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1
Introduction

This thesis concerns the problem of periodic scheduling for cache-miss minimi-
sation. Periodic scheduling refers to the problem of determining an order for a
given set of operations that have to be executed repeatedly. Our interest in peri-
odic scheduling originates from the field of digital video signal processing. More
precisely, it originates from the problem of compiling a description of a video
algorithm into code that can be executed by a general purpose processor, while
optimising the use of the processor cache.

This chapter contains background information on the field of video signal pro-
cessing in Section 1.1, and on processors in Section 1.2. In Section 1.3 we give an
informal statement of the scheduling problem we consider. Next, Section 1.4 con-
tains an overview of related work. The chapter ends with an outline of the thesis in
Section 1.5.

1.1 Video signal processing

Signal processing concerns the transformation of input streams into output streams.
Applications of signal processing can be found in TV, radio, radar, medical diagno-
sis, and telecommunications. In these areas a shift takes place from analog systems
to digital ones. This shift is enabled by advances in integrated circuit technology.
Digital signal processing can be used for picture and sound enhancement, and for
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frame 1

frame 2

frame 3

Figure 1.1. The scanning process for non-interlaced PAL.

new features that support applications such as video conferencing.
A digital video signal is obtained by sampling a moving picture that can be

regarded to be continuous in time and space. By digitising an image in time, space,
and amplitude, the image is represented in such a way that it can be handled by
digital video signal processing algorithms. The spatial and temporal digitisation is
referred to as sampling, the amplitude digitisation is referred to as quantisation.

Frames are still pictures that are the result of temporal sampling. Each frame
consists of a number of lines, and each line consists of a number of pixels. The
exact number of frames per second, lines per frame, and pixels per line depends
on the video standard that is used. In the PAL standard, for example, we have 25
frames per second, 625 lines per frame, and 864 pixels per line, which gives a total
of 13.5 million pixels per second. Out of these 625 lines only 576 are visible, and
out of the 864 pixels only 720 are visible.

Spatial sampling is performed in order to map the two-dimensional spatial in-
formation into one-dimensional temporal information. For a non-interlaced version
of the PAL standard the scanning process is shown in Figure 1.1. For each frame
pixels are scanned from left to right, and lines are scanned from top to bottom. PAL
video has 25 frames per second, which results in one frame every 40 ms. The time
between successive lines is 1=625 � 40 ms = 64 µs, and the time between succes-
sive pixels 1=864 � 64 µs � 74 ns. In Figure 1.2 this scanning process is depicted
as a three-dimensional periodic arrival of visible pixels. The time between the last
pixel of a line and the first pixel of the next line is called the line blanking, and is
(864�720) �74 ns � 9 µs for our example. This time can be used by a scanner to
move to the beginning of the next line. Similarly, the frame blanking is the time
between the last visible pixel of a frame, and the first pixel of the next frame.

After quantisation the pixels can be represented as integers, representing light
intensity and colour. A video signal can thus be represented as a stream of integers.
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Figure 1.2. Three-dimensional periodic arrival of visible pixels.

An algorithm that transforms such an input stream into an output stream is called
a digital video signal processing algorithm, or video algorithm, for short.

The high sampling frequency, together with the number of operations a video
algorithm requests per pixel results in a high computational demand. For example,
a video algorithm that performs 100 operations per pixel on a stream of 13.5 million
pixels per second results in a demand of over 1 billion operations per second. Until
recently, only application specific integrated circuits (ASICs), which are tailored
to performing dedicated tasks, and programmable video signal processors, which
are heavily tailored towards video signal processing, were able to implement such
video algorithms. Advances in processor technology have enabled the possibility
of executing such algorithms on general purpose processors.

Application specific processors are inflexible in the sense that they are designed
for one application only. The flexibility of video processors, and even more for
general purpose processors enables the possibility of fast prototyping of new al-
gorithms. The price for this flexibility is paid by a worse resource usage, which
results in larger circuits and higher power consumption.

As examples of these approaches that have been developed at the Philips Re-
search Laboratories we mention the Phideo design methodology [Van Meerbergen
et al., 1995] which supports high-level synthesis of video algorithms into appli-
cation specific circuits, such as the I.McIC MPEG2 video encoder [Van der Werf
et al., 1997], and the VSP programming environment [Vissers et al., 1995] which
supports code generation of video algorithms for programmable video signal pro-
cessors. An example of a general purpose processor tailored towards video signal
processing is the TriMedia processor [Slavenburg, Rathnam & Dijkstra, 1996].
This thesis focuses on methods for mapping video algorithms onto general pur-
pose processors. In the next section we give characteristics of such processors,
after which this mapping problem is stated informally.
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1.2 Processors

As indicated above, speed of modern microprocessors has increased considerably
in the past 20 years. Besides integrated circuit technology, the current performance
of processors is largely due to exploitation of instruction level parallelism. This
can be done in the following two ways. In the first place, pipelining is applied to
let executions of operations overlap in time. Second, multi-issue processors allow
simultaneous start of multiple operations per clock cycle. As operations can only
be started if all input data are present and if sufficient resources are available, oper-
ations must be well ordered for an effective use of the processor. This scheduling
process can be handled by a compiler, but can also be performed by the processor.

Unfortunately, the latency of the memory system, which is the time needed
to retrieve data from memory, has not kept up with the speed of the processors.
Hennessy & Patterson [1996] show that memory performance has increased with
approximately 7% annually over the past 20 years. Processor performance on the
other hand has increased with 35% per year until 1986 and with 55% per year in the
past 14 years. This leads to a performance gap between processors and memory;
processors are able to request data from memory faster than the memory is able to
service these requests.

A way to reduce the gap between memory and processor performance is to
insert a cache between the processor and the memory. Caches are fast but small
pieces of memory located close to the processor that act as a buffer for data that are
used frequently. In this way, the data requested by the processor can be delivered
much faster. However, as the cache is small it cannot contain all the data that
are needed during the execution of a program. If the processor requests data that
are not available in the cache, we say that a cache miss occurs and the requested
data must be fetched from memory, which takes a long time. Upon a cache miss,
a cache must furthermore decide which data must be removed from the cache to
facilitate storage of the new data. This process is called cache replacement. Cache
replacement policy, as well as cache size are parameters that must be determined
during the design of a processor.

General purpose processors are flexible in the sense that they can execute a
great variety of programs efficiently. To this end, a cache should be targeted to-
wards the set of programs that are likely to be executed on that processor. Much
research has been done on the problem of designing a cache. Basically, there are
two ways of approaching the design problem [Przybylski, 1990]. In order to make
the common case fast, a set of representative applications is chosen for which the
memory system is analysed using trace-driven simulations. A trace is a sequence
of memory references that contains sufficient information for the computation of
the cache hit rate, i.e., the fraction of the memory references that result in a hit
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in the cache. Another way of attacking the cache design problem is by analyti-
cal modelling of a cache. Analytical models give insight in the phenomena that
determine the performance of a cache.

Processors use cache memory for both instruction and data references. Proces-
sors can have separate caches for instruction references and data references. Such
caches are called data caches and instruction caches, respectively. Unified caches
can contain both instructions and data. In this thesis we focus on data references
and data caches only.

Complementary to the cache design problem is the problem of optimally using
a cache for a given application, which is the problem we study in this thesis. Given
a processor with a cache and a description of an algorithm in a programming lan-
guage, it is the task of a compiler to translate the algorithm into object code for the
processor in such a way that the scarce resources on the processor, in our case the
cache, are used optimally.

We divide the field of cache optimisation into two categories: local optimi-
sations and global optimisations. Local optimisations deal with small parts of a
program, typically one or two loop nests, whereas global optimisation considers
a whole program. Local optimisations have the disadvantage that locally optimal
solutions for each part of the program lead to sub-optimal solutions for the whole
program. Next to these categories, we make a distinction in the level of detail in
which we study the scheduling problem. A high level of detail is achieved by op-
timisation that considers every individual access to memory. Optimisation with a
low level of detail considers arrays or sections of arrays rather than individual array
elements. Again, optimising with a low level of detail may lead only to sub-optimal
solutions. Therefore, this thesis focuses on global optimisation with a high level of
detail.

1.3 Informal problem statement

For the scheduling problem subject to this thesis we assume that a cache and a
video algorithm are given. Parameters that define a cache are, amongst others,
cache size and replacement policy. As many video algorithms can be described by a
set of operations that must be executed repeatedly, a video algorithm is represented
as a series of nested loops. In this way, an execution of an operation of a video
algorithm is uniquely identified by the corresponding values of its loop iterators.
As a consequence, these operations also produce and consume data in a repetitive
way, which is described using multidimensional arrays.

The order of execution of operations can now be defined by periods for every
loop iterator, which denote the time between two consecutive iterations of the cor-
responding loop. Each operation is given a start time, indicating the moment in
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time at which the first execution takes place. In this thesis periods and start times
are used only to give a partial order on the executions of the operations. During
scheduling we must assign values to the periods and the start times of all opera-
tions. In addition to this time assignment we must also assign a memory position
to every element of the multidimensional arrays, which is reflected in a so-called
address assignment.

We consider two kinds of constraints. First, we have precedence constraints,
which are due to data dependencies. Data dependencies express the relationship
between production and consumption of data, and precedence constraints specify
that consumption of data may only take place after the corresponding production.
Second, we have address constraints that express that data may not be overwritten
as long as they are not consumed. Hence, a memory location can only be reused
after the previous data item has been consumed for the last time.

The objective for scheduling is minimisation of the number of processor cycles
that are required for the execution of the schedule, i.e., a time assignment and an
address assignment. As a cache miss results in a large number of processor cycles,
we determine total execution time of a schedule by counting the total number of
cache misses.

Informally, we state the scheduling problem as follows. Given a video algo-
rithm and cache parameters, find a schedule, consisting of a time assignment and
an address assignment, that satisfies the precedence constraints and address con-
straints, and that minimises the number of cache misses.

1.4 Related work

The discrete nature of the scheduling problem we consider allows for a formulation
in terms of a combinatorial optimisation problem. For the theory of combinatorial
optimisation we refer to Papadimitriou & Steiglitz [1982] and Schrijver [1986].
The computational complexity of many of these problems is studied by Garey &
Johnson [1979] and Papadimitriou [1995].

In the area of off-line non-preemptive periodic scheduling, work has been done
by Korst [1992] and De Kock [1999], who consider the mapping of video signal
processing algorithms onto programmable video signal processors, and by Ver-
haegh [1995], who considers the problem of scheduling multidimensional periodic
operations in high-level synthesis. Contrary to these approaches, where operations
are scheduled on several processors, we restrict the scheduling problem to a single
processor. For a general introduction to scheduling we refer to Pinedo [1995].

An early and thorough survey on the influence of various cache parameters is
given by Smith [1982]. The specific topic of using trace-driven analysis is handled
by Hill & Smith [1984]. Przybylski, Horowitz & Hennessy [1988], Przybylski
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[1990], and Smith & Goodman [1983] analyse caches using analytical models of
typical workloads. These approaches, however, do not consider periodic opera-
tions.

Bacon, Graham & Sharp [1994] and Wolfe [1996] give overviews of compile
time optimisations. They both give an overview of loop transformation techniques
for cache optimisation. A general introduction on compilers is given by Aho, Sethi
& Ullman [1986].

A well known compiler optimisation algorithm for caches, blocking or tiling,
breaks computations for large arrays into several computations on sub-arrays.
Techniques for finding tile sizes have been reported by Lam, Rothberg & Wolf
[1991], Wolf & Lam [1991], Kennedy & McKinley [1992], and Coleman &
McKinley [1995].

Other algorithms that rearrange loops are often included in source-to-source
compilers. Kennedy & McKinley [1993] and Singhai & McKinley [1997] use loop
fusion and loop distribution to enhance cache performance. McKinley, Carr &
Tseng [1996] propose a compound optimisation algorithm that incorporates several
loop reordering techniques. These optimisation approaches are all local optimisa-
tion techniques. Our global optimisation algorithm generalises these reordering
techniques in terms of periods and start times in Chapter 7.

Another class of algorithms aims at optimising cache performance by taking
the placement of data in memory into account. Recent work has been done by
Panda & Dutt [1999], Strout, Carter, Ferrante & Simon [1998], Rivera & Tseng
[1998], and Calder, Krintz, John & Austin [1998]. Topham & González [1999]
propose randomness in the indexing function of the cache in order to eliminate
cache conflicts. Combinations of loop transformations and data placement are
given by Kandemir, Ramanujam & Choudhary [1999] and Manjikian & Abdel-
rahman [1997].

Gannon, Jalby & Gallivan [1988] present program transformation techniques
for caches and local memories. Philbin, Edler, Anshus, Douglas & Li [1996] use
fine-grained thread scheduling for cache optimisation. Schutte & Van Kempen
[1997] propose cache optimisation algorithms for a class of image processing al-
gorithms. The problem of optimising video algorithms for combined instruction
cache performance and data cache performance is studied by Clout [1994].

Besides reordering memory accesses, the latency of fetching data from memory
can be shortened by prefetching data. A hardware-controlled prefetching method
is already mentioned by Smith [1982], who suggests considering the next line for
prefetching upon a cache reference. Jouppi [1990] and Palacharla [1994] propose
the addition of stream buffers to the cache that prefetch streams of subsequent
cache blocks. Chen & Baer [1992] include reference prediction tables that store
predictions for regular data accesses, and which generate prefetching requests.
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Zucker, Flynn & Lee [1995] combine the use of a prediction table and stream
buffers for multimedia applications, such as an MPEG2 decoder. Software con-
trolled prefetching as proposed by Callahan, Kennedy & Porterfield [1991] and
Mowry, Lam & Gupta [1992] assumes that the instruction set of a processor in-
cludes a prefetch instruction, which can be inserted by either a programmer or a
compiler. A combination of software and hardware control for prefetching is given
by Chen [1997] and Struik, Van der Wolf & Pimentel [1998]. The former approach
synchronises the prefetching on the instruction addresses, the latter on the data
addresses. In Chapter 6 of this thesis we come back to prefetching issues.

1.5 Thesis outline

In this thesis we study the mapping of video algorithms onto processors with
caches, where the objective is to minimise the execution time of a video algorithm
on such a processor by minimising the number of cache misses. We aim at find-
ing an appropriate model for video algorithms that allows for a global optimisation
approach. Contrary to local optimisations, that only look at a limited number of
loop nestings, our global approach treats all loops at once. Furthermore, we aim
at analysing the complexity of our scheduling problem and at finding a solution
approach to this problem. The thesis is organised as follows. In Chapter 2 we
informally present the most important concepts that we use in this thesis. In Chap-
ter 3 we give a formal model for video algorithms, a formal execution model for
these algorithms (schedule), a model for caches, and a formal problem definition
of the multidimensional periodic cache scheduling problem. Chapter 4 handles the
formal complexity of this scheduling problem and some related sub-problems. As
not all schedules allow for an efficient implementation on a single processor, we
introduce in Chapter 5 some constraints on schedules that make an efficient imple-
mentation possible. In Chapter 6 we propose a method for efficiently estimating
the number of cache misses for a given schedule and a given cache. This method
is used in Chapter 7, where we give ingredients for a local search approach that is
aimed at finding good schedules. We summarise the main results of this thesis in
Chapter 8. Notes on notation used in this thesis can be found in the symbol index.



2
Conceptual Model

In this chapter we present the concepts video algorithms, caches, and cache per-
formance. These concepts are described in an informal way. A formal presentation
is given in Chapter 3. Section 2.1 gives characteristics of video algorithms. In Sec-
tion 2.2 we present the relevant cache terminology. In Section 2.3 we break down a
measure for processor performance into several parts, which are discussed one by
one. Section 2.4 discusses several ways of measuring the performance of a cache.

2.1 Video algorithms

We aim at exploiting the repetitive nature of video algorithms. This nature exists
both in the operations that must be performed for every pixel and in the storage
of the pixels in memory. For every pixel on every video line of every video frame
a similar action usually has to be performed. The memory is also accessed in a
repetitive way, meaning that pixel information for the second pixel on the third
video line of the first frame can usually be accessed in a similar way as the second
pixel on the third video line of the seventh frame.

Hence, for video algorithms we use a formalism that can handle this repetition
well. In this chapter we only give a flavour of this model by means of an example;
in Chapter 3 it is formalised.

9



10 Conceptual Model

for i := 0 : : :2!
for j := 0 : : :1!

Z[ j][i+1] := sum(Y [i][ j];Z[ j][i])
for k := 0 : : :1 !

Z[k][0] := cpy(Y [0][k])
for i := 0 : : :3!

for j := 0 : : :1!
Y [i][ j] := avg(X [3i+ j];X [3i+ j+1])

Figure 2.1. Example of a part of a video algorithm with nested loops and multi-
dimensional arrays.

As video signals are periodic, their execution must also be periodic. Therefore
we specify them as nested loops. In Figure 2.1, we give a set of operations that
perform some calculations on an input array X . Here, we have three operations:
operation ‘sum’ with two input arguments Y [i][ j], Z[ j][i] and one output argument
Z[ j][i+ 1], operation ‘cpy’, and operation ‘avg’. The arguments of the operations
are elements of multidimensional arrays, where the index expressions, for example
3i+ j+1, are affine expressions in the loop iterators i and j.

This program looks much like a program in an imperative programming lan-
guage like Pascal or C, but there are marked differences. In Figure 2.1 there is no
direct relationship between the syntactic order of loops and a possible order of ex-
ecution of the operations. In general there are many valid orders, that are restricted
only by data dependencies. These dependencies are implicit in the program and
exist between each production and consumption of the same array element. In
Figure 2.2 we have depicted all data dependencies for the example. Every data
dependency induces a precedence constraint on the possible order of execution of
operations, that is, every array element must be written before it can be read. A
possible order of execution of the operations that meets all precedence constraints
is given in Figure 2.3. This order is not complete as executions that appear above
each other may be executed in arbitrary order. A compact representation of such
partial orders is given in Chapter 3.

Another difference with imperative programming languages is the memory al-
location. A memory allocation assigns a memory address to each element of each
array. This allocation, which is implicit for many programming languages, has
not been specified in the program above. For arrays in the programming language
C, the mapping of array elements to memory locations is described by an address
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Figure 2.2. Data dependencies for the example of Figure 2.1. Every circle repre-
sents an execution of an operation and is annotated with the values for the iterators.
The data dependencies are denoted by arrows and annotated with the correspond-
ing array elements.
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Figure 2.3. A possible order of executions of operations where all precedence
constraints are met. Executions that appear to the right of another execution must
be performed later.
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Z[0][0] Z[0][1] Z[0][2] Z[0][3] Z[1][0] Z[1][1] Z[1][2] Z[1][3]

100 110 120 130 140 150 160 170 memory address

array element

Figure 2.4. A possible memory assignment for a 2�4 array Z with C-like storage.
Array element Z[i][ j] is placed at memory location 100+10(4i+ j).

function a, which is given by

a(X [nN�1] : : : [n1][n0]) = o(X)+ s(X)

N�1

∑
k=0

nk

k�1

∏
l=0

Sl ,

for an SN�1� : : :�S1�S0 array X , and s(X) being the size of one array element.
The offset o(X) determines the location of array element X [0] : : : [0][0] in memory.
This position is usually chosen at compile time for global variables, or at run time
for local variables or dynamically created variables. For example, a 2� 4 array Z
with array offset o(Z) = 100 and element size s(Z) = 10, is arranged in memory as
depicted in Figure 2.4.

The above assignment method is called row-major storage, as the larger coeffi-
cients appear for the indices nk with larger k. The opposite method, column-major
storage, is used in the programming language Fortran.

In this thesis, we use a generalisation of such memory assignments, given by

a(X [nN�1] : : : [n1][n0]) = o(X)+

N�1

∑
k=0

nkck(X),

where the address offset o(X) and address coefficients ck(X) remain to be chosen.
Here we must take care that array elements that are alive at the same time are
not mapped onto the same memory address. The lifetime of an array element is
defined as the interval between its production and its last consumption. Hence,
we are looking for a memory assignment for all arrays in such a way that array
elements with overlapping lifetimes are mapped onto different memory addresses.
The order of the executions of operation ’sum’ that we chose in Figure 2.3 allows
that array elements Z[k][0], Z[k][1], and Z[k][2] are all mapped to the same memory
address. Hence we can use a memory assignment a(Z[i][ j]) = o(Z) + s(Z) � (i+
0 j) = o(Z)+ s(Z)i. This memory assignment is possible as the lifetimes of these
array elements do not overlap for the given order.

In this thesis we aim at methods for finding an execution order for all operations
and a memory assignment for each array in such a way that the processor cache is
used optimally. To this end, we first give an introduction to processor caches, and
accompanying performance criteria.
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Figure 2.5. A cache is a memory consisting of blocks with block size b s. The size
of a cache, denoted by cs, is expressed in the number of blocks.

2.2 Caches

In this section we give an overview of caches. This overview is not intended to be
complete; we limit ourselves to the relevant terminology. We closely follow the
description of caches given by Hennessy & Patterson [1996].

A cache is a fast but small piece of memory between processor and main mem-
ory that acts as a buffer for data that are used frequently. We say that a cache miss
occurs if the processor requests a data item that is not available in the cache. The
opposite, a request for a data item that is present in the cache, is called a cache
hit. A block is the granularity for storing data in a cache, i.e., the amount of data
that the cache requests from memory upon a cache miss. A cache hit or cache miss
will consequently occur for an entire cache block. Figure 2.5 shows a cache with
cs cache blocks, every block having a size bs. The unit of block size is the size of
the smallest element that can be addressed in memory, usually a byte.

A cache is designed in such a way that it takes advantage of locality of refer-
ence. References to the same memory address tend not to be uniformly distributed
over time, but instead, two references to the same memory address are likely to be
executed close to each other in time. This kind of locality is called temporal lo-
cality. Also, if data items are close together in memory, they tend to be referenced
close to each other in time. This is called spatial locality.

In order to exploit spatial locality, blocks usually consist of successive data
items in memory. Hence, if a data item is requested from memory, a block of data is
fetched, consisting of data items that are spatially close. When a processor requests
data at memory address a2Z, the position within the corresponding block is called
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Figure 2.6. The positions within a cache where a block can be placed is restricted
in set-associative caches. The size of each set, denoted by s s, is also called the
associativity of the cache. The number of sets, in this case four, is denoted by n s.

the block offset, and given by amodbs, where bs is the size of a single block. The
block address equals ab(a) = adiv bs.

Now, there are four basic issues to be addressed in a cache design:

� Placement of a block in the cache.

� Finding a block in the cache.

� Replacement of a block upon a cache miss.

� Policies for writes to the cache.

Placement of a block in the cache. Often, there are restrictions on the position
within a cache where a block can be placed. In Figure 2.6 the cache has been
divided into four sets of equal size. Each memory block can only be placed in
a predetermined set. It is common practice that a set is selected using low order
bits of the block address; the set where address a is placed is given by its index
s(a) = ab(a)mod ns, where ns is the number of sets in the cache. The number of
blocks in each set is also called the associativity of the cache and is given by ss =

cs
ns

.
A cache with set size ss = 1 is called a direct mapped cache, as the mapping of
each memory block to a position within the cache is unique. A cache with only
one set, with set size ss = cs, is called a fully set-associative cache. Here, every
memory block can appear at every position in the cache. In general, caches with
associativity n are called n-way set-associative. Caches with a higher degree of
associativity usually result in fewer cache misses, but are more difficult to build in
hardware [Hill, 1988].
Finding a block in the cache. In order to find out whether data requested by a
processor is present in the cache, each cache block is tagged with its block address.
As is depicted in Figure 2.7 we do not need to store the whole block address, as
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block offset
a mod bs
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a div bsns

block address   a div bs

(memory) address   a

Figure 2.7. Organisation of a 2-way set-associative cache.

a block can only appear in one set, and hence the index, i.e., the part of the block
address that determines the set, does not have to be stored in the tag.
Replacement of a block upon a cache miss. Upon a cache miss, the cache must
decide which block is removed from the cache. As a block can only appear in
one set, a choice must be made between the blocks within this set. Several re-
placement algorithms have been presented in literature, which can be divided into
two categories [Smith, 1982], being usage-based and non-usage-based algorithms.
Usage-based replacement algorithms keep track of the use of blocks and select
a victim for replacement based on this information. Non-usage-based algorithms
choose a victim for replacement irrespective of the previously accessed blocks.

We give four examples of replacement algorithms, two usage-based (MIN and
LRU), and two non-usage-based (Random and FIFO).

MIN. The MIN-algorithm by Belady [1966] replaces the block that is used again
the farthest into the future.

Least Recently Used (LRU). The principle of locality tells that items that were
accessed recently tend to be accessed again soon. Based on this principle,
the most unlikely block to be accessed soon is the one that was accessed least
recently.

First In First Out (FIFO). Blocks are replaced cyclically. The cache block that
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was least recently replaced, is the victim.

Random. Within the set a victim for replacement is chosen randomly.

The MIN-algorithm has been proved optimal with respect to the number of
cache misses, but requires knowledge about the future and is therefore hard to
implement. The hardware cost for LRU replacement increases with associativity
and is often only approximated. Both FIFO and Random are easy to implement
in hardware. As usage-based replacement usually performs better than non-usage-
based replacement, and as LRU is widely used in modern processors, we focus on
caches with LRU replacement.
Policies for writes to the cache. Upon a write it must be decided where the data
item is modified. With write through data are changed in memory. Only if data
already reside in cache, the contents of the cache are changed. As a consequence
the data that are stored in the cache and the corresponding data in memory are
always identical. This also means that upon a read miss, the block can simply be
thrown out of the cache. Write back, on the other hand changes data in the cache
only. Write back has the advantage that it generates fewer accesses to memory.
In case of write back caches, blocks that have been changed in the cache, must be
written back to memory, when they are replaced. An optimisation that is often used
is the addition of a dirty bit to each cache block which registers whether data in the
cache have been updated. Only if the dirty bit for a block has been set, the data
must be written back to memory upon replacement of that block.

Furthermore, upon a write it must be decided whether to fetch data in case of a
cache miss. The strategy where a block is fetched upon a write miss, is called write
allocate. This strategy is common for write back caches, as subsequent writes to
the same block are handled by the cache. The no-write allocate strategy changes
the block only in memory. As all writes change memory in a write through cache,
this is a common strategy for these caches.

Write through caches have the additional advantage that the content of the
blocks that are present in the cache are equal to the contents of the correspond-
ing blocks in memory. For multiprocessors that share memory it is important that
all caches have the same copy of a memory block. This so-called cache consistency
is implemented easier with write through caches.

In general write back caches handle writes faster than write through caches.
Furthermore, if more writes to the same block result in hits, they will require only
one write back.

As is explained in the next sections, we are mainly interested in finding an ex-
ecution order and memory assignment that minimises the number of cache misses
for a given program and a given cache. The cache parameters that are needed for
measuring the number of cache misses are the cache size cs, the associativity ss,
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the block size bs, and the replacement algorithm. In this thesis we focus on LRU
caches with write back and write allocate policy.

2.3 Processor performance

System performance optimisation involves optimal use of scarce resources, for ex-
ample processors and memory. In our case we want to optimise the performance of
a processor, where we use the term processor for a CPU and cache together. Hence
it is worth taking a look at a measure of processor performance, being the time
needed for the execution of a program, which is defined by Hennessy & Patterson
[1996] as follows.

processor time =
seconds
program

=
instructions

program| {z }
1

�
clock cycles
instruction| {z }

2

�
seconds

clock cycle| {z }
3

The number of instructions per program (1), also called the instruction path
length or instruction count, is a measure for the amount of work that the processor
has to perform. In the first place, the programmer is responsible for minimising
this parameter. Optimising compilers can improve this, for example by removing
redundant computations. This parameter is further influenced by the choice of in-
struction set. A processor with a small instruction set, for example RISC (Reduced
Instruction Set Computer), will generally need more instructions than a proces-
sor that can execute complex instructions, such as CISC (Complex Instruction Set
Computer). The last parameter, the number of seconds per clock cycle, is largely
determined by the hardware technology.

Both parameter (1) and (3) fall outside the scope of this thesis. We zoom in
on the average number of clock cycles per instruction (2), usually denoted by its
abbreviation CPI, which can be split up [Przybylski, 1990] as follows.

clock cycles
instruction

=
CPU cycles
instruction| {z }

2a

+
references
instruction| {z }

2b

�
clock cycles

reference| {z }
2c

The average number of clock cycles per instruction consists of the average
number of clock cycles that the CPU needs to execute an instruction and the aver-
age number of clock cycles that the cache needs for all memory references for the
instruction. An important influence on the mean number of CPU clock cycles per
instruction (CPI) is the architecture of the CPU. Modern CPUs allow the execution
of multiple instructions in parallel. This level of instruction level parallelism (ILP)
influences the CPI. As not all instructions require the same amount of clock cycles,
the complexity of the instructions is another factor that affects the CPI.
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(1) (2a) (2b) (2c) (3)
instruction set ? ? ?

compiler ? ? ? ???

CPU-architecture ? ?

cache organisation ? ?

Table 2.1. Influences on the various performance parameters discussed in Sec-
tion 2.3, indicated with stars.

