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PRELUDE 

This thesis deals with some characteristic properties of 

sorption processes, in particular of the drying of materials 
in which the diffusion coefficient of water decreases strong­
ly with decreasing water concentration. 

The drying process generally starts with a 
flat (concentration) profile. During the 
initial stage of the process, the drying 

rate is constant ("Constant rate period"). 

The young Constance represents this period. 

The initial drying rate depends 
on the air flow conditions, air 
temperature and -humidity. However, 
the drying curves for different 
initial drying rates coincide after 
the constant rate period in a single 
curve: the "parent curve", For 
every initial moisture content of 
the drying body there is a parent 
curve. An important part of this 
curve reflects the "Penetration 
Period". The dynamic penetration 
activities determine the character 
of the parents: Pete Pennett and 

Pinky Pat. 
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The parent curves for every initial 

concentration all merge after some 

time into a "grand-parent"-curve, 

which therefore is independent of 

the initial concentration. This 
period is called the Regular Regime. 

The grand-parents Reggie & Regga 

are the leading characters of this 

thesis. 

After infinite time the steady state 

is reached, which will last forever. 

For the calculation of drying processes, we developed some 

hereditary rules, with which the different stages of the 

drying process can be calculated, once we know the grand­
parents Reggie and Regga,and Mr.Steady 
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SUMMARY 

Dispersed phase mass transfer in sorption processes, such 

as drying, humidification, leaching and adsorption can 

generally be described by the diffusion equation. For many 

kinds of concentration dependence of the diffusion coef­

ficient and many boundary conditions, concentration profiles 

become after a certain period of time virtually independent 

of the initial concentration profile: The sorption process 

enters the so-called regular regime. The regular regime 

sorption curve is determined by the (concentration- and 

temperature dependent) diffusivity, the geometry and the 

boundary conditions, and is independent of the initial con­
dition. 

This thesis deals with certain properties of regular regimes, 

in particular regular regimes of sorption with constant sur­

face concentration or constant sorption rate. It appears, 

that dispersed phase mass transfer in case of concentration 

dependent diffusion coefficient can conveniently be des­

cribed by a concentration-averaged diffusivity. The con­
centration-averaged diffusivity is also used in the def­

inition of a dispersed phase Sherwood number. This Sherwood 
number has been correlated with a measure of the variation 

of the diffusivity with concentration. The correlation 

allows a simple calculation of the regular regime sorption 

curve from the concentration dependence of the diffusion 

coefficient. Reversely, the concentration dependence of the 

diffusion coefficient can be calculated in the whole con­
centration interval in which the regular regime sorption 

curve has been determined experimentally, This requires 

only a single sorption experiment. In addition, rules are 
given by which the regular regime sorption curve for a 

certain geometry can be translated into regular regimes 

for other geometries. 

When a sorption process starts with a homogeneous initial 
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concentration, a so-called penet~ation pe~iod precedes 

the regular regime. For constant surface concentration or 

constant surface flux this period is characterized by a 

single parameter (slabs) or at most two parameters (spheres 

and cylinders). These parameters can be calculated from the 

regular regime sorption curve by relatively simple methods. 

A short-cut method is described for the calculation of dry­

ing rates in case of strongly concentration dependent dif­

fusion coefficients. Also non-isothermal drying of slabs, 

cylinqers and spheres can in the absence of temperature 

gradients inside the drying specimen be calculated accord­

ing to this method. The drying rate at constant surface con­

centration appears to be virtually independent of the tem­

perature history. It is determined only by the actual tem­

perature of the specimen and the average and surface con­

centration. 

From experimentally determined isothermal drying curves of 

a slab of a gelled aqueous glucose solution the concentrat­

ion and temperature dependence of the diffusion coefficient 

of water-glucose has been calculated. Values of the dif­

fusion coefficient have been obtained for concentrations 

down to 10% water by weight. The relation between diffusion 

coefficient and water concentration,as obtained from these 

sorption experiments over a large concentration interval, 

are in good agreement with literature data, obtained from 

successive measurements over small concentration intervals. 
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SAMENVATTING 

Bij sorptieprocessen als drogen, bevochtigen, adsorptie en 

vaste-stof extractie, kan het massa-transport in de disperse 
fase in het algemeen beschreven worden met de diffusiever­
gelijking. Voor een groot aantal concentratie-afhankelijk­

heden van de diffusiecoefficient en diverse soorten rand­

voorwaarden blijken de concentratieprofielen na verloop 

van tijd onafhankelijk te worden van het concentratieprofiel 

bij het begin van het proces: het sorptie-proces bevindt 
zich dan in het zgn. ReguUer Regime ("Regular Regime"). 
Het sorptie-gedrag in het regulier regime wordt bepaald 

door de (concentratie- en temperatuurafhankelijke) diffusie­
coefficient, de geometrie en de randvoorwaarden en is onaf­
hankelijk van de begintoestand. 

In di t proefschrift worden een aantal eigenschappen be·­

schreven van reguliere regimes, in het bijzonder voor sorptie 
met constante grensvlakconcentratie of constante sorptie­
snelheid. Het massa-transport in de disperse fase wordt be­
schreven met behulp van een concentratie-gemiddelde·diffusie­

coefficient. Deze gemiddelde diffusiecoefficien~ wordt ge­
bruikt voor de definitie van een Sherwood-getal voor de 
disperse fase. De waarde van het Sherwood getal wordt ge­
correleerd met een maat voor de verandering van de diffusie­
coefficient met de concentratie. Met behulp van deze corre­
latie kan de sorptie-snelheid gedurende het reguliere regime 

berekend worden uit de concentratie-afhankelijkheid van de 
diffusiecoefficient. omgekeerd kan de concentratie-afhanke­
lijkheid van de diffusiecoefficient berekend worden in het 
gehele concentratietrajekt, waarover de sorptie-snelheid 
gedurende het reguliere regime experimenteel bepaald is. 
Hiervoor is slechts een experiment noodzakelijk. Verder 
worden er nog regels gegeven om de reguliere sorptie-curve 
van een bepaalde geometrie te vertalen naar andere geome­

trieeri. 
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Een zgn. penetPatie-periode gaat vooraf aan het reguliere 

regime wanneer bij het begin van het sorptie-proces de con­

centratie in de disperse fase homogeen is. Zowel voor het 

geval van constante grensvlakconcentratie als voor constante 

sorptie-snelheid wordt deze periode gekarakteriseerd door 

~~n parameter (vlakke lagen) of ten hoogste twee parameters 

(cylinders, bollen). Deze parameters kunnen op een relatief 

eenvoudige manier berekend worden uit de regulrere sorptie­

curve. 

De in het proefschrift ontwikkelde theorie wordt toegepast 

bij de berekening van droogsnelheden van systemen, waarin 

de diffusiecoefficient sterk varieert met de water-concen­

tratie. De methode kan ook worden toegepast voor de bereke­

ning van niet-isotherm drogende lagen, cylinders en bollen 

wanneer zich daarin geen temperatuurgradienten bevinden. 

Het is gebleken, dat de droogsnelheid bij constante grens­

vlakconcentratie praktisch onafhankelijk is van de tempera­

tuurgeschiedenis. Zij wordt alleen bepaald door de actuele 

temperatuur van het drogend materiaal, de gemiddelde con­

centratie en de oppervlakte concentratie. 

Uit experimenteel bepaalde isotherme droogcurven van een 

vlakke laag van een waterige, gegeleerde glucose-oplossing 
is de concentratie- en temperatuurafhankelijkhe,id van de 

diffusiecoefficient berekend m.b.v. de nieuw ontwikkelde 

methode. Tot 10 gewichts-procent water in de oplossing zijn 

waarden voor de diffusiecoefficient bepaald. De relatie 

tussen de diffusiecoefficient en de waterconcentratie zeals 

berekend uit de sorptie-experimenten over een groot concen­

tratietraject, stemmen goed overeen met literatuurgegevens, 

die verkregen zijn door opeenvolgende metingen over kleine 
concentratietrajecten. 

xvi 



I. INTRODUCTION 

I.l General 

Sorption is an inter-phase mass transfer process in which 

one or more components are transferred selectively. In 

general, the process is unsteady from a Lagrangian point 

of view. 

This study deals with sorption in the phase in which 
(i) the process is transient 

(ii) the transfer rate of a component is proportional 

to its concentration gradient 

(iii) the proport;ionality factor ("diffusion coefficient") 

is a function of the migrating component only. 

These conditions refer in particular to dispersed phase 

mass transport in processessuch as leaching, adsorption, 

absorption, desorption, ion erechange, drying and humid­

ification. Emphasis is laid on the study of dispersed 

phase mass transfer in drying. 

For the design and optimization of a sorption process the 

calculation of sorption rates is necessary. Many papers 
and textb'ooks deal with this subject (e.g. Walker et al. 

(1937), Treybal {1955), King (1971), Perry et al.{1973), 

Sherwood et al. (1975)). The subject-matter usually is 

divided into dispersed- and continuous-phase mass transfer. 

Mass transfer in the continuous phase generally is describ­

ed by means of a mass-transfer coefficient, which is de­
fined as the ratio between the mass flux and a concentrat­

ion difference. Several theories have been developed with 

respect to these mass transfer coefficients, e.g. film 

theory {Lewis (1916)), penetration theory {Higbie (1935)) 

suface renewal theory (Danckwerts (1951)) and boundary 

layer theory {Schlichting {1955)). In addition, many 

authors describe experimental correlations between dimen­
sionless groups for the calculation of mass transfer rates 

(e.g. Ranz & Marshall (1952)). A review of such correlat-
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ions for mass transfer from and to spheres has been present­

ed by Sideman (1966) and by Sideman & Shabtai (1964). 

In all relations and correlations a diffusion coefficient 

is used, which is assumed to be constant. In practice, 

this assumption appears to be allowable for continuous 

phase mass transfer in the vast majority of sorption 

processes. 

In dispersed phase mass transfer we confine ourselves 

here to systems in which convection (circulation, oscillat­

ion) or temperature gradients do not contribute to mass 

transfer. Under the restrictions mentioned above, the 

transport of a component can be described by the "diffus­

ion equation". For various transport mechanisms (e.g. 

molecular diffusion, capillary transport, evaporation­

condensation mechanism) the transfer rate of a migrating 

component in the absence of pressure gradients and exter­

nal forces is proportional to the gradient of its chemical 

potential vllm= 

(I.l.l) 

where nm is the mass flux vector, Lm a phenomenological 

coefficient and Pm the mass concentration of the migrating 

component. The diffusion equation then follows from a 

shell mass balance: 

(I.l.2) 

in which t is the time and D the diffusion coefficient, 

which is related to the phenomenological coefficient Lm 
by 

D (!.1.3) 

In this equation am is the activity of the migrating 

component, R the gas constant and T the absolute tempera­
ture. 
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The diffusion coefficient is often dependent on concentrat­

ion, in particular when water is the migrating component 

(drying and humidification). This concentration dependence 

of the water diffusivity has for instance been observed 
in polyvinylalcohol (Okazaki et.al. (1974), soap, wood, 

clay (Hougen et.al,(1939)) and many carbohydrate solutions 

(Gosting & Morris (1949), English & Dole (1950), Gladden 

& Dole (1953), Fish (1958}, Menting (1969), Chandrasekaran 

& King (1972), v.d. Lijn (1976)). However, also in many 

other systems the apparent diffusion coefficient varies 

with concentration {Ghai et.al. (1973)). Diffusion in a 

porous medium with instantaneous adsorption-equilibrium 

may serve as another example. 

The diffusion equation with constant diffusivity has been 

solved analytically for numerous initial- and boundary 

conditions (Newman (1931), Carslaw & Jaeger (1959), Crank 

(1956), Luikov (1968)). Numerical solutions using strongly 

concentration dependent diffusion coefficents have been 

presented by van Arsdel (1947) and, more recently, by 

several authors, as well for constant surface concentrat­
ion (Okazaki et.al.(l974), Fels & Huang (1970), Duda & 

Vrentas (1971)) as for variable surface concentration in 

a simulation of a drying process (Rulkens & Thijssen 
(1969), Chandrasekaran & King (1972), Kerkhof et.al. (1972) 

v.d. Lijn et.al. (1972), Schoeber (1973) 1 Rulkens (1973) 1 

Kerkhof & Schoeber (1974), Kerkhof (1975) 1 v.d. Lijn (1976)). 

A major problem in the application of numerical methods to 

the solution of the diffusion equation with variable 

diffusion coefficient is, that it is often extremely 

difficult to prove stability and convergence to the unique 

solution. In some cases it is even hard to obtain a calcul­

ation which is not evidently unstable. Even more discourag­

ing is the fact, that data about the concentration depend­
ence of diffusion coefficients are very scarce. This 

means, that elaborate experiments are required for the 

determination of this concentration dependence before the 
mass transfer rates can be calculated. 
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Therefore, the aim of this investigation has been the 

development of a relativelY; simple and fast method for 

the determination of concentration dependent diffusion 

coefficients. In addition, we investigated the possibili­

ties of circumventing the numerical calculations and de­
veloped correlation methods for the calculation of sorpt­

ion rates, with particular reference to drying. 

The present approach is to a large extent phenomenological: 

numerical solutions of the diffusion equation have been 

analyzed for many kinds of concentration dependence of the 

diffusion coefficient. Some striking regularities were 

observed of which use can be made in the calculation of 

sorption processes. 

I.2 Regular Regimes 

A diffusion process may be divided into three stages (cfr. 

Luikov (1968)). 

In the first stage, the diffusion is strongly influenced 

by the initial concentration distribution. After a certain 

period of time the influence of this initial distribution 

is no longer detectable in the concentration profiles. 
This second stage is called the Regular Regime. In an 

actual diffusion process the concentration profiles and 

mass transfer rates belonging to the regular regime are 

approached asymptotically. Therefore, the characteristic 

properties of this regime are of great interest for engi­
neering purposes. The third stage corresponds to the 

Steady State~ during which the concentration at any point 
of the body is constant. 

In the present work the regular regime is defined as the 

per-iod in time during an unstationary diffusion process in 

which the influence of the initiql condition on the process 
can be neglected~ but during which the concentrations still 
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change in time. 

The general solution of the diffusion equation can be re­

presented by a function of time and place: 

m = m(~,T) 

where m is a measure of the concentration, T is a time­

coordinate and ~ is a distance coordinate. During the 

regular regime the solution is independent of initial 

condition and ,therefore independent of the absolute value 

of 1:. If we exclude periodically changing boundary conditions, 

the average concentration inside the body (m) can then be 

used as a measure of the time and the regular regime can be 

described by a function of ~ and m only: 

(1.2.2} 

It follows, that a regular regime does not occur if the boun­

dary condition can not be expressed independently of the ab­

solute value of -r. If the boundary condition is givenas a 

function of m (e.g. according to a mass balance}, as a 
time-derivative (e.g. linearly decreasing surface concen­

tration with time) or as a periodic function of time, this 

regular regime condition is fulfilled. 

The regular regime phenomenon has in literature only been 

described for constant diffusivity. Kondratiev (1964) and 

Luikov (1~68} introduced the regular regime concept. They 

used definitions, which were based upon regularities in 

diffusion processes with constant diffusivity. For the case 

of a concentration dependent diffusion coefficient these 
definitions are too restricted, since the regular regime is 

then less "regular": Overall mass transfer coefficients, 

which are constant during the regular regime in case of a 
constant diffusion coefficient, vary with time in case of 

variable diffusivity. Nevertheless, it is still advantageous 

to use the regular regime concept: in the regular regime 
similarity exists between processes with equal boundary 

conditions but different initial conditions. 
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In his work on heat diffusion with constant thermal proper­

ties Kondratiev {1964) distinguishes different kinds of 

regular regimes. Analogously we distinguish the following 

kinds of regular regimes: 

1. The concentration profile in the body remains geometric­

ally identical. Kondratiev calls this a regular regime 

of the seaond kind. The change of the concentration 

with time does not vary with the space-coordinate, so 

that this regular regime can be characterized by 

am 
am = 1 (!,2,3) 

For constant diffusivity this type of regular regime 

occurs for a constant surface flux or a linear relation 

between surface concentration and time. 
2, The concentration profile in 

ally similar: regular regime 

can be characterized by 

am= m + f(m) 
am m + £ Cm> 

the body remains geometric­

of the first kind. This 

(!,2.4) 

where f(m) is a function of the average concentration m 
only. An example of this type of regular·regime is sorp­

tion with constant diffusivity, constant mass transfer 

Biot-number and constant extraction factor (Thijssen 
et al. (1973), Vorstman & Thijssen (1971)). 

3. For all other regular regimes it holds, that 

am -am= g(m,(j)) (I.2.5) 

where g is a function of m and .4> only and therefore is 
independent of the absolute value of the time. 

For constant diffusion coefficient the.dispersed phase 

mass transfer coefficient reaches a limit value upon 

entering a regular regime of the first or the second kind. 
Vorstman ~ Thijssen (1971) and Thijssen et al. (1973) made 

use of this phenomenon in extraction calculations. 
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For reasons of similarity a Sherwood number for the dis­

persed phase (Shd) is introduced, which is defined by 

2 kd R 
Shd = D (I. 2. 6) 

where kd is the mass transfer coefficient in the dispersed 
phase and R a characteristic dimension (radius) of the 
specimen. This Sherwood number is indicative for the shape 
of the concentration profile and remains constant when the 

shape of the concentration profile remains constant (regu­
lar regimes of the first and second kind), The authors 

presented asymptotic values of Shd for many values of the 
mass transfer Biot-number and of the extraction factor. 

A first indication of the occurence of regular regimes in 
case of concentration dependent diffusion coefficients was 

given by Schoeber (1973). He found, that the drying time 
of a droplet of an aqueous solution of maltose during the 
final stage of the process was virtually independent of 
the initial cohcentration. Recently, Schoeber & Thijssen 
(1975) have published an analysis of the (numerical) solu­
tions of the diffusion equation for a slab in which ·the 
regular regime approach is introduced for the case of a 
variable diffusion coefficient. It appears from their 

analysis, that the regular regime sorption curve is charac­
teristic for a given material and a given set of boundary 
conditions and temperature. This regular regime sorption 
curve can serve as a basis for the calculation of the sorp­

tion curve for every (homogeneous) initial concentration 
and for the calculation of the concentration dependence 
of the diffusion coefficient. 
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I.3 Drying of aqueous solutions in which the diffusion 

coefficient of water depends strongly on water concen­

tration 

In general, drying histories are divided into two periods: 

a constant rate period, during which the water activity 

at the phase boundary is approximately constant, and a 

falling rate period. If the diffusion coefficient decreas­

es strongly with water concentration, mass transfer during 

the falling rate period generally is controlled by dispers­

ed phase mass transfer. Therefore, the water concentration 

at the phase boundary in the dispersed phase is approxi­

mately equal to the equilibrium concentration. 

The boundary conditions belonging to these two periods 

both fulfill the requirements for a regular regime to oc­

cur after a period of time. In view of the application 

to the calculation of drying processes particular atten­

tion· is paid to the boundary conditions which apply for 

the constant and falling rate period of drying: constant 

surface activity (e.g. constant surface flux) and constant 

surface concentration. 

I.4 Scope of this thesis 

This thesis can be divided into three main parts: an intro­

ductory part (chapter II), a fundamental part (chapters 

III and IV) and an applied part (chapters V and VI). 

After the introduction, the diffusion equation is given 

in chapter II for various coordinate systems (slabs, cy­
linders, spheres, spherical and cylindrical shells, 
shrinking and non-shrinking systems). This chapter also 

treats the numerical solution of the diffusion equation. 

Chapter III deals with the characteristics of the regular 
regime of sorption. The influence of the kind of concen-
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tration dependence of the diffusion coefficient on the 

sorption rate is investigated. Furthermore, general rela­

tions for the influence of geometry and of shrinkage on 
the sorption rate are presented. 

If the concentration profile at the beginning of the sorp­
tion process is flat, it takes some time before the regu­

lar regime is reached. In this first period the influence 
of the change, brought about at the phase boundary, gradual­

ly penetrates into the body ("Penetration Period"). The 
relations describing the sorption rate in the penetration 

period are presented in chapter IV. 

Chapter V describes a short-cut method for the calculation 
of drying rates in case of strongly concentration dependent 
diffusion coefficient (e.g. food liquids}. It is based on 
the developments described in the chapters III and IV. 

Chapter VI illustrates the significance of the regular 

regime approach to the calculation of the concentration 
dependence of the diffusion coefficient from a single 
sorption experiment. The isothermal drying of a slab of 

an aqueous solution of glucose is described. From this sorption 
curve the concentration dependence of the diffusion coef­
ficient is calculated and compared with literature values. 
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II EQUATIONS AND SOLUTION 

II.1 Introduction 

This study deals with systems, in which mass transport can 

be described by the diffusion equation. It depends on the 

kind of physical system which coordinates are to be prefer­

ed for the description of the transport process. If the 

dispersed phase consists of a porous solid material, its 

dimensions remain constant during the process. The same 

can be assumed if the volume fraction of the migrating 

component in the dispersed phase is negligible. For such 

non-shrinking systems the description in stationary co­

ordinates (with respect to the rigid dispersed particle) 

is to be preferred. However, if there is no rigid matrix 

present, the dimensions of the dispersed body change upon 

(de)sorption of a considerable volume-fraction. The change 

of volume is often equal to the volumetric uptake or loss 

of sorbent (e.g. aqueous carbohydrate solutions, many 

polymer systems). Dissolved solids- or stationary compound 

centered-coordinates were shown to be suitable for the 

description of mass transfer in such shrinking or swelling 

systems (Crank (1956), V.d.Lijn (1976)). 
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In this chapter the diffusion equations are presented for 

non-shrinking systems and for shrinking systems in which 

the volumetric uptake or loss of sorbent is equal to the 

volume change of the dispersed body. The equations will be 

given for one-dimensional diffusion in the slab-geometry 

(infinite flat plate of limited thickness), in an infinite 

cylinder and in a sphere. The diffusion equations for all 

systems will then be condensed in a single equation. Such 

a generalized representation facilitates general derivat­

ions and the programming of the numerical solution of the 

equations in a computer program. Finally the numerical 

solution of the diffusion equation will be discussed 

concisely. 

II.2 Non-shrinking systems 

Let the (apparent) diffusion coefficient D be defined by 

n 
m 

(II.2.1} 

where nm is the mass flux of the migrating component m 

with respect to stationary coordinates (kg/m2s}, Pm the 

mass concentration of m (kg/m3) and r the stationary 

distance coordinate (m). This diffusivity Dis equal to 

the molecular diffusion coefficient Dfor equivolumetric 

diffusion witaout volume contractionti.e. zero mean volume 

velocity)as defined by Bird et.al. (1960) (Vander Lijn 

(1976)): 

(II.2.2) 

where wm is the mass fraction of component m {kg/kg), p 

the total density and the indices m and s refer to the two 

components m (migrating) and s (e.g. dissolved solid) 

present in the binary system. 

From a shell mass balance then follows the diffusion 

equation: 
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G:m) 
r 

{l_ ( D 
rv ar 

Clpm)} 
ar t 

(II.2.3) 

where t is the time and v is a geometric factor, which is 

0 for slabs, 1 for cylinders and 2 for spheres. The use of 

such a geometric factor was· proposed by Kerkhof (1975). For 

reasons of similarity the fol~owing dimensionless variables 

are defined: 

(II.2.4) 

in which T* is the dimensionless time variable and R the 

dimension of the body (the radius for spheres and cylin­

ders, the half-thickness of a slab in case of mass transfer 

at both sides of the slab and the thickness of the slab in 

case of single-side mass transfer). D0 is an arbitrary 

value of the diffusion coefficient which is introduced to 

show the similarity between two sorption processes in 

which the variable diffusion coefficients differ from each 

other by a constant factor over the concentration inter­

val of interest. In certain cases, where this similarity 

is not relevant, D0 can be considered as a dimensional 

constant with a numerical value of 1. 

A dimensionless space-coordinate z is defined by 

_ ( r )v+1 z - -R (II.2. 5) 

Equal increments in z correspond with equal increments in 

the (relative) volume between 0 < z < z'. 

Finally, a dimensionless diffusion coefficient Dr (reduc­
ed) is introduced: 

(II.2. 6) 

Substitution of the new variables and the reduced diffus- · 

ivity gives the diffusion equation in reduced variables: 

-12-



( ::t?) 
z 

2v 
={.L(o (v+1) 2 zv+i az r 

apm )I 
az f r * (II. 2. 7) 

Introduction of a dimensionless concentration would not be 

meaningful, since the diffusivity is a function of the 

absolute concentration itself and can in general not be 

expressed as a function of a reduced concentration only. 

Generally, the concentration profile is flat at the begin­

ning of the sorption process. The initial condition there­

fore reads: 

(II.2. 8) 

The boundary condition for the centre of the body reads: 

z = 0; 

v 
-:-;-;;+ a P m 
'1/"1'"1- = 0 

z az (II.2.9) 

while at the phase boundary the mass fluxes in t«e dispers­

ed and continuous phase are equal: 

(apm) 
n = -D --
m,i ar r=R 

(II.2.10) 

where n . represents the mass flux through the interface. 
m,~ 

In reduced variables this condition can be formulated as: 

-D r = 
n R m,i 

Do 
{II. 2. 11) 

The diffusion process in a sheZZ {hollow sphere, hollow 

cylinder) can be described by the equation 

~~1 a Jl + z} a:m r*(II.2.12) 

In this equation Rc is the radius of the hollow part 

("core") and R the radius of the massive body (sphere, 
s 

cylinder) which has a volume equal to the volume of the 
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( 
R )v+1 

shell. The parameter Rc . represents the ratio of 

the inert volume to thes"active" volume where the diffus­

ion takes place. The initial condition is given by equat­

ion (II.2.8) and the boundary condition at z=O by equation 

(II.2.9). The boundary condition at z=1 reads: 

n i • R m, = 
Do -D 

r 

R v+1 

(v+1) {(Rc) + 
s 

II.3 Shrinkin9 or swellin9 systems 

(II.2.13) 

The diffusion flux relative to reference component-mass 

centered coordinates (which move with the dissolved solids) 

is equal to (de Groot & Mazur (1962)): 

(II.3.1) 

where j~ represents the mass flux with respect to the 

reference component-mass centered coordinate and the index 

s refers to the reference component (e.g. dissolved solid 

when the solvent is extracted). u is the mass concentrat­

ion on reference component basis: pm/Ps• The equation of 

continuity then reads: 

n~)y ={~y(m. p:. r2v ~~)}t (II. 3.2) 

In which y is the reference component-mass centered co­

ordinate, defined by 

r 
y = I ps rv dr 

0 

The following reduced variables are introduced: 

2 
= JDO Ps,O t ** T 

d2 R2 
s,p s 
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where T** is the dimensionless time variable , d is the s,p 
density of the pure reference component (at pm = 0) and Rs 

the radius (or thickness) of the body in the absence of 

the migrating component (pm = 0). In terms of the reduced 

coordinates Rs can be formulated as 

= (v+1) 
Rs -d--

s,p 

1 
yv+1 (II.3.5) 

In this relation Y represents the value of y at r=R: 

R 
Y = I ps rv dr 

0 
(II.3.6) 

2 The combination ID
0 

p s, 
0 

plays the same role as o.
0 

in the 

previous paragraph. A reduced diffusivity is defined by 

(II.3.7) 

and the reduced distance coordinate reads: 

( = y/Y (II. 3. 8) 

Increments in ~ correspond to fractional increments in the 

reference component mass. 

Substitution of these new variables in equation (II.3.2) 

yields: 

with the initial condition 

T** = o, 0 < ~ < 1 : u 

and the boundary conditions 

n ( !s 
T** > 0; ~ = 0 . . 

= uo 

\1 

+ }V+l ~m) d~ • 
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(II.3.10) 

1E = 0 (II.3.11) 
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-r** > 0 ~ !; = 1 

'\) 

.s d R Jm!i S!E s = -D 
IDO 

2 r 
Ps,o 

v+1 

{ ~(1 u ) } au (v+1) ds f d + d dt,: • ~ 
,p D s m ~ 1;=1 

(II.3.12) 

In these equations d and d are the partial densities of s m 
the reference and migrating component respectively. 

