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1 Introduction 

Algebraic tec.hniques have pt(.)'v.'>.d to be very uuitful in specifying data structures and sequential control 

structures. Starting from the mid sevent~es, lo~ of ·.,·ora has been done on algebraic specification of 

abstract data types ( quoting a few references [GTW78,LZ74,GB78,EM85] ). Following this, algebras 

have been successfully used for specifying more complex con hoI structures, like non determinism and 

concurrency. These algebras are called process algebras and two such algebras are CCS [Mil80] and 

ACP [BK84b]. The basic objects of process algebras are processes .. ·hich are constructed from certain 

primitive actions using some algebraic operations. Important operations used are sequencmg, denoted 

by;, non determinism + and concurrency II. The semantics of these operations are given by defining 

an equivalence relation among processes. Different equhralence relations with different discriminative 

powers have been suggested in the literature [MilBO,BKB4b]. 

Process algebras heat primitive actions of processes as abstract and meaningless ~ntities and hence 

what they specify are purely the properties of contIol structures. But a complete tbeory of processes 

has to associate meaning to the atomic processes and study their effect. Such a theory can be developed 

by integrating process algebras with data algebras and interpreting the primitive actions of processes as 

",'ell-defined operations on a data type. \Vith the iDtegration of process and data algebras, conventional 

notions of process equivalences will have to be refined; as a resuH of giving meaning to atomic actions, 

• Supported by a fcllowsh.ip £rom EUT IUld by the foundation for Comput.er Science RUeMch in the Netherlands (Nfl) 

with finAncial a.id from the Netherlands Orst.niution for the advancement of pure !"e5eeJ'Ch (NWO). 
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certain processes, "'hich are considered different by the conventional equivalence relations! may have to 

be identified. 

An important use of integrating process and data algebras is that different techniques and methods 

available in one of these algebras can be extended to the other. For instance, the notion of impJemen

tation has been extensi"ely studied in ADTs and many methods for verifying correctness of implemen

tations are available. But this notion has not at all been studied in process algebras. Our main interest 

in integrating process and data algebras is to extend the notion of implementation to process algebras 

and to design methods for proving correctness of implementations of processes. 

Recently! some attempts towards integration of process and data algebras have been made [KP87 1 

EPB·SS). In both these approaches, processes have been specified on top of a data type specification. 

These processes are complex combinations of certain basic operations on the underlying data type. 

In [KPS7,Kap88) the notion of implementation of processes is defined by directly extending the notion 

available in data algebras and a proof method has been suggested for a restricted class of processes. 

The class of processes considered are finite processes, i.e.! processes that do not in"olve recursion. In 

[EPB'S8), infinite processes (i.e., recursive processes) are also specified. They are distinguished by their 

finite projections and a model based upon projective algebras have been discussed. But atomic actions 

of processes are not interprded and hence only the control structure aspects are specified. Furthermore, 

the problem of implementation is not considered at all. 

The aim of this paper is to specify finite as ""ell as infinite processes in which atomic actions are 

given meaning, to extend the notion of iOlplementation to infinite processes and to develop a method 

for verifling the cortectness of implementations. The proposed notion and mt:thod of implemt:ntation 

is based upon the ones given in [KPS7). Main problem in introducing infinite processes is defining an 

appropriate equivalence rdation among processes that identifies processes that we want to identify. As 

in [KPS7), finite processes can be distinguished based upon the values they produce upon application. 

But this can not be used to distinguish infinite processes for the obvious reason that the result of 

application of an infinite process on a data value is not defined. So We define a new equivalence relation 

that is based upon what processes do repeatedly rather than "'hat they produce at the end. This 

relation, when restricted to finite processes coincides with the relation based on the final result of 

computations. 

Our treatment of process specification should be considered as adding ADT flavor to process algebras 

rather than the other way around. This is because, we differ from conventional data type specifications 

in one important respect. In ADT specifications, semantics to objects are specified equationally (or in 

general axiomatically) and one (or more) of the models satisfying the equations is taken as the meaning 

of specification. \Vhereas, we do not specify the meanings of processes purely equationally. We take 

a particular model, and define an equivalenct: relation over this model. In this respect, our treatment 

is more tile Milner's approach [MilSO). The reason for doing so is that we find this approach more 

intuitive. Another reason is that no complete a.Domatization of process algebras is possible. 