Parameters (2b) and (2c) constitute the time spent by the cache. The first fac-
tor, the average number of references per instruction, depends on the used compiler.
For example, by storing data with short lifetimes in registers, the number of mem-
ory references can be decreased. The second factor, the average number of clock
cycles per reference, depends on the organisation of the cache, and on the sequence
of references that is fed to the cache. This sequence basically is an ordered list of
memory addresses that are referenced. As explained in Section 2.1, both the order
of the list and the addresses can be influenced by the compiler.

Table 2.1 lists all relevant parameters. This scheme lists influences on the var-
ious performance parameters. This table has been derived from Przybylski [1990],
where we added the influence of a compiler on performance parameter (2c). Only
the most important influences have been discussed in the text. In the next section
we look more closely at performance parameter (2c), the average number of clock
cycles per reference, or stated differently, the time spent by the processor cache for
memory references. The focus in this thesis is on the influence of a compiler on
this parameter.

2.4 Cache performance

For a cache, the mean number of clock cycles per reference depends on the miss
rate, i.e., the fraction of the memory references that cause a miss in the cache, as
follows.

average time per reference = hit time+miss rate�miss penalty,

where the hit time is the time required to fetch data from the cache, and the miss
penalty is the additional time the cache needs to fetch this data from memory. In
this thesis we assume that hit time and miss penalty are constants. In general nei-
ther of the two is constant. For example, processors that can issue multiple requests
to the cache at the same time may suffer from conflicts in the cache, resulting in a
variable hit time and variable miss penalty. Assuming that the cache hit time and
the cache miss penalty are constants, minimisation of the average time per refer-
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ence for a video algorithm is equivalent to minimisation of the cache miss rate.
A method that is often used to measure the miss rate of a cache for an execution

of a program is to perform a cache simulation. For a cache simulation one typically
runs the program and registers which subsequent memory accesses take place. This
information is sufficient to compute the number of cache misses. A disadvantage of
cache simulation is the excessive execution times of such simulations. If we want
to analyse a program with twice as many memory accesses, the cache simulation
will take twice as long. As video signal processing algorithms usually generate
many memory accesses, this will result in long simulation times.

For a PAL signal, for example, we have 720 visible pixels on 576 lines per
video frame and 25 video frames per second. If we assume that we need one mem-
ory reference for each visible pixel, 10,368,000 memory accesses per second take
place. A cache simulation for such an amount of accesses takes several minutes.
For example, simulation of 10,000,000 memory accesses takes approximately 200
seconds on a Pentium processor running at 200 MHz.

An additional disadvantage of cache simulation is the difficulty to identify bot-
tlenecks. As a simulation only reports the number of cache misses, it is hard to find
the references in the original program that are responsible for the misses.

Another way of obtaining the number of cache misses is to analyse a program
at source code level. Ghosh, Martonosi & Malik [1998] propose a method that
generates so-called cache miss equations (CMEs) for every reference in a loop nest.
Every solution for these equations represents a possible cache miss. Counting the
number of solutions for a system of CMEs can then be performed using methods
described by Clauss [1996]. From this the references with most misses can be
identified. Unfortunately, at the moment CMEs do not allow for program analysis
across loop nests.

Algorithms that optimise for cache performance at compile time often use ap-
proximations of the number of cache misses rather than the exact number. McKin-
ley, Carr & Tseng [1996] use the number of distinct cache lines that a single loop
nest accesses as an indication for the number of cache misses. Wolf & Lam [1991]
use the number of memory accesses per iteration of a loop nest as a metric. Both
estimations can be computed efficiently but work only for a single loop nest.

In Chapter 6 we give a method for the evaluation of the number of cache misses
for a set of loop nests. We aim at a fast evaluation, that gives a good estimation
of the number of caches misses. A precise count of the number of cache misses
cannot be expected to be possible in reasonable time as is shown in Chapter 4.
Nevertheless, the repetitiveness of video algorithms enables a compact description
of the access sequence, which is used in Chapter 6 to estimate the number of cache
misses effectively and efficiently.





3
Formal Model

In this chapter we model video algorithms by means of multidimensional periodic
operations in a program graph. A schedule that satisfies accompanying constraints
determines a possible execution of a program graph. We give a formal cache model
which we use to define the objective function of our scheduling problem, i.e., the
number of cache misses. Throughout this chapter we use a model of multidimen-
sional periodic operations based on the model presented by Verhaegh [1995].

The model in this chapter consists of three parts. In Section 3.1 we give a model
of video algorithms that we want to optimise. Schedules are defined in Section 3.2,
and feasibility of schedules is the topic of Section 3.3. The formal cache model
is defined in Section 3.4. The problem is formulated in Section 3.5. Section 3.6
contains some special properties of program graphs and schedules.

3.1 Multidimensional periodic operations

Usually, video algorithms are described using nested loops and multidimensional
arrays. For an example see Figure 3.1, in which a matrix multiplication algorithm
for 50� 50 matrices is given by two loop nests, of which the former initialises an
array Z and the latter does the actual multiplication of arrays X and Y and stores
the result in array Z. In a so-called program graph the statements in the inner loop
are represented by operations. For the example of Figure 3.1 the program graph

21
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operation l:
for i0 := 0 : : :49 !

for i1 := 0 : : :49 !
Z[i0][i1][0] := 0

operation m:
for i0 := 0 : : :49 !

for i1 := 0 : : :49 !
for i2 := 0 : : :49 !

Z[i0][i1][i2 +1] := Z[i0][i1][i2]+X [i0][i2]�Y [i2][i1]

Figure 3.1. A program for matrix multiplication consisting of two loop nests.
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Figure 3.2. Program graph of the matrix multiplication example of Figure 3.1.
The graph consists of two operations, denoted by a double circle, and annotated
with their iterator bound vectors. The black dots represent ports of the operations,
which are annotated with their index matrices and their index offset vectors. The
meaning of the symbols is explained in the text.

is depicted in Figure 3.2. Here, operation l corresponds to the assignment in the
first loop nest, and operation m to the assignment in the second loop nest. In the
program the array expressions are the arguments of the operations. The second loop
nest in the example has three read arguments, Z[i0][i1][i2], X [i0][i2], and Y [i2][i1],
and one write argument, Z[i0][i1][i2 +1]. In the program graph these arguments are
modelled by ports and denoted by black dots in the figure. In general an operation
can have multiple read ports and multiple write ports. Operations without read
ports or without write ports are the input and output ports of the program graph. A
program graph is formally defined as follows.

Definition 3.1 (program graph). A program graph G is given by a 7-tuple
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Figure 3.3. (a) An operation with two dimensions of repetition (δ = 2) and one
port. (b) The individual executions of the operation are denoted by means of single
circles.

(V;R;W;I;E;A;b), where

� V is a finite set of multidimensional operations,

� R(v) denotes a set of operation read ports, for each operation v 2V ,

� W (v) denotes a set of operation write ports, for each v 2V ,

� I(v) 2 Nδ(v) denotes an iterator bound vector, for each v 2V ,A

� E � W � R is a set of edges representing data dependencies, where W =
S

v2V W (v) and R =
S

v2V R(v),

� A(p) 2 Zα(p)�δ(v) denotes an index matrix, for each v 2 V and p 2 P(v) =
R(v)[W(v),

� b(p) 2 Zα(p) denotes an index offset vector, for each p 2 P = R[W .

2

Here, δ(v) denotes the number of loops by which operation v is enclosed, where
the upper bounds of the loops are given by a vector I(v) with length δ(v). This
means that in each loop k = 0; : : : ;δ(v)�1 the iterator ranges from 0 to Ik(v). For
instance, operation l in the matrix multiplication example of Figure 3.1 has δ(l) = 2
surrounding loops and iterator bound vector I(l) =

�
49 49

�T
. An execution of an

operation v can thus be characterised by a vector i 2 Zδ(v), with 0 � i � I(v). The
set of all iterator vectors for an operation v is called the iterator space, and denoted
by I(v) = f i 2 Zδ(v) j 0 � i� I(v)g.

In Figure 3.3 all executions are depicted for an operation with iterator bound
vector I =

�
1 3

�T
. An operation v without enclosing loops has dimension of rep-

etition δ(v) = 0. This operation has exactly one execution, which is denoted by
the empty vector [ ]. In the same way, we talk about executions of ports. The it-
erator space of a port p 2 P(v) of an operation v 2 V is given by I(p) = I(v)
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Figure 3.4. An example of data dependencies of the 2� 2 version of the matrix
multiplication example of Figure 3.1, depicted by means of edges between port
executions. The edges are labelled with the array elements associated with the
dependencies.

and its dimension by δ(p) = δ(v). The set of all executions of port p is denoted by
E(p) = f(p; i) j i2I(p)g. We use E =

S
p2P E(p) for the set of all port executions.

Data consumption and data production of operations is described by ports.
Each operation has a set of read ports, along which it reads data, and a set of
write ports, on which it writes data. Data consumed or produced by an execution
i of port p are described by an element of a multidimensional array with α(p) di-
mensions. The array element that is accessed by execution i of port p is given by
an index vector n(p; i) 2Zα(p) as a linear expression in i by

n(p; i) = A(p)i+b(p),

using the index matrix A(p) and index vector b(p). For instance, for port s of our
matrix multiplication example of Figure 3.1 we have

n(s; i) = A(s)i+b(s)

=

�
0 0 1
0 1 0

�24i0
i1
i2

3
5+

�
0
0

�

=

�
i2
i1

�
:
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In Figure 3.2 the index matrices and index offset vectors for all ports in the matrix
multiplication example are given.

Data dependencies are described by edges between ports; the presence of an
edge (p;q) 2 E means that data produced by an execution i of write port p is con-
sumed by an execution j of read port q if they refer to the same array element, i.e.,
n(p; i) = n(q; j). Figure 3.4 depicts all data dependences of the matrix multiplica-
tion example.

In order to identify which ports access same array, we introduce the notion of
array clusters.

Definition 3.2 (array clusters). Two ports p and q are said to access the same
array, denoted by p ./ q, if they are weakly connected in the program graph, i.e.,
there is a list of ports (p0; :::; pn), with n � 0, p0 = p, pn = q, and

(pi; pi+1) 2 E _ (pi+1; pi) 2 E ,

for each i = 0; : : : ;n�1. Now, an array cluster A� P is defined as a set of weakly
connected ports, i.e., p ./ q for all p;q 2 A, such that the set cannot be extended.
The set of all array clusters is denoted by A. 2

In our matrix multiplication example of Figure 3.1 ports p, q, and t are
weakly connected, so they form an array cluster fp;q; tg. Ports r and s are
not connected to any other port. Hence for this example we have array clusters
A = ffp;q; tg;frg;fsgg. These three clusters correspond to the arrays Z, X , and
Y , respectively, in Figure 3.1.

In order to make data dependencies unique, we introduce a so-called single-
assignment property, which is formally defined as follows.

Definition 3.3 (single assignment). An array A 2 A is said to have the single-
assignment property if and only if for each p;q 2 A\W , each execution i 2 I(p),
and each execution j 2 I(q) we have

n(p; i) = n(q; j) ) p = q ^ i = j:

2

The single-assignment property means that each array element may be written
at most once.

3.2 Schedules

So far we have not discussed the order of execution of operations, nor the ac-
tual memory positions for array elements. These are the decision variables of our
scheduling problem. A schedule is defined by a time assignment, which gives a
partial order on the execution of operations, and an address assignment, which
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Figure 3.5. Two possible time assignments for operation m of the 2� 2 variant
of the matrix multiplication example of Figure 3.1. The first assignment has start
time s(m) = 1 and period vector p(m) =

�
7 3 1

�T
, the second one has start time

s(m) = 7 and period vector p(m) =
�
4 1 �7

�T
.

gives a mapping of array elements onto actual memory locations, which are also
called addresses.

First we discuss the time assignment. In our model we use time only to define
a partial order on the execution of operations. A time assignment, for instance, that
assigns times 4 and 9 to two executions e and f of operations, respectively, merely
demands that e is executed before f . If two executions e and f are assigned the
same time, these executions are not ordered by the schedule. In this case e may be
executed before f or the other way around.

A time assignment is defined as follows.

Definition 3.4 (time assignment). Given is a program graph (V;R;W;I;E;A;b).
Then a time assignment τ is a pair (p;s), where

� p(v) 2 Zδ(v) denotes a period vector, for each operation v 2V , and

� s(v) 2 Z denotes a start time for each operation v 2V .

2

The start time and period vector of an operation v 2V fix the time of execution
i of operation v through the expression

t(v; i) = pT(v)i+ s(v):

The start time is the time at which execution i = 0 of operation v takes place. In
general periods pj may be negative. As a result, the start time of an operation can
be different from the time at which the first execution of an operation takes place.

Two possible time assignments for the matrix multiplication example of Fig-
ure 3.1 are shown in Figure 3.5. For the first one, execution i of operation m takes
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place at

t(m; i) = pT(m)i+ s(m) =
�
7 3 1

�24i0
i1
i2

3
5+1 = 7i0 +3i1 + i2 +1:

The time assignment also determines the order of execution of all ports. Each
execution i of port p 2 P(v) of operation v takes place at the same moment as
execution i of the operation itself, i.e., t(p; i) = t(m; i). Therefore, we define p(p) =
p(v) and s(p) = s(v) for all ports p 2 P(v).

Besides a time assignment we need a way to determine the address on which
each array element is stored in memory.

Definition 3.5 (address assignment). Given a program graph (V;R;W;I;E;A;b),
an address assignment µ is a pair (c;o), where

� c(A) 2 Zα(A) denotes an address coefficient vector, for each A 2A, and

� o(A) 2 Z denotes an address offset, for each A 2A.

2

The address assignment µ fixes the address of array element with index vector
n of array cluster A 2A by

a(A;n) = cT
(A)n+o(A):

The address at which the data belonging to execution i of port p 2 A is then
given by

a(p; i) = a(A;n(p; i)) = cT(A)n(p; i)+o(A):

Definition 3.6 (schedule). Given a program graph G, a schedule σ = (τ;µ) is the
combination of a time assignment τ and an address assignment µ. 2

3.3 Constraints

Constraints on schedules are introduced as not all schedules are valid. Precedence
constraints limit the possible time assignments by demanding that each execution
of a write port that refers an array element takes place before all executions of read
ports that refer the same array element.

Definition 3.7 (precedence constraints). Given are a program graph G =

(V;R;W;I;E;A;b) and a time assignment τ = (p;s). Then, for each execution i
of a write port p2W , and for each execution j of a read port q2 R, with (p;q) 2 E ,
the precedence constraints specify that

n(p; i) = n(q; j) ) t(p; i) < t(q; j):

2
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A time assignment τ is called a feasible time assignment with respect to a pro-
gram graph G if all precedence constraints are met. For the time assignments in
Figure 3.5 the first assignment is feasible. The second one is infeasible as none of
the precedence constraints for ports q and t are satisfied.

Next, we have address constraints, demanding that the memory location of an
array element may be not overwritten during its lifetime. The lifetime of an array
element is the time interval from the production until the last consumption. An
address conflict for write ports p, r, and read port q occurs if there are executions
of p and q that access the same array element, i.e., the same index vector of the
same array, and the address belonging to that array element has been overwritten
by an execution of r between the executions of p and q.

Definition 3.8 (address constraints). Given are a program graph G =

(V;R;W;I;E;A;b), a feasible time assignment τ = (p;s), and an address as-
signment µ = (c;o). Then, for each execution i of a write port p 2W , and for each
execution j of a read port q 2 R, with (p;q) 2 E and n(p; i) = n(q; j), the address
constraints specify that for each execution k of a write port r 2W

a(p; i) = a(r;k) ^ t(p; i) � t(r;k) < t(q; j) ) p = r ^ i = k

if r and q belong to the same operation, or

a(p; i) = a(r;k) ^ t(p; i) � t(r;k) � t(q; j) ) p = r ^ i = k

if r and q belong to different operations. 2

We need stronger address constraints for the case where ports r 2W and q 2 R
belong to different operations, as at time t(r;k) = t(q; j) executions j of port q
and k of port r are not ordered. For the case where ports r and q belong to the
same operation, we assume that for an execution of this operation the execution of
read port q occurs before the execution of write port r, resulting in weaker address
constraints.

The address constraint for ports p, q, and r with (p;q) 2 E is denoted by (p!
q;r). The address constraints for the matrix multiplication example of Figure 3.1
are (p ! q; p), (p! q; t), (t ! q; p), and (t ! q; t).

An address assignment µ is called a feasible address assignment with respect
to a program graph G and time assignment τ if all address constraints are met.

A schedule (τ;µ) is called a feasible schedule with respect to a program graph
G if τ is feasible with respect to G and µ is feasible with respect to G and τ.

3.4 Objectives

The objective of our scheduling problem is to minimise the number of cache misses
of a program. When computing the number of cache misses for an execution of a
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schedule, we need knowledge about the size of the cache, the associativity, the
block size, and the replacement policy. As LRU is the most effective replacement
scheme in practice, we assume LRU replacement in the remainder of this chapter.
The following definition of a cache together with a schedule contains sufficient
information for determining the number of cache misses.

Definition 3.9 (cache). A cache C is a triple (cs;ss;bs), where

� cs 2 N+ denotes the size of the cache in blocks,

� ss 2 N+ with ss j cs, denotes the associativity, or, the size of each cache set
in blocks,

� bs 2 N+ denotes the size of each block in bytes.

The number of sets of which a cache consists is given by ns =
cs
ss

. An address a
maps to set s(a) = amod ns. The block address of an address a is ab(a) = adiv bs.

2

3.4.1 LRU cache model

We give a formal model of cache misses in a cache with LRU replacement. During
the execution of a program, a CPU accesses an address a(e) for each execution
e 2 E of a port.

A so-called compulsory miss for port execution e 2 E occurs if it is the first to
access block address ab(e). To determine this, we define M(e) as the set of port
executions that access block address ab(e) = a(e)div bs and that execute before e,
i.e.,

M(e) = f f 2 E j ab( f ) = ab(e) ^ t( f )< t(e)g:

A compulsory miss for e occurs if no port executions access ab(e) before e, i.e.,

comp(e) , M(e) = Ø: (3.1)

If port execution e is the first port execution that accesses block address ab(e), and
there is another port execution f that accesses ab(e) at the same time t( f ) = t(e),
then both e and f will cause a compulsory miss in this cache model. Counting these
misses twice can be avoided by assigning different times to these port executions.

A so-called expiration miss for port execution e 2 E in a fully set-associative
cache occurs if there are too many port executions accessing block addresses differ-
ent from ab(e) between e and the most recent port execution preceding e accessing
ab(e). We denote the time at which this port execution takes place by

m(e) = max
f2M(e)

t( f ):

The set of block addresses accessed between m(e) and t(e) is given by

Ac(e) = fab( f ) j f 2 E ^ m(e)� t( f )� t(e)g:
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A port execution e causes an expiration miss in a fully set-associative cache if
and only if e does not cause a compulsory miss and the set of block addresses
between the previous access to ab(e) and e itself exceeds the size of the cache, i.e.,
jAc(e)j > cs. As port executions that take place at the same time are not ordered,
we once again assume that all port executions f 2E with t( f ) = t(e) execute before
e.

The treatment of an expiration miss in a n-way set-associative cache is analo-
gous to treatment in the fully set-associative case, but now we are not interested in
the accesses to the whole cache, but only in those to the set that e accesses, i.e., we
consider the set

S(e) = fab( f ) j f 2 E ^ m(e)� t( f )� t(e) ^ s(a( f )) = s(a(e))g:

Port execution e causes an expiration miss if there is not enough room in the set
that is accessed by e, i.e.,

ex(e) , :comp(e) ^ jS(e)j > ss: (3.2)

As s(a(e)) = s(a( f )) for all executions e and f in the fully set-associative case,
S(e) = Ac(e), and hence (3.2) is a general characterisation of expiration misses,
irrespective of the associativity.

Every port execution causes either a hit or a miss in the cache. As a port
execution cannot cause both a compulsory miss and an expiration miss, the total
number of cache misses is the sum of the number of compulsory misses and the
number of expiration misses, i.e.,

cG;C(σ) = jfe 2 E j comp(e) _ ex(e)gj

= jfe 2 E j comp(e)gj+ jfe 2 E j ex(e)gj:

The miss rate is the fraction of port executions that causes a miss, and is given
by

ϕG;C(σ) =
cG;C(σ)
jEj

:

3.4.2 FIFO cache model

We can do the same exercise for caches employing a least recently replaced strat-
egy. In literature this replacement scheme is referred to as FIFO.

As the occurrence of a miss depends on data being available in the cache, we
are interested in knowing when data enter the cache. If a block address is accessed
for the first time during the execution of a schedule, a compulsory miss is caused.
Data will then remain in the cache up to the sths miss after the data entered the
cache. As before, we define

M(e) = f f 2 E j ab( f ) = ab(e) ^ t( f )< t(e)g,
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and again a compulsory miss occurs if and only if M(e) = Ø.
For expiration misses we are interested in the moment the last miss on ab(e)

occurred, which is given by

l(e) = max
f2M(e) ^ miss( f )

t( f ):

We then count the number of misses since the last miss, by considering the set

S(e) = f f 2 E j miss( f ) ^ l(e)� t( f )< t(e) ^ s(a(e)) = s(a( f ))g,

and we derive that a miss occurrence is given by

miss(e) , M(e) = Ø _ jS(e)j > ss:

The definition for miss(e) is indeed a valid definition as miss( f ) is used in the
definition for f (e) and S(e) only for t( f ) < t(e). The number of cache misses
cG;C(σ) and miss rate ϕG;C(σ) are defined in a similar way as we did for the LRU
cache. In the remainder of this thesis the number of cache misses cG;C(σ) and the
miss rate ϕG;C(σ) refer to caches with LRU replacement, as LRU is more effective
than FIFO [Chrobak & Noga, 1999].

3.5 Formal problem statement

We now can define the problem that is studied in this thesis.

Definition 3.10 (multidimensional periodic cache scheduling (MPCS)). Given
a program graph G and a cache C, find a feasible schedule σ for which cG;C(σ) is
minimal. 2

3.6 Special properties

In this section special properties of program graphs and schedules are discussed
that are often used in the remainder of this thesis.

3.6.1 Lexicographical executions

A loop nest is said to have lexicographical executions if the periods are ordered in
such a way that all executions within an inner dimension take place in the period
of an outer dimension. For weak lexicographical executions the first and last exe-
cution in an inner dimension of two successive executions of the outer dimension
may take place at the same time. For an example see Figure 3.6, where operation
u has lexicographical executions, operation v only has the weak lexicographical
property, and w has no lexicographical property. In the following definition we
formalise these properties.

Definition 3.11 (lexicographical execution). Given are an iterator bound vector
I 2 Nδ

+ and a period vector p 2 Zδ. The iterator bound vector and period vector
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Figure 3.6. Three operations u, v, and w with iterator bound vector I = [2 2] T,
start time 0 and period vectors p(u) = [4 1]T, p(v) = [2 1]T, and p(w) = [3 2]T. The
executions of the outer dimension have been shaded differently.

are said to have the lexicographical execution property, denoted by lex(I;p), if and
only if for all vectors i; j 2 Zδ with 0 � i; j � I holds

i <lex j , pTi < pTj:

The vectors have the weak lexicographical property, denoted by wlex(I;p), if and
only if for all vectors i; j 2 Zδ with 0 � i; j � I holds

i �lex j ) pTi � pTj:

2

In this definition, i <lex j holds if and only if an m 2 f0; : : : ;δ�1g exists such
that im < jm, and il = jl for all l = 0; : : : ;m�1. The following characterisations of
the execution properties can be checked in polynomial time. They are analogous
to the characterisations given by Verhaegh [1995]. The lexicographical execution
lex(I;p) holds if and only if

pk >
δ�1

∑
l=k+1

plIl ^ pk > 0,

for all k = 0; : : : ;δ�1, and the weak lexicographical execution property wlex(I;p)
holds if and only if

pk �
δ�1

∑
l=k+1

plIl ^ pk � 0,

for all k = 0; : : : ;δ�1:
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3.6.2 Lexicographical index orderings

The lexicographical index ordering property is similar to the lexicographical ex-
ecution property. It says that two executions are ordered lexicographically if and
only if their corresponding indices are ordered lexicographically.

Definition 3.12 (lexicographical index ordering). An iterator bound vector I 2
Nδ
+ and index matrix A 2Zα�δ are said to have the lexicographical index ordering

property, denoted by lio(I;A) if and only if for all vectors i; j 2Zδ with 0� i; j� I
holds

i <lex j , Ai <lex Aj:

2

As proven by Verhaegh [1995], the lexicographical index ordering can be ver-
ified in polynomial time by checking whether

A�k >lex

δ�1

∑
l=k+1

A�l Il ^ A�k >lex 0,

for all k = 0; : : : ;δ�1.

3.6.3 Unique address assignment

An address assignment is called a unique address assignment if each array element
is mapped onto a unique address.

Definition 3.13 (unique address assignment). Given a program graph G, we say
that an address assignment µ is a unique address assignment if for every pair of port
executions (p; i) and (q; j) the corresponding data are stored on the same address
only if they access the same array index of the same array, i.e.,

a(p; i) = a(q; j) ) n(p; i) = n(q; j) ^ p ./ q:

2

Theorem 3.1. For a program graph G, a unique address assignment exists, and
can be computed in polynomial time.
Proof. First, we construct a unique address assignment for every array cluster
A2A by means of a unique coefficient assignment. For a given set of index vectors
N � Zα, a coefficient vector c 2 Zα is a unique coefficient assignment if for all
index vectors n;n0 2 N, we have

cTn = cTn0 ) n = n0:

If we choose x and y 2 Zα in such a way that x � n� y for all n 2 N, for example
by taking xl = min fnl j n2N g and yl = max fnl j n2N g for all l = 0; : : : ;α�1,
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then the vector c 2Zα with

ck =

α�1

∏
i=k+1

(yi� xi +1) for all k = 0; : : : ;α�1,

is a unique coefficient assignment. Hence, for array cluster A we construct a unique
coefficient assignment c(A) by choosing N = fn(p; i) j p2 A ^ i2 I(p)g. We can
now choose the offsets o(A) in such a way that the addresses of different array
clusters are disjoint. This construction of a unique address assignment takes time
O(αjAj), where α is the largest array dimension of any array cluster. 2

Unique address assignments have the property that they are feasible for any
time assignment.

Theorem 3.2. For a program graph G, a unique address assignment µ is feasible
for any time assignment.
Proof. Let (p; i) and (r;k) be executions of write ports, and (q; j) an execution
of a read port of G. Furthermore, assume that (p; i) and (r;k) access the same
address, i.e., a(p; i) = a(r;k). As µ is a unique address assignment, we know that
n(p; i) = n(r;k) and p ./ r. Because of the single-assignment property we find that
p = r and i = k, and hence the address constraints are met. As we did not use the
time assignment in this proof, we know that a unique address assignment is feasible
for any time assignment. 2

In the construction of a unique address assignment the memory locations of two
arrays do not overlap. In general this property is called a private array assignment.

Definition 3.14 (private array assignment). An address assignment µ is called a
private array assignment if and only if for all executions i of operation p and for all
executions j of q holds

a(p; i) = a(q; j) ) p ./ q:

2
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Complexity Analysis

This chapter deals with the complexity of the multidimensional periodic schedul-
ing problem as formulated in Definition 3.10. In Section 4.1 the complexity of
computing the cost function is studied. In Section 4.2 the complexity of checking
address constraints is discussed. The scheduling problem itself is handled in Sec-
tion 4.3. For the theory of NP-completeness and complexity in general we refer
to Papadimitriou [1995] and to Garey & Johnson [1979].

4.1 Computing the cost of a schedule

We address the complexity of determining the number of cache misses for a given
schedule and a given cache. In this section the general problem is studied as well
as a special case in which lexicographical index orderings are assumed.

Definition 4.1 (cache cost computation problem (CCCP)). For a given program
graph G, a feasible schedule σ = (τ;µ), and a cache C, determine the cost of the
schedule, i.e., compute cG;C(σ). 2

In complexity theory, problems are usually formulated as decision problems.
We are primarily interested in the number of cache misses, but the decision variant
where we decide if the number of cache misses does not exceed a given integer K
is in a sense as difficult. If CCCP is solvable in polynomial time, then its decision

35
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variant is also solvable in polynomial time. If we can solve the decision variant in
polynomial time, sayO( f (n)) for CCCP-instances of size n, by a certain algorithm
A, then we can apply a binary search [Papadimitriou, 1995] by repeatedly applying
A. Since the number of cache misses is bounded from above by the total number
of port executions, jEj, the binary search will take time O(log(jEj) f (n)), which is
bounded by a polynomial in the size of the problem instance.

4.1.1 Cache cost computation

For a given program graph, schedule, and cache we want to compute the number of
cache misses. In this section we show that this problem cannot be solved efficiently
unless P = NP. Below, we give a sketch of the proof, of which the details can be
found in Theorem 4.2.

First of all we observe that if the cache is large enough to contain all data that
are accessed during the execution of the schedule, then conflict misses will occur
only because of limited associativity of the cache.

Hence, for fully set-associative caches of sufficient size, all misses are com-
pulsory misses. A compulsory miss occurs for each first access to a block address.
Since each execution of a port accesses exactly one block address, an upper bound
on the number of distinct block addresses accessed by the execution of a schedule
is the number of executions of all ports, jEj.