If there is no volume change upon mixing (d ~ d ) the s s,p 
equations can also be written in reference component 

volume centered coordinates (Kerkhof (1975)). The coordin­

ate system remains the same, because fractional increments 

in the reference component mass are for constant specific 

density equal to fractional increments in its volume. Only 

the concentration (v) is expressed as a volume-fraction 

d s v = 
dm 

(II.3.13) 

Multiplication of both sides of equation (II.3.9) by 

ds/dm then results in the reduced diffusion equation in 

volume-centered coordinates: 

2v 
v+1 

d;} ~~JL** 
(II.3.14) 

This notation appears to be somewhat less complex than 

the notation in mass centered coordinates. The specific 

densities of the components have been eliminated. There­

fore, this notation is to be preferred for the general 

analysis of diffusion in shrinking systems. The initial 

condition and the boundary condition at 1; = 0 are equal to 

the conditions for the mass centered coordinate system if 

v is substituted for u. The boundary condition at 1; = 1 
reads: 
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.s R 
Jm,i s 

. 2 
D P .0 s, o 

-D r { 
~ } v~1 I (v+1) ~ (1+v) d~ ;~ f;=

1 
(II.3.15) 

Note that for slabs (v=O) the diffusion equations (II.3.9) 

and (II.3.14) take the simple "Fickian" form: 

u~** )~ = a ( 0 au) 
TI r TI T** (II.3.16) 

and 

(;~**) = a ( 0 av ) 
f; TI r TI r** (II.3.17) 

The equations for shrinking hollow particles with cons.tant 

inner or outer radius will not be derived here. They are 

included in the generalized description in the next para­

graph. 

II.4 Generalized formulation 

The diffusion equations with boundary conditions for 

shrinking and non-shrinking systems, slabs, cylinders and 

spheres can be condensed in a single formulation of the 

diffusion equation: 

(II.4.1) 

with initial and boundary conditions: 

't' = 0; 0 < cp < 1 m = m0 (II.4.2) 

'l' > 0; cp = 0 X am= 0 (lcp (II.4.3) 

cp = 1 : F = -Dr Xi ;~ r cp= 1 (II.4. 4) 

In this set of equations m is the concentration, T the 

dimensionless time coordinate, $ the dimensionless space­

coordinate and F the flux parameter (which has the same 
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Table 11.4.1: Meaning of the variables in the reduced 
equation II. 4.1 

reference reference 
variable stationary component component 

coordinates mass volume 
centered centered 
coordinates coordinates 

concentration: Pm Pm d Pm s - -
m Ps dm Ps 

time: D
0

t ][)0 
2 t 2 t Ps,O IDO PSL 0 

1: 
R2 d2 R2 d2 R2 

s s,p s s s 

distance: { ~J v+1 
r (systems r Ps 

f Ps 
rv dr f -- rv dr 

without 0 0 ds 
hollow core) 

R R 
cp f rv dr 

Ps v dr Ps J- r 
0 0 ds 

-------------- --------------- ----------------------------
distance: 

{~J v+1_{ :: r+1 (hollow r r Ps 
f 

v dr f rv dr systems) Ps r d R R s 
cp c c 

R R 
f rv dr f 

Ps v dr Ps d r 
R R s c c 

diffusivity: D ][) 2 ][) 
2 

D Do 
Ps Ps 

r 
][)0 

2 
][)0 

2 
Ps,O Ps,O 

surface flux R .s 
d R .s d2 R parameter: n Jm,i Jm!i m,i s Sd~ s s s 

F Do 
IDO 

2 
ID P 

2 d Ps,O 0 s,·O m 
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I ..... 
1.0 
I 

stationary reference component mass reference component vol-
X coordinates centered coordinates ume centered coordinates 

systems v _v_ v 
without v+1 t <¥ 1 m } v+1 { <¥ tv+1 hollow (v+1) 4> (v+1) ds,p I <a+ d)d$ (v+1) 1 (1+m)dcp 
core 0 s m 0 

