

$\lambda {\rm P}-$: a pure type system for first order logic
with automated theorum proving
Citation for published version (APA):
Franssen, M. G. J. (1997). $\lambda {\rm P}-$: a pure type system for first order logic with automated theorum
proving. (Computing science reports; Vol. 9715). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/1997

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://research.tue.nl/en/publications/f98b5f67-8f4d-44fb-bb99-faaf7b11d35d

Eindhoven University of Technology
Department of Mathematics and Computing Science

)..P-: A Pure Type System for First Order Logic with
Automated Theorem Proving

ISSN 0926-4515

All rights reserved
editors: prof.dr. R.C. Backhouse

prof.dr. J.C.M. Baeten

Reports are available at:
http://www.win.tue.nl/win/cs

by

Michael Franssen

Computing Science Reports 97/15
Eindhoven, October 1997

97/15

AP-: A Pure Type System for First Order Logic with
Automated Theorem Proving

Michael Franssen

October 14, 1997

Abstract

In this document we define multi sorted first order logic and discuss several proof systems for this
logic: natural deduction, tableau methods, resolution methods and the framework of Pure Type
Systems. We present a Pure Type System called >.P- that corresponds exactly to first order logic.
We also show the correspondence between).P- and natural deduction and we present an algorithm
to convert closed tableaus to A-terms in ..\P-. ,xp-, combined with the conversion algorithm,-forms
the formal basis for an interactive theorem prover in which an automated theorem prover based
on tableaus can be safely used.

Contents

1 Introduction

1.1 Purpose of this Paper

1.1.1 Interactive Theorem Proving

1.1.2 Automated Theorem Provers

1.2 First Order Predicate Logic

1.2.1 Semantics of First Order Predicate Logic

2 Proof Methods for First Order Predicate Logic

2.1 Natural Deduction

2.2 The Method of Tableaus.

2.2.1 An example of a Tableau Proof

2.2.2 Deriving a Counterexample from an open Tableau

2.2.3 An Interpretation of the Method of Tableau.

2.3 Resolution Methods

3

3

3

4

4

6

8

8

10

II

11

12

12

2.3.1 Eliminating Negations that are not part of Atomic Formulas and Implications: 13

2.3.2 Moving Quantifiers to the Head of the Formula 13

2.3.3

2.3.4

2.3.5

2.3.6

2.3.7

Eliminating Quantifiers

Computing the Conjunctive Normal Form

Applying Resolution

An Example of a Resolution Proof

Unification .

2.4 Pure Type Systems.

2.4.1 The Definition of Pure Type Systems

2.4.2 The System ,\P-

3 Conversion of Proofs

3.1 '\-terms as Natural Deduction Proofs

1

13

14

14

15

15

16

16

18

23

23

3.2 From Closed Tableaus to A-terms ...

3.2.1 Converting the Initial Tableau

3.2.2

3.2.3

Converting Applications of Tableau Rules

Conversion of Closed Leafs

4 Conclusions

4.1 Advantages

4.2 Disadvantages.

4.3 What about resolution?

2

25

26

26

30

32

32

32

33

Chapter 1

Introd uction

1.1 Purpose of this Paper

The purpose of this paper is to provide a theoretical foundation for an interactive theorem prover
for first order logic with a high degree of automation. This theorem prover will be used in an
environment for the derivation of correct programs, but only to perform correctness proofs, not
to model the semantics of the programming language.

An interactive theorem prover with a high degree of automation combines the fields of interactive
theorem proving and automated theorem proving. Both approaches to theorem proving have
advantages and drawbacks. We will briefly present them here.

The reason for this comparison is that we want to create a proof system that combines the
advantages of interactive theorem proving with the advantages of automated theorem proving. If
possible, we want to use the advantages of the first approach to eliminate the drawback of the
second approach and vice versa.

1.1.1 Interactive Theorem Proving

In interactive theorem proving one often uses typed lambda calculi, since these calculi provide an
easy way to represent unfinished proofs as lambda terms with typed holes. The holes then have
to be filled in with terms of the correct type to complete the proof. Besides, typed lambda calculi
have the following advantages:

• Verification of proofs is possible by type checking.

• Proofs can be communicated as A-terms, since A-terms are a standard representation of a
proof.

• There is a uniform treatment of first order logics and higher order logics.

• Typed A-calculi are suitable for interactive theorem proving, since partial proofs can be
represented as A-terms with 'holes' that represent the unsolved parts.

Examples of interactive theorem provers based on typed A-calculi are HOL, COQ and LEGO
(see [Fra97] for a more elaborate overview).

A drawback of interactive theorem provers based on typed A-calculi is that automating the proving
process is hard. One of the reasons is that typed A-calculi are usually used to model higher order
logics.

3

1.1.2 Automated Theorem Provers

Automated theorem provers (ATPs) are often based on the method of tableaus or on resolution
methods, since these methods are powerful enough to attack all problems formulated in first order
logic. Besides, it is known that for every true formula in first order logic a tableau proof and a
resolution proof exist, although it may not always be computable. Both methods are based on
classical first order 10gic1 ATPs can prove nontrivial theorems, but not (yet) hard theorems.
They are most beneficial in proofs that are not hard but tedious (e.g. a proof consisting of many
simple case distinctions in which the ATP can prove the separate cases).

Proofs constructed by an ATP are usually not suitable for a human reader. This gives rise to
problems when the user has to interact with the ATP if the ATP can not find a proof fully
automatically. The user will then hardly be able to see where the difficulties arise and how they
should be solved. Once the user has interacted with the ATP, the proof is no longer automatically
reproducible. If the ATP had to reproduce the proof, it would again not find it fully automatically.
To find the same proof again, the same user-interaction as before is required.

Also, since there is no standard representation of the proof, a witness of the actual proof can
not be communicated to other proof systems. These systems can therefore not be used to verify
the automatically constructed proof. Tableau based theorem provers do construct a tableau as a
representation of the proof, but this is not a communicatable representation. Resolution methods
do not produce a representation of the proof at all, although many implementations provide an
ad hoc (non-standard) internal representation for use within the same system.

A user benefits from an ATP the most if it is embedded in an interactive system which assists
in proving hard theorems. The user can then invoke the ATP to deal with tedious or simple
parts of the larger proof. This is exactly what is made possible with the system -,P- presented
in this paper: combining meaningful ATP with an interactive theorem prover based on a typed
,I-calculus.

1.2 First Order Predicate Logic

Since in this paper we deal with first order predicate logic, we will formally introduce first order
logic. We can then describe the proof methods for this logic more accurately.

In literature, formulas of first order predicate logic are defined as follows: Let :F be a set of function
symbols, each with a fixed arity 2: O. Furthermore, let P be a set of predicate symbols) with each
a fixed arity 2: O. We assume the existence of an infinite set A of variables. Then the set T of
terms is defined recursively as:

1. A<;T

2. !ffEF witharityn andI 1 , .. ·,ln ET,thenft,···ln ET.

The set *p of formulas is defined recursively as:

1. !f PEP with arity nand 11 , ... ,in E T, then PI1· .. i n E 'p.

2. If P, Q E *p, then P II Q E *p, P V Q E *p and P ~ Q E *p.

3. !f P E *p , then ~P E *p.

1 There are versions of the method of tableaus that are suitable for intuitionistic and modal first order logic,
but these are not standard tableau methods. We will not consider these methods in this paper, but the interested
reader is referred to [dS93j

4

4. If P E *p and x E A, then Ifx.P E *p and ~x.P E *p.

We use the variable convention, which means that:

1. Free variables will always have a name different from bound variables.

2. If formulas differ only in the names of their bound variables, they are considered to be equal
(IT-equality).

Substitutions

The result of substituting a term t for a variable x in P is denoted as P,x. The substitution is
defined as follows:

XX ,
y'(
(ft, ... tn);

(Pt, ... tn);

y

l(t,); ... (t n);

pet,); ... (tn);
P,x II Q;
P,'VQ;
P[=} Qf
~(pn
Ifx.P
Vy.P[Ok, because of variable convention.

(P II Qj'(
(P V Q)f
(P =} Q);
(~P)f

(lfx.P);
(lfy.Pj'(
(~x.P)f

(~y.P)f

== 3x.P
3y.P[Ok, because of variable convention.

F and P are the parameters of this framework. A weakness of the definitions above is that all terms
are treated equally. In practice, we often want to distinguish between terms of different "types"
(for instance, booleans and integers). Therefore, we will introduce a more general definition.

In addition to:F and P we have a parameter *s that represents a set of basic types. With
every function symbol f E:F with arity n, we associate a unique tuple of types (U1 , ... , Un, U),
where U" ... Un and U are elements of *,. We denote this as I: (U" ... Un,U) E F. With
every predicate symbol PEP with arity n, we associate a unique tuple of types (UI , ... , Un),
where U" ... , Un E *,. This is denoted as P : (U" ... , Un) E p. Since the arity of function and
predicate symbols can now be derived from its unique associated tuple of types it will no longer
be stated explicitly. The set A of variables in the extended framework contains variables a with
each a unique associated type U ,where U E *,. We assume that for every type there are infinitely
many variables. The definition of the set T of typed terms is:

1. a : U E T for every variable a with associated type U.

2. If I : (U" ... , Un, U) E F and t, : U" . .. , tn : Un E T then It, ... tn : U E T.

The set *p of formulas for multisorted first order logic is now defined as:

1. If P : (U" ... , Un) E P and t, : U" ... , tn : Un E T, then Pt, ... tn E *p.

2. If P, Q E *p, then P II Q E *p, P V Q E *p and P =} Q E *p.

3. If P E *p , then ~P E *p.

4. If P E *p and x : U E A , then Ifx : U.P E *p and ~x : U.P E 'p.

5

One important subset of *p is the set of atomic formulas. This is the set of all propositions
Pt! ... tn E *p , with PEP and t!, ... ,tn E T , and their negations. Note that substitution of
terms for variables is now only defined for terms and variables with the same associated type.

This framework is more general than the first one, since the original framework can be obtained
by choosing *, == {U}.

1.2.1 Semantics of First Order Predicate Logic

The semantics of first order logic is such that every closed formula represents a proposition. The
meaning of the proposition depends on the interpretation of the predicate symbols and function
symbols the user of the logic has in mind. On the other hand, there are closed formulas that
model true propositions independent of the interpretation of the user. These formulas are called
tautologies. Tautologies provide self-contained information. They can be seen as legal statements
that will always hold, regardless of the meaning of the predicate symbols.

The semantics of first order logic presented here consists of a mapping from the syntactical set
of type symbols, function symbols and predicate symbols to real sets, functions and relations.
Following the line of [dN95] page 25: Let r be a set of first order formulas. An interpretation I
of r is an ordered tuple 1= (1), [D, where

• V is a set of nonempty domains.

