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Abstract 

In this document we define multi sorted first order logic and discuss several proof systems for this 
logic: natural deduction, tableau methods, resolution methods and the framework of Pure Type 
Systems. We present a Pure Type System called >.P- that corresponds exactly to first order logic. 
We also show the correspondence between ).P- and natural deduction and we present an algorithm 
to convert closed tableaus to A-terms in ..\P-. ,xp-, combined with the conversion algorithm,-forms 
the formal basis for an interactive theorem prover in which an automated theorem prover based 
on tableaus can be safely used. 
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Chapter 1 

Introd uction 

1.1 Purpose of this Paper 

The purpose of this paper is to provide a theoretical foundation for an interactive theorem prover 
for first order logic with a high degree of automation. This theorem prover will be used in an 
environment for the derivation of correct programs, but only to perform correctness proofs, not 
to model the semantics of the programming language. 

An interactive theorem prover with a high degree of automation combines the fields of interactive 
theorem proving and automated theorem proving. Both approaches to theorem proving have 
advantages and drawbacks. We will briefly present them here. 

The reason for this comparison is that we want to create a proof system that combines the 
advantages of interactive theorem proving with the advantages of automated theorem proving. If 
possible, we want to use the advantages of the first approach to eliminate the drawback of the 
second approach and vice versa. 

1.1.1 Interactive Theorem Proving 

In interactive theorem proving one often uses typed lambda calculi, since these calculi provide an 
easy way to represent unfinished proofs as lambda terms with typed holes. The holes then have 
to be filled in with terms of the correct type to complete the proof. Besides, typed lambda calculi 
have the following advantages: 

• Verification of proofs is possible by type checking. 

• Proofs can be communicated as A-terms, since A-terms are a standard representation of a 
proof. 

• There is a uniform treatment of first order logics and higher order logics. 

• Typed A-calculi are suitable for interactive theorem proving, since partial proofs can be 
represented as A-terms with 'holes' that represent the unsolved parts. 

Examples of interactive theorem provers based on typed A-calculi are HOL, COQ and LEGO 
(see [Fra97] for a more elaborate overview). 

A drawback of interactive theorem provers based on typed A-calculi is that automating the proving 
process is hard. One of the reasons is that typed A-calculi are usually used to model higher order 
logics. 

3 



1.1.2 Automated Theorem Provers 

Automated theorem provers (ATPs) are often based on the method of tableaus or on resolution 
methods, since these methods are powerful enough to attack all problems formulated in first order 
logic. Besides, it is known that for every true formula in first order logic a tableau proof and a 
resolution proof exist, although it may not always be computable. Both methods are based on 
classical first order 10gic1 ATPs can prove nontrivial theorems, but not (yet) hard theorems. 
They are most beneficial in proofs that are not hard but tedious (e.g. a proof consisting of many 
simple case distinctions in which the ATP can prove the separate cases). 

Proofs constructed by an ATP are usually not suitable for a human reader. This gives rise to 
problems when the user has to interact with the ATP if the ATP can not find a proof fully 
automatically. The user will then hardly be able to see where the difficulties arise and how they 
should be solved. Once the user has interacted with the ATP, the proof is no longer automatically 
reproducible. If the ATP had to reproduce the proof, it would again not find it fully automatically. 
To find the same proof again, the same user-interaction as before is required. 

Also, since there is no standard representation of the proof, a witness of the actual proof can 
not be communicated to other proof systems. These systems can therefore not be used to verify 
the automatically constructed proof. Tableau based theorem provers do construct a tableau as a 
representation of the proof, but this is not a communicatable representation. Resolution methods 
do not produce a representation of the proof at all, although many implementations provide an 
ad hoc (non-standard) internal representation for use within the same system. 

A user benefits from an ATP the most if it is embedded in an interactive system which assists 
in proving hard theorems. The user can then invoke the ATP to deal with tedious or simple 
parts of the larger proof. This is exactly what is made possible with the system -,P- presented 
in this paper: combining meaningful ATP with an interactive theorem prover based on a typed 
,I-calculus. 

1.2 First Order Predicate Logic 

Since in this paper we deal with first order predicate logic, we will formally introduce first order 
logic. We can then describe the proof methods for this logic more accurately. 

In literature, formulas of first order predicate logic are defined as follows: Let :F be a set of function 
symbols, each with a fixed arity 2: O. Furthermore, let P be a set of predicate symbols) with each 
a fixed arity 2: O. We assume the existence of an infinite set A of variables. Then the set T of 
terms is defined recursively as: 

1. A<;T 

2. !ffEF witharityn andI 1 , .. ·,ln ET,thenft,···ln ET. 

The set *p of formulas is defined recursively as: 

1. !f PEP with arity nand 11 , ... ,in E T, then PI1· .. i n E 'p. 

2. If P, Q E *p, then P II Q E *p, P V Q E *p and P ~ Q E *p. 

3. !f P E *p , then ~P E *p. 

1 There are versions of the method of tableaus that are suitable for intuitionistic and modal first order logic, 
but these are not standard tableau methods. We will not consider these methods in this paper, but the interested 
reader is referred to [dS93j 
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4. If P E *p and x E A, then Ifx.P E *p and ~x.P E *p. 

We use the variable convention, which means that: 

1. Free variables will always have a name different from bound variables. 

2. If formulas differ only in the names of their bound variables, they are considered to be equal 
(IT-equality). 

Substitutions 

The result of substituting a term t for a variable x in P is denoted as P,x. The substitution is 
defined as follows: 

XX , 
y'( 
(ft, ... tn ); 

(Pt, ... tn); 

y 

l(t,); ... (t n ); 

pet,); ... (tn); 
P,x II Q; 
P,'VQ; 
P[ =} Qf 
~(pn 
Ifx.P 
Vy.P[ Ok, because of variable convention. 

(P II Qj'( 
(P V Q)f 
(P =} Q); 
(~P)f 

(lfx.P); 
(lfy.Pj'( 
(~x.P)f 

(~y.P)f 

== 3x.P 
3y.P[ Ok, because of variable convention. 

F and P are the parameters of this framework. A weakness of the definitions above is that all terms 
are treated equally. In practice, we often want to distinguish between terms of different "types" 
(for instance, booleans and integers). Therefore, we will introduce a more general definition. 

In addition to:F and P we have a parameter *s that represents a set of basic types. With 
every function symbol f E:F with arity n, we associate a unique tuple of types (U1 , ... , Un, U), 
where U" ... Un and U are elements of *,. We denote this as I: (U" ... Un,U) E F. With 
every predicate symbol PEP with arity n, we associate a unique tuple of types (UI , ... , Un), 
where U" ... , Un E *,. This is denoted as P : (U" ... , Un) E p. Since the arity of function and 
predicate symbols can now be derived from its unique associated tuple of types it will no longer 
be stated explicitly. The set A of variables in the extended framework contains variables a with 
each a unique associated type U ,where U E *,. We assume that for every type there are infinitely 
many variables. The definition of the set T of typed terms is: 

1. a : U E T for every variable a with associated type U. 

2. If I : (U" ... , Un, U) E F and t, : U" . .. , tn : Un E T then It, ... tn : U E T. 

The set *p of formulas for multisorted first order logic is now defined as: 

1. If P : (U" ... , Un) E P and t, : U" ... , tn : Un E T, then Pt, ... tn E *p. 

2. If P, Q E *p, then P II Q E *p, P V Q E *p and P =} Q E *p. 

3. If P E *p , then ~P E *p. 

4. If P E *p and x : U E A , then Ifx : U.P E *p and ~x : U.P E 'p. 
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One important subset of *p is the set of atomic formulas. This is the set of all propositions 
Pt! ... tn E *p , with PEP and t!, ... ,tn E T , and their negations. Note that substitution of 
terms for variables is now only defined for terms and variables with the same associated type. 

This framework is more general than the first one, since the original framework can be obtained 
by choosing *, == {U}. 

1.2.1 Semantics of First Order Predicate Logic 

The semantics of first order logic is such that every closed formula represents a proposition. The 
meaning of the proposition depends on the interpretation of the predicate symbols and function 
symbols the user of the logic has in mind. On the other hand, there are closed formulas that 
model true propositions independent of the interpretation of the user. These formulas are called 
tautologies. Tautologies provide self-contained information. They can be seen as legal statements 
that will always hold, regardless of the meaning of the predicate symbols. 

The semantics of first order logic presented here consists of a mapping from the syntactical set 
of type symbols, function symbols and predicate symbols to real sets, functions and relations. 
Following the line of [dN95] page 25: Let r be a set of first order formulas. An interpretation I 
of r is an ordered tuple 1= (1), [D, where 

• V is a set of nonempty domains. 

• [] is a function which attaches 

- to every type symbol U in *, a domain in 1). We denote this domain as [U]. 

to every function symbol I occurring in r with associated type (U!, ... , Un, U) (and 
hence, arity n) a total function [ud - ... - [Un] - [U]. We denote this function as 
[fl· 
to every predicate symbol P occurring in r with associated type (U!, . .. , Un) (and 
hence, arity n) a subset of lU,l x ... x [Un]. We denote this subset as [Pl. The elements 
of [P] are the tuples for which the relation holds. 

to every variable V with associated type U which is free in an FEr an element of 
[U]. 

We extend the mapping [] to attach a meaning to every term in T: 

• If the term is a variable V , then [V] is already defined (see above). 

• If the term has the form It! ... tn , then [ft! ... tnl = [f]([tJ], ... , [tnD. 

We also define the modified mappings []X:u where V is a variable with associated type U and 
d is an element of [U].The value of [X]Y:u is defined as: 

• (X] if X is a type, a function symbol, a predicate symbol or a variable different form V. 
This includes undefined, i.e. if [Xl is undefined and X is a variable different from V then 
[X]Y'u is undefined too. 

• d if X = V. 

''''e are now ready to define a model based on the interpretation I. We denote a model of first 
order logic, based on interpretation 1= (1), [D as Ml MI is a function from propositional 
formulas to {t, J} defined as: 
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1. MI(Pt, ... tn)=t iff([t,], ... ,[tnJ)E[P]. 

