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Abstract

Phased array antennas (PAAs) used in military naval radar systems contain a
large number of simple and identical radiating elements regularly arranged in
a planar grid. To have a successful operating radar system in a stressful envi-
ronment, these PAAs have to satisfy a large number of stringent requirements,
such as a wide beam scanning range and a large frequency bandwidth with
low losses. To achieve this, and further to reduce the costs of PAA prototype
building, dedicated computational methods are used to simulate the electro-
magnetic (EM) behavior of PAAs. These methods support an efficient iterative
PAA design process, where a number of specific design parameters is adjusted
iteratively until the calculated EM response of the structure satisfies the re-
quirements. Subsequently, a prototype is constructed and measurements are
carried out. The comparison between the outcome of these measurements and
the predictions determines whether the design can be finalized, or whether the
design process should be continued.

On future PAAs the current requirements on beam scanning ranges and
frequency bandwidths will be more stringent. Furthermore, new requirements
such as a low radar cross-section signature and a low EM interference (EMI)
and a high EM compatibility (EMC) will be introduced. These requirements
can only be met by selecting more complex radiating elements and by increasing
the number of computational design iterations. Furthermore, the design phase
must include a sensitivity analysis, where the sensitivity of the EM behavior
with respect to production variations is analyzed and minimized. The goal is to
obtain a so-called production tolerant design. Most current design methods ad-
just the design parameters in a trial-and-error process. Future design methods
will be more automated in this sense with the aid of synthesis techniques and
search algorithms, so that a more structured design approach becomes avail-
able. All this leads to a strongly increased number of computational design
iterations. With the currently available numerical methods, this would lead to
unacceptably long simulation times. The objective of this thesis was to develop
a computational method that can be used in this process.

Since the number of radiating elements is large, we use the infinite array ap-
proach, which assumes an infinite number of identical radiating elements with a
constant progressive phase shift between the elements. This approach reduces
the computation of the EM behavior for the infinite structure essentially to
that of a single radiating element and rigorously takes into account the mutual



2 Abstract

coupling between the elements. Typical radiating element structures, that can
be analyzed with the computational method described in this thesis, consist
of waveguide feeding elements, cavity backed patches, open-ended waveguides,
and multi-layer frequency selective surfaces. To formalize the construction of
such a typical unit-cell structure we use two types of building blocks: segments
and junctions. Segments can be either pieces of waveguide or layered space (di-
electric slabs that are infinitely long in one or two transverse directions). Each
junction separates two segments and can/must contain infinitely thin arbitrar-
ily shaped metal. Within a single radiating element there are parts (defined as
basic structures) in which the junctions experience a significant EM coupling.
Between the basic structures there is low EM coupling. To determine the total
EM behavior efficiently we exploit this property, and separate the total cal-
culation into one for each basic structure, and one for combining them. The
calculation for a single basic structure is based on solving a coupled field integral
equation with the Galerkin method of moments (MoM), and approximates this
integral equation by an impedance matrix equation. The result can be used to
determine a scattering matrix that characterizes the EM behavior of a single
basic structure by treating the outgoing waves as being caused by the incident
waves. To obtain the EM behavior of the complete configuration, we combine
the scattering matrices of the corresponding separate basic structures with the
aid of a cascading procedure based on the Redheffer star product.

Most of the computational effort in the procedure described above is spent in
assembling the impedance matrices. We present a novel acceleration technique
that translates the evaluation of an asymptotically slowly converging series,
which needs to be evaluated in assembling the impedance matrices, into a nu-
merical integration over an exponentially fast converging series by subsequently
using a Kummer, an Ewald, and a Poisson transformation. This technique is
applied to both rooftop and Rao-Wilton-Glisson expansion functions used in
the MoM. We validate our computational method against available commercial
tools such as the finite-element code HFSS, and against measurements for a vari-
ety of radiating structures. This leads to the conclusion that the computational
method is indeed both accurate and fast.



Chapter 1

Introduction

1.1 Modern Phased Array Antennas

Phased array antennas are finding their way more frequently into radar systems
[95, section 9.9]. These types of antennas are constructed by assembling radi-
ating elements in a geometrical configuration, and are shortly referred to as an
array. In most cases, the elements of the array are identical and they are placed
in a regularly arranged planar grid. The total field of the array is determined as
the superposition of the fields radiated by the individual elements. To provide
for directive patterns, it is necessary to have the fields from the elements of
the array interfere constructively (add) in the desired directions, and interfere
destructively (cancel each other) in the remaining space. Further, by controlling
the progressive phase difference between the elements, the maximum radiation
can be steered into any desired direction to form a scanning beam [95, section
9.5].

The main advantage of phased array antennas over other types of antennas is
this inertialess, rapid beam steering. The beam from an array can be scanned,
or switched from one position to another, in a time limited by the switching
speed of the phase shifters and the electronic control logic behind the phase
shifter. This includes the calculation of the beam parameters for each individual
array element. Therefore, electronic beam scanning in arrays facilitates multiple
functions, for example, scanning, tracking and missile guiding. The ability to
steer the beam electronically can also be used to stabilize the beam direction
when the phased array antenna is on a platform, such as a ship or aircraft, that
is subject to roll, pitch, or yaw.

Another advantage is the control of the radiation pattern [95, sections 9.11,
9.13, 9.15]. A particular radiation pattern may be more readily obtained with
the array than with other microwave antennas since the amplitude (receive
mode) and phase of each array element may be individually controlled. Thus,
radiation patterns with extremely low sidelobes or with a specifically shaped
main beam may be achieved. For example, a typical radar search pattern starts
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with a wide beam to prescan a given large area in a short amount of time.
Then directive narrow patterns zoom in on specific smaller areas of interest and
perform a high-resolution scan. The natural lower limit for the narrowest beam
is given by the size of the array. Typical radar track patterns use separate
monopulse sum and difference beams, each with its own optimal shape. These
beams allow for an accurate estimation of the target direction within the beam.

Phased array antennas can be used within digital beamforming [95, section
9.9]. In this situation, each element or line of elements is connected to an in-
dividual receiver with a digitized output. These outputs are then combined
by using a digital beam-forming processor to form multiple, simultaneous and
directive beams. This process can also be implemented with the use of ana-
log components. The accompanying transmitting antenna must have a broad
beamwidth that covers the same total angular region as the multiple receiving
beams. The advantage of digital beamforming compared to classical beamform-
ing is that with a single reception a multiple-beam response is obtained at once.
The outputs from the multiple beams can further be processed in parallel by
the radar.

The disadvantage that has limited the widespread use of phased array anten-
nas in radar systems is their high cost [95, section 9.14]. This is mainly due to
the mechanical and beamsteering complexity and the high costs of the various
(mainly active) components. Also the development, full testing and calibration
is more complicated for a phased array antenna than for conventional antennas.
Usually the development is done step-by-step, where different prototypes with
increased complexity are constructed and tested, which also increases the costs.

Another disadvantage of phased array antennas over other types of antennas
is the complexity of the RF aspects of the design. The use of arrays implies the
appearance of grating lobes, the presence of blind scan angles, beam broadening
and gain loss for scanned beams, and a high variation in return loss. If these
effects are not considered well enough during the design phase, they can have a
negative influence on the array performance.

A recent and innovative example of an application of a phased array an-
tenna in a naval radar system is the active phased array multi-function radar
(APAR) from Thales Nederland B.V. (formerly known as Hollandse Signaalap-
paraten B.V.) [44, 96]. APAR meets the modern ship’s stringent requirements
for low-elevation detection, short reaction time and large defensive fire power
by effectively integrating many different radar functions such as search, track
and missile guidance capabilities (shown in figure 1.1). Its non-rotating antenna
(shown on top of the latest LCF frigate of the Royal Dutch Navy in figure 1.2)
houses four phased array antenna faces that together cover the full 360 degrees.
Each phased array antenna face (shown in figure 1.3) is an X-band waveguide
array and consists of more than 3000 radiating elements, each connected to an
individual transmitter/receiver element.

To construct a successful operating radar system in a stressful environment,
these phased array antennas have to satisfy a large number of stringent require-
ments. The main requirement on the electromagnetic behavior of the antenna
is low return losses (better than -10[dB]) for a wide beam scanning range (at
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Figure 1.3: Single open APAR face from the front side in the preparation (”Set-
ting to Work”) phase at Thales Nederland.

least 50[deg] off-broadside) and for a large relative frequency bandwidth.

1.2 Aim of the Present Research

To satisfy the stringent requirements, and further to reduce the costs of phased
array antenna prototype design, dedicated computational methods are used to
simulate the electromagnetic behavior of phased array antennas. These methods
support an efficient iterative phased array antenna design process [9].

Each design process of an antenna, in particular an antenna array, is unique.
The process is multi-disciplinary, flexible, influenced by circumstances and prag-
matic decisions. Formulating the requirements of the antenna performance pa-
rameters is the start of the design process. The requirements are a quantification
of two main goals of antenna design: the input energy should be radiated in a
well defined direction and the energy loss should be minimized. The require-
ments are specified for a certain frequency bandwidth and a beam scanning
range.