_v_ __v_ v 
hollow 1 { R v+1 t v+1 f R v+1 v+1 v+1 v+1 
~~~=;ant (v+1) (Rc) + cp (v+1) (Rc) + ds,p j (~+~)dept v+1)j(:c) + j (1+m}d</>[ 
radius s s 0 s m l s 0 J 
Rc 

hollow 1 _v_ __v_ v 
constant ! R v+1 1 v+1 { R v+1 1 t v+1 { v+1 1 } v+1 out~r (v+1) ("R) -(1-$) (v+1) (R) - d ! (~ +~ )d</> (v+1) (!L) - f (1+m}dij> 
rad~us R s s s,p cp s m Rs cp 

I 
Slab: v = 0; cylinder: v = 1; sphere v = 2; 

Table II.4.2: Meaning of the variable X in equation II.4.1. 



dimension as m!). The dimensionless quantity X is (v+1) 

times the surface area of the body at a given ~ relative 

to the surface area of the body at the same ~. if it would 

contain no migrating component. Xi is the value of X at 

~=1 (interface). 

Integration of equation (II.4.1) between ~=0 and ~=1 gives 

the mass balance: 

diii. 
- -d = F.X. 

T J. 

where m is the average concentration in the body: 

-m 
1 
J m d ~ 
0 

(II. 4. 5) 

(II. 4. 6) 

The Tables II.4.1 and II.4.2 give the meaning of the para­

meters introduced in this paragraph for the various systems 

under consideration. For hollow systems (cylindrical or 

spherical shells) the variables have the same meaning as 

for systems without hollow core with the exception of the 

space coordinate ~ and the quantity X. In the description 

in stationary coordinates the body dimension Rs is equal 

to R for systems without hollow core. 

II.S Numerical solution of the diffusion equation 

Several methods have been presented in literature for the 

solution of the non-linear parabolic differential equation 

(II.4.1). Duda & Vrentas (1971) used a collocation techni­

que. However, such a technique may involve serious diffic­

ulties. Acton (1970) states in the interlude "What not to 

compute" about this method: "Having chosen the series and 

fitted the parameters and evaluated the approximate solut­

ion, one is still left with more hope than knowledge." 

Many other authors, who have been mentioned in the intro­

duction, used finite difference techniques. Also for these 

techniques it is difficult to prove stability and to prove 

-20-



convergence to the unique solution.(Ladyzenskaja et al. 

(1968) proved, that there exists a unique solution to the 

quasilinear equation (II.4.1) with initial- and boundary 

conditions (II.4.2-4)). In spite of these uncertainties, we 

used this technique without proof of convergence and stab­

ility, in the first instance incidentally also "left with 

more hope than knowledge". Where possible, the results of 

the calculations have been checked either analytically, 

either by "safe" numerical methods, or experimentally. The 

results presented in the following chapters reveal that 

good agreement exists between the numerical solutions on 

the one hand and on the other hand analytical and numerical 

relations derived for the regular regimes with geometrical­

ly similar or identical concentration profiles and the 

analytical solutions for constant diffusion coefficient. 

Furthermore, the calculations for the isothermal drying of 

a slab of an aqueous solution of glucose could be verified 

experimentally. Together with the fact, that variation of 

the grid-size or length of time-intervals did not have a 

substantial effect on the results of the calculations, 

there is sufficient reason to believe that the numerical 

solutions are reliable. 

The diffusion equation was solved by application of a 

modification of the Crank-Nicolson (1947) finite difference 

technique. The weighting factor used in the calculation of 

the weighted-mean time derivative Am/A<, which is .5 in 
the Crank-Nicolson method, was taken between .5 and .8 for 
the "new" time level and consequently between • 5 and .2 

for the "old" time level. It appeared experimentally, that 

for diffusion coefficients which vary strongly with con­

centration, a high weighting factor for the new time level 

(.8) improves stability. The last difference equation near 

the phase boundary ~=1 and the boundary condition at ~=1 
were both taken at the new time level only (weighting 

factors 1 and 0 respectively). 
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In order to obtain a linear set of equation~ the coeffic­

ient Dr was evaluated at the new time level using extra­

polated values of the concentration. Also the quantity X 

was for shrinking systems extrapolated to the new time 

level. 

The distance coordinate ¢ was divided into 20 intervals. 

In order to attain that the changes of the concentration 

per distance interval were of the same order of magnitude, 

the length of these intervals decreased with increasing ¢• 

The time intervals were chosen in such a way, that the 

amount of sorbent transferred per time interval as calcul­

ated from the difference between the concentration profiles, 

did not differ more than one per thousand from the amount 

calculated from the flux, integrated over the time inter­

val. Moreover, the relative change in any concentration 

per time interval should not exceed 1 per cent. These cond­

itions resulted in 2000 - 8000 time intervals until a final 

average concentration of .001 x m0 had been reached (de­

sorption). The calculations were performed on a Burroughs 

B 6700 digital computer and required about .04 seconds 

processing time per time interval. 
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III REGULAR REGIME THEORY 

III.l General 

A regular regime is the period 

in time during an unstation­

ary diffusion process in which 

the influence of the initial 

condition on the process can 

be neglected, but during which 

the concentrations still 

change in time. The regular 

regime phenomenon can mathe­
matically be formulated in 

in the following way. 

Let m{~,m,m0 ) be the solution of the non-linear diffusion 

equation (II.4.1) with initial and boundary conditions 

(II.4.2,3,4). The concentration m is a function of the 

space-coordinate ~~ of the initial concentration distribut­

ion mo(~), and of the average concentration m, which is 

taken here as a measure of the time '· 

-m (III.l.l) 

The occurrence of a regular regime implies, that there is 

a function mRR(~ 1 m) for which holds, that for every e>O 

and every m there is a M0 , such that 

m{~ 1m,m0 )- mRR(~,m) 

~ <~,m> 
1 

<£ 

for every ~ E [ 0 ,1] , if J m0 d~ > M0 • 

(III.l.2) 

In case of periodically varying boundary conditions the 

functions m and ~R depend also on the value of the argument 

a of this periodical function. In that case one should 
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read m(~, m, m
0

, e) instead of m(~, m, m0 ) and ~R(~, m,e) 
instead of mRR(~, m). 

For constant diffusion coefficient the above statement is 

true for sorption with constant surface concentration, 

constant mass transfer Biot-number, constant surface flux, 

periodically varying and some other boundary conditions 

(cfr. Luikov (1968)). More generally speaking, it can be 

proved analytically if the homogeneous diffusion equation 

can be transformed to a linear eigen-value problem by sep­

aration of variables. The solution m(~, m, m0 ) can then be 

written as the sum of a particular solution to the inhomo­

geneous problem and a number of eigen-functions mn. The 

partial derivative to the time variable T for a certain 

value of ~ is then for every eigen-function determined by 

its eigen-value. The eigen-function with the smallest part­

ial time-derivative (e.g. smallest eigen-value) will domin­

ate the sum of eigen-functions for large values of T. Hence, 

this eigen-function reflects the solution of the diffusion 

equation during the regular regime ("regular solution") in 

case of homogeneous boundary conditions (e.g. constant sur­

face concentration). An analogous line of reasoning holds 

in case of inhomogeneous boundary conditions (e.g. constant 

surface flux), where the solutions of the homogeneous prob­

lem may become negligible for high values of the time 

variable. 

However, in the general case of a variable diffusivity the 

diffusion equation can not be transformed to a linear eigen­

value problem. Until now, we have not been able to obtain 

strict mathematical evidence for the occurrence of the 

regular regime phenomenon in this case. The phenomenon can 

however be made plausible by the following line of reason­

ing. 

The diffusion equation (II.4.1) indicates that the concen­

tration distribution inside the specimen under consideration 

tends to a smooth profile: strong curvatures disappear 
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relatively fast since they cause a relatively high absolute 

value of the time derivative, I ilm/h I· Let us consider two 

smooth concentration profiles A and B of different shape 

in a non-shrinking system, both with the same average 

concentration. A schematic representation of the situation 
is given in figure III.l.l. 

m 
Fig.III.l.l. 

Schematic representation of 
the concentration profiles 
for two sorption processes 
with different initial con­
ditions 

In this example the boundary condition at ~=1 is taken to 

be mi=O. We assume, that the concentration is a continuous 

function of the space variable ~' so that the profiles have 

at least one point in common (at ~=~ 1 ). In this common 

point the concentration dependent diffusion coefficients 

are equal for the two profiles. Therefore, the ratio between 

the sorbent fluxes for the two profiles at this point is 
equal to the ratio of their concentration gradients. From 

a mass balance over 0<~<~ 1 then follows, that the average 
concentration of profile B in this interval must decrease 

faster with time than the average concentration of profile 

A in the same interval. The reverse holds analogously for 

the interval ~ 1 <~<1 (or between the next two intersection 
points). It can therefore be concluded that both concentrat­

ion profiles will approach each other: they tend to the 

same shape. A similar line of reasoning can he set up for 

shrinking systems. Only then the derivation has to be given 
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in stationary coordinates to make the two mass balances 

comparable. 

Sorption rates and values of mass transfer coefficients 

during the regular regime form the subject of this chapter. 

After the description of steady-state mass transfer (in 

fact the "most regular" regime of all), the special types 

of regular regimes will be described, during which the 

concentration profile remains geometrically similar or 

identical. Next, the regular regimes with constant surface 

concentration and constant surface flux are analyzed. These 

two types of boundary conditions are emphasized because of 

their relevance in drying calculations. Some other boundary 

conditions will be treated concisely. 

III.2 Steady-state transport 

Since the concentration m remains constant at any place, 

the concentration profile during the steady-state is des­

cribed by the ordinary differential equation 

with the boundary conditions 

m = m
0 

at ~ = 0 

m 

(III.2,1) 

(III.2,2) 

(III.2.3) 

This yields upon integration (cfr. equation II.4,4): 

D x2 2!!! = - FXi (III 2 4) r d~ • • 

For non-shrinking systems in general and for shrinking slabs 

the factor x2 is independent of m. Integration of equation 

(III.2.4) then yields: 

m. 1 

J~ d J d~ Dr m = - FXi O X2 (III,2.5) 
me 
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...... 
A concentration-averaged diffusion coefficient Dr is intro-

duced by 

...... 1 
mi 

D f Dr dm r mi - m c me 
(III.2.6) 

Substitution in equation (III.2.5) gives then 

...... 
(m. - me) 

1 !!1 D - FXi f r l. x2 
0 

(III.2.7) 

For the systems under consideration it follows, that the 

mass transfer rate can be calculated analogous to the 

constant-diffusivity case. The averaged diffusion coef-
""" ficient Dr has then to be substituted as the effective 

value of the constant diffusion coefficient. 

A mass transfer coefficient kd can be defined by 

n . 
k ' m,l. 

d = (m - m.) 
c l. 

and for non-shrinking systems by 

.s 
Jm,i 

k" = 
d 

(III.2.8a) 

(III. 2. 8b) 

for shrinking systems. The values of mass transfer coef-
""" ficients as a function of D are given in table III.2.1. r 

for various geometries. 

Geometry mass transfer coefficient (k' or k") d d 

non-shrinking slab D /R r 
shrinking slab Dr/Rs 
hollow cylinder D /{R. ln (R./R )} (non shrinking) r l. l. c 

hollow sphere ...... 
(R./R- 1) } (non-shrinking) Dr/{Ri l. c 

Table III.2.1. Mass transfer coefficients in stationary 
mass transfer with concentration dependent 
diffusion coefficient 
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IIIo3 Special kinds of regular regimes 

For certain combinations of concentration dependence of the 

diffusion coefficient and boundary conditions separation of 

variables can be applied for the calculation of sorption 

rates and concentration profiles during the regular regime. 

This is the case when the shape of the concentration profile 

remains geometrically identical or similar during the sorpt­

ion process and the system does not shrink or swell upon 

(de) sorption. 

III.3.2 §~2~~~~!2~!!Y_!g~n~!£~!-E~2f!!~2 

If the concentration profile remains geomet~iaally identiaal 

during the regular regime (see Fig.III.3.1), the concentrat­

ion m($ 1 T) can be written as 

m($ 1 T) = g($) + f(T) 

m m 

Fig.III.3.1. Geometrically identical profiles 
(a) desorption (b) absorption 

. 

(III.3.1) 

We assume that the function m is a solution to the diffus-

ion equation with boundary conditions. Substitution of 

III.3.1 in the diffusion equation (II.4.1) yields: 
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(III.3.2) 

For £~D§~2D~_g!ffY§!~D-9~~ff!£!~D~ the right-hand side of 
the equation is inde~endent of 1 and, of course, the left 

hand side of the equation is independent of $. Therefore, 

both sides have to be equal to a cQnstant A which ~s posit­

ive for sorption and negative for desorption. 

df 
a:r (III.3.3) 

It follows, that the concentration at any place in the 

system changes linearly with time and the value of the 

flux parameter is constant: 

1 
f af dcp 
0 a;: (III.3.4) 

Therefore, equation III.3.1 can for constant diffusivity 

hold only when the surface flux is constant. The boundary 

conditions for the part of the equation which depends on 

cp read: 

cp = 0; 
·d X*= 0 

cp = 1· - D X. ~ = F ' r ~ d.p 

(III.3.5) 

(III.3.6) 

According to the line of reasoning of the previous para­

graph, the regular solutio.n is the solution of the in­

homogeneous problem. 
\) 

Substitution of X~ (\l+l)cpV+I and X. = (\1+1) and sub­
~ 

sequent integration yields for the "basic" concentration 

profile g: 

F 
g - gi = -2 Dr 

(III.3.7) 
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For $ = 0 it therefore holds, independently of the geometry, 

that 

(III.3.8) 

while for the average concentration it follows, that 

(III.3.9) 

so that the Sherwood number for the dispersed phase equals 

Sh = 
d (m - m.) D 

1 r 

2F = 6 + 2v (III.3.10) 

The Sherwood numbers for slabs (Shd = 6), non-shrinking 

cylinders (Shd = 8) and non·-shrinking spheres (Shd = 10) 

obtained in this way are, of course, equal to the limit 
values, calculated from the analytical solution of the 
diffusion equation with constant surface flux (Crank (1956)). 

In case of a Y~!!~E!~_g!££~2!2B-S2~££!S!~n! the above des­
cribed separation of variables can not be used, unless the 

diffusion coefficient can be written as 

(III.3.11) 

In combination with equation (III.3.1) this implies, that 

the concentration dependence of the diffusion coefficient 

must be exponential: 

Dr= exp(am) = exp (ag($)) ~· exp (af(·r)) (III.3.12) 

where a is an arbitrary constant. Substitution in equation 

(III.3.2) yields: 

exp (-af) g;- ~$ (exp (ag) x2 £; (III. 3.13) 

Also here there is only one type of boundary condition at 

$ = 1 for which this separation of variables leads to a 
solution: 



df 
=- fu ->. exp(af) (III.3.14) 

This condition does not seem of practical importance since 

the surface flux changes with surface concentration accord­
ing to an exponential law with the same exponential coef­

ficient as occurs in the concentration dependence of the 

diffusion coefficient. This follows also directly from 

the fact, that concentration gradients remain unchanged 

during the process, so that fluxes vary proportionally to 
the variation of the diffusion coefficient. 

The boundary condition at ~ = 0 reads 

X~= X~= 0 (III.3.15) aq. d4> 
v 

With the substitution of X= (~+1)~TV+TT the space dependent 

part of equation (III.3.12) becomes after integration: 

exp(ag) ~ = (v+~) 2 (III.3.16) 

Subsequent integration yields the "basic" concentration 

profile g (cp): 

g(q.) 1 
a 

. 2 

ln { 1 - 2 (~~l ~ ( 1 - cp ffi) } (IIL3.17) 

The value of gi is here taken to be zero. The absolute 
level of g(cp) can be chosen arbitrarily because of the 

extra integration constant in the integration of the time­
dependent part of equation (III.3.13). The average value 

of g is obtained by integration over cp between 0 and 1: 

g = a(v+l) 
2 1 

f 
0 

.. 2 

m 
.2 

2(v+l) _ ,~.V+T 
1 - a>. "' 
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Now we introduce an auxiliary parameter p for ease of notat­

ion 

p = 1 _ 2(v+l) 
aft. 

(III.3.19) 

From equation (III.3.17) it follows that p > 1 or p < 0. 

-For slabs (v=O) the average concentration g reads: 

p > 1: ag = -2 + lp ln { tE:!:l. l 
/P-1 f 

p < 0: ag = -2 + 2 ~ arctan__!__ 
.rr=pr 

for aylinders (v=1): 

ag = -1 + p ln (P~1 ) . 

and for spheres (v=2) 

P > 1: ag = -2p - i + p 312 ln{IP+1 } 
/P-1 

p < 0: a9 =- 2p- ~- (-p) 3/ 2 arctan_!___ 
3 1(-p) 

(III.3.20a) 

(III. 3. 20b) 

(III.3.21) 

(III.3.22a) 

(III. 3. 2 2b) 

The driving force for mass transport inside the dispersed 

phase is equal to the average value g of g(¢) and is deter­

mined by the auxiliary parameter p only. 

In analogy to steady-state mass transfer we introduce a 

concentration averaged reduced diffusion coefficient Dr by 

1 (III.3.23) 

and use this value for the definition of a Sherwood number 

for the dispersed phase in case of a variable diffusion 

coefficient: 

snd = - 2F 
(m - m.) D 

l. r 

(III.3.24) 
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For constant diffusivity D the concentration averaged dif­

fusivity is equal to this constant value and the Sherwood 

number is defined equal to equation (!.2.6). Substitution 

of (III.3.23), (!!!.3.12) and (III.3.14) in the relation 

for snd yields, that 

sn = 4 
d (p-1) {exp(ag)-1} 

(III.3.25) 

It is concluded, that the ShePWood numbe~ Bnd ~emains 

aonstant du~ing the so~ption p~oaess if the shape of the 

aonaent~ation p~ofile ~emains aonstant. 

p SLAB CYLINDER SPHERE 

- - -ag Shd ag Shd ag Shd 

u "" 7.389 co 10.873 "" 14.392 
1.002 5.610 7.349 5.229 10.775 4.954 14.210 
1.02 3.361 7.190 3. 011 10.364 2.762 13.490 
1. 0667 2.262 6.975 1. 957 9.867 1. 746 12.675 
1.2 1. 384 6.688 1.150 9.266 .994 11.753 
1.667 .664 6.368 .527 8.645 .440 10.861 
3 .281 6.163 .216 8.278 .176 10.364 

21 .033 6.016 .025 8.033 .020 10.042 
"' 0 6 0 8 0 10 

--------- -------- ------ -------- --------------- --------
- 00 0 6 0 8 0 10 
-10 - .063 5.962 - .047 7.937 - .037 9.919 
- 3 - .186 5.886 - .137 7.813 - .108 9.763 
- 1 - .429 5.731 - .307 7.569 - .237 9.462 
- .5 - .649 5.586 - .451 7.350 - .342 9.202 
- .2 - .971 5.365 - .642 7.039 - .472 8.853 
- .1 -1.200 5.203 - .760 6.803 - .547 8.631 
- .01 -1.706 4.893 - .954 6.442 - .650 8.290 
tO -2 4.626 -1 6.328 - .6667 8.221 

Table III. 3.1: Tge Sherwood number Shd and the driving force 
ag in relation to the parameter p in the reg­
ular regime during which the shape of the 
concentraton profile remains identical 
(Dr= exp(am)). 
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Table III.3.1 gives Shd and the driving force g in relation 

to the value of the auxiliary parameter p. For high values 

of a(m- mi), which means that p approaches 1, the follow­

ing limit values of snd can be calculated by substitution 

of the equations (III.3.20 - 22) in (III.3.25) and taking 

the limit for p + 1: 

Slab: lim snd = exp(2) (III.3.26) 
ag+oo 

Cylinder>: lim snd 4e (III.3.27) 
ag+oo 

Sphe:r>e: lim snd = exp(8/3) (III.3.28) 
ag+oo 

III.3.3 9~2~~~~!£~!1X-2!~!!~~-E~2£!1~2 

If the concentraton profile during the regular regime 

remains geometr>iaally similar> (see figure III.3.2), the 

concentration m(~ 1 <) can be written as 

m(<P,<) = fh) x g(<jl) 

m m 

Fig.III.3.2. Geometrically similar profiles 
(a) desorption (b) absorption 
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This formulation is less general than equation I.2.4, which 

does not lead to a separation of variables in case of var­

iable diffusion coefficient. Again we assume, that m(~,t) 
is a solution of the diffusion equation with boundary con­

ditions. Substitution in this equation (II.4.1) yields: 

(III.3.30) 

Separation of variables is possible only if D can also be 
r 

written as the product of a function of t and a function 

of ~: 

(III.3.31} 

In combination with equation (III.3.29) this means, that 

the concentration dependence of the diffusion coefficient 

must be of the form 

(III.3.32) 

After substitution in equation (III.3.30) we can write the 
diffusion equation as an eigen-value problem: 

1 d ( a x2 ~) = g d~ g dll (III. 3. 33) 

This separation of variables only leads to a solution of 

the diffusion equation if the boundary conditions are 
homogeneous. The homogeneous condition (III.3.34a) applies 

at ~=0. 

~ = 0; (III. 3. 34a) 

At ~=1 two types of boundary conditions can be used: 

~ = 1; -D X am = F = ama+1 
r 1i1>" 

(III.3.34b) 

or 
(III.3.34c) 

where a is a constant 
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When the diffusion coefficient is constant, the above eigen­

value problem is linear and has an infinite number of eigen­

values. For the regular regime solution we are interested 

only in the smallest eigen-value: the regular regime is 

described by a single eigen-function. We assume, that only 

one eigen-value is involved in the regular regime solution, 

also in case of.a variable diffusion coefficient. Since 

this assumption will be shown to lead to the same results 

as the numerical solution of the diffusion equation in the 

regular regime, this assumption appears to be justifiable. 

If only one eigen-value is involved in the regular regime 

solution, the value of the flux parameter F can be expres­

sed as 

F=- 1 diD 
xi d• 

(III.3,35) 

For the Sherwood number Shd it can be derived that 

= (III.3,36) 

2(a+l) A g 
(-a+l a+l) g - gi 

(III.3.37) 

This Shd is determined by the constant a and the function 

g(~) only: Shd is also aonstant if the shape of the con­

centration profile remains geometriaally similar during 

the regular regime. 

In order to fulfill boundary condition (III.3. 34b) the 

sorption isotherm has to show the form 

(III.3.38) 

when the mass transfer coefficient and the bulk concentrat­

ion in the continuous phase are constant. This corresponds 

with a Freundlich sorption isotherm. The solution for this 
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type of boundary condition has not been worked out in this 
thesis. 

In case of zero surface concentration (mi = gi = 0) the 

Sherwood number Shd and the concentration profile can be 

calculated in relation to the exponent a by solving the 

space-variable dependent part of equation (III.3.33): 

(III.3.39) 

We normalize this equation by introducing a "normalized" g 

g' = g/gc 

where gc is the value of g(~) at ~=0. 

Equation (III.3.39) goes over into 

in which the auxiliary parameter P represents 

The 

In 

p = __ -.::,X __ 
a 

(v+l) gc 

boundary conditions 

X ~ = 0 at ~ = 0 

g' 0 at ~ 1 

addition, there is an 

given by the "norm" 

g' = 1 at ~ = 0 

to equation (III.3.41) 

inhomogeneous boundary 

(III.3.40) 

(III.3.41) 

(III.3.42) 

read 

(III.3.43) 

(III.3.44} 

condition, 

(III. 3 .45) 

This extra condition enables the calculation of the para­

meter P in the equation, the "normalized" concentration 

profile g' (<P) and the normalized average concentration 

g' = g/gc. Shd can .then be calculated from P and g' by 

application of 
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(III.3.46) 

This relation follows from elimination of the eigen-value 

A from equations (III.3.42) and (III.3.37) 

The solution of equation (III.3.41) with boundary conditions 

is described in appendix A. The results of the calculations 

are presented in table III.3.2. It gives Shd and g' in relat­

ion to the exponent a in the concentration dependence of 

the diffusion coefficient (Dr= ma). 

SLAB CYLINDER SPHERE 
a 

Shd g/gc Shd g/gc Shd g/gc 

- 1 2 0 
- .99 2.1087 .0195 - .9 
- .8 
- .5 

0 
.s 

1 
1.5 
2 
2.5 
3 
3.5 
4 
4.5 
5 
6 
7 
8 
9 

10 
20 .. 

Table 

2.6886 .1622 
3.1453 .2745 2.08 .036 
4.0671 .4754 3.975 .217 3.750 .088 
4.9348 .6366 5.783 .432 6.580 .304 
5.4400 • 7209 6.836 .557 8.207 .448 
5.7720 • 7731 7.528 .637 9. 272 .545 
6.0070 .8087 8.020 .693 10.027 . 613 
6.1823 .8346 8.390 .733 10.59 .663 
6.3181 .8543 8.680 .764 11.03 .702 
6.4264 .• 8698 8.91 .789 11.39 .733 
6.5148 .8823 9.11 .809 11.68 .757 
6.5883 • 8927 9.29 .825 11.93 .778 
6.6504 .9013 9.43 .839 12.15 .795 
6.7035 .9087 9.55 .851 12.3 • 811 
6.7898 • 9205 9.8 .869 12.6 .834 
6.8567 • 9296 9.9 .884 12.9 .853 
6.9102 .9369 10.1 .895 13.0 .868 
6.9540 .9428 10.2 .905 13.2 .880 
6,9904 .9476 10.3 .912 13.3 .890 
7.1720 .9718 10.7 .915 14. .940 
7.3891 1 1.0 .• 8.7.3 .1. 14 •. 39.2 1 

III,3.2. The Sherwood number Sh and the average 
"normalized" concentrat~on g/g in relation 
to the exponent a. D =ma; surface concen-
tration m

1
=o. r 
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Siid is plotted in relation to the exponent a in figure 

III.3.3. It appears, that the intersection points of the 

three curves for slabs, cylinders and spheres fall so close 
together that they may be approximated by a singl~ inter­

section point. At this point g' for slabs is approximately 

.5. Shd is approximately 4.2. 

14 

S'b 
12 

8 

6 

4 

2 I 
I 
I 

sphere 

cylinder 

slab 

0 L---~------~----~~~----~~~~----~------~ 
0 2 4 6 a 8 10 

Fig.III.3.3. Shd in relation to the exponent a for the 
regular regime with D =ma and zero surface 
concentration (geometrically similar profiles) 

It is interesting to note, that the limit value of Shd for 

high values of a (see appendix A) is equal to the limit 

values of Shd in case of geometrically identical profiles 

for high values of a(m- m1 ) (section III.3.2). 

These limit values are: 

slab: snd = exp(2) (III. 3. 47) 

eyUnder: Shd 4e (III.3.48) 

sphere: snd exp(8/3) (III.3.49) 
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Also the concentration profiles have then the same shape: 

the average concentration is equal to the concentration 

at the centre of the body and the profile very nearly ap­

proximates a rectangular shape. 

II I. 4 Boundary condition of the first kind: 

constant surface concentration 

III.4.1 ~22:~h~!2~!ng_§Y~S~ffi§_en9-~!ee§l-~!2IDE1~§ 

The effect of the kind of concentration dependence of the 

diffusion coefficient on the sorption rate during the 

regular regime has been determined by solving the dif­

fusion equation numerically for a number of diffusivity­

concentration relations. First, the systems will be con­

sidered for which the variable X is independent of con­

centration: non-shrinking slabs, cylinders and spheres and 

shrinking slabs. 

For constant diffusion coefficient and a power-law concen­

tration dependence (Dr = rna) the concentration profiles 

remain geometrically similar and a constant value of Shd 

is obtained upon entering the regular regime. These depend­

ences are described in paragraph III.3. 

The relation between the surface flux and the average con­

centration for an exponential concentration dependence 

(Dr= exp(am)) is given in the figures III.4.1a-c. Para­

meter is the (homogeneous) initial concentration am0 • The 

common part of the curves with different initial concentrat­

ion apparently is independent of this initial condition. 

and represents the regular regime. At.moderate values of 
-am these regular regimes can be approximated by 

2 
slab: (am< 3) F ~ i-<m- mi) exp (.72 a(m- mi)) 

(III.4.1) 
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i&r------------------------, 

am.=8 

oF 

10 

am;4 

slab 
q.= e.plaml 

10 

0 2 4 6 8 am 

(a) 

IO'i----------------------, 

aF 

sphere 
Dr= exp {ami 

10 

0 2 4 6 oiii 8 10 
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'~r-----------------------, 

0 2 4 

{b) 

cylinder 
D,=exp(am) 

6 am 8 

Fig. III.4.1 a-c 

10 

Relation between the flux 
parameter and the average 
concentration for an 
exponentially dependent 
diffusion coefficient. 
Desorption with zero 
surface concentration. 
Paramenter: am0 • 

(a) Slab, {b) Cylinder, 
{c) Sphere 

(c) 



aylinder: (am < 1) F"" 2. 89 <iii - m1 ) exp (. 77 a <iii - m1 )) 

(III.4. 2) 

sphere: <am < 1> F 
2 
~ (iii- m1 ) exp(.95 a(iii- mi)) 

(III.4.3) 

a (m-mi) Shd Shd Shd 
SLAB. CYLINDER SPHERE 

0 4.935 5.783 6.580 
.5 5.48 6.94 8.54 

1 5.88 7.87 9.92 
1.5 6.23 8.60 11.02 
2 6.52 9.18 11.89 
2.5 6.75 9.64 12.56 
3 6.9 10.00 13.07 
4 7.1 10.44 13.74 
5 7.3 10.67 14.09 
6 7.35 10.81 14.26 
co 7 •. 39 10.87 14.39 

Table III. 4 .1. sn in relation to a(m - mi) for exponent­
ia~ concentration dependence of the diffus­
sion coefficient (D = exp(am)). Constant 
surface concentrati5n. 

Table III.4.1 shows the Sherwood number Shd during the 

regular regime as a function of the measure of the average 

concentration a(m- mi). It appears, that for high values 

of a(iii- mi) a constant limit value of snd is obtained. 

The occurrence of this constant Sherwood number can be 

shown analytically. This is derived in appendix B for slabs, 

cylinders and spheres. The limit value of Shd for these 

high values of a(m - m1 ) appears to be equal to the limit 

for high values of a(m- m.) in case of a regular regime 
~ 

with geometrically identical profiles or geometrically 

similar profiles (paragraph III.3). This is also shown in 

appendix B.. 

For linearly dependent diffusion aoeffiaients (Dr= 1 + am) 

the sorption behaviour is given in terms of a dimensionless 
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30 

KJ.-1 

20 

10 

am.,=2 • 

slob 

regime 

o, =I+ om 

oL-~---------L--------~------~--------~~ 
0 5 10 

om (arbitrary units) 

50.--------.-------,----------~ 

20 

10 

4 

cylinder 

Dr= t+om 

8 12 
am 

50--------~------, ---------~ 

40 

~ 
30 

20 

10 

om=5 
0 " 

4 

sphere 
o, =I+ am 

8 om 12 
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15 20 

(a) 

(b) 

Fig. III.4.2 a-c 

The dimensionless 
mass transfer 
coefficient Kd in 
relation to 
the average concen­
tration. Linear 
concentration dep­
endence of the dif­
fusion coefficient. 
Desorption with 
zero surface con­
centration. 
Parameter: am0 • 

(a) Slab 
(b) Cylinder 
(c) Sphere 

(c) 



dispersed phase mass transfer coefficient Kd: 

Kd = F/(m - mi) (III.4.4) 

-The value of this coefficient in relation to am is given 

in the figures III.4.2a-c for a number of initial concen­

trations. The common part of the curves represents again 

the regular regime. Only zero surface concentration is 

considered here, since any linear concentration dependence 

(also for different mi) can be transformed into the form 

Dr= 1 + am, by adjusting the arbitrary constant D0 or 

D0 P;,O. For low values of am, (am < 1) the following 

relations hold by good approximation during the regular 

regime: 

2 
slab: F 'If - (1 .72 am) (III.4.5) ·- 4 m + 

aylinder-: F "" 2.89 m (1 + .77 am) (III.4.6) 

2 -spher-e: 'If (1 + .95 am) (III. 4. 7) F "' 3 m 

- Shd Shd Shd am 
SLAB CYLINDER SPHERE 

0 4.935 5.783 6.580 
• 1 5.04 5.97 6.90 
.2 5.12 6.17 7.21 
.3 5.19 6.32 7.44 
.4 5.24 6.44 7.62 
.5 5.29 6.53 7.78 

1 5.46 6.87 8.28 
2 5.61 7.16 8.75 
4 5. 71 7.35 9.00 .. 5. 772 7.51 9.20 

Table III.4.2. Sh in relation to am for linear concen­
trgtion dependence of the diffusion coef­
ficient (D = 1 +am). Zero surface concen­
tration. r 

-44-



The change of Shd with the average concentration is given 

in table III.4.2. If am is large (>5) the regular regime 

starts to approach the regular regime of Dr = am. The cor­
responding Sherwood numbers are 5.772 for slabs, 7.528 
for cylinders and 9.272 for spheres. Hence, Kd is a \linear 

function of the driving force for mass transfer (m- m.). . ~ 

A similar line of reasoning holds when Dr is a polynomial 

function of concentration: the term wi'th the highest power 

of m dominates when the concentration is sufficiently high. 

The Sherwood number is approximately equal to Shd for a 

regular regime with Dr= rna (geometrically similar profiles). 
This line of reasoning can not strictly be extended to in­

finite polynomial series (e.g. Taylor series). It is en­
couraging however, that for strong exponential concentrat­
ion dependences (an example of an infinite Taylor series) 

the limit of Shd is equal to the limit for the power funct­
ion Dr = rna for high values of a. 

The concentration dependent diffusion coefficient of glu­

aose in a shrinking aoordinate system D.p~ at 30°C is given 

in figure III.4.3. The molecular diffusion coefficient is 
here assumed to depend exponentially on the mole fraction 

of glucose in the solution. Coefficients have been deter­
mined by Van der Lijn (1971) after measurements by Gladden 

and Dole (1953). The relation forD reads: 

D = exp{-19.353- 36.61(xs+.147) <39~-T)} 

(III.4.8) 

where xs is the mole fraction of glucose (total basis) and 
T the absolute temperature. The density of water is taken 

1000 kg/m3 and the partial density d
5 

of glucose is taken 

to be 

1613 -
. 53 

. ·Pw 
1+­

Ps 

[kg/mh (III.4.9) 
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D .p; 
-4 

10 

{kg~ s-1. m-4) 

0 2 3 4 

m (kg waterj kg glucose} 

Fig.III.4.3. The diffusion coefficient of water in a2 
aqueous glucose solution at 300C: D x p 
in relation to the water concentration s 
Pm/Ps• Values of Dafter Gladden & Dole(l953). 

This relation is an approximation to the results of densi­

ty measurements by Pulvermacher (1920). 

For a number of initial concentrations the dimensionless 

dispersed phase mass transfer coefficient during isothermal 

drying of slabs is given in figure III.4.4. The regular 

regime curve shows a maximuln which is caused by the occur­

rence of a maximum in the relation between the diffusion 

coefficient Dr and the concentration. 

rrr.4.2 ~2U:§h~!a~!ng_§~§~~!-g~u~~21!~e~!2n 
In an attempt to describe the sorption rate of slabs, cy­

linders and spheres in case of a variable diffusion coef­
ficient by a general relation, we introduced a concentrat­

.ion averaged diffusion coefficient Dr and a Sherwood number 

Shd. However, this Sherwood number is determined by the 
concentration dependence of the diffusion coefficient and 
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0 

Fig.III.4.4. 

m r kg water I kg glucose> 

The oimensionless mass transfer coefficient 
in the dispersed phase K = F/(m- mi) in 
relation to the average 8oncentration iii=~ 
during isothermal drying of slabs of an m 8 

aqueous glucose solution at 30°C. Parameter is 
the initial water concentration m0 • Zero sur­
face concentration (mi = 0). 

changes with time during the sorption process unless the 
shape of the concentration profile remains similar 

(Dr= ma). Although a constant value of Shd might be taken 
for order of magnitude calculations, a further refinement 
of the general description is desired for more accurate 
calculations. 

For an arbitrary concentration dependence of the diffusivi­

ty Dr we develop a criterion with which Slid can be correlat­
ed. Since Shd is constant for Dr= ma, the criterion must 
have a one-one correspondence with the exponent a in this 
case. With this starting point two parameters have been 
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Fig.III.4.5a 

14 

12 

Shd 
10 
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cylinder 
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Fig.III.4.5b 
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14 

12 

Shd 
10 

8 

6 

4 

2 

0 
0 2 4 6 8 10 

o, (mJ/75, 

Fig.III.4.5c 

Fig.III.4.5 a-c Relation between the Sherwood number 

Shd and the criterion Dr(m)/Dr for the 

regular regime with constant surface 

concentration 

Concentration dependences: 

(1) Dr= 0 for m<md: Dr constant for 

m>md 

(2) water-glucose 30°C; shrinking coor­

dinate system 

( 3) D = (m - mi)a r 
(4) D 1 + a(m- mi) r 
{5) Dr exp{a(m - mi)} 
(6) Dr constant for m<m; D -roo 

r for 
-m>m 

(a) slab 

(b) non-shrinking cylinder 

(c) non-shrinking sphere 
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6 

4 
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slab 
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Fig.III.4.6c 

Fig. III. 4. 6 a-c. Relation between the Sherwood number 

Shd and the criterion d ln F/d ln(l-E) 
for the regular regime with constant 

surface concentration. Concentration 

dependences: 

(1) Dr= 0 for m<md: Dr= constant for 

m>md 
(2) water-glucose 30°C: shrinking coor-

dinate system 

(3) D = r (m - mi )a 
(4) D = 1 + a(m- mi) r 
(5) D = exp{a(m- mi)} r 
(6) D = constant for m<m1 r 

D -!-«> r for 
-m>m 

(a) slab 

{b) non-shrinking cylinder 

(c) non-shrinking sphere 
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derived: 

The value of the diffusion coefficient at the 

average concentration divided by the concen­

tration averaged diffusion coefficient. 

d ln F I d ln (m-mi): The relative variation of the flux 

parameter F with the relative vari­

ation of the driving force m - m .• 
]. 

For constant Sherwood number (Dr = rna) the two criteria are 

equal and are related to the exponent a by 

d ln F a+l (III.4.10) 

Correlation of Shd with both of these parameters is of 

practical interest. The criterion Dr(m)IDr may be used for 

sor.ption calculations when the diffusion coefficient is 

known as a function of concentration. The concentration 

dependence of the diffusion coefficient can be calculated 

from kinetic sorption measurements when the relation be­

tween d ln F I d ln(m- mi) and Shd is known. In the figures 

III.4.5a-c and III.4.6a-c Shd is given as a function of 
both criteria for slabs, cylinders and spheres. The types 

of concentration dependence used in the desorption calculat­

ions are illustrated in figure III.4.7. In this figure, 

concentration dependences are compared at the same value 

of Dr(m)IDr = 1.5. Of all monotonous relations possible, 
two extremes are given by the functions 1 and 6. Ip case 1 

the diffusion effectively takes place with constant dif­

fusion coefficient and a surface concentration equal to 

the concentration where the diffusivity falls to zero 

(Crank (1956)). It can be derived that Shd = Shd for con 
stant diffusion coefficient. The other extreme is the de­

pendence nr. 6. When at m>m the relative variation of Dr 

with the concentration is large, this curve can be assumed 

to. represent the end of a period where Shd has maximally 

been equal to the limits of Shd for strongly exponential 
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m/ffi 

Fig.III.4.7. Concentration dependences used_in_the sorption 
calculations. Examples for D (m)/D = 1.5 r r 
(1) Dr= 0 for m<l/3; Dr= 1.5 for m>1/3; 
(2) water-glucose 30°C: shrinking coordinate 

system m = .955 kg water/kg glucose 

(3) Dr= ma; a = 0.5 

(4) D l+am; 2; 0; -= a = m. = m = l r ~ 

(5) Dr = exp (am); -am = .874; 
(6) D 1 for D + for -= m<m; "" m>m. r r 

and power-dependences. 
Between these extremes Shd increases with increasing numb~r 

in figure III.4.7. In the part of the figures III.4.5a-c 

where Dr(m)/Dr is less than unity, the upper limit of Shd 

is equal to the Sherwood number in case of constant dif­

fusivity. 

Thus, we have stated the limits between which the relation 

between Shd and Dr(m)/Dr can be found for monotonous con­

centration dependences: the two rectangles in the figures 

III.4.5a-c. If the diffusion coefficient is a smooth 
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function of concentration (linear, exponential, power) the 

relation between snd and the two criteria introduced in 

this paragraph is not very dependent on the type of con­

centration dependence. Its position in the figures III.4.5 

and III.4.6 can be specified further. When D (m)/D increas-r r 
es with progress of the sorption process, the relation lies 

below the relation for Dr= rna. The opposite is found when 

Dr(m)/Dr decreases with progress of the sorption process. 

The same holds for changes of the parameter d ln F/d ln(l-E) 

with time. Good illustrations of this phenomenon are the 

curves for water-glucose in the figures III.4.5a and 

III.4.6a. At high water concentrations, D (m)/D and r r 
d ln F/d ln(l-E) increase with progress of drying. At low 

water concentrations the concentration dependence becomes 

approximately exponential and these parameters start to de­

crease with time: the relations between Shd and Dr(ro)/Dr 
or d ln F/d ln(l-E) show a loop. 

If the relation between diffusion coefficient and concentrat­

ion is not monotonous (e.g. aqueous glucose solution) the 

Sherwood number as a function of D(m)/Dr may come beyond 

the limits for monotonous dependences. For smooth concen­

tration dependences the deviations can however be expected 

to be small. 

Also when the relation between the diffusion coefficient 

and concentration shows a considerable discontinuity, the 

relation between Shd and d ln F/d ln (1-E) or D (m) to may 
r ' r 

deviate considerably from the general trend of the curves 

of figures III.4.5-6. Curve 6 in figure III.4.7 is an ex­

ample of a concentration dependence where this will happen 

(in a desorption process). As long as the average concen­

tration is higher than the concentration corresponding 

with the discontinuity (md), the desorption with zero sur­

face concentration is identical to desorption with surface 

concentration md. Hence, when the average concentration m 

approaches md' the concentration profile becomes flat. At 
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the moment when m passes md' the desorption starts in fact 

with a new, homogeneous "initial"-concentration, and can 

initially be described by the relations for the penetrat­

ion period. Later, the process follows a second regular 

regime. 

From the equations, derived in chapter II, it is clear, 

that the diffusion process in shrinking slabs can be des­

cribed by simply transforming the diffusion equation to 

dissolved solids-coordinates. The diffusion coefficient 

then reads D = D p; and the concentrations are expressed 

in m3 migrating component per m3 dissolved solids {or kg/ 

kg). The solution of the equation is then completely 

analogous to the solution of non-shrinking slabs. 

For shrinking spheres and cylinders this transformation 

alone is not sufficient. The diffusion equation then reads 

in reference component voZume aentered coordinates: 

4> 2v 

{J (1+m)dcll}"+1 ;~] 
0 

This can also be written as 

(III.4.11) 

(III.4.12) 

where mcjl is the average concentration in the volume 

0 < .p < <~~': 

.p ' 1 
== 4>' r 

0 
m d.p (III.4.13) 

This representation of the diffusion equation shows, that 

the sorption process is faster than would be predicted 

from the diffusion equation for a "non-shrinking system" 

with the "shrinking variables" (D and m). The presence of 
r 
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the sorbent (migrating component) causes an increase in 

surface area through which the diffusion flux flows. This 

effect appears quadratic in the equation. The surface area 

is also involved (linearly) in the mass balance: 

\) 

dill= -F (v+1) (1+m)v+1 
dT (III.4.14) 

From the results of many calculations it is concluded, that 

the Sherwood number for such a shrinking system can con­

veniently be expressed as: 

Shd = Shd,non-shrinking + t.Shd (III.4.15) 

where Shd,non-shrinking represents the value of Shd of the 
non-shrinking body with diffusion coefficient and concen­

tration expressed in the transformed variables. 8Shd is 

the effect of the increase in volume caused by the sorbent. 

Figures (III.4.8a-b) show 8Shd in relation to the average 

concentration m for a few concentration dependences (spheres 

and cylinders). From the results of many calculations it 

follows, that this absolute contribution to the Sherwood 

number is hardly dependent on the kind of concentration 

dependence of this diffusion coefficient. The average con-
- 3 3 centration m {m migrating component/m solute) appears to 

be the factor which mainly determines 8Shd. For strongly 

concentration dependent diffusion coefficients {D (m)/D r r 
>> 1) the limit value of Shd for non-shrinking systems is 

10.87 and 14.39 for cylinders and spheres respectively. In 

this limit the concentration profile is rectangular, so 

that AShd can be calculated analytically. Since the surface 

area effect is linearly accounted.for in the mass balance 

(equation III.4.14), the diffusion coefficient is effect­

ively increased by a factor (1+m)v/(v+1 ) (cfr.equation III. 

4.12}. The expressions for Amid then read: 

aylinde:r 8Shd 10.87 { < 1+m> 1/2 -1} (III.4.16) 

sphere t.Shd = 14.39 {<1+m>2/3 -1 } (III. 4.17) 
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10 

a. cylinder 

Fig. III. 4. 8 a-b Absolute .effect of shrinkage or swelling 

on Shd, AShd, in relation to the volume 

fraction sorbent (m3 sorbent/m3 sorbate) 
(I) 

( 2) 

• 

limit for Dr(m) >> Dr 
constant diffusivity D 

r 
Dr = exp(m) 

100~----~------------------------------~----~ 

10 

b. sphere 
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From the results of numerical calculations it appears, that 

AShd is equal for constant and strongly variable diffusion 

coefficient within numerical accuracy if m < .5 (m3;m3). 

At higher concentrations a certain deviation is observed. 

However, these deviations are so small, that the logarith­

mic average between AShd for constant diffusivity and for 

strong concentration dependence appears to be a good ap­

proximation for dependences with Dr(m)/Dr > 1. The maximum 

error in Shd, caused by this approximation is given in table 

III.4.3. This table also gives the relative amount to which 

Shd, obtained with the equations III.4.16 or 17, is to be 

lowered to come to the logarithmic averaged relation. 

Table III. 4. 3 Relative error in Shd for constant D and 
strong concentration dependence if c~lculat­
ed from the logarithmic averaged Asnd. 

rel.error rel.error -m CYLINDER SPHERE 

• 5 1 % -
1 1. 5% 1. 5% 
1. 5 3 % 3 % 
2 4 % 4 % 
3 5 % 4 % 
4 7 % 4 % 
6 9 % 
B 9 % 

10 9 % 
15 10 % 

Also when the diffusion process is described in reference 

component mass centered coordinates AShd can be read direct­

ly from the figures presented here if only the average con­

centration m on the coordinate is expressed as a volume 

fraction (m 3 migrating component/m3 solute). This is allow­

ed only if the partial densities of the two components are 

(by good approximation) constant. 
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III.5 Boundary condition of the second kind: 

Constant surface flux 

The water vapor sorption isotherm of many aqueous systems 

is generally such that the water activity does not differ 

much from unity above a certain critical moisture content 

mer· As long as the surface concentration is higher than 

this critical value during the air• drying of such a system, 

the water concentration in the gas phase at the phase 

boundary is approximately constant and the drying rate is 

determined by gas phase mass transfer. 

When the gas phase mass transfer coefficient and the water 

vapor concentration in the air are constant, a constant 

drying rate results: "constant rate period". 

The mass transfer coefficient in the continuous phase is 

related to the body size for spheres and cylinders (Ranz & 

Marshall (1952), Bird et.al. (1960)). At low air velocit­

ies (low values of the Reynolds number) this relation is 

given by a constant value of the Sherwood number for the 

continuous phase: Sh
0

• It follows, that the gas phase mass 

transfer coefficient k
0 

is inversely proportional to the 

radius of the sphere or cylinder if the air flow conditions 

are constant: 

(III.5.1) 

where Dc is the binary diffusion coefficient of water in 

the continuous phase (air). Hence, the surface flux of 

water in shrinking systems increases with decreasing aver­

age concentration when the air humidity is constant: 

1 

F(1+m)v+1 =constant (III.5.2) 

where m is the average volume fraction water (m3/m3) The 

term "constant rate period" is therefore confusing when ap­

plied to shrinking systems or drying processes with variable 

air flow conditions or humidity. "Constant activity period" 

might be a better alternative. 
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Because of the relevance for the calculation of drying 

processes some attention is paid here to the regular regime 

with constant surface activity and constant Sh
0

• Of partic­

ular interest is the length of the constant activity period 

for the calculation of drying times and for the calculation 

of the retention of volatile trace components (aroma com­

pounds} in drying food liquids. For the latter purpose a 

rough estimate of Shd in the regular regime is sufficient, 

since the volatile components have already evaporated to a 

large extent when the regular regime is reached. Kerkhof 

(1975) showed, that even the assumption of a flat water 

concentration profile in the regular regime (Shd = O) gives 

good results in the prediction of aroma retention. With 

respect to the calculation of drying times it is interest­

ing to determine the relation between Shd at the end of 

the constant activity period ("critical point") and the 

value of Shd for sorption with constant surface concentrat­

ion. This, because the constant activity period is followed 

by a "falling rate period", during which the surface con­

centration can often be taken constant although it still 

changes with time in reality (see paragraph III.6.2 and 
chapter V). 

The Sherwood number Shd,CRP during the constant rate per­
iod (F = constant) is independent of F and is given in 

figure III.5.1 relative to Shd,CSC' the Sherwood number 
for constant surface concentration. The ratio of both 

Sherwood numbers is given in relation to D (m)/D at the 
r r 

same average an~surface concentrations. Obviously, Shd,CRP 

is higher than Shd,csc· The relation between both Sherwood 

numbers appears to be hardly dependent on the kind of con­

centration dependence of the diffusion coefficient. 

In shrinking spheres and cylinders the ratio Shd,CRP I 
Shd,CSC can be expected to be higher than for non-shrinking 
systems, because the surface flux increases with progress 
of drying during the constant activity period. 
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•D =m0 
r 

•Dr = exp(am) 

Fig. III.5.1 The ratio between the Sherwood number for 

the constant rate period Shd,CRP and the 

Sherwood number for constant surface concen­

tration Shd,CSC at the same average and sur­
face concentration versus D (m)/D • Concen-

r r 
tration dependences: Dr = rna; mi = 0 and 

Dr= exp(am). Slabs, non-shrinking cylinders 

and spheres. 

The idealized description of the constant activity period 

by constant Sh
0 

and in particular by constant air humidity 

is never encountered in practice, however. The increase in 

air humidity will cause. a decrease of the drying rate. 

Hence, the Sherwood number in the dispersed phase during 

the constant activity period will in praatiae be alose to 

the Sherwood number for aonstant surfaae aonaentration. We 

will use this observation in a short cut method for the 

calculation of drying rates (chapter V). 
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III.6 Other boundary conditions 

III.6.1 ~QB~~~E-QrL-~!m-~B§_~g~!!!eE!~_9QB9~BE£~5!QB_ 

For the case of constant diffusion coefficient, constant 

equilibrium concentration and constant external mass trans­

fer coefficient Luikov (1968) describes the sorption rate 

for slabs, non-shrinking cylinders and non-shrinking spheres. 

In the regular regime the concentration profile remains 

geometrically similar and it holds, that 

dm 
dT = -

2 -
1-1 1 (m-m*) (III.6.1) 

where 1-1 1 is the first (smallest) root of the characteristic 

equation 

cot 1-1 lL 
Bi (slab) (III. 6. 2a) 

or 

J 0 (1-1) 
l.l 

J 1 ( l.l) Bi (cylinder) (III. 6. 2b) 

or 

tan l.l = -v 
Bi-1 (sphere) (III. 6.2c) 

Here J 0 (v) and J 1 (u) are the zero-th and first order Bes­

selfunctions of the first kind. 

Shd can then be calculated by (Thijssen et.al. (1973)): 

(III.6.3) 

Table III.6.1 shows the Sherwood numbers for the dispersed 

phase calculated from Luikov's data using equation (III. 

6.3). The Sherwood number varies between the values for 

the regular regime with constant surface concentration 

and the regular regime with constant surface flux. 
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Table III. 6.1 

2\.12 
1 

Bim 

SLAB 

0 0 
• 02 • 03976 
.04 .07896 
• 1 .1936 
.4 .7038 
.8 1. 251 

1 1.480 
2 2.319 
4 3.198 

~0 4. 084 

00 4.935 

Shd for constant diffusion coefficient, 
constant mass transfer Biot-number and 
constant equilibrium concentration 

Shd 21l 2 Sh ,2)J 2 Shd 
nob- no~- 1 non- non-
shrink- shrink- shrink- shrink-
ing ing ing ing 

SLAB CYLINDER CYLINDER SPHERE SPHERE 

6 0 8 0 10 
.03980 .03985 
.07919 .07935 
.1951 • 1961 

5.9 • 7252 7.8 • 7389 9.7 
5.74 1.320 7.54 1.367 9.39 
5.69 1. 577 7.46 1. 645 9.27 
5.52 2.558 7.10 2.744 8.74 
5.33 3. 641 6.68 4.020 8.08 
5.13 5.363 7.33 

4.935 5. 783 5.783 6.580 6.580 

III.6.2 !~!!~~~£~_2£_§g~£~2~_£2~£~~~E~~~2~-2~-~h~-~2EE~!2~ 

~~~~-!!-~h~-~!££g§!2~_£2~£!!2!~~~-e~£2~~§_Y~~Y 

2~~11_~~-22~£~~~r~~!2~§_£!2§~-~2-~h~-~g~!1!er!~ 

22~2~~~~2~!2!! 