Suppose that we have a fully set-associative cache of size jEj. Now we are
left with the problem of determining the number of compulsory misses, which can
be computed by counting the number of distinct block addresses accessed by the
schedule. Suppose that we have a set P of multidimensional periodic ports with
index matrices A(p), index offset vectors b(p), iterator bound vectors I(p) for
p 2 P, then the number of block addresses accessed by the schedule is given by

jfab(p; i) j p 2 P ^ i 2 I(p)gj : (4.1)

For a program graph with two ports p and q, of which q executes only once, an
address assignment that maps each index vector onto a unique address, and a cache
with bs = 1, we can rewrite (4.1) into���fA(p)i j i 2Zδ(p) ^ 0 � i � I(p)g[fb(q)g

��� , (4.2)

and for a program graph consisting of only port p into���fA(p)i j i 2Zδ(p) ^ 0� i � I(p)g
��� : (4.3)

If it is possible to compute (4.2) and (4.3) in polynomial time it is also possible
to determine in polynomial time whether or not an solution i 2 Zδ(p) exists to

0� i � I ^ A(p)i = b(q): (4.4)
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However, solving (4.4) is as difficult as solving zero-one integer programming
(ZOIP) [Garey & Johnson, 1979], as we show by a reduction.

Definition 4.2 (zero-one integer programming (ZOIP)). Given are a matrix
M 2 Zm�n, a vector d 2 Zm, a vector c 2 Zn, and an integer B. Determine whether
there is a vector x 2 f0;1gn such that M x = d and cTx� B. 2

ZOIP is NP-complete in the strong sense [Garey & Johnson, 1979]. The prob-
lem in (4.4) is formulated as follows.

Definition 4.3 (bounded integer solution for linear equations (SLE)). Given
are a matrix A 2 Zα�δ, a vector b 2 Zα, and a vector I 2 Nδ . Determine whether a
vector i 2 Zδ exists for which 0 � i� I ^ Ai = b. 2

For establishing the complexity of SLE, we transform an instance of ZOIP to
an instance of SLE by adding a slack variable. The inequality cTx � B is replaced
by an equality cTx� y = B, where y is a non-negative slack variable.

Theorem 4.1. SLE is NP-complete in the strong sense.
Proof. When given a vector i we can check in polynomial time whether it satisfies
Ai = b, so SLE is in NP. ZOIP is reduced to SLE by defining an instance Isle of
SLE from an instance Izoip of ZOIP in the following way.

� δ = n+1,

� α = m+1,

� vector I with I0 =�B+
n�1
∑

l=0
c+l and Ik = 1 for k = 1; : : : ;δ�1,

� matrix A =

�
�1 cT

0 M

�
, and

� vector b =

�
B
d

�
,

where x+ = maxfx;0g. Note that Izoip can be computed in polynomial time. Fur-
thermore, the largest number in Isle is polynomially bounded in the largest number
in Izoip and the size of Izoip. Now we have

9i2Zδ 0� i � I ^ Ai = b

�

9i02Zn 9i02Z 0 � i0 � I0 ^ 0 � i0 � 1 ^ �i0 + cTi0 = B ^ Mi0 = d

�

9i02f0;1gn 0��B+ cTi0 ��B+
n�1
∑

l=0
c+l ^ Mi0 = d

�
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9i02f0;1gn Mi0 = d ^ cTi0 � B:

So using the relation i0 = x we can conclude that Izoip has a solution if and only if
Isle has one. Hence, SLE is NP-complete in the strong sense. 2

Above, we argued that for a fully set-associative cache of sufficient size, the
number of cache misses is equal to the number of distinct block addresses that are
accessed by the execution of a schedule. We prove this in the following lemma.

Lemma 4.1. For a fully set-associative cache of size jEj, the cost cG;C(σ) of a
schedule for which 8f ;e2E (e 6= f ) t(e) 6= t( f )) is given by

jfab(e) j e 2 E gj :

Proof. First of all, because of the associativity and size of the cache, conflict
misses cannot occur. Hence the cost of the schedule must consist entirely of com-
pulsory misses. A compulsory miss occurs for a port execution e, if it is the first
port execution that accesses block address ab(e). Since it is not possible for two
different port executions to execute at the same time, the first port execution to ac-
cess a block address is unique. Hence the number of compulsory misses is equal
to the number of distinct block addresses. 2

Theorem 4.2. CCCP cannot be solved in polynomial time unless P = NP.
Proof. Let an instance Isle of SLE be given by a matrix A2Zα�δ, a vector b 2Zα,
and a vector I 2 Nδ . We construct an instance of CCCP as follows. The program
graph G = (V;R;W;I;E;A;b) has

� two operations V = fu;vg,

� operation read ports R(u) = Ø, R(v) = fqg,

� operation write ports W (u) = fpg, W (v) = Ø,

� iterator bound vectors I(u) = [ ], I(v) = I,

� set of edges E = f(p;q)g,

� index matrices A(p) = [ ], A(q) = A, and

� index offset vectors b(p) = b, b(q) = 0.

This choice of index matrices and index offset vectors ensures that the single-
assignment property holds. A sufficient condition for the feasibility of a time as-
signment τ = (p;s) for G is that the (only) execution of operation u takes place
before all executions of operation v. Hence by taking

s(u) = 0

s(v) = 1

pk(v) =

δ(v)�1

∏
i=k+1

(Ii(v)+1) for all k = 0; : : : ;δ(v)�1,
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a feasible time assignment is created for which at most one execution of an opera-
tion takes place in each time slot. The (only) array cluster is denoted by A = fp;qg.
For the address assignment µ we choose a unique address assignment as introduced
in Theorem 3.1, which is feasible as indicated by Theorem 3.2. For a fully set-
associative cache C of size jEj and block size one, the cost of schedule σ = (τ;µ)
for program graph G is then given by

cG;C(σ)
= f Lemma 4.1 and bs = 1 g

jfcT(A)n(q; i)+o(A) j i 2 I(q)g [ fcT(A)n(p; j)+o(A) j j 2 I(p)gj

= f µ is a unique address assignment g

jfn(q; i) j i 2 I(q)g [ fn(p; j) j j 2 I(p)gj

=

jfAi j i 2 Zδ(v) ^ 0 � i � Ig [ fbgj:

In a similar way we construct a second instance of CCCP by creating G0 =
(V 0;R0;W 0;I0;E 0;A0;b0) having

� one operation, V 0 = fv0g,

� operation read ports R0(v) = fq0g,

� operation write ports W0(v) = Ø,

� iterator bound vector I0(v) = I,

� edge set E0 = Ø,

� index matrix A0(q0) = A, and

� index offset vector b0(q0) = 0.

For operation v0 we use the same period vector and start time as we did in the time
assignment τ for graph G and the same address assignment µ as we used for G. The
cost of schedule σ0 for graph G0 is then given by

cG0;C(σ0) = jfAi j i 2 Zδ(v) ^ 0 � i � Igj,

which can be derived analogously to cG;C(σ). Now suppose hat CCCP can be
solved in polynomial time. This means that both cG;C(σ) and cG0;C(σ0) can be com-
puted in polynomial time. However, we can also decide whether cG;C(σ) equals
cG0;C(σ0) in polynomial time, and hence we can determine in polynomial time
whether

9i2Zδ 0 � i� I ^ Ai = b

is feasible. Note that the size of the constructed instances of CCCP is polynomially
bounded in the size of Isle. Therefore, we can solve SLE in polynomial time and as
SLE is NP-complete, we can conclude that CCCP can only be solved in polynomial
time if P = NP. 2
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4.1.2 Cache cost computation for lexicographical index orderings

Even if we assume that each port has lexicographical index orderings (see Defi-
nition 3.12), computing the number of cache misses remains difficult as is proved
below.

Definition 4.4 (CCCP for lexicographical index orderings (CCCP-LL)).
Given are a program graph G, with for all ports p the lexicographical index ordering
property lio(I(p);A(p)), a feasible schedule σ, a cache C, and an integer K. Does
the schedule have cost at most K, i.e., cG;C(σ)� K? 2

In order to establish the complexity result for CCCP-LL we need a formulation
of SLE with lexicographical properties.

Definition 4.5 (SLE-LL). Given is a matrix A =
�
A0 A00

�
with A0 2 Zα�δ0

and

A00 2Zα�δ00

, a vector I =
�

I0

I00

�
with I0 2 Nδ0

and I00 2 Nδ0 0

, and a vector b2Zα. Both

sub-matrices have the lexicographical index order property, i.e., both lio(I0;A0) and
lio(I00;A00) hold. Determine whether a vector i 2 Zδ0+δ00

exists for which

Ai = b
0 � i� I:

2

Theorem 4.3. SLE-LL is NP-complete in the strong sense.
Proof. If we are given an integer vector i we can check in polynomial time whether
Ai = b ^ 0 � i � I. Hence SLE-LL is in NP. We prove NP-completeness by a
reduction from SLE. Let an instance Isle of SLE be given by a matrix A 2 Zα�δ, a
vector I 2 Nδ , and a vector b 2 Zα. Analogously to the NP-completeness proof of
PCLL by Verhaegh [1995], we construct an instance Isle-ll of SLE-LL by choosing

All =

�
I I
A O

�
bll =

�
I
b

�
Ill =

�
I
I

�
,

where I is the δ�δ identity matrix and O is the α�δ zero matrix. Now we have

9i2Z2δ 0� i � Ill ^ Alli = bll

�

9i0;i002Zδ 0 �
�

i0

i00

�
�

�
I
I

�
^

�
I I
A O

��
i0

i00

�
=

�
I
b

�
�

9i0;i002Zδ 0 � i0; i00 � I ^ i0+ i00 = I ^ Ai0 = b

�

9i2Zδ 0� i � I ^ Ai = b:
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So, Isle-ll has a solution if and only if Isle has one. Note that the size of Isle-ll is
polynomially bounded in the size of Isle. Furthermore, the largest number in Isle-ll

is polynomially bounded in the largest number in Isle and the size of Isle. Hence,
SLE-LL is NP-complete in the strong sense. 2

Not only the problem of finding bounded integer solutions for linear equations
resulting from two arrays with the lexicographical property is NP-complete. Also
the problem with a matrix A that can be split into matrices A0 and A00 with lio(I0;A0)

and lio(I00;�A00), is NP-complete in the strong sense, as the next theorem shows.
lio(I;�A) is also a lexicographical property of matrix A, as it is equivalent to

i <lex j , Ai >lex Aj,

and hence worth to be studied.

Definition 4.6 (SLE-LL0). Given is a matrix A =
�
A0 A00

�
with A0 2 Zα�δ0

and

A00 2 Zα�δ00

, a vector I =
�

I0

I00

�
with I0 2 Nδ0

and I00 2 Nδ0 0

, and vector b 2 Zα. Fur-

thermore, the lexicographical index ordering properties lio(I0;A0) and lio(I00;�A00)

hold. Determine whether a vector i 2 Zδ0+δ00

exists for which

Ai = b
0 � i� I:

2

Theorem 4.4. SLE-LL0 is NP-complete in the strong sense.
Proof. The proof is analogous to that of Theorem 4.3 using

All =

�
I �I
A O

�
bll =

�
0
b

�
Ill =

�
I
I

�
:

2

Now we are ready to study the complexity of CCCP-LL.

Theorem 4.5. CCCP-LL is NP-hard in the strong sense.
Proof. For this proof we reduce SLE-LL0 to CCCP-LL. Let an instance Isle-ll0 of
SLE-LL0 be given. We construct an instance Icccp-ll of CCCP-LL as follows. First,
we introduce a program graph by choosing G:

� two operations V = fu;vg,

� operation read ports R(u) = Ø, R(v) = fqg,

� operation write ports W (u) = fpg, W (v) = Ø,

� iterator bound vectors I(u) = I0, I(v) = I00,

� edge set E = f(p;q)g,

� index matrices A(p) = A0, A(q) =�A00, and
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� index offset vectors b(p) = 0, b(q) = b.

The single-assignment assumptions are met as the lexicographical index ordering
property ensures that write port p accesses each index at most once. Furthermore
we assume a fully set-associative cache C of size jEj and block size equal to one.

For a port with lexicographical index orderings, the number of distinct index
vectors that are accessed during the execution of a schedule, is equal to the number
of executions of it, which is given by

δ�1

∏
l=0

(Il +1),

and which can computed in polynomial time. So, the number of index vectors
accessed by port p is given by

K0 = jfA0i j i 2 I(p)gj= jI(p)j=
δ0�1

∏
l=0

(Il(p)+1), and

the number of index vectors accessed by port q is given by

K00 = jf�A00i+b j i 2 I(q)gj= jI(q)j=
δ00�1

∏
l=0

(Il(q)+1):

Now, for the cost bound we choose K = K0+K00�1. For both operation u and v we
choose a lexicographical execution, in such a way that all executions of operation
u take place before any execution of operation v. In this way the precedence con-
straints are trivially met. For the address assignment we choose a unique address
assignment, resulting in a feasible schedule.

Now we derive

cG;C(σ)� K

� f Lemma 4.1, µ is a unique address assignment g

jfA0i j i 2 I(p)g[f�A00i+b j i 2 I(q)gj � K0+K00�1

� f definition of K0 and K00 g

9i02Zδ0 9i002Zδ00 0� i0 � I0 ^ 0 � i00 � I00 ^ A0i0 =�A00i00+b

�

9i2Zδ 0� i �
�

I0

I00

�
^
�
A0 A00

�
i = b:

So Isle-ll0 has a solution if and only if Icccp-ll has one. Note that the size of Icccp-ll

is polynomially bounded in the size of Isle-ll0 . Furthermore, the largest number
in Icccp-ll is polynomially bounded in the largest number in Isle-ll0 and the size of
Isle-ll0 . Hence, CCCP-LL is NP-hard in the strong sense. 2
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Membership of CCCP-LL to NP remains unknown as a compact certificate for
each schedule with cost at most K must in some way contain information about
which port executions produce misses (or hits). Unfortunately, we do not know a
method of representing all misses by a compact certificate.

As both lio(I;A) and lio(I;�A) are equally interesting properties, we also in-
troduce the problem CCCP-LL0 in which the number of cache misses is asked
for a program graph with two ports p and q, with lexicographical index orderings
lio(I(p);A(p)) and lio(I(q);�A(q)).

Theorem 4.6. CCCP-LL0 is NP-complete in the strong sense.
Proof. This result is proved analogously to Theorem 4.5 by a reduction from
SLE-LL. 2

4.2 Feasibility of a schedule

Verhaegh [1995] discusses the complexity of checking precedence constraints al-
ready extensively. Therefore, we restrict the discussion in this section to address
constraints. We restrict ourselves to two variants of the address conflict problem,
one where three ports are involved, and one with only two ports.

4.2.1 Address conflicts for three ports

An address conflict for write ports p, r and read port q occurs if data is shared
between p and q, but is overwritten in memory by an execution of r that takes place
between the production by p and consumption by q of the shared array element.

Definition 4.7 (address conflict for three ports (ACP3)). Given are ports p, r,
and q with iterator bound vectors I(p) 2 Nδ(p) , I(r) 2 Nδ(r) , and I(q) 2 Nδ(q) , pe-
riod vectors p(p) 2Zδ(p), p(r) 2Zδ(r), p(q) 2Zδ(q), start times s(p);s(r);s(q) 2Z,
index matrices A(p) 2 Zα(p)�δ(p), A(r) 2 Zα(r)�δ(r), A(q) 2 Zα(q)�δ(q), and index
offset vectors b(p) 2 Zα(p), b(r) 2 Zα(r), b(q) 2 Zα(q). The time assignment is
feasible and the single-assignment property is met. Furthermore, two arrays A and
B with p;q 2 A and r 2 B, address coefficient vectors c(A) 2 Zα(A), c(B) 2 Zα(B),
and address offsets o(A);o(B) 2 Z are given. Determine whether there are vectors
i 2 Zδ(p), k 2 Zδ(r), and j 2 Zδ(q) that satisfy

a(p; i) = a(r;k)
t(p; i)� t(r;k) � t(q; j)

n(p; i) = n(q; j)
0 � i� I(p)
0� k � I(r)
0 � j� I(q):

(4.5)

2
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We give two complexity results for ACP3. First, we prove that ACP3 is
NP-complete. Next, we show that no pseudo-polynomial algorithm exists for
solving ACP3, unless P = NP. The proofs show distinct difficulties in checking
address constraints. The first proof shows the difficulty of checking the con-
straint t(p; i)� t(r;k)� t(q; j), whereas the second proof focuses on the constraint
n(p; i) = n(q; j).

For proving NP-completeness of ACP3, we use the problem PUC [Verhaegh,
1995], which is defined as follows.

Definition 4.8 (PUC). Given are an iterator bound vector I 2 Nδ
+ , a period vector

p 2 Nδ
+ , and an integer s. Determine whether there is a vector i 2 Zδ that satisfies

pTi = s
0 � i� I:

2

PUC is NP-complete, and it can be solved in pseudo-polynomial time [Verhaegh,
1995].

Theorem 4.7. ACP3 is NP-complete.
Proof. When vectors i, k, and j are given, one can check in polynomial time
whether they satisfy (4.5), so ACP3 is in NP. Next, we reduce PUC to ACP3. Let
an instance Ipuc of PUC be given, then we create an instance Iacp3 of ACP3 by
choosing

� iterator bound vectors I(p) = I(q) = [ ], I(r) = I,

� index matrices A(p) = A(q) = [ ], A(r) = I,

� index offset vectors b(p) = b(q) = [ ], b(r) = 0,

� period vectors p(p) = p(q) = [ ], p(r) = 2p,

� start times s(p) = 2s, s(r) = 0, s(q) = 2s+1,

� address coefficient vectors c(A) = [ ], c(B) = 0, and

� address offsets o(A) = o(B) = 0.

All single-assignment properties are satisfied by the choice of index matrices and
index offset vectors. Both ports p and q execute only once, accessing the same
array element. As the production by p takes place at time 2s and the consumption
by q at time 2s + 1, the time assignment τ = (p;s) is feasible. All data that are
produced and consumed are stored at address 0, so an address conflict can only
occur if a production of port r takes place at time 2s or 2s+ 1. Hence, an address
constraint is violated if and only if

9k2I(r) a(p; [ ]) = a(r;k) ^ t(p; [ ])� t(r;k) � t(q; [ ]) ^ n(p; [ ]) = n(q; [ ])

� f a(p; [ ]) = 0 = a(r;k) g
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9k2Zδ 0 � k � I(r) ^ 2s � 2pTk � 2s+1

�

9k2Zδ 0 � k � I ^ pTk = s:

So Iacp3 has a solution if and only if Ipuc has one. Furthermore, note that the size
of Iacp3 is polynomially bounded in the size of Ipuc. Hence, ACP3 is NP-complete.

2

A stronger result is possible by reducing ZOIP of Definition 4.2 to ACP3.

Theorem 4.8. ACP3 is NP-complete in the strong sense.
Proof. Membership of ACP3 to NP has already been established in Theorem 4.7.
Let an instance Izoip of ZOIP be given by a matrix M 2 Zm�n, a vector d 2 Zm, a
vector c 2 Zn, and an integer B. We create an instance Iacp3 of ACP3 by choosing

� iterator bound vectors I(p) = I(r) = [ ], I(q) = 1,

� index matrices A(p) = A(r) = [ ], A(q) = M,

� offset vectors b(p) = d, b(r) = d+1, and b(q) = 0,

� period vectors p(p) = [ ], p(r) = [ ], and p(q) = c,

� start times s(p) =�1+B�+
n�1
∑

i=0
c�i , s(r) = B, and s(q) = 0,

� address coefficient vectors c(A) = c(B) = 0, and

� address offsets o(A) = o(B) = 0,

where x� = minfx;0g. The single assignment constraints for both arrays are sat-
isfied. Again, first we show that τ = (p;s) is a feasible time assignment, which is
given by the fact that for all j 2 I(q)

t(p; i) =�1+B�+

n�1

∑
i=0

c�i <
n�1

∑
i=0

ci ji = t(q; j):

Using the relation x = j we observe that Iacp3 has a solution if and only if Izoip has
one, as we have

9i2I(p) 9j2I(q) 9k2I(r) t(p; i) � t(r;k) � t(q; j) ^ a(p; i) = a(r;k) ^
n(p; i) = n(q; j)

� f p and r have exactly one execution g

9j2f0;1gn �1+B�+
n�1
∑

i=0
c�i � B� cTj ^ a(p; [ ]) = a(r; [ ]) ^ d = Mj

�

9j2f0;1gn cTj � B ^ Mj = d:
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Note that the size of Iacp3 is polynomially bounded in the size of Izoip. Further-
more, the largest number in Iacp3 is polynomially bounded in the largest number in
Izoip and the size of Izoip. Hence ACP3 is NP-complete in the strong sense. 2

As we did not assume A and B to be different in the proof, ACP3 remains
NP-complete in the strong sense if p, q and r belong the same array cluster. Fur-
thermore, ACP3 remains NP-complete in the strong sense for an address space
limited to only one address.

4.2.2 Address conflicts for two ports

An address conflict for write port p and read port q occurs if data is shared between
p and q, but is overwritten by another execution of p, taking place between the
production by p and consumption of q of the shared array element.

Definition 4.9 (address conflict for two ports (ACP2)). Given are ports p and q
with iterator bound vectors I(p) 2 Nδ(p) , I(q) 2 Nδ(q) , period vectors p(p) 2Zδ(p),
p(q) 2 Zδ(q), start times s(p);s(q) 2 Z, index matrices A(p) 2 Zα(p)�δ(p), A(q) 2
Zα(q)�δ(q), and index offset vectors b(p) 2 Zα(p), b(q) 2 Zα(q). The time assign-
ment is feasible and the single-assignment property is met. Both ports are assumed
to belong to the same array, say A, with address coefficient vector c(A)2Zα(A), and
address offset o(A) 2 Z. Determine whether there are vectors i 2 Zδ(p), k 2 Zδ(p),
and j 2 Zδ(q) that satisfy

a(p; i) = a(p;k)
t(p; i) � t(p;k) � t(q; j)

n(p; i) = n(q; j)
i 6= k

0 � i� I(p)
0 � k � I(p)
0 � j� I(q):

(4.6)

2

Theorem 4.9. ACP2 is NP-complete in the strong sense.
Proof. When given vectors i, j, and k expression (4.6) can be checked in poly-
nomial time. Hence ACP2 is in NP. Let an instance Izoip of ZOIP be given by a
matrix M 2Zm�n, a vector d 2 Zm, a vector l 2 Zn, and an integer B. We create an
instance Iacp2 of ACP2 by choosing

� iterator bound vectors I(p) =
�
1
�
, I(q) = 1,

� index matrices A(p) =

�
0
1

�
, A(q) =

�
M
0T

�
,

� offset vectors b(p) =

�
d
0

�
, b(q) = 0,
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� period vectors p(p) =

�
1+B+�

n�1
∑

i=0
l�i

�
, p(q) = l,

� start times s(p) =�1�B++
n�1
∑

i=0
l�i , s(q) =�B,

� address coefficient vector c(A) = 0, and

� address offset o(A) = 0.

Again, first we show that τ = (p;s) is a feasible time assignment by deriving that
t(p; i) < t(q; j) holds for all port executions i 2 I(p) of port p and j 2 I(q) of port
q with n(p; i) = n(q; j).

t(p; i)

= f n(p; i) = n(q; j) ) i =
�
0
�
g

�1+B�+
n�1
∑

i=0
l�i

< f 0 � ji � 1 g

�B+
n�1
∑

i=0
li ji

=

t(q; j)

Using the relation x = j we observe that Iacp2 has a solution if and only if Izoip has
one, as we have

9i2I(p) 9j2I(q) 9k2I(p) t(p; i) � t(p;k) � t(q; j) ^ a(p; i) = a(p;k) ^
n(p; i) = n(q; j) ^ i 6= k

� f p has two executions with t(p;
�
0
�
)< t(p;

�
1
�
) g

9j2f0;1gn 0 � lTj�B ^ a(p;
�
0
�
) = a(p;

�
1
�
) ^

�
0
1

��
0
�
+

�
d
0

�
=

�
M
0T

�
j+0

� f address coefficient vector c(A) = 0 g

9j2f0;1gn lTj � B ^ Mj = d:

Note that the size of Iacp2 is polynomially bounded in the size of Izoip. Further-
more, the largest number in Iacp2 is polynomially bounded in the largest number in
Izoip and the size of Izoip. Hence ACP2 is NP-complete in the strong sense. 2

4.3 Multidimensional periodic cache scheduling

Besides the complexity of the multidimensional periodic cache scheduling prob-
lem, where both a time assignment and an address assignment are asked, two
related problems are studied. The first one, which is called optimal address as-
signment, is the problem of finding an optimal and feasible address assignment if a
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feasible time assignment is already given. The second one is the problem of finding
an optimal and feasible time assignment for a fixed address assignment, which is
called optimal time assignment.

Definition 4.10 (optimal address assignment (OAA)). Given are a program
graph G, a cache C, a feasible time assignment τ, and an integer K. Determine
whether there exists a feasible address assignment µ with cost cG;C(σ)� K. 2

Instead of deriving a complexity result for OAA, we prove the complementary
problem (co-OAA) to be NP-hard. The complementary problem co-OAA decides
whether no schedule exists with cost at most K. It is unlikely that an algorithm
exists that decides OAA in polynomial time, as that would imply the existence of
an algorithm that decides co-OAA in polynomial time, and hence would imply P =
NP.

In the complexity proof we fix K = 1. In the following lemma we give neces-
sary and sufficient conditions for schedules with cost cG;C(σ) = 1.

Lemma 4.2. For a graph G with at least one port, and a fully set-associative cache
of size jEj, a schedule σ has cost cG;C(σ) = 1 if and only if

(1) in the time slot in which the first execution of any port takes place, exactly
one port executes, and

(2) 8e; f2E ab(e) = ab( f ).

Proof.
()) Let σ be a schedule with cost cG;C(σ) = 1. The necessity of (1) and (2) is
shown by contradiction. Suppose that two executions e 6= f 2 E exist such that
both execute in the first time slot in which any port executes, then M(e) = Ø and
M( f ) = Ø, which results in two compulsory misses, resulting in cost at least two.
Next, if there are two executions e; f 2 E that access different block addresses, then
also at least two compulsory misses are generated. Hence both (1) and (2) are nec-
essary conditions.
(() As the number of different block addresses that are accessed during the ex-
ecution of a schedule is bounded by the number of port executions, no conflict
misses can occur in a fully set-associative cache. Hence we have to prove that any
schedule for which (1) and (2) hold generates exactly one compulsory miss. Sup-
pose that e 2 E takes place in the first time slot in which any port execution takes
place. Because of (1) every execution f 2 E takes place after e and because of (2)
ab( f ) = ab(e); therefore, e 2 M( f ) for each f 2 E n feg, and M(e) = Ø. Hence
only port execution e produces a compulsory miss. 2

Theorem 4.10. co-OAA is NP-hard.
Proof. Let an instance Ipuc of PUC be given by an iterator bound vector I 2
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Figure 4.1. Constructed instance of co-OAA.

Nδ
+ , a period vector p 2 Nδ

+ , and an integer s. An instance Ico-oaa of co-OAA is
constructed as follows. For the program graph G = (V;R;W;I;E;A;b) we choose

� four operations V = fu;v;w;xg,

� operation read ports R(u) = Ø, R(v) = fqg, R(w) = Ø, R(x) = Ø,

� operation write ports W (u) = fpg, W (v) = Ø, W (w) = frg, W (x) = fsg,

� iterator bound vectors I(u) = I(v) = I(x) = [ ], I(w) = I,

� edge set E = f(p;q)g,

� index matrices A(p) = A(q) = A(s) = [ ], A(r) = I, and

� index offset vectors b(p) = b(q) = b(r) = b(s) = 0.

For the time assignment τ = (p;s) we choose

� period vectors p(u) = p(v) = p(x) = [ ], p(w) = 2p, and

� start times s(u) = 2s, s(v) = 2s+1, s(w) = 0, s(x) =�1+2s�+
δ�1
∑

i=0
p�i Ii.

For the cache we choose a fully set-associative cache of size jEj and block size one.
The cost bound K is chosen one. First of all we observe that indeed a feasible time
assignment has been created as the only execution of port p takes place before the
only execution of port q. Furthermore, note that the size of Ico-oaa is polynomially
bounded in the size of Ipuc. Now we prove that finding a solution to the PUC-
instance is equivalent to deciding whether no feasible schedule exists with cost at
most one.
()) Suppose that a vector x 2 Zδ exists such that 0 � x � I ^ s = pTx. We have
to prove that all feasible schedules have cost at least two. From address constraint
(p! q;r) it follows that a(p; [ ]) 6= a(r;x) as otherwise execution x of r overwrites
data produced by the execution of p, which can be shown as follows.