The selection of the antenna type and a first estimate of suitable geometry
parameters is usually done by antenna engineers with extensive practical expe-
rience [95, section 9.8]. This decision is based on what is possible, how much it
costs, and what is the desired performance. Subsequently, dedicated computa-
tional methods are used to predict the array or antenna performance. As long
as the requirements are not met, the selection of antenna geometry parameters
is adjusted. Generally, this process of adjusting parameters is a process of ed-
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ucated guess, where the practical experience of the antenna designers plays an
important role. Subsequently, a prototype is constructed and measurements are
carried out. The comparison between the outcome of these measurements and
the predictions determines whether the design can be finalized, or whether the
design should be continued.

On future phased array antennas the requirements on beam scanning ranges
and frequency bandwidths will become more stringent. Wider frequency band-
widths can improve electronic counter-counter measures [94, section 14.5], and
can reduce low-elevation multi-path effects [95, section 4.5]. Multiple frequency
bands allow for integrated topside design concepts and can reduce the total
number of antennas by integrating more functions into a single antenna [94,
section 8.10]. Furthermore, higher frequency (up to Ku-band) bands are used
to support new littoral warfare functions. Wider beam scanning ranges are used
to increase scanning coverage and to reduce the number of phased array anten-
nas per system (possibly from four to three) while maintaining a 360 degrees
azimutal view; thus a cost reduction is achieved. From a commercial (reduc-
ing cost to stay competitive) and project management point of view, we see a
tendency towards an overall reduction of planned design time. This means that
the construction of intermediate prototypes is reduced. Sometimes there is not
even time for a single prototype. This requires reliable simulation tooling and
design skills.

Furthermore, new requirements such as a low radar cross-section signature
and a low electromagnetic interference (EMI) and a high electromagnetic com-
patibility (EMC) will be imposed [63]. Electromagnetic interference is defined
as the degradation of the performance (vulnerability) of the equipment, trans-
mission channel system caused by an electromagnetic disturbance. Electromag-
netic compatibility is defined as the ability of a device or system to function
satisfactorily in its electromagnetic environment without introducing intolerable
electromagnetic disturbances (susceptibility) to anything in that environment.
Both these requirements are imposed on modern phased array antenna systems,
which are becoming increasingly more sensitive. This means that each system
on its own cannot be disturbed by or disturb any other neighboring system.

Both the new requirements and the more stringent old requirements can
only be met by selecting more complex radiating elements and by increasing
the number of computational design iterations.

Furthermore, the design phase must include a sensitivity analysis, where the
sensitivity of the electromagnetic behavior with respect to production variations
is analyzed and minimized. This type of analysis gives us the optimal direction
in which the system can be changed and the sensitivity to the various design
parameters. The goal is to obtain a so-called production tolerant design. Each
design parameter or combination of design parameters is varied along a nominal
value within the production tolerance for a number of values. The electromag-
netic behavior is calculated for each variation. A sensitivity analysis therefore
also increases the number of computational design iterations. Furthermore, the
real antenna performance can only be seen at the stage of the full scale proto-
type where the effects of all the production tolerances of the various parts are
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combined. Major changes due to unforeseen errors cannot be made any more
at that stage.

Most current design methods adjust the design parameters in a trial-and-
error (engineering) process. Future design methods will be more automated in
this sense with the aid of synthesis techniques and search algorithms, allowing for
a more structured design approach. Search algorithms are based on minimizing a
cost function that represents in some way how well the requirements are satisfied
as a function of the design parameters. Each evaluation of this cost function
involves a computational design iteration. Typical search algorithms make use
of deterministic gradient methods or stochastic genetic algorithms. Synthesis
techniques [102] use a conceptualization of the electromagnetic behavior in terms
of filter and network circuit theory. These techniques also require a number of
full-wave analysis iterations.

The developments described above lead to a strongly increased number of
computational design iterations. With the currently available numerical meth-
ods, where a typical iteration for a typical structure can last from one to four
hours (based on a computer with a Pentium 4 running at 2.6[GHz] with 2[Gb]
of physical memory), this would lead to unacceptably long simulation times.

1.3 Objectives of the Thesis

The first objective of this thesis is to develop a computational method that can
predict the electromagnetic behavior for an arbitrary radiating array structure
consisting of waveguide feeding elements, cavities, patches, open-ended waveg-
uides, and multilayer frequency selective surfaces.

The second objective of this thesis is to accelerate the computational method
to speed up the current and future design process of phased array antennas.

1.4 Description of Array Structures

In this section we describe the typical array structures that we can analyze with
the computational method developed in this thesis. Figure 1.4 shows such a
configuration of a single radiating element (unit-cell structure) for an arbitrary
but typical array structure. The element consists from the bottom to the top
of a feeding slot with an opening in a cavity-backed patch structure. Above the
patch we have a double-layer frequency selective surface (FSS) which consists
of two thin metallic screens packed in between dielectric layers.

To formalize the construction of such a single unit-cell structure we identify
two types of building blocks: segments and junctions. Segments can be either
pieces of waveguide or layered space (dielectric slabs that are infinitely long in
one or two transverse directions). Each junction separates two segments and
contains infinitely thin arbitrarily shaped metal. To show this formalization,
figure 1.5 shows in detail the construction of this typical unit-cell structure.
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Figure 1.4: Typical unit-cell structure: feeding slot with an opening in a cavity-
backed patch structure covered with a multilayer frequency selective surface.
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ŷ

ẑ
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Figure 1.5: Typical unit-cell structure: feeding slot with an opening in a cavity
backed patch structure covered with a multilayer frequency selective surface.
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From this example configuration we recognize the following segments and
junctions:

• segment S5: free space (layered space),
• junction J4: FSS 2,
• segment S4: second dielectric layer (layered space),
• junction J3: FSS 1,
• segment S3: first dielectric layer (layered space),
• junction J2: patch,
• segment S2: box (waveguide),
• junction J1: aperture between slot and box,
• segment S1: slot or feeding waveguide (waveguide).

The unit-cell structures are placed in a regularly arranged planar grid which is
spanned by two basis vectors d1 and d2 situated in the x, y-plane. Without loss
of generality the x-axis has been chosen parallel to d1.

Note that we do not handle vertical metallic structures except for the ver-
tical metallic walls in waveguide segments. This also means that we do not
consider coaxial feeding structures with vertical feeding metallic lines. The
method developed in this thesis can however be extended to include these type
of structures. From a cost and complexity point of view, vertical metallic struc-
tures are difficult to fabricate and therefore significantly increase the costs of
the antenna. The electromagnetic properties of a segment are further considered
homogeneous and isotropic, and are characterized by the relative permittivity,
relative permeability, and the electric loss tangent (conductivity). The metal in
the junction is considered infinitely thin and perfectly electric conducting. The
arbitrary shape must be constructed from rectangular or triangular primitive
elements. Examples of a construction in terms of primitive elements are given
in figures 1.6 and 1.7.
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Figure 1.6: Examples of metal shapes in a junction, and their construction from
the rectangular primitive element.



1.4 Description of Array Structures 11

0 5 10 15
0

2

4

6

8

10

12

14

16

18

20

x[m]

y[
m

]

0 5 10 15
0

2

4

6

8

10

12

14

x[m]

y[
m

]

Figure 1.7: Examples of metal shapes in a junction, and their construction from
the triangular primitive element.

The placement of buiding blocks is subject to a number of rules. First, the
unit-cell structure must contain at least one segment. Second, a junction must
always be placed between two adjacent segments. Third, for a given waveg-
uide segment, the adjacent junctions must hide the outer side of the waveguide
from the adjacent segments. This hiding process amounts to appropriately plac-
ing metal in the junction and reflects the construction of a practical unit-cell
structure (an example of which is shown in figure 1.8).

S1: Waveguide S2: Waveguide S3: Layered Space
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Figure 1.8: Hiding process: adjacent junctions J1 and J2 of a waveguide segment
S2 must hide the outer side of the waveguide S2 from the adjacent segments S1

and S3 by placing metal in the junctions J1 and J2.

With these two building blocks and placement rules we can construct a unit-cell
structure by placing an arbitrary number of segments Sm separated by junctions
Jm (shown in figure 1.9).
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S1 S2 Sm Sm+1

J1 J2 Jm−1 Jm

Figure 1.9: Arbitrary unit-cell structure: segments Sm separated by junctions
Jm.

1.5 Computational Method

In this section we describe the computational method. Since the number of
radiating elements is large, we use the infinite array approach, which assumes
an infinite number of identical radiating elements with a constant progressive
phase shift between the elements and a corresponding incident plane wave for
the excitation. This approach reduces the computation of the electromagnetic
behavior for the infinite structure essentially to that of a single radiating element
[112, chapter 7] and rigorously takes into account the mutual coupling between
radiating elements.

