withstand unexpected demands.

Correctness is a property like beauty that is often mostly in the

eye of the beholder. Software almost never turns out to be totally

waht the customer had in mind--that is why formal specifications and

contracts are needed. A customer may specify that a system with cer­

tain functional properties should be built. Because the environment

in which it will be used is complex and so well known to the cus­

tomer, he fails to spell out many of the things that he takes for

granted. The resulting system may then turn out incorrect to him.

It is because of this possibility of subjective opinions on the

correctness of a system that more precise notions of correctness are

being developed. We will discuss these approaches below as one of

the contributing factors to software reliability.

Robustness is concerned with making programs well-behaved in the

face of hardware failure, bad inputs, unexpected demands--even in­

correct operation of parts of itself. All software operates in an

environment over which the builder of the software has little or no

control-hardware fails, other software interfaced to the system

works incorrectly, users provide bad input and overload the system.

If we are concerned with reliability, we must make our software ro­

bust so that it can cope with such situations.
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Coping may mean finding alternative ways of carrying out required

functions even though something is wrong. It may mean notifying a

higher authority that something is wrong. It almost always means not

propagating the error so that problems are contained and catastrophe

does not ensue. It may mean finding some way to recover from the

malfunction.

It is important to stress that correctness alone is not sufficient.

A perfectly correct program that does not check inputs to make sure

they are wi thing range may proceed to overwrite valuable files, pro­

ducing highly unreliable behavior. Certainly a program must be

largely correct before we call it reliable, but this is only a

necessary condition, not a sufficient one. Robustness is an essen­

tial ingredient of reliability.

Software vaLidation is concerned with analyzing software to deter­

mine the extent to which it performs the logical functions intended

by its creator. Techniques in software validation can be classified

into two main categories: testing and verification.

Software testing is concerned with analyzing a program by evaluating

its response to a selected set of input data. Since any test data

will necessarily be a very small sample of the possible inputs, tes­

ting is inadequate for achieving a complete understanding of the

logical or the performance properties of real programs. However,

testing may be a necessary step in program validation not only to

clean up certain obvious bugs, but also to reveal unexpected beha­

vior and thus aid a programmer's understanding of his program. It

should be pointed out, however, that techniques for testing remain

rather ad hoc.

There are two ways of approaching program verification. The static

approach considers a program and its specifications to be given.
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Mathematical proofs are developed to demonstrate that the logical

behavior of a program is as specified, viewing this logical behavior

as completely characterized by a set of formal assertions. The

constructive approach lays stress on the correct development of a

program. However, it seems that both approaches rely on the pro­

grammer's ability to abstract certain sufficiently strong invariant

properties of the program, intended or given. These properties form

the inductive hypothesis that incorporates certain inductions for

proving the correctness of loops.

The basic idea of the static approach stems from Floyd's observation

that a computer program can be thought of as a mathematical object,

and hence its properties can be studied in a rigorous fashion. Floyd

shows that it is possible to capture the "invariant" properties of a

program at each node of a flowchart program by means of a formal

assertion. To show that a program is consistent with its specifica­

tions, it is necessary to show that the input assertion implies the

output assertion over all possible paths between the start and halt

nodes.

As we have seen, the notion of robustness, or fault tolerance, is

concerned with providing design redundancy"in software such that it

can continue to perform, perhaps in a degraded mode, under changing

requirements or hostile environments. Providing redundancy is, of

course, a common practice in any engineering design. Buildings,

bridges, highways, and other constructions, are built with certain

tolerance factors. In the last decade there has been a great amount

of research into the design of fault tolerant computer hardware.

However, research efforts in software fault tolerance began relati­

vely recently.
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6.2. Reliability Theory.

There is a well-developed theory of reliability in other engineering

areas which has been used extensively in the design of computer

hardware. Several researchers are attempting to apply some of these

same reliability measures and est~ation techniques to software. Our

understanding of reliability would be greatly refined if we had pre­

cisemeasures of a system's reliability. The value of being able to

estimate a system's future reliability on the basis of past perfor­

mance is clear.

Like most of the work on software reliability, these formal studies

are recent enough that we cannot accurately assess their eventual

strength. The fact that software components do not have a failure

rate that can be related to the underlying technology in the same

way that the failure rate of hardware components can be means that

new approaches must be developed. Taken in the aggregate, however,

one can study overall failure rates and these may be related to

software structure in some cases.

