EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY

A drawing system based on a formal picture concept

Citation for published version (APA):
Kessener, L. R. A., & Willemsen, H. (1974). A drawing system based on a formal picture concept. JUB 6700 :
Journal for the Users of the Burroughs 6700, (3), 33-59.

Document status and date:
Published: 01/01/1974

Document Version:
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

* A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOl to the publisher's website.

* The final author version and the galley proof are versions of the publication after peer review.

* The final published version features the final layout of the paper including the volume, issue and page
numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain
* You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:

openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://research.tue.nl/en/publications/7620bd4d-7906-464d-948c-1e009754877e

JUB 3-33

A drawing system based on a formal picture concept.

by ‘Rens Kessener, Herman Willemsen

(Eindhoven University of Technology, Computing Centre).

Summarz.

A definition of the concept "PICTURE" is used to implement a drawing
system on a Burroughs B6700 of the Eindhoven University of Technology.
This concept contains a set of elements which may be PICTURES as well,
A number of procedures has been constructed based on the definition

of the PICTURE concept.

This procedure package covers many application areas and is independent
of the drawing device.

The constructed drawing may be mapped on any device suitable to draw

(e.g. a storage tube, a plotter, a printer).

Introduction.

A drawing (or a FYSICAL PICTURE) is considered to exist of the definition
of a PICTURE. This PICTURE is mapped on a device that is suitable to draw.
Therefore a concept "PICTURE" is necessary and a number of procedures
building the PICTURE in order to draw it (i.e. a procedure package).
The aims which must be fulfilled by the concept are:
- the concept must be structured;
- the concept must be easy to manipulate and easy to understand.
For the procedure package it is required that:
- the package covers all disciplines that appear at a university
(e.g. the Eindhoven University of Technology);
-~ the package is independent of the device;

- the use of the package involves operator interference as little as possible;
- it is possible to generate several drawings simultaneously i.e. within

a program as well as in a multiprogramming environment.

JUB 3-34

To reach the aim of simultaneous generation of drawings, it is necessary
to create a sort of backup mechanism. In addition, to be device independent
the information must be such that it can be interpreted by a drawing

machine for a specific device.

. DATA DRAWING
! FILE DEVICE 1
USER 1
PROGRAM 1 |
\
\ DRAWING MACHINE
¥ YuDATA DRAWING
{ EIR DEVICE 2
, USER N
| PROGRAM 2 | ™ | DATA DRAWING
| ~! FILE DEVICE 3
3
Figure 1: Schema of drawing system

The user generated PICTURE info may be interpreted by a drawing machine

for a specific device.

In the succeeding sections we will explain the PICTURE concept.
We will discuss some differences between the concept and the actual

implementation.

Finally we will discuss the procedure package and the software drawing

machine.

The PICTURE concept.

In order to formulate the PICTURE concept we draw distinction between

PICTURES and IMAGES.

An IMAGE consists of a set of elements. Each element is determined by
its type and its position. The position is expressed in units of R2
(two dimensional) or R.3 (three dimensional). By mapping an IMAGE into
another IMAGE the former becomes a PICTURE.

We will explain this map in more detail later.

JUB 3-35

More formally we may define:
< image > i:1= < open bracket > < set of elements > < close bracket >

< set of elements > ::= < empty >|< element > < set of elements >

We already saw that an IMAGE can be mapped into another IMAGE and then
we call it a PICTURE.
So a PICTURE can be an element of an IMAGE (its type is IMAGE, its posi-
tion is indicated by the map).
We distinguish only one other element type: PRIMITIVE.
A PRIMITIVE may have the following kind:

dot

point

straight line piece

curved line piece

text

axis

Now let us explain some terms more explicitly:

MAP.

A map consists of:
1. scaling
i.e. x —— y such that y = Ax (A = scaling factor)

2. translation

i.e. X —— y such that y=+t+x (tis translation vector)
3. rotation
i.e. x ——— vy such that ¥ = Rx (R 1s rotation matrix).

The map is performed by means of a matrix multiplication. The way this

matrix is constructed is very dependent of the implementors point of view.
(See [3], [43)

WINDOW.

A window is defined by specifying of a rectangle in the current space.
All elements, or parts of elements that appear outside that window will

never be visualized.

JUB 3-36

PRIMITIVES.
Dot A dot is indicated by its coordinates.
Its representation is a simple dot.
Point A point is indicated by its coordinates.
Its representation is a special character (R, *, + etc.).

Straight line piece

A straight line piece is indicated by the coordinates of its
extreme points.

Its representation may be fully drawn, dotted, dashed or dot-
dashed.

Curved line piece

A curved line piece is indicated by the coordinates of its

extreme points and the derivatives in these points. This holds

for 2D. For 3D it probably must be indicated by a parameter form.
For 2D a part of a third degree polynomial is drawn through the
indicated points in which the derivatives agree with the indi-

cated values.

Its representation may be fully drawn, dotted, dashed or dot-dashed.

Text A text 1s indicated by its extreme points and its content.

Its representation may be italicized.

Axis An axis 1s indicated by its extreme points.

Optionally numbering and comment may be specified.