2. MI(P II Q) = t iff MI(P) = t and MI(Q) = t. 
3. MI(PVQ)=t iffMI(p)=t orMI(Q)=t. 

4. MI(P,*Q)=t iffMI(p)=f or MI(Q)=t. 

5. MI(,P) =t iff MI(P) = f. 

6. MI (\Ix: UP) = t iff for every dE [U] we have M I' (P) = t with l' = (D, []d U
), 

7. MI (::Ix: U.P) = t iff there exists ad E [U] such that MI' (P) = t with I' = (D, [n U ). 

8. MI (P) = f in all other cases. 

To reason about the correctness of reasoning methods like natural deduction, tableau- and res
olution methods, we introduce the relation F= between sets of closed formulas. As usual, the 
definition is as follows: 

r 1= Ll iff for all models MI for which MI (P) = t for all PEr there is at least one Q E Ll with 
MI(Q) = t 

where rand Ll are sets of closed formulas. If r is empty then for all models MI at least one 
formula in.a. is true. This is denoted as F= .Q.. If, in addition,.a. contains only one element Q, 
this element is a tautology since MI (Q) = t for all models MI If Ll is empty then r 1= Ll is 
false, even if r is empty too, since there never is an element in.a. that is mapped to t in the 
interpret,ation I. If there are no models for which MI (P) = t for every formula P in r, then the 
set r is called inconsistent. This is denoted by r I=.L Obviously, if r I=.L then r 1= Q for every 
closed formula Q. 
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Chapter 2 

Proof Methods for First Order 
Predicate Logic 

In this chapter a brief description of several proof methods is given. The descriptions serve mainly 
as a gently introduction to the notations used and as a basis for the conversions between the proofs 
given in chapter 3. 

2.1 Natural Deduction 

Natural deduction is a method for reasoning with logical formulas. To define natural deduction, 
we introduce a relation rnd between sets of formulas and a single formula. In this section rnd is 
simply denoted as r. The set of formulas is denoted without the curly brackets. If r is a set of 
formulas and P is a formula, then r I- P holds if it can be derived by the following set of axioms 
(-LE *p is such that for all interpretations I the value MI(-L) is f. Hence, -L has now become 
a syntactical formula): 
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start r, p f- p weakening 
rf-p 

r,Llf-p 

~I 
r,p f- q 

~E 
rf-p~q rf-p 

rf-p~q rf-q 

VIl 
rf-p 

VI2 
rf-q 

VE 
rf-p~r rf-q~r 

rf-pVq rf-pVq rf-pVq~r 

/\I 
rf-p rf-q 

IIE1 
rf-pllq 

IIE2 
rf-pllq 

rf-pllq rf-p rf-q 

,I 
r,pf-1-

,E r f- 'p rf-p 
falsum 

r f-1-
r f- 'p r f-1- r f- p 

VI r r p~ VE 
r f-Vx : U.p 

r f-Vx : U.p rf- pf 

31 
r f- pf 

3E 
r f- 3x : U.p r f- (Vx : U.p ~ q) 

r f- 3x : U.p r f- (3x : U.p) ~ q 

classic 
r r -,-'p 

rf-p 

where CY E A does not occur in r or p, x does not occur in q and term t : U E T. A few remarks 
should be made to explain the rule VI: 

• The type U is fixed, since x is a variable and with every variable we associat.e one fixed 
type . 

• The type of", then also has to be U , since otherwise p; would not be defined. 

Since every variable a is also a term we can apply::lI whenever we can apply 'if I. In our semantics 
this is true, since every set U represents a non-empty domain and hence (Vx : U.P) ~ (3x : U.P). 

In intuitionistic logic we do not have the rule classic. However, in this document we only consider 
classical logic. Note that the relation f- is defined syntactically, while ~ is defined semantically. 

As an example we will give an annotated derivation off- ((3x : U.p) II (Vx : U.p ~ q)) ~ (3x : U.q): 

(0) 
(1) 
(2) 
(3) 
(4) 
(5) 
(6) 
(7) 
(8) 
(9) 

(10) 
(11) 
(12) 

(3x : U.p) II (Vx : U.(p ~ q)) f- (3x : U.p) II (Vx : U.(p ~ q)) 
(3x : U.p) II (Vx : U.(p ~ q)) f- (3x: U.p) 
(3x: Up) II (Vx : U.(p ~ q)) f- (Vx : U.(p ~ q)) 
(3x : U.p) II (Vx : U.(p ~ q)) f- p; ~ q; 
(3x : U.p) II (Vx : U.(p ~ q)), p;; f- p;; 
(3x : U.p) II (Vx : U.(p ~ q)),p;; f- p; ~ q; 
(3x : U.p) II (Vx : U.(p ~ q)),p; f- q; 
(3x : U.p) II (Vx : U.(p ~ q)), p;; f- (3x : U.q) 
(3x : U.p) II (Vx : U.(p ~ q)) f- p; ~ (3x : U.q) 
(3x : U.p) II (Vx : U.(p ~ q)) f- (Vx : U.(p ~ (3x : U.q))) 
(3x : U.p) II (Vx : U.(p ~ q)) f- (3x : U.p) ~ (3x : U.q) 
(3x: U.p) II (Vx : U.(p ~ q)) f- (3x : U.q) 
f- ((3x : U.p) II (Vx : U(p ~ q))) ~ (3x : U.q) 
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weakening on (3) 
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VI on (8) 
3E on (1) and (9) 
~ E on (1) and (10) 
~ J on (11) 



•• P 
---

P 

PI\Q .(P ~ QJ 
P, Q 

.(P 1\ QJ 
.PI·Q 

3x: U.P 
P:;' 

.3x: U.P 

P, .Q 

P~Q 

.PIQ 

-,3x : U.P, oPf 

pvQ 

PIQ 

.'1x: U.P 

'Ix: U.P 
'Ix: U.P, P," 

Figure 2.1: Rules for the construction of tableaus for 1st order classical logic. IT represents a fresh 
variable of type U. t represents an arbitrary term of type U. 

There is a relation between F= and f-, which is formulated in two theorems: the soundness theorem 
and the completeness theorem. For the formulation of these theorems, we assume that r is a set 
of closed formulas and P is a single closed formula. 

Theorem 2.1.1 (soundness) If r I- P then r F P. 

Theorem 2.1.2 (completeness) Ifr F P then r I- P. 

Proving these properties is beyond the scope of this paper. The interested reader IS referred 
to [dS93]. 

2.2 The Method of Tableaus 

Another method to prove formulas in first order logic is the method of semantic tableaus. Tableau 
methods attempt to prove F= P for a formula P by decomposition of P. Tableau methods are 
constructive in the sense that they build a representation of the proof. This representation is a 
labeled tree called the tableau. The labels are sets of formulas. 

A tableau is constructed in the following manner: 

l. Start with a single node, labeled with {-'P}, where P is the formula to be proved. 

2. Select a leaf from the partially constructed tree. Select from the corresponding label L a 
formula X to which one of the rules from figure 2.1 can be applied. Extend the leaf with a 
number of nodes equal to the number of conclusions of the rule. Conclusions are separated 
by a 'I' and can contain several formulas separated by a ',', A successor node is labeled with 
(L \ {X}) U Y, where Y is the conclusion for which the successor was created. 

3. Repeat step 2 until for every leaf there is a formula P such that both P and oP occur in 
its label. Such a leaf is called closed. 

The process of constructing a tableau may be non~terminating. If the construction terminates and 
all leaves are closed, the tableau itself is called closed. If the construction process terminates and 
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there are leaves that are not closed, we can construct a counterexample for P. A counterexample 
for P is a consistent model, induced by an interpretation I, for which M I (P) = f. 

2.2.1 An example of a Tableau Proof 

Below an example of a tableau is given that proves the formula «:Ix: U.P) 1\ (\Ix: U.P =} Q)) =} 

(:Ix: U.Q). 

x 

~(((:lx : U.P) 1\ (\Ix: U.P =} Q)) =} (:Ix: U.Q)) 
(:Ix: U.P) 1\ (\Ix: U.P =} Q), ~(:lx : U.Q) 
(:Ix: U.P), (\Ix: U.P =} Q), ~(:lx : U.Q) 

P:;, (\Ix: U.P =} Q), ~(:lx: U.Q) 

P;, (\Ix: U.P =} Q), P; => Q;, ~(:lx: U.Q) 

P:;, (\Ix: U.P => Q), ~P:;, ~(:lx : U.Q) P:;, (\Ix: U.P =} Q), Q:'" ~(:lx: U.Q) 
P:;, (\Ix: U.P =} Q), Q;, ~(:lx : U.Q), ~Q:; 

x 

The x below a leaf means that the leaf is closed. 

2.2.2 Deriving a Counterexample from an open Tableau 

From the following tableau we will derive a counterexample for ~(:lx : U.(P 1\ Q) 1\ (P => Q)): 

~~(:lx : U.(P 1\ Q) 1\ (P =} Q)) 

(3x : U.(P 1\ Q) 1\ (P => Q)) 

(P:; 1\ Q;) 1\ (P:; => Q;) 
P~ 1\ Q~, P~ => Q~ 
P:;, Q~, p~ => Q~ 

P~,Q~,-'P~ P:;,Q~, Q~ 

x 

In general J a counterexample derived from a tableau is an interpretation in which the formula we 
tried to prove does not hold. To derive such an interpretation from an open branch in a tableau 
we only have to create an interpretation in which all the formulas in the label of the open branch 
are true. Since the search for a closed tableau terminated we know that all formulas in the label 
are atomic formulas and hence, we can easily construct the required interpretation. 