• [] is a function which attaches

- to every type symbol U in *, a domain in 1). We denote this domain as [U].

to every function symbol I occurring in r with associated type (U!, ... , Un, U) (and
hence, arity n) a total function [ud - ... - [Un] - [U]. We denote this function as
[fl·
to every predicate symbol P occurring in r with associated type (U!, . .. , Un) (and
hence, arity n) a subset of lU,l x ... x [Un]. We denote this subset as [Pl. The elements
of [P] are the tuples for which the relation holds.

to every variable V with associated type U which is free in an FEr an element of
[U].

We extend the mapping [] to attach a meaning to every term in T:

• If the term is a variable V , then [V] is already defined (see above).

• If the term has the form It! ... tn , then [ft! ... tnl = [f]([tJ], ... , [tnD.

We also define the modified mappings []X:u where V is a variable with associated type U and
d is an element of [U].The value of [X]Y:u is defined as:

• (X] if X is a type, a function symbol, a predicate symbol or a variable different form V.
This includes undefined, i.e. if [Xl is undefined and X is a variable different from V then
[X]Y'u is undefined too.

• d if X = V.

''''e are now ready to define a model based on the interpretation I. We denote a model of first
order logic, based on interpretation 1= (1), [D as Ml MI is a function from propositional
formulas to {t, J} defined as:

6

1. MI(Pt, ... tn)=t iff([t,], ... ,[tnJ)E[P].

2. MI(P II Q) = t iff MI(P) = t and MI(Q) = t.
3. MI(PVQ)=t iffMI(p)=t orMI(Q)=t.

4. MI(P,*Q)=t iffMI(p)=f or MI(Q)=t.

5. MI(,P) =t iff MI(P) = f.

6. MI (\Ix: UP) = t iff for every dE [U] we have M I' (P) = t with l' = (D, []d U
),

7. MI (::Ix: U.P) = t iff there exists ad E [U] such that MI' (P) = t with I' = (D, [n U).

8. MI (P) = f in all other cases.

To reason about the correctness of reasoning methods like natural deduction, tableau- and res
olution methods, we introduce the relation F= between sets of closed formulas. As usual, the
definition is as follows:

r 1= Ll iff for all models MI for which MI (P) = t for all PEr there is at least one Q E Ll with
MI(Q) = t

where rand Ll are sets of closed formulas. If r is empty then for all models MI at least one
formula in.a. is true. This is denoted as F= .Q.. If, in addition,.a. contains only one element Q,
this element is a tautology since MI (Q) = t for all models MI If Ll is empty then r 1= Ll is
false, even if r is empty too, since there never is an element in.a. that is mapped to t in the
interpret,ation I. If there are no models for which MI (P) = t for every formula P in r, then the
set r is called inconsistent. This is denoted by r I=.L Obviously, if r I=.L then r 1= Q for every
closed formula Q.

7

Chapter 2

Proof Methods for First Order
Predicate Logic

In this chapter a brief description of several proof methods is given. The descriptions serve mainly
as a gently introduction to the notations used and as a basis for the conversions between the proofs
given in chapter 3.

2.1 Natural Deduction

Natural deduction is a method for reasoning with logical formulas. To define natural deduction,
we introduce a relation rnd between sets of formulas and a single formula. In this section rnd is
simply denoted as r. The set of formulas is denoted without the curly brackets. If r is a set of
formulas and P is a formula, then r I- P holds if it can be derived by the following set of axioms
(-LE *p is such that for all interpretations I the value MI(-L) is f. Hence, -L has now become
a syntactical formula):

8

start r, p f- p weakening
rf-p

r,Llf-p

~I
r,p f- q

~E
rf-p~q rf-p

rf-p~q rf-q

VIl
rf-p

VI2
rf-q

VE
rf-p~r rf-q~r

rf-pVq rf-pVq rf-pVq~r

/\I
rf-p rf-q

IIE1
rf-pllq

IIE2
rf-pllq

rf-pllq rf-p rf-q

,I
r,pf-1-

,E r f- 'p rf-p
falsum

r f-1-
r f- 'p r f-1- r f- p

VI r r p~ VE
r f-Vx : U.p

r f-Vx : U.p rf- pf

31
r f- pf

3E
r f- 3x : U.p r f- (Vx : U.p ~ q)

r f- 3x : U.p r f- (3x : U.p) ~ q

classic
r r -,-'p

rf-p

where CY E A does not occur in r or p, x does not occur in q and term t : U E T. A few remarks
should be made to explain the rule VI:

• The type U is fixed, since x is a variable and with every variable we associat.e one fixed
type .

• The type of", then also has to be U , since otherwise p; would not be defined.

Since every variable a is also a term we can apply::lI whenever we can apply 'if I. In our semantics
this is true, since every set U represents a non-empty domain and hence (Vx : U.P) ~ (3x : U.P).

In intuitionistic logic we do not have the rule classic. However, in this document we only consider
classical logic. Note that the relation f- is defined syntactically, while ~ is defined semantically.

As an example we will give an annotated derivation off- ((3x : U.p) II (Vx : U.p ~ q)) ~ (3x : U.q):

(0)
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)

(10)
(11)
(12)

(3x : U.p) II (Vx : U.(p ~ q)) f- (3x : U.p) II (Vx : U.(p ~ q))
(3x : U.p) II (Vx : U.(p ~ q)) f- (3x: U.p)
(3x: Up) II (Vx : U.(p ~ q)) f- (Vx : U.(p ~ q))
(3x : U.p) II (Vx : U.(p ~ q)) f- p; ~ q;
(3x : U.p) II (Vx : U.(p ~ q)), p;; f- p;;
(3x : U.p) II (Vx : U.(p ~ q)),p;; f- p; ~ q;
(3x : U.p) II (Vx : U.(p ~ q)),p; f- q;
(3x : U.p) II (Vx : U.(p ~ q)), p;; f- (3x : U.q)
(3x : U.p) II (Vx : U.(p ~ q)) f- p; ~ (3x : U.q)
(3x : U.p) II (Vx : U.(p ~ q)) f- (Vx : U.(p ~ (3x : U.q)))
(3x : U.p) II (Vx : U.(p ~ q)) f- (3x : U.p) ~ (3x : U.q)
(3x: U.p) II (Vx : U.(p ~ q)) f- (3x : U.q)
f- ((3x : U.p) II (Vx : U(p ~ q))) ~ (3x : U.q)

9

start
IIE1 on (0)
IIE2 on (0)
VE on (2)
start
weakening on (3)
~ E on (4) and (5)
3Ion (6)
~ I on (7)
VI on (8)
3E on (1) and (9)
~ E on (1) and (10)
~ J on (11)

•• P

P

PI\Q .(P ~ QJ
P, Q

.(P 1\ QJ
.PI·Q

3x: U.P
P:;'

.3x: U.P

P, .Q

P~Q

.PIQ

-,3x : U.P, oPf

pvQ

PIQ

.'1x: U.P

'Ix: U.P
'Ix: U.P, P,"

Figure 2.1: Rules for the construction of tableaus for 1st order classical logic. IT represents a fresh
variable of type U. t represents an arbitrary term of type U.

There is a relation between F= and f-, which is formulated in two theorems: the soundness theorem
and the completeness theorem. For the formulation of these theorems, we assume that r is a set
of closed formulas and P is a single closed formula.

Theorem 2.1.1 (soundness) If r I- P then r F P.

Theorem 2.1.2 (completeness) Ifr F P then r I- P.

Proving these properties is beyond the scope of this paper. The interested reader IS referred
to [dS93].

2.2 The Method of Tableaus

Another method to prove formulas in first order logic is the method of semantic tableaus. Tableau
methods attempt to prove F= P for a formula P by decomposition of P. Tableau methods are
constructive in the sense that they build a representation of the proof. This representation is a
labeled tree called the tableau. The labels are sets of formulas.

A tableau is constructed in the following manner:

l. Start with a single node, labeled with {-'P}, where P is the formula to be proved.

2. Select a leaf from the partially constructed tree. Select from the corresponding label L a
formula X to which one of the rules from figure 2.1 can be applied. Extend the leaf with a
number of nodes equal to the number of conclusions of the rule. Conclusions are separated
by a 'I' and can contain several formulas separated by a ',', A successor node is labeled with
(L \ {X}) U Y, where Y is the conclusion for which the successor was created.

3. Repeat step 2 until for every leaf there is a formula P such that both P and oP occur in
its label. Such a leaf is called closed.

The process of constructing a tableau may be non~terminating. If the construction terminates and
all leaves are closed, the tableau itself is called closed. If the construction process terminates and

10

there are leaves that are not closed, we can construct a counterexample for P. A counterexample
for P is a consistent model, induced by an interpretation I, for which M I (P) = f.

2.2.1 An example of a Tableau Proof

Below an example of a tableau is given that proves the formula «:Ix: U.P) 1\ (\Ix: U.P =} Q)) =}

(:Ix: U.Q).

x

~(((:lx : U.P) 1\ (\Ix: U.P =} Q)) =} (:Ix: U.Q))
(:Ix: U.P) 1\ (\Ix: U.P =} Q), ~(:lx : U.Q)
(:Ix: U.P), (\Ix: U.P =} Q), ~(:lx : U.Q)

P:;, (\Ix: U.P =} Q), ~(:lx: U.Q)

P;, (\Ix: U.P =} Q), P; => Q;, ~(:lx: U.Q)

P:;, (\Ix: U.P => Q), ~P:;, ~(:lx : U.Q) P:;, (\Ix: U.P =} Q), Q:'" ~(:lx: U.Q)
P:;, (\Ix: U.P =} Q), Q;, ~(:lx : U.Q), ~Q:;

x

The x below a leaf means that the leaf is closed.

2.2.2 Deriving a Counterexample from an open Tableau

From the following tableau we will derive a counterexample for ~(:lx : U.(P 1\ Q) 1\ (P => Q)):

~~(:lx : U.(P 1\ Q) 1\ (P =} Q))

(3x : U.(P 1\ Q) 1\ (P => Q))

(P:; 1\ Q;) 1\ (P:; => Q;)
P~ 1\ Q~, P~ => Q~
P:;, Q~, p~ => Q~

P~,Q~,-'P~ P:;,Q~, Q~

x

In general J a counterexample derived from a tableau is an interpretation in which the formula we
tried to prove does not hold. To derive such an interpretation from an open branch in a tableau
we only have to create an interpretation in which all the formulas in the label of the open branch
are true. Since the search for a closed tableau terminated we know that all formulas in the label
are atomic formulas and hence, we can easily construct the required interpretation.

In our example, we derive the following interpretation from the open branch with label P:;, Q~J Q~:
Take an arbitrary closed term u : U E T. Choose for the interpretation I that [P,;] = t and
[Q:;] = t. This is possible, since by the nature of an open branch P is a predicate symbol. That
the chosen interpretation is indeed a counterexample can easily be checked: In the model M I we
have MI «P,; 1\ Q:;) 1\ (P,; =} Q:;)) = t and hence, MI (3x : U.(P 1\ Q) 1\ (P => Q)) = t and thus,
MJ(~(3x : U.(P 1\ Q) 1\ (P => Q))) = f. It follows that the theorem we were trying to prove was
not in all interpretations true.