Remarks:

Text The text was our main problem and actually it still is. Because
by mapping an IMAGE into another IMAGE the ultimate visible text
may be considerably deformed.

As we consider a text to be comment which should be readable we

defined a character to be represented in a square when it is drawn
in the real world.

Axis For axis a comparable remark as for text holds.
We consider an axis to be a piece of comment which should be read-
able in its final representation.

Curved line piece

The choice of a third degree polynomial approximation is arbitrary.

Any other approximation should suit as well.

FINAL FORMAL DEFINITION.

<

<

2y

image > :

set of elements » :

element > :
picture > :
window > :
map > HH

primitive >

dot >
point >

straight line piece

curved line piece >

representation >

text >

JUB 3-37

open bracket > < set of elements > < close bracket >

empty >l< element > < set of elements >

primitive >|< picture >

map > < window > < image >

empty >f< row of coordinates >

translation > < scaling > < rotation >

dot >|< point >|< straight line piece »

curved line piece >[< text >|< axis >

row of coordinates

row of coordinates

row of coordinates

representation >

row of coordinates

row of coordinates

>

>

>

>

<

<

fully drawn >|< dotted

row of coordinatés > <

3 - 4 .
italicity > < string >

point type >

row of coordinates >

slope value >
slope value > < representation >
>|<¢ dashed >|< dot-dashed >

row of coordinates >

row of coordinates » < row of coordinates >

number of intervals >|< row of coordinates >

row of coordinates > < number of intervals >

numbering information > |

row of coordinates > < row of coordinates >

humber of intervals > < numbering information >

string >

The final appearance of the items, that are not elaborated, is implementor

dependent.

JUB 3-38

MAPPING THE IMACE ONTO A VISIBLE MEDIUM.

o far the IMAGE is still a virtual thing. By mapping the IMAGE onto
the real world (say a piecé of paper or a screen) a final map must
be performed and the IMAGE can be made visible, 1.e. the FYSICAL PICTIUKE.
As the real world, onto which the IMAGE is mapped, is limited, this
firal map has to be slightly different than the MAP described before.
is why we call this final map the WINDOWMAP.

w INDOWMAP.
windowmap consists of:
declaration of an area of the real world that will be visible;
a map of rthe image onto the real world.
24 1. This declaration may be comsidered as the piece of paper on which
the TMACE will be visualized.
This holds for two dimensionms.
For three dimensions there must be a definition of the point of
view and the plane on which the IMAGE will be projected as well.

ad 2. The map must describe the relation between the points in the real

world and the points of the IMAGE.

The windowmap is performed by indicating a rectangle in the 'visible"
world and indicating a rectangle in the images world. The content of

the rectangle in the IMAGE will be mapped onte the rectangle in the

real world.

It is obvious that for 3D a block in the images world must be defined,

a viewing point and/or a plane onto which the block content will be mapped.
Conclusion.

We didn't mention any implementation yet, nor any data structure in which
the image 1is represented. This is very dependent of the application area.
For example the data structure and procedure package for Graphical Displays
will be considerably different from those for plotters.

But it must be quite easy to develop a drawing machine that is able to

interpret any data structure for any device.

JUB 3-39

Implementation.

Until now we implemented this concept for plotters, based on a sequential

data structure and only for two dimensions.

The implementation consists of two parts:

I. a package of procedures by which a user may generate his FYSICAL PICTURE;

2. a drawing machine which interprets the user—generated FYSICAL PICTURE
and plots it on a device.

The FYSICAL PICTURE must be generated from the outer level down to the

inner level of IMAGES.

This means the first item of the sequential data structure must be the

outer (window) map. The last item must be a close bracket of the outer

IMAGE. In between the items must be elements.

The unit that is presented to the drawing machine must be a data file

which contains a FYSICAL PICTURE. This means that for such a data file

the device kind must be determined already.

Also it is possible to generate an IMAGE. But this cannot be presented

to the drawing machine.

It only may appear as an element of another IMAGE.

Devices for which the implementation is suitable now:
CALCOMP C565 drumplotter, 11 inch, 300 steps/sec., 0.1 mm/step.
CALCOMP C1136 drumplotter, 30 inch, 2600 steps/sec., 0.05 mm/step.

Lineprinter, 30 cm., 5 cm/step.

JUB 3-40

The backup mechanisme.

Because there is no need to retreive picture elements in a plotting
system we decided to use a simple sequential data structure with

fixed recordlength.

Each record contains a primitive.

Primitives containing a textstring may cover several records.

Assignment to a drawing device is performed by assigning a specific
title to the data file.

For example assignment to C565 is performed by a title which is prefixed
by "PLOT11", to CII136 by a title prefixed by "PLOT30".

Because it is not possible to assign windowmap information to data file

attributes, the first record must contain that windowmap.

J

When the file has been generated and locked, it will be drawn. The drawing
machine will look for data files which obviously contain a fysical picture

(identifiable by its prefix) and subsequently the drawing machine will

interpret the data file and map it onto the drawing device.

User procedures.

All user procedures are written in BEATHE (Burroughs Extended Algol for
EINDHOVEN UNIVERSITY OF TECHNOIOGY).