In our example, we derive the following interpretation from the open branch with label P:;, Q~J Q~: 
Take an arbitrary closed term u : U E T. Choose for the interpretation I that [P,;] = t and 
[Q:;] = t. This is possible, since by the nature of an open branch P is a predicate symbol. That 
the chosen interpretation is indeed a counterexample can easily be checked: In the model M I we 
have MI «P,; 1\ Q:;) 1\ (P,; =} Q:;)) = t and hence, MI (3x : U.(P 1\ Q) 1\ (P => Q)) = t and thus, 
MJ(~(3x : U.(P 1\ Q) 1\ (P => Q))) = f. It follows that the theorem we were trying to prove was 
not in all interpretations true. 
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2.2.3 An Interpretation of the Method of Tableau 

One can consider the construction of a tableau to be a search for an interpretation I, such that 
MI(,p) = t and hence, MI(P) = f. If such an interpretation is found, we have a proof that 
not in all interpretations MI (P) = t. Branches in the tableau indicate that there are two kinds 
of interpretations that are candidates for the search. For instance, if -.(A 1\ B) must hold for the 
interpretation I, then either ,A must hold for I or ,B must hold for I. This corresponds to 
the tableau rule 

,(A;\ B) 
,AI,B 

If a leaf is closed then the search for an interpretation failed. No interpretation can make a formula 
P to hold and make ,p hold at the same time. If all leaves are closed, the search for I failed 
altogether. We can then conclude that no interpretation I exists for which MI(,P) = t, hence 
M I (,P) = f for all interpretations I and therefore M I (P) = t for all interpretations I. In 
short, we conclude f= P. 

Tableau methods are suitable for automating. The rules are then applied in a specific order and 
several heuristics are used to obtain closed tableaus. These algorithms are usually referred to as 
systematic tableaus. An implementation of a systematic tableau method is presented in [S094] 
and in [dS94]. Here, de Swart and Ophelders use abstract variables instead of concrete terms 
when applying a rule to (\Ix: U.P) or ,(3x : U.P). A unification algorithm that respects certain 
restrictions is used to determine a substitute for the abstract variables such that the leaves of the 
tableau become closed. 

The tableau method can be proved to be sound and complete. That is, there exists a closed 
t.ableau for P if and only if f= P. Unfortunately, it is not decidable for arbitrary P whether 
or not a closed tableau for P exists I . This is due to the nature of the algorithm: suppose we 
build tableaus in order to prove P. After we have built all possible trees with heights at most n 

without finding a closed tableau, we cannot conclude that a closed tableau does not exist. It is 
still possible that a closed tableau exists with height greater than n. The interested reader may 
read these proofs in [Smu68]. Soundness and completeness for an intuitionistic version of semantic 
tableaus can be proved fully intuitionistically (see [dS93]). 

2.3 Resolution Methods 

Resolution methods work with predicates modulo conjunction and disjunction. They do not 
distinguish the between the formulas A V (B V C) and (A V B) V C, nor do they distinguish 
between A V Band B V A. We present here only the basic techniques of resolution. More 
powerful techniques that can be used in resolution based theorem provers are found among others 
in [dN95]. 

To prove the validity of a formula P with resolution methods we first convert ,P into a suitable 
normal form Q. The structure of Q must be of the form BI A ... A Bn , where each Bi consists of 
a series of disjunctions of atomic formulas. The Bi'S are called clauses. Clauses are an important 
concept of resolution methods. They may not contain any quantifications, but they can contain 
free variables. 

To obtain the formula Q from oP four transformations are applied to OP consecutively. The 
first is a rewrite system that eliminates all negation symbols in front of non-atomic formulas 

1 For propositional logic (i.e. predicate logic without quantifications) it is decidable for arbitrary P whether or 
not there exists a closed tableau. 
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and all implication symbols. The second transformation rewrites the formula into a form with 
all quantifiers at the head of the formula. Then skolemization is used to eliminate all quantifiers, 
using skolem-functions for variables that are existentially quantified and free variables for variables 
that are universally quantified. The fourth transformation rewrites the formula into the required 
conjunctive normal form. 

2.3.1 Eliminating Negations that are not part of Atomic Formulas and 
Implications: 

The first rewrite-system eliminates negations that are not part of atomic formulas and implications. 
The rules defining this rewrite system are: 

A~B ---+ ,AVB 
,(\Ix: U.P) ---+ (3x : U.,P) 
,(3x : U.P) ---+ (\Ix: U.,P) 
,(A t\ B) ---+ -,AV-,B 
,(A V B) ---+ -,A A-,B 
,(,A) ---+ A 

After the first rewrite system has been applied as far as possible (i.e. no more rewrite steps can 
be applied) negation symbols only occur as part of atomic formulas and implication symbols do 
not occur at all. Note that application of the first rewrite system terminates in a unique resulting 
formula. 

2.3.2 Moving Quantifiers to the Head of the Formula 

The second rewrite system results in a formula that has all quantifiers at the head of the formula. 
This form is called Head Normal Form (HNF). The rules for this rewrite system are (x does not 
occur in Q): 

(\Ix: U.P) t\ Q ---+ (\Ix: U.(P t\ Q)) 
(\Ix: U.P) V Q ---+ (\Ix: U.(P V Q)) 
Q t\ (\Ix: U.P) ---+ (\Ix: U.(Q t\ P)) 
Q V (\Ix: U.P) ---+ (\Ix: U.(QV P)) 
(3x : U.P) t\ Q ---+ (3x : U.(P t\ Q)) 
(3x : U.P) V Q ---+ (3x : U.(P V Q)) 
Q t\ (3x : U.P) -+ (3x: U.(Qt\P)) 
Q V (3x : U.P) ---+ (3x : U.(Q V P)) 

Before rewriting a formula into HNF we rename the bound variables such that they all have a 
different name. Otherwise, we could rewrite (\Ix: U.(\lx : U.P(x)) V Q(x)) to (\Ix: U.(\lx 
U.P(x) V Q(x))) , which is not valid. The correct result should read (\Ix: U.(\ly : U.P(y) V Q(x))). 
Note that this rewrite system again terminates with a unique result. 

2.3.3 Eliminating Quantifiers 

Skolemization is used to eliminate the quantifiers in the formula. Universally quantified variables 
are replaced by free variables, which are different iff they were bound by different quantifiers. 
These free variables are considered to be implicitly universally quantified. Existentially quantified 
variables are replaced by a so-called skolem function. The number and types of the arguments of 
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this function depend on the context in which the existentially quantified formula occurs. Formally, 
skolemisation is defined as follows: 

Let Ql ... Qn+m.C be a formula in HNF, where Q. is either a universal or an existential quantifier 
and C is quantifier-free. We then rename bound variables of universal quantifications from left 
to right to Xl : UI , .. ·, Xn : Un respectively. Also, we rename bound variables of existential 
quantifications from left to right to Yl : Vi,· .. , Ym : Vm respectively. We denote the number of 
universal quantifiers that appear to the left of 3y. : \I; in the original formula as a. (i = 1, ... m). 
For every Yi, we introduce a skolem function Ii . The skolem function Ji will have arity ai and 
associated type (Ul , . .. , Ua" \1;). The skolemized representation of Ql ... Qn+m.C then reads C' , 
where C' is equal to C with all Yi replaced by fi(XI, ... x a .). Note that C' does no longer 
contain any quantifiers and that the free Xj are implicitly universally quantified. 

Intuitively one can think of the skolem function as a replacement of the 3-elimination. In a natural 
deduction style proof we used (3y : V.P) formulas by introducing a fresh", : V and assuming that 
p,& for this particular a. The skolem function that now replaces a can be thought to produce 
exactly the" for which P!{ holds. The arguments of the function make the dependencies of" 
from its context explicit. 

We give a few examples: 

Original formula 
\lXI : Ul·\lx, : U2.3YI : VI. 

PXIXZ II (~PXIYI V ~PYIX2) 
\lXI : Ul·\lx, : UZ.\lx3 : U3. 

(~PXIX, II ~PX2X3) V PXlX3 
\lXI : UI.3YI : VI. 

PXIYI II ~QYI (gYI) 
\lXI : UI.3YI : Vl·\lx, : Uz. 

PXIYI II PYIX, =} QXlX2 

Skolemized formula 

2.3.4 Computing the Conjunctive Normal Form 

The final transformation takes the quantifier free formula and transforms it into a conjunctive 
normal form. In conjunctive normal form, no conjunction symbols occur in any sub expression of 
a disjunction. The conjunctive normal form is obtained by application of a rewrite system with 
only 2 rules: 

AV(BIIC) -> (AVB)i\(AVC) 
(AIIB)VC -> (AvC)II(BVC) 

The formula obtained after all transformations has to form C 1 /\ ... /\ Cn, where every Ci has the 
form Ai 1 V ... V Aini and every Ad is an atomic formula. A formula in such a form is suitable for 
resolution. Therefore, if we want to prove the validity of P, we perform the above transformations 
on OP and then use resolution on the result Q. Every Ci is called a clause. Resolution treats a 
formula Q as a set of clauses, rather than a conjunction of clauses. 

2.3.5 Applying Resolution 

The actual resolution uses only one rule to derive a contradiction called the cut-rule: 

AV X ~AvY 

XVY 
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A is an atomic formula and X or Y may be disjunctions of several atomic formulas or negations 
of atomic formulas; they may even be absent) in which case we read e.g. X for X V Y. If X and 
Yare both empty we have an empty conclusion which represents our contradiction. The empty 
conclusion is denoted as D. 

As we stated before) resolution methods deal with formulas modulo commutativity and associativ
ity. Conjuncts will be treated as separate formulas in the premises. Also, the P of the derivation 
rule can occur at any place in a series of disjunctions. 

In order to apply the cut-rule on the result Q == C, II ... II Cn obtained by transformation of ,P, 
we need two clauses from Q) say C 1 == Al V ... V An and G2 == Bl V ... V Bm , with all A's and B's 
atomic formulas. Als we need a substitution, say O. GlO must then contain an atomic formula 
D = AiO such that C20 contains -,D, say BjB. Without loss of generality, assume i = j = 1) 
then result of the cut-rule will be R == (A2 V ... V An V B, V ... V Bm)e. R is added as a new 
clause to the set of clauses. This process is continued until an empty clause R == 0 is derived. 