11

2.2.3 An Interpretation of the Method of Tableau

One can consider the construction of a tableau to be a search for an interpretation I, such that
MI(,p) = t and hence, MI(P) = f. If such an interpretation is found, we have a proof that
not in all interpretations MI (P) = t. Branches in the tableau indicate that there are two kinds
of interpretations that are candidates for the search. For instance, if -.(A 1\ B) must hold for the
interpretation I, then either ,A must hold for I or ,B must hold for I. This corresponds to
the tableau rule

,(A;\ B)
,AI,B

If a leaf is closed then the search for an interpretation failed. No interpretation can make a formula
P to hold and make ,p hold at the same time. If all leaves are closed, the search for I failed
altogether. We can then conclude that no interpretation I exists for which MI(,P) = t, hence
M I (,P) = f for all interpretations I and therefore M I (P) = t for all interpretations I. In
short, we conclude f= P.

Tableau methods are suitable for automating. The rules are then applied in a specific order and
several heuristics are used to obtain closed tableaus. These algorithms are usually referred to as
systematic tableaus. An implementation of a systematic tableau method is presented in [S094]
and in [dS94]. Here, de Swart and Ophelders use abstract variables instead of concrete terms
when applying a rule to (\Ix: U.P) or ,(3x : U.P). A unification algorithm that respects certain
restrictions is used to determine a substitute for the abstract variables such that the leaves of the
tableau become closed.

The tableau method can be proved to be sound and complete. That is, there exists a closed
t.ableau for P if and only if f= P. Unfortunately, it is not decidable for arbitrary P whether
or not a closed tableau for P exists I . This is due to the nature of the algorithm: suppose we
build tableaus in order to prove P. After we have built all possible trees with heights at most n

without finding a closed tableau, we cannot conclude that a closed tableau does not exist. It is
still possible that a closed tableau exists with height greater than n. The interested reader may
read these proofs in [Smu68]. Soundness and completeness for an intuitionistic version of semantic
tableaus can be proved fully intuitionistically (see [dS93]).

2.3 Resolution Methods

Resolution methods work with predicates modulo conjunction and disjunction. They do not
distinguish the between the formulas A V (B V C) and (A V B) V C, nor do they distinguish
between A V Band B V A. We present here only the basic techniques of resolution. More
powerful techniques that can be used in resolution based theorem provers are found among others
in [dN95].

To prove the validity of a formula P with resolution methods we first convert ,P into a suitable
normal form Q. The structure of Q must be of the form BI A ... A Bn , where each Bi consists of
a series of disjunctions of atomic formulas. The Bi'S are called clauses. Clauses are an important
concept of resolution methods. They may not contain any quantifications, but they can contain
free variables.

To obtain the formula Q from oP four transformations are applied to OP consecutively. The
first is a rewrite system that eliminates all negation symbols in front of non-atomic formulas

1 For propositional logic (i.e. predicate logic without quantifications) it is decidable for arbitrary P whether or
not there exists a closed tableau.

12

and all implication symbols. The second transformation rewrites the formula into a form with
all quantifiers at the head of the formula. Then skolemization is used to eliminate all quantifiers,
using skolem-functions for variables that are existentially quantified and free variables for variables
that are universally quantified. The fourth transformation rewrites the formula into the required
conjunctive normal form.

2.3.1 Eliminating Negations that are not part of Atomic Formulas and
Implications:

The first rewrite-system eliminates negations that are not part of atomic formulas and implications.
The rules defining this rewrite system are:

A~B ---+ ,AVB
,(\Ix: U.P) ---+ (3x : U.,P)
,(3x : U.P) ---+ (\Ix: U.,P)
,(A t\ B) ---+ -,AV-,B
,(A V B) ---+ -,A A-,B
,(,A) ---+ A

After the first rewrite system has been applied as far as possible (i.e. no more rewrite steps can
be applied) negation symbols only occur as part of atomic formulas and implication symbols do
not occur at all. Note that application of the first rewrite system terminates in a unique resulting
formula.

2.3.2 Moving Quantifiers to the Head of the Formula

The second rewrite system results in a formula that has all quantifiers at the head of the formula.
This form is called Head Normal Form (HNF). The rules for this rewrite system are (x does not
occur in Q):

(\Ix: U.P) t\ Q ---+ (\Ix: U.(P t\ Q))
(\Ix: U.P) V Q ---+ (\Ix: U.(P V Q))
Q t\ (\Ix: U.P) ---+ (\Ix: U.(Q t\ P))
Q V (\Ix: U.P) ---+ (\Ix: U.(QV P))
(3x : U.P) t\ Q ---+ (3x : U.(P t\ Q))
(3x : U.P) V Q ---+ (3x : U.(P V Q))
Q t\ (3x : U.P) -+ (3x: U.(Qt\P))
Q V (3x : U.P) ---+ (3x : U.(Q V P))

Before rewriting a formula into HNF we rename the bound variables such that they all have a
different name. Otherwise, we could rewrite (\Ix: U.(\lx : U.P(x)) V Q(x)) to (\Ix: U.(\lx
U.P(x) V Q(x))) , which is not valid. The correct result should read (\Ix: U.(\ly : U.P(y) V Q(x))).
Note that this rewrite system again terminates with a unique result.

2.3.3 Eliminating Quantifiers

Skolemization is used to eliminate the quantifiers in the formula. Universally quantified variables
are replaced by free variables, which are different iff they were bound by different quantifiers.
These free variables are considered to be implicitly universally quantified. Existentially quantified
variables are replaced by a so-called skolem function. The number and types of the arguments of

13

this function depend on the context in which the existentially quantified formula occurs. Formally,
skolemisation is defined as follows:

Let Ql ... Qn+m.C be a formula in HNF, where Q. is either a universal or an existential quantifier
and C is quantifier-free. We then rename bound variables of universal quantifications from left
to right to Xl : UI , .. ·, Xn : Un respectively. Also, we rename bound variables of existential
quantifications from left to right to Yl : Vi,· .. , Ym : Vm respectively. We denote the number of
universal quantifiers that appear to the left of 3y. : \I; in the original formula as a. (i = 1, ... m).
For every Yi, we introduce a skolem function Ii . The skolem function Ji will have arity ai and
associated type (Ul , . .. , Ua" \1;). The skolemized representation of Ql ... Qn+m.C then reads C' ,
where C' is equal to C with all Yi replaced by fi(XI, ... x a .). Note that C' does no longer
contain any quantifiers and that the free Xj are implicitly universally quantified.

Intuitively one can think of the skolem function as a replacement of the 3-elimination. In a natural
deduction style proof we used (3y : V.P) formulas by introducing a fresh", : V and assuming that
p,& for this particular a. The skolem function that now replaces a can be thought to produce
exactly the" for which P!{ holds. The arguments of the function make the dependencies of"
from its context explicit.

We give a few examples:

Original formula
\lXI : Ul·\lx, : U2.3YI : VI.

PXIXZ II (~PXIYI V ~PYIX2)
\lXI : Ul·\lx, : UZ.\lx3 : U3.

(~PXIX, II ~PX2X3) V PXlX3
\lXI : UI.3YI : VI.

PXIYI II ~QYI (gYI)
\lXI : UI.3YI : Vl·\lx, : Uz.

PXIYI II PYIX, =} QXlX2

Skolemized formula

2.3.4 Computing the Conjunctive Normal Form

The final transformation takes the quantifier free formula and transforms it into a conjunctive
normal form. In conjunctive normal form, no conjunction symbols occur in any sub expression of
a disjunction. The conjunctive normal form is obtained by application of a rewrite system with
only 2 rules:

AV(BIIC) -> (AVB)i\(AVC)
(AIIB)VC -> (AvC)II(BVC)

The formula obtained after all transformations has to form C 1 /\ ... /\ Cn, where every Ci has the
form Ai 1 V ... V Aini and every Ad is an atomic formula. A formula in such a form is suitable for
resolution. Therefore, if we want to prove the validity of P, we perform the above transformations
on OP and then use resolution on the result Q. Every Ci is called a clause. Resolution treats a
formula Q as a set of clauses, rather than a conjunction of clauses.

2.3.5 Applying Resolution

The actual resolution uses only one rule to derive a contradiction called the cut-rule:

AV X ~AvY

XVY

14

A is an atomic formula and X or Y may be disjunctions of several atomic formulas or negations
of atomic formulas; they may even be absent) in which case we read e.g. X for X V Y. If X and
Yare both empty we have an empty conclusion which represents our contradiction. The empty
conclusion is denoted as D.

As we stated before) resolution methods deal with formulas modulo commutativity and associativ
ity. Conjuncts will be treated as separate formulas in the premises. Also, the P of the derivation
rule can occur at any place in a series of disjunctions.

In order to apply the cut-rule on the result Q == C, II ... II Cn obtained by transformation of ,P,
we need two clauses from Q) say C 1 == Al V ... V An and G2 == Bl V ... V Bm , with all A's and B's
atomic formulas. Als we need a substitution, say O. GlO must then contain an atomic formula
D = AiO such that C20 contains -,D, say BjB. Without loss of generality, assume i = j = 1)
then result of the cut-rule will be R == (A2 V ... V An V B, V ... V Bm)e. R is added as a new
clause to the set of clauses. This process is continued until an empty clause R == 0 is derived.

2.3.6 An Example of a Resolution Proof

An example: We want to prove:

((:Ix: U.Px) II ('Ix: U.Px =} Qx)) =} (:Ix: U.Qx)

We start by transforming the negation of the above formula into the correct form:

,(((:Ix: U.Px) II ('Ix: U.Px =} Qx)) =} (:Ix: U.Qx))
{removing =} and pushing negation towards atomic formulas}
((:Ix: U.Px) II ('Ix: U.,Px V Qx)) II ('Ix: U.'Qx)
{creating the head normal form}
:Ix: U.Vy: U.Vz : U.(Px II (,Py V Qy)) II ,Qz
{skolemization: eliminating quantifiers, using more practical names than Xi and Ij}
(P to II (,Py V Qy)) II ,Qz
{computing the conjunctive normal form. In this case nothing changes}
(P to II (,Py V Qy)) II ,Qz

In order to make the resolution proof more readable) we denote all the clauses separately and use
numbers to refer to them. The resolution proof of this formula reads:

(0) P to
(1) ,Py V Qy
(2) ,Qz

(3) QtO
(4) 0

2.3.7 Unification

[derived from (0) and (1), substitution y:= to]
[derived from (2) and (3), substitution z := to]

The required substitutions are obtained by unification algorithms. A unification algorithm usually
returns a substitution called the most general unifier (mgu). The most general unifier has the
following property: Let P and Q be formulas. Let e be the mgu of P and Q. Since e is a
unifier, PB = QB. The 'most general' character of B is established by: Let (J" be any substitution
such that p" = Q". Then there exists a a' such that POa' = p" and QOa' = Q". Conversely,
if two formulas can be made equal by performing a substitution for the free variables, then there
exists a most general unifier with the mentioned property. Intuitively one can say that the mgu
unifies two formulas while being as little specific as possible. Computing the most general unifier
is decidable. An efficient unification algorithm is described in [MM82J.