All procedure headings are described as well as a short description of

the function performed by it.

The user must declare one or more files in which he will generate the picture(s).
The picture file is one of the parameters of most of the procedures, so
the

user is able to generate simultaneously as much pictures as he wants to.

Only the most frequently used and/or necessary procedures are described.

Map and brackets.

'"PROCEDURE' WINDOWMAP (FILE, WINDOWXORIGIN, WINDOWYORIGIN, WINDOWNIGIRCX,
WINDOWNIGIROY, XORIGIN, YORIGIN, NIGIROX, NIGIROY);
'"VALUE' WINDOWXORIGIN, WINDOWYORIGIN, WINDOWNIGIROX, WINDOWNIGIROY,
XORIGIN, YORIGIN, NIGIROX, NIGIROY;
'"REAL' WINDOWXORIGIN, WINDOWYORIGIN, WINDOWNIGIROX, WINDOWNIGIROY,

XORIGIN, YORIGIN, NIGIROX, NIGIROY;
'FILE' FILE;

JUB 3-41

As already mentioned the windowmap is performed by indicating a rectangle

in the real world and a rectangle in the images world.

The latter will be mapped onto the former.

The indication is performed by two vertexes of the rectangle diagonally

to each other.

The matrix of the map is calculated such that:

- (XORIGIN, YORIGIN) of the image is mapped to (WINDOWXORIGIN, WINDOWYORIGIN);
- (NIGIROX, NIGIROY) of the image is mapped to (WINDOWNIGIROX, WINDOWNIGIROY);
- (XORIGIN, NIGIROY) of the image is mapped to (WINDOWXORIGIN, WINDOWNIGIROY).

'"PROCEDURE' MAPIMAGE(FILE, X1ORIGINAL, YIORIGINAL, X20RIGINAL, Y20RIGINAL,
X1IMAGE, Y1IMAGE, X2IMAGE, Y2IMAGE, XROTATION, YROTATION,
ALPHA) ;

'"VALUE' XIORIGINAL, YIORIGINAL, X20RIGTNAL, Y20RIGINAL, X1IMAGE, YI1IMAGE,

X2IMAGE, Y2IMAGE, XROTATION, YROTATION, ALPHA;
'REAL' X1ORIGINAL, YIORIGINAL, X20RIGINAL, Y20RIGINAL, X1IMAGE, YIIMAGE,
X2IMAGE, Y2IMAGE, XROTATION, YROTATION, ALPHA;
'"FILE' FILE;

As we think the most convenient way to imagine a map is thinking about

two rectangles which at least must be mapped onto each other and potentially
rotated after that.

The image that is to be mapped we call the original. The image into which
the original is mapped, is indicated by image.(XIORIGINAL, YIORIGINAL) and
(X20RIGINAL, Y20RIGINAL) denote two vertexes of the rectangle in the original,
diagonally to each other.

(X1IMAGE, Y!IMAGE) and (X2IMAGE, Y2IMAGE) denote in the same way a rectangle
in the image into which (XI1ORIGINAL, YIORIGINAL), (XZORIGINAL,kYZORIGINAL)
will be mapped.

To be able to calculate uniquely the mapping matrix it is assumed that
(X10RIGINAL, Y20RIGINAL) is mapped to (X1IMAGE, Y2IMAGE).

After that the image of the original is rotated around a certain point

(XROTATION, YROTATION) in the current image over ALPHA degrees.

JUB 3-42

t 1
(X],Y})

(X5,Y3) (Xy,Y,)

(X3,Y}) (X},Y3)

txi,&l)

fig. 2a Image to be mapped fig. 2b The image of the originals

indicated by original. rectangle 1n the current
image before rotationm.

x

(XROTATION, YROTATION)

fig. 2c The image of the originals rectangle

in the current image after rotation.

"PROCEDURE' CLOSEBRACKET(FILE);
'"FILE' FILE;
This procedure writes the close bracket of the last opened image into

the file.

'"PROCEDURE' WINDOW(FILE, WINDOWXMIN, WINDOWYMIN, WINDOWXMAX, WINDOWYMAX);
'VALUE' WINDOWXMIN, WINDOWYMIN, WINDOWXMAX, WINDOWYMAX;

'REAL' WINDOWXMIN, WINDOWYMIN, WINDOWXMAX, WINDOWYMAX;

'"FILE' FILE;

This procedure defines a window in the current space.

If it appears, it must appear immediatly after a call of MAPIMAGE.

JUB 3-43

'"PROCEDURE' INSERTANIMAGE(FILE, IMAGESFILETITLE, XIORIGINAL, YIORIGINAL,
X20RIGINAL, Y20RIGINAL, X1IMACE, Y1IMAGE,
X2IMAGE, Y2IMAGE, XROTATION, YROTATION, ALPHA);
'"VALUE' XIORIGINAL, YIORIGINAL, X20RIGINAL, Y20RIGINAL, XIIMAGE, YIIMAGE,
X2IMAGE, Y2IMAGE, XROTATION, YROTATION, ALPHA;
"REAL' XIORIGINAL, YIORIGINAL, X20RIGINAL, Y20RIGINAL, XIIMAGE, YI1IMAGE,
X2IMAGE, Y2IMAGE, XROTATION, YROTATION, ALPHA;
'"FILE' FILE;
"STRING' IMAGESFILETITLE;

This procedure only is handy to imsert an already existing image,
stored in the file titled by IMAGESFILETITLE into an image.