The organilation of this paper is as follows: In Section 2, basic materials of ADT techniques are 
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Jel"iewed quickly and the extension to process spec.ification is discussed. Section 3 is tbe main section 

of the paper I where the problems \\;th infinite processes are discussed and a new notion of equivalence 

of processes is proposed. In section 4, the notion of implementation is extended to infinite processes 

and a method for ,-elifying the correctness of implementation is then discussed. The method is then 

illustrated with an example. 

2 Preliminaries 

,"'e shall now briefly re,;ew the basic concepts of abstract data type specifications. For the sake of 

conciseness, our heatment Vo'ill be very informal and for a formal discussion readers are advised to refer 

to standard texts on ADTs, for instance [EM85J. 

Algebraic spec meat ion of an ADT is a triple < 5, E, E >, where (5, E) is called the signature that 

defines the syntu of the data type while E is a set of equations defining its semantics. 

5 is a set of names of sorts or types one of which is the type being specified. This type is called 

the type of interest (TOI). For instance, consider the specification given in Figure 1. It has a sort set 

containing queue , inti boo!. queue is the TOI, while inti bool are the names of integer and boolean data 

types respectively. 

E lists the names of operators and their aritiesj arity of an operator defines its domains and range. 

Typically, E is specified as shown in Figure 1. The operators in E are divided into two kinds: Con

structors and derived operations. Constructors are operators with range TOI and any TOI object can 

be constructed purely using constructors. new and enqueue are the constructors of queues; any queue 

object can be constructed from these operators. Whereas i$empty, deque are derived operators. Derived 

operators are definable in terms of constructors. 

In Figure 1, it is assumed that int aDd bool are predefined by similar specmcations on top of which 

the given specmcation is huilt. In general, there will be a whole hierarchy of specmcations starting 

from some primitive types like integers and boolean and ending with the specmcation of TOI. Certain 

consistency and completeness criterion will have to be satisfied by the different specifications in the 

hierarchy about which we will not go into the details. Interested reader should consult [EM85J. 

Corresponding to the signature (5, E), there is a term model TD which is the free algebra or well 

formed terms of sort TOL These terms are constructed out of the objects of other sorts and operators 

in l: whose range is the TOL The objects of other sorts are, in turn I well formed terms invohing 

the operators in the signatures of their specification. Each term in TD corresponds to a particular 

syntactic object of TOL The semantics to these objects are given by pro\'iding a congruence relation 

over TD. This congruence relation is specified by means of the equations in E of the specification. These 

equations define the derived operators in terms of constructors and possibly relate constructor terms. 

Equations are of the form M = N 1 where M, N are well·formed terms involving the operators in :E 

and variables of different sorts in 5. The equations determine the quotient algebra TD/E, which is the 

algebra consisting of all congruence classes orthe terms in TD. The set of all algebras isomorphic to the 
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DATA SPEC = Q_SPEC 

Sorts(S): 

TOI = Queue 

Other types: int,bool,error. 

Operation.(E): 

Construdors=new, enqueue 

Derived operators=dequeue, is empty, front 

new: ..... queue 

enqueue: queue x int ..... queue 

dequeue: queue ..... queue 

is empty : queue ..... bool 

ITont : queue ..... int U error 

Equation.(E) 

i .. mpty(new) = true 

i .. mpty(enqueue(q, i» = lalse 

dequeue(new) = new 

dequeue(enqueue(q, i» = if isempty(q) then new 

else enqueue(dequeue(q), i) 

ITont(new) = error 

ITont(enqueue(q, i» = if isempty(q) then i 

else ITont(q) 

Figure 1: SpeciJication of Q--SPEC 

quotient algebra is the intended semantics of the specification. For our example in Figure I, equations 

define i6empty, dequeue in terms of the constructors; there is no relation between constructor terms. 

Now consider the specification Q3MPL given in Figure 2. It speciJies the data type implq which is 

essentially the standard implementation of queues using an array with two pointers. Objects of type 

implq are quadruples consisting of an array object, a front pointer, a back pointer and a counter. Front 

and back pointers are indices denoting the front and back end of the queue. For our present purpose, 

the counter component is not essential; the reason for having this component will be dear when we 

discuss process specifications. 