However, the infinite-array approach cannot account for edge effects caused
by the finiteness of the array, and cannot account for the difference between
the behavior of edge elements and their infinite-array behavior when mutual
coupling between the elements is strong. If no surface waves are excited, these
edge effects will only change the behavior of nearby located radiating elements,
which represent only a small portion of the large array. This is further supported
by the low mutual coupling design goal. The finite array thus behaves like a
truncated infinitely large array. On the other hand, if the array is excited
such that surface waves appear and resonate (due to reflection) between the
edges of the finite array, these edge effects will have an impact on elements far
away from these edges, and this will significantly change the array performance
[9]. However, the appearance of surface waves can also be predicted with the
infinite-array approach. So we can predict where this will happen, but not
what will happen in that case. This creates a situation in which we can avoid
the appearance of resonant surface waves already in the first phases of the
phased array antenna design by using the infinite-array approach. Furthermore,
finite-array simulation models are time consuming compared to infinite-array
simulation models and consider relatively simple radiating element structures.

Within a single radiating element there are parts (basic structures) in which
the junctions experience a significant electromagnetic coupling (the concept of
electromagnetic coupling is based on the number of accessible modes in the
neighboring segment, which will be defined and explained later in chapter 3).
Between the basic structures there is low electromagnetic coupling. To deter-
mine the total electromagnetic behavior efficiently we exploit this property, and
separate the total calculation into one for each basic structure, and one for
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S1 S2 S3 S4 S5 S6

J1 J2 J3 J4 J5

Strong Strong
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P1 P2 P3

Figure 1.10: Discrimination of strong and weak electromagnetic coupling within
the unit cell structure. Placing probing interfaces in between weakly electromag-
netically coupled junctions. At the plane P2 the coupling is low if the number of
accessible modes is small. At a plane within S2 and S3, for instance, the number
of accessible modes is in this case high. This is the reason why the junctions J1,
J2 and J3 are analyzed by the coupled integral equations technique. Cascading
the relevant generalized scattering matrices is not convenient because the cas-
cading operation requires the inversion of a matrix whose size is equal to the
number of accessible modes.

combining them. The separation of the total unit-cell structure into separate
basic structures is done by placing probing interfaces Pm (shown in figure 1.10)
in between the segments where the two adjacent junctions experience a low
electromagnetic coupling.

For the calculation of the electromagnetic behavior within a single basic
structure we formulate the scattering field problem and ensure the existence
and uniqueness of a field solution within the basic structure by supplementing
proper boundary conditions1.

The final objective of the simulation is to compute the field radiated by a
given source in a complicated structure. If the Green’s function of this struc-
ture were known, the computation could be carried out without difficulty and
there would be no need to apply the equivalence theorem. However, by closing
some gaps or removing some metal parts, we obtain simpler regions where the
Green’s function is known, as a modal expansion (also known as the Green’s
function in spectral form). The equivalence theorem says that in order to have
the same field in the original and the modified structure, it is necessary to intro-
duce suitable current distributions. The actual value of these currents cannot
be given explicitly, but can be determined by the solution of an integral equa-
tion. Integral, because the relationship between currents and fields is always of
integral type, with a kernel which is the Green’s function, which is known in
each sub-domain.

The equivalent scattering field problem is solved by using a so-called com-

1In electromagnetic engineering applications, the existence of the solution is taken for
granted. Moreover, boundary conditions are not introduced to ensure uniqueness, even if one
often reads this strange sentence, but to link the subdomains where Maxwell’s equations in
differential form are to be solved.
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bined field integral equation technique. The unknown surface currents are dis-
cretized in terms of expansion functions, such as the rooftop [104] and Rao-
Wilton-Glisson functions [88], and subsequently determined by the method of
moments. The choice of the expansion functions depends on the shape of the
support of the unknown surface currents. Complex shapes can be approxi-
mated with more freedom by using Rao-Wilton-Glisson functions, whereas sim-
pler shapes such as rectangular regions require only rooftop functions. This
method of moments approximates the integral equation by a matrix equation of
the type Lu = f with linear operator L, unknown vector u, and forcing vector
f . Due to the infinite-array approach, the calculation of the matrix and vector
elements is reduced from integrals to infinite summations over Floquet modes.
The matrix equation can be solved by means of simple inversion of L, or by
making use of more sophisticated iterative schemes [91, 109].

Once we have solved the unknown surface currents with the method of mo-
ments, we calculate the total electromagnetic field at any given location within
the basic structure. To calculate the electromagnetic behavior of the total unit-
cell structure, we must combine the individual electromagnetic behavior of all
basic structures. For this purpose we formulate a so-called generalized scattering
matrix [31], which characterizes this behavior for all basic structures individu-
ally, by expressing the outgoing waves in terms of the incident waves. Then we
formulate a procedure that cascades two generalized scattering matrices [112,
section 6.3] (the principle is illustrated in figure 1.11). The result is a new gen-
eralized scattering matrix that characterizes the electromagnetic behavior of the
combination of the two basic structures. The scattering matrix approach gives
us the opportunity to split the total structure into separate parts. Some parts
such as complex balun-type feeding structures, that cannot be simulated with
the computational method described in this thesis, can be simulated with other
more dedicated (slower) software packages. As long as we are able to formulate a
scattering matrix of such a part, it can be cascaded with the scattering matrices
representing the other parts to arrive at the total electromagnetic behavior.
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Figure 1.11: Characterization of total electromagnetic behavior in terms of sepa-
rate scattering matrices per basic structure and by cascading scattering matrices
of all separate basic structures.
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1.6 Acceleration Technique

In this section we describe the acceleration technique that drastically reduces
the computation time needed for calculating the unknown field within the basic
structure. Most of the computational effort in the computational method is
spent in assembling L, i.e., in the evaluation of an asymptotically slowly con-
verging series, that needs to be evaluated for each element of L. This problem
has been addressed in the literature [17, 80, 93]. We present a novel accelera-
tion technique [89] that translates the evaluation of the asymptotically slowly
converging series into a numerical integration over an exponentially fast con-
verging series. This technique reduces the time needed to evaluate these series
and consists of three steps.

The first step is a Kummer transformation [2, section 3.6.26], where the
asymptotically slowly converging part of the series is subtracted (resulting in a
rapidly converging reduced series) and added (resulting in a slowly converging
correction series). The second step is an Ewald transformation [85, 40], where
the asymptotically slowly converging correction series is converted into an inte-
gration over τ of exponentially fast decaying functions. These functions contain
an exponentially fast converging series for which the leading-order term is given
by exp(−k2

t τ
2λ). k2

t denotes the squared norm of the transverse wavevector.
λ denotes an arbitrary parameter which must not be confused with the wave-
length. The third step is to split the integration over τ into one for small τ , i.e.,
over the interval (0, τ1), and one for large τ , i.e., over the interval (τ1,∞). Then
we apply a so-called Poisson transformation [79] for the integration over small
τ , where the relatively slow convergence of the series within the exponentially
fast decaying function, caused by the behavior of exp(−k2

t τ
2λ) for small τ , is

converted into an exponentially fast converging series. The leading-order term
for the integration over small τ is given by exp(−ρ2/(4τ2λ)). ρ2 denotes the
squared norm of the position vector.

The so-called transition point τ1 is a compromise between the convergence
behavior of the leading-order terms exp(−k2

t τ
2λ) and exp(−ρ2/(4τ2λ)). The

Poisson transformation step results in the evaluation of a so-called exponential
regularization of (a combination of) the expansion and weighting functions. The
overall success of this acceleration technique critically depends on the possibil-
ity of being able to quickly evaluate the relevant integrals of the regularization.
Since the regularization is independent of angle of incidence, frequency and
medium parameters we calculate it at the beginning of the computation and
store it in a lookup table. The generation of this table creates a trade-off situa-
tion where we can decide whether or not we use the acceleration technique. Since
it takes time to generate the lookup table, a critical amount of simulations steps
(break-even point) exists where the computational method with the acceleration
technique becomes faster than the unaccelerated computational method.

Furthermore, we consider three specific choices for the expansion and weight-
ing functions that lead to workable analytical solutions and numerical approxi-
mations for the exponential regularization. The first case is the rooftop function
defined in an orthogonal grid, which creates a restriction in the modeling of the
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unknown surface currents. However most structures do not consist of arbitrarily
shaped metal patches and apertures, and can therefore be captured in this or-
thogonal grid. An advantage of this grid is that we can express the exponential
regularization in terms of complementary error functions. In some cases where
the unit-cell structure cannot be represented in an orthogonal grid we use the
second case where the rooftop function is defined in an arbitrary grid. In this
case, we express the exponential regularization as a convolution of two analyti-
cally known functions both with ”almost” compact support. The third case is
the more general Rao-Wilton-Glisson function. With this triangular expansion
function we can model the unknown currents in the most arbitrary way. In this
case, we can express the exponential regularization as a convolution of two nu-
merically approximated functions both with ”almost” compact support. These
functions can also be evaluated by using an analytical approximation.

1.7 Organization of the Thesis

In chapter 2 we formulate the basic equations, i.e., Maxwell’s equations, that
describe the behavior of electromagnetic fields in general and within planarly
stratified media. We derive a Green’s function formulation for a planarly strati-
fied medium. We distinguish here between two types of such media: the waveg-
uide and the layered space.