2.3.6 An Example of a Resolution Proof 

An example: We want to prove: 

((:Ix: U.Px) II ('Ix: U.Px =} Qx)) =} (:Ix: U.Qx) 

We start by transforming the negation of the above formula into the correct form: 

,(((:Ix: U.Px) II ('Ix: U.Px =} Qx)) =} (:Ix: U.Qx)) 
{removing =} and pushing negation towards atomic formulas} 
((:Ix: U.Px) II ('Ix: U.,Px V Qx)) II ('Ix: U.'Qx) 
{creating the head normal form} 
:Ix: U.Vy: U.Vz : U.(Px II (,Py V Qy)) II ,Qz 
{skolemization: eliminating quantifiers, using more practical names than Xi and Ij} 
(P to II (,Py V Qy)) II ,Qz 
{computing the conjunctive normal form. In this case nothing changes} 
(P to II (,Py V Qy)) II ,Qz 

In order to make the resolution proof more readable) we denote all the clauses separately and use 
numbers to refer to them. The resolution proof of this formula reads: 

(0) P to 
(1) ,Py V Qy 
(2) ,Qz 

(3) QtO 
(4) 0 

2.3.7 Unification 

[derived from (0) and (1), substitution y:= to] 
[derived from (2) and (3), substitution z := to] 

The required substitutions are obtained by unification algorithms. A unification algorithm usually 
returns a substitution called the most general unifier (mgu). The most general unifier has the 
following property: Let P and Q be formulas. Let e be the mgu of P and Q. Since e is a 
unifier, PB = QB. The 'most general' character of B is established by: Let (J" be any substitution 
such that p" = Q". Then there exists a a' such that POa' = p" and QOa' = Q". Conversely, 
if two formulas can be made equal by performing a substitution for the free variables, then there 
exists a most general unifier with the mentioned property. Intuitively one can say that the mgu 
unifies two formulas while being as little specific as possible. Computing the most general unifier 
is decidable. An efficient unification algorithm is described in [MM82J. 
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2.4 Pure Type Systems 

Pure Type Systems (PTSs) emerged as a result of typed A-calculi. In the untyped A-calculus of 
Church one builds terms from: 

1. an infinite list of variables and 

2. two constructs to build more complex terms: abstraction and application. 

Abstraction is meant to be a general procedure for function construction; application codes a 
possible function application. 

A rewrite system called jJ-reduction is defined such that function application is actually 'executed'. 
Repeated rewriting may lead to a unique normal form, i.e. a A-term to which none of the re-write 
rules can be applied anymore (a normal form). ,B-reduction is used to model the computation 
of a function when it is applied to arguments and the normal form represents the result of this 
computation. However J there are A-terms that do not reduce to any normal form. Typed lambda 
calculi were introduced to define a subset of ).-terms in such a way that all ).-terms in this subset 
reduce to normal forms. Later, Barendregt, Berardi and Terlouw introduced Pure Type Systems: a 
parameterized framework in which many variants of typed A-calculi can be described (see [Bar92]). 

Due to the Curry-Howard-de Bruijn isomorphism between propositions and types, PTSs can also 
be used as a parameterized framework to model various kinds of logic. A type P then corresponds 
to a proposition in the logic. A term of type P encodes a proof of P, hence to find a proof of 
P it suffices to find a term of type P. In this section we will determine the parameters that 
produce a PTS which corresponds to the first order logic we introduced in section 1.2. But before 
we determine these parameters, we will introduce the Pure Type Systems. 

2.4.1 The Definition of Pure Type Systems 

The parameters of a pure type system are S, A and R. S is a set of sorts, A is a set of axioms 
being pairs of sorts and 1? is a set of rules being triples of sorts which defines the IT-formations 
that are allowed. The rules of a PTS define a relation f- A between lists of typed A-terms and a 
single typed A-term. In this section f-,\ is simply denoted a.s f-. The rules of a PTS are such that 
it is not necessary to define what terms are allowed: the terms themselves are formed by the rules. 
We only need one set of variable symbols to represent constants, functions, propositions etc. The 
rules of a PTS are (5 E 5): 
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start 

intra 

weaken 

II-form 

IT-intra 

II-elim 

converSIOn 

<> f- 81 : 82 

rf-A:8 
r,x:Af-x :A 

rf-A:B rf-C:8 
r,x:Cf- A: B 

r f- A : 81 r, x:A f- B : 82 
r f- (IIx:A. B) : 83 

r, x:A f- b : B r f- B : 8 
r f- (.\x:A. b) : (IIx:A. B) 

r f- F : (IIx:A. B) r f- a : A 
r f- Fa: B[x :- aJ 

r f- A : B r f- B' : 8 B=fB' 
rf-A:B' 

We give a brief comment on each rule: 

(81,82) E A 

x is r-fresh 

x is r-fresh 

(81,82,83) E n 

start This is the only rule without premises in a PTS. It supplies, starting from the axioms in A, 
basic typing judgements from which all the other typing judgements are derived. 

intra Intro is used in a much more general sense than the intro-rule in natural deduction. In 
natural deduction intro allows one to add assumptions to the context. In a PTS intro allows 
one to add assumptions, constants (which in a PTS are equal to variables), functions and 
propositional variables (including predicates) to the context. This depends on the form of 
A. The type of the introduced item x depends on 8, which is the type of the type of x. 

weaken Weaken is needed to preserve existing deriviations in extended contexts. It states that 
everything that can be derived in a certain context can also be derived in a more extended 
context. 

IT-form This rule allows the construction of function types, predicates, universal quantifications 
etc. The set of rules n of a PTS determines the ways in which II - form can be used. 
Actually, the set R. states which abstractions are allowed. 

II-intra One needs this rule to actually construct terms of a type built with the previous rule. 
Without this rule, we could only assume that there are terms of this type by using intro. 

IT-elim Once a term with a IT-type is constructed or assumed, it can be used to create a term 
with a more concrete type. The IT - dim rule, also referred to as the application rule, 
instantiates the body of an abstract II-type by substituting a term for the bound abstract 
variable. 

conversion In several PTSs there is no unicity of types, i.e. a term A can have type B where B 
can be rewritten to B' by ,6-reduction. In the propositions-as-types isomorphism, Band 
B' then represent the same propositional formula and hence, A is a proof of B' just as 
well as it is a proof of B. To support this switch of representation the conversion rule is 
needed. B=f3 B' is read as B is ,6-equal to B', which means that there exists a B" such 
that Band B' can both be reduced to BO by j3-reduction. A problem with the conversion 
rule is that it does not affect the term A, which makes type-checking more difficult. 
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For example, the system A_ of Church is modeled by the PTS with parameters S == {*, o}, 
A == {(*, D)} and R == {(*, *, .)}. The type A -+ B in the original system A_ is now represented 
by (IIx : A.B). For A--+ the rule conversion is superfluous, since no type can ever contain a ,\ 
and hence, no type can ever p'-reduce to anything else but itself. 

The relation between PTSs and logic will become more clear in the next part, in which we introduce 
a PTS that corresponds to our version of first order logic. 

2.4.2 The System ,\P-

We want to have a PTS to which we can add automatic proof engines based on tableau methods. 
We therefore wish that if r I- P : *p that P is a formula in first order predicate logic. In 
most PTSs the structure of P : *p can be much more complex than formulas in first order logic. 
Therefore it is not possible to add the proof engines in such a way that they can be used on 
arbitrary propositions of these PTSs. The system AP- is designed in such a way that tableau- and 
resolution methods can be applied to any proposition that can be formed in '\P-. 

The PTS-parameters S and A of ),P- are: 

S {*s)Ds)*p,Op} 

A {(*"o,),(*p,op)} 

As one would expect, *s will be used to represent the type of all sets and *p will be used to 
represent the type of all formulas. The sorts 0, and op are the types of., and.p respectively. 
They enable the intro-rule to be used for introduction of set variables and propositional variables, 
which otherwise could only be introduced to the context by separate rules. 

The definition of R is a little harder to give. It might appear that a variant of the system AP, 
obtained by R == {(*p,*p,'p),(*"*p,*p),(*,,*,,*,),(*,,Op,op)}, is a good candidate. The ll
types formed with these rules then correspond to our concepts of first order predicate logic in the 
following way (U, V, W:', and P, Q, R: *p) 

type 
(llx : PQ) : *p 
(llx : U.Q) : *p 
(Ilx:U.V):., 
(Ilx : U.(Ily : V. W)) : *, 
(Ilx : U" p ) : op 
(llx : U.(lly : v.*p)) : op 

represents 
P=;,Q 
('Ix: U.Q) 
the type (U, V) of a unary function symbol 
the type (U, V, W) of a binary function symbol 
the type (U) of a unary predicate symbol 
the type (U, V) of a binary predicate symbol 

obtained by using 

(*PJ *p, *p) 
(*SJ*PJ*p) 
C*SJ*SJ*s) 
(*S, *SJ *s) twice 
(*S, Op, Op) 

(*SJ 0pJ op) twice 

Unfortunately, the type (Ilx : (Ily : U. V).*p) : op, being a predicate over a function, can also be 
formed in this version of )'P. But quantifying over functions is not allowed in first order predicate 
logic and is not supported by tableau and resolution methods. 

AP- in Regular PTS-style 

We could solve this problem by adding the element *1 to the set of sorts and change the set 
of rules to n = {(*S, *SJ */)' (*SJ * I, *1)' (*SJ *PJ *p), (*P' *p, *p), (*SJ Dp, Dp)}. The rule (*SJ *s, */) 
establishes that the type offunctions with arity 1 have type * f instead o£.,. The rule (',,' f, * f) 
allows us to build functions of arity greater than 1, but only functions which have elements of 
basic types (basic types have type *s) as arguments. Hence, all ll-types that were of type *s in 
the previous variant are of type *1 and therefore it is not possible to quantify over them. This 
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variant still has a drawback: if we have a context f such that f r- F (IIx: U.(IIy : V.W)) 
and f r- a : U then by the II - elim rule f r- Fa : (IIy : V. W). But in our definition of first 
order predicate logic a function with arity 2 applied to a single argument does not even occur. 
Apparently, this pure type system has more terms than the first order predicate logic we want to 
model. 