Let Tb be the term algebra corresponding to this specification. Then, in order to prove that 

Q.JMPL indeed is an implementation of Q_SPEC of Figure I, we make use of a standard notion 

of implementation. Given two signatures (5, I:) and (5', I:'), a signature morphum is a mapping 

'" : (5, E) ..... (5' .E') such tbat for every sort, E 5 tbere is a sort "'(,) in 5' and if I: '1 x ... X 'n ..... 'n 
then "'U) : ",(.,j x ... x "'(''') ..... "'('n). Then given two specifications A and B as before, we say 

that B specifies an implementation of A, if there is a signature morphism"" such that for each equation 

M = N in E, V'(M) = "'(N) logically follows from the equations of E', where the variables in M, N are 
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DATA SPEC = Q.J:MPL 

Sorts(S'): 

TO! = implq. 

Other types: array, int, nat, bool, enor. 

Operations(E'): 

Constructors=newa, asgn, tup 

Derived operatoIs=new, enqueue, ace 

newa: 

asgn : array x nat x int 

ace: array X nat 

tup: array x nat x nat x nat 

new: 

enqueue: implq x nat 

------

array 

array 

int 

imp/q 

imp/q 

imp/q 

Equations(E') 

acc(newo, i) = error 

acc(asgn(A, i, n), k) = if i = k then n 

else acc(A, k) 

new = tup(A, 0, 0, 0) 

enqueue(tup(A,Jp, bp, k), n) = if fp ~ bp then tup(asgn(A, bp, n). fp, bp+ 1, CT) 

asgn(asgn(A, i, n),j, m) 

else error 

= if i = j then asgn(A, i, m) 

.lse asgn(asgn(A, j, m), i, n) 

Figure 2: Specification of Q.lMPL 

mapped by 1/1 onto variables of appropriate types; variables of type queue are mapped on to variables 

of type imp/q and variables of other typ.s ar. mapped 'On to those of respective types. It can be easily 

shown that the above condition is satisfied by our examples by taking'" to be the mapping that maps 

the queue operators onto those operators in (5' I E', E' ), denoted by the same Dame with an over line. 

2.1 Process specification 

OUI discussion on process specification is essentially from [KP87,Kap88] and for more formal details 

refer to this. A process specification specifies on top of a data type specification, a set of processes which 

are complex operations on this data type. Processes are constructed from certain atomic proceue.s and 

some composite processes using the following operators: sequencing ;, DOD deterministic choice +, 
parallelism II. Atomic processes include two special processes £,6 which are c.alled null process and 

deadlocking process respectively. Other atomic processes are operations on the underlying data type. 

Composite processes are processes constructed out of atomic ones and the operators. In addition to 

the process-constructing operators, there is a process application operator :: which applies a process 
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on a data value and yields a data value as a result. Atomic processes, i, + are constructors while II,:: 
are derived operators. The meaning of (,6 and the operators i I +, II,:: are fixed and independent of the 

data type while other atomic processes and composite processes are dependent upon the underlying data 

type. For this reason, in process specification, only atomic and composite processes will be specified. 

The meaning of all the derived operators are given in Figure 3 which includes the mom system BPA 

due to [BK84bJ. Note that ill the definition of II, a hidden operator 11 is used. It is assumed that 

data type underlying a process specification bas two operators u, 0 with the properties mentioned in 

Figure 4. These two properties are required to give meaning to + and 6. 

pllq = pllq + qllp 
(p+ q)llr = pllr+ qllr 
(a;plIlq = a; (pllq) 

(a;b);p= a;(b;p) 

6;p= 6 

liP= P 

Pi f = P 

(p+q)+r = p+ (q+r) (p+q) ::d= (p::d)U(q ::d) 

p+q=q+p (a;p)::d=p::(a::d) 

p+p=p 6::d=0 

p+6=p f::d=d 

Figure 3: Basic Process Axioms 

u: TOl x TOl ..... 
0: ..... 
d, ud, = 

d, u (d, u d3 ) = 

d, ud, = 

d, u0 = 

TOI 

TOl 

d, ud, 

(d, u d,) u d3 

d, 

d, 

Figure 4: Additional operations over Data 

Figure 5 gives a process specification PC_SPEC specifying a collection of producer-consumer pro

cesses that apply upon queues. These processes male use of two atomic actions put, get which cor

respond respectively to producing a value and putting in the queue and consuming a value from the 

queue respectiveJy. Note that atomic processes are defined by giving their effect on the underlying data 

type. Whereas, composite processes are defined in terms of atomic processes. PC..sPEC does not have 

any composite processes. 