In chapter 3 we then use these equations to develop a computational method
(with a software implementation called Luxaflex) that calculates the unknown
electromagnetic field within the array antenna structure. Since the number of
radiating elements is large, we use the infinite array approach, which assumes
an infinite number of identical radiating elements with a constant progressive
phase shift between the elements. This approach reduces the computation of
the electromagnetic behavior for the infinite structure essentially to that of a
single radiating element. Within a single radiating element there are parts (ba-
sic structures) in which the junctions experience a significant electromagnetic
coupling. Between the basic structures there is low electromagnetic coupling.
To determine the total electromagnetic behavior efficiently we exploit this prop-
erty, and separate the total calculation into one for each basic structure, and
one for combining them. The calculation for a single basic structure is based on
solving a coupled field integral equation with the Galerkin method of moments
(MoM), and approximates this integral equation by an impedance matrix equa-
tion. The result can be used to determine a scattering matrix that characterizes
the electromagnetic behavior of a single basic structure by treating the outgoing
waves as being caused by the incident waves. To obtain the electromagnetic be-
havior of the complete configuration, we combine the scattering matrices of the
corresponding separate basic structures with the aid of a cascading procedure
based on the Redheffer star product.

Most of the computational effort in the procedure is spent in assembling the
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impedance matrices. In chapter 4 we present a novel acceleration technique
that translates the evaluation of an asymptotically slowly converging series, that
needs to be evaluated in assembling the impedance matrices, into a numerical
integration over an exponentially fast converging series by using a Kummer, an
Ewald, and a Poisson transformation. This technique is applied to both rooftop
and Rao-Wilton-Glisson expansion functions used in the method of moments.

Since the proof of the pudding is in the eating2, we validate in chapter 5 the
outcome of Luxaflex against available commercial software tools (such as the
finite-element code c©HFSS), and (some of them) against waveguide simulator
measurements. We do this for eight different radiating structures, of which the
first five structures represent different types of frequency selective surfaces, and
where the last three structures are concerned with different types of realistic
radiators.

Finally, in chapter 6 we formulate our conclusions, give a number of recommen-
dations, and discuss the current and future industrial applicability of Luxaflex
and the acceleration technique in phased array antenna design methods. The
main purpose of appendices C-J has been to additionally make this thesis a
complete manual for Thales Nederland B.V. regarding the theory behind the
Luxaflex software implementation. These appendices can therefore be skipped
during initial reading.

2Miguel de Cervantes (1547-1616), author of Don Quixote
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Chapter 2

Basic Equations

”Science is the century-old endeavour to bring together by means of
systematic thought the perceptible phenomena of this world into as
thorough-going an association as possible. To put it boldly, it is the
attempt at a posterior reconstruction of existence by the process of
conceptualization. Science can only ascertain what is, but not what
should be, and outside of its domain value judgements of all kinds
remain necessary.” Albert Einstein (1879-1955)

In this chapter we formulate the basic equations that describe the behavior of
electromagnetic fields in general. Subsequently, we derive the special form that
is used in planarly stratified media.

In section 2.1 we first give a summary of the mathematical notations used
throughout this thesis. Then in section 2.2 we introduce Maxwell’s equations
that constitute the basis for calculating the electromagnetic field within any
medium. Since we are dealing with a planarly stratified configuration, it is
useful to eliminate some of the electromagnetic field components to be able to
calculate the mode eigenfunctions of the stratified configuration. We do this
by decomposing the vectors into transverse and longitudinal components. In
section 2.3 we derive two dedicated systems of equations where the transverse
and longitudinal components are taken to be the independent components, re-
spectively. Finally in section 2.4 these two sets of equations are used to derive a
Green’s function formulation for a planarly stratified medium. We distinguish
here between two types of such media: the waveguide and the layered space1.

2.1 Mathematical Notation

The physical laws that describe the behavior of electromagnetic waves were in-
ferred from a series of experiments [62, 51]. To carry out these experiments, an

1In this thesis, the layered space is considered as a waveguide with phase shift walls, and
whose modes are Floquet modes.
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Figure 2.1: A reference frame and standard clock.

observer must be able to register the position and the instant at which an obser-
vation is made [38, 54]. To register position, the existence of an isotropic, three-
dimensional (Euclidean) background space R3 is preassumed. In this space, dis-
tance can be measured along three mutually perpendicular directions with one
and the same position- and orientation-independent standard measuring rod.
To register instants, the existence of a position- and orientation-independent
standard clock is preassumed. The standard measuring rod is used to define, at
a certain position denoted as the origin O, an orthogonal Cartesian reference
frame consisting of three mutually perpendicular unit basis vectors {x̂, ŷ, ẑ},
where the hat indicates a unit-length vector. In the indicated order the three
vectors form a right-handed system. The bold-faced notation for vectors is used.
Let {x, y, z} denote the ordered sequence of the three real numbers (Cartesian
coordinates) that are needed to specify the position of an observer. Then this
position is denoted by the vector r = xx̂ + yŷ + zẑ. The length of the vector
r is denoted by r = ‖r‖ =

√
x2 + y2 + z2. The unit-length vector in parallel

with a given vector r is denoted by r̂ = r/r. We write p ‖ q and p ⊥ q if two
given vectors p and q are in parallel and perpendicular, respectively. The time
coordinate is real and denoted by t. Due to a symmetry of the configuration in
the x, y-plane we define (which is conventional) a so-called longitudinal direc-
tion along the z-axis. Accordingly, a so-called transverse plane is a plane for
which z is arbitrary but fixed [34, section 2.1]. In a given transverse plane the
position is fully specified by the transverse part ρ of the position vector r, given
by r = ρ + zẑ where ρ = xx̂ + yŷ. A graphical representation of the reference
frame and standard clock is given in figure 2.1.

Partial differentiation with respect to p is denoted by ∂p. The nabla-operator
∇ is defined as ∂xx̂+∂yŷ+∂z ẑ. Assume we are given a scalar field φ = φ(r) and
a vector field X = X(r). The gradient of φ is denoted by ∇φ. The divergence
of X is denoted by ∇ ·X. The curl of X is denoted by ∇ ×X. The Laplace
operator (or Laplacian) acting on φ is denoted by ∇2φ = ∇ ·(∇φ). The Hessian
operator acting on X is denoted by ∇∇ ·X = ∇(∇ ·X).
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A complex number is denoted by z = z′+jz′′ ∈ C, where z′, z′′ ∈ R, j2 = −1,
and where C denotes the set of complex numbers. The real part of z is denoted
by Re (z) = z′. The imaginary part of z is denoted by Im (z) = z′′. The complex
conjugate of z is denoted by z∗ = z′ − jz′′. The absolute value of z is denoted
by |z| =

√
z′2 + z′′2.

Let L2[a, b] be the space of square integrable functions on the interval [a, b]
equipped with an inner product [4, section 2] denoted by < f | g > (using the
so-called bra-ket notation [83, chapter 4]) and defined as

< f | g >=
∫ b

x=a

f(x)g∗(x)dx, (2.1)

where f, g ∈ L2[a, b]. For every f, g, h ∈ L2[a, b] and α ∈ C, this inner product
satisfies < f + h | g >=< f | g > + < h | g >, < αf | g >= α < f | g > and
< f | g >=< g | f >∗. Further < f | f >> 0 and equals zero if and only if f = 0.
The inner product induces a norm ‖f‖ =

√
< f | f > and a distance (metric)

d(f, g) = ‖f − g‖. The (vector) space L2[a, b] has a denumerable infinity of
dimensions and can be spanned by an orthonormal basis φm with m ∈ N where
for every m,n ∈ N

< φm |φn >= δm,n =

{
1 if m = n,

0 otherwise.
(2.2)

δm,n denotes the Kronecker-delta symbol. A sequence {fm} with fm ∈ L2[a, b]
and m ∈ N is called a Cauchy sequence if limm,n→∞ d(fm, fn) = 0. For every
Cauchy sequence {fm}, limm→∞ fm ∈ L2[a, b]. Thus L2[a, b] is complete in the
norm induced by the inner product and is hence a Hilbert space [34, appendix
A.2]. Consider further L2(−∞,∞), abbreviated as L2. The space L2 however
has a non-denumerable infinity of dimensions and can be spanned by for example
a generalized orthonormal Fourier basis φω(x) = 1√

2π
exp(jωx) with ω ∈ R

where for every ω, ν ∈ R

< φω |φν >= δ(ω − ν) =
1
2π

∫ ∞

x=−∞
exp(j[ω − ν]x)dx. (2.3)

δ(ω) denotes the Dirac-delta function [55].
Let U ⊂ R3 be an open set and let A : U → R3 be a continuously dif-

ferentiable vector field. Further let V ⊂ U be a closed bounded volume with
a piecewise smooth boundary surface ∂V . Then the original form of Gauss’
theorem [98, theorem 5.8] is given by∫

V

(∇ ·A)dV =
∮

∂V

A · ν̂dA, (2.4)

where ν̂ is the outward directed unit vector normal to ∂V , where dV ≡ dxdydz
is the differential volume element, and where dA ≡ dxdy denotes the differential
area element.
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Let U ⊂ R2 be an open set and let At : U → R2 and Ψ : U → R be a
continuously differentiable transverse vector field and scalar function, respec-
tively. Further let S ⊂ U be a closed bounded surface with a piecewise smooth
boundary curve ∂S. Then the reduced Gauss’ theorem for At is given by∫

S

(∇t ·At)dA =
∮

∂S

At · ν̂d`, (2.5)

and for Ψ is given by ∫
S

(∇tΨ)dA =
∮

∂S

Ψν̂d`, (2.6)

where ν̂ is the outward directed unit vector normal to ∂S, and where d` denotes
the differential line element.