(p! q;r)

�

8i2I(p) 8j2I(q) 8k2I(r) a(p; i) = a(r;k) ^ n(p; i) = n(q; j) ^
t(p; i)� t(r;k) � t(q; j)) p = q ^ i = j

� f p 6= q, p and q have exactly one execution g
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8k2I(r) a(p; [ ]) 6= a(r;k) _ A(p)[ ]+b(p) 6= A(q)[ ]+b(q) _
:(2s� 2pTk� 2s+1)

) f x 2 I(r) g

a(p; [ ]) 6= a(r;x) _ 2s 6= 2pTi

� f s = pTx g

a(p; [ ]) 6= a(r;x)

As at least two addresses are needed, and as we have a cache with block size one,
at least two compulsory misses will occur and hence cG;C(σ)� 2.
(() Suppose that for all integer vectors i 2 Zδ we have 0� i� I ) pTi 6= s. Then
the existence of a feasible schedule with cost one remains to be shown. The start
time of operation x makes sure that in the first time slot in which any port execution
takes place, exactly one port executes. From Lemma 4.2 and block size equal to
one, it follows that it is sufficient to show that any address assignment with a(e) =
a( f ) for all e; f 2 E is feasible. Hence we have to show that address constraints
(p ! q; p), (p ! q;s), and (p! q;r) are met. To this end, we can derive

(p! q;r)

� f p 6= q, p and q has exactly one execution g

8k2I(r) a(p; [ ]) 6= a(r;k) _ A(p)[ ]+b(p) 6= A(q)[ ]+b(q) _
:(2s� 2pTk� 2s+1)

(

8k2I(r) s 6= pTk:

The two remaining constraints are proved valid in a similar way. So, the address
assignment with c(A) = 0 and o(A) = 0 for all arrays A 2 A is feasible, and as all
precedence constraints are met, a feasible schedule σ has been constructed with
cG;C(σ) = 1. 2

If we fix the address assignment, the question remains to find an optimal and
feasible time assignment in such a way that the address assignment is feasible as
well. This problem is NP-hard in the strong sense which is proved by means of a
reduction from SLE-LL0.

Definition 4.11 (optimal time assignment (OTA)). Given are a program graph G,
a cache C, an address assignment µ, and an integer K. Determine whether there
exists a feasible time assignment τ with µ feasible with respect to τ and G and with
cost cG;C(σ)� K. 2

Theorem 4.11. OTA is NP-hard in the strong sense.
Proof. Let an instance Isle-ll0 of SLE-LL0 be given by matrices A0 2 Zα�δ0

, A00 2
Zα�δ00

, vectors I0 2 Nδ0

, I00 2 Nδ0 0

, with lio(A0;I0) and lio(�A00;I00), and a vector
b 2 Zα. An instance Iota of OTA is now constructed by choosing
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Figure 4.2. Constructed instance of co-MPCSD.

� two operations V = fu;vg,

� operation read ports R(u) = Ø, R(v) = fqg,

� operation write ports W (u) = fpg, W (v) = Ø,

� iterator vectors I(u) = I0, I(v) = I00,

� edge set E = f(p;q)g,

� index matrices A(p) = A0, A(q) =�A00, and

� index vectors b(p) = 0, b(q) = b.

Furthermore, we choose

� a unique address assignment µ as given in Theorem 3.1,

� a fully set-associative cache of size jEj and block size one, and

� a cost bound K = jE(p)j+ jE(q)j�1.

Now we have

9τ τ feasible ^ cG;C(σ)� K

( f Lemma 4.1 g

jfA0i j 0 � i� I0 g[f�A00i+b j 0 � i� I00 gj � jE(p)j+ jE(q)j�1

� f see Theorem 4.5 g

9i2Zδ0+δ00 0 � i�
�

I0

I00

�
^
�
A0 A00

�
i = b:

The other implication ()), cannot be concluded from Lemma 4.1 directly. A prob-
lem arises when two port executions take place at the same time t. But as was noted
in Chapter 3, the cost of a schedule cannot increase by rescheduling these port ex-
ecutions. Hence, another feasible time assignment exists with cost at most K, that
satisfies the requirement of Lemma 4.1.

We have proved that Iota has a solution if and only if Isle-ll0 has one. Note that
the size of Iota is polynomially bounded in the size of Isle-ll0 . Furthermore, the
largest number in Iota is polynomially bounded in the largest number in Isle-ll0 and
the size of Isle-ll0 . Hence OTA is NP-hard in the strong sense. 2
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Finally, we discuss the complexity of the multidimensional periodic cache
scheduling problem of Definition 3.10, whose decision variant is denoted by
MPCSD, the complementary problem is denoted by co-MPCSD.

Theorem 4.12. co-MPCSD is NP-hard in the strong sense.
Proof. We prove NP-hardness of co-MPCSD by a reduction from SLE. Let an
instance Isle of SLE be given by a matrix A 2 Zα�δ, a vector I 2 Nδ , and a vector
b 2 Zα. We construct an instance of co-MPCSD as follows. The program graph
with its read and write ports is given in Figure 4.2. We choose

� three operations V = fu;v;wg,

� operation read ports R(u) = Ø, R(v) = fXqg, R(w) = fXr;Yqg,

� operation write ports W (u) = fXpg, W (v) = fYpg, W (w) = Ø,

� iterator bound vectors I(u) = [ ], I(v) = I(w) = I,

� index matrices A(Xp) = [ ], A(Xq) = A(Xr) = A, A(Yp) = A(Yq) = I,

� index offset vectors b(Xp) = b, b(Xq) = b(Xr) = 0, b(Yp) = b(Yq) = 0,

� a fully set-associative cache with size jEj and block size one, and

� cost bound K = 1.

Now, we prove

9i2Zδ 0� i � I ^ Ai = b , :9σ σ feasible ^ cG;C(σ)� 1:

The proof is done in two steps.
()) First, let l 2 Zδ such that 0 � l � I ^ Al = b. Now we show that any feasible
schedule has cost at least two. For a feasible schedule σ we know that both the
precedence constraints and the address constraints are satisfied. From the prece-
dence constraint for array X we deduce that s(u)< t(v; i) for all executions i2 I(v)
with Ai = b, and in particular s(u)< t(v; l). From the precedence constraint for ar-
ray Y it follows that t(v; i)< t(w; i) for all i2I(v), and hence s(u)< t(v; l)< t(w; l).

From the address constraint (Xp ! Xr;Yp) we deduce

8i2I(Xp)
8j2I(Xr)

n(Xp; i) = n(Xq; j))
8k2I(Yp) t(Xp; i)� t(Yp;k)� t(Xr; j) ^ a(Xp; i) = a(Yp;k)) Xp =Yp ^ i = k

� f Xp 6=Yp, Xp has only one execution g

8j2I(Xr) b = Aj)
8k2I(Yp) a(Xp; [ ]) 6= a(Yp;k) _ s(u)> t(Yp;k) _ t(Yp;k)> t(Xr; j)

) f l 2 I(Yp) = I(Xr), b = Al g

a(Xp; [ ]) 6= a(Yp; l) _ s(u)> t(v; l) _ t(v; l) > t(w; l)

� f s(u)< t(v; l) < t(w; l) g

a(Xp; [ ]) 6= a(Yp; l):
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Hence, we need at least two addresses. As at most one address is mapped to each
cache block, each feasible schedule will cause at least two compulsory misses, i.e.,
cG;C(σ)� 2.
(() Suppose that 8i2Zδ 0� i� I) Ai 6= b. Now we show that a feasible schedule
σ exists with cG;C(σ)� 1. To this end, we choose a time assignment with

� period vectors p(u) = [ ],

pi(w) = pi(v) = 2
δ�1
∏

j=i+1
(I j +1) for all i = 0; : : : ;δ�1, and

� start times s(u) = 0, s(v) = 1, and s(w) = 2.

As t(u; [ ])< t(v; i) < t(w; i) for all 0 � i � I, this time assignment is feasible. Fur-
thermore we choose an address assignment with

� address coefficient vectors c(X) = c(Y ) = 0, and

� address offsets o(X) = o(Y ) = 0.

Now, all six address constraints are satisfied. We have constructed a schedule that
uses only one addresses, and will produce exactly one compulsory misses, i.e.,
cG;C(σ) = 1 � K.

So, Ico-mpcsd has a solution if and only if Isle has one. Note that the size of
Ico-mpcsd is polynomially bounded in the size of Isle. Furthermore, the largest num-
ber in Ico-mpcsd is polynomially bounded in the largest number in Isle and the size
of Isle. Therefore, co-MPCSD is NP-hard in the strong sense. 2

Even if we restrict this problem to program graphs with lexicographical index
orderings and a cost bound one, the problem remains hard.

Theorem 4.13. co-MPCSD remains NP-hard in the strong sense for lexicograph-
ical index orderings and K = 1.
Proof. We prove this by reducing an instance Isle-ll0 of SLE-LL0 into an instance
Ico-mpcsd of co-MPCSD. Isle-ll0 is given by matrices A0 2 Zα�δ0

and A00 2 Zα�δ00

,
vectors I0 2Nδ0

and I00 2 Nδ0 0

, and vector b2Zα. For both matrices the lexicograph-
ical index order property, lio(I0;A0) and lio(I00;�A00), hold. Again the operations
and ports of the program graph of Ico-mpcsd are given by Figure 4.2. We choose

� three operations V = fu;v;wg,

� operation read ports R(u) = Ø, R(v) = fXqg, R(w) = fXr;Yqg,

� operation write ports W (u) = fXpg, W (v) = fYpg, W (w) = Ø,

� iterator bound vectors I(u) = I0, I(v) = I(w) = I00,

� index matrices A(Xp) = A0, A(Xq) = A(Xr) =�A00, A(Yp) = A(Yq) = I,

� index offset vectors b(Xp) = 0, b(Xq) = b(Zr) = b, b(Yp) = b(Yq) = 0,

� a fully set-associative cache with size jEj and block size one, and
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� cost bound K = 1.

We then have to prove that

9i2Zδ0+δ00 0� i �
�

I0

I00

�
^
�
A0 A00

�
i = b , :9σ σ feasible ^ cG;C(σ)� 1:

This proof goes along the same lines as the proof of theorem 4.12. First of all,
checking ()) again means proving that at least two different addresses are neces-
sary for a feasible schedule, which is done in an analogous way. For the implication
(() we choose time assignment τ = (p;s) and address assignment µ = (c;o) with

� period vectors pi(u) =�
δ0�1
∏

j=i+1
(I0j +1), pi(v) = pi(w) = 2

δ00�1
∏

j=i+1
(I00j +1).

� start times s(u) = 0, s(v) = 1, and s(w) = 2,

� address coefficient vectors c(X) = c(Y ) = 0, and

� address offsets o(X) = o(Y ) = 0.

All constraints are met and as exactly one address is used, this schedule has cost
one.

So, Ico-mpcsd has a solution if and only if Isle-ll0 has one. Note that the size of
Ico-mpcsd is polynomially bounded in the size of Isle-ll0 . Furthermore, the largest
number in Ico-mpcsd is polynomially bounded in the largest number in Isle-ll0 and
the size of Isle-ll0 . Therefore, co-MPCSD is NP-hard in the strong sense. 2

4.4 Discussion

In Figure 4.3 the complexity results of this chapter have been depicted graphically.
The arrows denote reductions between the problems that have been given through-
out this chapter.

Clout [1994] has studied the problem of scheduling programs that can be rep-
resented as synchronous data flow graphs [Lee & Messerschmitt, 1987] on a pro-
cessor with separate local memories for instructions and data. He shows that min-
imising the bandwidth between main memory and the two local memories for this
kind of problems is NP-complete in the strong sense. Kennedy & McKinley [1993]
prove that the problem of fusing loops for optimal reuse is NP-hard. Gupta, Malloy
& McRae [1997] prove that the problem of instruction reordering within a basic
block for data cache optimisation is NP-complete. The problems register suffi-
ciency and register sufficiency for loops [Garey & Johnson, 1979] handle the case
where all data dependencies have been given explicitly. For these problems, decid-
ing whether the number of data items to be stored is bounded by a given number
has been shown to be NP-complete.
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ZOIP [Garey & Johnson, 1979]PUC [Verhaegh, 1995]

SLE (4.1)ACP2 (4.9) ACP3 (4.8)ACP3 (4.7)

CO-OAA** (4.10) CO-MPSCD** (4.12, 4.13) CCCP* (4.2)

SLE-LL (4.3) SLE-LL′ (4.4)

CCCP-LL′ (4.6) CCCP-LL (4.5)OTA** (4.11)

Figure 4.3. An overview of the complexity results of this chapter. Between
brackets the numbers of the theorems are given. Problems to the left of the line
are NP-hard. To the right of the dotted line the problems are hard in the strong
sense. The problem tagged with one asterisk is not NP-hard but cannot be solved
in polynomial time unless P = NP. Problems tagged with two asterisks are not
known to be in NP.





5
Sequentialisability

In this chapter we show that not all schedules can be executed efficiently by a
processor. To restrict the set of schedules we consider for the scheduling problem
to schedules that can be executed efficiently, we introduce a property of schedules,
called sequentialisability. The problem of inefficient execution of schedules stems
from the single thread of execution that is common for processors. In the model of
multidimensional periodic operations the time assignment determines independent
threads of control for every operation in the program graph. In hardware these
threads can be implemented by separate pieces of logic, but in a processor we
typically have only one thread of control. In this chapter we give conditions on
schedules that ensure that these separate operations can efficiently be mapped onto a
processor. Such a mapping we call an implementation of a schedule. In Section 5.1
we define what we mean by an implementation, and under which conditions we
speak of an efficient implementation. Section 5.2 gives sufficient conditions on
schedules for an efficient implementation.

5.1 Sequential programs

It is not difficult to see that every schedule σ can be translated into a sequential pro-
gram, as the number of executions is finite, and thus they can be written as a single
sequence. Of course, such an implementation results in very long programs. The

57
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0 1 2 3 4 5 6 7 8 9 10 11 12 13

u

v

u u u u u u u u u u u u u u

v v v v v v v

14 15 16 17 18

Figure 5.1. A schedule for two operations u and v with iterator bound vectors
I(u) =

�
2 4

�T
and I(v) =

�
1 3

�T
having start times s(u) = 0, s(v) = 1 and

period vectors p(u) = p(v) =
�
7 1

�T
.

repetitive nature of operations often allows a compact implementation by means
of repetition statements. However, there are choices to be made in order to ob-
tain an efficient implementation of a schedule. In this section, we look at two cost
measures for implementations and define what we mean by an implementation of
a schedule.

First observe that we want the processor to spend as few machine cycles as
possible on overhead. All repetition statements and condition statements do not
contribute to the actual computation and can thus be viewed as overhead. On the
other hand, if no repetition statements are used the code of the sequential program
will become very large, causing, besides large code size, a vast number of instruc-
tion cache misses. Because of these observations we choose two cost measures for
an implementation of a schedule, being

� the number of guard evaluations as a measure of time not spent on the com-
putation proper, and

� the number of operation labels appearing in the program, as an indication of
the size of the program.

These operation labels can be thought of as function calls in a programming lan-
guage like C. At least one operation label occurs in a program for each operation.

By means of an example we explore several programs that all implement the
schedule given in Figure 5.1. The programs vary in their numbers of operation
labels and numbers of guard evaluations.

First of all, let us take an ‘easy’ approach by stepping through time as depicted
in the program of Figure 5.2. For each time slot we check if an operation exists
that ‘wants’ to execute at that time. In general for each schedule with weak lexico-
graphical executions for every operation, we can construct such a program.

Clearly, this program results in a large number of guard evaluations. Further-
more, note that several guards have to be evaluated for the increase statements.
The total number of guard evaluations exceeds 88. This number consists of 20
evaluations for the outer do-statement, and of 15 �4+4 �2 = 68 evaluations for the
inner do-statement. Additional guard evaluations are needed for lexicographically
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t := 0; i :=
�
0 0

�T
; j :=

�
0 0

�T
;

do t < 19 !
do pT(u)i+ s(u) = t ! u(i); ‘increase i’
[] pT(v) j+ s(v) = t ! v( j); ‘increase j’
od;
t := t +1

od

Figure 5.2. First implementation of the schedule of Figure 5.1. The operation
labels for operations u and v are u(i) and v( j) respectively. The ‘increase i’-
statement and ‘increase j’ statements increase the variables i 2 I(u) and j 2 I(v)
lexicographically.

for i0 := 0 : : :2 !
for i1 := 0 : : :4 !

u(i0; i1);
if i1 � 1 ^ i0 � 1 ! v(i0; i1�1) fi

rof
rof

Figure 5.3. Second implementation of the schedule of Figure 5.1.

increasing the variables i and j. On the other hand, for each operation only one
operation label appears in the program, which is optimal with respect to the second
cost measure.

Another implementation is possible because of the following observation.
As the period vectors of the operations are equal, the operations execute ‘syn-
chronously’. Hence, we can use the same repetition statements to code the execu-
tions of u and v, resulting in the program in Figure 5.3.

By the removal of time, i.e., program variable t, from the program, the number
of guard evaluations has been reduced to 4 + 6 � 3+ 3 � 5 � 2 = 52 with the same
number of operation labels. The number of guard evaluations can be reduced at
the expense of more operation labels in the program, as given in the program in
Figure 5.4.

At the expense of one operation label the number of guard evaluations has
again been reduced, now to 3+ 2 � 6+ 2 � 5+ 6 = 31. The if-statements can all be
removed from the program, resulting in the program in Figure 5.5.

Again, at the expense of one operation label, we are left with 3+5 �2+6 = 19
guard evaluations. Now we have reached the situation where each removal of an
evaluation results in one additional operation label in the program. In the extreme
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for i0 := 0 : : :1 !
for i1 := 0 : : :4 !

u(i0; i1);
if i1 � 1 ! v(i0; i1�1) fi

rof
rof;
for i1 := 0 : : :4 ! u(2; i1) rof

Figure 5.4. Third implementation of the schedule of Figure 5.1.

for i0 := 0 : : :1 !
u(i0;0);
for i1 := 0 : : :3 ! u(i0; i1 +1); v(i0; i1) rof

rof;
for i1 := 0 : : :4 ! u(2; i1) rof

Figure 5.5. Fourth implementation of the schedule of Figure 5.1.

case no guard evaluations are left resulting in 23 operation labels, and the program
in Figure 5.6.

u(0;0); u(0;1); v(0;0); u(0;2); v(0;1); u(0;3); v(0;2); u(0;4); v(0;3);
u(1;0); u(1;1); v(1;0); u(1;2); v(1;1); u(1;3); v(1;2); u(1;4); v(1;3);
u(2;0); u(2;1); u(2;2); u(2;3); u(2;4)

Figure 5.6. Fifth implementation of the schedule of Figure 5.1.

Both the first and the fifth program are extremes in the sense that the first has a
minimum of operation labels but many guard evaluations, and the fifth program has
a minimum of guard evaluations but a maximum of operation labels. The programs
in between can all be achieved by rewriting the second program, which makes it
possible to make a trade-off between guard evaluations and operation labels. As
this trade-off falls outside the scope of this thesis, we choose for the approach of
the second implementation, where one operation label is used for every operation
in the program graph. Hence, in its general form we define a sequential program
as follows.

Definition 5.1 (sequential program). The syntax of sequential programs is given
in Figure 5.7. A sequential program is a statement S. A statement can either be the
sequential composition of two statements, a for-statement, or an if-statement. The
guard of an if-statement consists of a conjunction of bounds on iterator variables.
The iterator variables x are taken from i; j; : : : and i0; j0; i1; j1 and so forth. Param-
eter N stands for an integer constant, and parameter E is a comma-separated list
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hSi ::= hSi ; hSi
>>>>> for x := 0 : : :N ! hSi rof

>>>>> if hGi ! u(E) fi

hGi ::= hGi ^ hGi
>>>>> x � N

>>>>> x � N

Figure 5.7. Sequential program syntax in BNF (Backus Naur Form).

of integer expressions of the form c0 � i0 + : : :+cn�1 � in�1 +d for integer constants
d;cl ; and n and iterator variables il . 2

Next, we must state precisely under which conditions a program does exactly
what we expected from a schedule, which means that the program executes exactly
those operation executions as in the schedule, and that it executes them in the same
order as demanded by the schedule. If we look at the schedule as a specification of
the sequential program that we want to write, we can define an implementation of
a schedule as a program that satisfies the schedule.

For the preservation of execution order by an implementation we introduce a
step number assignment by means of an example.

for j0 := 0 : : :1 !
for j1 := 0 : : :2 !

u( j0; j1)
rof

rof;
for j0 := 0 : : :2 ! v( j0) rof

In this program u(0;0) executes before u(0;1), which is executed before u(0;2),
and so on. If we assign the step numbers n(u; j) = 3 j0 + j1 and n(v; j) = 6 +

j0, we get the desired property that u(i0; i1) is executed before u( j0; j1) if and
only if n(u; i) < n(v; j). The same holds for u(i0; i1) and v( j). In this example the
step numbers start at 0 and are numbered successively. In general a step number
assignment is not unique and may be chosen at random as long as it correctly
represents the order of execution of the operation labels.

Definition 5.2 (step number assignment). For a sequential program, which ex-
ecutes every operation label u(i0; : : : ; iδ(u)�1) at most once, a step number as-
signment is given by an integer n(u; i) for each execution of an operation label
u(i0; : : : ; iδ(u)�1). Furthermore we demand that n(u; i) < n(v; j) if and only if
u(i0; : : : ; iδ(u)�1) is executed before v( j0; : : : ; jδ(v)�1) for each pair of executions
of operation labels. 2

Now, we can define under which conditions a sequential program is an imple-
mentation of a schedule.

Definition 5.3 (implementation of a schedule). Given are a program graph G and
a schedule σ. A sequential program is called an implementation of the schedule if
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� for each operation u and each vector i 2 Zδ(u), i is an execution of operation
u, i.e., i 2 I(u) if and only if there is exactly one execution of an operation
label u(i0; : : : ; iδ(u)�1) during execution of the program,

� the order of execution of operations imposed by the schedule is preserved by
the program, i.e., t(u; i) < t(v; j) ) n(u; i) < n(v; j) for each pair of execu-
tions i; j of operations u and v and for some step number assignment n of the
sequential program.

2

Except for the first one, all programs from the earlier example are implemen-
tations of the schedule of Figure 5.1. For the number of operation labels, that we
introduced earlier as a cost measure for an implementation, we introduce the term
compact-sequentialisability.

Definition 5.4 (n-compact-sequentialisability). A schedule is called n-compact-
sequentialisable if an implementation of the schedule exists in which the total num-
ber of operation labels is at most n times the number of operations in the schedule.
1-compact-sequentialisable schedules are also called compact-sequentialisable. 2

Next, we look at sufficient conditions for compact-sequentialisable schedules.

5.2 Sufficient conditions for compactness

In the remainder of this chapter we shall assume all periods to be non-negative and
ordered decreasingly, i.e., p0 � p1 � : : :� pδ�1. Periods can always be made non-
negative by renumbering the iterations of dimensions with negative period, i.e., by
making the substitution il = Il � i0l.

First we give a sufficient condition for compact-sequentialisability for a single
operation. After that we give three sufficient conditions for two operations and
show how they generalise to more operations.

5.2.1 One operation

A single operation u can be implemented by the sequential program of Figure 5.8
if u has weak lexicographical executions, i.e., wlex(p(u);I(u)) holds. Every ex-
ecution of an operation (u; i) corresponds to exactly one execution of an opera-
tion label u(i0; : : : ; iδ(u)�1), and vice versa. As every step number assignment for
the given program has the property i <lex j , n(u; i) < n(u; j), and operation u
has weak lexicographical executions, i.e., i �lex j ) t(u; i) � t(u; j), and hence
t(u; i) < t(u; j) ) i <lex j, we have

t(u; i)< t(u; j) ) n(u; i) < n(u; j),

for all executions i; j 2 I(u) of operation u.
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for i0 := 0 : : : I0(u)!
: : :

for Iδ(u)�1 := 0 : : : Iδ(u)�1 !
u(i0; : : : ; iδ(u)�1)

rof
: : :

rof

Figure 5.8. Implementation of an operation with the weak lexicographical order-
ing property.

5.2.2 Disjoint lifetimes

Two operations u and v with s(u) � s(v) are said to have disjoint lifetimes if the
last execution of operation u takes place before the first execution of v, i.e.,

s(u)+
δ(u)�1

∑
l=0

pl(u)Il(u)� s(v):

For a set V of operations and δ the maximum dimension of any operation,
i.e., maxu2V δ(u), we can check in O(jV j log(jV j)δ) time whether the operations
have disjoint lifetimes. This is done by sorting the operations on start times, fol-
lowed by checking the disjoint lifetime condition for each operation and its suc-
cessor. Hence, provided that the schedules for every single operation are compact-
sequentialisable, checking compact-sequentialisability for a set of operations with
disjoint lifetimes can be done efficiently.

The disjoint lifetime condition, however, is too strict. It only allows a sequence
of loop nestings with one operation label per nesting. The schedule in the example
of Figure 5.1, for instance, cannot be implemented by such a sequential program.

5.2.3 Equal periods

At the beginning of this chapter we indicated that compact-sequentialisable sched-
ules may exist for two operations with equal period vectors, i.e., p(u) = p(v). In
Figure 5.9(a) we give another example. Here, we have added ghost executions by
means of empty circles. With the six additional ghost executions for operation u
and three for v, operations u and v have the same pattern of repetition, which leads
to the sequential program of Figure 5.9(b), where ghost executions are discarded
by means of the if-statements.

We can look at these operations in another way. If we shift the operations of u
to the right with a vector d =

�
0 1

�T
, which results in a shift in time with pTd = 1,
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v

u
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u

(a)

for i0 := 0 : : :2 !
for i1 := 0 : : :4 !

if 0 � i1 � 2 ! u(i0; i1) fi;
if 1 � i1 � 4 ! v(i0; i1�1) fi

rof
rof

(b)

Figure 5.9. A schedule (a) for two operations u and v with iterator bound
I(u) =

�
2 2

�T
and I(v) =

�
2 3

�T
having start times s(u) = 0, s(v) = 1 and

period vectors p(u) = p(v) =
�
8 1

�T
. The sequential program in (b) is a possible

implementation of the schedule.

pk

u

v

u u

v

a b

Figure 5.10. The edges represent conditions for equal periods, which assure that
the group of executions of u in dimensions k+ 1 : : :δ� 1 starting at a = s(u)+

k
∑

l=0
pldl and the group of executions of v in dimensions k+ 1 : : :δ� 1 starting at

b = s(v) can be implemented by the same loop nest.
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for i0 := 0 : : :J0 !
: : :

for iδ�1 := 0 : : :Jδ�1 !
if Bu ! u(i0 +d�0 ; : : : ; iδ�1 +d�δ�1) fi;
if Bv ! v(i0�d+0 ; : : : ; iδ�1�d+δ�1) fi

rof
: : :

rof

with

Bu = 0� i0 +d�0 � I0(u) ^ : : : ^ 0 � iδ�1 +d�δ�1 � Iδ�1(u)

Bv = 0� i0�d+0 � I0(v) ^ : : : ^ 0 � iδ�1�d+δ�1 � Iδ�1(v)

Jl = max(Il(u)�d�l ; Il(v)+d+l ), for l = 0; : : : ;δ�1

Figure 5.11. Program for operations u and v that satisfy the equal periods condi-
tions.

we get a regular pattern of executions, in which only the number of executions
in each dimension can vary for the operations. The same effect is achieved by
moving operation v to the left with vector �d, which results in a shift in time with
�pTd =�1. With such a displacement vector d 2 Zδ, where δ = δ(u) = δ(v), we
shift the first execution of u towards the first execution of v.

As is depicted in Figure 5.10, every group of executions inside dimension k of
operation u may have an overlap with at most one such group of v and vice versa.
In the figure these conditions are depicted by the two arrows. Formally, they are
defined as

s(u)+
k

∑
l=0

pldl +

δ�1

∑
l=k+1

plIl(u)� pk � s(v) (5.1)

s(v)+
δ�1

∑
l=k+1

plIl(v)� s(u)+
k

∑
l=0

pldl + pk, (5.2)

which has to hold for all k = 0; : : : ;δ�1.
In order to make a loop nest in which u executes before v, we must furthermore

demand that the shifted execution of u is executed not later than the first execution
of v, i.e.,
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s(u)+
δ�1

∑
l=0

pldl � s(v): (5.3)

The next theorem shows that these conditions are sufficient for a schedule to
be compact-sequentialisable.