As in the case of data type specifications, the signature of a process specification defines a term 

algebra. This term algebra consists of the data terms of the underlying data type and the process 

terms constructed using atomic processes and the operators;, +, II. The semantics of tbe data type 

specification defines a congruence relation over all the data terms. Let us call this relation =D. The 

equations of Figure 3 define a congruence over the set of all process terms. There is a well-known tree 
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PROCESS SPEC = PC...sPEC 

DATA SPEC = Q...sPEC + {u,0} 

A. tomit: Processes=put, get 

put : int --+ process 

get: --+ process 

Equations 

put(n) :: q = enqueue(q, n) 

get :: q = dEqueue(q) 

Figure 5: Specification of PC_SPEC 

model of processes [MilBO, HMBS], that is isomorphic to the term algebra of process terms. This tree 

model, denoted by Tp , consists of finite rooted trees whose edges are labeled by the names of atomic 

processes. In this model, atomic processes are trees 'with ODe branch which is labeled by the name oftbe 

processes. The operation + is defined as merging the roots of the trees corresponding to its argument. 

Sequential composition of trees t and t' corresponds to merging the leaves of t, with the root of t2. II is 

the cross product of the two trees concerned. For every process. there is a unique tree in Tp such that 

branches from the same father node (i) have distinct labels and (ii) are ordered from left to right based 

upon an (arbitrary but fued) ordering of their labels. Hereafter, we shall not distinguish a process from 

its corresponding tree in Tp that satisfies the above two properties. 

As mentioned in the introduction, OUI intention of integrating process specification with data spec· 

ifications is to interpret atomic processes and refine the notion of existing process equivalences. The 

equa.tions of Figure 3 alone ate not su:ffident to sa.tisfy OUI intentions as it defines the derived operators, 

lile II,:: but leaves the constructor terms urllnterpreted and distinct. Consequently, we define an ad

ditional congruence relation over these process terms that identifies more terms. VIle use the following 

relation suggested in [KPB7,KapBB]. For any two processes p, q, 

p =J q iff VCVd: e[p] :: d =D e[q] :: d 

where d ranges over underlying data objects while C, called context, ranges over all process expressions 

involving a free variable of type proc."... e[p], e[q] are process expressions obtained from e by 

replacing all occurrences of the free variabJe in C by P, q respectively. According to this relation~ two 

processes are congruent iff under any context, they produce equivalent values when applied to same 

data values. Thus two processes are distinguished based upon the vall,les they produce rather than what 

their syntactic structure is. The meaning of a process !pecijication i! taken to be the let of all algebra! 

i.omorphic to the quotient algebra Tp/ =J. 

It may be noted that the above congruence is the natural congruence relation one defines when 

the process specification is considered as an hierarchical u:tension of the underlying data specifications. 

Such a view is taken in [KPB7,KapBB] but we do not subscribe to this view since it is no longer applicable 

when infinite processes are considered. 
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PROCESS SPEC = PC-.lMPL 

DATA SPEC = Q_SPEC + {u,0} 

A.tomic Processes = inc, upd, get 

Composite Processes = put 

lnc: - process 

upd: int - process 

put: int - process 

get: - process 

Equations 

inc::tup(A,fp,bp,cr) = if fp~bp then tup(A.!p,bp,cr+l) 

else 0 

upd:: tup(A, fp, bp, cr) = if Up ~ bp)" (cr > 0) 

then tup(asgn(A, bp, n).!p, bp+ l,C1'-l) else 0 

get::tup(A,fp,bp,cr) = if fp<bp then tup(A,fp+l,bp,cr) 

else 0 

rut(n) = incj upd 

Figure 6: Specification of PCJMPL 

The notion of implementation can be extended in a natural manner to process specifications. For this 

extend the notion of signature morphism to include process signatures. Given two process specifications, 

say, A and B, a signature morphism from A to be B is a mapping that when restricted to the data 

parts is a signature morphism as defined earlier and additionally it maps every atomic process of A onto 

a process in B and the process operators of A are mapped onto operators in B with the same arity. 

let TA, TB be the corresponding tree models and =A and =B be the additional congruence relations 

defined over TA and TB respectively. To avoid notational complexity, we shall not distinguish the fixed 

part of the signatures (namely, ::,;, +,11 etc.) of different process specifications. 