15

2.4 Pure Type Systems

Pure Type Systems (PTSs) emerged as a result of typed A-calculi. In the untyped A-calculus of
Church one builds terms from:

1. an infinite list of variables and

2. two constructs to build more complex terms: abstraction and application.

Abstraction is meant to be a general procedure for function construction; application codes a
possible function application.

A rewrite system called jJ-reduction is defined such that function application is actually 'executed'.
Repeated rewriting may lead to a unique normal form, i.e. a A-term to which none of the re-write
rules can be applied anymore (a normal form). ,B-reduction is used to model the computation
of a function when it is applied to arguments and the normal form represents the result of this
computation. However J there are A-terms that do not reduce to any normal form. Typed lambda
calculi were introduced to define a subset of).-terms in such a way that all).-terms in this subset
reduce to normal forms. Later, Barendregt, Berardi and Terlouw introduced Pure Type Systems: a
parameterized framework in which many variants of typed A-calculi can be described (see [Bar92]).

Due to the Curry-Howard-de Bruijn isomorphism between propositions and types, PTSs can also
be used as a parameterized framework to model various kinds of logic. A type P then corresponds
to a proposition in the logic. A term of type P encodes a proof of P, hence to find a proof of
P it suffices to find a term of type P. In this section we will determine the parameters that
produce a PTS which corresponds to the first order logic we introduced in section 1.2. But before
we determine these parameters, we will introduce the Pure Type Systems.

2.4.1 The Definition of Pure Type Systems

The parameters of a pure type system are S, A and R. S is a set of sorts, A is a set of axioms
being pairs of sorts and 1? is a set of rules being triples of sorts which defines the IT-formations
that are allowed. The rules of a PTS define a relation f- A between lists of typed A-terms and a
single typed A-term. In this section f-,\ is simply denoted a.s f-. The rules of a PTS are such that
it is not necessary to define what terms are allowed: the terms themselves are formed by the rules.
We only need one set of variable symbols to represent constants, functions, propositions etc. The
rules of a PTS are (5 E 5):

16

start

intra

weaken

II-form

IT-intra

II-elim

converSIOn

<> f- 81 : 82

rf-A:8
r,x:Af-x :A

rf-A:B rf-C:8
r,x:Cf- A: B

r f- A : 81 r, x:A f- B : 82
r f- (IIx:A. B) : 83

r, x:A f- b : B r f- B : 8
r f- (.\x:A. b) : (IIx:A. B)

r f- F : (IIx:A. B) r f- a : A
r f- Fa: B[x :- aJ

r f- A : B r f- B' : 8 B=fB'
rf-A:B'

We give a brief comment on each rule:

(81,82) E A

x is r-fresh

x is r-fresh

(81,82,83) E n

start This is the only rule without premises in a PTS. It supplies, starting from the axioms in A,
basic typing judgements from which all the other typing judgements are derived.

intra Intro is used in a much more general sense than the intro-rule in natural deduction. In
natural deduction intro allows one to add assumptions to the context. In a PTS intro allows
one to add assumptions, constants (which in a PTS are equal to variables), functions and
propositional variables (including predicates) to the context. This depends on the form of
A. The type of the introduced item x depends on 8, which is the type of the type of x.

weaken Weaken is needed to preserve existing deriviations in extended contexts. It states that
everything that can be derived in a certain context can also be derived in a more extended
context.

IT-form This rule allows the construction of function types, predicates, universal quantifications
etc. The set of rules n of a PTS determines the ways in which II - form can be used.
Actually, the set R. states which abstractions are allowed.

II-intra One needs this rule to actually construct terms of a type built with the previous rule.
Without this rule, we could only assume that there are terms of this type by using intro.

IT-elim Once a term with a IT-type is constructed or assumed, it can be used to create a term
with a more concrete type. The IT - dim rule, also referred to as the application rule,
instantiates the body of an abstract II-type by substituting a term for the bound abstract
variable.

conversion In several PTSs there is no unicity of types, i.e. a term A can have type B where B
can be rewritten to B' by ,6-reduction. In the propositions-as-types isomorphism, Band
B' then represent the same propositional formula and hence, A is a proof of B' just as
well as it is a proof of B. To support this switch of representation the conversion rule is
needed. B=f3 B' is read as B is ,6-equal to B', which means that there exists a B" such
that Band B' can both be reduced to BO by j3-reduction. A problem with the conversion
rule is that it does not affect the term A, which makes type-checking more difficult.

17

For example, the system A_ of Church is modeled by the PTS with parameters S == {*, o},
A == {(*, D)} and R == {(*, *, .)}. The type A -+ B in the original system A_ is now represented
by (IIx : A.B). For A--+ the rule conversion is superfluous, since no type can ever contain a ,\
and hence, no type can ever p'-reduce to anything else but itself.

The relation between PTSs and logic will become more clear in the next part, in which we introduce
a PTS that corresponds to our version of first order logic.

2.4.2 The System ,\P-

We want to have a PTS to which we can add automatic proof engines based on tableau methods.
We therefore wish that if r I- P : *p that P is a formula in first order predicate logic. In
most PTSs the structure of P : *p can be much more complex than formulas in first order logic.
Therefore it is not possible to add the proof engines in such a way that they can be used on
arbitrary propositions of these PTSs. The system AP- is designed in such a way that tableau- and
resolution methods can be applied to any proposition that can be formed in '\P-.

The PTS-parameters S and A of),P- are:

S {*s)Ds)*p,Op}

A {(*"o,),(*p,op)}

As one would expect, *s will be used to represent the type of all sets and *p will be used to
represent the type of all formulas. The sorts 0, and op are the types of., and.p respectively.
They enable the intro-rule to be used for introduction of set variables and propositional variables,
which otherwise could only be introduced to the context by separate rules.

The definition of R is a little harder to give. It might appear that a variant of the system AP,
obtained by R == {(*p,*p,'p),(*"*p,*p),(*,,*,,*,),(*,,Op,op)}, is a good candidate. The ll
types formed with these rules then correspond to our concepts of first order predicate logic in the
following way (U, V, W:', and P, Q, R: *p)

type
(llx : PQ) : *p
(llx : U.Q) : *p
(Ilx:U.V):.,
(Ilx : U.(Ily : V. W)) : *,
(Ilx : U" p) : op
(llx : U.(lly : v.*p)) : op

represents
P=;,Q
('Ix: U.Q)
the type (U, V) of a unary function symbol
the type (U, V, W) of a binary function symbol
the type (U) of a unary predicate symbol
the type (U, V) of a binary predicate symbol

obtained by using

(*PJ *p, *p)
(*SJ*PJ*p)
C*SJ*SJ*s)
(*S, *SJ *s) twice
(*S, Op, Op)

(*SJ 0pJ op) twice

Unfortunately, the type (Ilx : (Ily : U. V).*p) : op, being a predicate over a function, can also be
formed in this version of)'P. But quantifying over functions is not allowed in first order predicate
logic and is not supported by tableau and resolution methods.

AP- in Regular PTS-style

We could solve this problem by adding the element *1 to the set of sorts and change the set
of rules to n = {(*S, *SJ */)' (*SJ * I, *1)' (*SJ *PJ *p), (*P' *p, *p), (*SJ Dp, Dp)}. The rule (*SJ *s, */)
establishes that the type offunctions with arity 1 have type * f instead o£.,. The rule (',,' f, * f)
allows us to build functions of arity greater than 1, but only functions which have elements of
basic types (basic types have type *s) as arguments. Hence, all ll-types that were of type *s in
the previous variant are of type *1 and therefore it is not possible to quantify over them. This

18

variant still has a drawback: if we have a context f such that f r- F (IIx: U.(IIy : V.W))
and f r- a : U then by the II - elim rule f r- Fa : (IIy : V. W). But in our definition of first
order predicate logic a function with arity 2 applied to a single argument does not even occur.
Apparently, this pure type system has more terms than the first order predicate logic we want to
model.

,\P- in a PTS with Parametric Constants

A more elegant solution to the problem of unwanted quantifications over functions is found in
chapter six of [Laa97J: a pure type system with parametric constants. Like in our definition of
first order predicate logic a parametric pure type system has terms that only have a meaning after
all the required arguments have been provided. That is, there are terms that cannot be typed
unless they are applied to a number of parameters. Such a PTS is called a PPTS, where the extra
P stands for parametric. To define a PPTS we need the set P of parameter rules in addition to
the sets S, A and R of a regular PTS. P contains pairs of sorts. In the following rules'" stands
for a list Xl : B 1 , ... J Xn : Bn of named variables and ~i stands for the first i-I elements of
this list. In general B; can depend on elements Xj with j < i but in ,\P- this will not be the
case. The additional rules of a PPTS are:

P-weaken

P-app

f r- b : B f, "'i r- B; : S; f, '" r- A : s
f, c("'):A r- b : B

f" c("'):A, r, r- b; : B;[xj := bjl}~i for i = 1, ... , n
f" c("'):A, f, r- A : s if n = a

Again, we give a brief comment on these rules:

(s;,S)EP

P-weaken The P - weaken rule allows us to add a parametric constant to the context. In contrast
to other extensions of the context this rule does not allow us to type the parametric constant
itself, while the intra-rule (used for regular extensions of the context) allows the typing of
every newly added item.

P-app Since a parametric constant itself cannot be typed in a PPTS it cannot be used with the
usual application (or II - elim) rule. The rule P -app allows us to use a parametric constant,
but only if we supply all the required arguments at once. This corresponds to functions and
predicates in first order logic: these too can only be used after all the arguments have been
supplied. The special premise for the case n = 0 is needed to assure that the context
f" c("') : A, f2 is a valid one.

We now can state the following definitions of Rand P for ,\P-:

R {(*,,*p,*p),(*p,*p,*p)}
P {(*"*,),(*,,Op)}

For notational convenience) we will denote the type (IIx : U.P), introduced by application of the
rule (*" *p, *p), as (lIx : U.P) and the type (IIx : P.Q), introduced by application of the rule

(*p, *P' *p), as P::::> Q.

Simplifying the Parameter Mechanism

Since in).P- types of kind *8 cannot depend on any term (i.e. we only have basic types) the
rules P - weaken and P - app can be simplified. Also, all rules in P start with *8. We then

19

get the following simplified version of the additional rules:

P - weaken
fl-b:B f,L'> I- B i : *, f,L'> I- A: S

f, c(L'»:A I- b : B (*"S)EP

fj,c(L'»:A,fz I- bi : Bi for i = 1, . .. ,n
p- app fj,c(L'»:A,fz I- A: S ifn = 0

f 1, c(L'» :A, f 2 I- c(bj , ... , bn) : A

Note that these rules still contain superfluous elements: the names of the parameters (hidden
in .6.) are not needed, since the types are not depending on them. This is similar to the term
(lIp: P.Q) obtained by II - form with rule (*p, *p, *p): In this case one uses the abbreviation
P :::::> Q , since the P is not used in Q and hence needs not to be denoted. However, in the
case of parametric constants we will maintain the variable names, since this is more closely to the
way mathematicians denote function definitions and the way in which functions are declared in
programming languages.