For many systems (e.g. aqueous carbohydrate solutions) the 

diffusion coefficient decreases strongly with decreasing 

concentration of the migrating component. As an extreme, we 

take for instance the desorption with a diffusion coeffic­

ient, which is zero in the concentration range 0 < m < md 

and is a function of m at m > md (e.g. concentration 

dependence nr. 1 in figure III.4.7). Then, the concentrat­

ion gradient at the phase boundary is infinite if the sur­

face concentration mi < md. Effectively, the diffusion 

process is equal to sorption with surface concentration md: 

A change of the surface concentration below a certain value 

md has no influence on the desorption rate if the diffusion 

coefficient is effectively 2ero at concentrations lower than 

md. 
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The criteria which have been introduced in paragraph III.3 

and have been correlated with Shd,can be modified to account 

for the above observation. The diffusivity ratio can then 

:for surface concentrations mi < rod be defined as 

nr<m> nr<m> 
instead of 

1 

and the relative variation of the flux with concentration 

d ln F instead of 
d ln (m-md) 

d ln F 

d ln (m-m. > 
l. 

These parameters are not dependent on the surface concen­

tration mi if mi < rod. It indicates, that Shd does not 

change with mi in this interval. 

In practice, the diffusion coefficient may be low, but will 

not be zero at low concentrations (e.g. diffusion of water 

in aqueous glucose solutions). In order to quantify the 

influence of surface concentration on the surface flux the 

parameter F is written as: 

(III. 6. 4} 

This can also be formulated as 

m. 
l. 

1 D dro 
0 r 1- m 

F = 1 - 2 Shd I D dro 
m 0 

r (III. 6. 5) 

f D dro 
0 r 

Two effects of mi on F can now be distinguished: 

1. The influence on Shd. The Sherwood number does not 

change with mi if Dr is effectively zero. If the dif­

fusivity is relatively lo~ the variation of Shd with mi 
will also be small. The Sherwood number does not change 
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very much with Dr(m)/Dr and the variation of this para­

meter is maximum proportional to the change in m-m .• ·m ~ 
2. The influence on { Dr dm. If Dr is relatively low at 

m~ m· 
low concentrations the contribution of /~ D dm contrib-

utes little to the total integral. Figu~e I~I.6.1 shows 
m 

the influence of mi on the integral ~. Dr dm for glucose 

in a shrinking coordinate system (at JOOC) for various 

surface concentrations m. and various average concentrat-
~ 

ions m. In the same figure the sorption isotherm of 

glucose is plotted (surface relative humidity versus 

surface concentration). It appears, that the relative 

effect of m. on~ D dm is less than 5% when at an 
~ mi r _ 

average concentration of m = .5 kg water /kg glucose 

the surface concentration does not exceed .15 kg/kg. 

This corresponds to a water activity at the surface of 

about 50%. Only if the average concentration becomes 

very close to the surface (equilibrium) concentration 

the relative influence becomes considerable. 

It can be concluded, that up to high surface activities 

the drying of a glucose solution can by good approximation 

be described as if the surface concentration were zero, 

unless the average concentration approaches the surface 

concentration closely. Since of all carbohydrates the dif­

fusion coefficient of glucose shows one of the weakest 

concentration dependences, the above observation is also 

(even more) valid for many other carbohydrate solutions. 

If the surface concentration mi deviates from the equilib­

rium concentration due to a limited mass transfer coeffic­

ient in the gas phase, the above line of reasoning still 

applies. It is even reinforced by the increase of the 

Sherwood number due to the decrease in surface concentrat­

ion (cfr. paragraph III.6.1). 

A practical consequence of these observations is, that the 

drying of for instance liquid foods with high relative air 
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humidity (up to 60%) does not result in significantly lower 

drying rates than drying with completely dry air. Only at 

concentrations near the equilibrium, the air humidity 

becomes of considerable importance. The length of the con­

stant rate period is however markedly increased by a high 

air humidity. Thus, a high air humidity has a detremental 

effect on aroma retention in drying aroma containing food 

liquids. Also this aspect therefore pleads for multiple 

stage drying processes for such systems (cfr. Kerkhof (1975)~ 

m· 
) brdm ·8 

oro,dm 

·6 

I 
·4 I 

I 
I 

·2 

-----//---! 
/ 

/ 
I 

m=l 

·8 

m; (kg water/ kg glucose) 

A. 
I 

·8 

·6 

·4 

·2 

0 

mi ffi 
Fig. III.6.1 Relative contribution of 6 Dr dm to 6 Dr dm 

as a function of the surface water concentrat­

ion mi. Parameter: the average water concen­

tration m. System: water-glucose at 30 °c in 

shrinking coordinates. The broken line repres­

ents the water vapor sorption isotherm of 

glucose at 30 oc. (Hinskens (1974)). 

III.? Influence of geometry 

For some applications it would be convenient to have the 

possibility to calculate for instance the sorption rate of 
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a sphere or cylinder from the (known) sorption rate of a 

slab. Such a possibility can be found in the relation 

between the Sherwood numbers Shd of the various geometries 
during the regular regime for equal average and surface 

concentration. These relations appear for non-shrinking 

systems to be practically independent of the concentration 
dependence of the diffusion coefficient and the kind of 

boundary condition (constant surface concentration, constant 

surface flux or constant Biot-number with constant diffus­
ivity). Figure III.7.1 shows the relations between the 

Sherwood numbers for the three geometries. 

20 

18 

16 

14 

12 

10 

8 

6 

4 

2 

0 
2 4 

Shd,slab 

Fig. III. 7.1 Relation between the Sherwood number Shn of 
slabs, non-shrinking cylinders and spheres 
and Shd for slabs at the same average and 
surface concentration. 
• D =ma· m.=O r , J. 

¥ Dr=exp(am) ;mi=O 

o Dr=1+am; mi=O 
•o =ma; F=constant 

r 
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A good analytical representation is the equation describ­

ing the straight line between two analytically calculated 

limit values of Shd: for constant diffusivity and Dr =rna, 

a + oo, both with constant surface concentration 

Shd,sphere 

Shd,cylinder 

Shd,sphere 

= 

= 

3.18 Shd,slab- 9.13 

2.07 Shd,slab - 4.45 

1.54 Shd,cylinder- 2.30 

(III.7.1) 

(III.7.2) 

(III. 7. 3) 

For shrinking or swelling systems the same expressions can 

be applied to the "non-shrinking part" of the Sherwood 

number (equation III.4.15). Shd is then obtained by adding 

the appropriate nShd' which can be calculated with the 

equation (III.4.16 or 17). 

III.8 Onset and occurrence of regular regimes 

"The sorption rate becomes -after a certain induction per­

iod- independent of initial condition". Without any specif­

ication of the length of this induction period this state­

ment is not very relevant. Therefore, it is necessary to 

analyze the factors determining the length of this induct­

ion period. 

In general, it can be stated, that the induction period is 

shorter, the more closely the initial concentration profile 

resembles the profile belonging to the regular regime. 

Starting from a flat concentration profile, the approximate­

ly rectangular profile belonging to highly concentration 

dependent diffusion coefficients (decreasing D with de-
r 

(in)creasing concentration in de(ab)sorption will be reach-

ed after a relatively shorter period than the cosine profile 

belonging to a constant diffusion coefficient. The induct­

ion period with flat initial concentration profile is sub­
ject of chapter IV. 
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Although the majority of sorption processes start with a 

flat initial profile, a sudden change in boundary condit­

ions may cause a transition from one type of regular regime 

to another. An important example is the transition from the 

"constant rate period" to the "falling rate period" in a 

drying process. If Dr is constant this implies a change of 

a parabolic profile to a cosine-profile. These profiles 

are so close to each other, that the transition takes place 

in a very short period (cfr. Newman (1931)). For diffusiv­

ities which decrease strongly with decreasing concentration 

the profiles are even closer and the transition therefore 
is faster. 

There are also concentration dependences for which a regular 

regime is never reached. If D increases strongly with de-r 
creasing concentration in a desorption process, a small de-

crease of the concentration results in a considerable in­

crease of the diffusion coefficient so that the amount of 

sorbent at a place of lower concentration disappears relat­

ively fast. This results in a front which moves into the 

dispersed phase and from which mass transfer can approxim­

ately be described as quasi-stationary. In absorption with 

a diffusion coefficient which decreases strongly with in­

creasing concentration the same phenomenon will happen. 

This phenomenon will be found if Dr(m)/Dr = 0 or, in pract­
ice, considerably less than unity. The quasi-stationary 

description of mass transfer during the induction period 

will be discussed in more detail in chapter IV. 

III.9 Conclusions 

The observations of this chapter can be summarized in the 

following conclusions. 

1. For a number of widely differing concentration depend­

ences of the diffusion coefficient it is observed, that 

the influence of the initial concentration on the sorpt­

ion rate becomes negligible after a certain induction 
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period. This second stage is called the regular regime. 

2. The occurrence of the regular regime phenomenon can be 

proved analytically for constant diffusion coefficient 

(Luikov (1968)). For the general case of a variable 

diffusion coefficient the phenomenon is made plausible. 

3. We introduced a concentration-averaged diffusivity Dr 
and Sherwood number for the dispersed phase Shd, with 

which sorption processes with variable diffusion coef­

ficient conveniently can be described. 

4. Two criteria have been developed to characterize the 

concentration dependence of the diffusion coefficient. 

The relation between these criteria and Shd is not very 

dependent on the kind of concentration dependence. 

5. The effect of shrinkage or swelling due to uptake or 

loss of sorbent can be accounted for in a simple way: 

it can be expressed as an absolute contribution to the 

Sherwood number: ~Shd, which is by good approximation 
determined by the volume fraction of sorbent only. 

6. The Sherwood number in the dispersed phase at the end 

of the constant activity period in a drying process is 
in practice close to the Sherwood number for drying 

with constant surface concentration. 

7. When the diffusion coefficient decreases strongly with 

decreasing concentration (e.g. drying of food liquids) 
the value of the surface concentration - within certain 

limits - has only minor influence on the drying rate in 

the falling rate period. 

8. There is a linear relation between the Sherwood number 

Shd of two different geometries at the same average and 

surface concentration. This relation is hardly dependent 

on the kind of concentration dependence or boundary con­
dition. 

9. If Dr(m)/Dr << 1 a regular regime of sorption is never 
reached. 
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IV PENETRATION THEORY 

IV. 1 Introduction 

In the initial stage of a (de)sorption process, the in­

fluence of the change brought about at the phase boundary 

gradually penetrates into the body. For short times the 

concentration change at the centre of the body is still 

negligible. This means that concentration profiles inside 

the dispersed phase are not yet influenced by its limited 

thickness: the process is identical with sorption in a 

semi-infinite medium. In the calculation of mass transfer 

rates for short contact times use can be made of this pheno­

menon (Higbie (1935)). 

For cylinders and spheres the dimensions of the body play 

a role due to the curvature of the surface. This influence 

is only negligible in a small shell near the surface which 

therefore behaves like an infinite slab for very short times. 

-71-



This chapter deals with the early stage of a sorption 

process in a specimen of uniform initial concentration. 

Two types of boundary conditions are considered: constant 

surface concentration and constant surface flux. 

IV.2 Constant surface concentration 

IV.2.1 §!2£! 
Diffusion in a slab of homogeneous initial concentration 

and constant surface concentration can for short times be 

described as diffusion in a semi-infinite medium. Boltzmann 

(1894) showed, that the diffusion equation then can be re­

duced to an ordinary differential equation by the intro­

duction of a new variable, n, which is defined as 

(IV.2.1) 

Since the diffusion process can be described as a function 

of n only, it follows, that 

(IV.2.2) 

where 13 is a constant. Partial differentiation of(IV.2.1) 

give~ 

which yields after combination with (IV. 2. 2): 

a<m0-m1 > 

2/r 
F - D (~) 

r aq, -r q,=l 

For the slab of finite thickness therefore holds: 

dm 
- d/-r = 13 (mO-mi) 

(IV. 2. 3) 

(IV.2.4) 

(IV.2.5) 

Integration of this differential equation gives the effi­

ciency E of the sorption process in relation to time: 
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E = B IT (IV. 2. 6) 

where 

(IV. 2. 7) 

Irrespeativety of the aonaentration dependenae of the dif­

fusion aoeffiaient there is a period during hlhiah the amount 

of mass (de)sorbed is proportional to the square root of 
time. 

From equations(IV.2.6)and(IV.2.4)the time variable can be 
eliminated and we find a relation between the flux para­

meter F and the efficiency E: 

FE = ~ a2 
= constant (IV. 2. 8) 

Once a single combination of F and E is known, the value 

of F in the penetration period can be calculated very 

simply by application of this relation. Another general 

relation - independent of the concentration dependence 

of the diffusion coefficient - is found by differentiation 

of F to E: 

d ln F 1-E 
d ln (1-E) = ~ (IV.2.9) 

It can be concluded, that the penetration period of slabs 

aan be characterized by a single parameter, e.g. the pro­

duct EF or the derivative dE/diT. These two J:'arameters are 

related by 

mO-mi {dE ) 2 
EF = - 2- d7[ {IV.2.10) 

In addition to these parameters it is important to know 

the length of the penetration period and the way in 

which this period goes over into the regular regime of 

sorption. 
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It is obvious, that there must be a relation between the 

sorption rate during the penetration period and the regular 

regime. From the onset of the process the concentration 

profile gradually tends to the shape belonging to the reg­

ular regime. As soon as the concentration at the centre of 

the slab (~=0) starts to deviate appreciably from its ini­

tial value, the penetration period ends. The regular regime, 

however, can evidently not start before this has happened, 

because the regular regime is characterized by the fact, 

that the initial concentration no longer influences the 

concentration profilec With regard to the surface flux, 

however, the penetration period extends effectively longer 

than is indicated by the change of concentration at the 

slab centre. This is illustrated for a constant diffusivity 

in figure IV.2.1, which shows the efficiency E versus the 

square root of the time variable, 1!. For the penetration 

£,me 

·8 

·6 

·4 

£ 
·2 slab 

0 
0 ·2 ·4 

Fig.IV.2.1. The efficiency E and the centre concentration 
rn in relation to the square root of the time 
c8ordinate IT. Desorption from a slab with 
constant surface concentration and constant 
diffusivity. Initial concentration rn0= 1. 

-74-



period this relation is linear (equation IV.2.6). In the 

same figure, also the dimensionless concentration at the 

centre of the slab, (mc-mi)/(m0-mi) is given in relation 
to IT. It appears, that at the time when the relation be­
tween E and IT starts to deviate from linearity (E "".· • 5) 

the concentration at the centre of the slab has changed 
by 22% of its final change already. 

We assume as a working hypothesis, that the penetration 

period extends to the regular regime and that the transit­
ion period can be approximated by a transition point. If 

we then know the value of E at this transition. point, the 
product EF for the penetration period can be calculated 

from the value of F in the regular regime at this transit­

ion point and E. 

We developed two methods for the calculation of this transit­

ion point. The first can be applied in case the relation 
between F and the average concentration during the regular 

regime is known. In the second method we make use of the 
(known) relation between the diffusion coefficient and the 

concentration. 

1. We assume that the transition between the penetration 
period and the regular regime is smooth. Hence, the 

derivative dF/dm and F and consequently d ln F/d ln(m-mi) 
is assumed to be equal for the regular regime and the 

penetration period. By differentiation of the regular 
regime curve (F versus m) the value of d ln F/d ln(m-m1 ) 
can be found in relation to the efficiency E. For the 

penetration period a general relation has been derived 
between these two variables, which is independent of 

the concentration dependence of the diffusion coefficient 
(equation IV.2.9). In order to find the transition point, 

the relation between d ln F/d ln (1-E) and E is plotted 

for the penetration period and for the regular regime 
in the same figure •. The intersection point of these 
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.rJ..lD.£._ 
din (I-E) 

10 

8 

6 
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penetration 
period 

E 

slab 

Fig.IV.2.2.Graphical method for the determination of the 
point of transition (Et) from the penetration 
period to the regular regime {slabs). 
Curve 1: Dr= m; curve 2: D = exp(8m); m0= 1 
and mi= o. Arrows indicate Ehe transition 
points. 

curves belongs to either period and thus represents the 

transition point. 

In fig.IV.2.2 the procedure is illustrated for two con­

centration dependences of the diffusion coefficient. It 
shows the general relation for the penetration period, 

the two relations for the regular regimes and the two 

actual curves which follow from the solutions of the 

diffusion equations. The shaded areas are a measure of 

the relative error in dE/diT calculated according to 

the present method. The results obtained by this method 
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Fig.IV.2.3. The value of E at the transition point (E ) 
in relation to the value of d ln F/d ln(l~E) 
at the transition point (slabs) 

are listed in table IV.2.1. for several concentration 

dependences. They are compared with the values obtained 
from the (numerical) solutions of the diffusion equation. 

Good agreement can be observed between the values cal­

culated by the two methods. It is concluded, that the 
present method enables an accurate calculation of the 
length of the penetration period. 

Figure IV.2.3 shows the relative amount of mass (de)sorbed 
at the transition between penetration period and regular 

regime, Et, in relation to the value of the parameter 
d ln F/d ln (m-mi) at the transition point. At high 
values of this parameter in the regular regime (the 
diffusion coefficient decreases strongly with de(in)­

creasing concentration in de(ab)sorption) the penetration 

period is relatively short. For constant diffusivity the 
transition takes place at Et = 0.5, for a diffusion coef-
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I 
~ 
(X) 

I 

Type of Value dE/dl-r .. /' dE/dl-r Relative EF/ (m -m.) 
concentration of from the calculated difference 0 ~ 

dependence parameter solution of from regular Et in dE/dl-r from the 
solution of the diff.equn. regime diff. equn. 

constant D r = 1 1.1284 1.1107 .500 .016 .6366 

exponential: am 
0 

= 12 56.00 55.43 .083 .010 1568 
D =exp(am) r 8 11.44 11.25 .125 .017 65.44 

2 1. 729 1. 698 .338 .018 1. 495 

-2 .829 .822 .662 .008 .344 

linear: am = 2 
0 

1.488 1. 463 .42 • 017 1.107 

D r = l-am 4 1. 766 1. 732 .39 .020 1. 559 

am + 00 .669xlam . 654xlam .333 .023 .224xamo 
0 0 0 

power: m =1· a=l 0 I 
.669 .654 .333 .023 .224 

D a 2 .476 .466 .250 .021 .113 = m r 4 .302 .297 .167 .017 .0456 

7 .19 .193 .111 - .0186 

10 .14 .143 .083 - .0102 

Table IV.2.1. The value of dE/dl-r in the penetration period for various concentration de­
pendences of the diffusion coefficient. Comparison of the values obtained 
from the numerical solution of the diffusion equation with the values cal­
culated from the regular regime. The surface concentration m. is in all cases 
taken to be zero. ~ 



ficient which increases with de(in)creasing concentrat­

ion in de(ab)sorption the penetration period extenqs 

longer. When 

d ln F . or<m> 
<< 1 (IV.2.ll) "' d ln ciil-mi> Dr 

the penetration period extends up to E "' 1: there is no 
regular regime for such concentration dependences and 
the complete sorption process is covered by the penetrat­
ion period. These observations are in agreement with the 

qualitative considerations described in paragraph III.8. 

When snd is constant during (part of) the regular regime, 
it holds that 

d Tn F = 
nr<m> 

d ln <ffi-mi> i5 r 
(IV.2.12) 

and the transition point can be calculated directly from 

the parameter Dr(m)/Dr. For the concentration dependence 
Dr = ma and mi = 0 it follows, that 

(IV.2.13) 

In case of an exponential concentration dependence (Dr= 
exp(am) with high values of the exponent (am) the fol­

lowing expression for Et can be derived (mi= 0): 

(IV. 2.14) 

2. A second method for the calculation of the transition 
point has as a starting point, that the concentration 
profile at this transition point resembles the profile 

for the case of steady-state mass transfer through the 
slab. If the diffusion coefficient decreases strongly 
with de(in)creasing concentration in de(ab)sorption 
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(Dr(m)/Dr >> 1) this assumption seems to be reasonable: 
also in stationary mass transfer the derivative am;a~ 

at ~=0 will be approximately zero so that this steady­

state profile satisfies the boundary conditions for the 

non-steady state by good approximation. On the other 

hand, a rather sharp front will move inside the slab 

when the diffusion coefficient increases strongly with 

de(in)creasing concentration in de(ab)sorption 

(D (m)/D << 1)o Since mass transfer can then by good r r 
approximation be assumed to be quasi-stationary, the 
end of the penetration period is given by the time when 

this quasi-stationary profile reaches the centre of the 

slab. It can be concluded, that the concentration pro­

file for steady state mass transfer will be a good indi­

cation of the shape of the profile at the transition 

point if Dr(m) >> Dr or Dr(m) << Dr. If the diffusion 
coefficient does not depend strongly on concentration 

(Dr (m) "' Dr), this assumption can not be expected 
to be valid. Nevertheless, we will calculate the 

value of Et following the above assumption. 

Consider a slab with constant surface concentration mi 

and constant centre concentration m
0 

= m0 • The mass 

flux in the steady state is then given by (cfr. table 
III. 2.1.) 

..... 
<mo - m.) F = D r ~ 

(IV. 2.15) 

...... 
where D is defined as r 

m 
..... 1 c 
Dr = J Dr dm 

me - m. 
~ mi 

(IV.2.16) 

The concentration profile then satisfies the differential 
equation 

(IV. 2.17) 
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Hence, it follows for the average concentration 

We introduce a reduced concentration mr by 

m - mi 

mo- mi 

Substitution in equation (IV.2.18) gives: 

l - l f dmr mr = D m ..... r r 
Dr 0 

(IV. 2 .18) 

(IV.2.19) 

If the steady-state profile is close to the concentration 
profile at the transition. point it must hold, that 

-
1 - mr = 1 - (IV.2.20) 

Dr Et 

const.ant • s Table IV.2.2 • 
Analytical expres­
sions for Et, accor­
ding to the approx­
mation by a steady­
state profile 

a 1 m a+2 r 

exp (amr) a (a+l) e -
a a(e - 1) 

at high values of 
a: 1/a 

1 1 + a/3 + amr 2. +a 

1 a - (a+1) ln (a+1) 
1 + amr a - In la+1' 
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Table IV.2.2 gives analytical expressions for Et for 

various concentration dependences of the diffusion coef­
ficient. When applied to the entries of table rv.2.1 

these expressions appear to give exactly the same results 

for the intersection point. Surprisingly enough, this 

agreement is also found for weak concentration depend­

ences and constant diffusivity. It can be concluded, 

that also this second method appears to be suitable for 

the calculation of the length of the penetration period. 

The value of F during the penetration period can again 

be calculated from Et and F for the regular regime at 

the intersection point. 

Time-averaged mass transfer coefficients 

For the constant diffusivity case the penetration theory 

has been applied on mass transfer with short contact times 

by Higbie (1935). The driving force is then expressed as 

the difference between initial and surface concentration 

(m0 - mi). The mass transfer coefficient in the dispersed 

phase kd (m/s) is then by definition of F for non-shrinking 

systems equal to 

F DO 
kd = R(m0 - mi) (IV .2. 21a) 

and for shrinking systems (reference component mass centered 

coordinates) 

(IV. 2. 21b) 

The value of F at the transition point can be expressed as: 

(IV.2.22) 

where the index t refers to the transition point. Upon sub­

stitution in equation (IV.2.10) it follows, that 

-82-



(IV. 2. 23) 

which means, that the flux parameter as a function of time 
reads: 

(IV.2.24) 

The mass transfer coefficient k'd during the penetration 

period is then equal to 

k'd = 2~t lshd,t ot. Et (l-Et>}1/2 (IV, 2. 25a) 

for non-shrinking systems, while for shrinking or swelling 

systems holds, that 

k " - l { -Sh d - m d,t 
<iiit -mi > 

(IV. 2. 25b) 

The variable tin these equations represents the time (s). 

The time-averaged mass transfer coefficient k'd during the 

residence time tres follows from integration: 

1 

tres 

tres 
f kd dt 
0 

(IV.2.26) 

Application to the equations (IV,2.25a-b) then gives: 

non-shrinking systems: 

shrinking systems: 

ot 11/2 
tres 

1 
mt 
f 

mt-mi mi 

tres 
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2 1/2 
D dm Ps 

(IV.2.27b) 



In these equations the value of Et can be obtained from 

equation (IV.2.20). Bij calculating 

d ln F 

d ln (iii-mi) 

1 - Et 

Et 
(IV. 2. 28) 

we can find Shd from figure (III.4.6a). The value mt is 

equal to 

(IV.2.29) 

For constant diffusion coefficient this approximate 

relation for k'd becomes: 

k' ....1!,_ { ~}1/2 = 1.11 {~r/2 
d 212 res res 

(IV. 2. 30) 

whereas Higbie's relation reads: 

- 2 { ~ J 1/2 = 1.13 I~r/2 k'd=7ii 
res res 

(IV.2.31) 

Calaulationa for D (m) << D r r 

Application of the present method to the calculation of 

the sorption rate during the penetration period leads to 

erroneous results when the diffusion coefficient increases 

strongly with de(in)creasing concentration in de(ab)sorpt­

ion: D (m) << D . In the limit (e.g. D = 1/m ) the regular r r r r 
regime "starts" at E = 1. The driving force for mass trans-

fer is then zero and therefore the flux-parameter F is 

zero. This would result in EF = 0 for the penetration 

period: In the limit the above method can not be applied. 

For these systems, however, a simple alternative is at 

hand. From qualitative considerations we concluded already, 

that there will be a more or less sharp "front" moving 

inwards. Mass transfer from this front can then be assumed 
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to be quasi-stationary, since the accumulation term will 

be negligible in the space between the front and the phase 

boundary. We can calculate the product EF for the penetrat­

ion period as follows. The value of Et is obtained by 

application of equation (IV.2.20). The value of Ft follows 

also from the steady state profile: 

(IV. 2. 32) 

so that the product EF for the penetration period is equal 

to 

and 

ddj
1 

= 12 J f D dm - f D m dm }
112 

l 0 r r 0 r r r 

(IV. 2. 33) 

(IV. 2. 34) 

In table IV.2.3 the results of such calculations are 

presented for Dr= exp(amr), at negative values of a. It 

appears, that with increasing the agreement between 

this quasi-stationary approach and the numerically cal­

culated values of EF becomes better. At Et > .8 good 

agreement can be claimed. 

a EF from Et I EF quC~si- relative 
numerical stationary difference 
calculations calculations in EF 

0 .6366 .5 0.5 27% 

- .1 .624 .508 .483 29% 

- • 2 .601 .517 .469 28% 

- . 4 .560 .533 .439 28% 

-1 .461 .582 .368 25% 

-2 .343 .657 .284 21% 

-4 .210 .769 .189 11% 

-6 .140 .836 .139 1% 

-8 .11 .875 .109 -
Table IV.2.3 Values of the product EF calculated 

following the assumptton of quasi­
stationary mass transfer. D = exp(am ) 

r r 
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We recall the general formulation of the diffusion equat­

ion: 

(IV.2.35) 

For short penetration distances, x2 can effectively be 

considered to be independent of ;p : 

(IV.2.36) 

If we account for the constant X~ in the time variable T, 
l. 

the equation goes over into the diffusion equation for a 

slab. For short penetration distances it follows therefore, 

that 

dE 
d7T (v+1) {dE } 

d7T s.lab 
(IV.2.37) 

Unfortunately, this relation holds only for very short 

times and is certainly not sufficient to describe the 

complete period that precedes the regular regime. 