Let U ⊂ R3 be an open set and let A : U → R3 be a continuously differ-
entiable vector field. Further let S ⊂ U be a piecewise smooth surface with
orientation ν̂. Then Stokes’ theorem [98, theorem 5.9] is given by∫

S

(∇×A) · ν̂dA =
∮

∂S

A · τ̂d`, (2.7)

where τ̂ denotes the tangent vector to the boundary curve ∂S of S. Further, ν̂
and τ̂ follow the right-hand orientation rule. If some given proposition Q(x) of
x is true for all x, or true for at least one x, we write

∀x[Q(x)] and ∃x[Q(x)], (2.8)

respectively [3, section 1.19]. Furthermore, we use the script and bold nota-
tion for time-domain and frequency-domain quantities, respectively. Finally, all
quantities in this thesis are expressed in SI units.

2.2 Maxwell’s Equations

The electromagnetic field present in a medium is governed by Maxwell’s equa-
tions. These equations describe the coupled behavior of the electric and mag-
netic field and flux densities in space and time. The flux densities are related
to the field densities through the constitutive relations. However this is not
completely sufficient. First we must take into account the principle of causal-
ity. Then we have to consider the compatibility relations which are a con-
sequence of Maxwell’s equations. Finally, we deal with media with piecewise
constant varying electromagnetic properties. To restrict the corresponding non-
differentiabilities in the field and flux densities at the interfaces and boundaries
where the electromagnetic properties vary discontinuously, we must impose the
interface and compatibility boundary conditions, respectively.
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2.2.1 Time-Domain Analysis

The coupled behaviour of the electric field/flux and the magnetic field/flux
in space by vector r[m] and time t[s] is described by the hyperbolic system of
partial differential equations, also known as the time-domain Maxwell equations
in matter [35, chapter 4], given by

−∇×H + ∂tD = −J , (2.9)
∇× E + ∂tB = −M, (2.10)

in which

E(r, t) = electric field strength [Vm−1],
H(r, t) = magnetic field strength [Am−1],
D(r, t) = electric flux density [Cm−2],
B(r, t) = magnetic flux density [T],
J (r, t) = volume source density of electric current [Am−2],

M(r, t) = volume source density of magnetic current [Vm−2].

Furthermore, the volume source densities of electric and magnetic current must
satisfy

∇ ·J = −∂tρe, (2.11)
∇ ·M = 0, (2.12)

in which

ρe(r, t) = electric charge density [Cm−3].

Equation 2.11 represents the conservation of electric charge (and is also known as
the continuity equation), while equation 2.12 states that free magnetic charges
do not exist.

All field quantities must be square integrable functions (∈ L2) over the space
variable r. This ensures that the electromagnetic energy is finite in any finite
volume, the field solutions are mathematically unique and physically meaningful.

It is clear that the number of unknowns (four vectorial quantities if the
source terms are assumed to be known) is larger than the number of equations
(two vectorial equations). Consequently, the system of equations 2.9 and 2.10
is an underdetermined one. From a physical point of view, the electromagnetic
field must be uniquely determined once the sources that generate the field and
the distribution of matter are given. Hence, in order to make the number of
equations equal to the number of unknown quantities, Maxwell’s equations in
matter have to be supplemented by another set of relations that is equivalent to
two vectorial relations between the four field quantities occurring in 2.9 and 2.10.
These supplementary relations are known as the constitutive relations; they are
representative for the macroscopic electromagnetic response of a passive piece
of matter to the presence of an electromagnetic field.
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Our medium is assumed to be linear, time-invariant, causal, isotropic and
locally reacting. We can write the constitutive relations in the following form

D = Ke ∗ E, (2.13)
B = Km ∗H, (2.14)

where ∗ denotes convolution in time and in which

Ke(r, t) = dielectric relaxation function [Fm−1s−1],
Km(r, t) = magnetic relaxation function [Hm−1s−1].

The dielectric and magnetic relaxation functions include electric and magnetic
conducting behavior, respectively. They must also lead to positive definite
stored electric and magnetic field energy densities and to non-negative definite
loss phenomena.

This formulation, where the dielectric relaxation function includes the in-
duced electric conducting behavior, deviates from the standard formulation
where the induced electric current is incorporated in Maxwell’s equations at
the start.

Furthermore, we must take into account the property of causality, by which
we mean that sources that act from instant t = t0 onwards, only cause fields for
t ≥ t0. The causality conditions are satisfied if both relaxation functions vanish
prior to t = 0.

We assume that the medium is instantaneously reacting, and that the medium
parameters depend only on the z-coordinate. We can now write the constitutive
relations in the following more specific form [37, chapter 2]

∂tD = (σ + ε∂t)E, (2.15)
∂tB = (α+ µ∂t)H, (2.16)

in which

σ(z) = scalar electric conductivity [Sm−1],
ε(z) = scalar permittivity [Fm−1],
α(z) = scalar magnetic conductivity [Hs−1m−1],
µ(z) = scalar permeability [Hm−1].

The so-called compatibility relations are a consequence of Maxwell’s equations
in time domain in matter. They are obtained by taking the divergence of both
equations and by using equations 2.14 and 2.15. This results in

∇ ·D = ρe, (2.17)
∇ ·B = 0, (2.18)

where we have assumed that ”the light has been switched on” at an instant
t = t0. This means that the flux densities must have been zero at t = t0 [103,
section 4.1].
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Figure 2.2: The interface and domains.

Now we consider an interface S between two adjacent domains D(1) and
D(2) with different electromagnetic properties. Furthermore we assume that
the interface S has a unique tangent plane in every point. We denote ν̂ as
the normal unit vector on the interface S. A graphical representation of the
interface and domains is given in figure 2.2.

Upon crossing this interface, the field quantities may vary discontinuously.
Since all physical quantities must have bounded magnitudes, the relevant dis-
continuities are restricted to jump discontinuities. This means that the field
quantities are not continuously differentiable in a domain that contains (part
of) the interface S and the partial differential equations 2.9 and 2.10 only hold
in a distributional sense. When the properties of the media under consideration
and the position of the interface are time invariant, the non-differentiability
is restricted to the dependence on the spatial variables. The electromagnetic
field equations must therefore be supplemented by so-called interface boundary
conditions, that interrelate the field values at both sides of the interface, given
by

ν̂ × E1 − ν̂ × E2 = Ms, (2.19)
ν̂ ×H1 − ν̂ ×H2 = J s. (2.20)

J s and Ms are the electric and magnetic surface currents at the interface
S, respectively. These surface currents have a Dirac dependence along the
ν̂-direction. Further, E1 and H1 are the field values in the domain D(1). E2

and H2 are the field values in the domain D(2).
The same line of argument shows that the flux quantities are not continu-

ously differentiable in a domain that contains (part of) the interface S and the
partial differential equations 2.9 and 2.10 cease to hold. They must therefore be
supplemented by so-called compatibility boundary conditions, that interrelate
the flux values at either side of the interface, given by

ν̂ · (∂tD + J ) = continuous, (2.21)
ν̂ · (∂tB + M) = continuous. (2.22)
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2.2.2 Laplace-Domain Analysis

Since we are dealing with electromagnetic fields in a linear and time-invariant
configuration, we can mathematically take advantage of this situation by car-
rying out a Laplace transformation with respect to time. As far as the time
coordinate is concerned, we must, in addition, take into account the property of
causality. This condition can mathematically most easily be accounted for by
using the one-sided Laplace transformation.

We call the domain after carrying out the one-sided Laplace transformation
the Laplace-domain or s-domain. In the s-domain relations, the time coordinate
has been eliminated and a field problem in space remains, in which the transform
parameter s occurs as a parameter.

Assume that the sources that generate the wave field are switched on at
the instant t0. Here, t0(r) can also be a function of the space vector r, which
creates the possibility to include an incident plane wave. In view of the causality
condition, the interest in the behavior of the field is then in the interval t > t0.
The one-sided Laplace transformation of some physical quantity F = F(r, t),
defined for t > t0 and in some as yet unspecified domain in space, is then given
by

F (r, s) =
∫ ∞

t=t0

exp(−st)F(r, t)dt. (2.23)

Now, causality is enforced by extending the range of F to t < t0 and setting F
to zero in that domain. Now, we require that equation 2.23, considered as an
integral equation to be solved for F(r, t), at given F (r, s), has a unique solution,
viz. zero if t < t0 and the reproduction of the function that we started with
if t > t0. Note that equation 2.23 can only be solved if F(r, t) is allowed to
deviate from the original one on a set of zero measure.