The file must contain a complete image, the close bracket inclusive.
The variables that contain "original denote a rectangle in the image
to be mapped.

' denote points in the

The variables that contain "image'" or 'rotation'
image into which is mapped.

See also the procedure MAPIMAGE.

Primitives.

'"PROCEDURE' DOT(FILE, X, Y);

"WALUE' X, Y;

'FILE' FILE;

'REAL" X, Y;

The point (X, Y) is dotted.

'"PROCEDURE' POINT(FILE, X, Y, POINTTYPE, POINTHEIGHT) ;

'"WALUE' X, Y, POINTTYPE, POINTHEIGHT;

'"FILE' FILE;

'REAL' X, Y, POINTHEIGHT;

"INTEGER' POINTTYPE;

The point (X, Y) is marked with a special symbol. There are 16 different
marking symbols, numbered from O up to 15 inclusive. The value of POINTTYPE
determines which symbol 1s placed on (X, Y) on the output device. POINTHEIGHT
indicates the height of the special symbol expressed in the current data units

in Y direction.

JUB 3-44

"PROCEDURE' TEXT(FILE, XFROM, YFROM, XTO, YTO, ITALICITY, STRING);
'VALUE' XFROM, YFROM, XTO, YTO, ITALICITY;

'FILE' FILE;

'REAL' XFROM, YFROM, XTO, YTO, ITALICITY;

"STRING' STRING;

This procedure defines a text as an image element. The position of the

text is fixed by its starting-point and end-point, that is: the lower

left point of the first character and the lower right point of the last
character of the text. Each character is written in a parallelogram ABCD.

The base AB lies in the direction of writing, the height AE of the character
is (on paper) equal to the length of the base of one character. The italicity
is given by ITALICITY, the angle ®, in degrees, measured clockwise, between

the normal on the base (AE) and AD (see figure 3).

Figure 3. This figure shows how a character will be drawn.

JUB 3-45

'"PROCEDURE' STRAIGHTLINEPIECE(FILE, XFROM, YFROM, XTO, YTO, LINEMODE);
'"VALUE' XFROM, YFROM, XTO, YTO, LINEMODE;

'"FILE' FILE;

'"REAL' XFRCOM, YFROM, XTO, YTO;

"INTEGER' LINEMODE;

This procedure defines a straight line plece between (XFROM, YFROM) and
(XTO, YTO). The representation of the straight line piece is given by
the value of LINEMODE. Possible representations are: traced, dashed,

dotted and dashed-dotted.

'PROCEDURE' CURVEDLINEPIECE(FILE, XFROM, YFROM, SLOPEFROM, XTO, YTO,
SLOPETO, LINEMODE);

'VALUE' XFROM, YFROM, SLOPEFROM, XTO, YTO, SLOPETO; LINEMODE;

'"FILE' FILE;

'REAL' XFROM, YFROM, SLOPEFROM, XTO, YTO, SLOPETO;

"INTEGER" LINEMODE;

This procedure defines a curved line piece between (XFROM, YFROM) and
(XTO, YTO) with the boundary conditions

dy
9y = SLOPEFROM d
dx (XFROM, YFROM) an

dy
b4 = SLOPETO
dx (XTO, YTO) L

The parameter LINEMODE has the meaning as described in STRAIGHTLINEPIECE.

Possible representations are: traced, dashed, dotted and dashed-dotted.

JUB 3-46

"PROCEDURE' AXIS COMPLETE(FILE, XFROM, YFROM, XTO, YTO, NUMBER OF INTERVALS,
MARKTYPE, VALUEFROM, VALUETO, PARALLELNUMBERING,
NUMBERING TO AXIS, SYMBOLHEIGHT, STRING);

"VALUE' XFROM, YFROM, XTO, YTO, NUMBERING OF INTERVALS, MARKTYPE, VALUEFROM,

VALUETO, PARALLELNUMBERING, NUMBERING TO AXIS, SYMBOLHEIGHT,

'FILE' FILE;

"REAL' XFROM, YFROM, XTO, YTO, VALUEFROM, VALUETO, SYMBOLHEIGHT;

"INTEGER' NUMBER OF INTERVALS, MARKTYPE;

"BOOLEAN' PARALLELNUMBERING, NUMBERING TO AXIS;

'STRING' STRING;

This procedure defines the axis, complete with tickmarks, numbering and
a comment string. The axis from (XFROM, YFROM) to (XTO, YTO) has a specified
number of intervals. At each intersection point tickmarks are situated
perpendicular to the axis. There are three possible kinds of situating

these tickmarks, dependent of the value of MARKTYPE:

MARKTYPE = 0 : tickmarks on the upperside of the axis;
MARKTYPE = 1 : tickmarks on the lowerside of the axis;
MARKTYPE = 2 : tickmarks through the axis.