Figure IV.2.4 shows the flux parameter F for a §Bb~•~-~!~b 
constant diffusion coefficient (D = 1) versus the relative 
------------------------------ r 
amount which has not been (de)sorbed: 1-E. In this figure 

also the "penetration period" according to relation 

IV.2.37 is given. It appears,, that the difference between 

the exact analytical solution and the curve obtained by 

application of equation IV.2.37 is approximately constant: 

(v+l) (EF) slab 
F = E -6F (IV.2.38) 

where 8F is a constant. This can also be shown from the 

analytical solution of the diffusion equation, which can 

be formulated as (Luikov (1968)): .. 
6h I I E = ~ - 3T - 12vT I ierfc (n/vT) 

n=1 
(IV. 2. 39) 
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1-E 

Fig. IV.2.4 Sorption in a sphere with constant 
diffusion coefficient and constant 
surface concentration (mi=O). 
Initial concentration mo=l. 
1. Regular Regime; 2. penetration 
curve from slab (equation IV.2.37); 
3. actual sorption curve. Points 
indicate values for the penetration 
period according to equation (IV.2.48). 

Up to high values of E the last term of this equation can 

be neglected: 

E "' ~~T - 3T (IV. 2. 40) 

The error, caused by this omission is less than 1% if 

E < .90 and less than 10% if E < .95. The value of F in 

relation to T follows by differentiation: 
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F = (IV. 2. 41) 

Elimination of T from the equations (IV.2.40) and (IV.2.41) 

yields: 

F 1 + 11 - ~E/3 _ 1 
~E/3 

For small values of E this can be written as: 

(IV. 2. 42) 

(IV.2.43) 

which corresponds with the formulation {IV.2.38). It is 

interesting to notice, that 6F is approximately equal to 

the value of F at the beginning of the regular regime. 

For 2~!!~~~!~• the solution for short times reads (Crank 
(1956)): 

from which analogously can be derived, that 

_!
2 

{ 1- 11- 11E/4 _ 1 } 
d/4 

For small values of E this can be written as: 

4 
= 11E 

3 
4 

(IV. 2. 44) 

(IV. 2. 45) 

(IV. 2. 46) 

Also for cylinders formulation (IV.2.38) appears to be valid 
for constant diffusivity and not too high values of E. 

Also when the §!iiE2~Y~~Y-~EEE~22~2-2~E2E~I¥_!~~E-~:J~El:_ 
SE~~2~E!LE~EE~E~E~~~2E_~E-~~J2El22EP~~2E (Dr <mo> « Dr) 
an analytical treatment of the penetration period is pos-
sible. We adopt again the "shrinking core" approach: a 
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front moves into the dispersed phase. From this fron~mass 

transfer can be assumed to be quasi-stationary. From the 

relations for stationary mass transfer in spherical and 

cylindrical shells (table III.2.1) the following equations 

can be derived for the shrinking core-model: 

ayZinder F = 
2 (EF)slab 
- ln ( 1-E) (IV. 2. 4 7) 

sphere F 
(EF)slab 

(1-E)-1/3- 1 
(IV.2.48) 

Although these relations only hold strictly in the limit 
..... 

Dr(m0)/Dr = 0, they appear to give excellent agreement 

with the actual sorption rates for constant diffusion co­

efficient in the penetration period. The above relations 

aan therefore suaaessfully be applied if the diffusion 

aoeffiaient is aonstant or inareases with de(in)areasing 

aonaentration in de(ab)sorption (D (m 0 J ~D). r - r 
In the figures IV.2.4 and IV.2.5 the curves are given, 

which follow from these equations for constant diffusivity 

in spheres and cylinders respectively. 

For g~!fY§~Y~!~§§_~h~2h_g§g~§~~~-~~~h_g~J!~l2~~~§!~~-~9~: 
9§D!fs!~QD-~n_g§JsQl§QEP!~Q~ the equation derived from the 
shrinking core model may result in considerable deviations 

from the actual penetration curves. For these dependences 

a different approach is adopted here. It is based upon the 
observation that the difference between the sorption flux 

F, calculated from the "slab-penetration"-equation(IV.2.37) 

and the actual sorption flux is constant for small values 

of E. This has been observed not only for constant dif­

fusion coefficient, as described above, but also for many 

other concentration dependences. It can even be derived 

analytically for the equations (IV.2.47) and (IV.2.48). 

We correlate the sorption flux parameter F with the ef­

ficiency E by 
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Fig. IV.2.5 Sorption in a cylinder with constant 
diffusion coefficient and constant 
surface concentration (mi=O). 
Initial concentration mo=l. 
1. Regular Regime; 2. penetration curve 
from slab (equation IV.2.37): 3. actual 
sorption curve. Points indicate values 
for the penetration period according 
to equation (IV.2.47). 

(IV. 2. 4 9} 

where q is a constant, which depends on the variation of 

the diffusion coefficient and on the geometrv. The constant 

coefficient q is given in figure IV.2.6 for nonshrinking 
spheres and cylinders in relation to Dr(m0}/Dr. 
For cylinders, q can generally be taken • 75, so that the 

penetration period can then be described by 
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Fig. IV.2.6 

cylinder 

12 2 4 6 8 

D, (mo) /o, 10 

8F/(D (m0-m.)) for the penetration r ~ 

period of non-shrinking spheres and 
cylinders in relation to the con­
centration depende~e of the diffusion 
coeffici:nt Dr(m0 )/Dr. 

D = m; D = exp(am). r r 

ay linder> (IV. 2. 50) 
2(EF}slab mO 

F = - .75 f D r dm 
E 

The constant q varies for spheres slightly more with the 

concentration dependence of the diffusion coefficient. 

However, for not too strong dependences (Dr(m0>/Dr < 5) 

the value for constant diffusivity may be used: 

spher>e F = 
3(EF)slab mO 
__ ;;;..;;;;..;;.;.;.;;..- 1.5 f (IV. 2. 51) 

..... 
(0 <Dr (m0) /Dr < 5) E 

whereas for strong dependences a good correlation is found 
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in: 

sphere F 
3(EF)slab mO 

- 1. 2 f Dr dm (IV. 2. 52) 
"""' (Dr(m0 )/Dr > 5) E 

It should be noted, that the last term, ~F, plays an im­

portant role only near the transition from penetration 

period to regular regime. At this transition point the 

value of F is of the same order of magnitude as ~F. For 

smaller times a relative error in ~F will therefore cause 
a considerably lower relative error in F, so that the above 

relations will be sufficiently accurate for practical pur­

poses. Figures IV.2.7 and IV.2.8 show examples of the above 
3 calculations for Dr mr for a sphere and a cylinder re-

spectively. It aan be aona~uded, that the penetration 

period for spheres and aylinders is aharaaterized by two 

2 

F I 
1-5 

0 

sphere 
D "'m3 
r r 

2 

1·£ 

Fig. IV.2.7 Sorption in a sphere with constant 
surface concentration. Points indicate 
values for the penetration period 
according to equation (IV.2.51). 
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D,= mt 

F 

0 ·2 ·4 ·6 ·8 
1-E 

Fig. IV.2.8 Sorption in a cylinder with constant 
surface concentration. Points indicate 
values for the penetration period 
according to equation (IV.2.50). 

paPametePs when the diffusion eoeffieient deereases with 

de (in) ereasing concentration in de ( ab)sopption: (EF) slab 
and !lF. 

GPaphicaZ method. 

The penetration period can also be calculated from the 

regular regime sorption curve by a graphical method, which 

is analogous to the graphical method for slabs. In this 

method we make use of the observation, that the value of 

d ln F/d ln (1-E) is in the regular regime by good approx­

imation independent of geometry at the same average and 

surface concentration. This holds exactly in case Shd is 

constant. By plotting d ln F/d ln (1-E) versus E we can 

find Et for a slab: Et,slab is the value of E at the inter-
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section point of this curve with the general relation for 

the penetration period of slabs: 

d ln F 1-E 
d ln (1-E) = ~ (IV. 2. 53) 

we can calculate the sorption flux for a slab at this 

average concentration in the following way. From figure 

III.4.5a we can read Shd, slab at the value of d ln F/d ln 

(1-E) of the intersection point. The sorption flux para­

meter for the slab, Ft,slab is then related to F 
cylinder or sphere at the same concentration by 

Ft,slab 
= Shd,slab 

Shd 
• F 

for the 

(IV. 2. 54) 

where Shd is the Sherwood number for the sphere or cylinder, 

which is given in figure III.7.1 in relation to Shd,slab' 

The product (EF)slab then reads: 

(EF)slab E X F t,slab t,slab 
(IV.2.55) 

This value of {EF)slab can now be used in the calculations 

according to equations (IV.2.47) if D (J.llo) < i5 and equation r r 
(IV.2.38) if Dr{m0) > Dr. In the latter case, only the 

constant AF is then left to be determined. 

Q~!~~~f~£!f£~_£i_~~-fl_QrL~0l_~_er-
If we know i5 , AF can be calculated with one of the equat.-

r 
ions (IV.2.50-53). By differentiation of the regular regime 

curve at the average concentration equal to m0 we can find 

d ln F/d ln (1-E), with which Shd can be estimated (fig. 

III.4.5b-c) we find now 

(IV.2.56) 

The constant AF can also be found if the value of E at the 

transition from the penetration period to the regular regime 

(Et) is known. At this point it must hold that 
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llF = 
( v+ 1) (EF) slab 

E - FRR 
t 

(IV. 2. 57) 

Since the transition between the two periods is smooth, 

the determination of this transition point does not have 

to be exact: the two curves F versus (1-E) ..:"slab-penetrat­

ion" and regular regime- are parallel over a certain range. 

From equation (IV.2.49), which describes the penetration 

period, can as such no relation be derived which is in­

dependent of the concentration dependence of the diffusion 

coefficient. We found, however, that at the transition 

point the value of F(=Ft) is related to F by 

llF 

Equation (IV.2.49) can therefore be written as 

F 
(v+1) (EF)slab 

E 
v(v+1) 

(v+2) • 
(EF)slab 

Et 

By differentiation then follows: 

d ln F (v+2)Et 
X 

(v+2) Et - vE d ln (1-E) = 

(IV. 2. 58) 

(IV. 2. 59) 

(IV.2.60) 

The change of d ln F/d ln (1-E) during the sorption pro­

cess appears to be dependent on the transition point Et, 

unless v=O (slabs). Since we are interested only in the 

transition point itself, we can substitute Et for E and 

find the following relation between d ln F/d ln (1-E) at 

the transition point and Et: 

d ln F (IV.2.61) d ln (1-E) 

Analogously to the procedure for slabs we can find the 

transition point as the intersection of this relation with 

the relation between d ln F/d ln (m-m.) for the regular 
~ 
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regime. An example is given in figure IV.2.9 for a sphere 

with the concentration dependences of the diffusion co-
2 

efficient Dr = exp(10.mr) and Dr = mr. 

Fig. IV.2.9 Graphical determination of the 
transition point Et (spheres) . 
The intersection between the 
regular regime relation and the 
"transition curve" reflects the 
transition point, indicated by 
an arrow. The curves 1 and 2 give 
the actual relation between 
d ln F/d ln (1-E) and E for (1) 
Dr=m~ and (2) Dr= exp(10.mr). 

If the Sherwood number Shd is constant, Et can also be 

calculated analytically according to the above method: 

D 
r 

m a 
r 

\) + 2 
: Et = 2a + v + 4 (IV. 2. 62) 
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(IV.2.63) 

Table IV.2.4 shows the results of some calculations for 

the concentration dependence Dr = rnra (cylinders and 

spheres). The value of q appears to be in good agreement 

with the numerical calculations. Only for constant 

diffusion coefficient (indicated by an asterisk) a differ­

ence of approximately 20% between the results of this cal­

culation and the analyt]cal values is observed. These ana­

lytical values only hold for small values of E. At the 

transition point, where the relative influence of ~F on F 

is maximum, a better approximation is given by ~F = 1.61 

and .86 for spheres and cylinders respectively. It can be 

concluded, that the present method is suitable for the pre­

diction of the transition point. Tests on linear and ex­

ponential concentration dependences confirm this conclusion. 

For strong concentration dependences D = rna or D 
r r 

exp(arnr), a+ oo, a limit value of q can be calculated 

analytically. The limit is equal for both kinds of con­

centration dependences: 

eyZinder : q = ~e - 2/e .5991 (IV.2.64) 

sphere q 
3e 1 
~ - 2 exp(2/3) 1.065 (IV.2.65) 

We are inclined to believe, that these limits are also 

valid for other kinds of concentration dependence of the 
~ 

diffusion coefficient provided that D (rn0 ) >> D . 
r r 

Another method for the estimation of the point of 

transition from the penetration period to the regular 

regime is also valid for shrinking or swelling systems and 

is described in the next section, which deals with such 

systems. 
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. I 
1.0 
00 
I 

a Et FRR,t (v+i)(EF} slab t.F q q 

Et graphical numerical 
< method solution 

0 .667 1.097 2.865 1. 77 1.77 1. 5* 
N 1 .500 .580 1.344 .764 1.53 1.44 II 
:> 2 .400 .381 .848 .467 1.43 1.38 .. 4 .286 .221 .478 .257 1. 29 1.28 
Q) 7 .200 .135 .279 .144 1.15 1.2 14 
Q) 10 .154 .0961 .199 .103 . 1.13 1.1 
~ 
0.. 100 .0194 .00985 .0205 .0106 1.07 
til ... 1. 065 

.-! 0 .600 1.157 2.122 .965 .965 .75* 
II 1 .429 .614 1.044 .430 .861 .8 
? 

2 .33 .414 .678 .264 .792 .8 
~ 
Q) 4 .231 .250 .395 .145 .726 .7 
't1 7 .158 .156 .235 .0787 .629 .6 
~ 

..-I 10 .120 .115 .170 .055 .605 

...... 100 .0146 .0122 .0182 .0061 .603 >t 
0 .. 

I 
• 59.91 

Table IV.2.4. Results of some calculations for the penetration 

period o~ spheres and cylinders. Dr= ma 

q = AF/(Dr(m0- mi)); rni = 0; 

Comparison of the values of q obtained by the 

graphical method and by numerical calculations. 



In the early stage of a sorption process, the sorption 

process is identical with diffusion in a shrinking slab, 

so that it must hold: 

dE X {dE } 
d7T = i dl< slab 

(IV. 2. 66) 

v 

where Xi= (v+1)[1 + (1-E) (m0-mi) + mi]v+1 • For ease of 

notation we describe shrinking or swelling systems in 

reference component volume centered coordinates. The value 

of F is derived from 

F dE 
d7T slab 

(IV. 2. 67) 

1, can be expressed as a function of E by integration of 

equation (IV.2.66) with the initial condition E=O at <=0: 

1 

[ ] v+1 - 1 + m - E(m -m ) 0 0 i (IV.2.68) 

and F as a function of m is given by: 

2 
1 { <mo -mi) } 

F = 2 (l+m l 1/ (v+l) _ (l+m) 1/ (v+1) · 
0 

2 

{ ~~,} (IV.2.69) 
slab 

With equation (IV.2.10) this goes over into 

(IV.2.70) 

For small values of m0 and m this equation approaches the 

relation for systems with constant volume. This equation 

is valid only for very short penetration distances and we 

will need refinements in order to be able to describe the 

complete period that precedes the regular regime. 
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In analogy with the non-shrinking systems we distinguish 

2 cases: (i) a more or less sharp front moves inside the 

dispersed phase or (ii) the sorption takes place more 

homogeneously over the dispersed phase. 

(i) When a sharp front moves through the dispersed phase 

during the penetration period we can use the "shrinking 

core model", analogously to systems with constant total 

volume. The equations for this model are derived in 

A.ppendix c and read: 

ay linder 

F = 
2 ( 1 +m. ) ( EF) l b 

l. s a 
~ { ( l+mi) + (1-E) (m0 -m1 ) } 

{ (l+m1 )+(1-E) (m0-m1 )} ln (1-E) (l+mo> 

(IV. 2. 71) 

sphere 

(IV. 2. 72) 

It should be noted that m represents here the volume 

fraction of the sorbent (m3 sorbent/m3 solute). F and 

(EF)slab have the dimension of either a mass fraction or 

a volume fraction (both on solute basis). Contrary to the 

non-shrinking case, these equations give rise to consider­

able deviations from the numerical solutions when applied 

to desorption with constant reduced diffusion coefficient 

Dr. For desorption aalaulations the shrinking aore model 

aan be applied only when D (m 0J << D . Since this will be r r 
rarely the case, application of the above equations will 

practically be restricted to absorption with swelling. 

From the diffusion equation for shrinking or swelling 

systems (III.4.12) we can conclude, that shrinkage results 

apparently in an effective decrease of the diffusion co-
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efficient with decreasing concentration. This leads 

to the conclusion, that for the same concentration depend­

ence of Dr(mr) the penetration period is longer for swell­

ing systems (absorption) than for systems with constant 

volume. These, in turn, show longer penetration periods 

than shrinking systems (desorption). The equations derived 

from the shrinking-core approach can be applied when Et>.6. 

Hence, we can often use these relations for the calculat­

ion of absorption rates in the penetration period for 

swelling systems. 

(ii) When the transition to the regular regime takes place 

at Et<.6, the shrinking core approach may not be applied. 

This will be generally so in desorption processes where 

the dispersed phase shrinks upon removal of sorbent. From 

a large number of computer simulations it appeared, that 

the value of the flux parameter F during the penetration 

period differs by an approximately constant term 6F from 

the value calculated from slab-penetration rates (with 

correction for the specific surface area, equation IV.2.70). 

Hence, F can be calculated according to 

F (EF)slab- 6F 

(IV.2.73) 

Again 6F is related to the value of F at the transition 

point, Ft: 

(IV.2.74) 

Once the combination (EF)slab and the regular regime 

sorption curve are known we can find 6F by estimation of 

the point of transition from the penetration period to the 

regular regime where equation IV.2.74 applies. We could 

not find a simple general relation for the penetration 

period -analogous to systems with constant volume- with 

which the transition point could be correlated. 
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A simple and effective way to find the transition point is 

the following. We assume that the transition between pen­

etration period and regular regime is smooth: dF/dm is 

approximately equal for both regular regime and penetrat­

ion curve. We plot the curve for 

v+2 -
F' (ml = -2- F RR <ml (IV.2.75) 

in the same figure as the penetration curve without the 

correction term ~F. These two curves will intersect at the 

transition point because of relation IV.2.74 and the fact 

that the slopes of the curves are different. Also when 

equation IV.2.74 does not hold exactly this difference in 

the slopes will assure intersection. Only when the pen­

etration period extends longer than Et ~ .6 the deviation 

from equations (IV.2.74) and (IV.2.73) become so large 

that sometimes no intersection point can be found. (e.g. 

non-shrinking sphere and constant diffusivity). In that 

case the "shrinking-core"-equations (IV.2.71-72) can be 

applied. An example of the present calculation method is 

given in figure IV.2.10 for a shrinking sphere with Dr=m 

and m0 = 10 m3;m3 • Excellent agreement between the results 

of the numerical calculations and the results of the cor­

relation method can be observed. 

The value of (EF)slab can also be obtained directly from 

the (experimentally determined) regular regime sorption 

curve of the shrinking or swelling system over a sufficient­

ly large concentration interval. In such a calculation use 

is made of the effect of shrinkage on the Sherwood number 

Shd in the regular regime. By differentiation of the 

regular regime curve, d ln F/d ln (1-E) can be calculated. 

From the values obtained the effect of shrinkage or swell­

ing can be subtracted. The relation between these new 

values and E can then -analogously to systems with constant 

volume- be used for the calculation of {EF)slab' 
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F shrinking sphere 
D,= m 
m.= 0 

t 

10 

Fig. IV.2.10 Graphical determination of the transition 
point for a shrinking sphere. Dr= m and 
mi = 10. 

(1) Regular Regime FRR(m); 

(2) Penetration period from slab 
(equation IV.2.70); 

( 3 ) 2 x F RR (m) ; 

(4) Actual sorption history. 

Points indicate the values calculated 
according to equation (IV.2.73). 
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IV.3 Con$tant surface flux 

IV.3.1 g~~~!i!! 

In paragraph III.S, which deals with the regular regime 

for constant surface flux, the term "critical point" has 
been introduced for the combination of F and m at the end 

of the constant rate period. The critical point curve is 

defined as the relation between the flux parameter F during 
the constant rate period and the average concentration m 
at the end of this period. Since we are generally interested 
in the duration of the constant rate period, the critical 
point curve provides important information about the con­

st~t rate period. In paragraph III.S it has been shown, 

that there is a relation between the critical point curve 
and the sorption curve with a constant surface concentration 
equal to the critical concentration, during the regular 
regime. In this paragraph we will investigate the charac­
teristics of the critical point curve for short constant 

rate periods, in which the concentration at the centre of 
the body has not yet changed considerably. 

In his work on the calculation of the length of the constant 

rate period in drying, Kerkhof (1975) has shown, that for 

short times the length of the constant rate period tcr is 

inversely proportional to the square of the surface flux 
during this period: 

tcr = constant 
2 

(nm, i) 

In reduced coordinates this equation reads: 

= constant 
F2 
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where the index cr refers to the critical point. 

Analogously to Kerkhof we define a "profile penetration 

number" Npp by 

(IV.3.3) 

NPP is amount of sorbent (water) desorbed at the end of the 
constant rate period relative to the amount which would 
have been (de)sorbed in case of a flat concentration profile 

at the same surface concentration. NPP is in fact the con­
stant rate-analogon for E in case of a constant surface 

concentration. 

From a mass balance and equations (IV.3.2-3) it follows, 

that 

constant (IV. 3. 4) 

which relation is analogous to equation(IV.2.8) for con­

stant surface concentration. The aritiaal point aurve in 

the penetration period aan be aharaaterized by a single 

parameter whiah is independent of the surfaae flux during 

the aonstant rate period. This parameter may be the product 

F.NPP or a constant effective diffusion coeffic,ient. 

A method for the calculation of this parameter can be based 

upon a similar approach as has been used for the calculation 
of the penetration period in case of constant surface con­
centration. Also here, we assume that the period of transit­

ion from the penetration period to the regular regime can 

be approximated by a transition point and that the transit­
ion is smooth. Following the same line of reasoning as for 

constant surface concentration, we can find the transition 
point by intersection of the relation between d ln F/d ln 

(1-NPP) and NPP for the critical point curve in the regular 
regime with the general relation for the penetration period. 
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d ln F 
d ln (1 - N ) pp 

= 
1 - N 

pP 

N pp 
(IV.3.5) 

In the regular regime the ratio between the Sherwood numbers 

for constant surfac.e concentration, Shd esc and for the con-
-- I stant rate pericd Shd,CRP does not change strongly with the 

concentration dependence of the diffusion coefficient. Hence, 

it can by good approximation be assumed, that,for sZab~ the 

relative average aonaentration at the point of transition 

from the penetration period to the regular regime is for the 

aritiaaZ point curve (Npp,t) equal to the transition point 

for the sorption aurve with aonstant surfaae aonaentration 

(Et). N t can therefore be calculated according to the pp, 
graphical method or the integration method, which makes use 

of the assumption of a steady~state concentration profile. 

These methods have been described in paragraph (IV.2.1}. 

The calculation of the product F.Npp is also analogous to 

the calculation of the product F.E for sorption with con­

stant surface concentration. Once we know N we only have 
PP 

to determine F at the transition point, Ft. At the transit-

ion point the relations for the regular regime still hold. 

For the regular regime, the ratio between the flux para­

meter belonging to the critical point curve and the flux 

parameter belonging to the sorption curve with constant 

surface concentration is equal to the ratio between the 

two Sherwood numbers, Shd,CRP I Shd,CSC' as given in 
III.5.1. Because N t and Et are equal, the product pp, 
can be calculated from the product F.E. for constant 

face concentration by 

figure 

F.N 
PP 

sur-

F.N = IShd,CRPI (F E) 
PP - • • esc (IV.3.6) 

Shd esc 
I t 

It is important to notice, that this relation holds for 

equal surface concentrations only. The produat (F.E)CSC in 

this equation refers therefore to sorption with a aonstant 

surfaae aonaentration equal to the aritioal concentration. 
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Constant diffusion ~oefficient 

For constant diffusion coefficient the relation between the 

surface concentration and the time coordinate T (= Fo) reads 

for constant surface flux (Luikov (1968)): 

= 2 FIT I { ierfc (2n-1 ) - 1 + ierfc (2n-1) +1} 
mo - mi n=1 2h 2/T 

(IV.3. 7) 

For short times the first term of the series dominates and 

the equation acquires a simple form: 

It follows, that 

F • N 
PP 

1T 
= 4 (mo - mi) 

In paragraph IV.2.1 we showed, that 

Hence, the ratio between the two products is: 

F.Npp 

(FE) esc 
2 

1T 

8"' 1.23 

(IV.3.8) 

(IV.3.9) 

(IV. 3. 1 0) 

(IV. 3. 11) 

whereas the ratio between the Sherwood numbers at the tran­

sition point amounts to 

Shd,CRP = 

Shd,CSC 
12 
2"' 
1T 

1.22 (IV.3.12) 

For constant diffusivity the method can therefore be con­

cluded to be valid. 
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conaentration dependent diffusivity 

For variable diffusion coefficients some results are given 

in table IV.3.1. Also for these cases, excellent agreement 

between the two ratio's is observed. 

Diffusion F.NEE F.NEE ShdtCRP ..... 
coefficient Deff D 

(mo-mi) (EF) esc Shd,CSC ·r 
Dr t 

1 .7854 1.23 1.22 1 1 

m • 292 1.30 1.30 • 372 .5 
mi .0628 1.38 1.38 .080 .2 r 
exp(Bmr) 92 1. 41 1.39 117 373 

exp (-8mr) • 1 1 • 13 .125 

Table IV.3.1 Some calculated results for the penetration 
period with constant surface concentration 

The table gives also values of the effective diffusion co­

efficient which is defined by 

(IV. 3. 13) 

The values of this effective diffusivity deviate consider­

ably from the concentration-averaged diffusivity Dr for the 

concentration dependences under consideration. Also for 

exponential concentration dependence a strong deviation is 

observed. Suzuki et.al. (1975) claim, that the critical 

point curve for high-intensive drying of slabs can be des­

cribed by an effective diffusion coefficient equal to the 

concentration averaged diffusion coefficient, among others, 

in case of an exponential concentration dependence. This 

statement clearly is contradictory to the results of our 

calculations. 
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For very small penetration distances the outer shell of a 

sphere or cylinder behaves like a slab. The relation des­

cribing the penetration period in non-shrinking systems 

then reads: 

F N pp (v+1) (F • Npp} slab (IV. 3 .14} 

Analogously to the case of constant surface concentration, 

further refinement is required in order to describe the 

complete penetration period. 

Constant diffusivity 

For a cylinder the relation between the surface concentrat­

ion and the time variable T (= Fo) reads for constant sur­

face flux and small values of r (Luikov (1968)): 

If we substitute the mass balance 

2 F T = N (m O - m . ) pp 1 

this equation becomes for small values of N pp 

(IV.3.15) 

(IV.3.16) 

(IV.3.17) 

The solution of the diffusion equation for spheres with 

constant surface flux reveals for short times (Luikov 

(1968)): 

m
0

- mi = F {exp(t} x erfc (-It) - 1} (IV. 3. 18) 

This relation acquires a simpler form upon substitution 

of 
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2 
erfc (-lr) "' 1 + l1r I"C 

and the Taylor series expansion for exp (·r). 