It can be shown that this requirement can be met by a proper choice of the
transformation parameter s. For the practical reason that in physics all quanti-
ties have bounded values, we restrict ourselves to functions F that are bounded.
Furthermore we assume that the functions F are also square integrable. Then,
the right-hand side of equation 2.23 is convergent if s is either real and positive,
or complex with Re (s) > 0. Note that Re (s) = 0 allows for a Fourier represen-
tation. Due to the analyticity of the Laplace transformation kernel exp(−st),
F (r, s) is an analytic function of s in {s ∈ C|Re (s) > 0}. The uniqueness of
equation 2.23 considered as an integral equation is guaranteed if F is given at a
sequence of points {sn ∈ R|sn = s0 + nh} with s0 real, positive and sufficiently
large, h real and positive, and n = 0, 1, 2, . . . (Lerch’s theorem, [113]). The
inverse Laplace transformation can be carried out explicitly by evaluating the
following inversion (Bromwich) integral in the complex s-plane

lim
Ω→∞

1
2πj

∫ s0+jΩ

s=s0−jΩ

exp(st)F (r, s)ds = χT (t)F(r, t), (2.24)

where the path of integration (which is parallel to the imaginary s-axis) is
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situated in the right half of the complex s-plane where F is analytic and where

χT (t) =


1 if t < t0,

1/2 if t = t0,

0 if t > t0.

(2.25)

The result when t = t0 holds on the assumption that the integration in the left-
hand side is carried out as a Cauchy principal value integral around ”infinity”.
A way to circumvent this is to assume a priori that F(r, t) is a continuous
function of t, which means that a sudden switching on of the sources is simply
not allowed. The one-sided Laplace transformation of the derivative ∂tF of F
is found by evaluating∫ ∞

t=t0

exp(−st)∂tF(r, t)dt = − exp(−st0) lim
t↓t0
F(r, t) + sF (r, s), (2.26)

where the first term on the right-hand side accounts for the presence of an
impulse function at t = t0, whose strength equals the jump in F at the instant
t = t0 in the direction of increasing t. If we incorporate this term into the
definition of the time differentiation of F , the s-domain equivalent corresponds
to a multiplication of F by a factor of s. On the other hand, equation 2.26 gives
us the tool to properly take into account the influence of a non-vanishing initial
field.

When we subject the basic time-domain Maxwell equations in matter 2.9 and
2.10 to the one-sided Laplace transformation, we obtain Maxwell’s equations in
matter in the time-Laplace (or complex-frequency) domain

−∇×H + sD = −J, (2.27)
∇×E + sB = −M. (2.28)

The general s-domain constitutive relations are obtained from 2.13 and 2.14 as

D = KeE, (2.29)
B = KmH, (2.30)

while the more specific s-domain constitutive relations are obtained from 2.15
and 2.16 as

D = (ε+ s−1σ)E, (2.31)

B = (µ+ s−1α)H. (2.32)

(ε + s−1σ) and (µ + s−1α) are the so-called complex permittivity and perme-
ability, respectively. The s-domain compatibility relations are obtained from
equations 2.17 and 2.18 as

∇ ·D = ρe, (2.33)
∇ ·B = 0. (2.34)



28 2 Basic Equations

The s-domain interface boundary conditions are obtained from equations 2.19
and 2.20 as

ν̂ ×E1 − ν̂ ×E2 = Ms, (2.35)
ν̂ ×H1 − ν̂ ×H2 = Js. (2.36)

The s-domain compatibility boundary conditions are obtained from equations
2.21 and 2.22 as

ν̂ · (sD + J) = continuous, (2.37)
ν̂ · (sB + M) = continuous. (2.38)

We define

η = σ + sε, (2.39)
ξ = α+ sµ. (2.40)

If we combine the Laplace-domain constitutive relations 2.31 and 2.32 with the
basic s-domain Maxwell equations in matter 2.27 and 2.28, and if we make use
of the definitions 2.39 and 2.40 we finally arrive at

−∇×H + ηE = −J, (2.41)
∇×E + ξH = −M. (2.42)

2.2.3 Frequency-Domain Analysis

In the frequency-domain analysis (or steady-state analysis), all field quantities
are taken to depend sinusoidally on time with a common real and positive
angular frequency, ω. Each real quantity F(r, t) can then be associated with
a complex amplitude F (r, jω) and a common time factor exp(jωt), in which j
denotes the imaginary unit. In doing so, the original quantity is found from its
complex counterpart as

F(r, t) = Re[F (r, jω) exp(jωt)]. (2.43)

The combination of the complex quantities of the type F (r, jω) exp(jωt), and the
basic time-domain Maxwell equations in matter, equations 2.9 and 2.10, yields,
apart from the complex time factor exp(jωt), a set of basic equations identical
to the one in the Laplace domain, equations 2.27 and 2.28. In these equations,
F stands for the complex representation of the quantity F , the common time
factor exp(jωt) is omitted, and s equals jω. We interpret the frequency-domain
analysis with complex time factor exp(jωt) as a limiting case of the s-domain
analysis [15, section 2.2.2] by taking

s = lim
s0↓0

(s0 + jω), (2.44)

Now by enforcing F (r, s) also to be analytic for Re (s) = 0, we have assured
that the limit exists, and that the causality conditions remain satisfied.
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2.3 Electromagnetic Fields in Planarly Strati-
fied Media

Maxwell’s equations describe the coupled behavior of the electric field/flux and
the magnetic field/flux in space and time. However, in so-called planarly strat-
ified media, the structure is invariant with respect to the transverse direction.
In this case to be able to calculate the mode eigenfunctions of the stratified
medium, it is useful to eliminate some of the electromagnetic field components.
We do this by decomposing the vectors into transverse and longitudinal compo-
nents. We either eliminate the longitudinal or the transverse field components
and write them in terms of the transverse and longitudinal field components,
respectively.

When the longitudinal field components are eliminated, the remaining trans-
verse field components satisfy a system of coupled partial differential equations
referred to as the Marcuvitz-Schwinger equations. The longitudinal field com-
ponents can directly be expressed in terms of the transverse field components.

When the transverse field components are eliminated, the longitudinal field
components satisfy two uncoupled scalar partial differential equations referred
to as the Helmholtz equations. The transverse field components satisfy two
uncoupled inhomogeneous ordinary differential equations.

In this section we derive both formulations. To do so we use the Laplace-
domain Maxwell equations in matter 2.41 and 2.42 where η = η(z) and ξ = ξ(z)
is assumed. Let us now decompose the vector quantities into their transverse
and longitudinal components as

H = Ht +Hz ẑ, (2.45)
E = Et + Ez ẑ, (2.46)
J = Jt + Jz ẑ, (2.47)

M = Mt +Mz ẑ, (2.48)

and the ∇-operator into its transverse and longitudinal operator components as
∇ = ∇t + ∂z ẑ where ∇t = ∂xx̂ + ∂yŷ. Expanding the quantities in equations
2.41 and 2.42 by using equations 2.45-2.48 we obtain

−∇t ×Ht − (∇tHz)× ẑ− ẑ× ∂zHt + ηEt + ηEz ẑ = −Jt − Jz ẑ, (2.49)
∇t ×Et + (∇tEz)× ẑ + ẑ× ∂zEt + ξHt + ξHz ẑ = −Mt −Mz ẑ. (2.50)

To isolate the transverse components, we take the cross product between ẑ and
equations 2.49 and 2.50. This leads to

−∂zHt = ηẑ×Et −∇tHz + ẑ× Jt, (2.51)
−∂zEt = ξHt × ẑ−∇tEz + Mt × ẑ. (2.52)

To isolate the longitudinal components, we take the inner product between ẑ
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and equations 2.49 and 2.50. This leads to

ηEz = ∇t · (Ht × ẑ)− Jz, (2.53)
ξHz = ∇t · (ẑ×Et)−Mz. (2.54)

We stress that equations 2.51, 2.52, 2.53 and 2.54 are completely equivalent to
Maxwell’s equations 2.41 and 2.42. We still have a coupled system of six first-
order partial differential equations. We have merely rearranged the equations
in transverse and longitudinal parts. Further note that equations 2.51 and 2.52
represent the transverse part even though they contain both transverse and
longitudinal field components. A similar remark applies to equations 2.53 and
2.54.