Definition 2.1 A i. an implementation of B if there ezist. a .ignature morphi.m '" from B onto A 

ruch that (i) when it i. rutricted to the data part. of B the neceuary condition. for the data part of 

A being an implementation of the data part of Bare sati!fied and (ii) for every atomic proce!! 0, data 

ob;"ect d and any pair oj proceHfS in B, 

,I'(a ::d) =D "'(a) :: "'(d) 

1j'(p; q) =~ ",(p); ",(q) 

",(p+q) =~ "'(p) + "'(q) 

"'(pllq) =~ "'(p)II"'(q), 

where =~ is the congruence relation defined over TB as follows: for two processes p} q in B} p =~. q if 
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for a.ny contexts in At 

",(e)[p] :: d =D ",(e)[q] 

where ",(e) is obtained from e by replacing all operators in A by their corresponding operators and the 

variable by a distinct variable. Note that, in general, this relation is different from =B ,,·hich considers 

all contexts formed by its processes. Only a subset of processes in B are relevant as far as A is concerned 

and hence the use of ::;;:~ rather than =n. 

(i) is the classical problem of showing the correctness of data type implementation. Proving (ii) is 

dealt in detail in [KP87,Kap88]. It is easy to show that the first three equivalences hold. But the forth 

equivalence does not hold in general. We shall illuslrate this with the help of a simple example. Let 

p= a,q = b and let ",(a) and "'(b) be a,;a2 and b,;b2 respectively. Then we have 

pllq _ a; b + b; a 

",(pllq) _ aJ;a2;bJ;b2+bJ;b2;bJ;b2 

"'(p)II"'(q) _ aJ;02;bJ;b2+oJ;bJ;a2;b2+aJ;bJ;b2;a2+ 

bJ; oJ; b2; a2 + bJ; oJ; a2; b2 + bJ; b2; oJ;a2 

For the sake ofnotationa1 simplicity, the subscripts to the equivalence relation are dropped in the above. 

In going from specification to implementation atonucity of operations is changed: in the specification p 

was atomic but it is implemented as a non atomic operation. Consequently "'(p)llv,(q) contain certain 

'interleaved' terms that are not in "'(pllq). In general, "'(pllq) '1- "'(plll"'(q). However, if all the 

interleaved terms are equi"'alent to 0 or caD be 'regrouped' into one of the Don interleaved terms then 

the required equivalence follows. This is the basic idea behind the proof method proposed in [KP87, 

Kap88]. 

We shall now formally give the regroupability condition proposed in [KP87,Kap88], in our notation. 

We restrict ourselves to the case where any atomic action is implemented by finite sequentiaJ turns, i.e., 

terms invohring only j. The condition fOI the general case, in which atomic actions are implemented by 

arbitrary finite terms, is given in [KP87,Kap88]. 

Given n sequential terms Ai, i = J, ... , n let M erge(Ab···, An) be the set of all terms in which 

(il only the actions from Ai, i = I,···, n occur and (ii) the actions from each Ai occur in the same order 

in which they occur in AI; Let Seq be the set of all finite uquential term! jnvolving zero\- one or mOle 

number of atomic actions and the operator 'i'. Then let 

"'(Seq) = N(t)lt E Seq} 

For any hoo sequential terms A, B, let A:::: B stand for the fact that A is an initial subsequence of B. 

Let A, B E "'(Seq). Then the regroupability condition is given by 

(REG) 'It E Merge(A,B): (t;: t') V(t = 6) 

where t' E Merge(A,B) and t' E "'(Seq). 
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Theorem 2.2 (Kaplan) If (REG) hold, then for any P.q 

v.(p)IIv.(q) '" v.(pllq) 

Let A, E ,"'Seq), i = 1,'" I n for some n. Then from the definition of congruence we have: 

Corollary 2.S For any P. q. 

v.(p)II1,l·(q) '" v.(pllq) 

if for every t E M erge(Al>' . '. An) 

lid E TOI : (t :: 6 '" 0) V (t :: 6 '" t' :: _) 

where t' E Merge(AI.·· ',An ) and t' E ".(Seq). 