We substitute the mass balance 

(IV.3.19) 

(IV.3.20) 

(IV.3.21) 

The relation between NPP and F/(m
0

- mi) then reads: 

(IV.3.22) 

Analogously to the penetration period for constant surface 

concentration we have the following general formulation for 

the penetration period of non-shrinking cylinders and 

spheres: 

F = (v+1) 

(F. N ) 
PP slab 

-liF (IV. 3. 23) 

The term liF differs only slightly from liF for constant 

surface concentration (liFcsc>· The ratio between the terms 

for these two cases is independent of geometry and reads: 

1 "' 1. 05 (IV.3.24) 

VariabLe diffusion coefficient 

From the results of many computer simulations it is con­

cluded, that the equation (IV.3.23) also holds for variable 

diffusion coefficient, provided that Npp is not too large. 
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In drying, the diffusion coefficient of water does general­

ly not increase strongly with decreasing water concentrat­

ion and this condition will therefore be satisfied. In 

table (IV.3.2) a few results of such calculations are given. 

It appears, that ~F can be calculated according to (cfr. 

equation IV.2.49) 

(IV.3.25) 

where the coefficient q is related to the coefficient for 

constant surface concentration by 

(IV.3.26) 

SPHERE CYLINDER 

D F 
~F ~F r m -m q q 

o cr 

D = m r r 3 • 7 89 1. 58 • 395 .79 

2 .808 1. 62 • 412 • 82 

1 • 5 .822 1.64 .425 • 85 

1 • 848 1 • 70 • 451 .90 

D 4 3 .288 1 • 44 .140 .70 = m r r 
2 .292 1 • 46 .140 .70 

1. 5 .296 1. 48 .152 .76 

1 • 301 1. 51 • 1 53 .77 

Table IV.3.2 Some calculated results for the critical 
point curve in the penetration period for 
variable diffusion coefficient. 

The value of qcsc in relation to Dr(m0))0r is given in 
figure (IV.2.6). The observations imply also, that the 

term ~F, determined by one of the methods described in 
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paragraph IV.2.2 can also be used in the calculation of the 

critical point curve during the penetration period, after 

application of equation (IV.2.23). 

Shrinking systems 

During the constant activity period in a drying process the 

surface flux increases with progress of drying due to the 

increasing continuous phase mass transfer coefficient (par­

agraph III.S). Hence, the value ofF for a given N is in-pp 
creased by this effect. For constant surface flux a relat-

ion for F would be expected, analogous to equation (IV.2.73). 

From the results presented by Kerkhof (1975) it appears, 

that the constant term 6F may be compensated or even over­

compensated by the effect of shrinkage. Therefore, the pen­

etration period can effectively be described by the equat­

ion, which follows from the penetration period for slabs. 

The relation for the critical point curve in the penetrat­

ion period can for high sorbent concentrations therefore 

be approximated by 

m.o - mi I 
F "" -(-1 _+_m_O_) -:-1/"(-v+:-::1") ---( =-1 _+_m_) "1 /....,...,.( v"""'+:-::1;...-) (F • N pp) s 1 ab 

(IV.3.27) 

IV.4 Conclusions 

1. The penetration period is the period which precedes the 

regular regime in a sorption process with homogeneous 

initial concentration. 

2. For constant surface concentration or constant surface 

flux this period is characterized by a single parameter 

(slabs) or at most two parameters (cylinders and spheres) 

3. These parameters can be calculated from the regular reg­

ime sorption curve with constant surface concentration 

or from the concentration dependence of the diffusion 

coefficient. 
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4. For slabs with constant surface concentration the para­

meter E.F is calculated from the value of E at the point 

of transition to the regular regime (Et) and the value 

of F in the regular regime at the same average concen­

tration (Ft). The transition point is determined either 

by a graphical method or by assuming, that the concen­

tration profile at the transition point is close to the 

profile for stationary mass transfer through the slab. 
"""' 5. When Dr(m0) << Dr the method under 4 can not be applied. 

The penetration period can then be calculated by assum­

ing a uniformly retreating front from which mass trans­

fer is quasi-stationary. 
"""' . 6. When Dr(m0) ~Dr the penetrat~on period for spheres and 

cylinders with constant surface concentration can be 

calculated from the parameter E.F for slab-penetration 

by relations which are derived from a shrinking core 
approach. The approach is also applied to swelling systems. 

"""' 7. When Dr(m 0} ~Dr a second parameter, ~F, is required for 

the calculation of the penetration period, in addition 

to the parameter E.F for slabs. For non-shrinking systems, 

~ can be calculated from the concentration dependence 

of the diffusion coefficient. Two graphical methods are 

described for the determination of ~F from the regular 

regime sorption curve. One of these is also applicable 

to shrinking systems. 

8. The critical point curve for the penetration period with 

constant surface flux is described analogously to the 

penetration period with constant surface concentration. 

It can be calculated from the regular regime sorption 

curve with constant surface concentration or from the 

concentration dependence of the diffusion coefficient. 
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V A SHORT-CUT METHOD FOR THE CALCULATION OF DRYING RATES 

IN CASE OF STRONGLY CONCENTRATION DEPENDENT DIFFUSION 

COEFFICIENTS 

V.1 Introduction 

The transfer of water in a 

drying specimen can for many 

water transport mechanisms, 

such as molecular diffusion, 

capillary transport and evap­

oration condensation, formal­

ly be described by the diffus-

sion equation. Once the con­

centration dependence of the 

(apparent) diffusion coeffic-

ient is known, the drying rate and moisture distribution 

can be calculated by solving this diffusion equation with 

the appropriate initial and boundary conditions simultan­

eously with the (differential) equations for heat transfer. 

In general,these solutions have to be obtained numerically. 

As has been stated before, these calculations are rather 

cumbersome and data about the concentration dependence of 

diffusion coefficients in aqueous systems are very scarce. 

Several alternative methods have been reported in literat­

ure for the approximate calculation of drying times. They 

generally make use of the characteristic properties of the 

constant and falling rate period of drying. 

For the aonatant rate period a correlation method was 

recently developed by Kerkhof (1974, 1975). The method has 

been applied to the drying of food liquids. It requires 

only a few simple slab drying experiments from which the 

length of the constant rate period can be calculated for 

specimen of various geometries under practical conditions. 
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The first attempt to predict the length of the falling 

rate period has been made by Lewis (1921), who assumed the 

mass flux to be proportional to the difference between the 

average moisture content of the drying body and its final 

equilibrium moisture content. Since this method is only 

applicable to cases where constant diffusivities prevail, 

it is of limited practical interest. Broughton and Mickley 

(1953) have described a method of determining drying time 

by analogue experimentation. This method consists in the 

experimental simulation of practical drying conditions on 

laboratory scale. From a number of such experiments nome­

graphs can be derived, as described by Van Arsdel (1973). 

Using these nomographs, interpolations can be made, thus 

limiting the number of experiments. These interpolations, 

however, still require many experiments and the results 

are only applicable to the specific geometries used. Under 

certain circumstances, e.g. when peculiar geometries and 

time-dependent physical properties are involved, analogue 

experimentation may be the only way to predict drying 

times. 

Another method is based upon the concept of a characterist­

ic drying curve (Van Meel (1958), Krischer (1963}, Keey 

(1972)). It is assumed that the drying rate can be describ­

ed by 

n = nconst.rate x f 

where nconst.rate is the mass flux during the constant rate 
period, n the mass flux and f the ratio between both flux­

es, which is supposed to be a function .of (w - w*}/(wcr - w*) 
only. In this relation the variable ; represents the aver­

age moisture fraction, w* the equilibrium moisture fract­

ion and ; the average moisture fraction at the end of the cr 
constant rate period. This generalization would be valid 

if all drying curves were geometrically similar, irrespect­

ive of temperature, initial concentration, initial mass 

flux and Biot number for mass transfer. The relation 
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between f and the reduced average concentration (w - w*)/ 

(;;; - w*) is referred to as the characteristic drying curve. 
cr 

From the severe assumption of similarity it follows that 
the method can only be approximate (Keey (1972)). Never­

theless, the method is reported to have some practical 

value for porous materials. It is however not valid for 

drying of solutions with strongly variable diffusion coef­

ficient, as follows from the results of the diffusion cal­

culations presented in this thesis. The description of the 

transport process cannot be generalized for different init­

ial concentrations or initial drying rates by the intro­

duction of a reduced mean weight fraction, since the dif­

fusion coefficient depends on the absolute concentration 

itself. 

This chapter deals with a new short-cut procedure for the 

calculation of drying rates in case of strongly concentrat­

ion dependent diffusion coefficients. The procedure is 

based upon the concept of regular regime and penetration 

theory as described in the previous chapters. The applic­

ation to the drying of slabs has been subject of a recent 

publication (Schoeber & Thijssen (1975}). 

The main simplifying assumption in the model description 

is the absence of temperature gradients in the drying mat­

erial. This assumption is justifiable when the heat requir­

ed for water evaporation is supplied at the evaporating 

surface, in particular when heat is supplied by means of 

the drying air. From the Chilton-colburn analogy between 

heat and mass transfer then follows, that the ratio of the 

Biot-numbers for heat (BiH) and mass transfer (BiM) can be 

expressed as: 

(V. 1 • 1) 

where A is the thermal conductivity and IDthe diffusivity 

of water in the continuous (index c) or dispersed phase 
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(index d). am represents the partition coefficient of 

water, defined by 

(V. 1 • 2) 

Here p~* is the water concentration in the gas phase in 

equilibrium with the surface concentration in the slab 

p .• Typical values of these parameters in air drying are: 
m,~ 

0.026 J/m2 S °C; -7 2 
Ac "' ID ::2.74 10 m /s 

c -9 2 
Ad "' o. 61 J/m2 s °C; na < 10 m /s 

am > • 02 

With these values equation (V.1.1) becomes 

(V .1 • 3) 

Up to high values of BiM, the heat transfer Biot-number is 

still so low, that temperature gradients in the dispersed 

phase are negligible. The heat transfer Biot-number is ef­

fectively even lower than is indicated by the ratio in 

equation (V.1.3), since part of the heat transferred to 

the dispersed phase is directly used for water evaporation 

at the phase boundary. When both heat and mass transfer 

are completely dominated by dispersed phase transport 

(BiM ~ oo; BiH + oo) the heat conduction is relatively fast 

compared to mass transfer: 

/..d 
d C ID > 1 0 0 (V. 1 • 4 ) 

d p,d d 

where dd and C d are the density (kg/m3) and 
p, 0 

specific heat (J/kg C) of the dispersed phase, respectiv-

ely. Temperature gradients will therefore have disappeared 

after a relatively short period in the drying process. In 

air drying 1 a uniform temperature in the drying speaimen 

may general-ly be assumed. 
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v.2 Typical drying histories 

The isothermal drying of a slab of an aqueous solution of 

glucose is taken as an example to illustrate the present 
approach. Since the slab shrinks upon drying, the approp­
riate reduced diffusion coefficient D reads D x p2 

(figure III.4.3). The value of D0 x p2 0 which can ~e 
s, 2 4 

chosen arbitrarily, is taken here to be 1 kg /m s, so that 

Dr is numerically equal to D x p~. Figure V.2.1 shows a 
number of drying curves, presented in terms of the average 
concentration m, which reads pm/ps for the shrinking system, 
and the flux parameter F, having the numerical value of 

j!,i ds Rs (kg2/m4s). 

iii (kg water/kg glucose) 

Fig. V.2.1 Isothermal drying curves of glucose slabs at 
30 oc. Parameters are the initial water con­
centration (m = 2.5 and m = 4 kg water/kg 
glucose) and ~he initial vglue of the flux 
parameter. The mass transfer coefficient in 
the gas phase is taken constant during the 
drying process.PP: penetration period. 
RR: regular regime. 

Two major conclusions can be dr~n from this figure: 
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(i) The curve, which relates the flux parameter with the 

value of the average concentration at the end of the 

constant rate period ("critical point curve") coincid­

es with the drying curve for the falling rate period. 

We call this curve the "parent curve". There exists 

one parent curve for every initial concentration m
0

• 

(ii) There exists one "grandparent-curve", which relates 

the flux parameter F and the average concentration and 

into which all parent curves for different values of 

m0 eventually merge. 

(i) The drying curves, starting at the same initial con­

centration with different initial drying rates all coincide 

after a -more or less- constant rate period in a parent 

curve. Consequently, this parent curve is independent of 

the initial drying rate and of the gas phase mass transfer 

coefficient. 

Two conditions have to be fulfilled for this phenomenon to 

occur: First, the sorption isotherm of water should be 

such, that from the initial concentration down to a certain 

critical surface concentration the activity is fairly 

constant (e.g. close to 1). Secondly, the resistance to 

mass transfer inside the drying specimen should be rate­

controlling soon after the surface concentration has drop­

ped below the critical surface concentration. This means, 

that a further decrease of the surface concentration mi to 

the equilibrium concentration m* has no influence on dis­

persed phase mass transfer. According to paragraph III.6.2 

this means, that 

m. 
~ 

J 
m* 

(V. 2 .1) 

This condition will generally be fulfilled if the effective 

value of BiM is sufficiently high (so that mi is not too 

close to m) and if the diffusion coefficient decreases 
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strongly with decreasing moisture content when mi < merit• 

The two conditions set out above are generally fulfilled 

in drying aqueous systems where the dissolved solid compo­

nent(s) are hydrophilic and have a molecular weight higher 

than about 150. Liquid foods fall very often in this cate­

gory. The water vapour isotherm of liquid foods is general­

ly such that the water activity does not differ much from 

unity above a certain critical moisture content mer· Below 

mer the water activity and the water diffusivity fall 

rapidly with decreasing moisture content, both being in­

fluenced by the increasing water binding forces. Upon pas­

sing the critical water concentration at the surface and 

entering the falling rate period of dryin~the resistance 

to mass transfer inside the drying body starts to grow 

rapidly and soon it controls the mass transfer rate com­

pletely. The water concentration at the interface falls 

rapidly and soon equation V.2.1 will be fulfilled. The 

drying rate can then be described by the relations for 

constant surface concentration: The pa~ent cu~ve ~eflects 

in fact the drying history of a slab with homogeneous ini­

tial concentration and constant su~face concent~ation. 

If the critical concentration is equal to the equilibrium 

concentration, the constant rate period extends down to a 

lower average concentration than would be indicated by 

the parent curve. This has been stated in the chapters III 

and IV already. For constant diffusion coefficient this 

effect may be considerable (see figure V.2.2). 

However, if the diffusion coefficient decreases sharply 

with concentratio~ this difference in terms of m is less 

(figure V.2.3). In practice, this effect is reinforced by 

the decrease in surface activity that occurs before equat­

ion (V.2.1} is fulfilled. Another effect has already been 

mentioned in paragraph III.S. Due to the increase in air 

humidity with progress of drying in a practical drying 

process, the drying rate will often decrease during the 
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Fig. V.2.2 

Critical point curve 
for a critical concen­
tration equal to zero 
and constant diffusion 
coefficient (D =1). 
Initial concentration 
m =1. The broken line 
r~presents the parent 
curve for constant sur­
face concentration 
mi=O. Dotted lines re­
present some constant 
rate periods for vari­
ous values of F. 

Fig. V.2.3 

Critical point curve 
for a critical concen­
tration equal to zero 
and exponentional con­
centration dependence 
of the diffusion coef­
ficient (Dr=exp (am)). 
Initial concentration 
am =8. The broken line 
re~resents the parent 
curve for constant sur­
face concentration 
mi=O. Dotted lines 
represent some constant 
rate periods for vari­
ous values of F. 



"constant activity period". This also brings the critical 

point curve closer to the parent curve. The parent curve 

is indeed a good approreimation of the critical point curve 

in case of strongly concentration dependent diffusion 

coefficients. 

(ii) The parent curves of different initial concentrations 

merge after some drying time has elapsed into a "grand­

parent" curve. The concentration distribut.ion inside the 

drying body becomes virtually independent of the initial 

distribution: the regular regime of dry1ng with constant 

surface concentration is reached. This regular regime 

drying curve is characteristic for the material to be dried 

and its position in the flux parameter-average concentrat­

ion diagram depends on temperature and equilibrium concen­

tration only. It contains all the information needed to 

calculate isothermal drying histories for any initial con­

centration and any initial drying rate. 

The present short-cut method consists in the calculation 

of complete drying histories of slabs, cylinders and spheres 

from an experimentally determined regular regime curve. 

For non-isothermal drying or isothermal drying at different 

temperature levels a second regular regime curve at a dif­

ferent temperature has to be determined experimentally. 

V.3 Isothermal slab drying 

V.3.1 Q~~~!ID!~~~!2~-9~-~h~-!~~±~!_!~g~~-9!Y!~g-~g!Y~ 

In the calculation of drying histories the regular regime 

drying curve plays a very important role: it is the drying 

history which is followed after a certain amount of water 

has been evaporated. In addition, the penetration period 

can be calculated from the regular regime (chapter IV). 
The regular regime drying curve of a material for a given 

temperature and surface (equilibrium) concentration can be 
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obtained in several ways: (i) direct experimental determin­

ation, (ii) calculation from regular regimes for different 

temperatures, (iii) calculation from regular regimes for 

different surface concentrations and (iv) calculation from 

the relation between the diffusion coefficient and concen­

tration. 

(i) Experimental determination of the regular regime 

drying aurve in the aonaentration interval of interest 

This can be achieved by drying a slab with an initial con­

centration that is higher than or equal to the upper limit 

of this concentration interval. The initial value of the 

flux parameter F (to be influenced by slab thickness, gas 

phase mass transfer coefficient and slab temperature) 

should be so high, that the constant rate period is clear­

ly followed by a penetration period with constant surface 

concentration. This can be checked by plotting the average 

concentration m versus the square root of time, which 

yields a straight line for the penetration period. 

(ii) Calaulation of the regular regime aurve from the 

regular regimes at two different temperatures 

It is well known, that the temperature dependence of the 

diffusion coefficient can be described by the Arrhenius 

equation 

(V.3.1) 

where D~ is the diffusion coefficient in the limit T ~ ~, 

ED the activation energy of diffusion, R the gas constant 

and T the absolute temperature. It is clear, that if this 

activation-energy is independent of concentration, the 

shape of the concentration profiles is not influenced by 

the temperature because this temperature effect can be 

accounted for in the time parameter: the relative change 

of F is equal to the relative change in Dr with temperature, 

so that 
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(V.3.2) 

However, in case of variable diffusivity also the activat­

ion energy is generally concentration dependent. Neverthe­

less it was found, that the temperature dependence of the 

flux parameter F in the regular regime can by good approx­

imation be described by the Arrhenius equation: 

(V. 3. 3) 

where F~ is the value ofF in the limit T + ~ and EF the 

concentration dependent activation energy. This is illus­

trated in figure V.3.1, which shows an Arrhenius plot of 

ln F versus 1/T for the drying of a slab of an aqueous 

solution of glucose. 

Fig. V.3.1 

Arrhenius plot show­
ing the temperature 
dependence of the 
flux parameter F in 
the regular regime 
for isothermal dif­
fusion of water in 
a glucose slab. 
Parameter: the 
average water con­
centration in the 
slab (kg water/kg 
glucose). The sur­
face concentration 
m.=O. 

l. 

2.8 3.0 
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By first approximation this activation energy is equal to 

the activation energy of the concentration averaged dif­

fusion coefficient Dr (see figure V.3.2}. 

-..!Y 
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~ 
lf)J 
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1.1... 

LW 

~b 

100 

80 

60 

40 

20 

0 
0 2 

m (kg water/kg glucose) 

Fig. V.3.2. 

Activation energy 
of the concentrat­
ion averaged dif­
fusion coefficient 
(Er) and of the 
flux parameter (EF} 
in relation to 
the average con­
centration i'fi. 
Regular regime of 
drying of a slab 
of an aqueous 
glucose solution 
with zero surface 
concentration. 

It can be concluded, that the experimental determination 

of the regular regime drying curve at two different temper­

atures provides sufficient information to allow the calcul­

ation of regular regimes at any temperature by means of 

the Arrhenius equation with concentration dependent activ­

ation energy. 

(iii) Calaulation from an experimentally determined 

regular regime drying aurve with different surfaae aon­

aentration e.g. surfaae aonaentration ze.r>o. 

If the diffusion coefficient is strongly dependent on the 

concentration, in particular if Dr is low in the region 

down from mi, the flux parameter F is hardly influenced by 

the value of m. (see paragraph III.6.2}. Only if m. is 1 . . 1 

relatively high or the average concentration approaches 

the equilibrium concentration closely the following proced-
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ure is necessary to apply. We differentiate the regular 

regime curve in order to obtain d ln F/d ln (m-mi). From 

figure III.4.6a we can obtain the Sherwood number Shd in 

relation to the average concentration iii. With this Sher­

wood number the integrated diffusion coefficient is cal­

culated: 

(V.3.4) 

From the observation, that d ln F/d ln (m-m.) is approxim-
1 

ately equal to Dr(m)/Dr the following approximate relation 

is derived: 

-m 
! D dm 

{ ~ ~1-E)} 2 
(iii-m2 ) m1 

r 

{~ ~1-E) L ln ln (V. 3. 5) ln ln <iii-m1 > m 
! D dm r 
m2 

The index 1 refers to the "old" regular regime curve with 

surface concentration m1 and the index 2 refers to the 

regular regime curve to be calculated with surface concen­

tration m2 • After application of this relation we can find 

the relation between Shd and m for the new regular regime 

curve from figure III.4.6a. The value of the flux parameter 

at every concentration follows then from the equation 

(V. 3. 6) 

Also when the surface concentration changes with progress 

of drying the same procedure can be applie~provided that 

this change of surface concentration is not so fast that 

it has considerable influence on the Sherwood number. 

(iv) CaZeutation from the relation between diffusion 

aoeffiaient and aonaentration 

We integrate the diffusion coefficient between the surface 
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concentration and the average concentration for various 

average concentrations: 

m 
f 
m. 
~ 

D dm r 

For the estimation of the Sherwood number Shd we use the 

parameter 

o <iii> ciii-m. > D <iii> r = ~ r (V. 3. 8) 
i5 -m r 

f D dm r m. 
~ 

and figure III.4.5a. The flux parameter for every average 

concentration is calculated by 

F 

-
1- m 
2 Shd J 

m. 
~ 

D dm r (V.3.9) 

The regular regime drying curve obtained in one of these 

ways serves as a basis for the calculation of the complete 

drying history. 

V.3.2 g~1~~!~!~2~-2~_!h~-E~!~~!-2~!Y~-~~g_!h~-1~~9!h_2~ 

!h~-~2~§!~~!-E~!~-E~!~29 

Since the parent curve represents the drying from a certain 

homogeneous initial concentration with a constant surface 

(equilibrium) concentration it can be divided into a regul­

ar regime and a penetration period. The penetration period 

is calculated from the regular regime by one of the methods 

described in chapter IV. 

The evaporation rate during the constant rate period is 

determined by gas phase mass transfer. For non-shrinking 

systems this can be formulated as 

(V. 3. 9) 
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where n' . is the mass flux through the phase boundary in m, l. 
the gas phase, k' the mass transfer coefficient in the gas 

g 
phase and Ai the relative humidity at the surface. p.;,~ter 

is the water concentration in the gas phase in equilibrium 

with pure water at the slab temperature and P~,bulk is the 
water vapor concentration in the bulk of the gas phase. 

For shrinking or swelling systems jms . has to be substitut­
,l. 

ed for n' i in equation (V.3.9). The value ofF during the m, 
constant rate period is the product of this mass flux and 

the slab thickness in the appropriate coordinates (R or 

ds Rs). The end of the constant rate period ("critical 

point") is the intersection point between the constant rate 

line (parallel to the m-axis} and the parent curve (cfr. 

figure V.2.1). The duration of the constant rate period in 

terms of the time parameter then reads: 

(V. 3. 10) 

where the index cr refers to the critical point. 

Although this approximation of the length of the constant 

rate period may be accurate enough for the calculation of 

drying times, more accuracy may be required for other pur­

poses, e.g. the calculation of aroma retention (Kerkhof 

(1975)). In that case the critical point curve may be cal­

culated from the regular regime curve with a constant sur­

face concentration equal to the critical concentration. We 

apply the ratio between the values of F of the critical 

point curve and the regular regime as presented in figure 

III. 5. 1. For the penetration period the value at the tran­

sition point is used (cfr• paragraph IV.3). If the diffus­

ion coefficient in relation to the concentration is unknown 

the value of Dr(m)/Dr can be approximated by the different­

ial quotient d ln F/d ln (m-mi) of the regular regime curve. 

V.4 Isothermal drying of spheres and cylinders 

v.4.1 g~~~ef_f~g~~-£!Y!~9-2~fY~-~!~h-22~!~e~~-!~!~e2~ 

22~2~~~fe~!2~ 

-128-



The regular regime drying curve with constant surface 

concentration can be calculated for a desired temperature 

and surface concentration according to several methods. All 

except one are analogous to the methods for slabs as des­

cribed above. They follow directly from the analysis 

presented in the chapters III and IV of this thesis. An 

additional possiBility is the calculation from a regular 

regime curve of a slab. This procedure is as follows: 

By differentiation of the regular regime curve of a slab we 

find d ln F/d ln (m-m.) in relation to the average concen-
l. 

tration m. Shd is then obtained from figure III.4.6a. The 

"non-shrinking" Shd for the sphere or cylinder then follows 

from figure III.7.1. For shrinking systems ~Shd has to be 

added, which can be read from figure III.4.8 in relation to 

the average concentration (volume fraction). The value of 

F for the sphere or cylinder is then calculated from the 

equation 

F = F slab (V. 4.1 ) 

Shd,slab 

The "translation" of a regular regime curve to a different 

geometry is analogous for other transitions (e.g. cylinder 

+sphere). The ratio between the sorption rates for dif­

ferent geometries, e, is equal to the ratio between the 

values of the Sherwood number: 

(V. 4. 2) 

where the indices 1 and 2 refer to different geometries. 

An error in the estimation of Shd for the basic geometry 

causes an error in the value of e calculated according to 

the above method. The error propagation can be calculated 

analytically by differentiation of the equations (III.7.1-

3). Three examples are 
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slab + sphere: 

d ln e = 9.13 (V. 4. 3) 
d ln Shd,slab Shd,sphere 

slab + cylinder: 

d ln e = 4.45 (V. 4. 4) 
d ln Shd,slab Shd,cylinder 

sphere + slab: 

d ln e 2.87 (V. 4. 5} 
d ln Shd,sphere 

It can be concluded, that for the values of the Sherwood 

number under consideration, the error in the ratio e is of 

the same order of magnitude as the error in Shd. From the 

figures (III.4.6a-c) it follows that Shd can generally be 

estimated with the highest accuracy for slabs, compared 

with the other geometries. However, the error propagation 

is slightly larger when the slab is used as basic geometry 

for the calculation of regular regime curves. Therefore, 

the relative error in e is practically independent of the 

basic geometry used. It will generally be less than 5%. 

The penetration period with constant surface concentration 

can be calculated from the regular regime by one of the 

methods described in chapter IV. Also the calculation of 

the length of the constant activity period is analogous 

to the calculation for slabs. Only for shrinking systems 

has the effect of shrinkage on the gas phase mass transfer 

coefficient to be taken into account. 
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V.5 Non-isothermal drying 

It has been stated before, that in case of a concentration 

independent activation-energy of the diffusion coefficient 

the shape of the concentration profile is not influenced 

by a changing temperature. This implies, that the value of 

the flux parameter at a given average concentration lies 

on the isothermal parent curve belonging to the actual 

slab temperature. 

If the diffusion coefficient decreases strongly with de­

creasing concentration,the concentration profile inside 

the drying specimen tends to a rectangular shape. Despite 

a strongly variable activation-energy a varying temperature 

does not effect the shape of the profile very much. There­

fore, the value of F at a given average concentration still 

lies in good approximation on the isothermal drying curve 

belonging to the actual slab temperature. If the temperature 

of the drying body is known in relation to the surface flux­

parameter F and/or the average moisture content, the non­

isothermal drying curve can be obtained from the isothermal 

parent curves at different temperatures. This is illustrat­

ed in figure V. 5 •. 1, which shows the non-isothermal drying 

curve for a slab of an aqueous glucose solution. We assumed 

heat and mass transfer to take place by convection only 

and in addition the Chilton-Colburn analogy is assumed to 

apply. The effect of possible changes in the heat content 

of the slab is neglected. The slab is dried with air of 90 

°C and the moisture content of the air is taken to be zero. 