,\P- in a PTS with Parametric Constants 

A more elegant solution to the problem of unwanted quantifications over functions is found in 
chapter six of [Laa97J: a pure type system with parametric constants. Like in our definition of 
first order predicate logic a parametric pure type system has terms that only have a meaning after 
all the required arguments have been provided. That is, there are terms that cannot be typed 
unless they are applied to a number of parameters. Such a PTS is called a PPTS, where the extra 
P stands for parametric. To define a PPTS we need the set P of parameter rules in addition to 
the sets S, A and R of a regular PTS. P contains pairs of sorts. In the following rules'" stands 
for a list Xl : B 1 , ... J Xn : Bn of named variables and ~i stands for the first i-I elements of 
this list. In general B; can depend on elements Xj with j < i but in ,\P- this will not be the 
case. The additional rules of a PPTS are: 

P-weaken 

P-app 

f r- b : B f, "'i r- B; : S; f, '" r- A : s 
f, c("'):A r- b : B 

f" c("'):A, r, r- b; : B;[xj := bjl}~i for i = 1, ... , n 
f" c("'):A, f, r- A : s if n = a 

Again, we give a brief comment on these rules: 

(s;,S)EP 

P-weaken The P - weaken rule allows us to add a parametric constant to the context. In contrast 
to other extensions of the context this rule does not allow us to type the parametric constant 
itself, while the intra-rule (used for regular extensions of the context) allows the typing of 
every newly added item. 

P-app Since a parametric constant itself cannot be typed in a PPTS it cannot be used with the 
usual application (or II - elim) rule. The rule P -app allows us to use a parametric constant, 
but only if we supply all the required arguments at once. This corresponds to functions and 
predicates in first order logic: these too can only be used after all the arguments have been 
supplied. The special premise for the case n = 0 is needed to assure that the context 
f" c("') : A, f2 is a valid one. 

We now can state the following definitions of Rand P for ,\P-: 

R {(*,,*p,*p),(*p,*p,*p)} 
P {(*"*,),(*,,Op)} 

For notational convenience) we will denote the type (IIx : U.P), introduced by application of the 
rule (*" *p, *p), as (lIx : U.P) and the type (IIx : P.Q), introduced by application of the rule 

(*p, *P' *p), as P::::> Q. 

Simplifying the Parameter Mechanism 

Since in ).P- types of kind *8 cannot depend on any term (i.e. we only have basic types) the 
rules P - weaken and P - app can be simplified. Also, all rules in P start with *8. We then 
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get the following simplified version of the additional rules: 

P - weaken 
fl-b:B f,L'> I- B i : *, f,L'> I- A: S 

f, c(L'»:A I- b : B (*"S)EP 

fj,c(L'»:A,fz I- bi : Bi for i = 1, . .. ,n 
p- app fj,c(L'»:A,fz I- A: S ifn = 0 

f 1, c( L'» :A, f 2 I- c( bj , ... , bn ) : A 

Note that these rules still contain superfluous elements: the names of the parameters (hidden 
in .6.) are not needed, since the types are not depending on them. This is similar to the term 
(lIp: P.Q) obtained by II - form with rule (*p, *p, *p): In this case one uses the abbreviation 
P :::::> Q , since the P is not used in Q and hence needs not to be denoted. However, in the 
case of parametric constants we will maintain the variable names, since this is more closely to the 
way mathematicians denote function definitions and the way in which functions are declared in 
programming languages. 

Extending AP- to First Order Logic 

Also, it can be seen by the set of rules of AP- that the system is a refinement of A_. As a 
consequence, the conversion-rule is superfluous: If r ~ A : Band r f- B' : s such that B=f3 B' 
then B = B'. As a consequence, unification, and thereby type-checking, will be much easier in 
AP- than in a regular PTS version that models first order predicate logic. 

On the other hand, we do not yet have conjunction, disjunction, negation and existential quantifi
cation in .-\P-. The rules for these constructs do not belong to the standard PTS rules, because 
there exist higher order co dings for these constructs that can be built in more powerful PTSs. 
However, we will add the constructs to "\P- by adding rules, since the co dings cannot be built 
within .-\P-. The rules are: 
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l..-intro 

falsum 

classic 

A-form 

A-intro 

A-eliml 

A-e1im2 

V-form 

V-intro! 

V-intro2 

v-elim 

3-form 

3-intro 

3-elim 

<> I- 1- : *p 

rl-p: 1- rl-p,*p 
r I- pP: P 

r I- p: (P =;'1-) =;.1-

r I- classic P p : P 

r I- P : *p r I- Q : *p 

r I- P f\ Q : *p 

r I- p : P r I- q : Q r I- P f\ Q : *p 
r I- (p,q): P f\Q 

rl-p:pf\Q 
[I- 7I"1(P): P 

[l-p:Pf\Q 

r I- 7I"2(P) : Q 

rl-p,*p [I-Q,*p 

[I- P V Q: *p 

rl-p:p rl-pvQ,*p 

r I- injl (P V Q) p: P V Q 

r I- q : Q r I- P V Q : *p 

rl- injr (PVQ) q: PVQ 

rl-p:p=;.R rl-q:Q=;.R 
[I- (p'Vq): (PVQ) =;. R 

r I- U : *, [, x:U I- P : *p 

[ I- (3x : U.P) : *p 

r I- p : Pt
X r I- (3x : U.P) : *p 

r I- inj (3x : U.P) p t : (3x : U.P) 

r I- Q : *p r I- (3x : U.P) : *p r I- p : (\fx : U.(P =;. Q)) 
rI-o (3x : U.P) p : (3x : U.P) =;. Q 

Negation does not occur in the rules above, but we can model the negation of P by P ~l... For 
convenience we will denote this as oP. 

Adding all the rules above makes AP- a relatively large system compared to usual PTSs. This 
does not mean that the system is truly more complex: the rules for A, V and::3 appear in groups 
with each a form, intra and elim part. There may be many rules, but they are not difficult to 
verify. 

To model a first order predicate logic2 in .\P-, we need a basic context for '\P-. Let *f I FL and 

2To distinguish between the parameters of the first order logic framework and the parameters and sorts of the 
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pL be the set of basic sets, the set of function-symbols and the set of predicate symbols of the 
first order logic respectively. Furthermore, let TL be the set of terms defined by *f and FL. 
Then the basic context is build in the following way: 

l. For every U E *f the term U : *, is added to the context by application of the intro-rule 
of the PTS where D, is used for s. 

2. For every j : (U1, ... , Un, U) E;:L we add the parametric constant j(Xl : U1, ... , Xn : Un) : 
U to the context. These elements are introduced by application of the P - weaken-rule of 
the PTS by taking for s the sort *, . 

3. For every P : (U1, ... , Un) E pL we add the parametric constant pry! : U1, ... , Yn : Un) : *p 

to the context. Once more, this is done by application of the P - weaken-rule, now with 
sort Dp substituted for s. 

The context obtained by the steps above is denoted as fL. The relation between a first order logic 
Land AP- with context f L is expressed in the following theorems: 

Theorem 2.4.1 fL I- U : *, iff U E *f. 

Theorem 2.4.2 For any U with fL I- U : *, we have fL I- t: U ifft : U E TL. 

Theorem 2.4.3 f L I- P : *p iff P E *;. 

Theorem 2.4.4 fL I- p: P iff F P. 

Theorem 2.4.1 till theorem 2.4.3 are proved by induction on the structure of the terms. Theo
rem 2.4.4 follows from the conversion algorithm presented in the next chapter: we can convert a 
closed tableau into a A-term in AP- and the tableau method is complete, hence AP- is complete. 

To present the conversion algorithm, we also need two other theorems: 

Theorem 2.4.5 Let ~1, A: B, ~2 be a legal context (i.e. it is possible to derive ~1' A: B, ~2 I
*,: D,). Then ~1,A: B'~21- A: B. 

Theorem 2.4.6 Let ~1, A B, ~2 be a legal context such that ~1' ~2 is also a legal context. 
Then if ~1,~21- c: D then ~1,A: B,~21- C: D. 

This concludes our introduction to AP-. We will use AP- later to encode proofs found by tableau 
based proof engines in A.-terms. This way, we can use the power of ATP in a theorem prover based 
on a PPTS, without extending the logic. Also the proofs found by these proof engines can then 
be communicated and checked by other theorem provers. 

PTS we will add a 'L' in superscript to the parameters and sets of the first order logic framework. 
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Chapter 3 

Conversion of Proofs 

This chapter describes (in a way) relations between several proof systems. The main relevance 
of the chapter is that it is shown that several proof styles can be combined without violating 
the logic of the system. The logic is not extended or limited by combining the systems (e.g. 
adding a tableau-based ATP to AP-). The advantages of combined systems is that the user of 
an implementation can use his own favorite proof style, while the implementation uses a single 
formalism. 

We are particularly interested in combing a PTS-based theorem prover with a tableau based 
theorem prover. This combination adds powerful ATP to a PTS in which usually everything had 
to be proved manually. On the other hand, it provides a good basis to implement user interaction 
with an ATP, which usually would be very hard. 

In order to show that AP-corresponds to classical first order logic on which tableau methods are 
based, we also present the Curry-Howard-deBruijn isomorphism of propositions as types for .-\P-. 

3.1 A-terms as Natural Deduction Proofs 

'\-terms can be seen as encodings of natural deduction proofs. In fact this does not even require 
a real transformation. Just erasing the terms, all - form-rules and all premises considering well
formedness conditions (i.e. premises ending with": *p" or": *$") from the axioms of .\P- gives us 
an axiomatic system that looks surprisingly much like the natural deduction axioms. For example: 

ri--p:P=?R rl-q:Q=?R 
fl- (pVq): (PvQ) =? R 

becomes 
rl-p=?R fl-Q=?R 

fl-(PVQ)=?R 

The A-terms are constructed in such a way that every A-term corresponds to exactly one derivation 
in natural deduction. For instance, the term (p'Vq) encodes that proofs p and q of P ::::> Rand 
Q =? R respectively are used to proof (P V Q) =? R. The V-symbol indicates the way in which 
the proofs are combined. In fact, the structure of A-terms administrates the order in which axioms 
of the PTS are applied in order to get a proof of the proposition represented by their type. 