3 Infinite processes 

Processes specified in the last section are finite processes as they involve finite number of application of 

atomic actions. Processes invoh'ing infinite number of applications of atomic actions can be specified 

using recursive specifications. A recursive specification is, in general, a finite set of equations of the 

form Xi = Eil i = 1,"" n, where Xi are variables of type process and Ei are expression of type process 

that involve one or more variables Xi. A simple example of recursive specifications is X = aj X. This 

specification denotes a process X that does an infinite number of action Q. We consider only a sub 

class of I~CUISiv~ terms, referred in the literature [BK84a] as guarded recursive terms. A recursive term 

is guarded if its body is guarded. A term is guarded iff it is not unguarded. A term is unguarded, iff 

either it is a process variable or it is of the form t; t', t + t' or tIlt', where t, t' are unguarded. 

To add recursive terms to the process specification, we add a countable number of zero-ary operators, 

denoted by X" i = 1,2,···. Furthermore, to our original set of equations given in Table 1, We add a 

countable number of finite set of equations, of the form mentioned above, each of which involving a 

finite number of Xi '5. 

As in the case of finite processes, a term algebra of processes can be defined for the present specifi

cation. This algebra includes the finite term algebra and, in addition, has an infinite number of objects 

corresponding to the different X;'s. The equations of Table 1 and the newly added equations define 

a. congruence telation ovet these terms and induces a. quotient algebra. The bee model discussed in 

the last section, can be extended, by including infinite trees, to get a model that is isomorphic to the 

quotient algebra. This model, which also we denote by Tp, consists of finitely branching rooted trees. 

The trees may be finite or infinjte. Finite trees correspond to finite processes while infinite ones to 

the infinite processes. As before, we identify a process with a tree such that branches from a common 

father node have distinct labels and are arranged from left to right in an order based upon an order on 

the atomic actions. An example is the tree corresponding to the term X'" (a+ b)X shown in Figure¥-. 

As before, for every process term there is a unique tree in Tp and we do not distinguish a process term 

from the corresponding tree in Tp . 
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Figure 7: X = (a + b)X 

As in the finite process case, ""e define an additional congruence relation o"er processes for the same 

reason. In the case of finite processes! processes were distinguished based upon the the values they yield 

upon application on the underlying data type. Obviously, this can Dot be used for infinite processes 

since the result of application of an infinite sequence of operations is undefined. So we propose a Dew 

congruence relation for processes. Since processes can be distinguished only based on their effect on the 

underlying data type and the effect of an infinite process is undefined, a natural way out is: define finite 

approximations of processes, which are finite processes and relate two processes by comparing their 

finite approximations. There is one standard method suggested in the literature [BK84bJ, for obtaining 

finite approximations: use of Projection function Pro Given a process (tree) p and a natural number n, 

Pr(p, n) is the subprocess of p obtained by 'cutting' p at depth n. It is defined as follows: 

Pr(p, 0) =. 
Pr(p, n + 1) = a; Pr(p, n) 

Pr(p + p', n) = Pr(p, n) + Pr(p', n) 

Then given two processes, say, p and q, p and q are equivalent iff for every n, Pr(p, n) =1 Pr(q, n), 

where ~1 is the relation used for comparing finite processes. We shall call this relation Projection 

Equivalence 1 • 

But we find projection equivalence to be more discriminating than we desire and based almost on 

the syntactic structure of processes, although it makes use of the relation used for finite processes. For 

instance, projection equivalence is, in general, incompatible with the finite process equh·alence relation 

~J defined earlier, i.e., two finite processes can be equi\'alent with respect to ~J but may not be 

projection equivalent. A simple example shows this. Consider two processes a and b; b such that a 'tl b 

but a =J b; b. Obviously these two processes are not projection equhalent.' Projection equivalence is 

too restrictive since it requires each and every finite approximations to be equivalent. In general, two 

processes are projection equivalent iff they are identical (up to the equivalence induced by Table 1) at 

1 Projection equivalence 6$ defined in [BK84b] i .... lightly diJiennt {rom our equivalence IU the relation w.ed {or comparing 

finite approximations are: difi'e.nnt. 
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all finite depths (except possibly differing at infinity). 