These formal approaches to studying reliability will certainly con­

tribute to our ability of creating reliable systems and must be stu­

died by one seriously concerned with software reliability. However,

just as formal approaches to insuring the correctness of a program

will never be able to provide us with totally reliable software,

formal definitions and est~ations of reliability will never be able

to characterize completely what we intuitively understand.

6.3. Improving reliability.

In this section we will indicate the range of current efforts aimed

at improving software reliability.

6.3.1. Correctness.

Construative programming is a term applied to any programming

method that attempts to produce correct programs without the usual

testing and debugg~rig phases. Structured programming, top-down

programming, and step-wise refinement are all constructive

approaches that in many instances result in programs that are sub­

stantially more correct than ones produced in less organized ways.
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Testing is the filter that is intended to determine if a program

is correct, but often doesn't. Thus, any technique improving the

effectiveness of testing will result in more correct programs.

Automatic test case generators, performance monitors and automated

testing systems all help us improve testing. Specialized testing

procedures for particular classes of software can also be deve­

loped.

As with constructive programming, many testing techniques and

tools are in the development stage. Thus, it is still essential in

most--shops to make sure that programmers use standard manual tech­

niques for testing.

Static verification techniques are based on mathematical proof

procedures and offer the advantage of permitting us to prove the

correctness of a program without resorting to testing. Strictly

speaking, program verification is a process of proving mathemati­

cally whether or not a program will fulfill a set of assertions

about its operation wh~n it terminates (which is treated as a

separate problem). The assertions are assumed to express our re­

quirements for correct operation of the program so that by proving

the program obeys the assertions, we will have proved its correct-

ness.

Unfortunately, there are two problems with this approach which

have not been entirely overcome: First, we may make a mistake in

stating the assertions so that even though the program is shown to

meet them, we may have failed to capture our intuitive understan­

ding of correct operation for the program. Second, the proofs

themselves may be quite complicated and thus are open to error if

done by hand or are beyond the reach of current automatic methods.
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The underlying reliance on mathematical reasoning, however, is

closely tied to the original notions of constructive programming

as put forth by Dijkstra. One can develop the assertions before

actually programming and then write the programs to make the

assertions true. A large amount of current research is aimed to­

ward developing proof techniques (both formal and informal) and

toward developing practical programming languages that facilitate

such proofs. This research is too extensive to review here, but

can be expected to provide significantly improved methods of ob­

taining the programs that are correct (in the broader sense of

meeting our expectations, not only our formally stated require­

ments).

A middle ground between completely formal program proof techniques

and completely manual approaches uses formal techniques mated to

practical and human-aided tools. This approach may well provide us

with the means to produce highly correct programs. Most automated

program verification techniques are still a long way from being

really practical and most manual or semi-automated techniques are

not widely used because they still require a good deal of effort

and care to use properly.

This brief review of techniques for constructing correct programs

may give you the impression that no one has thought about the pro­

blem until recently and that it is all still black magic. While

programmers have always tried to build correct programs, it is

true that explicit concern with program construction techniques

and tools for aiding the process are recent and that for the most

part we are only beginning to utilize improved methods.
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6.3.2. Robustness.

Improving our ability to build correct programs is a very general

task. Improving our ability to build robust programs provides a

much more focused goal: We must devise mechanisms that will permit

software to cope with whatever unexpected occurrences threaten its

operation. Some of the reliability mechanisms are really no more

than just good programming practices that have been used for

years: checksums, checking of parameter ranges, data validity

checks, and so on. Yet, the sad fact is that many programmers do

not use such mechanisms and there are really no good "handbooks"

one can consult for techniques. Thus, until an encylopedic treat­

ment of reliability appears, you must laboriously gather good

mechanisms from the descriptions provided by others or else invent

your own.

Let us mention just a few here to illustrate the type of struc­

tures that provide robustness. Self-identifying information

struatupes provide protection against some types of hardware fail­

ure or the accidental destruction of pointers to the structure.

The simplest example is a disk file that includes a header con­

taining the name and other identifying information of the file; if

the directory that points to the file is destroyed, it can be re­

created from the information in the file itself.

Modularity provides an opportunity for improving robustness.

As data and parameters are passed between modules, the opportunity

exists to check them agains expected values and thus detect pro­

blems before they propagate. This and the following mechanisms

provide what are often called firewalls.