If MARKTYPE = O or MARKTYPE = 2 then numbering of the axis is performed
on the lowerside of the axis else on the upperside. VALUEFROM contains
the value belonging to (XFROM, YFROM) and VALUETO contains the value
belonging to (XTO, YTO). The drawing machine determines which tickmarks
can be numbered. The direction of writing these values is given by the

parameters PARALLELNUMBERING and NUMBERING TO AXIS.

JUB 3-47

The possibilities are shown in the table below:

NUMBERING TO AXIS
_-\———> '"TRUE' 'FALSE'

PARALLELPUMBERING

'

'"TRUE'

the drawn number is
parallel to the axis
the base of the digits

is turned to the axis

parallel to the axis,
the top of the digits

is turned to the axis

"FALSE'

perpendicular to the
axis, the direction
of writing is to the

axis

perpendicular to the
axis, the direction
of writing is from

the axis

If necessary a scaling factor (with representation: * (@ < exponent >)

is drawn, by which every number has to be multiplied. Finally a string
can be added to the axis as comment. The direction of writing of the
contingent scaling factor and the string is parallel to the axis.

The base of the characters is turned to or turned from the axis dependent
of NUMBERING TO AXIS.

SYMBOLHEIGHT indicates the height of the characters, used to comment

the axis and 1s expressed in current data units.

JUB 3-48

Procedures based on straight line pieces and points.
"PROCEDURE' POLYGON(FILE, I, Il, I2, XI, YI, LINEMODE);
'"WALUE'" I1, I2, LINEMODE;

'FILE' FILE;

'"INTEGER' I, I1, I2, LINEMODE;

'"REAL' XI, YI;

The polygon is defined by the sequence of points (XI, YI) for Il < I < I2,

i.e. the points (XI, YI) will be connected by straight line pieces.

'"PROCEDURE' QUEUE OF POINTS(FILE, I, Il, 12, XI, YI, POINTTYPE, POINTHEIGHT);
'"WALUE' I1, I2, POINTTYPE, POINTHEIGHT;

'FILE' FILE;

'INTEGER' I, Il, I2, POINTTYPE;

'REAL' XI, YI, POINTHEIGHT;

Every point in the sequence (XI, YI) for Il < I < I2 is marked with a

special marking symbol (see procedure POINT).

Sasic procedures to draw a curve.

It is possible to define a curve by initializing the curve by two points
and a contingent slope in the first point, a certain number of points and
a termination of the curve, with the final slope at the last point given.
It is essential that, while generating the curve, information about the
last generated curved line piece is preserved. Therefore an array STATUS
is used with bounds[0:5]. Initialization of the curve performs initiali-
zation of this array.

The total number of points has to be greater than or equal to 3.

'"PROCEDURE' INITCURVE POINTS DERIV(X!, Y1, X2, Y2, DERIV, STATUS);
'VALUE' XI, YI, X2, Y2, DERIV;

'"REAL' X1, Y1, X2, Y2, DERIV;

'REAL' 'ARRAY' STATUS[O0];

The curve is initialized by the two points (Xl, Y1) and (X2, Y2) and the

initial value of the slope %% in the point (XI, Y1), given in DERIV.

The two points must be different.

JUB 3-49

"PROCEDURE' INITCURVE POINTS(XI, YI, X2, Y2, STATUS);
'"VALUE' X1, Y1, X2, Y2;

'"REAL' X1, Y1, X2, Y2;

'"REAL' 'ARRAY' STATUS[0J;

The curve is initialized by the two points (XI, YI) and (X2, Y2).

These points must be different.

"PROCEDURE' NEXTPOINTONCURVE(FILE, XNEXT, YNEXT, LINEMODE, STATUS);
'"VALUE' XNEXT, YNEXT, LINEMODE;

'"FILE' FILE;

'"REAL' XNEXT, YNEXT;

"INTEGER' LINEMODE;

"REAL' 'ARRAY' STATUS[O0J;

This procedure adds the point (XNEXT, YNEXT) to the current curve. If
we call (XNEXT, YNEXT) point, Py (i 2 3) then the effect of the procedure
is as follows:

A curved line piece between P;_» and Ps_ is determined, such that:

l. the connection with the previous curvld line piece is continuous in
the first derivative;

2. if 1 = 3, then the initial slope is equal to the given slope by
INITCURVE POINTS DERIV or the initial slope is equal to the slope
in point | of the circle, passing through pl, p2 and p3 (initialization
with INITCURVE POINTS);

3. the slope in P is equal to the slope in P;_, o0 the circle

] |

passing through P;_ps Py and P;-
The representation of the drawed curve is determined by the parameter

LINEMODE (see CURVEDLINEPIECE).

"PROCEDURE' FINISH CURVE DERIV(FILE, DERIV, LINEMODE, STATUS);
"VALUE' DERIV, LINEMODE;

"FILE' FILE;

"REAL' DERIV;

"INTEGER' LINEMODE;

'"REAL' 'ARRAY' STATUS[OJ;

The last curved line piece is generated. Pi—l’ the slope in Pi_y and P;

are already known (in STATUS).