So "'f proceed to define a new equivalence relation that is less restrictive and compatible ""rith the 

finite process equivalence. For this purpose, we associate with each process t in Tp, a set of functions 

OBS" whose domain is natural numbers and whose range is the set of all finite terms; OBS stands 

for observers. Each function in DBS, gives for each natural Dumber, a finite subtree of t . To formally 

describe DES, we require a few definitions: 

A Irace of a tree is a finite path, in the tree, starting from the root of the tree. Any trace will be 

denoted by the finite sequential term involving the labels of the edges in the trace. 

Given two trees t1 and i21 we define a relation -< such that t1 -< t2 iff t1 is strictly a subtree of t2 having 

the same root as t2' 

Then given a tree I E Tp, any function f E OBS, satisfies the following conditions: 

(Fl) for every n, f(n) is a finite subtree of I rooted at the root of t 

(F2) For any k, f(k) -< f(k + I). 

(F3) Every trace oft is also a trace of f(k) for some k. 

Intuitively, f gives an arbitrarily larger and larger subtrees of I for increasing values of k and in the 

limit yields a tree containing all its traces. 

Now we can define our equivalence relation. We say that p and q are related by a relation "R iff 

there exist functions It E OBS" f, E OBS, such that 

\;In: j,(n) =1 f,(n). 

The intuitive meaning of this relation is that p and q are related by 'R if they have an infinite number 

of equivalent finite subprocesses of arbitrarily large size. We sha.ll illustrate this definition with an 

example: Consider the terms X = aX and Y = bY, where a =1 b; b. These two terms are related by n 
since there exist two functions h, h satisfying the required condition. These functions are: 

"R.. is obyiously reflexive and symmetric but it is not illlIDediately dear whether it is transitive or not. 

We safely take the transitive closure of'R to get the requiIed equivalence. Let us denote the transitive 

closure of n by n°. Then 

Fact 3.0.1 'R* i! an equivalence relation 

Hereafter we shall denote n° by =. It is not very difficult to prove that 

Fact 3.0.2 For finite lerm, I, and I" I, = I, ifft, =1 I,. 

Thus =- is compatible with the earlier equiYalence relation. Next we have the following important result: 
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Lemma S.l == i! a congruence relation. 

A rough sketch of the proof of this lemma is as follows: Let t, = t2' To prove congruence we have to 

show that for any term t it is the case that (t, op t) = (t2 op t), where op = +,; or II. The prooffor + 

and i are straightforward. So we prove the congruence for II. By assumption we have that there exist 

functions J, E OBS, .. /. E OBS,,, such that J,(k) =1 /.(k). The proof is complete once we show that 

there erist fi E OBS'.!I" " E OBS',II' such that '1k : Ii(k) =1 f2(k). We claim that the following 

[unction satisfies the required condition: 

f;(k) = PT(t,llt, k)IIJ,(k) 

f;(k) = Pr(t21lt, k)IIJ,(k) 

"'here Pr is the projection function defined earlier. It can be easily seen that Ii, f; satisfy (Fl) and 

(F2). The fact that (F3) also holds follows from the fact that every finite trace of t is also trace of 

Pr(t, n) for some n. 

It is easy to set that == is coarser than projection equivalence: For any t E Tpi tbe function I, 
defined as f(n) = Pr(t, n) is a member of OBS, and hence projection equivalence is contained in =. 
Two terms that are not projection equivalent can be related by:. 

Now we look at the problem of implementation. 

4 Implementation of Infinite processes 

The notion of implementation can be directly extended to infinite process specifications: Let A and B 

be two process specifications with =A and =B as the corresponding equivalence relations. Then we say 

a mapping ,p from A to B, a signature morphism, if it is an extension of a signature morphism of finite 

process specifications of A and B such that it maps every set of variables X, in A defined by X, = E" 

to a set of process variables Yt satisfying Yt = E:, where the E: is obtained from E. by replacing all 

occurrences of process variables, operators and basic processes by the corresponding variables, operators 

and processes in B respectively. Then, 

Definition 4.1 B specifies an implementation of A if there "ists a ligna/ure morphism from A to B 

.u,ch that 

(a) all the equations of Table 1 are ,atisfied. 