Extending AP- to First Order Logic

Also, it can be seen by the set of rules of AP- that the system is a refinement of A_. As a
consequence, the conversion-rule is superfluous: If r ~ A : Band r f- B' : s such that B=f3 B'
then B = B'. As a consequence, unification, and thereby type-checking, will be much easier in
AP- than in a regular PTS version that models first order predicate logic.

On the other hand, we do not yet have conjunction, disjunction, negation and existential quantifi
cation in .-\P-. The rules for these constructs do not belong to the standard PTS rules, because
there exist higher order co dings for these constructs that can be built in more powerful PTSs.
However, we will add the constructs to "\P- by adding rules, since the co dings cannot be built
within .-\P-. The rules are:

20

l..-intro

falsum

classic

A-form

A-intro

A-eliml

A-e1im2

V-form

V-intro!

V-intro2

v-elim

3-form

3-intro

3-elim

<> I- 1- : *p

rl-p: 1- rl-p,*p
r I- pP: P

r I- p: (P =;'1-) =;.1-

r I- classic P p : P

r I- P : *p r I- Q : *p

r I- P f\ Q : *p

r I- p : P r I- q : Q r I- P f\ Q : *p
r I- (p,q): P f\Q

rl-p:pf\Q
[I- 7I"1(P): P

[l-p:Pf\Q

r I- 7I"2(P) : Q

rl-p,*p [I-Q,*p

[I- P V Q: *p

rl-p:p rl-pvQ,*p

r I- injl (P V Q) p: P V Q

r I- q : Q r I- P V Q : *p

rl- injr (PVQ) q: PVQ

rl-p:p=;.R rl-q:Q=;.R
[I- (p'Vq): (PVQ) =;. R

r I- U : *, [, x:U I- P : *p

[I- (3x : U.P) : *p

r I- p : Pt
X r I- (3x : U.P) : *p

r I- inj (3x : U.P) p t : (3x : U.P)

r I- Q : *p r I- (3x : U.P) : *p r I- p : (\fx : U.(P =;. Q))
rI-o (3x : U.P) p : (3x : U.P) =;. Q

Negation does not occur in the rules above, but we can model the negation of P by P ~l... For
convenience we will denote this as oP.

Adding all the rules above makes AP- a relatively large system compared to usual PTSs. This
does not mean that the system is truly more complex: the rules for A, V and::3 appear in groups
with each a form, intra and elim part. There may be many rules, but they are not difficult to
verify.

To model a first order predicate logic2 in .\P-, we need a basic context for '\P-. Let *f I FL and

2To distinguish between the parameters of the first order logic framework and the parameters and sorts of the

21

pL be the set of basic sets, the set of function-symbols and the set of predicate symbols of the
first order logic respectively. Furthermore, let TL be the set of terms defined by *f and FL.
Then the basic context is build in the following way:

l. For every U E *f the term U : *, is added to the context by application of the intro-rule
of the PTS where D, is used for s.

2. For every j : (U1, ... , Un, U) E;:L we add the parametric constant j(Xl : U1, ... , Xn : Un) :
U to the context. These elements are introduced by application of the P - weaken-rule of
the PTS by taking for s the sort *, .

3. For every P : (U1, ... , Un) E pL we add the parametric constant pry! : U1, ... , Yn : Un) : *p

to the context. Once more, this is done by application of the P - weaken-rule, now with
sort Dp substituted for s.

The context obtained by the steps above is denoted as fL. The relation between a first order logic
Land AP- with context f L is expressed in the following theorems:

Theorem 2.4.1 fL I- U : *, iff U E *f.

Theorem 2.4.2 For any U with fL I- U : *, we have fL I- t: U ifft : U E TL.

Theorem 2.4.3 f L I- P : *p iff P E *;.

Theorem 2.4.4 fL I- p: P iff F P.

Theorem 2.4.1 till theorem 2.4.3 are proved by induction on the structure of the terms. Theo
rem 2.4.4 follows from the conversion algorithm presented in the next chapter: we can convert a
closed tableau into a A-term in AP- and the tableau method is complete, hence AP- is complete.

To present the conversion algorithm, we also need two other theorems:

Theorem 2.4.5 Let ~1, A: B, ~2 be a legal context (i.e. it is possible to derive ~1' A: B, ~2 I
*,: D,). Then ~1,A: B'~21- A: B.

Theorem 2.4.6 Let ~1, A B, ~2 be a legal context such that ~1' ~2 is also a legal context.
Then if ~1,~21- c: D then ~1,A: B,~21- C: D.

This concludes our introduction to AP-. We will use AP- later to encode proofs found by tableau
based proof engines in A.-terms. This way, we can use the power of ATP in a theorem prover based
on a PPTS, without extending the logic. Also the proofs found by these proof engines can then
be communicated and checked by other theorem provers.

PTS we will add a 'L' in superscript to the parameters and sets of the first order logic framework.

22

Chapter 3

Conversion of Proofs

This chapter describes (in a way) relations between several proof systems. The main relevance
of the chapter is that it is shown that several proof styles can be combined without violating
the logic of the system. The logic is not extended or limited by combining the systems (e.g.
adding a tableau-based ATP to AP-). The advantages of combined systems is that the user of
an implementation can use his own favorite proof style, while the implementation uses a single
formalism.

We are particularly interested in combing a PTS-based theorem prover with a tableau based
theorem prover. This combination adds powerful ATP to a PTS in which usually everything had
to be proved manually. On the other hand, it provides a good basis to implement user interaction
with an ATP, which usually would be very hard.

In order to show that AP-corresponds to classical first order logic on which tableau methods are
based, we also present the Curry-Howard-deBruijn isomorphism of propositions as types for .-\P-.

3.1 A-terms as Natural Deduction Proofs

'\-terms can be seen as encodings of natural deduction proofs. In fact this does not even require
a real transformation. Just erasing the terms, all - form-rules and all premises considering well
formedness conditions (i.e. premises ending with": *p" or": *$") from the axioms of .\P- gives us
an axiomatic system that looks surprisingly much like the natural deduction axioms. For example:

ri--p:P=?R rl-q:Q=?R
fl- (pVq): (PvQ) =? R

becomes
rl-p=?R fl-Q=?R

fl-(PVQ)=?R

The A-terms are constructed in such a way that every A-term corresponds to exactly one derivation
in natural deduction. For instance, the term (p'Vq) encodes that proofs p and q of P ::::> Rand
Q =? R respectively are used to proof (P V Q) =? R. The V-symbol indicates the way in which
the proofs are combined. In fact, the structure of A-terms administrates the order in which axioms
of the PTS are applied in order to get a proof of the proposition represented by their type.

We will not show how every A-construct can be converted to the corresponding step in natural
deduction, since most of this is trivial. However, we will comment on two translations that are
less direct:

1. A A-abstraction corresponds to either an application of::::> I or an application of V I depend
ing on its type (>.-abstractions always have a II-type). In case of a A-abstraction, checking

23

the type of the term provides us the information we need in order to translate (or better:
read) the proof encoded in the A-term.

• If the type is obtained by using the rule (*" *p, *p) then the A-term corresponds to
III .

• If we need (*p, *p, *p) to construct the type then the A-term corresponds to =} I.

2. Application terms correspond to an application of => E or an application of 'if E. For
application Fa we check the type of F.

• If it is constructed using (*$, *P' *p) then the application corresponds to using the
liE-rule.

• If the type of F was constructed using (*p, *p, *p) it corresponds to using => E.

We finish explaining the correspondence between natural deduction proofs and A~terms with two
examples.

Example 1: From Natural Deduction to AP- The following derivation in AP- follows the
proof of ((:3x : U.p) II (lIx : U.p =} q)) =} (:3x : U.q) , which was given in natural deduction on
page 9.

(0) f L, P : (:3x : U.P) II (lIx : U.(P =} Q)) I- p: (:3x : U.P) II (lIx : U.(P =} Q)) note 1
(1) rL, f I- 1l"l(P) : (:3x : U.P)
(2) f L , f I- 1l"2(p) : (lIx : U.(P =} Q))
(3) fL, f, "': U I- 1l"2(p)", : P:; =} Q;; note 2
(4) fL,r,"': U,p': P; I- p': P;
(5) fL, r, "': U,p': P; I- 1l"2(P)"': P:; =} Q;;
(6) fL, f,": U,p' : P; I- 1l"2(P)"'P' : Q;;
(7) r L , f, a: U, p' : P:; I- inj(3x : U.Q)(7r2(p)ap')a : (3x: U.Q)
(8) f L , r, '" : U I- (Ap' : P;.(inj(:3x : U.Q)(7r2(p)",P')",)) : P; =} (:3x : U.Q)
(9) f L , f I- (AX: U.(Ap' : P.(inj(3x : U.Q)(1l"2(p)XP')x))) : (lIx : U.P =} (:3x : U.Q)) note 3

(10) fL, f I- (0(:3" : U.P)(AX : U.(Ap' : P.(inj(:3x : U.Q)(1l",(p)xp')x))))
: (:3x : U.P) =} (3x : U.Q)

(11) fL, f I- (O(:3x : U.P)(AX : U.(Ap' : P(inj(:3x : U.Q)(1l"2(p)Xp')x)))) 7rl(p)
: (:3x : U.Q)

(12) fL I- AP: (:3x : U.P) II (lIx : U.(P =} Q))
.(O(:3x : U.P)(AX : U.(Ap' : P.(inj(:3x : U.Q)(1l"2(P)XP')x)))) 1l"l(P)
: ((:3x : U.P) II (lIx : U.(P =} Q))) =} (:3x: U.Q)

note 1 We use f as shorthand for P : (:3x : U.P) II (lIx : U.(P =} Q)). We omit derivations of the
types because of space.

note 2 In a PTS the variable 0: has to occur in the context explicitly.

note 3 We rename 0: to x, which is possible, since 0: does not occur within the body of (3x : U.Q).
This also allows us to write P for P;.

Example 2: From AP- to Natural Deduction

The second example will show how to construct a natural deduction proof from two different A~
terms that both have type (P II Q) =} (P V Q). The terms are (Ap : P II Q.injl (P V Q) 1l"l(p))
and (Ap : P II Q.injr (P V Q) 1l"'(p)) respectively. Even though both terms have the same type
they are different and hence, they encode different proofs.

24

Decoding the first A-term

We will decode the first A-term in detail. Decoding results in a proof (or derivation) of I- (P II Q) c?

(P V Q) in natural deduction.