We will not show how every A-construct can be converted to the corresponding step in natural 
deduction, since most of this is trivial. However, we will comment on two translations that are 
less direct: 

1. A A-abstraction corresponds to either an application of::::> I or an application of V I depend
ing on its type (>.-abstractions always have a II-type). In case of a A-abstraction, checking 
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the type of the term provides us the information we need in order to translate (or better: 
read) the proof encoded in the A-term. 

• If the type is obtained by using the rule (*" *p, *p) then the A-term corresponds to 
III . 

• If we need (*p, *p, *p) to construct the type then the A-term corresponds to =} I. 

2. Application terms correspond to an application of => E or an application of 'if E. For 
application Fa we check the type of F. 

• If it is constructed using (*$, *P' *p) then the application corresponds to using the 
liE-rule. 

• If the type of F was constructed using (*p, *p, *p) it corresponds to using => E. 

We finish explaining the correspondence between natural deduction proofs and A~terms with two 
examples. 

Example 1: From Natural Deduction to AP- The following derivation in AP- follows the 
proof of ((:3x : U.p) II (lIx : U.p =} q)) =} (:3x : U.q) , which was given in natural deduction on 
page 9. 

(0) f L, P : (:3x : U.P) II (lIx : U.(P =} Q)) I- p: (:3x : U.P) II (lIx : U.(P =} Q)) note 1 
(1) rL, f I- 1l"l(P) : (:3x : U.P) 
(2) f L , f I- 1l"2(p) : (lIx : U.(P =} Q)) 
(3) fL, f, "': U I- 1l"2(p)", : P:; =} Q;; note 2 
(4) fL,r,"': U,p': P; I- p': P; 
(5) fL, r, "': U,p': P; I- 1l"2(P)"': P:; =} Q;; 
(6) fL, f,": U,p' : P; I- 1l"2(P)"'P' : Q;; 
(7) r L , f, a: U, p' : P:; I- inj(3x : U.Q)(7r2(p)ap')a : (3x: U.Q) 
(8) f L , r, '" : U I- (Ap' : P;.(inj(:3x : U.Q)(7r2(p)",P')",)) : P; =} (:3x : U.Q) 
(9) f L , f I- (AX: U.(Ap' : P.(inj(3x : U.Q)(1l"2(p)XP')x))) : (lIx : U.P =} (:3x : U.Q)) note 3 

(10) fL, f I- (0(:3" : U.P)(AX : U.(Ap' : P.(inj(:3x : U.Q)(1l",(p)xp')x)))) 
: (:3x : U.P) =} (3x : U.Q) 

(11) fL, f I- (O(:3x : U.P)(AX : U.(Ap' : P(inj(:3x : U.Q)(1l"2(p)Xp')x)))) 7rl(p) 
: (:3x : U.Q) 

(12) fL I- AP: (:3x : U.P) II (lIx : U.(P =} Q)) 
.(O(:3x : U.P)(AX : U.(Ap' : P.(inj(:3x : U.Q)(1l"2(P)XP')x)))) 1l"l(P) 
: ((:3x : U.P) II (lIx : U.(P =} Q))) =} (:3x: U.Q) 

note 1 We use f as shorthand for P : (:3x : U.P) II (lIx : U.( P =} Q)). We omit derivations of the 
types because of space. 

note 2 In a PTS the variable 0: has to occur in the context explicitly. 

note 3 We rename 0: to x, which is possible, since 0: does not occur within the body of (3x : U.Q). 
This also allows us to write P for P;. 

Example 2: From AP- to Natural Deduction 

The second example will show how to construct a natural deduction proof from two different A~ 
terms that both have type (P II Q) =} (P V Q). The terms are (Ap : P II Q.injl (P V Q) 1l"l(p)) 
and (Ap : P II Q.injr (P V Q) 1l"'(p)) respectively. Even though both terms have the same type 
they are different and hence, they encode different proofs. 
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Decoding the first A-term 

We will decode the first A-term in detail. Decoding results in a proof (or derivation) of I- (P II Q) c? 

(P V Q) in natural deduction. 

The first term is an abstraction of proofs p of P II Q over injl (P V Q) 11") (p). Its type (P II Q) c? 

(P V Q) is obtained by using (*p, *P' *p), hence the abstraction indicates application of the rule 
~ I from the natural deduction system. The premise of => I is f,p r q. Since the conclusion 
should read (P II Q) c? (P V Q) we must now find a derivation of P II Q I- P V Q. 

The next step is analyzing the body of the abstraction: inj/ (P V Q) 11") (p). The injl indicates 
that in natural deduction the rule V Il should be used. The result should read P II Q I- P V Q 
and hence, we require a derivation of P II Q I- P. This proof is encrypted by 11") (p). 

11") (p) indicates that we should use natural deduction rule IIEI. Since in the PTS-system p has 
type P 1\ Q, we have to apply I\El to P 1\ Q. Hence, we have to derive P 1\ Q I- P 1\ Q. This is 
trivial, since it is equal to the axiom start of natural deduction. 

Altogether the proof of I- (P II Q) c? (P V Q) encoded by the first A-term reads: 

(0) PIIQI-PI\Q 
(1) PIIQI-P 
(2) P II Q I- P V Q 
(3) I- (P II Q) c? (P V Q) 

Decoding the second A-term 

intro 
IIE1 on (0) 
VIlon(l) 
c? I on (2) 

The proof of the same formula as encoded by the second A-term reads: 

(0) PIIQI-PI\Q 
(1) PIIQI-Q 
(2) P II Q I- P V Q 
(3) I- (P II Q) c? (P V Q) 

intro 
IIE2 on (0) 
VI2on(l) 
c? I on (2) 

Which is slightly different because the A-term is slightly different. 

3.2 From Closed Tableaus to A-terms 

In this section we will describe an algorithm to convert closed tableaus into A-terms of )'P-. These 
A-terms can easily be transformed into A-terms of other PTSs, provided that these other PTS's 
are powerful enough. The closed tableau may be produced by any tableau-based theorem prover. 
This gives us the capability to lise existing theorem provers as a module in an implementation 
of ,\P- and thereby adding powerful automated theorem proving to an interactive proof system, 
without the danger of extending our logic in an unforeseen way. If there is enough trust in the 
correctness of the implementation of the automatic theorem prover we can also use a special token 
to encode that the proof can be constructed using the ATP. We then do not have to actually 
convert the tableau and store the large A-term that is the result of converting the tableau. The 
ATP can then reconstruct the tableau and convert it into a A-term on request; for instance, if we 
want to communicate our proof to somebody using a different theorem prover based on A-calculus. 

The conversion is done in a structured way: for similar rules of the tableau method, similar 
conversion steps are performed. The classes of similar rules of the tableau method are usually 
called CY-, (3-, ,- and 6-rules. In figure 2.1 on page 10 each class is depicted in one row. The 
top row displays the special rule, which is very simple to convert. In figure 3.1 for each class the 
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structure of the rules is depicted. Our conversion algorithm will have one case for every class of 
rules. 

special 
~~P 

P 

" 
E(P,Q) 

fJ 
E(P,Q) 

E,(P), E2(Q) E , (P) I E 2(Q) 

-y 
E(U, P) 

8 
E(U,P) 

E'(P)~ E(U, P), E'(pn 

g new variable of type U t a term of type U 

Figure 3.1: Structure of the different classes of tableau rules. 

We will now show how to model each step of a tableau-proof of the formula P in AP-. We 
assume that we have the basic context fL (see 2) to model the first order logic. In the conversion 
algorithm the labels of the tree correspond roughly to a context for AP-. The propositions in a 
label are used as types of assumptions in the context, but we will also have a few variables. To 
modify contexts of AP- we will intensively use theorem 2.4.5 and theorem 2.4.6 on page 22. 

3.2.1 Converting the Initial Tableau 

The tableau starts with a node labeled by ~P and the initial context for AP- will be fL,p: ~P. 

As explained in section 2.2 the tableau represents a contradiction derived from ,P and hence, 
converting the tableau should result in a contradiction c:.1.. derived from the context rL,p: ,P. 
The validity of P in AP- is then given by fL I- classic P (Ap: ~P.c): P. 

3.2.2 Converting Applications of Tableau Rules 

Derivation of the contradiction is done recursively: first a contradiction is derived from the suc
cessor nodes and then a term is constructed for the current node. How this final construction of 
the contradiction is done depends on the tableau rule used to extend the node. We denote the 
context corresponding to the current node as rL,6.1,X: X,6. 2, where X is the proposition to 
which the tableau rule was applied. The context of the successor-node(s) will be stated for each 
case separately. For each type of node we will describe the construction of the contradiction. 

Conversion for the Special Rule 

Our first case will deal with the special tableau-rule: 

~~P 
-P-

We have to derive a contradiction c from a node with context r L, 6. 1,0 : -"P,6.2. For the 
successor-node we create the corresponding context fL,6.1,6.2,p: P. By recursion, we derive 
a contradiction c from this successor node, hence we have f L, 6. 1 ,6.2 , P : P I- c :1... Then the 
contradiction we seek is derived as follows: 

26 



(0) r L , ll" ll"p: Prc:1. 
(1) rL, ll" ll, r (Ap: Pc) : P =>1. 
(2) rL, ll" 0: (P =>1.) =>1., ll, r 0: (P =>1.) =>1. 

(3) r L , ll" 0 : (P =>1.) =>1., ll, r classic Po: P 
(4) r L , ll" 0: (P =>1.) =>1., ll, r (AP: Pc) : P =>1. 
(5) r L , ll" 0: (P =>1.) =>1., ll, r (Ap: Pc) (classic P 0) :1. 

induction hypothesis 
IT-intra on (0) 
see remark 3.2.1 
and theorem 2.4.5 
classic on (2) 
theorem 2.4.6 on (1) 
IT-elim on (3) and (4) 

Remark 3.2.1 Formally we also need to derive types in order to apply the PTS-rules. For 
instance in step (2), we indirectly apply intra on the type (P =>1.) =>1. by using theorem 2.4.5, 
but for this we also need a type judgment saying rL, ll, r (P =>1.) =>1.: *p. Such a type judgment 
can be derived by: 

(a) rL , ll,r P : *p Theorem 2.4.3 and P EO *;: 
(b) r L ,lll,p:pr1.:*p 
(e) rL, ll,r P =>1. 