Theorem 5.1. Given are two operations u and v with iterator bound vectors I(u)
and I(v), start times s(u) and s(v), and equal period vectors p = p(u) = p(v).
Both operations satisfy the weak lexicographical property, i.e., wlex(p;I(u)) and
wlex(p;I(v)) hold. Let d 2Zδ be a vector that satisfies (5.1), (5.2), and (5.3). Then
the schedule for these operations is compact-sequentialisable, and can be imple-
mented by the program of Figure 5.11.
Proof. First of all, showing that the program in Figure 5.11 is an implementation
of the schedule is sufficient for proving compact-sequentialisability, as the opera-
tion labels u and v appear only once in the program. The guards of the operation
labels and the iterator bounds of the for-statements assure that each execution of
an operation label corresponds to exactly one execution of an operation, and vice
versa. What remains to be shown is that the order of execution of operations is
maintained by the sequential program. Therefore, we introduce the following step
number assignment.

n(u; i) = b(u)+qTi n(v; j) = b(v)+qTj

b(u) =�
δ�1

∑
l=0

qld
�
l b(v) = 1+

δ�1

∑
l=0

qld
+
l

qk = 2
δ�1

∏
l=k+1

(Jl +1) for all k = 0; : : : ;δ�1:

First, we show that the executions of operation u are correctly ordered by step
number assignment n by deriving

t(u; i) < t(u; j)

) f wlex(p;I(u)) g

i <lex j

� f lex(q;I(u)) g

n(u; i) < n(u; j),

for all executions i; j 2 I(u) of operation u. The same argument is used for execu-
tions of operation v. In order to prove preservation of order between executions of
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operations u and v we show

t(u; i) < t(v; j) ) n(u; i) < n(v; j)

t(u; i) > t(v; j) ) n(u; i) > n(v; j):

From here, we split the proof into two parts. First, we show that the order of
executions of operation labels u(i0; : : : ; iδ�1) and v( j0; : : : ; jδ�1) can be expressed
in terms of vectors i, j, and d, namely

i�lex j+d ) n(u; i) < n(v; j) (5.4)

i >lex j+d ) n(u; i) > n(v; j), (5.5)

for all executions i 2 I(u) and j 2 I(v). After that we show preservation of order
of executions by proving

t(u; i) < t(v; j) ) i �lex j+d, and (5.6)

t(u; i) > t(v; j) ) i >lex j+d: (5.7)

For (5.4), we show that i = j+ d is a sufficient condition for n(u; i) < n(v; j), by
deriving

n(u; j+d)

=

�
δ�1
∑

l=0
qld

�
l +

δ�1
∑

l=0
ql( jl +dl)

= f dl = d�l +d+l g

δ�1
∑

l=0
qld

+
l +

δ�1
∑

l=0
ql jl

<

n(v; j):

Next, for i <lex j+d, we have an 0 � m < δ with im < jm +dm and il = jl +dl for
all 0 � l < m. Hence,

n(u; i)

< f i <lex j+d g

n(u; j+d)

< f previous derivation g

n(u; j):

A similar argument is used for proving (5.5).
For (5.6) we must prove, assuming that t(u; i)< t(v; j), either i = j+d, or i <lex

j+ d. Assume that there exists an l 2 f0; : : : ;δ� 1g such that il 6= jl + dl . Then
there also exists a smallest such an l, say m. Hence im 6= jm + dm and il = jl + dl
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for all l = 0; : : : ;m�1. Now, we only have to show that im < jm +dm. To this end
we derive

t(u; i) < t(v; j)

�

s(u)+
m�1
∑

l=0
plil + pmim +

δ�1
∑

l=m+1
plil < s(v)+

m�1
∑

l=0
pl jl + pm jm +

δ�1
∑

l=m+1
pl jl

) f 0 � pl , 0 � il , jl � Il(v) g

s(u)+
m�1
∑

l=0
plil + pmim < s(v)+

m�1
∑

l=0
pl jl +

δ�1
∑

l=m+1
plIl(v)+ pm jm

) f (5.2) g

s(u)+
m�1
∑

l=0
plil + pmim < s(u)+

m�1
∑

l=0
pl jl +

m
∑

l=0
pldl + pm + pm jm

) f il = jl +dl for all l = 0; : : : ;m�1 g

pmim < pm jm + pmdm + pm

) f 0 � pm g

im � jm +dm

� f im 6= jm +dm g

im < jm +dm:

Finally, for (5.7) we must show that i >lex j+ d, if we assume t(u; i) > t(v; j).
There always is an m 2 f0; : : : ;δ� 1g with il = jl + dl for all l = 0; : : : ;m� 1.
Hence, a largest such m also exists. If we assume m = δ, then

s(u)+
δ�1
∑

l=0
plil > s(v)+

δ�1
∑

l=0
pl jl

� f il = jl +dl for all l = 0; : : : ;δ�1 g

s(u)+
δ�1
∑

l=0
pldl > s(v),

which contradicts (5.3). So, m < δ and im 6= jm + dm and il = jl + dl for all l =
0; : : : ;m� 1. Now, only im > jm + dm remains to be shown, which can be proved
in a similar way as we did for (5.6). 2

Having established sufficient conditions for sequentialisability, we must find a
way of producing a vector d that satisfies (5.1), (5.2), and (5.3). If both (5.1) and
(5.2) are satisfied for a vector d, but (5.3) is not, a valid vector d0 can be found by
negating d and switching the roles of u and v in the three conditions. If we assume
that all periods are divisible, the following theorem shows that a vector d can be
found in polynomial time.
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Theorem 5.2. The problem of deciding whether a vector d exists that satisfies (5.1)
and (5.2) for equal period vectors with the property pl+1 j pl for all l = 0; : : : ;δ�2
can be solved in polynomial time.
Proof. When the two conditions are written out for k = 0; : : : ;δ�1, we have

L0 � p0d0 �U0 (5.8)

L1 � p0d0 + p1d1 �U1 (5.9)
...

Lδ�1 �
δ�1

∑
l=0

pldl �Uδ�1, (5.10)

with

Lk = s(v)� s(u)� pk +

δ�1

∑
l=k+1

pl(v)Il(v), and

Uk = s(v)� s(u)+ pk�
δ�1

∑
l=k+1

pl(u)Il(u):

Here, a possible value for d0 can be extracted from (5.8), after which we determine
a value for d1 from (5.9), and so forth. Note that this algorithm does not yield a
unique solution d. Nevertheless, we can show that no wrong choice can be made.
Suppose that we have a solution e for (5.8) : : : (5.10) and suppose that we have a
solution d up to entry k, i.e., d0 : : :dk�1 have been determined. Then we can show
that it is possible to find a solution for dk. Since e is a solution, we know that

Lk �
k
∑

l=0
plel �Uk

�

Lk � pkek +
k�1
∑

l=0
pl(el �dl)+

k�1
∑

l=0
pldl �Uk

� f pl = pknl for some nl and l < k g

Lk � pkek +
k�1
∑

l=0
pknl(el �dl)+

k�1
∑

l=0
pldl �Uk,

so by choosing dk = ek +
k�1
∑

l=0
nl(el �dl) we find a solution if one exists. 2

The complexity of finding a solution d for (5.1) and (5.2) for arbitrary period
vectors remains unknown. The algorithm proposed in the theorem above cannot
be used for arbitrary period vectors as is shown in the next example, where two
operations u and v are given with iterator bound vectors I(u) =

�
10 1 3

�T
, I(v) =�

10 0 5
�T

, start times s(u) = 0, s(v) = 10, and period vectors p(u) = p(v) = p =
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�
20 6 1

�T
. Rewriting (5.1) and (5.2) gives

�5 � 20d0 � 21

9� 20d0 +6d1 � 13

9� 20d0 +6d1 +d2 � 11:

There are three solutions for these inequalities, namely with d0 = 0, d1 = 2, and
d2 2 f�1;�2;�3g. If we determine the entries dk one by one, we can choose
d0 = 1, which does not leave a solution for d1.

So far we have looked at the sequentialisability of two operations with equal
periods. In order to generalise these conditions for more than two operations we
look at the example of Figure 5.9, where the two operations can be seen as a single
operation with start time s= 0, period vector p=

�
7 1

�T
, and iterator bound vector

I =
�
2 4

�T
.

In general, any pair of operations that satisfy the equal periods conditions can
be written as one single operation. Hence, sufficient conditions for multiple opera-
tions ul are verified by alternately checking two operations and, if sequentialisable,
composing them into one new operation. Unfortunately, whether or not we find
that the operations are sequentialisable may depend on the order in which the op-
erations are checked. This is a result of the nondeterminism in the algorithm of
Theorem 5.2. The formal complexity of determining whether or not a set of oper-
ations is sequentialisable with respect to the equal periods conditions is unknown.

5.2.4 Gaps

The equal period conditions for compact-sequentialisability can be weakened even
further. Without loss of generality we assume that s(u) � s(v). In Figure 5.12
two operations u and v have equal period for dimension 0, but a different period
for dimension 1. Nevertheless, all executions of operation u in dimension 1 occur
before executions of operation v in dimension 1. In general, the last execution of u
that occurs not later than the first execution of v is d with

dk = min(Ik(u);(s(v)� s(u)�
k�1

∑
l=0

pl(u)dl)div pk(u)), (5.11)

for all k = 0; : : : ;δ(u)�1.
We define δ to be the first dimension in which u and v do not execute syn-

chronously (dimension 1 in our example), i.e., we define

δ = minfk j k 2 f0; : : : ;δ(u)�1g ^ 8l2fk;::: ;δ(u)�1g dl = Il(u)g (5.12)

Now, we can give the conditions for compact-sequentialisability. These are
denoted in Figure 5.12 by means of two arrows. The arrow that points towards
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(u)

p1(v)

(a)

for i0 := 0 : : :1 !
for i1 := 0 : : :2 !

u(i0; i1)
rof;
for i1 := 0 : : :2 !

v(i0; i1)
rof

rof

(b)

Figure 5.12. Operations u and v in (a) run synchronously in dimension 0 and have
disjoint lifetimes for dimension 1. The loop nest in (b) correctly implements these
operations.
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the first execution of v originates from execution d of operation u by construction
of vector d. The second arrow is the same arrow as we saw for equal periods,
corresponding to the condition

s(v)+
δ(v)�1

∑
l=k+1

pl(v)Il(v)� s(u)+
k

∑
l=0

pl(u)dl + pk(u), (5.13)

for all k = 0; : : : ;δ�1.
These conditions are called gap conditions. In Figure 5.12 we see that the

executions of u within dimension 0 leave a gap, in which the executions of v take
place. In general, this holds for executions of u and v within dimension δ�1.

One can look at (5.13) as a generalisation of (5.2). Inequality (5.3) and a gen-
eralisation of (5.1) are met by the construction of vector d in (5.11).

Theorem 5.3. Given are two operations u and v with iterator bound vectors
I(u) and I(v), start times s(u) � s(v), and period vectors p(u), p(v). Both
operations satisfy the weak lexicographical property, i.e., wlex(p(u);I(u)) and
wlex(p(v);I(v)) hold. Let d 2 Zδ(u) be a vector that is defined by (5.11) and
that satisfies (5.13) for all k = 0; : : : ;δ(u)� 1. Furthermore, we assume that
pk(u) = pk(v) for all k = 0; : : : ;δ� 1. Then the schedule for these operations is
compact-sequentialisable, and can be implemented by the program of Figure 5.13.
Proof. For dimensions k = 0; : : : ;δ�1 we follow the proof for equal periods. For
dimensions k � δ the conditions for disjoint lifetimes are satisfied. 2

The above conditions can be checked in O(δ(u)2) time. A generalisation for
more operations is not straightforward as the composition of two operations can in
general not easily be modelled as one operation, with a start time and period vector.

5.3 Discussion

Compact-sequentialisable schedules allow for an efficient implementation, in the
sense that the number of operation labels is minimal, i.e., equal to the number of
operations. Such a schedule may result in a large number of guard evaluations, but
a trade-off can be made between guard evaluations and operation labels. In this
chapter we have given sufficient conditions for compact-sequentialisability. For
each individual operation we demand weak lexicographical executions. The only
conditions for two operations that generalise to more operations are the disjoint
time conditions and the conditions for equal periods. The conditions for equal
periods can be checked in polynomial time if all periods are divisible.

In general, we may assume that a schedule has equal period vectors for all
operations as we may insert missing periods using an iterator bound zero. Further-
more, if all operations have equal period vectors, we can increase every period to
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for i0 := 0 : : :J0 !
: : :

for iδ�1 := 0 : : :Jδ�1 !
for iδ := 0 : : : Iδ(u)!

: : :
for iδ(u)�1 := 0 : : : Iδ(u)�1(u)!

if Bu ! u(i0; : : : ; iδ(u)�1) fi
rof

: : :
rof;
for iδ := 0 : : : Iδ(v)!

: : :
for iδ(v)�1 := 0 : : : Iδ(v)�1(v)!

if Bv ! v(i0�d0; : : : ; iδ�1�dδ�1; iδ; : : : ; iδ(v)�1) fi
rof

: : :
rof

rof
: : :

rof

with

Bu = i0 � I0(u) ^ : : : ^ iδ�1 � Iδ�1(u)

Bv = 0 � i0�d0 � I0(v) ^ : : : ^ 0� iδ�1�dδ�1 � Iδ�1(v)

Jl = max(Il(u);dl + Il(v)), for l = 0; : : : ;δ�1

Figure 5.13. Implementation of a schedule that satisfies the gap conditions.
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the next power of two. Hence, without losing optimal solutions we may assume
that all operations have equal period vectors, all of which elements are powers of
two. Checking the sufficient conditions for compact-sequentialisability can then
be performed in polynomial time.



6
Cost Calculation

As is pointed out in Chapter 4, it is difficult to efficiently compute the number
of cache misses for an execution of a schedule. In this chapter we develop an
algorithm for estimating the number of cache misses for a given program graph,
schedule, and cache. The objective is to find an efficient algorithm for computing
upper bounds on the number of cache misses, thus providing upper bounds on
the time required for the execution of a schedule. In Section 6.1 we decompose
the cache cost computation problem by introducing two functions, being a reuse
length function and a filling function. These functions give some insight on how
to construct an algorithm for an efficient and effective estimation of the number of
cache misses. Reuse length is the subject of Sections 6.2 and 6.3. Determining the
filling is the subject of Section 6.4. The cache cost computation algorithm that is
proposed in Section 6.5 has been implemented and experimental results are shown
in Section 6.6.

6.1 Decomposition

In Chapter 3 we categorise cache misses for LRU caches as follows. A compulsory
miss occurs for a port execution e 2 E if it is the first to access block address ab(e).
An expiration miss occurs if too many block addresses have been accessed since
the previous access to block address ab(e). Formally, a port execution e causes

75
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Figure 6.1. A visualisation of cache misses for the 50�50 matrix multiplication
example of Figure 3.1 For each port execution the number of different blocks
accessed since the previous access to the same block is denoted with a dot. All
dots at the height denoted with ∞ represent port executions that access a block
address for the first time. The grey area in the graph has a height of 256, the cache
size. All dots within the grey area represent cache hits; all dots above this area
represent cache misses.

a compulsory miss if M(e) = Ø as introduced in (3.1), and an expiration miss
if M(e) 6= Ø ^ jS(e)j > ss, as introduced in (3.2). Hence, we are interested in
computing the number of different blocks jS(e)j that are accessed between e and
its predecessor that accessed the same block ab(e).

In Figure 6.1 we have visualised all hits and misses for the 50� 50 matrix
multiplication example of Figure 3.1. Here we plot a dot at position (t(e); jS(e)j)
for each port execution e 2 E . For a port execution e that accesses a block address
first, a dot has been plotted at (t(e);∞). The grey area in the graph has a height
equal to the cache size, in this case 256. By definition all dots within the grey area
represent cache hits, and all dots above the area represent cache misses.

For this example we used a time assignment with start times s(l) = 0, s(m) =

2500, and period vectors p(l) =
�
50 1

�T
, p(m) =

�
1 2500 50

�T
. The address

assignment for the three arrays is given by address offsets o(X) = 0, o(Y ) = 2504,
o(Z) = 5008 and coefficient vectors c(X) = c(Y ) =

�
50 1

�T
, c(Z) =

�
50 1 0

�T
.
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Figure 6.2. Reuse length for each port execution for the 50�50 matrix multipli-
cation example of Figure 3.1.

Furthermore, we use a fully set-associative cache of 256 blocks with a block size
of 16 bytes.

When computing a single point in the graph of Figure 6.1, the previous access
to the same block is determined. After that the number of blocks accessed by all
other ports in this interval is counted. In general it will prove difficult to find the
previous access to a block as is discussed later on in this chapter. Furthermore, the
contributions to the number of distinct block addresses of all ports have to be taken
into account to compute jS(e)j.

As there are as many points in the graph as there are port executions for a
given schedule, computing them all separately cannot be done within running time
polynomial in the size of an instance of CCCP, i.e., a program graph, a schedule,
and a cache. Hence, we are not interested in finding all individual points, but rather
in finding a compact representation for them.

In order to tackle this problem, we split it into two separate problems. First we
concentrate on finding the previous port execution that accesses the same block
address as a function of execution e 2 E(p) for each port p 2 P. Second, we
determine the so-called filling of the cache at the time of this port execution e.

One way or another we have to determine reuse for each port execution, i.e., to
determine the previous access to the same block address. Whether a port execution
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Figure 6.3. Length of filling interval for each port execution for the 50�50 matrix
multiplication example of Figure 3.1.

causes a miss or a hit is determined by the number of different block addresses that
are referenced between the previous reference of a block address and the current
one.

Rather than determining the number of different block addresses between the
previous and current block access, however, we are going to determine how much
time has elapsed between them, which is reflected in the reuse length function,
and from how long ago all accessed block addresses are still in the cache, which
is reflected in the filling function. Based on these two functions, which can be
approximated rather efficiently, we can determine whether we have a cache hit or
a cache miss.

Formally, we define reuse length r(e) 2Z∞ for a port execution e 2 E by

r(e) = minf t(e)� t( f ) j f 2 E ^ t( f )< t(e) ^ ab( f ) = ab(e)g:

For a port execution e 2 E , the reuse length is the time between the previous access
to the block address that e accesses and e itself. If no previous access exists, the
reuse length is the minimum over an empty domain, i.e., the reuse length is infi-
nite. The reuse length for all executions of the matrix multiplication example of
Figure 3.1 are depicted in Figure 6.2.

The filling interval for a port execution e 2 E is the maximum interval ending
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at time t(e) in which at most ss different blocks are accessed. The filling interval
ft(e)� f (e); : : : ; t(e)g for port execution e 2 E is defined by its length

f (e) = maxf t(e)� t( f ) j f 2 E ^ R(t( f );e) � ss g,

where R( j;e) 2 Z is the number of different blocks in the same set as a(e) that are
accessed in the time interval f j; : : : ; t(e)g, or formally

R( j;e) = jfab( f ) j f 2 E ^ s(a(e)) = s(a( f )) ^ j � t( f )� t(e)gj:

For a fully set-associative cache the length of the filling interval is

f (e) = maxf t(e)� t( f ) j f 2 E ^ jfab(g) j g 2 E ^ t( f )� t(g) � t(e)gj � cs g:

The length of the filling interval for all executions of the matrix multiplication
example of Figure 3.1 are depicted in Figure 6.3.

In Figure 6.4 we show for an example that a miss can indeed be formulated in
terms of the reuse length r(e) and the length of the filling interval f (e) for all port
executions e 2 E . Before proving that the proposed decomposition is correct, we
need an additional result.

Lemma 6.1. M(e) 6= Ø) r(e) = t(e)�m(e) for all port executions e 2 E .
Proof.

t(e)�m(e)

= f definition of m(e) g

t(e)�max f t( f ) j f 2M(e)g

= f M(e) 6= Ø g

min f t(e)� t( f ) j f 2M(e)g

= f definition of M(e) g

minf t(e)� t( f ) j f 2 E ^ ab( f ) = ab(e) ^ t( f )< t(e)g

= f definition of r(e) g

r(e)

2

Theorem 6.1. A cache miss for a port execution e 2 E occurs if and only if r(e)>
f (e).
Proof. The proof is by case analysis. First, we assume M(e) =Ø for port execution
e 2 E . By definition, e generates a compulsory cache miss, and hence we have to
prove that r(e)> f (e). The reuse length r(e) is infinite as no port execution f 2 E
exists that executes before t(e) and that accesses the same block address as e. As
positive values for f (e) are finite, we have that r(e)> f (e).
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0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

time

block
address

(a)

time cache block miss? reuse filling
t(e) content ab(e) r(e) f (e) r(e) > f (e)

0 empty 0 yes ∞ 0 true
1 0 1 yes ∞ 1 true
2 0 1 2 yes ∞ 2 true
3 0 1 2 3 yes ∞ 3 true
4 0 1 2 3 4 yes ∞ 3 true
5 1 2 3 4 2 no 3 4 false
6 1 2 3 4 4 no 2 5 false
7 1 2 3 4 1 no 6 6 false
8 1 2 3 4 4 no 2 7 false
9 1 2 3 4 0 yes 9 5 true

10 0 1 2 4 4 no 2 6 false

(b)

Figure 6.4. An example showing two equivalent descriptions of a cache miss. The
cache is fully set-associative of size cs = 4 and it has block size bs = 1. In (a) each
circle represents an execution of a port. At the left side in (b) the cache content
before the corresponding port execution and the corresponding address determine
whether or not a miss occurs. At the right side a miss is characterised by means
of the reuse length r(e) and length of the filling interval f (e).
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Next, for M(e) 6= Ø we know that a port execution e0 2 E exists with t(e0) =
m(e). Now, ex(e) , r(e) > f (e) remains to be shown. If we assume that a port
execution g 2 E exists with R(t(g);e) � ss, we have that

r(e)> f (e)

� f Lemma 6.1 and definition of f (e) g

t(e)�m(e)> maxf t(e)� t( f ) j f 2 E ^ R(t( f );e) � ss g

� f 9g2E R(t(g);e) � ss and m(e) = t(e0) g

t(e0)< minf t( f ) j f 2 E ^ R(t( f );e) � ss g

� f e0 2 E , 9x R(x;e) � ss, and 8x (R(x;e) > ss )8y<x R(y;e)> ss) g

R(t(e0);e)> ss

� f t(e0) = m(e) g

R(m(e);e)> ss

� f jS(e)j = R(m(e);e) g

ex(e):

If we find that for all g 2 E we have R(t(g);e) > ss, then f (e) = �∞, so t(e)�
m(e)> f (e). In particular, we then also know that R(t(e0);e)> ss, or equivalently,
R(m(e);e) > ss, i.e., ex(e) holds. 2

As a result of the previous theorem, we have obtained a decomposition for the
problem of determining whether a cache miss occurs for an individual port execu-
tion. However, the cache cost computation problem is the problem of determining
the total number of cache misses for all port executions of a schedule.

In the next sections we first look at the computation of the reuse length for
ports instead of individual port executions by expressing the reuse length for every
port as a function of its iterator vector, at the complexity of this computation, and
at estimating the reuse length. After that we address the computation of the length
of the filling interval.

6.2 Reuse graphs

In the previous section we have reasoned about reuse for individual port executions.
As the number of port executions is in general not bounded by a polynomial in the
size of an instance Icccp of CCCP, we attempt to characterise reuse for ports in
terms of their iterator vector. In general, ports reuse data from more than one port.
Hence, for an accurate computation or estimation of the reuse length, we have to
find out from which ports data are reused. To that end we introduce the notion of a
reuse graph, which we first explain by means of an example.

Suppose that we have three operations with one port each, being p, q, and r,
with respective schedules that are given in Figure 6.5(a). Here the definition of a
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port p:
for i0 := 0 : : :9 period 1 !
h i0 i start at 0

port q:
for i0 := 0 : : :4 period 1 !
h i0 +10 i start at 10

port r:
for i0 := 0 : : :14 period 1 !
h i0 i start at 20

(a)

{(r, i) | 0 ≤ i0 ≤ 9 }

⊥

p

q

r

{(r, i) | 10 ≤ i0 ≤ 14 }{(q, i) | 0 ≤ i0 ≤ 4 }

{(p, i) | 0 ≤ i0 ≤ 9 }

(b)

Figure 6.5. Example of a reuse graph. In (a) we give the definitions of the ports.
The edges of the reuse graph in (b) are annotated with port executions that reuse
data. For example, all executions of port r with 0� i0 � 9 reuse data from port p.
All executions of port r with 10� i0 � 14 reuse from port q.

port has been extended with its schedule by giving the respective periods for all
dimensions and its start time. The address assignment is specified by the address
expression as a linear expression in the iterators. All such address expressions are
surrounded by address brackets h i. For the cache we choose a block size bs = 1.
The first ten executions of port r reuse data that were most recently used by port p,
and the remaining five executions reuse data from port q. In Figure 6.5(b) this is
depicted by a reuse graph. Here, the nodes correspond to the ports p, q, and r. Node
? is a special node that can be thought of as a port with exactly one execution that
takes place before any other port execution, and that accesses all block addresses.
By inserting this node in the reuse graph, reuse is always defined.

Formally, a reuse graph is defined as follows.
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Definition 6.1 (reuse graph). For a program graph G, a schedule σ, and a cache
C, a reuse graph is a 3-tuple R= (U;A; I). The set of vertices U =P[f?g consists
of the set of ports of the program graph and a special port ?. The set of directed
edges of the reuse graph is denoted by A �U �U . Each edge a = (p;q) 2 A is
labelled with a non-empty subset of the executions I(a) � E(p) of port p. There
are three additional constraints on a reuse graph.

� For every edge a = (p;q) 2 A and all executions in I(a) of port p, there must
exist reuse from port q, i.e.,

q =? _ 8(p;i)2I(a) 9j2I(q) ab(p; i) = ab(q; j) ^ t(q; j)< t(p; i):

� The labels I(a) of the outgoing edges a = (p;q) for each p 2 P must be a
partition of all executions E(p) of p.

� Port ? has no outgoing edges.

The reuse length for port execution (p; i)2 E induced by this graph is the minimum
reuse length that can be found on a = (p;q) with (p; i) 2 I(a), or infinite if q =?,
i.e.,

rR(p; i) =
minf t(p; i)� t(q; j) j q 6=? ^ j 2 I(q) ^ ab(p; i) = ab(q; j) ^ t(q; j)< t(p; i)g:

2

For each combination of a program graph, schedule, and cache, a reuse graph
exists. For example, the reuse graph with edges A = f(p;?) j p 2 Pg and I(a) =
E(p) for each edge a = (p;?) meets all constraints. This graph, however, has
rather poor quality as all reuse lengths induced by the graph are infinite. Using the
induced reuse length of this graph to compute the number of cache misses results
in a cache miss for each port execution.

However, not all overestimations of the reuse length have to result in cache
misses. We say that a reuse graph is called weakly optimal if

r(e)> f (e) , rR(e)> f (e),

for all port executions e 2 E .
A reuse graph is called optimal if for every port execution e 2 E with reuse

length r(e), this reuse length is induced by the reuse graph, i.e., r(e) = rR(e).
Such a graph always exists, but does not have to be unique as a block address may
be accessed by two different ports at the same time.

For establishing the exact reuse length for every port execution, we must es-
tablish an optimal reuse graph. We show that the problem of constructing such a
graph cannot be done in polynomial time unless P = NP.

Definition 6.2 (optimal reuse graph construction problem (ORGCP)).
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Figure 6.6. The created program graph of the complexity proof of ORGCP. Be-
low every operation we give the set of block addresses that are accessed by the
corresponding port.

Given a program graph G = (V;R;W;I;E;A;b), a schedule σ = (τ;µ), and a cache
C, construct an optimal reuse graph. 2

Theorem 6.2. ORGCP cannot be solved in polynomial time unless P = NP.
Proof. For the proof we use a reduction from SLE. Let an instance Isle of SLE be
given by a matrix A 2Zα�δ, a vector b 2Zα, and a vector I 2 Nδ . We construct an
instance of ORGCP as follows. For the cache we choose block size bs = 1. Other
cache parameters are not used in the proof. Furthermore, we choose a program
graph G = (V;R;W;I;E;A;b), which is depicted in Figure 6.6, with

� four operations V = f p̃; q̃; r̃; s̃g,

� operation read ports R( p̃) = fpg, R(q̃) = fqg, R(r̃) = frg, R(s̃) = Ø,

� operation write ports W ( p̃) = Ø, W (q̃) = Ø, W (r̃) = Ø, W (s̃) = fsg,

� iterator bound vectors I( p̃) = I, I(q̃) = [ ], I(r̃) = I, I(s̃) = w� v,

� data dependencies E = f(s; p);(s;q);(s;r)g,

� index matrices A(p) = A, A(q) = [ ], A(r) = A, A(s) = I, and

� index offset vectors b(p) = 0, b(q) = b, b(r) = 0, b(s) = v,

where I is the δ�δ identity matrix, and where vectors v;w 2 Zδ have been chosen
such that v � z � w holds for all z 2 fAi j i 2 Zδ ^ 0 � i � Ig [ fbg. In this
way, port s produces all data consumed by ports p, q, and r. We choose a feasible
time assignment for G with first all executions of s̃, followed by the executions of
p̃. After that the only execution of q̃ takes place, followed by the executions of
r̃. For the address assignment we choose a unique address assignment as given
in Theorem 3.1. In Figure 6.6 each operation has been annotated with the set of
block addresses accessed by its port. The set of block addresses accessed by port
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p is denoted by X . As port r visits exactly the same array elements as port p,
port r also accesses block addresses X . Next, the one block address accessed by
port q is denoted by y. We observe that port s accesses block address y and block
addresses X by construction of its index matrix and its index offset vector. Apart
from these, it accesses an additional set of block addresses, which is denoted by
Z. When constructing a reuse graph for the given program graph and schedule,
the question must be answered whether or not block address y is visited by port
p, i.e., whether y 2 X . If the answer to this question is positive then Figure 6.7(a)
depicts the optimal reuse graph. If block address y is not visited by port p, then
Figure 6.7(b) is the optimal choice.