Many of the mechanisms developed for making systems secure, also

provide increased reliability. When resources are carefully con­

trolled, for example, checks of resource ownership will be per­

formed. This provides an opportunity to catch erroneous (not just

illegal) system operation through the detection of internal errors.
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A new structure developed specifically to provide robustness is

the idea of recovery blocks. Simply, this is a menas of indicating

portions of a system whose operation must pass a dynamic accept­

ance test designed to determine proper operation; if the test

fails, alternate means of achieving the desired result are indi­

cated and automatically tried. (This mechanism obviously cannot be

applied everywhere since it assumes a computation can be retried.)

As structures providing robustness are developed, the task of

making systems reliable will become correspondingly easier. The

critical role of design in providing overall reliability will

remain.

6.4. Trends in Software Design.

Software design techniques are undergoing active investigation and

change. While these changes are only beginning to affect significant

numbers of people, several important trends that will directly

affect reliability can be identified.

In our following consideration of trends, bear in mind that we here

are most concerned with the impact of design on reliability.

6.4.1. More Design, Less Coding.

The most profound and widespread trend is the increasing concern

with the specification and design process. People are realizing

that the difficulties experienced in creating large software sys­

tems are not due solely to bad programming practice or insuffi­

cient management.

It is true that it is often possible to create a small program

without engaging in much formal design activity. A craftsman (pro­

grammer) can usually create an acceptable small program without

engaging in much documented consideration of alternatives (i.e.,

design).
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We might compare this to craft production of artifacts in other

areas. For example, a boat builder may create a small boat similar

to ones produced before, but with some variation, without drawing

detailed blueprints. But a shipbuilder cannot build an aircraft

carrier successfully without engaging in a large amount of design-­

consideration of alternatives, careful fitting of form to con­

straints, checking that all that is required has been included,

and planning of the actual implementation.

We now realize that the same is true of building large software

systems (and sometimes even small ones of high complexity). The

tasks we have set for ourselves demand design skills and tech­

niques beyond the valuable new programming methodologies, such as

structured programming.

---oae--result has been- increased_awareness of the important role that

design must have. As people have become concerned with properties

of software, such as reliability, then it has become even clearer

that these properties must be designed into a system from the

start and that trying to add them on at the programming stage will

not work.

The primary impact on software reliability that this increased e~

phasis on design will have is to provide an opportunity in the

software creation cycle for proper consideration of reliability.

Although reliability is our interst here, it should be clear that

creating a software system involves many factors: (e.g., generali­

ty, portability, and maintainability) which may deserve careful

consideration; acceptance of the software by the eventual user

must be considered and often goes beyond technical qualities in

importance; and economic factors typically cover all other consi­

derations in the sense that for any given property (such as relia­

bility), the amount of it we get is usually a direct function of

how much we are willing-- to pay.
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When software is slapped together with most of the time spent on

testing and retrofiting brought about by precipitious coding,

there is little opportunity for considering the inevitable trade­

offs between various qualities and for making sure that features

that must be dealt with on a syste~wide basis (e.g., reliability)

are considered. The hallmark of design is the consideration of

alternatives and the weighing of conflicting demands to find

acceptable compromises. As we move toward more extensive design,

we at least will have the opportunity to consider reliability and

to do it on a syste~wide basis.

6.4.2. Coherent Methodologies.

The current interest in software design focuses on two areas:

developing coherent methodologies for design and developing tools
-------~--,._-----_..-

to aid or argument the designer. We will briefly address this

second focus in a later section. A methodology is a collection of

methods (techniques, procedures) to follow, which if faithfully

carried out and applied in a particular situation will (intheoryJ

achieve some goal (e.g., the attainment of a correct design). A

methodology is more than a recipe. It usually consists of several

aspects, may not be complete, and it typically cannot be applied

blindly.

For example, a design methodology might prescribe the order in

which certain classes of decisions are to be made, ways of making

decisions, ways to represent the developing design, and so on, but

not address project management. The assertion is then that if the

prescriptions are followed one will be able to achieve a correct

design more easily.

We have seen a number of methods, but they hardly form a methodo­

logy.

The impact of a coherent methodology should be clear: Producing a

reliable system is an activity that must be spread over the com­

plete creation process. When that process is composed of mis­

matched techniques and when the overall management controls permit

some phases to be missed then producing reliable software will be

next to impossible. Coherent methodologies eventually offer solu­

tions to these organizational causes of unreliable software.
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Breaking a program or system into pieces, or modules, is one of

the oldest concepts in computing. Yet, it is also one of the

current trends in software design, as we have seen.