For any surface water activity the temperature of the slab 

and the surface water concentration in the gas phase can 

be derived from a psychrometric chart. The adiabatic cool­

ing line, corresponding to the air temperature and -humidity 

involved, is used in this calculation. Thus, at any temper­

ature between the wet and dry bulb values we can calculate 

the ratio between the actual driving force during the 

constant activity period. With this ratio and.the value of 

the flux parameter F during the constant activity period 
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0 2 3 4 
iii (kg water/ kg glucose) 

Fig. V.5.1 Non-isothermal drying of a slab of an aqueous 
solution of glucose. The solid curves are iso­
thermal parent curves for various temperatures. 
The broken curve is the non-isothermal drying 
curve with air ~mperature 90 oc and air humid­
ity 0 kg water/m • The mass transfer coefficient 
in the gas phase is taken constant. The asterisks 
indicate the points calculated using the present 
method. 

we calculated the relation between F and the slab temper­

ature. For a given temperature the value of F is related 

to the average concentration by the isothermal parent curve. 
The point on this parent curve where the value of F is 

equal to the value of the flux parameter calculated for 

the same temperature from the psychrometric chart belongs 

then to the non-isothermal drying curve. The asterisks in 

figure V.5.1 represent the points calculated in this way. 

It can be concluded, that the mass tPansfeP rate inside 

the drying slab is virtually independent of the temperature 

history: only the aatual slab temperature is of relevance. 
Mass transfer coefficients inside a non-isothermally drying 
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specimen are by good approximation equal to mass transfer 

coefficients for isothermal drying at the same temperature. 

A more severe testing of the influence of a change in tem­

perature on the value of F and on the time needed to reach 

the isothermal parent curves is illustrated in figure 

V.5.2. 

ffi (kg waterftg glucose) 

Fig. V.5.2 Drying history of a slab of an aqueous glucose 
solution with zero surface concentration. When 
m is a multiple of .5 the temperature is forc­
ed from 30 to 70 OC and vice versa. The broken 
curves represent the isothermal parent curves 
of 30 and 70 °c respectively. 

In this figure a temperature-game is played of the follow­

ing nature: a sudden change in temperature from 30 to 70 

°C and vice versa is forced every time m is a multiple of 
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.5 kg water/kg glucose. The surface concentration mi is 

taken to be zero. Directly upon the change of temperature, 

the value of F changes in correspondence with the activat­

ion-energy of the diffusion coefficient at the surface con­

centration. (ED= 139 kJ/mole). However, soon after this 

change the value of F in relation to m follows the iso­

thermal parent curve of the actual temperature already. 

V. 6 Conclusions 

1. When the diffusion coefficient decreases strongly with 

decreasing water concentration the critical point curve 

(F in relation to m at the end of the constant rate 

period) can generally be assumed to coincide with the 

isothermal drying curve for the falling rate period 

("parent curve"). 

2. The isothermal regular regime drying curve can be ob­

tained by direct experimental measurement or can be cal­

culated from the regular regime curve under different 

conditions (temperature, surface concentration} or from 

a regular regime curve for a different geometry. 

3. The mass transfer rate inside a non-isothermally drying 

specimen is virtually independent of the temperature 

history1 only the actual temperature is of relevance. 

Dispersed phase mass transfer coefficients during the 

regular regime are therefore determined only by average 

concentration, surface concentration and actual temper­

ature. 
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VI DETERMINATION OF 

CONCENTRATION DEPENDENT 

DIFFUSION COEFFICIENTS 

VI.1 Introduction 

The determination of 

diffusion coefficients has 

been subject to a vast 

number of publications. 

Methods of measurement have 

been reviewed, among others, 

by Johnson & Babb (1956), Crank (1956) and Crank & Park 

(1968). The many methods described can be subdivided into 

various classes according to different criteria. 

1. Some methods deal with physical phenomena which are -

just like diffusion - related to the mobility of certain 

molecules: transverse or spin-spin relaxation in nuclear 

magnetic resonance (Torrey (1956), Crank & Park (1968)) 

and quasi-elastic light scattering (Gulari et al. (1973)). 

These techniques have,up to now,only been applied to a 

very few compounds. It is questionable whether these 

methods can be applied to more complex aqueous systems, 

such as liquid foods. Furthermore, these determinations 

require highly sophisticated instrumentation. 

2. The vast majority of the methods for the determination 

of diffusion coefficients consists in the comparison of the 

results of a diffusion experiment (in terms of concen­

tration profiles, sorption rates, etc.) with the solution 

of the diffusion equation for this particular case. The 

(concentration dependence of the) diffusion coefficient is 

then adjusted so that the model description fits the 

experimental result. In fact, this is a parameter­

estimation problem. 
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The properties of the system in which the diffusion 

coefficient is to be measured sets constraints to the 
experimental method of measurement. Measurements may be 

int&rnal or external. 

2.1 Internal measurement of concentration gradients can 

be performed by non-destructive techniques which require 
a certain (natural) labeling of the migrating components 

and by destructive techniques where the body is sliced and 

the average concentration in every slice can be determined. 
The non-destructive techniques include optical methods 
(optical density, refractive index, gradient in refractive 

index) and other radiation methods (radiation absorption, 
radio-tracer methods). Optical methods have been widely 
used for the determination of liquid diffusivities and the 
diffusion coefficients of sugar solutions (e.g. Gosting & 

Morris (1949), Longsworth (1953), English & Dole (1950), 
Gladden & Dole (1953), v.d. Lijn (1976)). For natural 

systems, such as fruit juices, extracts etc. these methods 
can not be applied due to the presence of a mixture of 
compounds, coloured components and (coloidal) dispersed 
materials. Since the other internal methods are technically 

rather cumbersome (radioactivity) or laborious (micro­

slicing) , external measurements are to be preferred for 
such systems. 

2.2 External measurement of global variables such as 
average concentration and surface flux or surface con­

centration is often the most attractive or the only 

possible way to follow a diffusion process. This process 
can be stationary or unstationary: 
2.2.1 Steady state. The interpretation of the results from 

steady state measurements is relatively simple, since 

the diffusion equation goes over into an ordinary 
differential equation. A disadvantage, however, is 
the long period of time that may be required to reach 
the steady state, in particular when the diffusion 
coefficient is very low. Another disadvantage is of 
experimental origin. Since the steady state in a 
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sorption process corresponds with the trivial 

solution of the diffusion equation m(~,r) = mi' the 

only relevant stationary method is permeation through 

a membrane. It is clear, that this technique may give 
rise to some experimental problems when the diffusion 

coefficient in a liquid is to be measured. 

2.2.2 Unsteady state. A (de)sorption process is very often 

used for the determination of diffusion coefficients. 

When the diffusion coefficient depends on concen­

tration, however, the interpretation of such ex­

periments is relatively complicated. This will in 

more detail be discussed below. 

Interpretation of sorption experiments with aonaentration 

dependent diffusivity 

1. The diffusion process takes place over such a small 

concentration interval, that the diffusivity can be 

assumed to be constant. In that case a large number of 

experiments is required to determine the whole concen­

tration dependence of the diffusion coefficient. Also when 

a greater interval is involved, the relations for constant 

diffusivity can be applied in order to obtain an "effect­

ive" diffusion coefficient. By iteration a relation can be 

obtained between a concentration-averaged diffusion co­

efficient and this effective diffusion coefficient (Crank 

& Park (1949)), The method requires a number of experiments 

to obtain the concentration dependence of the concentration 

averaged diffusion coefficient. The diffusivity in-relation 

to concentration can then be calculated by differentiation. 

Some other, analogous methods have been reviewed by Crank 
( 1956). 

2. A trial and error method has been presented by Huang 

(1952) 1 which has also been used by Verstegen (1968). The 

whole concentration dependence of the diffusion coefficient 
over the concentration range of interest is calculated from 
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a single sorption curve, A certain relation has to be 

postulated for the concentration dependence of the dif­

fusion coefficient. By trial and error the parameters in 
this eqUation are estimated in such a way that the 

numerically calculated curve fits the experimental curve. 

Disadvantages of this method are the number of (much time­

consuming) computer simulations required and the fact that 

the type of concentration dependence of the diffusion co­
efficient, which is unknown, has to be postulated before­

hand. 

In this thesis, we present two new methods of calculating 

the concentration dependence of the diffusion coefficient 

from a single sorption experiment: 

3. The concentration dependence of the coefficient is 

approximated by a step function. This step function can 

be calculated step-by-step when the surface concentration 

moves (slowly) from the initial to the equilibrium con~ 

centration during the sorption process. The method is 
described in appendix D. 

4. Another method is based upon the properties of the 

regular regime of sorption with constant surface con­
centration, which has been analyzed in chapter III of this 

thesis. The method is described in the following paragraph. 

It is applied to an experimentally determined isothermal 

drying curve of a slab of an aqueous glucose solution. 

VI.2 Calculation of the concentration dependence of the 

diffusion coefficient from the Regular Regime 

Sorption Curve. 

In chapter III the influence of the variation of the 

diffusion coefficient on the sorption rate was analyzed 
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for the case of constant surface concentration. The 

results of this analysis offer a procedure to calculate 

the complete concentration dependence of the diffusion 

coefficient over the concentration interval over which 

the regular regime (de)sorption curve has been determined 

experimentally. The procedure can be applied to all of 

the geometries treated in chapter III. We take the drying 

curve of a slab as an example. The use of the slab geo­

metry has two advantages: (i) it is relatively easy to 

create a flat layer of uniform thickness and (ii) the 

relative variation of Shd with d ln F/d ln (1-E) is for 

slabs less than for the other geometries (figures III.4. 

6a-c). 

The calculation procedure consists of the following steps: 

1. Differentiation of the regular regime curve in order to 

obtain the quantity d ln F/d ln (m-m.) in relation to 
~ 

the average concentration m. The Sherwood number Shd is 

correlated with this quantity. 

2. From figure III.4.6a we can read Shd for every average 

concentration. A good "average" curve in this figure is 

the relation forD ma. If d ln F/d ln (m-m ) de-
r i 

creases with progress of the sorption process, Shd will 

generally be slightly higher than is indicated by this 

curve (e.g. exponential dependence). 

increases with progress of time, Shd 

lower than is indicated by the curve 

If this parameter 

will generally be 
a for Dr = m (e.g. 

water-glucose). For the interpretation of the regular 
regime sorption curve of a certain system we will pre­

ferentially use the relation between d ln F/d ln (1-E) 

for a system for which the concentration dependence of 

the diffusion coefficient can be expected to be similar 

to the diffusivity of the system under consideration. 

For instance, the relation for water-glucose at 30°C 

can be expected to be close to the relation for water­

glucose at other temperatures. It will even be a reason-
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able approximation for the relation for other aqueous 

carbohydrate solutions. 

3. The diffusion coefficient integrated over the con­

centration interval mi < m < m is then calculated 

according to: 

D 
r 

dm = 2F 
Shd 

(VI, 2. 1) 

4. The concentration dependence of the diffusion co­

efficient is finally obtained by differentiation of the 

integrated diffusivity with respect to m: 

= 

Aaauraay 

d 

dm D dm 
r 

(VI. 2. 2) 

The relative error in the integrated diffusivity is 

smaller than or equal to the sum of the relative errors 

in F (experimental error) and in Shd {"theoretical error"). 

The relative error in Shd can be expected to be smaller 

than about 5%, if a reasonable approximation to the relat­

ion between d ln F/d ln (1-E) and Shd is used in the inter­

pretation. If a better accuracy is required an iteration 

may be applied by calculation of the relation between Shd 

and d ln F/d ln (1-E) for the concentration dependence 

calculated in the first approximation. One iteration will 

generally be sufficient since this relation is not very 

sensitive to the kind of concentration dependence of the 

diffusion coefficient. The relative error in the integrated 

diffusion coefficient is then equal to the relative error 

in the experimentally determined F. From the analysis 

presented in this thesis it can be concluded that the con­

centration-averaged diffusion coefficient determines the 

sorption rate mainly,. Hence, the relative error in F will 

result in approximately the same relative error in the 

sorption rate calculated with the concentration dependence 
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of the diffusion coefficient obtained by using the 

present method. 

The error in the diffusivity itself may be higher due to 

the differentiation. However, so many "points" of this 

concentration dependence are obtained, that the noise can 

effectively be eliminated. Only at the end of the ex­

perimentally measured curve this may be difficult and a 

slightly higher error may result. 

VI.3 Experimental 

vr.3.1 Q~y!~S-~EE~t~tY2 

For the determination of the regular regime drying curve 

it is required, that the constant rate period is clearly 

followed by a penetration period which effectively behaves 

as if the surface concentration were constant (Bieff ~ =). 

A high value of Bieff can be realized by taking thick slabs 
and/or by creating a high mass transfer coefficient in the 

gas phase. Since the thickness of the slab also influences 

the time-scale of the drying process, the gas phase mass 

transfer coefficient should be maximized anyhow. This is 

the reason why we have chosen vacuum-drying in the ex­

perimental set up to establish the regular regime drying 

curves. In this pressure range1 gas phase diffusion co­

efficients are approximately inversely proportional to the 

absolute pressure (Bird et al (1960)). 

The drier is diagrammatically shown in figure VI.3.1. It 

consisted of two horizontal cylindrical vessels, one on 

top of the other and connected with each other by means of 

a tube. The diameter of each vessel was 60 em. and the 

depth 70 em. At the front the cylindrical vessels were 

closed by covers provided with "0"-rings. The sample holder 

in the lower cylinder was connected to a precision Mettler 

balance in the upper cylinder by a wire. During the drying 
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lo vacuum 
pump 

Fig. VI.3.1. Vacuum drying apparatus. 
(1) sample holder; (2) 
sieve plate; (3) radiation 
plate; (4) precision 
balance. A constant air 
stream is blown between 
the sieve plate (2) and 
the radiation plate (3). 

process the weight of the sample and sample-holder could 
be read from the balance through a "perspex" window in the 
center of the cover of the upper vessel. 
The energy necessary for the evaporation of water was 
supplied to the drying sample by an electrically heated 
radiation plate, placed 10 em. above the sample holder. 
Between the sample holder and the radiation plate air was 
blown, approximately evenly distributed over the surface 
area of the sample. In order to avoid uneven drying of the 
slab a sieve plate had been placed between the sample 

holder and the air stream, at 1 em. above the sample holder. 
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The stainless steel sieve plate had an open surface area 

of 32.5%, round openings of .19 mm diameter and was .04 mm 

thick. The aim of this set-up was to create a diffusional 

resistance between the sample and the sieve plate, which 

would be constant over the slab surface. Above the sieve 

plate convective transport of the water evaporated could 

take place. Introductory experiments showed that the 

presence of this sieve-plate effectively avoided the in­

fluence of wall effects etc. in case of a direct air stream 

over the sample and that even drying was created. 

The energy input to the electric heater was controlled 

automatically in such a way, that the temperature of the 

bottom of the drying sample was kept constant within 0.3°C 

during the drying process. A constant air flow over the 

sample was taken from the laboratory low pressure circuit 
-3 3 and amounted to .6 x 10 Nm /s. The total chamber pressure 

was kept constant within 1 mm Hg by adjusting the air flow 

through an air inlet just before the vacuum pump. 

The sample holder consisted of a PTFE ring with an inner 

diameter of 111 mm and an outer diameter of 118.5 mm. 

This material was chosen because it is hydrophobic and. 

therefore the wall would have a negligible effect on the 

distribution of the slab thickness over the sample holder. 

The ring, with a height of 10 rom had been attached to a 

red copper bottom plate of 2 mm thickness and 118.5 mm 

diameter. In the centre of the bottom plate a thermocouple 

was fixed through the plate with its junction .5 mm above 

the plate. 

In order to test the present method experimentally the 

drying of a slab of an aqueous solution of glucose was 

chosen. This, because the water diffusion coefficient in 

such solutions has been determined over a wide range of 

concentrations by Gladden and Dole (1953). This diffusion 
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coefficient depends strongly on the water concentration. 
Furthermore, glucose has q low tendency to crystallize in 

supersaturated solutions because of the high viscosity of 
these solutions, 

The experiments were carried out on gelled slabs in orde.r 

to avoid convective transport inside the slab. The add­
ition of agar-agar in small amounts to aqueous solutions 

appears to have a negligible effect on the diffusion rate 
of water (Kamenka (1966), Ermolaev & Levchenko (1968)). 

A mixture of about 100 grams of water and glucose in the 

desired ratio and 1 gram of agar-agar was heated until a 

clear solution was obtained. The sample was then prepared 
by injecting the desired amount of the warm solution into 

the sample holder, which was placed on a flat, horizontal 

heat exchanger, thermostated slightly above the desired 
drying temperature. The empty sample holder had been 

weighed beforehand. After injection of the liquid, the 
sample holder was closed by means of a brass cover plate, 

which was kept at a temperature higher than the temper­
ature of the solution to avoid condensation. After cooling 
for about one hour the sample holder was placed in the 
drying apparatus and attached to the balance. The apparatus 
was evacuated down to a pressure of about 5 mm Hg above the 
equilibrium vapor pressure of pure water at the slab 
temperature. 

The weight of the sample and sample holder was then read 

from the balance at time intervals which increased with 

progress of the drying process. Typical duration of one 
experiment was three days. 
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VI.4 Results and discussion 

Introductory experiments with gelled slabs of aqueous solut­

ions of 1% agar-agar showed, that the gas phase mass trans­

fer was indeed determined by the diffusional resistance 

over the distance between the slab surface and the si.eve 

plate. For instance, at a slab temperature of 5ooc the gas 

phase mass transfer coefficient amounted to 1.32 10-2 m/s 

at a chamber pressure of 150 mm Hg. Since the diffusion 

coefficient of water vapor in air is approximately 
1.56 10-4 m2/s at this pressure, this mass transfer coef­

ficient corresponds with a diffusion distance of .012 m. 

This is by good approximation equal to the distance between 

slab surface and sieve plate. Thus, it was expected, that 

the drying rate could be assumed to be constant over the 

slab surface. This was confirmed by measurement of the 

thickness over a cross-section of a gelled slab after 

evaporation of approximately half of the initial amount 

of water present. 

The presence or absence of considerable temperature gradients 

inside the slab was another important factor which had to 

be checked beforehand. If the heat necessary for evaporation 

is supplied at the bottom of the slab only, maximum tern~ 

perature differences of 9 and 34°C over the slab can be 

calculated for slab temperatures of 30 and 50°C (slab 

thickness 0.01 m, surface water activity = 1 and kc = 0.01 

m/s). However, heat is supplied by radiation to the evapor­
ating surface. Depending on the relative penetration depth 

of this thermal radiation the temperature differences will 

be smaller. We estimated the absorption coefficient for 

the long-wave infra-red radiation from our radiation plate 
(maximum temperature 1000°K) by extrapolation from values 

for radiant black bodies of higher temperature {Int.Crit. 

Tables (1933)). A conservative estimate of the absorption 

coefficient is 600 [ m- 1
] • This means, that 80% of the 

radiation is absorbed within 2.7 mm from the surface and 
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50% within 1 .. 1 rom. Hence, the temperature differences over 
the slab thickness will be lower than the above calculated 

differences by at least a factor 10. Furthermore, the dif­
ferences will also decrease proportionally to the. decrease 
of the surface water activity (water flux). Hence, the 

assumption of a homogeneous slab tempe:r>atu:r>e is justifiable. 

This was confirmed experimentally. In some experiments we 
added approximately 0.1 ml of black drawing ink to 100 ml 

of agar solution. The drying rate of these black slabs in 
the constant rate period appeared to be equal to the drying 
rate for non..,.coloured slabs: The improved radiation ab­

sorption did for equal bottom temperature not result in a 
detectable increase in surface temperature. 

I0"3 r-------------~------------------------~ 

0 2 

iii (kg water j kg glucose l 

Fig.VI.4.1 Isothermal drying curves of gelled slabs of an 
aqueous glucose solution at 30 oc. The solid 
line represents the numerically calculated regul­
ar regime drying curve. 0 experiment 1 • experi­
ment 4. The experimental points are calculated 
by direct differentiation of the measured weight 
versus time, without smoothing (appendix E). 
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Isothermal drying curves have been measured at 30 and 50 °C. 

The tabulated results of three experiments are given in 

appendix E. Figure VI.4.1 shows two experimentally determin­

ed drying curves at 30 °C and the numerically calculated 

regular regime curve for this temperature at zero surface 

concentration. In this calculation we used equation 

{III. 4. 8) for the concentration dependence of the diffusion 

coefficient. Good agreement between the experimental and 

theoretical results can be claimed. 

From the experimental curves we calculated the concentrat­

ion dependence of the diffusion coefficient at 30 and 50 °C 

according to the method described in paragraph VI.2. We used 

in these calculations the relations between Shd and d ln F/ 

d ln (m-m.) as given in figure III.4.6a for the concentrat-
~ 

ion dependences Dr = ma ("average curve") and water-glucose 

in a shrinking coordinate system (after Gladden & Dole (1953)). 

The results for 30 °C are presented in figure (VI.4.2). 

It appears that there is no considerable difference between 

the values calculated with the different relations between 

Shd and d ln F/d ln (m-mi). 

Good agreement can be observed between the present results 

and the values interpolated to 30 °C from the measurements 

by Gladden & Dole. Only at 20 %water by weight (xs = 0.29) 

their result deviates considerably from our experimental 

data. This difference can be explained by the fact, that 

the authors used an optical method for the measurement of 

concentration profiles near a boundary between two solut­

ions of slightly different water concentration. They state, 

that at the low water concentration "the high viscosity of 

the solution, approximately 21 poises ( ••• ),made the form­

ation of a sharp clean boundary difficult". Therefore, 

they expect a relatively high experimental error in the 

value of the diffusion coefficient at this low water con­

centration. The results of a second experiment at 30 °c 
appear to differ less than 20 % from the first measurement, 
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Fig. VI.4.2 The diffusion coefficient of water-glucose 
versus the mole fraction glucose (x ) in the 
(supersaturated) solution at 30 oc.s 

• experiment 4; interpretation with the 
relation for Dr = ma. 

0 experiment 4; interpretation with the 
relation for water-glucose at 30 °C. 

*experiment 1; interpretation with the 
relation for water-glucose at 30 oc. 

• results by Gladden & Dole (1953); inter­
polated between 25 and 35 °c to 30 oc. 

the average difference being approximately 10%. 

The diffusion coefficient of water-glucose as calculated 

from the sorption experiment at 50 °C is given in figure 

(VI.4.3). It is compared with the linearized relation 

between ln D and x after the measurements of Gladden & s 
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Dole (Vander Lijn (1971)). These linearized values are 

extrapolated from 25 and 35 °C to 50 °C using an Arrhenius 

temperature dependence. Also a~ this temperature good 

agreement can be observed. 

500C 

10-K) 

10-11 

10-12'---····.......L ___ _j_ ___ _L.._ ___ l ___ _! 

0 • I ·2 

X(-) 
5 

·4 ·5 

Fig. VI.4.3 The diffusion coefficient of water-glucose 
versus the mole-fraction glucose x in the 
(supersaturated) solution at 50 °c; 

•experiment 7; interpretation with the relat-
ion for water-glucose at 30 oc. 

• linearized relation between ln D and xs 
after the results by Gladden & Dole, 
extrapolated to 50 oc. 

The activation energy of the diffusion coefficient in rel­

ation to the mole fraction glucose, xs' is presented in 

figure (VI. 4. 4) and compared with the values by Gladden & 
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Dole. Again a deviation is observed at high glucose con­

centrations. The reason of this deviation has already been 

discussed above. 

80 

60 

40 

20 

ED 
(ldJ/mole) 

Fig. VI.4.4 Activation-energy of diffusion coefficient of 
water-glucose versus the mole fraction xs in 
the (supersaturated) glucose solution. 

*Gladden & Dole (1953) 

• present work 

VI.5 Conclusions 

1. Based upon the properties of the regular regime of sorpt­

ion with constant surface concentration we developed a 

method for the calculation of the concentration depend­

ence of the diffusion coefficient from a single sorpt­
ion experiment. 

2. Isothermal drying curves of a slab of an aqueous solut­

ion of glucose have been determined. experimentally at 
' 0 

30 and 50 c. These drying curves are in good agreement 

with theoretical curves calculated with literature values 

for the concentration dependence of the diffusion coef­
ficient. 
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3. The concentration- and temperature dependence of the 

diffusion coefficient have been calculated from the ex­

perimentally determined drying curves by application of 

the new method. The results are in good agreement with 

literature data, obtained from successive measurements 

over small concentration intervals (Gladden & Dole (1953)). 

Only at low water concentrations deviations are observ­

ed, which can be explained by inaccuracy in the experim­

ental method applied by Gladden & Dole. 
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APPENDIX A 

Solution of the diffusion equation for the regular regime 

with geometrically similar profiles (Dr = rna) 

In paragraph III.3 the diffusion equation for the regular 

regime with Dr = ma and surface concentration mi = 0 has 

been transformed to the equation: 

d 
dq, 

\) 

(g')a 41 v+1 ~1 = -P g' dq, 

with the boundary conditions 
\) 

q,v+1 ~ = 0 
d~ 

at q, = 0 

g' = 0 at q, = 1 

and the norm 

g' = 1 at q, = 0 

Substitution of a new variable y, defined by 

y = (g')a+l 

yields for the differential equation 

2v 1 

d { ,.V+I & I = -P ( +1) a+T d1" 'I' dq, r a y 

and for the boundary conditions 

4> = 1 

4> = 0 

y = 0 

y = 1 

\1 

+ v+1 £r = 0 dq, 

For slabs (v=O) the differential equation reads: 
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(A. 2) 

(A. 3) 

(A. 4) 

(A. 5) 

(A. 6) 

(A. 7) 

(A. 8) 

(A. 9) 



1 
d2y = -{a+1) P a+1 
d$2 y 

(A.lO) 

This equation can be solved analytically. We introduce 

s = ~ , so that ds 
s dy 

Equation (A.10) goes over into 

1 

s ~ = -(a+1) P ya+1 
dy 

with the boundary condition 

s = 0 at y = 1 

(A.ll) 

(A.12) 

The differential equation can be integrated after separat­

ion of variables. Resubstitution of dy/d~ for s gives: 

where 

and 

j2(a+1) 2 P}% 
A = 1 (a+2) 

a = (a+2)/(a+1) 

{A.13) 

(A.14) 

(A.15) 

We use the series development (Bronstein & Semendjajew 

(1974)). 

00 

E 
n=O 

2n! na 
~...;;;.,;.:;.,;;__ y 
22n 1 1 n.n. 

(A.l6) 

This series is convergent for IYal < 1. Hence a > 1 and 

a > -1. This condition is fulfilled, since the left-hand 

side of equation (A.10) is negative: 

(A.l7) 
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This represents the negative increase of the sorption flux 

with increasing ,. Therefore, a regular regime of sorption 

does not ereiet for a~ -1. 
Substitution of (A.16) in equation (A.13) and subsequent 

integration yields 

A ( 1-') = I { 2n: 
n=O 22n n!n! 

1 na+1} 
• (na+l) • Y (A.18) 

The value of the parameter A follows then from substitution 

of + 0 andy = 1: 

A r n. "' { 2 t 

n·=o 22n n!n! 
(A. 19) 

The parameter P can then be calculated from equation (A.14). 
The average normalized concentration g' is found by integrat­

ion of (A.18) over 0~'~1 

- 1 ~ { 2n! g' = 1 - - r -:::;o::::,.:.::--
A n=O 22n n!n! (na+a) (1~ (a+1) (na+1)} (A.20) 

Substitution of the values of P and g 1 in equation (III. 3. 46) 

yields the Sherwood number Shd. 