2.3.1 The Marcuvitz-Schwinger Equations

To eliminate the longitudinal field components, we first need the transverse
gradients of the longitudinal field components, given by

η∇tEz = ∇t∇t · (Ht × ẑ)−∇tJz, (2.55)
ξ∇tHz = ∇t∇t · (ẑ×Et)−∇tMz. (2.56)

Combining equations 2.51 and 2.52 with equations 2.55 and 2.56 leads to

−∂zHt = η
[
It + k−2∇t∇t

]
· (ẑ×Et) + ẑ× Jeff

t , (2.57)

−∂zEt = ξ
[
It + k−2∇t∇t

]
· (Ht × ẑ) + Meff

t × ẑ, (2.58)

with k2 = −ηξ, where It = x̂x̂ + ŷŷ denotes the transverse identity operator,
and where

Jeff
t = Jt + ξ−1(∇tMz)× ẑ, (2.59)

Meff
t = Mt + η−1ẑ× (∇tJz), (2.60)

denote the effective volume source densities. The transverse field components
now satisfy a system of coupled partial differential equations 2.57 and 2.58
referred to as the Marcuvitz-Schwinger equations [34, section 2.2]. The longitu-
dinal field components can directly be expressed in terms of the transverse field
components by dividing equations 2.53 and 2.54 by η and ξ, respectively. This
results in

Ez = η−1(∇t · (Ht × ẑ)− Jz), (2.61)

Hz = ξ−1(∇t · (ẑ×Et)−Mz). (2.62)

2.3.2 The Helmholtz Equations

To eliminate the transverse field components, we first need the transverse di-
vergence of the transverse field components given by

−∇t · ∂zHt = η∇t · (ẑ×Et)−∇2
tHz + ∇t · (ẑ× Jt), (2.63)

−∇t · ∂zEt = ξ∇t · (Ht × ẑ)−∇2
tEz + ∇t · (Mt × ẑ). (2.64)
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Combining equations 2.53 and 2.54 with equations 2.63 and 2.64 leads to

∇2
tHz + k2Hz − ∂z(∇t ·Ht) = ηMz + ∇t · (ẑ× Jt), (2.65)

∇2
tEz + k2Ez − ∂z(∇t ·Et) = ξJz + ∇t · (Mt × ẑ). (2.66)

Note that we have used ∇t · ∂zXt = ∂z(∇t ·Xt). At this point still two terms
with transverse components are present. These can be further eliminated by
using the compatibility relations written as

−η∇t ·Et = ∂z(ηEz) + ∇ · J, (2.67)
−ξ∇t ·Ht = ∂z(ξHz) + ∇ ·M. (2.68)

Combining these relations with equations 2.65 and 2.66 finally results in

∇2
tHz + k2Hz + ∂z

(
ξ−1∂z(ξHz)

)
=ηMz+

∇t · (ẑ× Jt)− ∂z

(
ξ−1∇ ·M

)
,

(2.69)

∇2
tEz + k2Ez + ∂z

(
η−1∂z(ηEz)

)
=ξJz+

∇t · (Mt × ẑ)− ∂z

(
η−1∇ · J

)
.

(2.70)

The longitudinal field components now satisfy two uncoupled scalar partial dif-
ferential equations 2.69 and 2.70 referred to as the Helmholtz equations [15,
section 5.1]. The remaining transverse field components satisfy two uncoupled
inhomogeneous ordinary differential equations. They can be obtained by solving
equations 2.51 and 2.52 for Et and Ht. This results in

ξ∂z

(
ξ−1∂zEt

)
+ k2Et =ξ∂z

(
ξ−1∇tEz

)
−

ξ(∇tHz)× ẑ + ξJt − ξ∂z

(
ξ−1Mt × ẑ

)
,

(2.71)

η∂z

(
η−1∂zHt

)
+ k2Ht =η∂z

(
η−1∇tHz

)
−

ηẑ× (∇tEz) + ηMt − η∂z

(
η−1ẑ× Jt

)
.

(2.72)

If we are dealing with inhomogeneous media, we would not use this approach
since we would have to additionally solve equations 2.71 and 2.72 for Et and
Ht.

2.4 Green’s Function for a Planarly Stratified
Medium

In this section we first show that the total electromagnetic field in a piecewise
homogeneous planarly stratified medium can be decomposed into three inde-
pendent field solutions where either the electric, the magnetic or both longitu-
dinal field components vanish. We then argue that due to the invariance of the
structure in the x, y-direction, we can use the technique of separation of vari-
ables, and separate the r-dependence of the field solutions into a ρ-dependence
and a z-dependence. For piecewise homogeneous media, the behavior in the
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z-direction is described in closed form by an exponential factor in the source-
free case.

In this case, the ρ-dependent components are referred to as the mode func-
tions. We use the Helmholtz equations to derive a set of equations that deter-
mine these mode functions in a general planarly stratified medium. Then, to be
more specific, we determine the mode functions for two different types of such
media: for the cylindrical waveguide and for the layered space. In both cases
the modes form a basis in the space of the transverse electromagnetic field and
therefore allow a very convenient field representation for the modeling of wave
propagation problems in piecewise homogeneous planarly stratified media.

The z-dependent components are referred to as the modal voltages and cur-
rents for the electric and magnetic field components, respectively. They show
an exponential z-dependence in the source-free case. We use the Marcuvitz-
Schwinger equations combined with the mode functions to derive the modal
transmission line equations that describe the evolution of the modal voltages
and currents. This is independent of the type of planarly stratified medium
and is allowed since the set of mode functions is complete. The advantages
of this approach are that the three-dimensional field problem is reduced to a
one-dimensional problem, and is rigorously reformulated in the language of cir-
cuit theory. It provides a framework in terms of quantities (voltages, currents,
impedances and admittances) and equations (transmission line equations) that
sounds familiar to electrical engineers. This enables us to cast any wave propa-
gation problem within a planarly stratified medium in a form that is amenable
to solution by circuit techniques.

2.4.1 Determination of the Mode Functions

The Helmholtz equations 2.69 and 2.70 suggest that the total electromagnetic
field radiated by the volume source distributions in a piecewise homogeneous
stratified medium can be decomposed into the following three independent field
solutions:

1. Transverse magnetic (TM) fields, for which Hz vanishes over the entire
transverse plane. These modes are also referred to as E-modes, since
all of the field components derive from a non-vanishing Ez component.
From equation 2.70 we infer that a volume distribution of only electric
currents for which Jt = 0 and Jz 6= 0 generates a pure TM wave. The
non-vanishing Ez component then satisfies[

∇2
t + k2 + ∂2

z

]
Ez =

(
ξ − η−1∂2

z

)
Jz. (2.73)

2. Transverse electric (TE) fields, for which Ez vanishes over the entire trans-
verse plane. These modes are also referred to as H-modes, since all of the
field components derive from a non-vanishing Hz component. From equa-
tion 2.69 we infer that a volume distribution of only magnetic currents for
which Mt = 0 and Mz 6= 0 generates a pure TE wave. The non-vanishing
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Hz component then satisfies[
∇2

t + k2 + ∂2
z

]
Hz =

(
η − ξ−1∂2

z

)
Mz. (2.74)

3. Transverse electric-magnetic (TEM) fields, for which both Ez and Hz

vanish over the entire transverse plane. In [15, section 5.3] TEM fields
are considered as a special case of a TM field. This type of wave can
only be generated if the right-hand sides of equations 2.69 and 2.70 both
vanish identically. The resulting electromagnetic field then follows from
equations 2.71 and 2.72 and satisfies[

∂2
z + k2

]
Et = ξJt − ∂z (Mt × ẑ) , (2.75)[

∂2
z + k2

]
Ht = ηMt − ∂z (ẑ× Jt) . (2.76)

In metal waveguides, the TEM mode exists only if the transverse section
is multiply connected, such as a coax or a parallel plate waveguide. These
types of waveguides are not considered in this thesis. In the case of a
layered space medium, the modes for which kt = 0 are TEM modes and
are considered in this thesis. There are two linearly independent ones2,
one with the electric field parallel to the x-axis and the other one with the
electric field parallel to the y-axis (for example).

Due to the invariance of the structure in the z-direction, we can use the tech-
nique of separation of variables, and split the r-dependence of the field solutions
into a separate ρ-dependence and a z-dependence. Furthermore, for piecewise
homogeneous media considered for the source-free case, the z-dependent factors
show an exponential z-dependence. In this case, the field components can be
written in the following modal field representation [34, section 5.1] as

Et(ρ, z) = CEet(ρ, kz) exp(−jkzz), (2.77)
Ez(ρ, z) = CEez(ρ, kz) exp(−jkzz), (2.78)
Ht(ρ, z) = CHht(ρ, kz) exp(−jkzz), (2.79)
Hz(ρ, z) = CHhz(ρ, kz) exp(−jkzz), (2.80)

where CE and CH denote the amplitude coefficients and where kz denotes the
longitudinal wavenumber. If we subsequently fix the sign of kz such that

Im (kz) ≤ 0 and Re (kz) ≥ 0 if Im (kz) = 0, (2.81)

then the modal field representation corresponds to a progressive mode, i.e., a
radiated field propagating or decaying exponentially in the positive z-direction.
To confirm this, consider first kz to be imaginary. In this case, Im (kz) ≤ 0
ensures that exp(−jkzz) decays exponentially as z → ∞. Modes with imag-
inary kz are called evanescent modes. Then consider kz to be real. In this

2The same holds for the fundamental Floquet mode (0, 0) in a phase shift wall waveguide
in the case of zero phase shift (”normal incidence”).
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case, Re (kz) ≥ 0 for Im (kz) = 0 ensures that exp(−jkzz + jωt) represents a
physically acceptable progressive mode in the positive z-direction. Note that
we have chosen the complex time factor exp(jωt). Modes with real kz are called
propagating modes. The modal field representation for a regressive mode, i.e., a
radiated field propagating or decaying exponentially in the negative z-direction,
can be found by simply changing signs in the exponential z-dependence from
exp(−jkzz) to exp(jkzz). Note that the same choice of the sign for kz holds.