Axiom of AP- and repeated weaken 
IT-form on (a) and (b) 

(d) r L , ll"p: (P =>1.) r 1.: *p 

(e) rL, lllr (P =>1.) =>1.: *p 

Axiom of AP- and repeated weaken 
IT-form on (a) and (b) 

For reasons of space and simplicity, we will omit these type derivations. Usually it will be evident 
that the types are correct. 

Conversion for a-rules 

Before we present the general scheme to convert a-rules, we describe the conversion of the typical 
case of an a-rule: conjunction. The tableau rule is: 

PIIQ 
P,Q 

We have to derive r L, ~1, 0 : P 1\ Q,.6.. 2 I-? :1-. To the successor node, we assign the context 
rL,,6.1'~2)P: P,q: Q. By recursion, we get from this context a contradiction: rL),6.b~21P: 
P, q : Q I- c :1.. To derive a contradiction from the original context we use the following derivation: 

(0) r L , ll" ll"p: P, q: Q r c :1. 
(1) rL,ll"ll"p: P r (\q: Q.c): Q =>1-
(2) rL, ll" ll, r (AP: P.(Ag : Q.c)) : P => (Q =>1.) 
(3) rL,ll"o: PIIQ,ll,r 0: PIIQ 
(4) rL , ll" 0: P II Q, ll, r 1T'(O) : P 
(5) rL,D.,,0:PIIQ,ll,r1T2(0):Q 
(6) r L , ll" 0: P II Q, D.2 r (Ap: P(Ag: Q.c)) : P => (Q =>1.) 
(7) rL, ll" 0: P II Q, ll, r (Ap: P.(Aq: Q.c)) 1T'(O) : Q =>1. 
(8) r L, ll" 0 : P II Q, 112 r (Ap: P.(Aq : Q.c)) 1T,(O) 1T2(0) :1. 

Hence, the solution is given by?:= (AP: P(Aq: Q.c)) 1T'(O) 1T,(O). 

In the general case we consider the tableau rule: 

E(P,Q) 
E,(P),E,(Q) 

induction hypothesis 
II-intra on (0) 
IT-intra on (1) 
theorem 2.4.5 
II-elim, on (3) 
II-elim, on (3) 
theorem 2.4.6 on (2) 
IT-elim on (4) and (6) 
II-elim on (5) and (7) 

We have to derive a contradiction from the context fLl 6.1, 0: E(P, Q), .Q.2. To the successornode 
we assign the context r LJ Ll 1J Ll2J p: E1(P), q : Ez(Q) from which we get a contradiction c:1.. by 
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recursion. In order to obtain a contradiction from the original context, we use a modified version 
of the scheme given above: Steps (0) till (2) remain unchanged, except that P has now become 
E , (P) and Q has become E,(Q). In step (3) we introduce 0 : E(P, Q), but to continue with 
steps (4) till (8) we need rL, ~" 0: E(P, Q),~, r?' : E,(P) A E,(Q). How this is accomplished 
depends on the actual rule that is applied. For every rule we can construct a derivation and hence 
a A-term to fill in for ?'. The derivation of the individual A-terms is omitted here, but the results 
are given in table 3.1. In this table, the conversion function T gives for a term 0 : E(P, Q) a 
term with type E,(P) A E,(Q). Since steps (4) till (8) are performed after using the conversion 
function T, the appearances of 0 in these steps become T(o). Note that the conversion functions 
produce A-terms and that they are not A-terms themselves. 

E(P,Q) E , (P) E,(Q) T(o) : E , (P) A E,(Q) with 0: E(P, Q) 
PAQ P Q 0 

,(P ~ Q) P ,Q (classic P (AP: ,PO(Aq: P.p q Q)), (Aq : Q.O(Ap: P.q))) 
,(P V Q) ,P ,Q (AP: Po (inj/ (PVQ) p),Aq: Q.o (injr (PVQ) q)) 

Table 3.1: Conversion functions for a-rules. 

Conversion for ,6-rules 

Again, we start with the typical case as an example. For ,6-rules the typical case is a disjunction, 
which has the tableau rule: 

PVQ 
PIQ 

If the current context is rL , ~1' 0: PVQ, ~2 then its successors will have contexts fL, ~1' ~2,p: 

P and rL, ~1J ~2, q : Q respectively. From the successor contexts we have derived contradictions 
Cl and C2 by recursion. The derivation of a contradiction from the current context is then given 
by: 

(0) rL, ~" ~2,P: P r c, :1. 
(1) r L , ~" ~2' q : Q r C2 :1. 
(2) rL,~,,~, r (Ap: PC1): P ~1. 
(3) r L , ~,,~' r (Aq : Q.C2) : Q ~1. 
(4) rL, ~" ~2 r ((Ap: P.C1)'V(Aq : Q.C2)): (P V Q) ~1. 
(5) rL,~"O:PVQ,~,ro:PVQ 
(6) rL, ~" 0: P V Q, ~2 r ((AP: P.C1)'V(Aq : Q.C2)) : (P V Q) ~1. 
(7) r L , ~" 0: P V Q,~, r ((Ap: P.C1)'V(Aq : Q.c,)) 0:1. 

To convert the general case we consider the tableau rule: 

E(P,Q) 

induction hypothesis 
induction hypothesis 
II-intra on (0) 
II-intra on (1) 
V-elim on (2) and (3) 
theorem 2.4.5 
theorem 2.4.6 on (4) 
II-elim on (5) and (6) 

We use the same strategy we used for a-rules: The derivation above is used as a scheme in which 
we have to replace P by E , (P) and Q by E,(Q) in lines (0) to (4). Instead of introducing 
o : P V Q in line (5), we introduce 0 : E(P, Q) and then insert a derivation between line (5) 
and line (6) that results in a A-term of type E,(P) V E 2(Q). These A-terms depend on 0 and 
can be obtained by applying a transformation function T to o. The transformation functions for 
,6-rules are given in table 3.2 but their derivation is omitted. Again, the transformation functions 
T produce A-terms but are not A-terms themselves. 

The remainder of the general case (the new lines (6) and (7)) then follows easily. 
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E(P,Q) E,(P) E,(Q) T(o) : E,(P) V E,(Q) with 0: E(P, Q) 
,(P II Q) ,P ,Q classic (,P V ,Q) Ar : ,(,P V 'Q). 

r(injl (,P V ,Q) (AP: P.r(injr (,P V ,Q) (Aq : Q.o(p, q))))) 
P~Q ,P Q classic (,P V Q) Ar: ,(,P V Q). 

r(injl (,P V Q) (AP: P.r(injr (,P V Q) (0 p)))) 
PVQ P Q 0 

Table 3.2: Conversion functions for ,B-rules. 

Conversion for r-rules 

The typical case for a -y-rule is existential quantification, with the tableau rule: 

3x: U.P 
Pi; 

The current context is rL, Ll.
" 

0: (3x : U.P), Ll.,. For -y-rule we have to extend the context more 
than for the other cases: we do not only add p : P to the successor's context, but also a fresh 
variable () : U. The successor's context then reads fLl ~1, .6. 2, () : U,p: P. By recursion we have 
derived a contradiction c from this context. A contradiction from the current context is derived 
as follows: 

(0) rL,Ll."Ll."B: U,p: P r- c:1-
(1) r L, Ll.

" 
Ll." B : U r- (AP: P.c) : P ~1-

(2) rL, Ll.
" 

Ll., r- (AB : U.(Ap: P.c)) : (\lB: U.(P ~1-)) 
(3) rL,Ll."Ll., r- 0 (3x: U.P) (Ae: U.(Ap: Pc)): (3x: U.P) ~1-
(4) rL, Ll.

" 
0 : (3x : U.P), Ll., r- 0 : (3x : U.P) 

(5) r L , Ll.
" 

0: (3x : U.P), Ll., r- 0 (3x : U.P) (Ae : U.(Ap: P.c)) 
: (3x : UP) ~1-

(6) rL, Ll.
" 

0 : (3x : U.P), Ll., r- (0 (3x : U.P) (AB : U.(Ap: Pc))) 0:1-

induction hypothesis 
II-intra on (0) 
II-intra on (1) 
3-e/im on (2) for 1-
theorem 2.4.5 
theorem 2.4.6 on (3) 

II-elim on (4) and (5) 

Like before, we lise the above derivation to obtain a scheme for the general case. The tableau rule 
IS: 

E(U,P) 
E'(P), 

First, we replace P in the derivation above by E'(P), in lines (0) to (2). In line (3), P is 
repJaced by just E'(P) , which is allowed, since the occurrences of x in P that were bound within 
E(U, P) are now explicitly bound by the 3x : U . .. occurring before E'(P). Next, we change the 
intra in line (4) to an introduction of 0: E(U, P). Finally, we insert a derivation of a A-term of 
type (3x : U.E'(P)) between line (4) and line (5). Also like before, these A-terms are given by a 
transformation function T . The transformation functions for ,-rules are given in table 3.3. 