(b) for any p,q in A, ifp =A q then ,pCp) =~ V.(q), where the latter relation is as defined in the last 

lection. 

In order to prove that (a) holds we have to show exactly the same four equivalences mentioned in 

Section 3, but with the difference that the process terms involved may be infinite. As in the case of 

finite processes, it is easy to show that the first three equivalences hold. It is also easy to show that (b) 

holds. The argument is as follows: Let t, =A t2 for two terms t" t2 in A. Then there erist functions j, E 
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, 

DBS."h E DBS., such that \In: f,(n) =A hen). In order to show ,,;(t,) =~ ,,;(t,), we have to show 

that there erist (unctions I; E DBS"C.,),t; E DBSW,J' such that \In: f,(V,(t,),n) =~ "(";(t,),n). 

Vle claim that the following functions satisfy the necessary conditions: 

I;(n) = v'(I,(n)), i = 1,2. 

The prooUs complete once we show that these functions satisfy the conclitions (FI) - (F3) given in the 

previous section. It is straightforward to show that (FI) and (F2) holds. (F3) also holds follows from 

the following argument: Take any trace Tin ,,;(t,). From the definition of"; it (ollows that there is a 

longer trace,' which is a 'If - image of a trace in til which is in !i(til n) for some n. Hence i' as well as 

T is in fi{t" n). 

In general, the fourth equh'alence namely, 

,,;(pllq) =~ ,,;(p)ll,,;(q) 

does not bold. However I we have 

Lemma 4.2 If the forth equivalence hold, for finite term, and ,,;(a) i, a finite term for any atomic 

proce!! a then it hold, lor infinite term, a, well. 

The proof of this lemma is as follows: Let f"h be two arbitrary functions in DBS. and DBS. 

r .. pectively. Consider I and 9 defined as follows: 

I(n) = ,,;(I,(n))lI,,;(h(n)) 

g(n) = ,,;(f,(n)llh(n)) 

Since f,(p, n) and h(q, n) are finite terms, ifthe fourth equivalence holds (or finite terms then I(n) = 

g(n). The proof is complete once we show that I and 9 as defined above satisfy the conclitions (FI) -

(F3). This prooHs straightforward. 

When,,; is such that (or any atomic action a, ,,;(a) is a finite sequential term, then from Theorem 2.2, 

we have that 

Corollary 4.3 If (REG) hold, then the fourth equivalence hold, lor finite a, well a, infinite term,. 

y.,.re shall conclude this section by illustrating the proof method on a simple example. Consider the 

specification PC_IMPL given in Figure 6. We will prove that PC..lMPL specifies an implementation of 

PC_SPEC given in Figure 5. There is a morphism"; from PC_SPEC to PC.lMPL given as follows: 

,,;(Q_SPEC) = QJMPL 

,,;(put) = put 

,,;(9d) = get 

..p maps other operators of PC_SPEC onto correspcncling operators in PC.lMPL. IMPL_Q has been 

shown to be an implementation of SPEC_Q. Hence what remains to be done is to check that the 
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, 
regroupability condition holds. To check this we take any term in Merge((putr, (gei)n) for some m,n 

and show that this term is equivalent to a term in ,p(Jlferge((put)m,(get)M)). This indeed is the case 

follows from a simpJe inductive argument using the following equivalences: 

inc; get'" i ttpd ==B get'"; inc; upd 

inc; getk; inc ~B get"'; inc; inc 

for any k. The reason why these equivalences hold is that inc and get changes disjoint components of 

tup. 

5 Conclusion 

We have extended the ADT techniques to specify and verify (infinite) processes. This extension required 

a Dew definition of equivalence of processes. Using this new definition of equivalence, we have shown 

that the sufficient condition for one process specification being an implementation of another is exactly 

same as the one required when only finite processes are involved. 

There are many more extensions possible. In this paper we have considered implementations in which 

an atomic action is implemented by a finite process. It is interesting to consider implementations in 

",·hich atomic actions are implemented by infinite processes. This is not merely a theoretical extension: 

Conventional synchronization primitives like semaphores are considered as atomic at one level but 

implemented by an infinite l\·a.it at a lower level. We are presently working on this. 
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