Giving an answer to the question whether y 2 X , however, is as difficult as
giving an answer to our original SLE instance, which is shown by the following
derivation.

y 2 X

� f cache block size bs = 1 g

a(q; [ ]) 2 fa(p; i) j i 2 Zδ ^ 0� i � Ig

� f µ is a unique address assignment, Theorem 3.1 g

n(q; [ ]) 2 fn(p; i) j i 2 Zδ ^ 0 � i � Ig

�

b 2 fAi j i 2Zδ ^ 0 � i� Ig

�

9i2Zδ 0� i � I ^ Ai = b

Hence, y 2 X if and only if Isle has a solution. So, if it is possible to solve the
optimal reuse graph construction problem in polynomial time, we can solve SLE
in polynomial time, implying P = NP. 2

As an optimal reuse graph is difficult to find, an approximation of the reuse
graph is introduced. The goal of the scheduling problem of Definition 3.10 is to
minimise the number of cache misses. As we want to use an approximation of the
reuse length in order to determine whether or not a cache miss occurs, we want to
make sure that we do not count misses as hits. A cache miss occurs if the reuse
length r(e) is greater than the filling function f (e). Hence, in order to get an upper
bound on the number of cache misses we have to derive a lower bound on the reuse
length.

Definition 6.3 (approximate reuse graph). Given a program graph G, a schedule
σ, and a cache C, an approximate reuse graph is a 5-tuple R= (U;A; I;x;y), where
U = P[f?g is the set of vertices of the graph and A �U �U is the set of edges
of the graph. For every directed edge a = (p;q) 2 A, an approximate reuse length
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Figure 6.7. Reuse graphs for the complexity proof of ORGCP. In (a) the reuse
graph is depicted for the case that block address y accessed by port q is also ac-
cessed by port p. In (b) the reuse graph is depicted for the case that y is not
accessed by p.

vector x(a) 2Zδ(p) and an approximate reuse length offset y(a) 2Z∞ are given for
all executions I(a) � E of port p. The following constraints must be satisfied for
an approximate reuse graph.

� For every edge a = (p;q) 2 A, either q = ?, or the reuse length must be
overestimated by the approximate reuse length vector and approximate reuse
length offset, i.e.,

9j2I(q) ab(p; i) = ab(q; j) ^ t(q; j)< t(p; i)� t(q; j)+xT(a)i+ y(a),

for all executions (p; i) 2 I(a) of port p.

� The executions I(a) of the outgoing edges a = (p;q) of port p 2 P must be
a partition of all executions E(p) of port p.

� Port ? has no outgoing edges.

2

Here, we aim at finding linear approximations of the reuse length. There are
two reasons for choosing a linear approximation. First, as all times at which ports
execute and all addresses that ports access are linear expressions in the iterators, it
is likely that reuse length can also be expressed as a linear expression in the itera-
tors. Second, by choosing a linear expression we get a compact representation of
reuse. These approximations are denoted by the approximate reuse length function
rR. We say that port execution (p; i) has approximate reuse length

rR(p; i) = xT(a)i+ y(a)

for all i 2 I(a) with a = (p;q) 2 A.
In the same way as we defined optimal reuse graphs and weakly optimal reuse

graphs, we introduce optimal approximate reuse graphs and weakly optimal ap-
proximate reuse graphs. An approximate reuse graph is called optimal if the ap-
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proximate reuse length is equal to the exact reuse length for all port executions,
i.e., rR(e) = r(e) for all port executions e 2 E . We say that an approximate reuse
graph is weakly optimal if

r(e)> f (e) , rR(e)> f (e),

for all port executions e 2 E .
Quality of an approximate reuse graph can be measured in several ways. Dif-

ferences between the approximate reuse length and the exact reuse length that are
too large may result in hits counted as misses, leading to an overestimation of the
number of cache misses. Hence, the sum of differences between reuse length and
approximate reuse length for all executions of ports is an indication for the quality
of a reuse graph.

However, not all reuse lengths that are too large result in an erroneous count of
the number of cache misses. Hence, if we assume that we can compute the filling
function f exactly, the difference between the number of cache misses and the
estimated number of cache misses using the approximate reuse length and filling f
also measures the quality of the reuse graph. In Section 6.6 we come back to these
quality measures.

Next, we present some heuristics that can be used for the construction of an
approximate reuse graph.

6.3 Reuse heuristics

Two port executions e; f 2 E are said to exhibit reuse if they both access the same
block address and do not execute simultaneously, i.e., ab(e) = ab( f ) and t(e) <
t( f ). If executions e and f take place at the same time, then we must assume that
no reuse takes place. This is a direct result of the definition that we chose for a
cache miss, namely if two port executions take place at the same time, one may not
assume that one takes place before the other.

We need efficient means for computing and storing the reuse length r(e) for
all e 2 E . In order to do so, we must be able to characterise all executions i and j
of respective ports p of array A and port q of array B that access the same block
address, i.e., ab(p; i) = ab(q; j), which is equivalent to

(cT(A)(A(p)i+b(p))+o(A))div bs = (cT(B)(A(q) j+b(q))+o(B))div bs, (6.1)

and can be rewritten into

(cT(p)i+o(p))div bs = (cT(q) j+o(q))div bs, (6.2)

for port address coefficient vector c(p) =AT(p)c(A) and port address offset o(p) =
cT(A)b(p)+o(A).

We want to determine as many pairs (p; i) and (q; j) that exhibit reuse as pos-
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self temporal ���! self spatial??y ??y
group temporal ���! group spatial

Figure 6.8. Relationship between different kinds of reuse. The arrows denote that
one kind of reuse is a special case of another kind of reuse. The most general kind
of reuse is group spatial reuse.

sible. To this end, (6.1) can be simplified if we make some assumptions. For that,
we use the classification of reuse that was also used by Wolf & Lam [1991]. Two
executions of the same port are said to possess self temporal reuse if they access
the same address. Self spatial reuse occurs if two executions of the same port ac-
cess the same cache block. Two executions of two ports in general may also access
the same address. Group temporal reuse occurs if the executions access the same
address, and group spatial reuse if the executions access the same block address.
By definition, temporal reuse is a special case of spatial reuse, and self reuse is a
special case of group reuse, as depicted in the diagram of Figure 6.8.

Expression (6.1) describes the most general case, i.e., group spatial reuse. For
group temporal reuse it is simplified to

cT(A)(A(p)i+b(p))+o(A) = cT(B)(A(q) j+b(q))+o(B),

or, if p and q belong to the same array (p;q 2 A), to

cT(A)(A(p)i�A(q) j+b(p)�b(q)) = 0:

For self temporal reuse, the expression can be reduced even further, namely to

cT(A)A(p)(i� j) = 0:

In the remainder of this section we give heuristic rules for finding self tem-
poral reuse, group temporal reuse, and self spatial reuse. A heuristic for group
spatial reuse is the topic of the Section 6.3.5, and consists of a combination of the
heuristics in this section. We start by discussing temporal reuse in general.

6.3.1 Introduction to temporal reuse

In this section we give some tools that we use to find self temporal reuse and group
temporal reuse in the following sections. In Figure 6.9 we give an example of
(self) temporal reuse, where, for example, executions

�
1 0

�T
and

�
2 1

�T
reuse

data from executions
�
0 0

�T
and

�
1 1

�T
, respectively.

We want to express temporal reuse compactly. As all times at which ports
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for i0 := 0 : : :3 period 4 !
for i1 := 0 : : :2 period 1 !
h i1 i start at 0

(a)

0 1 2 3 4 5 6 8 9 10 11 12 13 14 157

address

time

0 1 2 0 1 2

reuse length = 4

0 0 0
0 1 2

1 1 1
0 1 2

2 2 2
0 1 2

i0

i1

0 1 2 0 1 2

3 3 3
0 1 2

(b)

⊥ p

→ r(p,i) = ∞≤ i ≤0
0

0
2

→ r(p,i) = 0 i + 4

1
0

3
2

≤ i ≤

T

(c)

Figure 6.9. Example of (self) temporal reuse. The definition of the port is given in
(a). For all executions of the port that reuse data, the addresses have been typeset
bold in (b). All executions of the port for which no reuse can be found have been
typeset italic. The reuse graph for this port p is given in (c).
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execute and all addresses that ports access are linear expressions in the iterators,
we aim at expressing reuse length as a linear expression in the iterators. We say that
executions J � I(q) of port q reuse from port p with reuse matrix R 2 Zδ(p)�δ(q)

and reuse vector r 2 Zδ(p) if

i = Rj+ r ) a(p; i) = a(q; j), (6.3)

for all i 2 I(p), j 2 J � I(q), and t(p; i) < t(q; j).
Assuming that i = Rj+ r, the next computation derives sufficient conditions

for R and r to satisfy (6.3). The three steps in this derivation that strengthen the
expression are discussed after this derivation.

a(p; i) = a(q; j)

�

cT(A)(A(p)i+b(p))+o(A) = cT(B)(A(q) j+b(q))+o(B)

( f (i): assume A = B g

cT(A)((A(p)R�A(q)) j+b(p)�b(q)+A(p)r) = 0

( f (ii): assume independent indices g

(A(p)R�A(q)) j+b(p)�b(q)+A(p)r = 0

( f (iii): assume independent iterators g

A(p)R = A(q) ^ A(p)r = b(q)�b(p)

In this derivation we made three important assumptions. First of all, in Step (i),
we assume that both ports belong to the same array. We return to this topic later
on in this section. In Step (ii) we ignore reuse that results from the chosen address
assignment. The decision in Step (iii) ignores possible reuse generated within the
columns of A.

Another way of obtaining sufficient conditions for reuse is found by deriving

a(p; i) = a(q; j)

�

cT(p)(Rj+ r)+o(p) = cT(q) j+o(q)

�

(cT(p)R� cT(q)) j+ cT(p)r+o(p)�o(q) = 0

( f assume independent iterators g

cT(p)R = cT(q) ^ cT(p)r = o(q)�o(p):

These conditions on R and r are weaker than the previous conditions as there
is only one equation for each column of R. Therefore, these weak conditions are
less guiding towards a good reuse matrix, a good reuse vector, and a good set J of
executions of port q that exhibit reuse, in the sense of resulting in a good estimation
of the reuse length for as many executions (of port q) as possible.
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Independent of the above derivation of conditions for the reuse matrix and reuse
vector, the set of executions J of port q that exhibit reuse is constrained by

0 � i� I(p) (6.4)

t(p; i) < t(q; j) (6.5)

0 � j � I(q), (6.6)

for all integer vectors j 2 J and i = Rj+ r.
These conditions follow from (6.3) in the following way. Condition (6.4) takes

care that all executions j of port q reuse data from existing executions i = Rj+ r
of port p. Condition (6.6) follows naturally as j must be an execution of port
q. For reuse to take place, execution j of q must take place after the associated
execution i of port p, which is stated in (6.5). The difference in time between
executions (p;Rj+ r) and (q; j) is an upper bound on the reuse length r(q; j). As
this estimation of the reuse length is used more often in this section, we introduce
the following notation.

Definition 6.4 (estimated reuse length). The estimated reuse length for ports p,
q, reuse matrix R, reuse vector r, and executions J � I(q) of port q is defined as
the time between executions j 2 J of port q and executions i = Rj+ r of port p, and
denoted by ρ(q; j) = t(q; j)� t(p;Rj+ r). 2

With this definition we reformulate conditions (6.4), (6.5), and (6.6) as

0 � Rj+ r� I(p) (6.7)

ρ(q; j)> 0 (6.8)

0 � j � I(q), (6.9)

for all integer vectors j 2 J.
Next, we consider self temporal reuse and group temporal reuse in more detail.

6.3.2 Self temporal reuse

If two different executions of the same port access the same address, we say that
they exhibit self temporal reuse. For self temporal reuse we choose the weaker
conditions on reuse matrix and reuse vector, i.e.,

cT(p)R = cT(p) ^ cT(p)r = 0:

In order to limit the number of port executions for which we find reuse as little
as possible, we choose R = I. In this way only the reuse vector r limits the search
space because of (6.7) and (6.8). Next, we consider self temporal reuse for two
cases.
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Self temporal reuse carried by one dimension

We say that self temporal reuse is carried by dimension l if executions i and j of
a port p access the same address and differ only in index l. We recall that self
temporal reuse exists if and only if a(p; i) = a(p; j), which is equivalent to saying
that cT(p)(j� i) = 0. Hence cl(p) must be zero. We already established that the
reuse matrix R = I. Thus, we must choose a reuse vector r 6= 0 and set J �Zδ such
that

0� j+ r� I(p) (6.10)

ρ(p; j)> 0 (6.11)

0 � j� I(p), (6.12)

for all executions j 2 J, where

ρ(p; j) = t(p; j)� t(p; j+ r) = s(p)+pT(p) j� s(p)�pT(p)( j+ r) =�pT(p)r:
(6.13)

First of all we observe that we may choose rm = 0 for all m 6= l, hence only
rl remains to be defined. Without loss of generality we may assume that the cor-
responding period pl(p) is positive. Because of (6.11) and (6.13), rl needs to be
negative. The only restriction that (6.10) and (6.12) impose on the size of J with
respect to the value of rl is �rl � jl � Il(p). As we want to choose ρ(p; j) as small
as possible and J as large as possible, rl =�1 is the best choice.

Using the above for the example in Figure 6.9 we find reuse for dimension 0.
The reuse vector is r =

�
�1 0

�T
and estimated reuse length ρ(p; i) =�pTr = 4.

Self temporal reuse carried by two dimensions

We say that self temporal reuse is carried by dimensions l and m if executions i and
j access the same address and are different only in dimensions l and m.

In Figure 6.10 we give an example of self temporal reuse that is carried by
dimensions 0 and 1. In this figure, all executions that have been typeset bold have
reuse with a reuse vector r =

�
�2 1

�T
, with an estimated reuse length

ρ(p; j) =�pTr =�
�
6 1

���2
1

�
= 11:

In general, for self temporal reuse we must find rl and rm such that

clrl + cmrm = 0 ^ rl 6= 0 ^ rm 6= 0: (6.14)

We may assume cl 6= 0 and cm 6= 0 as the cases cl = 0 and cm = 0 are covered by
self temporal reuse that is carried by one dimension. As cl and cm may contain
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for i0 := 0 : : :4 period 6 !
for i1 := 0 : : :4 period 1 !
h 2i0 +4i1 i start at 0

(a)

0 1 2 3 4 5 6 8 9 10 11 12 13 14 157

address

time

0 4 8 12 16

16 17 18 19 20

2 6 10 14 18 4 8 12 16 20

21 22 23 24 25 26 27

6 10 14 18 22 8 12 16 20 24

28

reuse length = 11

0 0 0 0 0
0 1 2 3 4

1 1 1 1 1
0 1 2 3 4

2 2 2 2 2
0 1 2 3 4

3 3 3 3 3
0 1 2 3 4

4 4 4 4 4
0 1 2 3 4

i0

i1

(b)

⊥ p

→ ρ(p,i) = ∞≤ i ≤0
0

1
4

→ ρ(p,i) = ∞2
4

4
4

≤ i ≤

→ ρ(p,i) = 11

2
0

4
3

≤ i ≤

(c)

Figure 6.10. Example of self temporal reuse for a port p generated by two dimen-
sions. The definition (a) of port p includes its schedule, which is shown in (b).
The reuse graph of port p is given in (c).
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common factors (6.14) is restated as
cl

g
rl +

cm

g
rm = 0 for g = gcd(jcl j; jcmj) ^ rl ;rm 6= 0:

Now, rl = k cm
g and rm = �k cl

g for k 2 Z n f0g characterise all integer solutions of
(6.14). The search space is again limited to one parameter, k. The set of executions
J is limited by

0� j+ r� I(p)

ρ(p; j) =�pT(p)r > 0

0 � j� I(p),

for all j 2 J. The restricting dimensions with inequalities in which k appears are l
and m, giving

0 � jl + rl � Il(p)

0 � jm + rm � Im(p)

k � (cl(p)pm(p)� cm(p)pl(p))> 0

0 � jl � Il(p)

0� jm � Im(p),

for all j 2 J. Hence, we must choose k, and thereby J, in such a way that for all
j 2 J

0 � jn � In(p) if n 62 fl;mg

(�rl)
+ � jl � Il(p)+(�rl)

�

(�rm)
+ � jm � Im(p)+(�rm)

�

k � (cl(p)pm(p)� cm(p)pl(p))> 0,

(6.15)

and in such a way that the reuse length is as small as possible and jJj is as large as
possible. This is achieved by choosing jkj= 1 with the same sign as cl(p)pm(p)�
cm(p)pl(p). The situation with cl(p)pm(p)� cm(p)pl(p) = 0 is not an interesting
case to look at for this heuristic as no reuse exists, i.e., this case would imply reuse
length ρ(p; j) = 0 for all j 2 J.

Using the above for the example of Figure 6.10 and choosing l = 0 and m = 1
results in r0 = 2k, r1 = �k, and k(c0(p)p1(p)� c1(p)p0(p)) = k(2 � 1� 4 � 6) =
�22k. The constraints in (6.15) say that k must be negative, and that reuse with
estimated reuse length �pT(p)r =�(6 �2k+1 ��k) =�11k is found for executions
j 2 J � Z2 with 0� 2k � j0 � 4 and 0 � j1 � 4+ k. Choosing k = �1 results in
the shortest estimated reuse length ρ(p; j) = 11 for the largest set of executions J.
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6.3.3 Group temporal reuse

Group temporal reuse exists between executions of two (different) ports p and q
that access the same address. The problem of deciding whether two such exe-
cutions exist, is NP-complete. Hence, we give heuristic rules for finding reuse.
Here, we are guided by situations that occur often in video algorithms. As men-
tioned earlier we aim at finding a reuse matrix R and reuse vector r, such that
a(p;Rj+ r) = a(q; j), and a set J of executions that satisfy (6.7), (6.8), and (6.9).
Below we give two methods for obtaining a valid reuse matrix and reuse vector.
The first method can only be applied for index matrices that have the property that
each iterator appears in at most one index. The second method uses a property of
index matrices that is often found in video algorithms, namely that the number of
iterators that appears in each index is limited.

Each iterator appears in at most one index

The first method for finding group temporal reuse uses the property that an iterator
rarely appears in more than one index, which is often the case in video algorithms.
Assuming that ports p and q belong to the same array and hence α(p) = α(q), we
showed that finding a reuse matrix R and reuse vector r that satisfy

A(q) = A(p)R ^ A(p)r = b(q)�b(p) (6.16)

is a first step to find executions i = Rj+ r that access the same address. Below we
discuss choices for the reuse matrix R and the reuse vector r separately. For this
discussion we assume that every iterator appears in exactly one index. If an iterator
does not appear in any index, it generates self temporal reuse, which can be dealt
with using the methods described earlier in this chapter. The dimension in which
iterator k = 0; : : : ;δ(p)�1 for port p appears is denoted by πk(p).

Rewriting the first term of (6.16), we must have

Alm(q) =
δ(p)�1

∑
k=0

Alk(p)Rkm for all l = 0; : : : ;α�1

for each iterator dimension m = 0; : : : ;δ(q)� 1. Here we use α = α(p) = α(q).
For dimension m we assumed exactly one non-zero in column A�m, so we get

Aπm(q)m(q) =
δ(p)�1

∑
k=0

Aπm(q)k(p)Rkm

0 =

δ(p)�1

∑
k=0

Alk(p)Rkm for all l = 0; : : : ;α�1 ^ l 6= πm(q):

Both sums contain several Alk = 0, but we know that only those k for which πk(p) =
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l yield Alk 6= 0, and they can therefore be rewritten into

Aπm(q)m(q) = ∑
0�k<δ(p)

πk(p)=πm(q)

Aπm(q)k(p)Rkm (6.17)

0 =

δ(p)�1

∑
k=0

πk(p)=l

Alk(p)Rkm for all l = 0; : : : ;α�1 ^ l 6= πm(q): (6.18)

Both (6.17) and (6.18) restrict the values that Rkm can take, the former for
πk(p) = πm(q), the latter for πk(p) 6= πm(q). As these two domains are disjoint, we
may choose values for Rkm according to (6.17) and (6.18) independently.

An obviously correct choice for the Rkm values that appear in (6.18) is Rkm = 0.
A reason for wanting small jRkmj is the following. The number of executions that
have reuse is bounded by

0� Rj+ r� I(p):

Choosing values for Rkm = 0 limits the number of executions j with reuse as little
as possible.

The restrictions in (6.17) can be formulated as a special case of the problem
PUC [Verhaegh, 1995], where we aim at finding small solutions, i.e., solutions
with small jRkmj.

Reuse vector r must satisfy

δ(p)�1

∑
m=0

l=πm(p)

Alm(p)rm = bl(q)�bl(p) (6.19)

for all indices l = 0; : : : ;α� 1. Again, these independent equations are special
cases of the problem PUC.

In the example of Figure 6.11 equations (6.17) and (6.18) result in 5 = 1 �R00

and 1 = 1 �R01. Reuse vector r must satisfy 1 � r0 = 0�0 because of (6.19). So, we
find that reuse exists with reuse matrix R =

�
5 1

�
, reuse vector r =

�
0
�
. Because

of (6.7), (6.8), and (6.9) we find that all executions j 2 J = I(q) of port q have
group temporal reuse with estimated reuse length

ρ(q; j) = t(q; j)� t(p;Rj+ r)

= s(q)+pT(q) j� s(p)�pT(p)Rj�pT(p)r

= 12+6 j0 + j1�0�5 j0� j1�0 = 12+ j0:

Unfortunately, there are situations in which reuse exists but no reuse matrix
and vector can be found. For example, assume an array X with unique address
assignment and two ports p;q 2 X as defined below.
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port p:
for i0 := 0 : : :9 period 1 !

X [i0] start at 0

port q:
for j0 := 0 : : :1 period 6!

for j1 := 0 : : :4 period 1!
X [5 j0 + j1] start at 12

(a)

0 1 2 3 4 5 6 8 9 10 11 12 13 14 157

address

time

0 1 2 3 4

16 17 18 19 20

5 6 7 8 9 0 1 2 3 4

21 22 23

5 6 7 8 9

reuse length = 12 + j0

(b)

⊥ p
ρ(p,i) = ∞ ρ(q, j ) = 12 + j0

q

(c)

Figure 6.11. Example of group temporal reuse. We assume address coefficient
c0(X) = 1 and address offset o(X) = 0. Here, each execution j 2 I(q) of port q
reuses data that was previously accessed by port p with reuse length 12+ j 0. The
resulting reuse graph is depicted in (c).
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⊥

p

j′ ≠ 0 ⇒ 
ρ(q, j′) = ∞

j′ = 0 ⇒ 
ρ(q, j′) = 10 + j′

q

ρ(p,i) = ∞

1

1

0

Figure 6.12. A dimension split may be necessary in order to find reuse. In this
case port q is obtained by splitting the only dimension of port q. Even iterations
of port q are represented by executions j 0

0 = 0 of port q0. They have reuse with
approximate reuse length 10+ j 0

0. For the odd iterations of port q, represented by
j00 6= 0 of port q0, no reuse exists.

port p:
for i0 := 0 : : :3 period 1!

X [4i0] start at 0

port q:
for j0 := 0 : : :5 period 1 !

X [2 j0] start at 10

Clearly, reuse exists between p and q for all even executions j0 of q. However, no
integer solution exists to (6.17). We apply techniques called dimension splitting
[Verhaegh, 1995] and domain splitting to separate the odd and even executions j0
of port q. By performing a dimension split, of which the formal definition follows,
we obtain the following port q0.

port q0:
for j00 := 0 : : :2 period 2 !

for j01 := 0 : : :1 period 1!
X [4 j00 +2 j01] start at 10

The approximate reuse graph for this example is given in Figure 6.12. In this
graph, the executions in the inner dimension of port q0 have been split by means of
a domain split, resulting in the lower edge with executions that correspond to odd
executions j0 of port q, and the edge from q to p with even executions j0 of port q.

More formally, given a port q, a dimension split is specified by a number k 2
f0; : : : ;δ(q)�1g and a number I 2 f1; : : : ; Ik(q)�1g for which (I+1)j(Ik(q)+1).
The dimension split results in a new port q0 with

� δ(q0) = δ(q)+1, α(q0) = α(q)+1,
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� Il(q0) =

8>>>><
>>>>:

Il(q) for l = 0; : : : ;k�1

(Ik(q)+1)=(I +1)�1 for l = k

I for l = k+1

Ik�1(q) for l = k+2; : : : ;δ(q0)�1,

� A�l(q0) =

(
A�l(q)(I +1) for l = k

A�l(q) otherwise,

� b(q0) = b(q),

� pl(q0) =

(
pl(q)(I +1) for l = k

pl(q) otherwise,

� s(q0) = s(q).

Furthermore, given a port q, a domain split is specified by a number k 2
f0; : : : ;δ(q)�1g and a number I 2 f1; : : : ; Ik(q)�1g. The dimension split results
in two new ports q0 and q00 with

� δ(q0) = δ(q00) = δ(q), α(q0) = α(q00) = α(q),

� Il(q0) =

(
I for l = k

Il(q) for l 6= k,

� Il(q00) =

(
Ik(q)� I�1 for l = k

Il(q) for l 6= k,

� A(q0) = A(q00) = A(q),

� b(q0) = b(q),

� b(q00) = b(q)+A�k(q)(I +1),

� s(q0) = s(q), and

� s(q00) = s(q)+ pl(q)(I +1).

In general, the splitting techniques can be used for every dimension m of port
q for which (6.17) has no integer solution. In Figure 6.13 we propose an algorithm
for finding group temporal reuse between ports p and q. In Step (ii) we perform
dimension splitting for every dimension of port q as shown in the preceding exam-
ple. Step (vi) creates an edge in the reuse graph for executions I(q) n J of port q
for which no reuse is found. Step (vii) creates an edge in the reuse graph for all
executions J of port q that reuse data from port p with reuse length

t(q; j)� t(p;Rj+ r) = (pT(q)�pT(p)R) j+ s(q)� s(p)�pT(p)r:



100 Cost Calculation

i. Determine πk(p) such that Aπk(p)k(p) 6= 0 and Aπk(p)k(p) = 0 for all k =
0; : : : ;δ(p)�1. The πk(q) are determined analogously.

ii. For each array dimension k of q, split the corresponding dimension π k(q)
in such a way that Akπk(p)(p) j Akπk(q)(q).

iii. Assign Rkm according to (6.17) and (6.18).

iv. Assign rm according to (6.19).

v. Determine J � I(q) such that (6.7), (6.8), and (6.9) hold for every j 2 J.

vi. Create an edge a = (q;?) in the reuse graph with I(a) = I(q)nJ, x(a) = 0,
and y(a) = ∞.

vii. Create an edge a = (q; p) in the reuse graph with I(a) = J, x(a) = p(q)�
RTp(p), and y(a) = s(q)� s(p)�pT(p)r.

Figure 6.13. An algorithm for determining group temporal reuse between ports p
and q if each iterator appears in exactly one index.

Limited number of iterators in each index

Another method for finding group temporal reuse uses the property that the number
of iterators that appear in each index is limited, which is often the case in video
algorithms. Therefore, it is useful to look at the equation A(p)R = A(q) for one
row of the matrices A(p) and A(q). Without loss of generality we may assume that
for index l the first m iterators have non-zero entries in the index matrix A(p) of
port p, and that the first m0 iterators have non-zero entries in the index matrix A(q)
for port q. Now we can write A(p)R = A(q) for array dimension l as2
66664Al0(p) : : :Alm(p) 0 : : :0

3
77775

2
666664

R00 : : :R0m0 0 : : :0
...

...
Rm0 : : :Rmm0 0 : : :0

3
777775=

2
66664Al0(q) : : :Alm0(q) 0 : : :0

3
77775 :

(6.20)

We propose a heuristic for finding a solution to (6.20) based on two obser-
vations. The first observation is that if the rows Al�(p) and Al�(q) for an index
0 � l < α contain the same number of non-zeroes, it is likely that reuse can be
determined by relating the contributing iterators at both sides one to one. Such
a relationship between the iterators of both ports is found by sorting them with
respect to their absolute values.
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If one iterator of port q relates to two iterators of port p, we split the corre-
sponding dimension of q. We show this by means of the following example.

port p:
for i0 := 0 : : :3 period 6 !

for i1 := 0 : : :1 period 1 !
X [4i0 + i1] start at 0

port q:
for j0 := 0 : : :15 period 1 !

X [ j0] start at 30

In order to find reuse, we have to split the only dimension of port q in order to get

port q0:
for j00 := 0 : : :3 period 4 !

for j01 := 0 : : :3 period 1!
X [4 j00 + j01] start at 30

After this split we are able to give a one-to-one relation νn(p) of dimensions of p
to dimensions of q. Now, we can find a solution to (6.20) by choosing

δ(p)�1

∑
n=0

m=νn(p)

Aln(p)Rnm = Alm(q), (6.21)

for every index l = 0; : : : ;α�1 of port q. This equation can be solved in the same
way as (6.18). For the reuse vector r we have to find a solution to

δ(p)�1

∑
n=0

Alnrn = bl(q)�bl(p), (6.22)

in a similar way to (6.19).
The second observation is that finding a solution to (6.20) and hence to (6.21)

is easier for cases with small m and m0.
These observations lead to the algorithm of Figure 6.14. In Step (i) we sort

the rows based on the first observation and we use the second observation as a tie
breaker. In Steps (ii) and (iii) we determine reuse matrix R and reuse vector r.
Steps (iv), (v), and (vi) create the approximate reuse graph.

The assumptions for this heuristic are strong and the method is rather crude,
but in practice this heuristic has been able to find most of the group temporal reuse
for the experiments that we discuss in Section 6.6.