E(U,P) E'(P) T(o) : (3x : U.E'(P)) with 0 : E(U, P) 
(3x: U.P) P 0 

,(\Ix: U.P) ,P classic (3x : U.,P) CAr: ,(3x : U.,P). 
o(Ax : U.classic P (AP: ,P.r(inj (3x: U.,P) P x)))) 

Table 3.3: Conversion functions for ,-rules. 
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Conversion for 6-rules 

In case of 6-rules the most typical example is the rule for universal quantification, with tableau 
rule: 

Vx: U.P 
Vx: U.P, P,x 

Given the current context fL, .1. 1 , 0: ("Ix: U.P),.1.2 and the term t used to extend the tableau, 
we construct for the successor node the context fL,.1. 1,O: ("Ix: U.P),.1. 2,p: P{. Note that 
the original universal quantifier is still present in this context. After the contradiction c has 
been derived from the successor's context by recursion we derive a contradiction from the original 
context as follows: 

(0) f L , D.j, 0: (Vx : U.P), D.2 ,p: P,x I- c:-1 
(1) fL, D.j, 0: (Vx : U.P), D.2 I- (Ap: Pf.c) : P,x =>-1 
(2) f L , D.j, 0: (Vx : U.P), D.2 I- 0: (Vx : U.P) 
(3) fL, D.j, 0: (Vx : U.P), D.21- t : U 
(4) f L, D.j, 0: (Vx : U.P), D.2 I- 0 t : P," 
(5) fL,D.j,O: (Vx: U.P),D.21- (Ap: Pf.c) (0 t):-1 

induction hypothesis 
II-intro on (0) 
theorem 2.4.5 
ok because of theorem 2.4.2 on page 22 
II-elim on (2) and (3) 
II-eJim on (1) and (4) 

To make this derivation suitable for the general case, consider the rule: 

E(U,P) 
E(U, P), E'(P)f 

We replace (Vx : U.P) by E(U, P) and Pt by E'(Plf in the entire derivation. We then have to 
insert a derivation of a term of type (Vx : U.E'(P)) from 0 : E(U, P) after line (2). The resulting 
).-term of this derivation is given by the transformation functions T given in table 3.4. 

E(U,P) E'(P) T(o) : (Vx : U.E'(P)) with 0 : E(U, P) 
(Vx : U.P) P 0 

,(3x : U.P) ,P (Ax: U.(Ap: P.o (ini (3x : U.P) p x))) 

Table 3.4: Conversion functions for 6-rules. 

3.2.3 Conversion of Closed Leafs 

Recursion ends when we convert a leaf of the tableau. At a leaf we cannot use a contradiction 
derived from successor-nodes, since there are no successor-nodes. However, at a closed leaf we 
have a context in which both a variable of type P and a variable of type -,p occur. In ,:xp
negation is modeled by implication and L Hence, in the context fL,D.j,p: P,D.2,P' : ,P,D.3 we 
can derive the contradiction pIp. 

This concludes the conversion algorithm. Note that if during the construction of a tableau needless 
steps are taken these will also be translated. 

The converted proof may be much longer than a proof that is constructed directly in )'P-. For 
example: a direct proof of R => R in AP- looks like fL I- (Ap : R.p) : R => R. However, if we 
convert the tableau 

x 
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we get a much larger A-term. Following the algorithm, we start with fL I- classic (R =? R) (AO: 
,(R =? R).c) : R =? R, where c is a contradiction extracted from the initial context fL, 0: ,(R =? 

R). The tableau rule applied is an a-rule for implication. The resulting A-term of this conversion 
in general is (Ap : E,(P).(,\q : E2(Q).d)) ",(T(o)) 7r2(T(o)) :1-, in which c' is the contradiction 
derived from the successor's context fL,p: E,(P), q: E,(Q). If we fill in P, Q, E

" 
E, and T 

for our example and then use the result of this substitution in our proof, we get 

classic (R =? R) (AO: ,(R =? R).(Ap: R.Aq : ,Kc') 
7rl(classic R (AP: ,R.O(Aq: R.pqR)), (Aq : R.O(Ap: R.q))) 
",(classic R (AP: ,R.O(Aq : R.pqR)), (Aq: R.O(Ap: R.q)))) : R =? R 

and c' is the contradiction derived from the context rL,p : R, q : ,R. This corresponds to the 
context in which the tableau gets closed by Rand ,R, hence the algorithm gives us c' == qp. The 
final proof then reads: 

fL I- classic (R =? R) (AO: ,(R =? R).(Ap: R.Aq : ,R.qp) 
",(classic R (AP: ,R.O(Aq : R.pqR)), (Aq : R.O(Ap: R.q))) 
",(classic R (AP: 'R.O(Aq : KpqR)), (Aq : R.O(Ap: R.q)))) : R =? R 

This 'explosion' of the proof term is certainly a drawback of this proof method. However, we do 
not need to really convert each proof. We can use a short representation in a A-term to indicate 
that the required term can be found with the tableau prover built in the system. We can then 
construct the A-term on request, by reconstructing the tableau and then convert it according to 
the method we described. 
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Chapter 4 

Conclusions 

4.1 Advantages 

In this document we presented a pure type system '\P- that closely models first order logic. We 
compared it to natural deduction and tableau methods and showed that these can be performed 
within >tP-. These results offer the possibility to construct an interactive proof system based on 
pure type systems with an in-built automated theorem prover for first order logic. This has the 
following advantages: 

• Pure type systems offer a compact, yet powerful way to prove theorems. 

• Due to its parameter mechanism >.P- does not contain the conversion-rule of a regular PTS. 
This makes designing the unification algorithm, and hence the type checker simpler and the 
implementation faster. 

• Proofs are encoded with A-terms and hence) can be type-checked for correctness by a simple 
program. This increases the reliability of the system. 

• A-terms can be communicated to other theorem provers based on Pure Type Systems like 
Coq, Lego or HOL. Verifying the constructed proofs on several systems increases the relia
bility of the system even more. 

• Providing an automated theorem prover based on tableau methods offers a high degree of 
automation that is usually not present in interactive theorem provers (see [Fra97]). Con
verting the tableau into a '\-term offers a safe verification method of the proof. Detecting 
errors in a large tableau based theorem prover becomes easier. 

4.2 Disadvantages 

A drawback of the method of tableau conversion is the 'explosion' of the A-term. The proof 
obtained in this manner is not suitable for a human reader. However, we plan to use the theorem 
prover in an environment for proving program correctness. In such an environment the user of 
the system is a programmer who will only be interested in whether or not a theorem is correct. 
Usually programmers do not want to read every detail of their proof. Also, it is possible not to 
convert the proof at all, but add an axiom to the derivation system that looks like: 
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r f- P : *p 'We have a closed tableau for P' 
r r tab P : P ( 4.1) 

,where tab is just an extension of the A-term syntax to encode that P was proved by a tableaux
based theorem prover. This axioms allows us to use the theorem prover without getting extremely 
large A-terms. Since we can reconstruct the tableau and convert it to a A-term whenever we want 
to" we can still communicate our proofs to other theorem provers. 

Another drawback is that AP- is only suitable for first order logic, not higher order logic. If we use 
a pure type system for higher order logic, e.g. the calculus of constructions, we cannot apply the 
automated theorem prover to every propositional formula we can derive in the pure type system. 

4.3 What about resolution? 

We also presented resolution methods, which like the previous systems is sound and complete 
with respect to the semantics of first order logic. Therefore it is also possible to use an axiom like 
axiom 4.1 if we want to include a resolution based theorem prover in our system. However, we 
then no longer can communicate our proofs to other systems, since we do not have a method to 
convert a resolution proof to a A-term. 

Our attempts to find a conversion algorithm for resolution proofs have not succeeded. If one 
attempts to simulate the steps of a resolution proof directly in )'P-, then problems arise during 
conversion of the resolution proof after the formula has been skolemized. Suppose we want to 
prove r L f- X : *p by simulating a given resolution proof of X. First, we use the classic rule 
and simulate all the rewrite steps that lead to the head normal form (HNF) of ,X. Second, we 
simulate the rewrite steps that convert the body of the HNF of ,X into conjunctive normal form, 
e.g. we get something like: 

0: 'Ix: U.3s : U.((Px V QC3 V Rs) A (5x V ,QC3 V Rs) A (,Pc I) A (,5c,) A (,Rx)) 

,where Ci denote constants. However, we cannot simulate skolemization. Simulating skolemization 
requires the introduction of fresh functions to the context, which in AP- are parametric terms. 
We could then never get rid of these functions anymore, since we cannot make A-abstractions over 
parametric terms. Therefore we could never transform a proof of the skolemized formula into a 
proof derivable from the context rL. Hence, something else is needed here. 

Simulating the applications of the cut-rules in a resolution proof is now not possible in general, since 
in the resolution proof the order of applying these cut-rules causes problems during simulation: 
Several values may be substituted for a free variable in the same clause in several resolution steps. 
The results obtained by these successive steps can then be combined again later in the proof with 
yet another substitution. For instance, consider the following resolution proof of our example: 

(0) Px V QC3 V Rs(x) 
(1) 5x V ,QC3 V Rs(x) 
(2) ,PCl 
(3) ,5c, 
(4) ,Rx 
(5) QC3 V Rs( cd 
(6) ,QC3 V Rs(c,) 
(7) Rs( cd V Rs( c,) 
(8) Rs(c,) 
(9) 0 

[derived from (0) and (2), substitution x := cd 
[derived from (1) and (3), substitution x := c,] 
[derived from (5) and (6), no substitution] 
[derived from (4) and (7), substitution x:= s(cd] 
[derived from (4) and (8), substitution x := s(c,)] 
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In clauses (0) till (4) the skolem function sex) refers to the same existential binder (see the 
representation of the initial clauses in '\P- given before) 

However, in clauses (5) and (6) we have S(Cl) and s(c,) respectively, which refer to different 
existential quantifiers, since they are obtained by applications of 0 to Cl and C2 respectively: 

o Cj : 3s : U.((PCl V Qe3 V Rs) II (SCI V ,Qe3 V R8) II (,Pe,) II (,Sc,) II (,Re,)) 
o e, : 38 : U.((Pe, V QC3 V Rs) II (Se, V ,QC3 V Rs) II (,PCI) II (,Se,) II (,Re,)) 

This obscures the conversion, since the partial results contain skolem functions, which in the ).
terms are explicitly existentially quantified. The bodies of these quantifications then have to be 
combined to obtain a new (partial) result (see derived clause (7)). I.e. we need the following rule 
that is not true in general (the existential quantifiers refer to the same skolem-function in the 
resolution proof): 

r I- (3x : U.(P V Q)) r I- (3x: U.(,P V R)) 
r I- (3x : U.(Q V R)) 

Individual proofs always seem to be convertible by using a different order of eliminating canjuncts 
from the clauses, but we have failed to find a general algorithm that does the job. 
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