Analogously to slabs, the equation for non-shrinking ayl­

inders (v=1) reads: 

1 
d2y dv a+l + ~d~ + P(a+1) y = 0 
d+2 'I' 

(A. 21) 

and for non-shrinking spheres (v=2): 

1 

+1/3 ~ + P(a+l) ya+1 = 0 (A.22) 

These equations can not be solv~d in a simple analytical 

way. Hence, we solved the boundary-value problem numerical­
ly. Since boundary condition (A.2) gives rise to some prob-
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lems in the programming, the equation is described in a 

new distance coordinate x, defined by 

1 

X r = ,~.V+I 
'R "' 

Equation (A.1) then becomes: 

1 
d2~ v dv 2 a+1 +-.;;:;L+ (v+1) .(a+1).Py = 0 
dx x dx 

with boundary conditions 

X = 0 : y = 1 

~ = 0 dx 

x=1:y=O 

(A.23) 

(A. 24) 

(A. 25) 

(A.26) 

(A. 27) 

The equation is solved numerically using a fifth order 
Runge Kutta procedure. The step size was chosen such, that 

the relative error in y and dy/dx did not exceed 10-6 • This 

accuracy was necessary because of the error propagation in 

the calculation of Shd from P and g'. The value of Pis 

evaluated by using a Regula Falsi procedure. 

Solutions for high values of a. 1 
a+1 For high values of a the factor y approaches 1 except 

for y=O. We solve equation (A,1) with the boundary condition 

y=E at ~=1 and take the limit of this solution for e+O. 
Equation (A.1) goes over into 

-P (a+1) (A. 28) 

Integration yields 

(A. 29) 
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From the boundary conditions at ~ = 0 then follows, that 

the integration constants c1 and c2 are equal to 

and (A.30) 

Substitution of these constants and the value y = s; at 

q, = 0 then yields: 

1- s; = + ~ P(a+1) (v+1) 

We take the limit for s; + 0: 

2 
p "" (a+1) (v+1) 

The solution of equation (A.28) then reads: 

2 
y = 1 _ q,v+1 

For the calculation 

1 1 

g' = f 
a+1 dq, y == 

0 

of Shd we need the value of 

1 2 1 

J {1 - + v+1 } a+1 dq, 
0 

We introduce an auxiliary variable q defined by 

Substitution of q in equation (A.34) yields 

1 v-1 
g' = v;1 { ~ qa+1 (1-q)-2- dq} 

Hence, we can write 

g-, = (v+1} B{a+2 v+
2

1} 
2 a+1' 

(A. 31) 

(A. 32) 

(A.33) 

g': 

(A. 34) 

(A. 35} 

(A. 36) 

(A. 37) 

where B represents the Beta function {Abramowitz & Stegun 

(1970), p. 258). Thus, it follows for the Sherwood number 

Shd at high values of a, that 
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-a 
4 { {v+1) B{a+2 v+1}J 

2 • a+1, 2 r (A.38) 

In order to calculate the limit for a + ~, we write the 

Beta function as 

B{a+2 v+1} 
a+1' 2 

r {a+2} r {v+1} 
a+1 • 2 

r{-1- + v+3} 
a+1 2 

(A. 39) 

where r represents the gamma function. We expand the gamma­

functions according to Euler's Infinite Product into 

(Abramowitz & Stegun (1970), p. 255) 

1 
ffiT = 

00 

zeyz n { (1 + ~) e-z/n} 
n=1 

(A. 40) 

where y is Euler's constant. After some algebraic manipulat­

ion then follows, that 

{ 

00 1 
lim Shd = 4 exp (v+1) E n( 2n + v t 
a+oo n=1 

(A. 41) 

The sum of the infinite series in the exponent can then be 

calculated by means of Polygamma Functions (Abramowitz & 

Stegun (1970), p. 264): 

r 
n= 1 n(2n + v + 1) 

1 eo { 2 } 
n!1 (v!1)n - (v+1) (2n + v + 1) 

(A. 42) 

Then, 

E 
n= 1 n(2n + v + 1) 

1 '" ( 1 ) + 1 ,,, { v+ 3) - lV"+1T '¥ v+1 '¥ 2 (A.43) 

where 1jJ is the Psi- or digarr~a function. Evaluation of these 

functions and substitution in equation (A.41) yields the 

Sherwood number for a + eo: 
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sl,ab: Sh = 4 exp(-2 ln 2 + 2) = exp (2) (A. 44) 
d 

cylinder: Shd = 4 exp(1) = 4e (A.45) 

sphere: Sh = d 
4 exp(-2 ln 2 + .!!) 

3 = exp(~) (A.46) 
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APPENDIX B 

The Regular Regime for exponential concentration dependence 

of the diffusion coefficient and constant surface concen­

tration, at high values of the exponent. 

The diffusion equation reads: 

am a 2 am a::; = 31" (exp (am} X 31") (B .I) 

with the initial and boundary conditions: 

1" = 0 0 ~ <P ~ 1 m = mo (B. 2) 

> 0 <P = 0 X 
am 

0 1" 31" (B. 3) 

<P = 1 m = 0 (B. 4) 

Substitution of u = exp(am-am0 ) in the diffusion equation 

yields: 

1 au 
ua:t (B. 5) 

We account for the constant exp(am0 ) by the introduction of 

-r' = -r exp(am0 ). 

a (X2 au) 
u 31" a.p (B. 6) 

with initial and boundary conditions 

T 1 0 0 ~ <P ~ 1 u = 1 (B. 7) 

T I > 0 <P = 0 X 
au = 0 
~ 

(B. 8) 

<P = 1 u = exp (-am0 ) (B. 9) 

For high values of am0 boundary condition (B.9} gees over 

into 

...;159-



~ = 1 u = 0 (B. 10) 

It should be noted, however, that the solution of the 

equation does not give relevant information about the con­

centration profile if the average concentration is small 
compared with the initial concentration. Therefore, the 

homogeneous boundary condition (B.lO) can be applied in 

the regular regime only if 

exp(am) >> exp(ami) (B.ll) 

Equation (B.6) is solved by separation of variables: 

U = f(T 1
), g(cfl) (B. 12) 

(B, 13) 

with the boundary conditions for the +-dependent part: 

4> = 0 (B. 14) 

q, = 1 g = 0 (B. 15) 

For the calculation of A we take a normalized function 
g($) with the norm 

+ = 0 g = 1 (B.16) 

This is allowable because we can account for any factor in 

the function f(T'). The equation (B.15) with boundary con­

ditions is then similar to equation (A.28). Hence, 

A = 2 (v+l) 

and the solution reads 

2 
g = 1 - q,\/+1 

(B.17) 

(B. 18) 

-160-



We derive the relation for Shd: 

2F 2a - dm 
----~-- = 1V+I} exp(-am) dT 
m J Dr dm 

(B. 19) 

0 

and calculate the factors occurring in this equation. 

With 

am = amo + ln u = amo + ln f + ln g (B. 2 0) 

it follows, that 

1 -am = am0 + ln f + f ln g d<jl {B. 21) 
0 

Differentiation with respect to T and substitution of 

equation (B.13) yields: 

d am = d ln f = f.A exp(amO) 
dT dT (B.22) 

Substitution of (B.22) and (B. 21) in equation (B.19) then 

gives: 
1 

Shd 
2A • exp { f ln g d¢} (B. 2 3) 1V+IJ 

0 

With the solution for g(<jl) (B.18) and the value of A (B.l7) 

it follows then, that 

1 2 

Shd = 4 exp {- J ln(l-<jl\i+T) dq,} 
0 

We expand the logarithm in an infinite series: 

2 2n 
ln (1- ~ v+ 1) = - i { ~ . ¢ V+T l 

n=l r 

and integrate this series with respect to ¢: 
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(B. 25) 



{ 

co ( v+ 1) }. 
Shd = 4 exp I n(2n+v+l) 

n=l 
(B.26) 

This relation for Shd is identical with equation (A.41), 
which holds for the concentration dependence Dr= rna; a + ~. 
In both cases the surface concentration is constant (mi= 0). 

-162-



APPENDIX C 

The "shrinking-core" model for systems which shrink or 

swell upon (de)sorption. 

For ease of notation we describe the process in reference 

component volume centered coordinates. The differential 

equation for the steady state then reads: 

~} = 0 d<i> 
(C .1) 

We assume, that the concentration in a "core" 0 < 4> < <Pc 

is equal to the initial concentration m
0

• In the annular 

space 4> < 4> < 1 the concentration is equal to m
1 
.• Hence, c ' 

4> 
f (l+m) dcp = 
0 

4> ( l+m ) + ( 4>- <P ) ( 1 +m . ) c 0 c 1 
(C. 2) 

Integration of equation (C.l) yields after substitution 

of (C. 2): 

(C. 3) 

Integration between the limits <Pc < $ < 1 then yields the 

flux parameter F as a function of $ : c 
..... 
D (mo-mi) 

F r 
1 - <Pc 

(C. 4) slab 

..... 

cylinder 
(mo -mi) ( l+mi) D 

F r = Qc 
(C. 5) 

.-;here 

{ 

¢> (m -m. ) + (1 +m. ) } c 0 1 1 
ln " O+m ) · '~'c o 

(C. 6) 
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(C. 7) 

In these equations ~c can also be read as (1-E). For low 
values of m

0 
and mi the equations reduce to the relations 

derived for systems with constant volume. 
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APPENDIX D 

A step-by-step method for the calculation of the 

concentration dependence of the diffusion coefficient 

from a single sorption experiment. 

Prager (1951) has presented a method for the calculation 

of the concentration dependence of the diffusion coeffi­

cient. The concentration interval of interest is divided 

into a number of intervals and for each interval the 

diffusion coefficient is assumed to be constant (figure 

D. 1). 

m 

o, 

Fig. 0.1. A step-function 
approximation to 
the diffusion 
coefficient 

Fig. 0.2. Increasing con­
centration inter­
vals as covered 
by successive 
sorption experi­
ments 

For the first interval m
0 

< m < m1 a sorption experiment 

reveals the diffusivity o1• The diffusion coefficient for 

the second interval o 2 is then calculated from a sorption 

experiment over both intervals: m
0 

< m < m2 • The (analy­

tical) solution of the diffusion equation contains o2 as 

the only parameter that has to be determined. Once o1 and 

o 2 are known,o3 is determined similarly by interpretation 
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of a sorption experiment between m0 < m < m3 (see figure 

D.2). In this way the whole concentration interval of 

interest is covered. It is clear, that for diffusivities 

which depend strongly on the concentration this method 

requires a large number of experiments to permit the 

assumption of a constant diffusivity per concentration 

interval. 

A similar approach can also be applied to a single sorption 

or desorption experiment with variable surface concentrat­

ion. The. concentration profiles during such a process are 

drawn schematically in figure D.3. 

m - D, 

- 11 

- 03 

- o .. 

- D~ 

m5 

0 
¢ 

Fig. D.3. Schematic representation of the change of 
concentration profiles during a desorption 
process. 

If the surface flux and the surface concentration are 

measured as a function of time, the concentration 

dependence of the diffusion coefficient is obtained in 

the following way. 

The diffusion coefficient is assumed to be constant in the 

concentration interval m1 < m < m0• Its value o1 is 

calculated by trial and error, using the numerical program 

for the solution of the diffusion equation (cfr. chapter 
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II). After time , 2 the surface concentration has reached 

the value m2• This corresponds with a certain value of o2 
in the region m2 < m < m1• For the calculation the known 

diffusivity o1 is used at concentrations between m1 < m < 

m0 • Once the diffusivities o1 and o2 are known, they are 

applied in the appropriate concentration interval and o3 
can again be calculated by trial and error. Thus, sub­

sequent values of the diffusion coefficient are obtained. 

By choosing the concentration intervals small enough the 

concentration dependence is approximated closely. 

The implementation of this calculation method is relative­

ly easy when the diffusion equation is solved by a finite 

difference method. For the solution of the diffusion 

equation with known concentration dependence of the dif­

fusion coefficient the diffusion equation is descretized 

into a difference-equation. The space-parameter ~ is then 

divided into a number of intervals (n). Initially, the 

concentration at every "grid-point" is known from the 

initial condition of the differential equation. By appli­

cation of the difference equation, (n-2) relations are 

found to calculate the concentration at every grid-point 

after some time AT. Together with 2 relations for the 

boundary conditions the concentrations at the "new" value 

of ' can be calculated by solving the complete set of n 

equations with n unknown concentrations. By taking small 

steps AT the. sorption process can be calculated in this 

way. 

In a similar way we can calculate the concentration 

dependence of the diffusion coefficient from a sorption. 

experiment. Again the initial condition gives the con­

centration at -r=O at every grid-point. Again (n-2) relat­

ions are found by application of the difference-equation 

and 2 relations come from the boundary conditions. However, 

only (n-1) concentrations at time ,.1 are unknown, since 

the surface concentration is given by the experimental 
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measurement. Therefore, the parameter o1 , the diffusion 

coefficient in the concentration interval m0 < m < m1 , 

can be calculated by solving the complete set of n equat­

ions with (n-1) unknown concentrations and 1 unknown 

diffusion coefficient. In the next step again n equations 

are found from the difference equation with boundary 

conditions. Now the parameter o2 , the diffu~,ion coeffi­

cient in the interval m1 < m < m2 can be solved. In this 

calculation o1 is used as the diffusion coefficient in 

the interval m0 < m < m1• In this way the whole concentrat­

ion dependence of the diffusion coefficient can in 

principle be calculated by moving step-by-step through 

the sorption history. 

Probteme 

It can be understood, that this method of calculation is 

very sensitive to inaccuracies in the measurements. 
Experimental noise on the relation between surface con­

centration and time may have drastic influence on the 

concentration dependence of the diffusivity calculated in 

this way. The unstability can be illustrated as follows: 

if o1 is estimated too low, this must be compensated by 

o2 which is therefore estimated too high: 0 in relation to 

m tends to oscillate. This oscillation can be effectively 

suppressed by smoothing O(m) during the calculation pro­

cess. However, somewhat larger errors in the experimental 

mi(~) may cause serious problems. For instance, a local 

increase of mi with time is "impossible" in a desorption 

process and results in a negative value of the local 

diffusion coefficient. Therefore, also the input curve 

m.(~) has to be effectively smoothed. 
~ 

Another problem stems from the fact that for a highly 
concentration dependent diffusion coefficient the surface 

concentration hardly influences the sorption rate, unless 

the average concentration is close to the surface concen-
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tration. In order to have this latter condition in the 

experiment, the mass transfer coefficient in the continuous 

phase must be so low that the concentration profile inside 

the body remains rather flat. However, if mass transfer is 

completely dominated by continuous phase mass transfe~the 

process becomes very insensitive to the value of the 

diffusion coefficient inside the body. For strongly con­

centration dependent diffusion coefficients a constant 

value of the gas phase mass transfer coefficient can never 

fulfill both requirements during the complete sorption 

history. Therefore, only part of the process can be used 

for the calculation or the mass transfer coefficient in 

the continuous phase has to be varied during the experi­

ment. 

The third problem encountered in this method deals with 

the determination of the surface concentration inside the 

dispersed phase. It is calculated from the equation 

describing the sorption flux in the continuous phase (cfr. 

chapter V): 

(D. 1) 

where n' 
1
. is the mass flux through the phase boundary in m, 

the continuous phase, k~ the mass transfer coefficient in 

the continuous phase and Ai the activity of the sorbent at 

the surface. p~:pure is the sorbent concentration in the 
continuous phase in equilibrium with pure sorbent and 

P~,bu1k is the sorbent concentration in the bulk of the 
continuous phase. In an experimental situation all varia­

bles can be measured except A., which can therefore be 
l. 

calculated from this equation. The sorption isotherm, i.e. 

the relation between A. en m., then reveals the value of 
l. l. 

m.: the surface concentration in the dispersed phase. 
l. 

However, if the activity is constant or varies only 

slightly with varying mi (dAi/dmi << 1 ) a small experiment-

al error in the value of Ai causes a large error in the 
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calculated value of mi. In drying, for instance, the water 

activity is approximately constant with varying mi if 

mi > m and m. can not be calculated with sufficient cr ~ 

accuracy from the measured surface activity. Therefore, 
the present method can only be applied to concentrations 

below mer· 

Testing of the method 

The method has successfully been applied to a desorption 
curve, which was obtained by simulating the drying of a 

slab on a computer. The result of the calculation is 

presented in figure D.4. This figure also shows the 

concentration dependence of the diffusion coefficient 
which was used for the simulation. 

The method has not been tested yet on an experimentally 
determined (de}sorption history. 

Dr 

J 
10 

0 ·4 
m 

Fig. D.4. Concentration dependence of the diffusion 
coefficient as used for testing the present 
method. The solid line represents the dependence 
used in the simulation. Points indicate values 
of the diffusion coefficient calculated from the 
simulated desorption curve by the present method 
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APPENDIX E 

Experimental results 

Experiment nr. : 1 

Temperature : 30 oc 

Pressure : 100 mm Hg 
- 2. 418 kg water/kg glucose mo : 

ds R : 1.565 kg glucose/m2 
s 

time - time time -
(min) m (min) m (min) m 

0 2. 418 60 1 . 628 240 0.745 
1 2.408 69 1. 563 255 0.706 
3 2.370 81 1. 482 270 0.668 
5 2.328 . 90 1.426 293 o. 61 6 
7 2.283 103 1.349 308 0.586 
9 2.238 118 1.263 328 0.552 

11 2.186 131 1.194 383 o. 467 
13 2.121 141 1 • 143 438 0.412 
20 2.022 148 1 • 111 518 0.356 
23 1. 9 81 158 1 • 0 63 563 0.330 
28 1. 918 168 1. 019 603 o. 310 
31 1. 884 1 81 0.965 813 0.248 
36 1.832 203 0.883 888 0.232 
43 1.767 213 0.844 1122 o. 1.99 
52 1. 689 220 0.805 1168 0.194 
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Experiment nr. : 4 

Temperature : 30 oc 

Pressure : 100 mm Hg 
- 3.865 kg water/kg glucose mo : 

ds Rs : 1.944 kg glucosefm2 

time - time - time 
(min) 

m (min) m (min) m 

0 3.865 138 2.354 1537 0.199 
2 3.861 156 2.235 1571 0.196 
4 3.817 168 2.159 1688 0.184 
6 3. 774 173 2.128 1746 0.179 
8 3.731 180 2.087 1797 0.176 

10 3.690 191 2. 024 1847 0.172 
12 3.650 201 1.966 1966 0.163 
15 3.593 210 1. 915 2047 0.157 
16 3.574 232 1.793 2097 0.154 
18 3.538 246 1. 719 2171 0.149 
20 3.506 261 1. 646 2269 0.145 
24 3. 441 279 1. 564 2757 0.128 
28 3.378 299 1. 478 2797 0.127 
30 3.347 321 1. 391 2867 0.125 
34 3.288 392 1.143 2917 0.123 
36 3 .260 462 o. 941 3032 0.120 
43 3.167 501 0.847 3072 0.119 
49 3 .095 554 0.735 3118 0.117 
55 3.028 607 0.644 3171 0. 116 
61 2.965 664 0.563 3274 0.114 
67 2.907 703 0.518 3382 0.110 
71 2.870 737 0.492 3465 0.108 
78 2.808 808 0.427 3619 0.105 
84 2. 757 863 o. 389 3707 0.104 
91 2.700 957 0.336 4442 o. 093 
96 2. 661 1269 0.234 4502 0.092 

101 2. 621 1287 0.234 4562 0.092 
110 2.552 1367 0.221 4622 0.091 
126 2.435 1412 0.214 
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I 

Experiment nr. : 7 

Temperature : 50 oc 

Pressure : 150 mm Hg 
- 3.852 kg water/kg glucose mo : 

2 
ds R : 1. 821 kg glucose/m s 

time - time - time -
(min) m (min) m (min) m 

2 3. 773 124 1.764 327 0.491 
4 3.705 130 1.707 337 0.464 
6 3.636 135 1. 661 343 0.449 
8 3.567 139 1. 625 349 0.434 

10 3.498 144 1.580 359 0.412 
12 3.425 150 1. 528 366 0.398 
14 3.355 157 1.468 370 I 0.390 
16 3.290 162 1. 426 377 o. 377 
18 3.232 167 1.384 387 0.360 
20 3.178 173 1. 334 393 0.351 
22 3.128 180 1.278 400 0.340 
24 3.082 186 1.231 405 0.333 
26 3.038 192 1. 1 85 413 0.323 
28 2.997 197 1.148 420 0. 315 
30 2. 957 203 1.105 426 0.309 
34 2.882 210 1.055 435 0. 3 01 
38 2. 811 216 1. 013 479 0.266 
42 2.743 223 0.966 608 0.195 
46 2.681 229 0.928 695 0.·166 
52 2.588 236 0.884 800 0.140 
59 2.488 240 0.860 833 0.136 
62 2.448 246 0.827 900 0.128 
67 2.382 252 0.794 1000 o. 117 
76 2.271 261 0.746 1100 0. 110 
81 2.213 267 o. 718 1165 0.106 
84 2.179 274 0.686 1200 0.104 
89 2.124 282 0.651 1300 0.099 
93 2.080 289 0.621 1350 0.097 
99 2. 016 295 0.598 

106 1.943 302 o. 572 
112 1. 881 308 o. 551 
117 I 1.832 322 0.505 
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LIST OF SYMBOLS 

a 

Ai 

Bim' BiM 

BiH 

d 

D 

D 

Dr 

..... 
Dr 

E 

k 

k' 

activity 

constant 

surface activity 

mass transfer Biot-number 

heat transfer Biot-number 

specific density kg/m3 

(apparent) diffusion coefficient m2/s 

molecular diffusion coefficient m2 /s 

ffi 

f Dr dm 
mi 

efficiency (m0-m)/(m0-mi) 

activation energy J/kmole 

function 

flux parameter (see table III.4.1) 

external forces 

function 

mass flux with respect to refer-

ence component mass centered 

coordinates 

mass transfer coefficient 

mass transfer coefficient based 

on concentration difference 
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k" 

K 

m* 

iii p 

n 

p 

p 

q 

r 

R 

coordinates 

idem in reference component cen­

tered coordinates 

dimensionless mass transfer coef­

ficient 

phenomenological coefficient 

general formulation of concentrat­

tion (see table II.4.1) 

equilibrium concentration 

m/s 

Kmole s/kg 

average concentration in the volume 

0<4;< 4> 

mass flux (stationary coordinates) kg/m2s 

profile penetration number (var-

iable mi): (m0-m)/(m0-mi) 

auxilary parameter 

auxiliary parameter 

pressure 

constant in the relations for the 

penetration period for cylinders 

and spheres 

distance coordinate (m) 

characteristic dimension (radius) (m) 

gas constant 

radius of the massive body which 

has a volume, equal to the volume 

of the shell (systems with constant 

total volume) or equal to the vol­

ume of the reference component 
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Sh 

Shd 

t 

T 

u 

v 

X 

X 

y 

y 

z 

Greek symbols 

a 

E 

e 

(shrinking or swelling systems) m 

Sherwood number 2 kR/D 

Sherwood number 2 F/(Dr(iii-mi)) 

time s 

temperature K 

mass fraction PmiPs 

volume fraction dspm/dmPs 

mole fraction (total basis) 

geometric quantity (see table 

II.4.2) 

reference component mass centered 
r 

coordinate J Ps r 
\) dr kg 

value of y at r=R kg 

reduced space coordinate (r/R) v+l 

partition coefficient 

constant 

constant 

difference 

constant 

variable in Boltzmann transformation 

argument of periodic function, 

ratio between Sherwood numbers for 

two different geometries 

constant (eigen-value) 
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p 

T 

-r** 

Subscripts 

c 

cr 

crp, CRP 

esc, esc 

d 

eff 

g 

m 

thermal conductivity 

eigen-value 

geometric factor (slab:O; 

cylinder:lJ sphere:2) 

dimensionless space coordinate y/Y 

mass concentration 

general formulation of the time 

coordinate (see table II.4.1) 

time coordinate n0t;R2 

time coordinate 
2 

IDO Ps,Ot 
d2 R2 
s,p s 

general formulation of the space 

coordinate (see table II.4.1) 

mass fraction (total basis) 

refers to hollow core or centre (~=0) 

continuous phase 

critical (end of constant rate period) 

constant rate period 

constant surface concentration 

dispersed phase 

discontinuity 

effective 

gas phase 

at the phase boundary (interface)(~=!) 

migrating component 
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n 

p 

PP 

r 

res 

RR 

s 

t 

0 

1,2 

n-th eigen-function 

pure 

.• penetration period 

reduced 

re$idence 

regular regime 

dissolved solids, sorbate 

at the point of transition from the 

penetration period to the regular regime 

arbitrary value 

referring to different surface concentrat­

ions 

referring to different geometries 

in the limit T-+oo 
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STELLINGEN 

1. Bij een sorptie-proces wordt het instationaire stof­

transport in de disperse fase na verloop van tijd 

praktisch onafhankelijk van het begin-concentratie­
profiel. In het bijzonder wanneer de diffusie­

coefficient. afneemt met afnemende (toenemende) 

concentratie bij desorptie (absorptie), geldt dit 

al in een vroeg stadium van het instationaire 

proces. 

2. De stoftransportcoefficient in drogend materiaal is, 

bij afwezigheid van een temperatuurgradient, praktisch 

onafhankelijk van de temperatuurgeschiedenis. Bij 
konstante oppervlakte-concentratie is deze trans­

portcoefficient gedurende het reguliere droog-

regime alleen een funktie van de aktuele tempera­

tuur, de gemiddelde waterconcentratie en de opper­
vlakte waterconcentratie. 

3. Bij het drogen van vlakke lagen met relatief hoge 

droogsnelheden kan de lengte van de periode van 

konstante droogsnelheid worden berekend met behulp 
van een konstante effektieve waarde van de diffusie­

coefficient, die onafhankelijk is van de droog­

snelheid. Suzuki et al. beweren ten onrechte, dat 

deze effektieve diffusiecoefficient, onder meer 

voor exponentiele concentratie-afhankelijkheid van 

de diffusiecoefficient, gelijk kan worden gesteld 

aan de concentratie-gemiddelde diffusiecoefficit~nt. 

Suzuki• M. , Keey, R.B. & Maeda, s. 
Paper presented at the 80th National Meeting of 

the American Institute of Chemical Engineers, 

Boston (Mass.). September 7- 10 {1975) 



4. Door een ongelijkmatige verdeling van fluidisatie­

gassen over de bodemplaat van een gefluidiseerd 

bed kan segregatie van een heterogeen mengsel in 

bet bed worden voorkomen (bijvoorbeeld: "spout­

fluid" bed). Van dit verschijnsel kan gebruik 

gemaakt worden bij het pyrolyseren van huisvuil 

in een gefluidiseerd heet zand-bed. 

Kox, W.M.A. , Afstudeerverslag Afdeling Schei­

kundige Technologie, T. H. Eindhoven (1975) 

5. De beschrijving van de pyrolyse van hout met het 
"Unreacted Core Shrinking"- model, zoals voor­

gesteld door Maa, is onjuist. Met name de door deze 

auteur uitgevoerde extrapolatie van de benodigde 

reaktietijd naar kleine deeltjes-afmetingen, waar 
reaktiesnelheidslimitering optreedt, is niet ge­

oorloofd. 

Maa, P.S. , Ph.D. Thesis, West Virginia 

University (1971) 

6. Bij de extraktie van Zirconium-complexen, zoals 

disulfato-zirconyl ionen, uit een sterk zwavelzure 

oplossing (pH<l) met een oplossing van zware 

tertiaire aminen (bijvoorbeeld tri-n-octylamine) 

kan de co-extraktie van Niobium worden voorkomen 

door toevoeging van geringe hoeveelheden water­

stofperoxide bij de bereiding van de moeder­

oplossing. Deze toevoeging leidt tevens tot enige 

vergroting van de extraktie•snelheid van Zirconium. 

Schoeber. W.J.A.H. , Internal Report, Atomic 

Energy Commission, Research Establishment 

Riso. Roskilde. Denmark (1971) 



7. De aanname van Massoth en Scarpiello~ dat bij de 

reduktie van Bi2o3 met propeen de aselektieve reaktie 

tot co2 verwaarloosd mag worden, is aanvechtbaar. 

Massoth, F.E. & Scarpiello, D.A. 

J. Catal. !!• 225 - 238 (1971) 

8. De ontwikkeling van de recycling in Nederland zou 

gediend zijn met minder overkoepelende instanties 

voor meer onderzoek. 

9. Het ruwe imago, dat de waterpolosport bij velen 

heeft, wordt meer veroorzaakt door het feit, dat 

een aantal gebeurtenissen door het water aan een 

goede waarneming wordt onttrokken, dan door 

de gebeurtenissen, die werkelijk plaatsvinden. 

28-5-1976 W.J.A.H.Schoeber 