The slope %X in the last point is given by DERIV.
X

JUB 3-50

'"PROCEDURE' FINISH CURVE(FILE, LINEMODE, STATUS);
"VALUE' LINEMODE;

'"FILE' FILE;

"INTEGER' LINEMODE;

'REAL' 'ARRAY' STATUS[O];

The last curved line piece is generated. Pi-l’ the slope 1in P;_,and Ps
are already known (in STATUS).

The final slope is the one on the circle, fixed by P;_y2 P; and the slope

iﬂ ?;_l'

Procedures for drawing complete curves.

'"PROCEDURE' MARKEDCURVEI(FILE, I, I1, I2, XI, YI, MARKINGI, POINTTYPE,
POINTHEIGHT, LINEMODE);

ALUE" Il, I2, POINTTYPE, POINTHEIGHT, LINEMODE;

-3

' -
FILE;

'FIL :

"INTEGER' I, Il, 12, POINTTYPE, LINEMODE;
'REAL' XI, YI, POINTHEIGHT;
"BOOLEAN' MARKINGI;

o}

A ccmplete curve without initial slope and final slope is generated,
passing through the points (XI, YI) for Il < I < I2. It is necessary
that there are at least 3 different points (XI, YI).

The value of MARKINGI determines whether the point (XI, YI) is marked
with a special marking symbbl, represented by POINTTYPE and POINTHEIGHT
(see procedure POINT). The representation of the curve depends on the

value of LINEMODE (see procedure CURVEDLINEPIECE).

'"PROCEDURE"' MARKEDCURVE2(FILE, I, TIl, I2, XI, YI, STARTDERIV, MARKINGI,
POINTTYPE, POINTHEIGHT, LINEMODE);

'"WALUE' 11, I2, STARTDERIV, POINTTYPE, POINTHEIGHT, LINEMODE;

'FILE' FILE;

"INTEGER' I, I1, I2, POINTTYPE, LINEMODE;

'"REAL' XI, YI, STARTDERIV, POINTHEIGHT;

'BOOLEAN' MARKINGI;

The same as MARKEDCURVE] except: the initial slope is given by STARTDERIV.

JUB 3-51

"PROCEDURE' MARKEDCURVE3(FILE, I, Il, I2, XI, YI, FINDERIV, MARKINGI,
POINTTYPE, POINTHEIGHT, LINEMODE);

'"VALUE' I1, I2, FINDERIV, POINTTYPE, POINTHEIGHT, LINEMODE;

'"FILE' FILE;

"INTEGER' I, Il1, I2, POINTTYPE, LINEMODE;

'"REAL' XI, YI, FINDERIV, POINTHEIGHT;

"BOOLEAN' MARKINGI;

The same as MARKEDCURVE! except: the final slope is given by FINDERIV.

'"PROCEDURE' MARKEDCURVE4(FILE, I, Il, I2, XI, YI, STARTDERIV, FINDERIV,
MARKINGI, POINTTYPE, POINTHEIGHT, LINEMODE);

'"VALUE' Ii, I2, FINDERIV, POINTTYPE, POINTHEIGHT, LINEMODE;

'"FILE' FILE;

"INTEGER' Il1, I2, POINTTYPE, LINEMODE;

'REAL' XI, YI, STARTDERIV, FINDERIV, POINTHEIGHT;

' BOOLEAN' MARKINGI;

The same as MARKEDCURVEI except: the initial slope is given by STARTDERIV
and the final slope is FINDERIV.

'"PROCEDURE' CURVEI(FILE, I, Ii, I2, XI, YI, LINEMODE);
'"VALUE' I1, I2, LINEMODE;

'"FILE' FILE;

"INTEGER' I, Il, I2, LINEMODE;

"REAL' XI, YI;

The same as MARKEDCURVE! except marking.

'"PROCEDURE' CURVE2(FILE, I, Il, I2, XI, YI, STARTDERIV, LINEMODE);
'"VALUE' I1, I2, STARTDERIV, LINEMODE;

'"FILE' FILE;

"INTEGER' I, I1, I2, LINEMODE;

'"REAL' XI, YI, STARTDERIV;

The same as MARKEDCURVE2 except marking.

JUB 3-52

"PROCEDURE' CURVE3(FILE, I, Il, I2, XI, YI, FINDERIV, LINEMODE);
'"WALUE' I1, I2, FINDERIV, LINEMODE;

'"FILE' FILE;

'INTEGER' I, Ii, I2, LINEMODE;

'"REAL' XI, YI, FINDERIV;

The same as MARKEDCURVE3 except marking.

"PROCEDURE' CURVE4(FILE, I, 11, I2, XI, YI, STARTDERIV, FINDERIV, LINEMODE);
'"VALUE' I1, 12, STARTDERIV, FINDERIV, LINEMODE;

'"FILE' FILE;

'"INTEGER' I, Il, I2, LINEMODE;

'REAL' XI, YI, STARTDERIV, FINDERIV;

The same as MARKEDCURVE4 except marking.

Procedures based on TEXT.

'"PROCEDURE" NUMBER(FILE, XFROM, YFROM, XTO, YTO, ITALICITY, FORMATSTRING,
VALUE);

"VALUE " XFROM, YFROM, XTO, YTO, ITALICITY, VALUE;

'"FILE' FILE;

'"REAL' XFROM, YFROM, XTO, YTO, ITALICITY;
"STRING' FORMATSTRING;
"DOUBLE' VALUE;

With this procedure, the user is able to draw formatted numbers.