The definition of what constitutes a module is now seen as an Un-

portant design parameter. It is clear that modularization is a

necessary condition for pragmatic program verification.

Whereas previously modularization was often simply used to break a

taks into pieces small enough for a single person to work on or

small enough to fit into a memory space, we now see that modulari­

zation will have a very real effect on our ability to understand

and deal with the complexity in a system.

Modularization has a very direct impact on program correctness by

reducing complexity into manageable units and thus reducing the

chances of error. Further, modularity permits application of

formal verification techniques to programs small enough that the

proofs are manageable.

The impact on robustness can be gained through the use of compo­

nents. Small, highly robust modules can be developed and ~hen re­

used in other systems. Since they are known to be reliable, the

task of producing a new reliable system is reduced.

6.4.4. Formal Specifications.

A fourth trend in software design, not yet so well developed but

receiving a large amount of attention, is the use of formal speci­

fications. Earlier we noted the difficulty of assessing the cor­

rectness of software in many instances because it is not clear

what the software is supposed to do. In response to this some have

attempted to develop mor explicit ways of specifying the goals for

a piece of software.
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The Problem Statement Language (PSL) used in ISDOS is a language

for stating software requirements in an unambiguous and functional

manner. More formal approaches, typically using mathematical logic

to state requirements, have been tried but have not yet been

turned into practical tools. The assertion languages (again, often

based on predicate calculus) used to state correctness assertions

for use in program verification are a way of formally specifying

what a program is to do.

Parnas has developed a technique for specifying modules and this

technique has been coupled with a comprehensive design methodology

by a group at SRI to attack a significant sized problem (the de­

sign of a secure operating system).

The primary impact of formal specification will be on correctness.

Not only will such techniques, when further developed, make it

easier to check formally the correctness of a system, but the

existence of clear and unambiguous specifications will help focus

the efforts of the designers, resulting in designs of better qua­

lity.

6.4.5. Design Verification.

A trend only beginning is that of design verification. The idea is

simple and in fact has been practiced for many years: We would

like to test that a design is correct before we turn it into the

actual object. Design reviews are intended to do this. But, they

don't fully succeed because the complexity of software design

decisions makes it impossible to verify designs with any accuracy

using informal means.

Techniques that permit us to verify the correctness of a design

with some accuracy will have a great impact on reliability. Not

only will they help us to improve vastly the correctness of our

software, but they may help us see the results of various possibi­

lities before building the system. This wil permit us to build in

mechanisms to provide robustness on the basis of this early feed­

back concerning possible vulnerabilities.
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6.4.6. Metacode representation.

We noted above the importance of representation in software design

since in designing, we are solely building a representation, not

the final object. A very valuable trend in software design is to

use a programming language-like notation in which to express a

software design, especially at the levels of most detail. These

notations are usually called a metacode or program description

language (PDL).

Most metacodes use the textual structure and control mechanisms of

the base language while permitting more freedam in the expression

of conditions and operations. This freedom may range from com­

pletely unrestrained use of English to highly constrained use of

predefined and mnemonically named functons.

Metacode makes visible many of the logical decisions concerning

control and data before the lowest level programming details are

added. This permits the designer to check the design for logical

correctness more easily since the metacode is usually much easier

to comprehend than a full programming-language representation.

This makes it easier not only to achieve correctness, but also to

assess the robustness of the system.

Because the metacode has the same structure as a programming

language, most people find it extremely easy to code from it.

Basically, the use of metacode has the effect of pushing detailed

design and debugging up a level into a representation that facili­

tates, rather than hinders, obtaining correct and robust programs.

6.5. Automation of Software Deveopment.

Several areas of software design with special relevance to achieving

reliability that could benefit greatly from automated aids are:

Processing of representation: The design of large systems involves a

large amount of information. Designers should be relieved of burden­

some clerical duties and their activities enhanced by simple aids

such as cross-indexing and syntax checking of designs. This will

permit them to focus more on the content of the design.
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Checking of consistenay and cOrrqJleten~~_~_~OUsage_of the same informa­

tion in different places in a design should be consistent. Routines

called as subroutines with particular parameters should be checked

to make sure they are set up to handle those parameters. Functions

or data structures used in one part of a design must be specified

elsewhere. These and other questions of completeness and consistency

can be checked automatically in many instances.