The first term is an abstraction of proofs p of P II Q over injl (P V Q) 11") (p). Its type (P II Q) c?

(P V Q) is obtained by using (*p, *P' *p), hence the abstraction indicates application of the rule
~ I from the natural deduction system. The premise of => I is f,p r q. Since the conclusion
should read (P II Q) c? (P V Q) we must now find a derivation of P II Q I- P V Q.

The next step is analyzing the body of the abstraction: inj/ (P V Q) 11") (p). The injl indicates
that in natural deduction the rule V Il should be used. The result should read P II Q I- P V Q
and hence, we require a derivation of P II Q I- P. This proof is encrypted by 11") (p).

11") (p) indicates that we should use natural deduction rule IIEI. Since in the PTS-system p has
type P 1\ Q, we have to apply I\El to P 1\ Q. Hence, we have to derive P 1\ Q I- P 1\ Q. This is
trivial, since it is equal to the axiom start of natural deduction.

Altogether the proof of I- (P II Q) c? (P V Q) encoded by the first A-term reads:

(0) PIIQI-PI\Q
(1) PIIQI-P
(2) P II Q I- P V Q
(3) I- (P II Q) c? (P V Q)

Decoding the second A-term

intro
IIE1 on (0)
VIlon(l)
c? I on (2)

The proof of the same formula as encoded by the second A-term reads:

(0) PIIQI-PI\Q
(1) PIIQI-Q
(2) P II Q I- P V Q
(3) I- (P II Q) c? (P V Q)

intro
IIE2 on (0)
VI2on(l)
c? I on (2)

Which is slightly different because the A-term is slightly different.

3.2 From Closed Tableaus to A-terms

In this section we will describe an algorithm to convert closed tableaus into A-terms of)'P-. These
A-terms can easily be transformed into A-terms of other PTSs, provided that these other PTS's
are powerful enough. The closed tableau may be produced by any tableau-based theorem prover.
This gives us the capability to lise existing theorem provers as a module in an implementation
of ,\P- and thereby adding powerful automated theorem proving to an interactive proof system,
without the danger of extending our logic in an unforeseen way. If there is enough trust in the
correctness of the implementation of the automatic theorem prover we can also use a special token
to encode that the proof can be constructed using the ATP. We then do not have to actually
convert the tableau and store the large A-term that is the result of converting the tableau. The
ATP can then reconstruct the tableau and convert it into a A-term on request; for instance, if we
want to communicate our proof to somebody using a different theorem prover based on A-calculus.

The conversion is done in a structured way: for similar rules of the tableau method, similar
conversion steps are performed. The classes of similar rules of the tableau method are usually
called CY-, (3-, ,- and 6-rules. In figure 2.1 on page 10 each class is depicted in one row. The
top row displays the special rule, which is very simple to convert. In figure 3.1 for each class the

25

structure of the rules is depicted. Our conversion algorithm will have one case for every class of
rules.

special
~~P

P

"
E(P,Q)

fJ
E(P,Q)

E,(P), E2(Q) E , (P) I E 2(Q)

-y
E(U, P)

8
E(U,P)

E'(P)~ E(U, P), E'(pn

g new variable of type U t a term of type U

Figure 3.1: Structure of the different classes of tableau rules.

We will now show how to model each step of a tableau-proof of the formula P in AP-. We
assume that we have the basic context fL (see 2) to model the first order logic. In the conversion
algorithm the labels of the tree correspond roughly to a context for AP-. The propositions in a
label are used as types of assumptions in the context, but we will also have a few variables. To
modify contexts of AP- we will intensively use theorem 2.4.5 and theorem 2.4.6 on page 22.

3.2.1 Converting the Initial Tableau

The tableau starts with a node labeled by ~P and the initial context for AP- will be fL,p: ~P.

As explained in section 2.2 the tableau represents a contradiction derived from ,P and hence,
converting the tableau should result in a contradiction c:.1.. derived from the context rL,p: ,P.
The validity of P in AP- is then given by fL I- classic P (Ap: ~P.c): P.

3.2.2 Converting Applications of Tableau Rules

Derivation of the contradiction is done recursively: first a contradiction is derived from the suc
cessor nodes and then a term is constructed for the current node. How this final construction of
the contradiction is done depends on the tableau rule used to extend the node. We denote the
context corresponding to the current node as rL,6.1,X: X,6. 2, where X is the proposition to
which the tableau rule was applied. The context of the successor-node(s) will be stated for each
case separately. For each type of node we will describe the construction of the contradiction.

Conversion for the Special Rule

Our first case will deal with the special tableau-rule:

~~P
-P-

We have to derive a contradiction c from a node with context r L, 6. 1,0 : -"P,6.2. For the
successor-node we create the corresponding context fL,6.1,6.2,p: P. By recursion, we derive
a contradiction c from this successor node, hence we have f L, 6. 1 ,6.2 , P : P I- c :1... Then the
contradiction we seek is derived as follows:

26

(0) r L , ll" ll"p: Prc:1.
(1) rL, ll" ll, r (Ap: Pc) : P =>1.
(2) rL, ll" 0: (P =>1.) =>1., ll, r 0: (P =>1.) =>1.

(3) r L , ll" 0 : (P =>1.) =>1., ll, r classic Po: P
(4) r L , ll" 0: (P =>1.) =>1., ll, r (AP: Pc) : P =>1.
(5) r L , ll" 0: (P =>1.) =>1., ll, r (Ap: Pc) (classic P 0) :1.

induction hypothesis
IT-intra on (0)
see remark 3.2.1
and theorem 2.4.5
classic on (2)
theorem 2.4.6 on (1)
IT-elim on (3) and (4)

Remark 3.2.1 Formally we also need to derive types in order to apply the PTS-rules. For
instance in step (2), we indirectly apply intra on the type (P =>1.) =>1. by using theorem 2.4.5,
but for this we also need a type judgment saying rL, ll, r (P =>1.) =>1.: *p. Such a type judgment
can be derived by:

(a) rL , ll,r P : *p Theorem 2.4.3 and P EO *;:
(b) r L ,lll,p:pr1.:*p
(e) rL, ll,r P =>1.

Axiom of AP- and repeated weaken
IT-form on (a) and (b)

(d) r L , ll"p: (P =>1.) r 1.: *p

(e) rL, lllr (P =>1.) =>1.: *p

Axiom of AP- and repeated weaken
IT-form on (a) and (b)

For reasons of space and simplicity, we will omit these type derivations. Usually it will be evident
that the types are correct.

Conversion for a-rules

Before we present the general scheme to convert a-rules, we describe the conversion of the typical
case of an a-rule: conjunction. The tableau rule is:

PIIQ
P,Q

We have to derive r L, ~1, 0 : P 1\ Q,.6.. 2 I-? :1-. To the successor node, we assign the context
rL,,6.1'~2)P: P,q: Q. By recursion, we get from this context a contradiction: rL),6.b~21P:
P, q : Q I- c :1.. To derive a contradiction from the original context we use the following derivation:

(0) r L , ll" ll"p: P, q: Q r c :1.
(1) rL,ll"ll"p: P r (\q: Q.c): Q =>1-
(2) rL, ll" ll, r (AP: P.(Ag : Q.c)) : P => (Q =>1.)
(3) rL,ll"o: PIIQ,ll,r 0: PIIQ
(4) rL , ll" 0: P II Q, ll, r 1T'(O) : P
(5) rL,D.,,0:PIIQ,ll,r1T2(0):Q
(6) r L , ll" 0: P II Q, D.2 r (Ap: P(Ag: Q.c)) : P => (Q =>1.)
(7) rL, ll" 0: P II Q, ll, r (Ap: P.(Aq: Q.c)) 1T'(O) : Q =>1.
(8) r L, ll" 0 : P II Q, 112 r (Ap: P.(Aq : Q.c)) 1T,(O) 1T2(0) :1.

Hence, the solution is given by?:= (AP: P(Aq: Q.c)) 1T'(O) 1T,(O).

In the general case we consider the tableau rule:

E(P,Q)
E,(P),E,(Q)

induction hypothesis
II-intra on (0)
IT-intra on (1)
theorem 2.4.5
II-elim, on (3)
II-elim, on (3)
theorem 2.4.6 on (2)
IT-elim on (4) and (6)
II-elim on (5) and (7)

We have to derive a contradiction from the context fLl 6.1, 0: E(P, Q), .Q.2. To the successornode
we assign the context r LJ Ll 1J Ll2J p: E1(P), q : Ez(Q) from which we get a contradiction c:1.. by

27

recursion. In order to obtain a contradiction from the original context, we use a modified version
of the scheme given above: Steps (0) till (2) remain unchanged, except that P has now become
E , (P) and Q has become E,(Q). In step (3) we introduce 0 : E(P, Q), but to continue with
steps (4) till (8) we need rL, ~" 0: E(P, Q),~, r?' : E,(P) A E,(Q). How this is accomplished
depends on the actual rule that is applied. For every rule we can construct a derivation and hence
a A-term to fill in for ?'. The derivation of the individual A-terms is omitted here, but the results
are given in table 3.1. In this table, the conversion function T gives for a term 0 : E(P, Q) a
term with type E,(P) A E,(Q). Since steps (4) till (8) are performed after using the conversion
function T, the appearances of 0 in these steps become T(o). Note that the conversion functions
produce A-terms and that they are not A-terms themselves.

E(P,Q) E , (P) E,(Q) T(o) : E , (P) A E,(Q) with 0: E(P, Q)
PAQ P Q 0

,(P ~ Q) P ,Q (classic P (AP: ,PO(Aq: P.p q Q)), (Aq : Q.O(Ap: P.q)))
,(P V Q) ,P ,Q (AP: Po (inj/ (PVQ) p),Aq: Q.o (injr (PVQ) q))

Table 3.1: Conversion functions for a-rules.

Conversion for ,6-rules

Again, we start with the typical case as an example. For ,6-rules the typical case is a disjunction,
which has the tableau rule:

PVQ
PIQ

If the current context is rL , ~1' 0: PVQ, ~2 then its successors will have contexts fL, ~1' ~2,p:

P and rL, ~1J ~2, q : Q respectively. From the successor contexts we have derived contradictions
Cl and C2 by recursion. The derivation of a contradiction from the current context is then given
by:

(0) rL, ~" ~2,P: P r c, :1.
(1) r L , ~" ~2' q : Q r C2 :1.
(2) rL,~,,~, r (Ap: PC1): P ~1.
(3) r L , ~,,~' r (Aq : Q.C2) : Q ~1.
(4) rL, ~" ~2 r ((Ap: P.C1)'V(Aq : Q.C2)): (P V Q) ~1.
(5) rL,~"O:PVQ,~,ro:PVQ
(6) rL, ~" 0: P V Q, ~2 r ((AP: P.C1)'V(Aq : Q.C2)) : (P V Q) ~1.
(7) r L , ~" 0: P V Q,~, r ((Ap: P.C1)'V(Aq : Q.c,)) 0:1.