6.3.4 Self spatial reuse

Self spatial reuse for a port p occurs if the same cache block is accessed by two or
more executions of port p. Before going into details we give an example.
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i. Sort the rows A(p) and A(q) in increasing order on

– the difference in the number of non-zeroes of A l�(p) and the number
of non-zeroes of Al�(q), and

– in case of a tie, on the number of non-zeroes of A l�(p).

ii. Using the order established in Step (i), perform the next steps for each row
m = 0; : : : ;α�1.

– Find relationship νl(p) for every dimension l 2 f0; : : : ;δ(p)� 1g of
port p, possibly after a dimension split.

– Choose reuse matrix R according to (6.21).

iii. Assign r according to (6.22).

iv. Determine J � I(q) such that (6.7), (6.8), and (6.9) hold for every j 2 J.

v. Create an edge a = (q;?) in the reuse graph with I(a) = I(q)nJ, x(a) = 0,
and y(a) = ∞.

vi. Create an edge a = (q; p) in the reuse graph with I(a) = J, x(a) = p(q)�
RTp(p), and y(a) = s(q)� s(p)�pT(p)r.

Figure 6.14. An algorithm for determining group temporal reuse between ports p
and q assuming that each index expression contains few iterators.
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for i0 := 0 : : :1 period 8 !
for i1 := 0 : : :7 period 1 !
h 20i0 + i1 i start at 0

(a)

0 1 2 3 4 5 6 7 20 21 22 23 24 25 26 27

0 1 2 3 4 5 6 8 9 10 11 12 13 14 157

address

time

block size = 4

reuse length = 1

(b)

⊥ p
i1 mod 4 = 0 → ρ(p,i) = ∞ i1 mod 4 ≠ 0 

→ ρ(p,i) = 1

(c)

Figure 6.15. Example of a port with self spatial reuse for a cache with block size
bs = 4. Different from earlier examples, addresses have been taken as the unit on
the axis in (b).
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In Figure 6.15 we give the reuse graph for a port p that exhibits self spatial
reuse. Here, all executions that are typeset bold reuse data directly from their
predecessor. For example, executions

�
0 1

�T
,
�
0 2

�T
, and

�
0 3

�T
reuse data that

were used most recently by executions
�
0 0

�T
,
�
0 1

�T
, and

�
0 2

�T
respectively.

Hence, if we split the second dimension of the port in the first executions that
access a cache block and all remaining executions by means of a dimension split
followed by a domain split, we end up with

port p0:
for i0 := 0 : : :1 period 8!

for i1 := 0 : : :1 period 4!
for i2 := 0 : : :2 period 1!
h 20i0 +4i1 + i2 +1 i start at 1

port p00:
for i0 := 0 : : :1 period 8!

for i1 := 0 : : :1 period 4!
h 20i0 +4i1 i start at 0

All executions of p0 have reuse length p0 = 1. For none of the executions of p00 we
can determine self spatial reuse. Not all self spatial reuse can be found this easily,
as can be seen in the example of Figure 6.16, where not all executions with i1 = 0
start on a cache block boundary. In general, we use the following algorithm, of
which the steps are explained below.

i. Determine a dimension l that carries the reuse.

ii. Split all other dimensions (m 6= l) in order to compensate for address coef-
ficients that are not an integer multiple of the block size.

iii. Split dimension l into a head, body, and tail.

iv. Split the body in order to compensate for address coefficients that are not
divisors of the block size.

v. Split the head, bodies, and tail into executions with the first access to a block
and executions with subsequent accesses to the same block.

In Step (i), we want to find a dimension l that carries most reuse. By fixing the
values of the other iterators, we find that on average bs=jcl(p)j executions access
the same cache block in dimension l. As we want to maximise the number of
executions that exhibit reuse, we choose the dimension with smallest jcl(p)j. For
the remainder of the discussion on self spatial reuse we assume non-negative cm(p)
for all dimensions 0 �m < δ(p). For non-positive values analogous results can be
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for i0 := 0 : : :2 period 8 !
for i1 := 0 : : :7 period 1 !
h 10i0 + i1 i start at 0

(a)

0 1 2 3 4 5 6 7 20 21 22 23 24 25 26 27

0 1 2 3 4 5 6 16 17 18 19 20 21 22 237

address

time

block size = 4

0 0 0 0
0 1 2 3

0 0 0 0
4 5 6 7

2 2 2 2
0 1 2 3

2 2 2 2
4 5 6 7

i0

i1

10 11 12 13 14 15 16 17

8 9 10 11 12 13 14 15

1 1 1 1
0 1 2 3

1 1 1 1
4 5 6 7

(b)

i1 mod 4 ≠ 0 
→ ρ(p,i) = 1

i1 mod 4 = 0 → ρ(p,i) = ∞

⊥ p

i0 odd

i1 ∈ {1, 3, 4, 5, 7}
→ ρ(p,i) = 1

i1 ∈ {0, 2, 6}  → ρ(p,i) = ∞

⊥ p

i0 even

(c)

Figure 6.16. Example of a port with self spatial reuse given a cache with block
size bs = 4. For reasons of readability, the reuse graph (c) has been split into two
parts, but should be looked at as one graph.
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5 6 7 20 21

block size = 4

10 11 12 13 14 15 16 178 9 18 19

tailhead body

address

Figure 6.17. Executions of a port are split into a head, a body, and a tail.

found.
In Step (ii) we create groups of executions that have the same reuse pattern

for executions in dimension l. In the example of Figure 6.16 there were two such
groups: one with i0 even and one with i0 odd. In general the executions are split
into bs=gcd(bs; jcm(p)j) groups (unless cm(p) = 0, in which case no split has to
be performed) for all dimensions m 6= l. This split consists of a dimension split
followed by a domain enumeration of the newly created dimension.

After having performed Step (ii) we have obtained groups of executions with
the same reuse pattern in dimension l. In general, such a group can be divided into
three parts: a head, a body, and a tail, as the first and last executions may produce
a different reuse pattern than the other executions. In Figure 6.17 an example is
given where the first three and the last two executions have a reuse pattern that is
different from the reuse pattern of the executions that access addresses 8 to 19.

As depicted in Figure 6.18 the reuse pattern for executions may not be equal for
all cache blocks that are accessed within the body. In Step (iv) groups of executions
are created in such a way that for each group all first accesses to a cache block are
on the same position within a cache block. The number of groups that have to be
created equals bs=gcd(bs; jcl(p)j).

Finally, in Step (v), all first executions to a cache block are separated from the
successors in the same block. For the former ones no reuse is found, whereas for
the latter ones we find reuse with reuse length jpl(p)j. For example, the executions
tagged group 2 of Figure 6.18 are divided as follows, where we find no reuse for
the first set of executions and we find reuse for the second set with reuse length
p1( p̃00) = 1.

port p00:
for i0 := 0 : : :1 period 8!

for i1 := 0 : : :0 period 1!
h 24i0 +3i1 +9 i start at 0
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port p:
for i := 0 : : :23 period 1!
h 3i i start at 0

(a)

6 21 address

block size = 8

12 159 1830 302724

group 1 group 2 group 3 group 1

(b)

port p0:
for i0 := 0 : : :1 period 8 !

for i1 := 0 : : :2 period 1 !
h 24i0 +3i1 i start at 0

port p00:
for i0 := 0 : : :1 period 8 !

for i1 := 0 : : :2 period 1 !
h 24i0 +3i1 +9 i start at 3

port p000:
for i0 := 0 : : :1 period 8 !

for i1 := 0 : : :1 period 1 !
h 24i0 +3i1 +18 i start at 6

(c)

Figure 6.18. Example of a port with an address coefficient that does not divide
the block size of the cache. The port is split into three ports, in each of which the
same reuse pattern is exhibited for all executions of the outer loop.
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port p̃00:
for i0 := 0 : : :1 period 8 !

for i1 := 0 : : :1 period 1 !
h 24i0 +3i1 +12 i start at 0

The five steps of the algorithm produce a number of sets of executions that
can be written in the way we did above. As a result of this algorithm, all address
coefficients of dimensions (m 6= l) that do not carry reuse are an integer multiple
of the block size. This also means that for reuse analysis, we can forget about the
exact addresses within a cache block. For reuse, the positions of addresses within a
cache block are unimportant, only whether they fall in the same cache cache block
determines if there is reuse.

Therefore, after having performed the five steps for self spatial reuse we can
simplify the address coefficient vector and the address offset in such a way that all
executions in dimension l access a uniquely chosen representative in each cache
block. The choice for this representative is arbitrary. For this discussion we choose
the first address in the cache block. We perform such a simplification of the ad-
dress expressions in view of group spatial reuse, which we discuss in the following
section. For the above example this results in the following sets of executions.

port p00:
for i0 := 0 : : :1 period 8!

for i1 := 0 : : :0 period 1!
h 24i0 +0i1 +8 i start at 0

port p̃00:
for i0 := 0 : : :1 period 8!

for i1 := 0 : : :1 period 1!
h 24i0 +0i1 +8 i start at 0

6.3.5 Reuse graph construction

The remaining kind of reuse that we have not yet considered is group spatial reuse.
Group spatial reuse occurs whenever executions of two (distinct) ports access the
same cache block. In general group spatial reuse is characterised by

(cT(A)(A(p)i+b(p))+o(A))div bs = (cT(B)(A(q) j+b(q))+o(B))div bs:
(6.23)

Solutions to this equation are hard to find as can be shown by a reduction from
SLE (see Definition 4.3). Nevertheless, after we have found self spatial reuse, and
have changed the address coefficient vector and address offset as described above,
every execution accesses the first address within a cache block. With the changed
address coefficient vector and address offset, (6.23) is simplified to the expression
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i. Initialise the approximate reuse graph with edges f(q;?) j q 2 Pg. Choose
y(a) = ∞ and x(a) = 0 for all edges a 2 A.

ii. For every edge a 2 A, determine self temporal reuse for executions I(a),
and change the approximate reuse graph accordingly.

iii. For every edge a 2 A, determine self spatial reuse for executions I(a), and
change the approximate reuse graph accordingly.

iv. For every edge a = (q;r) 2 A and every port p, determine group spatial
reuse between executions I(a) of q and executions of port p, and change
the approximate reuse graph accordingly.

Figure 6.19. An algorithm to construct an approximate reuse graph.

for group temporal reuse, i.e.,

c0T(A)(A(p)i+b(p))+o0(A) = c0T(B)(A(q) j+b(q))+o0(B):

Hence, by first finding self spatial reuse, we can use the heuristics for group
temporal reuse to find group spatial reuse. This leads to the eventual algorithm
of Figure 6.19. Here we have chosen to determine self temporal reuse before self
spatial reuse, as the address transformation that we have defined for self spatial
reuse maps all addresses within a cache block to the same address, which would
cause self temporal reuse, but only self temporal reuse of a kind that the algorithm
for self spatial reuse has already found.

By applying this algorithm, different reuse lengths may be found for sets of
port executions of the same port p. So, assume reuse for a port p has been found
for executions I0 with approximate reuse length x0Ti+y0 and for executions I00 with
approximate reuse length x00Ti+ y00. If no overlap exists between executions I0 and
I00, then the approximate reuse graph gets two edges corresponding to executions
I0 and I00 and their respective approximate reuse lengths. If overlap exists then we
create three edges in the approximate reuse graph, one for executions I0 n I00 with
approximate reuse length x0Ti+y0, one for executions I00nI0 with approximate reuse
length x00Ti+ y00, and one for executions I0\ I00. How the approximate reuse length
for this last set of executions must be chosen is an open issue. A correct choice
that we used in the experiments of Section 6.6 is using the minimum reuse length
found for any execution i 2 I0\ I00, i.e., minfm0;m00g with

m0 = maxfx0Ti+ y0 j i 2 I0\ I00 g

m00 = maxfx00Ti+ y00 j i 2 I0\ I00 g:

In Figure 6.20, the approximate reuse graphs are given for the two cases discussed
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Figure 6.20. If different reuse lengths are found for two sets I 0 and I 00 of port
executions of port p, (a) gives an approximate reuse graph if I 0 and I 00 have no
overlap. Otherwise, (b) gives an approximate reuse graph given that the minimum
reuse length found for any execution in I 0\ I00 is found in I 0, i.e., m0 � m00.

above.
Especially for the heuristic for self spatial reuse, the number of edges in the

reuse graph may become large. A worst case upper bound for this number is 6bδ(p)
s .

This number is reached for a port with all address coefficients cm(p) relatively
prime to the block size bs. The factor 6 is the result of splitting into three groups
in Step (iii) and two groups in Step (iv). Note that this number may even be larger
than the total number of executions of port p. In order to limit the explosion of
the number of edges in the reuse graph, we limit the number of outgoing edges for
every node in the reuse graph. Once this number is reached, we no longer accept
that new approximations of the reuse length are added to the approximate reuse
graph.

So far, we have given a characterisation of a cache miss in terms of reuse length
and filling in Section 6.1. In this section we discussed heuristics for estimating the
reuse length for operations by linear expressions in their iterator vectors. In the
next section we present a way of estimating the filling.

6.4 Filling function

In this section we aim at finding a good estimation of the length of the filling
interval f (e) defined in Section 6.1 and given by

f (e) = maxf t(e)� t( f ) j f 2 E ^ R(t( f );e) � ss g,

where

R( j;e) = jfab( f ) j f 2 E ^ s(a( f )) = s(a(e)) ^ j � t( f )� t(e)gj:
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First we look at computing f (e) for a fully set-associative cache and a single port
execution e 2 E . As R( j;e) is a monotonously descending function in j 2 Z, f (e)
can be found by means of binary search. Now, we need an efficient method of
computing R( j;e) for j 2Z and port execution e 2 E .

Lemma 6.2. The number of different block addresses R( j;e) that are accessed in
a time interval f j; : : : ; t(e)g, can be bounded from above by

jf f 2 E j t( f )� r( f )< j ^ j � t( f )� t(e)gj:

Proof. Of all port executions that access a certain block address, at least one has
a reuse length that extends outside the interval f j; : : : ; t(e)g. If no port executions
may occur simultaneously, the first access to each block address in the interval is
defined uniquely, and is the only execution with a reuse length that extends outside
the interval. In that case the upper bound equals R( j;e) provided that the cache is
fully set-associative. 2

Instead of counting all executions that have reuse outside the interval
f j; : : : ; t(e)g, we can also count all executions that have reuse within the interval.
As these executions are hits, we count a considerable number of hits as a side effect
of computing the filling function for one port execution. The number of executions
that have reuse within the interval f j; : : : ; t(e)g is given by

jf f 2 E j j � t( f ) � t(e)gj� jf f 2 E j j � t( f )� r( f ) ^ j � t( f )� t(e)gj,

which equals

∑
p2P

jf i 2 I(p) j j � t(p; i) � t(e)gj�

∑
p2P

jf i 2 I(p) j j � t(p; i)� r(p; i) ^ j � t(p; i) � t(e)gj: (6.24)

In case of lexicographical executions for all ports, the first term of (6.24) can
be computed in O(jPjδ) time, where δ = maxp2P δ(p). The second term of (6.24)
is bounded from above by using an estimation of the reuse length ρ(p; i) instead of
r(p; i). For every edge a = (p;q) in an approximate reuse graph R= (V;A; I;x;y),
we have such an estimation of the reuse length, i.e., ρ(p; i) = xT(a)i+ y(a) for all
i 2 I(a). Hence the second term of (6.24) is restated as

∑
a2A

jf i 2 I(a) j j� s(p)+ y(a)� (pT(p)�xT(a))i ^ j � t(p; i) � t(e)gj:

If the vectors p(p)�x(a) and I(p) have lexicographic executions, i.e., lex(p(p)�
x(a);I(p)), this sum can be computed in O(jAjδ) time. Otherwise we use an esti-
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mation of the reuse length that is linear in time and given by

α � t +β� xT(a)i+ y(a) for all i 2 I(a) and t = t(p; i),

which leads to the following lower bound for the second term of (6.24)

∑
a2A

jf i 2 I j j � t(p; i)�α t(p; i)�β ^ j � t(p; i) � t(e)gj,

which equals

∑
a2A

jf i 2 I j j+β� (1�α)t(p; i) ^ j � t(p; i) � t(e)gj:

Again, based on the lexicographical executions of port p, i.e., lex(p(p);I(p)), this
sum can be computed in O(jAjδ) time. This leaves the problem of finding an
estimation of the reuse length that is linear in time.

Definition 6.5 (linear time approximation problem (LTAP)). Given are a pe-
riod vector p2Nδ

+ , an iterator bound vector I2Nδ
+ , and a vector x2Zδ. Determine

a;b 2 Q such that

apTi+b� xTi for all 0 � i� I, (6.25)

minimising

∑
0�i�I

apTi+b�xTi: (6.26)

2

Theorem 6.3. LTAP can be solved in O(δ2) time.
Proof. The minimisation term (6.26) is rewritten into

δ�1

∏
l=0

(Il +1)

�
1
2

pTIa+b�
1
2

xTI
�

and therefore, minimising

1
2

pTIa+b (6.27)

is sufficient and necessary for optimality.
If we fix the value of a, a feasible (with respect to (6.25)), and minimal (with

respect to (6.27)) value for b is the smallest solution of b � xTi� apTi for all 0 �
i � I, i.e.,

b = max
0�i�I

(xT�apT)i =
δ�1

∑
l=0

(xl �apl)
+Il :
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filling(z; t)::
r;s;n := z; t +1;0
f invariant : R(s; t)� cs ^ n� jfe 2 E j s � t(e)� r(e) ^ t(e)� t gj ^

t� s� f (t)g
;do (r+1 < s)!

h := (r+ s)div2
;x := jfe 2 E j h� t(e)� t gj
;y := lower bound of jfe 2 E j h� t(e)�ρ(e) ^ t(e)� t gj
;if (x� y)> cs ! r := h
[] (x� y)� cs ! s;n := h;y
fi

od
;return((n;s))

Figure 6.21. Assuming a fully set-associative cache, the function filling(z; t) re-
turns a pair (n;s) where t� s is a lower bound on the length of the filling interval
at t, and n is a lower bound on the number of hits in the interval fs; : : : ; tg. Here,
the filling function f and R have been expressed as function of time, instead of
port executions.

Substituting this value for b into (6.27) leaves the minimisation of

1
2

pTIa+
δ�1

∑
l=0

(xl �apl)
+Il : (6.28)

As each term (xl � apl)
+ is linear in a for a � xl

pl
and a � xl

pl
, we know that an

optimum for (6.28) is found either for a =
xl
pl

for some 0 � l < δ, or jaj = ∞.
However, as (6.28) goes to infinity for both a ! ∞ and a !�∞, the optimum is
found by evaluating (6.28) for a =

pl
xl

for all 0 � l < δ. 2

In Figure 6.21 we now give a binary search algorithm for determining the filling
for a port execution e 2 E with t(e) = t. The additional parameter z to the function
f illing gives the earliest time at which any port execution can occur. The function
returns a pair (n;s) where t� s is a lower bound on the length of the filling interval
and n is a lower bound on the number of hits in the interval fs; : : : ; tg.

6.5 Counting cache misses

As discussed earlier, a lower bound on the number of cache hits, and hence an upper
bound on the number cache misses, is obtained as a side effect of the algorithm of
Figure 6.21. In Figure 6.22 we give an algorithm for the determination of a lower
bound on the number of hits for a schedule. The algorithm works as follows. For
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s; t := minf f 2 E j t( f )g;maxf f 2 E j t( f )g
;h := 0
f invariant : h� jfe 2 E j t � t(e) ^ r(e)� f (e)gj g

;do (t > s)!
(n;g) := filling(s; t)

;t;h := min(g; t�1);h+n
od
f h� jfe 2 E j r(e)� f (e)gj g

Figure 6.22. An algorithm for the determination of a lower bound on the number
of hits for a set E of port executions.

the port execution with the latest scheduled time, say e 2 E , we determine a lower
bound t(e)� g on the length of the filling interval f (e) and a lower bound on
the number of hits, say n, in the interval ft(e)� g; : : : ;gg using the algorithm of
Figure 6.21. Next, we determine a lower bound on the length of the filling interval
at time t(e)� g, and a lower bound on the number of hits in the corresponding
interval, and so forth. By summing these number of hits in the successive intervals
we get a lower bound on the total number of cache hits for the schedule.

Progress of the algorithm is guaranteed as the value of variable t decreases by
at least one in each iteration. Furthermore, in the interval fmin(g; t � 1); : : : ; tg at
least cs port executions take place. Hence, the number of steps of the algorithm is
bounded from above by jE j

cs
.

This algorithm only counts hits for which the reuse falls within the interval
ft � g; : : : ; tg, i.e., hits for executions e with both t(e) and t(e)�ρ(e) within this
interval, which results in a pessimistic estimation of the number of cache hits. In-
stead of choosing the decrement max(t � g;1) for variable t, we may choose any
value between t � g and 1. Choosing a smaller decrement reduces the chance of
not counting a hit, but increases computation time of the algorithm. If we choose
such a decrement, we have to take care that hits are not counted multiple times by
successive iterations of the algorithm. This problem can be solved by an adminis-
tration of executions that generate hits using the approximation of the reuse length
as given by Definition 6.5.

6.6 Experiments

The algorithms of Figures 6.21 and 6.22 have been implemented and tests have
been performed for two characteristic algorithms. In the implementation of the
reuse graph construction algorithm we have chosen that the iteration spaces I(a)
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median

previous field current field
deinterlaced
frame

Figure 6.23. Median filter deinterlacing algorithm. Pixels in missing lines of
the deinterlaced frame are calculated by taking the median of two pixels from
neighbouring lines in the current field, and of one pixel from the line on the same
vertical position in the previous field [Riemens, Schutten & Vissers, 1997].

on the edges a of the reuse graph are hypercubes, i.e., each iteration space I(a) of
an edge a = (p;q) is a set f i j i 2 Zδ(p) ^ y� i� zg for some vectors y;z 2 Zδ(p).

The first algorithm is a median filter deinterlacing algorithm and it converts an
interlaced video signal to a non-interlaced signal [Riemens, Schutten & Vissers,
1997]. Every picture (frame) in an interlaced video signal consists of two consec-
utive fields, one containing all even lines of the image, the other all odd lines. The
median filter deinterlace algorithm converts such a signal to a signal where every
image contains all lines. The operation of the algorithm is given schematically in
Figure 6.23. The program graph of this algorithm consists of seven operations with
a total of 24 ports and 34 edges. For these tests we have chosen fields consisting
of 20 lines of 400 pixels each. We have done experiments with three interlaced
input frames (three even fields and three odd fields) and six non-interlaced output
frames. These experiments are denoted by M3. M7 denotes experiments with 14
output frames.

The other algorithm is matrix multiplication of 64� 64 matrices, denoted by
m64. For all experiments we have chosen a fully set-associative cache with 256
blocks of 16 bytes each.

All experiments have been performed on a 200 MHz Pentium MMX with 128
MB of RAM, running Linux kernel 2.2.5-15. All programs have been compiled
with release 1.1.2 of egcs with optimisation flag -O.
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#access #miss rate sim (s) sim+gen (s)
M3 475200 24000 5.05% 11.16 13.85
M7 1108800 56000 5.05% 27.92 32.54
m64 1052672 20928 1.99% 29.18 34.18

Table 6.1. Simulation results show the number of cache misses, the cache miss
rate, and the amount of time necessary to compute these numbers.

As a reference for our cache cost estimation algorithms we have performed
cache simulations, for which we used DineroIII (version 3.4). This simulator is
based on the work of Hill [1987]. Simulation results are listed in Table 6.1. In
column ‘#access’ the total number of port executions is given. The next columns
give the number of cache misses, and this number as a percentage of the total num-
ber of port executions. The last two columns give the time for cache simulation,
where the first of the two columns gives the time the cache simulation program has
spent. The second also includes the time needed to generate the address trace by
executing the video algorithm.

In Table 6.2 we give numbers produced by our algorithm for reuse graph con-
struction. As the number of edges in the reuse graph can become very large, we
stop estimation of reuse for a port if the out-degree of the port in the reuse graph has
exceeded a certain threshold. In our experiments we have limited the out-degree
in the reuse graph to 4 and 8 for the median filter algorithm. For the matrix multi-
plication example, the out-degree does not exceed 4. The out-degree of any vertex
in the reuse graph has been limited to the number in column ‘max’. In the column
‘time’ the time needed for the construction of the reuse graph is listed.

As discussed before, the quality of a reuse graph can be measured in several
ways. One way is by comparing the approximated reuse length with the (exact)
reuse length. The two columns of Table 6.2 tagged ‘overestimated’ give the number
of port executions for which the approximate reuse length is larger than the reuse
length and this number as a percentage of the total number of port executions. The
exact reuse length has been determined by computing the reuse length for every
port execution individually by means of simulation. Column ‘inf’ gives the number
of port executions for which no reuse was found in the reuse graph, despite the fact
that reuse existed. The ‘avg error’ is the average overestimation of reuse, i.e., the
average difference between approximated reuse length and exact reuse length.

Another way of measuring the quality of a reuse graph is to determine for how
many port executions a miss is predicted using the reuse graph and the (exact)
length of the filling interval, but where a hit occurs. The last two columns of Ta-
ble 6.2 give the number of port executions that result in a hit, but where a miss was
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max time (s) overestimated inf avg error error
M3 4 2.20 61450 12.9% 2500 19564 2775 0.58%

8 3.51 51450 10.8% 2500 12452 75 0.02%
M7 4 2.68 148050 13.4% 2500 22113 6475 0.58%

8 2.98 138600 12.5% 2500 23068 175 0.02%
m64 4 0.11 274176 26.0% 0 229 0 0.00%

Table 6.2. Quality of the reuse graph for a median filter algorithm and a matrix
multiplication algorithm. For an explanation of this table, see the text.

max time (s) #int #miss miss rate
M3 4 0.55 107 27007 5.68%

8 0.69 100 25343 5.33%
M7 4 1.82 249 63016 5.68%

8 1.81 233 59141 5.33%
m64 4 0.15 129 32738 3.11%

Table 6.3. Cache miss estimation results for a median filter algorithm and a
matrix multiplication algorithm using estimated reuse lengths and estimated filling
function.

estimated, and this number as a percentage of the total number of port executions.
In Table 6.2, we see that despite overestimation of the reuse length for a con-

siderable number of port executions the error for the estimation of the miss rate
is relatively small for these experiments. For example, for m64 the reuse length
was overestimated for 26% of the port executions, yet this does not result in errors
in the estimation of the reuse length. Furthermore, we see that choosing a larger
out-degree for the vertices in the reuse graph results in a better estimation of reuse
reuse length and consequently in a better estimated cache miss rate.

Estimation of the number of cache misses based on the reuse graph and esti-
mated length of the filling interval is given in Table 6.3. The maximum out-degree
of any edge in the reuse graph is again in the column tagged ‘max’. The time for
computing the number of cache misses is in the column tagged ‘time’. Here the
time for the construction of the reuse graph is not included. The number of itera-
tions of the cache miss estimation algorithm of Figure 6.22 is in column ‘#int’. The
estimated number of misses and the estimated miss rate are in the last columns.

In Figure 6.4 we have summarised the results of the previous tables. The first
column gives the exact cache miss rate. The last two columns give an estimation of
the cache miss rate using an estimation of the reuse length and the exact filling on
the one hand and an estimation of the filling on the other hand. Between brackets
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exact reuse max est. reuse est. reuse
exact filling exact filling est. filling

M3 5.05% (13.85s) 4 5.63% 5.68% (2.75s)
8 5.07% 5.33% (4.20s)

M7 5.05% (32.54s) 4 5.63% 5.68% (4.50s)
8 5.07% 5.33% (4.79s)

m64 1.99% (34.18s) 4 1.99% 3.11% (0.26s)

Table 6.4. Summarised cache miss estimation results.

are the computation times for the cache miss rate for simulation in the leftmost
column and for estimation in the rightmost column. We observe that estimation of
the miss rate can be improved by allowing a larger out-degree of the vertices in the
approximate reuse graph. The increase in computation time is caused mainly by the
time needed for the construction of the reuse graph. Furthermore we observe that
increasing the problem size of the median filter algorithm from M3 to M7 does not
change the estimation results. In the simulation results, we see that the difference
in number of accesses between M3 and M7 results in a proportional increase in
simulation time. For our method, however, the influence of the values of the loop
bounds, and thus the number of accesses, has only a small effect on the time needed
for the construction of the reuse graph, and the time needed for computing the
filling function is small compared to the simulation times. In general we see that
good estimation results can be obtained in computation times much smaller than
the corresponding times needed for cache simulation.

The last row shows, however, relatively many uncounted hits. This is a result
of the effect described in Section 6.5. In that section we have proposed a solution
to this problem at the cost of computation time, but better estimation results can
probably also be achieved by using the following property. During the experiments
we observed that the value of the filling function is almost constant over long time
intervals. In order to find out whether the filling function may be estimated on
only a limited number of points in time, we have done some experiments on some
video algorithms. In Table 6.5 results are listed for five algorithms, which have all
been executed and the resulting address traces have been analysed. Applications
I is matrix multiplication on 10� 10 matrices. Applications II, III, and IV are
video deinterlacing algorithms like the median filtering algorithm of Figure 6.23.
Application V is an MPEG2-decoder.