Comparison to constraints: Design is a process of creating an arti­

fact within constraints. If those constraints are formally stated

then a developing design, properly represented, could be checked

automatically for conformity. In large systems with many detailed

constraints, such automated checking is essential.

COrrqJarison to specifications: Again, as we develop formal means of

specifying the functions of a system, techniques can be developed

for automatically checking a proposed design against the specifica­

tions it is supposed to meet.

Suggestion of alternatives and ranrifications: Another fundamental

characteristic of design is the choice between alternatives. If a

design is developed in a machineable representation and if one has

built up a library of possible structures, then a design-aid system

could suggest alternatives to the designer. This would be especially

applicable to providing suggestions with known reliability proper­

ties. Additionally, when design decisions are made, an automated

monitor could determine if anything is known about the characteris­

tics of this structure (e.g. its susceptibility to error) and sug­

gest ramifications of the decision to the designer.

These brief descriptions of areas in which automation and/or aug­

mentation look reasonable should suffice to indicate ways in which

trends in software design may impact our ability to build reliable

systems.
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7. The Choice of New Software Development Methodo!ogies.

7.1. Introduction.

The data processing project manager of the 1980's has an impressive

array of new "structured" methodologies which promise to improve the

productivity of his programmers and analysts, as well as improving

the reliability, maintainability and overall quality of the finished

product.

Unfortunately, there are so many "new" methodologies that the

manager may not know which methodology he should employ on a new

project. That choice is made all the more difficult because there is

little or no documented evidence to prove the effectiveness of the

new methodologies. Indeed, the problem is even worse: a variety of

exaggerated claims in the popular EDP trade journals has made many a

manager so skeptical that he may be unwilling to experiment with any

of the new methodologies.

The purpose of this chapter is to provide some useful advice to the

project manager who finds himself in this position.

7.2. Suggestions for Introducing the New Methodologies.

Unfortunately, it is not possible to give a simple algorithm in this

area. We cannot easily say: "First you should introduce structured

programming, then you should use structured design", nor can we say:

"If you are working on a payroll system, then you should definitely

use chief programmer teams; on the other hand if you are developing

a real-time telecommunications system, you should use only struc­

tured walkthroughs."

On the other hand, the structured methodologies have been introduced

into enough organizations that we can draw some general conclusions

form their experiences. These are given below.

Trying to implement all of the new structured methodologies at once

wilL generally be a disaster.

Some organizations can actually pull off such a feat. After reading

about the new methodologies, or getting a presentation form their

friendly hardware vendor, they decide to use all of the new methodo­

logies at once. As one might expect, this is more likely to happen

in the smaller EDP organizations--those with only half a dozen pro­

grammer/analysts--and is not verly likely to occur in the larger

organizations.
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Sometimes, though, an organization will decide to try all of the new

structured methodologies on a single project; this is quite common

when the organization decides to use the new methodologies as an

experiment in a so-called pilot project. Even in a limited situation

like this, it ususally turns out that an attempt to experiment with

half a dozen new methodologies at once leads to chaos and confusion.

The reasons are obvious enough. The new methodologies use no simple

concepts, and a lot of concentration is needed to make them work

right. If the programmers are also trying to implement walk­

throughs--which require a great deal of phycho1ogical energy, too-­

and chief programmer teams, as well as adjusting to the concept of a

librarian relieving them of their clerical work ••• well, it will be

a wonder if they get any of it right.

Techniques which involve organizational change are often the most

difficult to impZement.

Some organizations will find it difficult to ever implement chief

programmer teams, librarians and walkthroughs. The point here is

that even if the project manager can convince his organization to

try· the chief programmer team concept, or librarians, or walk­

throughs, he will probably find that difficult as his first new

methodology. The experience has been that it is somewhat easier to

introduce a relatively innocuous technical concept like structured

programming first--that doesn't threaten anyone's empire, and is not

likely to be at odds with current organizational philosophies.

Once the project manager had demonstrated that structured pro­

gramming, top-down implementations and structured design are good

ideas, then he'll probably be in a strong enough political position

to say to the big boss: "Listen, the last three structured metho­

dologies that I introduced to the company turned out to be winners.

Why not gamble a little now, and let me try something like the chief

programmer team?"
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Structured code without a design methodology is often

worthless.