To convert the general case we consider the tableau rule:

E(P,Q)

induction hypothesis
induction hypothesis
II-intra on (0)
II-intra on (1)
V-elim on (2) and (3)
theorem 2.4.5
theorem 2.4.6 on (4)
II-elim on (5) and (6)

We use the same strategy we used for a-rules: The derivation above is used as a scheme in which
we have to replace P by E , (P) and Q by E,(Q) in lines (0) to (4). Instead of introducing
o : P V Q in line (5), we introduce 0 : E(P, Q) and then insert a derivation between line (5)
and line (6) that results in a A-term of type E,(P) V E 2(Q). These A-terms depend on 0 and
can be obtained by applying a transformation function T to o. The transformation functions for
,6-rules are given in table 3.2 but their derivation is omitted. Again, the transformation functions
T produce A-terms but are not A-terms themselves.

The remainder of the general case (the new lines (6) and (7)) then follows easily.

28

E(P,Q) E,(P) E,(Q) T(o) : E,(P) V E,(Q) with 0: E(P, Q)
,(P II Q) ,P ,Q classic (,P V ,Q) Ar : ,(,P V 'Q).

r(injl (,P V ,Q) (AP: P.r(injr (,P V ,Q) (Aq : Q.o(p, q)))))
P~Q ,P Q classic (,P V Q) Ar: ,(,P V Q).

r(injl (,P V Q) (AP: P.r(injr (,P V Q) (0 p))))
PVQ P Q 0

Table 3.2: Conversion functions for ,B-rules.

Conversion for r-rules

The typical case for a -y-rule is existential quantification, with the tableau rule:

3x: U.P
Pi;

The current context is rL, Ll.
"

0: (3x : U.P), Ll.,. For -y-rule we have to extend the context more
than for the other cases: we do not only add p : P to the successor's context, but also a fresh
variable () : U. The successor's context then reads fLl ~1, .6. 2, () : U,p: P. By recursion we have
derived a contradiction c from this context. A contradiction from the current context is derived
as follows:

(0) rL,Ll."Ll."B: U,p: P r- c:1-
(1) r L, Ll.

"
Ll." B : U r- (AP: P.c) : P ~1-

(2) rL, Ll.
"

Ll., r- (AB : U.(Ap: P.c)) : (\lB: U.(P ~1-))
(3) rL,Ll."Ll., r- 0 (3x: U.P) (Ae: U.(Ap: Pc)): (3x: U.P) ~1-
(4) rL, Ll.

"
0 : (3x : U.P), Ll., r- 0 : (3x : U.P)

(5) r L , Ll.
"

0: (3x : U.P), Ll., r- 0 (3x : U.P) (Ae : U.(Ap: P.c))
: (3x : UP) ~1-

(6) rL, Ll.
"

0 : (3x : U.P), Ll., r- (0 (3x : U.P) (AB : U.(Ap: Pc))) 0:1-

induction hypothesis
II-intra on (0)
II-intra on (1)
3-e/im on (2) for 1-
theorem 2.4.5
theorem 2.4.6 on (3)

II-elim on (4) and (5)

Like before, we lise the above derivation to obtain a scheme for the general case. The tableau rule
IS:

E(U,P)
E'(P),

First, we replace P in the derivation above by E'(P), in lines (0) to (2). In line (3), P is
repJaced by just E'(P) , which is allowed, since the occurrences of x in P that were bound within
E(U, P) are now explicitly bound by the 3x : U . .. occurring before E'(P). Next, we change the
intra in line (4) to an introduction of 0: E(U, P). Finally, we insert a derivation of a A-term of
type (3x : U.E'(P)) between line (4) and line (5). Also like before, these A-terms are given by a
transformation function T . The transformation functions for ,-rules are given in table 3.3.

E(U,P) E'(P) T(o) : (3x : U.E'(P)) with 0 : E(U, P)
(3x: U.P) P 0

,(\Ix: U.P) ,P classic (3x : U.,P) CAr: ,(3x : U.,P).
o(Ax : U.classic P (AP: ,P.r(inj (3x: U.,P) P x))))

Table 3.3: Conversion functions for ,-rules.

29

Conversion for 6-rules

In case of 6-rules the most typical example is the rule for universal quantification, with tableau
rule:

Vx: U.P
Vx: U.P, P,x

Given the current context fL, .1. 1 , 0: ("Ix: U.P),.1.2 and the term t used to extend the tableau,
we construct for the successor node the context fL,.1. 1,O: ("Ix: U.P),.1. 2,p: P{. Note that
the original universal quantifier is still present in this context. After the contradiction c has
been derived from the successor's context by recursion we derive a contradiction from the original
context as follows:

(0) f L , D.j, 0: (Vx : U.P), D.2 ,p: P,x I- c:-1
(1) fL, D.j, 0: (Vx : U.P), D.2 I- (Ap: Pf.c) : P,x =>-1
(2) f L , D.j, 0: (Vx : U.P), D.2 I- 0: (Vx : U.P)
(3) fL, D.j, 0: (Vx : U.P), D.21- t : U
(4) f L, D.j, 0: (Vx : U.P), D.2 I- 0 t : P,"
(5) fL,D.j,O: (Vx: U.P),D.21- (Ap: Pf.c) (0 t):-1

induction hypothesis
II-intro on (0)
theorem 2.4.5
ok because of theorem 2.4.2 on page 22
II-elim on (2) and (3)
II-eJim on (1) and (4)

To make this derivation suitable for the general case, consider the rule:

E(U,P)
E(U, P), E'(P)f

We replace (Vx : U.P) by E(U, P) and Pt by E'(Plf in the entire derivation. We then have to
insert a derivation of a term of type (Vx : U.E'(P)) from 0 : E(U, P) after line (2). The resulting
).-term of this derivation is given by the transformation functions T given in table 3.4.

E(U,P) E'(P) T(o) : (Vx : U.E'(P)) with 0 : E(U, P)
(Vx : U.P) P 0

,(3x : U.P) ,P (Ax: U.(Ap: P.o (ini (3x : U.P) p x)))

Table 3.4: Conversion functions for 6-rules.

3.2.3 Conversion of Closed Leafs

Recursion ends when we convert a leaf of the tableau. At a leaf we cannot use a contradiction
derived from successor-nodes, since there are no successor-nodes. However, at a closed leaf we
have a context in which both a variable of type P and a variable of type -,p occur. In ,:xp
negation is modeled by implication and L Hence, in the context fL,D.j,p: P,D.2,P' : ,P,D.3 we
can derive the contradiction pIp.

This concludes the conversion algorithm. Note that if during the construction of a tableau needless
steps are taken these will also be translated.

The converted proof may be much longer than a proof that is constructed directly in)'P-. For
example: a direct proof of R => R in AP- looks like fL I- (Ap : R.p) : R => R. However, if we
convert the tableau

x

30

we get a much larger A-term. Following the algorithm, we start with fL I- classic (R =? R) (AO:
,(R =? R).c) : R =? R, where c is a contradiction extracted from the initial context fL, 0: ,(R =?

R). The tableau rule applied is an a-rule for implication. The resulting A-term of this conversion
in general is (Ap : E,(P).(,\q : E2(Q).d)) ",(T(o)) 7r2(T(o)) :1-, in which c' is the contradiction
derived from the successor's context fL,p: E,(P), q: E,(Q). If we fill in P, Q, E

"
E, and T

for our example and then use the result of this substitution in our proof, we get

classic (R =? R) (AO: ,(R =? R).(Ap: R.Aq : ,Kc')
7rl(classic R (AP: ,R.O(Aq: R.pqR)), (Aq : R.O(Ap: R.q)))
",(classic R (AP: ,R.O(Aq : R.pqR)), (Aq: R.O(Ap: R.q)))) : R =? R

and c' is the contradiction derived from the context rL,p : R, q : ,R. This corresponds to the
context in which the tableau gets closed by Rand ,R, hence the algorithm gives us c' == qp. The
final proof then reads:

fL I- classic (R =? R) (AO: ,(R =? R).(Ap: R.Aq : ,R.qp)
",(classic R (AP: ,R.O(Aq : R.pqR)), (Aq : R.O(Ap: R.q)))
",(classic R (AP: 'R.O(Aq : KpqR)), (Aq : R.O(Ap: R.q)))) : R =? R

This 'explosion' of the proof term is certainly a drawback of this proof method. However, we do
not need to really convert each proof. We can use a short representation in a A-term to indicate
that the required term can be found with the tableau prover built in the system. We can then
construct the A-term on request, by reconstructing the tableau and then convert it according to
the method we described.

31

Chapter 4

Conclusions

4.1 Advantages

In this document we presented a pure type system '\P- that closely models first order logic. We
compared it to natural deduction and tableau methods and showed that these can be performed
within >tP-. These results offer the possibility to construct an interactive proof system based on
pure type systems with an in-built automated theorem prover for first order logic. This has the
following advantages:

• Pure type systems offer a compact, yet powerful way to prove theorems.

• Due to its parameter mechanism >.P- does not contain the conversion-rule of a regular PTS.
This makes designing the unification algorithm, and hence the type checker simpler and the
implementation faster.

• Proofs are encoded with A-terms and hence) can be type-checked for correctness by a simple
program. This increases the reliability of the system.

• A-terms can be communicated to other theorem provers based on Pure Type Systems like
Coq, Lego or HOL. Verifying the constructed proofs on several systems increases the relia
bility of the system even more.

• Providing an automated theorem prover based on tableau methods offers a high degree of
automation that is usually not present in interactive theorem provers (see [Fra97]). Con
verting the tableau into a '\-term offers a safe verification method of the proof. Detecting
errors in a large tableau based theorem prover becomes easier.

4.2 Disadvantages

A drawback of the method of tableau conversion is the 'explosion' of the A-term. The proof
obtained in this manner is not suitable for a human reader. However, we plan to use the theorem
prover in an environment for proving program correctness. In such an environment the user of
the system is a programmer who will only be interested in whether or not a theorem is correct.
Usually programmers do not want to read every detail of their proof. Also, it is possible not to
convert the proof at all, but add an axiom to the derivation system that looks like:

32

r f- P : *p 'We have a closed tableau for P'
r r tab P : P (4.1)

,where tab is just an extension of the A-term syntax to encode that P was proved by a tableaux
based theorem prover. This axioms allows us to use the theorem prover without getting extremely
large A-terms. Since we can reconstruct the tableau and convert it to a A-term whenever we want
to" we can still communicate our proofs to other theorem provers.

Another drawback is that AP- is only suitable for first order logic, not higher order logic. If we use
a pure type system for higher order logic, e.g. the calculus of constructions, we cannot apply the
automated theorem prover to every propositional formula we can derive in the pure type system.

4.3 What about resolution?

We also presented resolution methods, which like the previous systems is sound and complete
with respect to the semantics of first order logic. Therefore it is also possible to use an axiom like
axiom 4.1 if we want to include a resolution based theorem prover in our system. However, we
then no longer can communicate our proofs to other systems, since we do not have a method to
convert a resolution proof to a A-term.