In the table we find the number of accesses, the number of cache misses and
the cache miss rate, which all follow directly from the address trace. Furthermore,
we have calculated the length of the filling interval at a limited number of points
in time, the length between which is given in the column tagged ‘interval length’.
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program number of #misses miss rate interval estimated
accesses length miss rate

I 5295 626 11.82% 100 11.84%
1000 12.63%
5000 15.60%

II 134400 6504 4.84% 10000 4.84%
100000 4.98%
500000 5.22%

III 387200 18508 4.78% 10000 4.78%
100000 4.78%
500000 5.23%

IV 5102006 97328 1.91% 10000 1.91%
100000 1.92%
500000 1.87%

V 45166957 191721 0.42% 10000 0.42%
100000 0.42%
500000 0.43%

Table 6.5. Estimation of f (t) by linear interpolation between f (t 0) and f (t1) for
interval ft0; : : : ; t1g, where the interval length t1� t0 is varied. For the calculation
of the estimated miss rate we use the exact reuse length and the interpolated filling.

For all points inside this interval we estimate the length of the filling function as a
linear interpolation between the end points of the interval. Using this interpolated
value and the exact reuse length from simulation we obtain an estimation for the
miss rate. Note that large errors in the miss rate are due to a limited number of
estimations of the filling function. In some cases we have only one or two such
estimations. A disadvantage of this method is that we lose the property of overes-
timating the miss rate, as an interpolation of the filling function does not yield a
lower bound on this function.

6.7 Discussion

In this chapter we have considered the problem of computing the number of cache
misses for a given program graph, a given schedule, and a cache. We have split
this problem into two parts. In the first part we determine for every execution of a
port the most recent execution of a port that accessed the same cache block. The
difference in time between these executions is called the reuse length. In the second
part we determine the so-called filling interval for every execution of a port. By
combining the length of the filling interval and the reuse length we have found an
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expression for cache misses.
In Theorem 6.2 we have shown that the problem of finding reuse is a formally

difficult problem. Hence, we have given heuristics for finding an approximate reuse
graph. This graph is used next for finding the length of the filling interval. We have
implemented an algorithm for the computation of the number of cache misses and
have obtained good results for a number of relevant programs.

The algorithm for finding an approximate reuse graph yields reuse information
for sets of port executions. If all executions in such a set result in cache misses, this
information may be used to change the schedule, in order to diminish the number
of cache misses. Minimising the number of cache misses is the subject of the next
chapter.

Besides cache miss computation, reuse graphs may have other applications,
for example for prefetching. Prefetching is a well known technique for avoiding
latency for cache misses. A prefetch operation fetches data from memory into the
cache before it is actually needed, avoiding a miss penalty. Such an operation may
be inserted in the instruction stream by a special statement in a program, either
manually or by a compiler. This is known as software prefetching. In another ap-
proach, known as hardware prefetching, the cache determines autonomously which
data to prefetch from memory. Struik, Van der Wolf & Pimentel [1998] combine
the advantages of both software prefetching and hardware prefetching by introduc-
ing special prefetch instructions that prefetch a stream of cache blocks over time.
Such a stream can be represented as a one-dimensional periodic operation. As we
have represented sets of port executions as periodic operations on the edges of the
reuse graph, we can find good candidates for prefetching from the reuse graph.



7
Towards Global Cache-Miss Minimisation

In this chapter we make a first step towards an optimisation algorithm based on
our cache cost calculation approach of the previous chapter. The multidimensional
periodic cache scheduling problem of Definition 3.10 cannot be solved in polyno-
mial time unless P = NP as we proved in Chapter 4. As we are interested in finding
good approximate solutions to this optimisation problem in reasonable running
times we aim at a local search approach, a well known method that often works
well for a large range of scheduling problems. In order to reduce the search space
beforehand, we decompose the optimisation problem into two parts, where we aim
at finding a good time assignment and a part of the address assignment in the first
part of the decomposition, and where the fine-tuning of the schedule takes place
in the second part by completing the address assignment. Section 7.1 proposes
the decomposition strategy. Section 7.2 focuses on a local search approach for
finding a good time assignment. Possibilities for neighbourhoods are discussed
in Section 7.3. Incremental cost computation for finding the cost of neighbouring
solutions is handled in Section 7.4.

7.1 Decomposition

The multidimensional periodic cache scheduling problem of Definition 3.10 has
two kinds of decision variables, on one hand being the start times and period vec-
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tors, that determine the execution times of the operations, and on the other hand
the offsets and coefficient vectors, that determine the memory layout of the arrays.

We propose a decomposition of the optimisation problem into two sub-
problems. The first sub-problem, which we call the extended time assignment prob-
lem, takes intra-array reuse into account. The second problem, the constrained ad-
dress assignment problem, focuses on inter-array reuse and prevention of so-called
conflict misses.

The decision variables that we determine in the first sub-problem are the start
times and period vectors of all operations, and for the arrays only those coeffi-
cients that are smaller than the cache block size. The decision variables that are
determined by the second sub-problem are the remaining address coefficients.

The reason for choosing this decomposition is threefold. First, the feasibility of
an address assignment depends on a choice for a time assignment. For every time
assignment it is possible to find a feasible address assignment, but the opposite is
not necessarily true. Hence, in the first stage of the optimisation process we try to
find a feasible time assignment and complete the optimisation with proper values
for the address assignment.

Second, we assume that most cache hits are caused by intra-array reuse, i.e.,
reuse between port executions that belong to the same array. By definition, ef-
fective reuse of the values stored in a cache can only occur between elements of
the same array. For inter-array reuse we have to take the address offsets and the
address coefficients with values larger than the block size into consideration.

Third, the cost calculation algorithm of Chapter 6 only takes into account fully
set-associative caches. Caches with lower associativity suffer from conflict misses,
as discussed in Chapter 2.

Hill [1987] introduced the 3-C’s model, where he makes a distinction between
compulsory misses, capacity misses, and conflict misses. Conflict misses and ca-
pacity misses together constitute what we call expiration misses in the following
way. Conflict misses are misses that occur in n-way set-associative caches but not
in a fully set-associative cache, and capacity misses are misses that result in a miss
in a fully set-associative cache. In this way, conflict misses occur because of lim-
ited associativity of the cache, and capacity misses occur because of limited size of
the cache. For scientific programs, Rivera & Tseng [1998] have shown that conflict
misses can effectively be dealt with appropriate choices for the address coefficients
and address offsets. Therefore, for the first sub-problem we limit the discussion to
capacity misses.

In this chapter we focus on the extended time assignment problem. In the next
section we give the ingredients for a local search approach to this problem. For the
second sub-problem we refer to techniques proposed by Rivera & Tseng [1998],
Calder, Krintz, John & Austin [1998], and Strout, Carter, Ferrante & Simon [1998].
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7.2 Local search strategy

In Chapter 4 we have proved the optimal time assignment problem (OTA) NP-
complete. Therefore, it is likely that the extended time assignment problem cannot
be solved to optimality in computation times that are bounded by a polynomial
in the size of an instance of the problem. In order to find near-optimal solutions
within reasonable computation time there are two approaches that we can follow;
greedy algorithms or local search algorithms.

There are several examples of greedy algorithms for the time assignment opti-
misation problem. Most of them are based on one or more types of loop transfor-
mations, which are discussed in the next section. For example, McKinley, Carr &
Tseng [1996] propose a compound algorithm, which combines the advantages of
four such transformations.

Local search algorithms explore neighbourhoods of solutions. Iterative im-
provement is one such algorithm that starts with an initial solution, after which it
repeatedly replaces the solution with a neighbouring solution with lower cost. The
algorithm terminates with a solution that does not have lower-cost neighbours, i.e.,
a local optimum.

The cache optimisation problem (MPCS) as well as the problems optimal time
assignment (OTA) and optimal address assignment (OAA) that we considered in
Chapter 4 are combinatorial optimisation problems. We follow the definition of a
combinatorial optimisation problem given by Aarts & Lenstra [1997].

Definition 7.1 (combinatorial optimisation problem). An instance of a combi-
natorial optimisation problem is a pair (S; f ), where the solution set S is a finite
or countably infinite set of feasible solutions, and the cost function f is a mapping
f : S ! R. The problem is to find a globally optimal solution. 2

For a local search approach the notion of a neighbourhood is essential.

Definition 7.2 (neighbourhood structure). A neighbourhood structure for an in-
stance (S; f ) of a combinatorial optimisation problem is a mapping N : S !P(S).
The setN (s) for a solution s2S is called the neighbourhood of s. A solution s2S
is a local minimum of (S; f ) for N if f (s)� f (s0) for all s0 2N (s). 2

As loop transformations have proved their effectiveness for cache usage, we
base the neighbourhood structure on them. Before elaborating on a neighbourhood
structure for the extended time assignment problem we give five aspects that have
to be taken into account when designing a local search algorithm. These are a
representation of solutions, a neighbourhood structure, a way to compute the cost
of neighbour solutions efficiently, a stop criterion for the local search method, and
a way to construct an initial solution. The last two aspects are not discussed in this
thesis.
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In the next section we discuss possibilities for representation of solutions and
possibilities for neighbourhoods that we base on existing techniques for reducing
cache misses.

In general, neighbouring solutions are only different in a limited number of de-
cision variables. In Section 7.4 we indicate how the cost of a neighbouring solution
can be found efficiently, without having to apply the algorithm of Chapter 6 for the
entire newly created schedule, but only for the parts of the schedule that changed.
This is called incremental cost calculation.

7.3 Neighbourhoods

Solutions to our problem are defined in terms of the decision variables start times,
period vectors, and address coefficients. The size of the solution space is large,
but many solutions result in the same program and, therefore, in the same number
of cache misses. For example, multiplying all periods and start times by the same
factor leads to a schedule with the same partial order on the execution of operations,
and hence it leads to the same program with the same number of cache misses.

In order to reduce the solution space, we apply some restrictions. We al-
ready have given restrictions on time assignments for sequentialisability purposes
in Chapter 5 and for cost calculation purposes in Chapter 6. Based on these re-
strictions we limit the periods to powers of a chosen base, e.g., 2. The number
of values that can be chosen for the exponents can be limited, thereby making the
search space for periods finite. Also the number of start times can be limited by
choosing a left-justification of the executions of the operations.

As loop transformations have proved their effectiveness for cache usage, we
base moves in the neighbourhood structure on them. Unfortunately, the neighbour-
hood of a solution that we obtain by considering the following moves can become
large. Nevertheless, this neighbourhood can be reduced by only considering those
moves that involve ports that are responsible for cache misses. This kind of infor-
mation is available in the (approximate) reuse graph.

7.3.1 Loop transformations

In the field of compiler optimisations, the use of loop transformations is very com-
mon. Bacon, Graham & Sharp [1994] give an overview of many transformations
that are used for minimisation of the number of cache misses, for fine grained par-
allelism (instruction level parallelism and vectorisation), and for coarse grained
parallelism. In this section we give an overview of transformation techniques that
are often used to enhance cache performance. In addition we give the correspond-
ing formulation of the transformation in terms of multidimensional periodic oper-
ations.
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j  =
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0 01 12 2i  =

j  =
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for i := 0 : : :2 period 2 !
for j := 0 : : :1 period 1 !
: : := f (Y [i+10 j]) start at 1

for i := 0 : : :2 period 1!
for j := 0 : : :1 period 4 !
: : := f (Y [i+10 j]) start at 1

Figure 7.1. Loop interchange.
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for i := 0 : : :2 period 1 !
X [i] = f (Y [i]) start at 1

for i := 0 : : :2 period 1 !
Z[ j] = g(X [ j]) start at 5

for i := 0 : : :2 period 2!
X [i] = f (Y [i]) start at 1

for i := 0 : : :2 period 2!
Z[ j] = g(X [ j]) start at 2

Figure 7.2. Loop fusion.

Loop interchange

Loop interchange (or loop permutation) interchanges the order of execution of
loops within a loop nest. Interchanging loops may have positive effect on the num-
ber of cache misses and on the amount of parallelism that a compiler can find
[Bacon, Graham & Sharp, 1994]. The positive effect on possible reuse is depicted
in Figure 7.1, where the spatial reuse between iterations i and i+1 is shortened. In
terms of operations we see that only the period vector is affected.

Loop fusion and loop fission

Loop fusion combines the loop bodies of two loop nests into a single loop nest.
Loop fusion can, amongst others, be used to increase instruction level parallelism,
and to improve the locality of reference. In Figure 7.2, the reuse length of all
executions of the input port of operation g are shortened from 4 to 1. In terms of
periods and start times this transformation is a ‘stretch’ of the periods of the outer
dimensions and a left-justification of start times.

The inverse transformation is called loop distribution, loop fission, or loop
splitting.
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5 4 3i  = 2 1 0

for i := 0 : : :5 period 1 !
X [i] =Y [i]+1 start at 1

for i := 0 : : :5 period �1!
X [i] =Y [i]+1 start at 6

Figure 7.3. Loop reversal.
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for i := 0 : : :5 period 1 !
X [i] =Y [i] start at 1

for i := 0 : : :2 period 2 !
for i0 := 0 : : :1 period 1 !

X [2i+ i0] =Y [2i+ i0] start at 1

Figure 7.4. Loop tiling.

Loop reversal

Loop reversal switches the direction in which the iterations of a loop are executed.
For a program consisting of a single loop nest, loop reversal will not change the
number of cache misses. Nevertheless, it is used to enable other loop transforma-
tions such as loop permutation. In Figure 7.3 it is shown that loop reversal negates
the period for one iterator and increases the start time of the operation by plIl , with
l being the changed iterator.

Tiling

Tiling divides the iteration space into smaller blocks (or tiles). Tiling (or blocking)
is used to break computations for large arrays into several computations on sub-
arrays. In Figure 7.4 we give a small example. In this case the array has been
split in tiles of size 2. In terms of periods and start times, blocking or tiling can be
described as a dimension split, as introduced in the previous chapter.

Research on the selection of the size of the tiles has, amongst others, been
done by Lam, Rothberg & Wolf [1991, Coleman & McKinley [1995, Kennedy &
McKinley [1992].
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Neighbourhoods based on transformations

We have given four common types of loop transformations and we have discussed
how they can be described as manipulations of period vectors and start times.
Hence, for our neighbourhood we choose these transformations. Probably many
more manipulations are possible using periods and start times than the ones dis-
cussed above.

7.3.2 Moves for address coefficients

Besides changes in the time assignments, we also have to determine which address
coefficients are assigned values smaller than the cache block size. These coef-
ficients are responsible for self spatial reuse. Therefore, we keep a set of address
coefficients for every array. Every address coefficient in this set we choose as small
as possible in order to maximise the number of executions for which we find self
spatial reuse.

As we saw in the matrix multiplication example of Chapter 6, we may even
choose address coefficients zero for some array dimensions. By choosing coeffi-
cients zero, memory addresses are reused and in this way cache locations can be
reused for multiple array elements.

As we have not explored neighbourhoods for the address assignment further,
we conclude this short discussion by saying that possible moves consist of chang-
ing the set of address coefficients for which we choose small values.

7.4 Incremental cost calculation

A main assumption for adopting local search is fast evaluation of (changes in) the
cost function. As proved in Chapter 4, a polynomial time algorithm for computa-
tion of the cost function is unlikely to exist. In Chapter 6 we have given a heuristic
approach for estimating the cost of a schedule. The time complexity of the heuris-
tic approach, which is fast in practice, is however not bounded by a polynomial in
the size of the schedule.

Fortunately, two observations may save a lot of work for the recalculation of
the cost function when considering neighbours. Local changes in a solution have
only local effects on both parts of the decomposition of the cost evaluation, since
only array clusters that were changed have to be looked at for the reuse analysis,
and local changes in the time assignment result in a limited time interval for which
the number of cache misses must be recalculated.

As we postpone the greater part of the address assignment until after the time
assignment, estimations for the reuse length can only be based on reuse within
array clusters. As the number of array clusters that are affected by a local trans-
formation between neighbours is limited, the amount of computation time for an



128 Towards Global Cache-Miss Minimisation

timet(g)t(g)-f(g)t0 t1

changed

Figure 7.5. For two solutions that differ only in the time interval ft 0; : : : ; t1g, the
set of cache misses differs only in the time interval ft0; : : : ; t(g)g for some port
execution g with t(g)� f (g)� t1.

estimation of a new reuse graph is also limited.
In Figure 7.5 we show a local change in the time assignment and the resulting

time interval in which the number of cache misses may change. Theorem 7.1 shows
the validity of the interval.

Theorem 7.1. Given are two time assignments τ and τ0 and two integers t0 < t1,
such that the assignments differ only in the time interval ft0; : : : ; t1g, i.e., t(p; i) 6=
t 0(p; i) ) t0 � t(p; i); t0(p; i) � t1 for all executions i 2 I(p) of operations p 2
P. Also given are a port execution g 2 E with t1 < t(g)� f (g) and a fully set-
associative cache C. Then for all port executions e 2 E with t(e)< t0 or t(g)� t(e)
a miss occurs for time assignment τ if and only if it occurs for time assignment τ0.
Proof. As proved in Theorem 6.1, a cache miss for a port execution e 2 E occurs
if and only if r(e) > f (e).

As both the reuse length r(e) and the filling f (e) are defined only in terms of
port executions that take place before e, and the time assignment has not changed
for all port executions preceding t0, the reuse length and filling have not changed for
all port executions preceding t0. Hence, we know that r(e) = r0(e) and f (e) = f 0(e)
for port executions e with t(e) < t0 and consequently that a miss occurs for time
assignment τ if and only if it occurs for time assignment τ0.

For the other case, t(g)� t(e) we first prove that f (e) = f0(e). This equality is
based on the following monotony argument for fully set-associative caches.

t(e)� t(e0) ) t(e)� f (e)� t(e0)� f (e0) for all e 2 E (7.1)

From this, we derive t1 < t(g)� f (g) � t(e)� f (e). As the value of f (e) =
maxf t(e)� t( f ) j f 2 E ^ R(t( f );e)� cs g is determined only by terms t( f ) larger
than t1, we know that f (e) = f 0(e).

Next, we apply case analysis by considering the cases t(g)� f (g)� t(e)�r(e)
and t(e)� r(e) < t(g)� f (g). First we look at the case t1 < t(g)� f (g) � t(e)�
r(e). As the value of r(e) = minf t(e)� t( f ) j f 2 E ^ t( f ) < t(e) ^ ab( f ) =
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ab(e)g is determined only by port executions that take place after t1, we know
that r(e) = r0(e). We already established that the filling was equal for both time
assignments and hence we have shown that a miss for time assignment τ occurs if
and only if it occurs for τ0.

For the other case, t(e)� r(e) < t(g)� f (g), we prove that a miss occurs both
for time assignment τ as well as for τ0. Using the monotony property (7.1), we
derive that t(e)� r(e) < t(g)� f (g) � t(e)� f (e), and thus r(e) > f (e). Hence
a miss occurs for port execution e for time assignment τ. As the time assignment
did not change for executions that take place after t1, especially those that take
place after t(g)� f (g), we know that t(e)� r0(e) < t(g)� f (g) � t(e)� f (e) =
t(e)� f 0(e), which implies r0(e) > f 0(e), and thus a miss occurs also for time
assignment τ0. 2

7.5 Discussion

In this chapter we have given ingredients for a local search algorithm for the mul-
tidimensional periodic cache scheduling problem. We have aimed at a global ap-
proach in the sense of optimising for all operations together, instead of optimising
for individual operations. We have proposed a decomposition of the problem into
two sub-problems, where we aim at exploiting intra-array reuse in the first part,
and where completing address assignments is left to the second part. For the first
part we use a local search approach with a neighbourhood structure based on loop
transformation techniques that are well known from literature. For the second part
of the decomposition, where we determine the address offsets and most of the ad-
dress coefficients, we refer to existing techniques such as padding [Rivera & Tseng,
1998].





8
Conclusion

In this thesis we studied the multidimensional periodic cache scheduling problem.
This problem originates from the field of video signal processing algorithms, where
operations have to be performed repeatedly. In our case, we want to execute such
algorithms on fast processors. Because of the widening gap between the speed of
processors and the speed of memory, these processors are equipped with caches,
but their optimal use is still an open problem.

In this problem, the order of execution of operations is modelled by a time as-
signment, consisting of periods and start times. Operations read data from memory
locations and write data to memory locations. An address assignment, consisting of
address coefficient vectors and address offsets, determines these memory locations
for every execution of an operation. The problem is to find a time assignment and
an address assignment that obey precedence constraints and address constraints,
and that minimise the number of cache misses. Contrary to other approaches found
in literature we aim at a global approach, by which we mean that we look at all op-
erations or loop nestings at the same time, instead of optimising a single operation
or loop nesting.

The multidimensional periodic cache scheduling problem has been shown to be
formally hard. In addition to the cache scheduling problem, we have also looked
at the problem of minimising the number of cache misses if we fix either the time
assignment or the address assignment. These problems are also proved NP-hard.
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Even if we fix both the time assignment and the address assignment we have shown
that computing the number of cache misses can only be done in polynomial time if
P = NP.

The time assignment orders the executions of each operation. If operations
must be executed on a processor that has a single thread of control, we need to map
the periods and start times of all operations onto a sequential program. Not all time
assignments, however, can be mapped efficiently onto a such a program. We have
given conditions for the time assignments that allow an efficient implementation
on a processor.

At the heart of this thesis is a discussion on the problem of computing the
number of cache misses for a given schedule consisting of a time assignment and
an address assignment. Since this problem is formally difficult, we have aimed at
finding an efficient and effective algorithm to estimate the number of cache misses.
This algorithm consists of two parts. In the first part we create a so-called reuse
graph. In such a graph we collect information about reuse of cache blocks, i.e.,
we give a compact formulation for the time between two successive accesses to
the same cache block. Also, the construction of such a graph cannot be done in
polynomial time unless P = NP. As we want a fast evaluation of the number of
cache misses for a schedule, we have introduced an approximation of the reuse
graph and we have given heuristics for finding edges in such an approximate reuse
graph. These heuristics are based on situations that often occur in video algorithms.

In the second part of the computation of cache misses, we estimate the filling
of the cache, which reflects from how long ago all accessed blocks are still in
the cache. We have given an algorithm for computing this filling as a function of
time. This algorithm uses the constructed approximate reuse graph and computes
the number of cache misses as a result. From experiments we have learned that
the filling of the cache as a function of time is rather constant, and can well be
approximated by computing the filling at only a few points in time.

The algorithm for the estimation of the number of cache misses has been im-
plemented and experimental results have been compared to cache simulations. We
have obtained good estimations with computation times much smaller than cache
simulations.

Finally, as a first step towards a solution approach based on our cache cost
calculations, we have presented ingredients for a local search approach for the
multidimensional periodic cache scheduling problem. Moves for the local search
algorithm are based on loop transformations that are well known from literature.
As the reuse graph contains information about sets of operations that cause cache
misses, we can use this information to reduce the number of considered moves in
the local search approach. Furthermore, we have shown a way of reducing the
amount of work needed to compute cost of neighbour solutions.
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TOPHAM, N., AND A. GONZ ÁLEZ [1999], Randomized cache placement for elim-
inating conflicts, IEEE Transactions on Computers 48, 185–192.

VERHAEGH, W.F.J. [1995], Multidimensional Periodic Scheduling, Ph.D. thesis,
Eindhoven University of Technology.

VISSERS, K.A., G. ESSINK, P.H.J. VAN GERWEN, P.J.M. JANSSEN, O. POPP,
E. RIDDERSMA, W.J.M. SMITS, AND H.J.M. VEENDRICK [1995], Archi-
tecture and programming of two generations video signal processors, Mi-
croprocessing and Microprogramming 41, 373–390.
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Samenvatting

In dit proefschrift behandelen we een meerdimensionaal periodiek planningspro-
bleem. Dit probleem vindt zijn oorsprong in de videosignaalbewerking. Algo-
ritmen voor de bewerking van videosignalen beschouwen we als verzamelingen
operaties die periodiek uitgevoerd moeten worden met zeer hoge frequentie. Daar-
toe moeten snelle processoren gebruikt worden. De verwerkingssnelheid van deze
processoren is in de afgelopen jaren toegenomen met meer dan 50% op jaarbasis.
De geheugens waarvan deze processoren gebruik maken zijn jaarlijks slechts 7%
sneller geworden, waardoor beide uit de pas gaan lopen. Een standaard oplossing
om dit verschil in snelheid te overbruggen is het toevoegen van cachegeheugen
tussen de processor en het geheugen. Een cachegeheugen is een snel maar klein
buffer dat tussenresultaten van een berekening kan opslaan. De vraag hoe een
cachegeheugen optimaal benut wordt kan gezien worden als een planningspro-
bleem. Het effectief oplossen van dit probleem is echter nog een open vraagstuk.

Het planningsprobleem bestaat eruit om twee toekenningen te vinden, te weten
een tijdstoekenning en een geheugentoekenning. De tijdstoekenning representeert
de volgorde waarin de operaties uitgevoerd moeten worden. Van deze toekenning
eisen we dat operaties in een zodanige volgorde plaatsvinden dat tussenresultaten
berekend worden voordat ze worden gebruikt. De geheugentoekenning legt voor
ieder tussenresultaat in de berekening een geheugenplaats vast. Van deze toeken-
ning eisen we dat een geheugenplaats waar een tussenresultaat opgeslagen is niet
overschreven wordt voordat dit tussenresultaat voor de laatste maal gebruikt is.
Verder eisen we van de toekenningen dat het cachegeheugen optimaal gebruikt
wordt, hetgeen we vertalen in een minimalisatie van het aantal cache misses.

We hebben aangetoond dat dit planningsprobleem formeel lastig is. De
lastigheid wordt enerzijds veroorzaakt door de beperkingen die opgelegd wor-
den aan de tijdstoekenning en geheugentoekenning. Anderzijds blijkt het lastig
om voor een gegeven tijdstoekenning, geheugentoekenning en cachegeheugen, het
aantal cache misses uit te rekenen.

Elke tijdstoekenning bepaalt een volgorde waarin de operaties uitgevoerd
moeten worden. Helaas kunnen niet alle tijdstoekenningen op een efficiënte wijze
uitgevoerd worden worden door een processor. Om de verzameling tijdstoekennin-
gen in te perken tot toekenningen die een efficiënte afbeelding toestaan, leggen we
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aanvullende beperkingen op.
De kern van het proefschrift wordt gevormd door een discussie over het bereke-

nen van het aantal cache misses voor een gegeven tijdstoekenning en geheugen-
toekenning. Deze berekening doet later dienst als een middel om verschillende
toekenningen met elkaar te kunnen vergelijken. Aangezien het bepalen van het
aantal cache misses een formeel lastig probleem is, beschouwen we hiervoor een
benaderingsalgoritme. Daartoe hebben we het probleem in twee delen gesplitst. In
het eerste deel proberen we zo goed mogelijk het hergebruik van tussenresultaten
te bepalen, hetgeen gemeten wordt in de tijd die verstrijkt tussen twee opeenvol-
gende momenten waarop een tussenresultaat gebruikt wordt. In het tweede deel
benaderen we de vulling van het cachegeheugen. De vulling geeft een tijdspanne
aan waarin alle tussenresultaten zich nog in het cachegeheugen bevinden. We laten
zien dat op basis van het hergebruik en de vulling het aantal cache misses berekend
kan worden. Gebaseerd op deze opsplitsing hebben we een benaderingsalgoritme
ontworpen.

Het resulterende algoritme voor het benaderen van het aantal cache misses
hebben we geı̈mplementeerd en gebruikt voor een aantal experimenten. We hebben
laten zien dat we het aantal cache misses goed kunnen benaderen in rekentijden die
veel kleiner zijn dan de tijden die nodig zijn voor een zogenaamde cachesimulatie.

Tenslotte hebben we een eerste stap gedaan in de richting van een lokaal
zoekalgoritme voor het planningsprobleem. De basis voor het algoritme wordt
gevormd door het benaderingsalgoritme voor het aantal cache misses. De
zoekruimte, die nodig is voor lokaal zoeken, wordt opgespannen door veranderin-
gen in de tijdstoekenning en geheugentoekenning. Voor deze veranderingen stellen
wij technieken voor die bekend zijn uit de literatuur.
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I
Het aantal cache misses voor een gegeven programma geschreven in een imperatieve
programmeertaal kan niet bepaald worden in een rekentijd die polynomiaal begrensd
is in de grootte van de programmatekst, tenzij P = NP.

Dit proefschrift.

II
a. Een afhankelijkheidstest voor lustransformaties moet minstens alle data-

afhankelijkheden vinden. Voor het tellen van cache misses is daarentegen een
test nodig die hoogstens alle data-afhankelijkheden vindt.

b. Daarom zou de eerste test eigenlijk onafhankelijkheidstest genoemd moeten wor-
den.

Dit proefschrift.

III
Het aantal instruction cache misses kan gereduceerd worden door herplaatsing van
code in de object file gestuurd door profiling van het programma.
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V
Gezien het dynamische karakter van het World Wide Web moet men er in het algemeen
van afzien om een Uniform Resource Locator (URL) te gebruiken als literatuurrefe-
rentie.



VI
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Dimensions I, Springer-Verlag, Berlin.
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VII
Gezien het grote aantal treinen dat met vertraging rijdt, is het beter om de geplande
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VIII
Artikelen die online gepubliceerd worden, tellen voor twee.
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IX
Stellingen behorende bij een proefschrift zijn vaak taalkunstig geconstrueerde menin-
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