A number of organizations have found recently that structured pro­

gramming (or, more specifically, structured coding) is a great idea

but that is not enough. If the modules in an EDP system are too

large, too complex, and too interconnected with one another, then

maintenance problems will persist.

This raises some interesting political consequences. If the EDP

organization has been doing things in a backwards fashion for years,

and if the project manager introduces the new methodologies with

great fanfare and promises of spectacular improvements, then the

first new methodology should indeed demonstrate spectacular improve­

ments.

And if the project manager tries structured programming alone, he

might not achieve such spectacular improvements. The experience on a

few EDP projects has been that the initial productivity and reliabi­

lity will seem quite impressive, but the long-term maintainability

of a system produced with nothing more than structured coding may

not be very impressive at all.

The moral: It may make good sense to begin with a design method

first--and when that is working properly, then introduce structured

coding. Once the project manager has overcome all of the objections

and battles and problems associated with design, it will be almost

trivial to introduce structured programming.

There is a more important reason for this suggestion: good design

and mediocre coding is a tolerable state of affairs; mediocre design

and good coding, on the other hand, is not a good formula for

success. And if the project manager thinks that his project team has

energy, intelligence and enthusiasm to tackle only one new metho­

dology, then design should get preference over coding.
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Top-down design a:nd impl-ementation are often a good way of intro­

ducing the new structured methodol-ogies.

It is frequently observed that many of the benefits of top-down

implementation are "political" in nature. It allows the project

manager to demonstrate a working subset of his system to the user at

an earlier point in time; it allows him to survive deadline crises

more gracefully; and it allows him to schedule testing resources

(e.g., computer test time> in a more manageable fashion.

These benefits are very noticable to the user community, to higher

levels of management, to the computer operations manager, and to

various other people in the organization. For that reason alone,

many EDP managers have decided that the top-down approach is a good

way to introduce the new structured methodologies in their organi­

zation.

Keep in mind that this approach can backfire. Unfortunately, many

programmers view top-down implementation as an invitation to begin
"coding before they have done any real design. Especially on the

first new projects, the manager should beware of this danger.

The most successful- approach has often been informal- wal-kthroughs.

There is a strong argument for informal walkthroughs as the project

manager's first· venture into the new structured methodologies. Note

the emphasis on "informal" walkthroughs--not necessarily with all

the "bells and whistles" that are normally suggested.

Why would informal walkthroughs be a good way to get started with

the new structured methodologies? For the simple reason that the

project manager can't trust any individual programmer to understand

and implement any of the other methodologies by himself. By forcing

everyone to talk about their designs and their code--in an informal,

low-key, non-threatening fashion--the manager can maintain some kind

of quality control when he most needs it.
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This is a point that needs emphasizing. If the manager has 30 pro­

grammers, and if he gives them all the standard textbooks on struc­

tured programming, they are almost guaranteed to read 30 different

(and almost mutually exclusive) things. They will write 30 different

kinds of structured programming--some good, some mediocre, and some

downright bad (indeed, probably even worse than the kind of code

that was written before structured programming came along). And if

nobody looks at their code (which is the current state of affairs),

the manager will never know who really understands structured pro­

gramming, and who doesn't.

If the project manager begins by establishing an environment of

exposing everyone's code to public discussion, then he will ensure

that a relatively uniform version of the method can be implemented

later on.

7.3. Conclusion.

In the final analysis, only the project manager can decide which of

the new methodologies he wants to introduce on a project. The

suggestions in this chapter can do nothing more that make the

manager think about trade-offs that have been observed in other EDP

projects; it is up to the manager to apply those trade-offs in his

own project.

One of the most important questions the manager must ask himself is

whether the new methodologies should be considered as a set of ex­

perimental "R&D" concepts, or whether they are to be considered

down-to-earth practical concepts, with an immediate payoff.

Indeed, some organizations deliberately use the new methodologies on

experimental "pilot" projects, with no preconceived ideas about

which ones will work and which ones won't. In such an environment,

the manager should use any and all of the methodologies that are of

interest to him; our only caution is to arrange the pilot project in

such a way that the impact of each new methodology can be measured

in some crude fashion.

If the manager is involved in a "real" project--with real deadlines,

real budgets, real users with real needs, and real penalties if the

project fails--then he should be considerably more cautious about

the new methodologies he employs.
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