The string FORMATSTRING contains the information for formatting the number
VALUE.

The value of FORMATSTRING must be conform to the syntax of < format string >.

< format string > 1:= < free-field format > |

< fieldprecision letter > < field width >

A

decimal places > |

< field letter > < field width >

< free-field format > t:= < slash >
< fieldprecision letter > ::= F|R|D|E
< field letter » ti= A|C|H|I]J|K

< field width >

< unsigned integer >

A

decimal places > < unsigned integer >

JUB 3-53

"PROCEDURE' BOOLEAN VALUE(FILE, XFROM, YFROM, XTO, YTO, ITALICITY,
WIDTH, VALUE);

'"VALUE' XFROM, YFROM, XTO, YTO, ITALICITY, WIDTH, VALUE;

'"FILE' FILE;

'"REAL' XFROM, YFROM, XTO, YTO, ITALICITY;

"INTEGER' WIDTH;

"BOOLEAN' VALUE;

The walue of the boolean VALUE is drawn with WIDTH characters. In fact
the fieldprecision letter L is used with field width = WIDTH.

Procedures based on AXIS COMPLETE.

'"PROCEDURE"' AXIS(FILE, XFROM, YFROM, XTO, YTO, NUMBER OF INTERVALS, MARKTYPE,
VALUEFROM, VALUETO, PARALLELNUMBERING, NUMBERING TO AXIS,
SYMBOLHEIGHT;

'"VALUE' XFROM, YFROM, XTO, YTO, NUMBER OF INTERVALS, MARKTYPE, VALUEFROM,

VALUETO, PARALLELNUMBERING, NUMBERING TO AXIS, SYMBOLHEIGHT;

'FILE' FILE;

'REAL' XFROM, YFROM, XTO, YTO, VALUEFROM, VALUETO, SYMBOLHEIGHT;

"INTEGER' NUMBER OF INTERVALS, MARKTYPE;

'BOOLEAN' PARALLELNUMBERING, NUMBERING TO AXIS;

The procedure defines an axis with tickmarks, numbering and a contingent
scaling factor. Its effect is equal to that of the procedure AXIS COMPLETE,
with exception of the comment string. The meaning of the parameters is the

same as the corresponding ones in AXIS COMPLETE.

'"PROCEDURE' BASIC AXIS(FILE, XFROM, YFROM, XTO, YTO, NUMBER OF INTERVALS,
MARKTYPE, SYMBOLHEIGHT);

'VALUE' XFROM, YFROM, XTO, YTO, NUMBER OF INTERVALS, MARKTYPE, SYMBOLHEIGHT;

'"FILE' FILE;

'REAL' XFROM, YFROM, XTO, YTO, SYMBOLHEIGHT;

"INTEGER' NUMBER OF INTERVALS;

The procedure defines an axis with tickmarks. The meaning of the parameters

is the same as the corresponding ones in AXIS COMPLETE.

JUB 3-54

Other procedures.

'INTEGER' 'PROCEDURE' SCALE(TI, I, Il, I2, NUMBER OF INTERVALS, MODE,
MIN, MAX);

'"WALUE' I1, I2, NUMBER OF INTERVALS, MODE;

'REAL' TI, MIN, MAX;

'INTEGER' I, Il, I2, NUMBER OF INTERVALS, MODE;

If we call the set (1, 1.25, 2, 2.5, 4, 5, 8) a set of "basic round
numbers", rj, j=1,2, «.., 7, then we will call any number x = rj = 107,
for all integers k, a "round number", and any integer multiple of a

round number is called a "nice number'.

For optimal subdivision of axes it is required:

1. the value ¢f the length of an interval must be a round number;
2. each subdivision point must be indicated by a nice number;
3. the data must fit into the allotted space;

4. the data must occupy as much as possible of the allotted space.

The procedure calculates the values of MIN and MAX such that both MIN
and MAX are nice numbers as defined above, satisfying:

MIN € TI < MAX for Il £ 1 < 12

MODE may have the values 0O, | or 2 with the following meaning:
MODE

0 the interval (MIN, MAX) is subdivided into precisely
NUMBER OF INTERVALS subintervals;

MODE = 1 the actual number of subintervals is between
.625 * NUMBER OF INTERVALS and NUMBER OF INTERVALS;
MODE = 2 the actual number of subintervals is between

.625 = NUMBER OF INTERVALS and 1.6 * NUMBER OF INTERVALS.

The value delivered by SCALE is the number of actual subintervals.

(See [11, [2D)

JUB 3-55

The drawing machine.

The drawing machine is built out of two parts:
1. a control part; this part looks for data files suitable for plotting
and hands then over to the drawing part;

2. a drawing part which does the actual drawing.

The control part.