Our attempts to find a conversion algorithm for resolution proofs have not succeeded. If one
attempts to simulate the steps of a resolution proof directly in)'P-, then problems arise during
conversion of the resolution proof after the formula has been skolemized. Suppose we want to
prove r L f- X : *p by simulating a given resolution proof of X. First, we use the classic rule
and simulate all the rewrite steps that lead to the head normal form (HNF) of ,X. Second, we
simulate the rewrite steps that convert the body of the HNF of ,X into conjunctive normal form,
e.g. we get something like:

0: 'Ix: U.3s : U.((Px V QC3 V Rs) A (5x V ,QC3 V Rs) A (,Pc I) A (,5c,) A (,Rx))

,where Ci denote constants. However, we cannot simulate skolemization. Simulating skolemization
requires the introduction of fresh functions to the context, which in AP- are parametric terms.
We could then never get rid of these functions anymore, since we cannot make A-abstractions over
parametric terms. Therefore we could never transform a proof of the skolemized formula into a
proof derivable from the context rL. Hence, something else is needed here.

Simulating the applications of the cut-rules in a resolution proof is now not possible in general, since
in the resolution proof the order of applying these cut-rules causes problems during simulation:
Several values may be substituted for a free variable in the same clause in several resolution steps.
The results obtained by these successive steps can then be combined again later in the proof with
yet another substitution. For instance, consider the following resolution proof of our example:

(0) Px V QC3 V Rs(x)
(1) 5x V ,QC3 V Rs(x)
(2) ,PCl
(3) ,5c,
(4) ,Rx
(5) QC3 V Rs(cd
(6) ,QC3 V Rs(c,)
(7) Rs(cd V Rs(c,)
(8) Rs(c,)
(9) 0

[derived from (0) and (2), substitution x := cd
[derived from (1) and (3), substitution x := c,]
[derived from (5) and (6), no substitution]
[derived from (4) and (7), substitution x:= s(cd]
[derived from (4) and (8), substitution x := s(c,)]

33

In clauses (0) till (4) the skolem function sex) refers to the same existential binder (see the
representation of the initial clauses in '\P- given before)

However, in clauses (5) and (6) we have S(Cl) and s(c,) respectively, which refer to different
existential quantifiers, since they are obtained by applications of 0 to Cl and C2 respectively:

o Cj : 3s : U.((PCl V Qe3 V Rs) II (SCI V ,Qe3 V R8) II (,Pe,) II (,Sc,) II (,Re,))
o e, : 38 : U.((Pe, V QC3 V Rs) II (Se, V ,QC3 V Rs) II (,PCI) II (,Se,) II (,Re,))

This obscures the conversion, since the partial results contain skolem functions, which in the).
terms are explicitly existentially quantified. The bodies of these quantifications then have to be
combined to obtain a new (partial) result (see derived clause (7)). I.e. we need the following rule
that is not true in general (the existential quantifiers refer to the same skolem-function in the
resolution proof):

r I- (3x : U.(P V Q)) r I- (3x: U.(,P V R))
r I- (3x : U.(Q V R))

Individual proofs always seem to be convertible by using a different order of eliminating canjuncts
from the clauses, but we have failed to find a general algorithm that does the job.

34

Bibliography

[Bar92] H.P. Barendregt. Background: Computational Structures, volume 2 of Handbook of Logic
in Computer Science, chapter 2, pages 118-310. Oxford Science Publications, 1992.

[dN95] Hans de Nivelle. Ordering Refinements of Resolution. PhD thesis, Delft University of
Technology, 1995.

[dS93] H.C.M. de Swart. LOGIC; Mathematics, Language, Computer Science and Philosophy,
volume I. Peter Lang, Frankfurt, 1993.

[dS94] H.C.M. de Swart. LOGIC; Logic and Computer Science, volume II. Peter Lang, Frank
furt, 1994.

[Fra97] Michael Franssen. Tools for the construction of correct programs: an overview. Technical
Report Report 97-06, Eindhoven University of Technology, 1997.

[Laa97] T. Laan. The Evolution of Type Theory in Logic and Mathematics. PhD thesis, Eindhoven
University of Technology, 1997.

[MM82] Alberto Martelli and Ugo Montanari. An efficient unification algorithm. ACM Transac
tions on Programming Languages and Systems, 4(2), April 1982.

[Smu68] Raymond M. Smullyan. First-Order Logic. Ergebnisse der Mathematik und Ihrer Gren
zgebiete, Band 43. Springer, 1968.

[5094] H.C.M. de Swart and W.M.J. Ophelders. Tableaux, resolution, and complexity of for
mulas. Methods of Logic in Computer Science, 1:241-260,1994.

35

Computing Science Reports

In this series appeared:

96/01

96/02

96/03

96/04

96/05

96/06

96/07

96/08

96/09

96/10

96/11

96112

96/13

96/14

96/15

96117

96/18

96/19

96/20

96/21

96/22

96/23

96/24

96/25

97/01

97/02

97/03

97/04

97/05

97/06

97/07

M. Voorhoeve and T. Basten

P. de Bra and A. Aerts

W.M.P. van dec Aalst

S. Mauw

T. Basten and W.M.P. v.d. Aalst

W.M.P. van dec Aalst and T. Basten

M. Voorhoeve

ATM. Aerts, P.M.E. De Bra,
J.T. de Munk

F. Dignum, H. Weigand, E. Verharen

R. Bloo, H. Geuvers

T. Laan

F. Kamareddine and T. Laan

T. Borghuis

S.H.J. Bos and M.A. Reniers

M.A. Reniers and J.J. Vereijken

E. Boiten and P. Hoogendijk

P.D.V. van dec Stok

M.A. Reniers

L. Feijs

L. Bijlsma and R. Nederpelt

M.C.A. van de Graafand GJ. Houben

W.M.P. van dec Aalst

M. Voorhoeve and W. van der Aalst

M. Vaccari and R.C. Backhouse

B. Knaack and R. Gerth

1. Hooman and O. v. Roosmalen

J. Blanco and A. v. Deursen

J.C.M. Baeten and l.A. Bergstra

I.C.M. Baeten and J.J. Vereijken

M. Franssen

J.C.M. Baeten and J.A. Bergstra

Department of Mathematics and Computing Science
Eindhoven University of Technology

Process Algebra with Autonomous Actions, p. 12.

Multi-User Publishing in the Web: DreSS, A Document Repository Service
Station, p. 12

Parallel Computation of Reachable Dead States in a Free-choice Petri Net, p. 26.

Example specifications in phi-SDL.

A Process-Algebraic Approach to Life-Cycle Inheritance
Inheritance"" Encapsulation + Abstraction, p. 15.

Life-Cycle Inheritance A Petri-Net-Based Approach, p. 18.

Structural Petri Net Equivalence, p. 16.

0008 Support for WWW Applications: Disclosing the internal structure of
Hyperdocuments, p. 14.

A Formal Specification of Deadlines using Dynamic Deontic Logic, p. 18.

Explicit Substitution: on the Edge of Strong NonnaIisation, p. 13.

AUTOMATH and Pure Type Systems, p. 30.

A Correspondence between NuprJ and the Ramified Theol)' of Types, p. 12.

Priorean Tense Logics in Modal Pure Type Systems, p. 61

The J 2 C-bus in Discrete-Time Process Algebra, p. 25.

Completeness in Discrete-Time Process Algebra, p. 139.

Nested collections and polytypism, p. II.

Real-Time Distributed Concurrency Control Algorithms with mixed time con
straints, p. 71.

Static Semantics of Message Sequence Charts, p. 71

Algebraic Specification and Simulation of Lazy Functional Programs in a concur
rent Environment, p. 27.

Predicate calculus: concepts and misconceptions, p. 26.

Designing Effective Workflow Management Processes, p. 22.

Structural Characterizations of sound workflow nets, p. 22.

Conservative Adaption of Workflow, p.22

Deriving a systolic regular language recognizer, p. 28

A Discretisation Method for Asynchronous Timed Systems.

A Programming-Language Extension for Distributed Real-Time Systems, p. 50.

Basic Conditional Process Algebra, p. 20.

Discrete Time Process Algebra: Absolute Time, Relative Time and Parametric
Time, p. 26.

Discrete-Time Process Algebra with Empty Process, p. 51.

Tools for the Construction of Correct Programs: an Overview, p. 33.

Bounded Stacks, Bags and Queues, p. 15.

97/08 P. Hoogendijk and RC. Backhouse When do datatypes commute? p. 35.

97/09 Proceedings of the Second International Communication Modeling- The Language/Action Perspective, p. 147.

97110

97111

97112

97113

97114

Workshop on Communication Modeling,
Veldhoven, The Netherlands, 9-10 June, 1997.

P.C.N. v. Gorp, EJ. Luit, D.K. Hammer
E.H.L. Aarts

A. Engels, S. Mauw and M.A. Reniers

D. Hauschildt, E. Verbeek and
W. van dec Aalst

W.M.P. van dec Aa1st

J.F. Groote, F. Monin and
J. Springintveld

Distributed real-time systems: a survey of applications and a genera1 design
model, p. 31.

A Hierarchy of Communication Models for Message Sequence Charts, p.30.

WOFLAN: A Petri-oet-based Workflow Analyzer, p.30.

Exploring the Process Dimension of Workflow Management, p. 56.

A computer checked algebraic verification ofa distributed summation algorithm,
p.28

	Abstract
	Contents
	1. Introduction
	1.1 Purpose of this Paper
	1.1.1 Interactive Theorem Proving
	1.1.2 Automated Theorem Provers
	1.2 First Order Predicate Logic
	1.2.1 Semantics of First Order Predicate Logic
	2. Proof Methods for First Order Predicate Logic
	2.1 Natural Deduction
	2.2 The Method of Tableaus
	2.2.1 An example of a Tableau Proof
	2.2.2 Deriving a Counterexample from an open Tableau
	2.2.3 An Interpretation of the Method of Tableau
	2.3 Resolution Methods
	2.3.1 Eliminating Negations that are not part of Atomic Formulas and Implications
	2.3.2 Moving Quantifiers to the Head of the Formula
	2.3.3 Eliminating Quantifiers
	2.3.4 Computing the Conjunctive Normal Form
	2.3.5 Applying Resolution
	2.3.6 An Example of a Resolution Proof
	2.3.7 Unification
	2.4 Pure Type Systems
	2.4.1 The Definition of Pure Type Systems
	2.4.2 The System lambdaP-
	3. Conversion of Proofs
	3.1 Lambda-terms as Natural Deduction Proofs
	3.2 From Closed Tableaus to lambda-terms
	3.2.1 Converting the Initial Tableau
	3.2.2 Converting Applications of Tableau Rules
	3.2.3 Conversion of Closed Leafs
	4. Conclusions
	4.1 Advantages
	4.2 Disadvantages
	4.3 What about resolution?
	BIbliography