The total drawing machine is a MCS, because it must be able to reach an
online plotting device (Calcomp C565), so written in DCALGOL.
All data files that are presented to the drawing machine are identified
by a prefix in the file title.
Prefixes:

PLOTII —— Calcomp 565

PLOT30 —— Calcomp 1136

PLOTPR ——— PRINTER

WHILE NOT DISASTER
Do
BEGIN
IF THEREISAPLOT] IDATAFILE
THEN BEGIN PUTFILEINTOQUEUEFORC565DEVICES;
IF NUMBEROFACTIVEC565 < NUMBEROFC565PLOTTERS
THEN STARTANOTHERCS565PLOTTER
END;
IF THEREISAPLOT30DATAFILE
THEN BEGIN PUTFILEINTOQUEUEFORCII36DEVICE;
IF NUMBEROFACTIVECI136PLOTTERS < NUMBEROFCI136PLOTTERS
THEN STARTANOTHERCI1136PLOTTER
END;
IF THEREISAPLOTPRDATAFILE
THEN BEGIN PUTFILEINTOQUEUEFORPRINTERPLOTTER;
IF NOT PRINTERPLOTTERBUSY
THEN STARTPRINTERPLOTTER
END;
IF THEREISSOMEDATACOMFUNCTION
THEN PERFORMDATACOMFUNCTION;
END

JUB 3-56

This is a simplified version of the mainloop of the MCS.

For each plotter device a process is fired up whenever there is a data
file to plot.

If another data file is found, its title is put into a queue to be
interpreted by the plot process.

The plot process dies if and only if there is no other data file to plot.
This approach has been chosen, because there might be several identical
devices (for example we have two (565 plotters).

The processes attached to these devices share the same queue in order to
prevent the plotting of a data file twice.

In order to prevent that a data file which title was already put into the
queue will be identified again, its title prefix is changed (for example

PLOTI11 is changed to PLITI1).

The drawing part.

The simplified version of the drawing part (procedure AUTOPLOT) is repre-
sented by the following program text.

For each device the same procedure is used.

WHILE SOMETHINGINMYDEVICEQUEUE
Do
BEGIN TAKENEXTFILETITLE;

IF FILEISPRESENT

THEN IF PLOTIT(FILETITLE) %Z THIS IS THE ACTUAL PLOTTING
THEN REMOVEFILE(FILETITLE)

ELSE % SOMETHING WENT WRONG

PUTFILET ITLEBACKINTOQUEUE

ELSE % PITY, FILE DISAPPEARED
END

The actual plotting is performed by PLOTIT.

The value of PLOTIT may be false which indicates that something went

wrong while plotting (for example the DCP died).

JUB 3-57

Simplified text of PLOTIT.

INITIALISE;
PLOTIDENTIFICATION;
WHILE FILENOTEMPTY AND NOT ABORTED
DO
BEGIN GETNEXTITEM;
IF ITEMTYPE NEQ WINDOWMAP OR ITEMTYPE NEQ CLOSEBRACKET
THEN ABORT(NOFYSICALDRAWING)
ELSE IF ITEMTYPE = WINDOWMAP
THEN BEGIN CREATEWINDOW;
BUILDMAPMATR IX;
DRAWER (MAPMATRIX) % MAPS IMAGE TO PAPER
END
ELSE
END;
PLOTIT := NOT ABORTED;
Simplified text of DRAWER.

% ALL INDICATED POINTS WILL BE TRANSFORMED
7Z ACCORDING TO THE MATRIX

WHILE FILENOTEMPTY AND NOT ABORTED AND NOT ENDOF IMAGE
DO
BEGIN GETNEXTITEM;

IF NOT VALIDITEM

THEN ABORT (INVALIDITEM)

ELSE
BEGIN
CASE ITEMTYPE OF
BEGIN
ENDOF IMAGE := TRUE; 7Z CLOSE BRACKET
BEGIN 7 IMAGE ELEMENT

CASE ELEMENTTYPE OF

JUB 3-58

BEGIN
DRAWDOT;
DRAWPOINT;
DRAWSTRAIGHTLINE;
DRAWCURVEDLINE;
DRAWTEXT;
DRAWAXIS ;
BEGIN Z PICTURE
BUILDMAPMATRIX;
CREATEMATRIX (MAPMATRIX, MATRIX, NEWMATRIX);
DRAWER (NEWMATRIX)
END
END
END
END
END

m

ND;

This description of the drawing machine is a very brief one, but we hope
it gives an idea about its structure. The actual drawing machine obviously
looks quite different, although the global structure is maintained.

The distinction between the several devices is made on the lowest possible

level.

JUB 3-59

References.

J.A.Th.M. van Berckel, B.J. Mailloux
[1] MR73 - Some Algol plotting procedures.
Stichting Mathematisch Centrum Amsterdam

January 1970.

[2] Prof.dr. F.E.J. Kruseman Aretz
Het plottersysteem in MILLI op EL X8.

Philips research laboratories, computernote nr. 1972/2.

[3] Dr.ing. José& Encarnagao
Untersuchungen zum Problem der rechnergesteurten raumlichen
Darstellung auf ebene Bildschirmen.
Dissertation Technischen Universitat Berlin.

Juli 1970.

[4] William M. Newman, Robert F. Sproull

Principles of interactive computer graphics.

McGraw-Hill 1973.

4 april 1974.