The transverse vector fields et(ρ, kz) and ht(ρ, kz) are referred to as the
mode functions or simply as modes even though the corresponding longitudinal
components ez(ρ, kz) and hz(ρ, kz) may not vanish. For readability we drop
from now onwards the functional kz- and ρ-dependence.

Consider first a pure transverse magnetic (TM) field. The substitution of
the modal field representation for the longitudinal electric field component in
the source-free version of equation 2.73 shows that ez must satisfy[

∇2
t + k2

t

]
ez = 0. (2.82)

Consider second a pure transverse electric (TE) field. The substitution of the
modal field representation for the longitudinal magnetic field component in the
source-free version of equation 2.74 shows that hz must satisfy[

∇2
t + k2

t

]
hz = 0. (2.83)

These equations represent so-called eigenvalue problems. For instance, in the
case of equation 2.82 one has to find functions ez that are square integrable
functions3 (∈ L2), satisfy some specific supplementary boundary conditions4 (to
make the differential operator acting on a vector space become meaningful and
to describe the structure under study), and are eigenfunctions of the transverse
Laplacian operator ∇2

t , with eigenvalues −k2
t . kt still has to be determined,

which is at this point unknown.
Finally we show that the transverse field components of a mode function can

be expressed in terms of the longitudinal ones. To do so, we take the source-free
parts of equations 2.71 and 2.72 for a piecewise homogeneous medium, given by[

∂2
z + k2

]
Et = ∂z∇tEz − ξ(∇tHz)× ẑ, (2.84)[

∂2
z + k2

]
Ht = ∂z∇tHz − ηẑ× (∇tEz). (2.85)

By substituting the expressions for the modal field representations given in
equations 2.77-2.80, we can express the transverse field components et and ht

3Note that for a layered space medium, the eigenfuctions are plane waves, and are not
square integrable. Their orthonormality relation contains a Dirac delta function instead of
the Kronecker delta symbol.

4The boundary condition for the layered space medium is that the solution is finite every-
where.
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Figure 2.3: The branch cuts in the complex kt-plane and kz-plane.

in terms of the longitudinal components ez and hz as

et = − ξ

k2
t

Y∞(∇thz × ẑ)− j
kz

k2
t

∇tez, (2.86)

ht = −j
kz

k2
t

∇thz −
η

k2
t

Z∞(ẑ×∇tez), (2.87)

where we have introduced introduce the modal admittance Y∞ = CH/CE and
the modal impedance Z∞ = CE/CH = Y −1

∞ . Further the transverse wavenum-
ber kt is defined as

k2
t = k2 − k2

z , (2.88)

and is assumed to be non-zero. Finally note that the value of Y∞ (and the
corresponding Z∞) is still arbitrary. kz can be solved from equation 2.88 and is
given by

kz =
√
k2 − k2

t . (2.89)

If we fix the branch of the logarithmic function log(z) (used to calculate the
square root) at arg(z) = π (−π < arg(z) ≤ π), then equation 2.81 is satisfied.
In this case, a graphical representation of the branch cuts [61, section 6.1] in
the complex kt-plane and kz-plane is given in figure 2.3.

TM Mode Functions

The TM modes are traditionally indicated through a single prime [34, section
5.4.1]. They are characterized by a vanishing of h′z over the entire transverse
plane. All other field components are derived from a non-vanishing e′z, which is
considered as the fundamental unknown. The transverse field components now
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follow from equation 2.86 and 2.87 by setting h′z = 0. This results in

e′t = −j
k′z
k′2t

∇te
′
z, (2.90)

h′t = − η

k′2t
Z ′∞(ẑ×∇te

′
z). (2.91)

Note that the mode functions e′t and h′t are related via the following algebraic
relation

h′t =
η

jk′z
Z ′∞(ẑ× e′t). (2.92)

At this point the value for the modal impedance Z ′∞ is still arbitrary. Therefore
we now choose a value for it such that

‖e′t‖2 = ‖h′t‖2. (2.93)

By simple inspection of equation 2.92 we see that this latter condition is satisfied
if we take

Z ′∞ =
jk′z
η
. (2.94)

This choice for the modal impedance with dimension [S−1] leads to a physi-
cal interpretation in which the mode functions e′t and h′t can be regarded as
geometrical quantities with dimension [m−1]. Furthermore, the amplitude coef-
ficients CE and CH take the meaning of a voltage and a current, respectively.
Consequently they are denoted as V ′ and I ′ and have dimension [V] and [A],
respectively. Further, note that e′t is the gradient of a scalar function. As a
consequence e′t is irrotational and h′t is solenoidal.

TE Mode Functions

The TE modes are traditionally indicated through a double prime [34, section
5.4.2]. They are characterized by a vanishing of e′′z over the entire transverse
plane. All other field components are derived from a non-vanishing h′′z , which is
considered as the fundamental unknown. The transverse field components now
follow from equation 2.86 and 2.87 by setting e′′z = 0. This results in

e′′t = − ξ

k′′2t

Y ′′
∞(∇th

′′
z × ẑ), (2.95)

h′′t = −j
k′′z
k′′2t

∇th
′′
z . (2.96)

Note that the mode functions e′′t and h′′t are related via the following algebraic
relation

e′′t =
ξ

jk′′z
Y ′′
∞(h′′t × ẑ). (2.97)
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At this point the value for the modal admittance Y ′′
∞ is still arbitrary. Therefore

we now choose a value for it such that

‖e′′t ‖2 = ‖h′′t ‖2. (2.98)

By simple inspection of equation 2.97 we see that this latter condition is satisfied
if we take

Y ′′
∞ =

jk′′z
ξ
. (2.99)

This choice for the modal admittance with dimension [S] leads to a physical
interpretation in which the mode functions e′′t and h′′t can be regarded as ge-
ometrical quantities with dimension [m−1]. Furthermore, the amplitude coef-
ficients CE and CH take the meaning of a voltage and a current, respectively.
Consequently they are denoted as V ′′ and I ′′ and have dimension [V] and [A],
respectively. Further note that h′′t is the gradient of a scalar function. As a
consequence h′′t is irrotational and e′′t is solenoidal.

2.4.2 Mode Functions for a Cylindrical Waveguide

In this section we specify the mode functions for a cylindrical waveguide of
arbitrary shape. Let us first consider the definition of a general cylindrical
waveguide. The cross section occupies a finite area A in the transverse plane.
We assume the waveguide to be bounded in the transverse direction by a per-
fectly electric conducting boundary ∂A. The in-plane unit-length vectors ν̂ and
τ̂ denote the outward normal and the tangent with respect to ∂A, respectively.
ν̂, τ̂ , and ẑ form a right-handed coordinate system. Furthermore, we assume
that the waveguide is infinitely long and uniform, i.e., its shape and the elec-
tromagnetic properties of the filling are independent of z. This means that the
cross section A with the line boundary ∂A can be extrapolated to a volume V
with a surface boundary ∂V . A graphical representation of the definition of a
cylindrical waveguide is given in figure 2.4.

The wall of the cylindrical waveguide is assumed to be a perfect electric
conductor. This means that the following boundary condition must be satisfied

∀ρ ∈ ∂V [ν̂ × Ê = ν̂ × (Et + Ez ẑ) = ν̂ ×Et − τ̂Ez = 0]. (2.100)

Note that equation 2.100 can be split into the following two parts

∀ρ ∈ ∂V [ν̂ ×Et = 0 and Ez = 0]. (2.101)

When substituting the modal field representation in equation 2.101, we obtain

∀ρ ∈ ∂V [ν̂ × et = 0 and ez = 0]. (2.102)

The first part of equation 2.102 specifies the boundary conditions in terms of the
transverse field components. However we aim at deriving equations involving
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Figure 2.4: Definition of a cylindrical waveguide. Note that ν̂ and τ̂ are situated
in the x̂, ŷ-plane.

longitudinal components only. To solve this problem we take the cross product
between ν̂ and both sides of equation 2.86. We obtain

ν̂ × et = −j
kz

k2
t

(ν̂ ×∇tez)−
ξ

k2
t

Y∞ν̂ × (∇thz × ẑ), (2.103)

which can be written in a more convenient form as

ν̂ × et = −j
kz

k2
t

(ẑ∂τez) +
ξ

k2
t

Y∞ (ẑ∂νhz) . (2.104)

The second boundary condition now follows from equation 2.104 by applying
the boundary condition 2.102. We obtain

∀ρ ∈ ∂V [∂νhz = 0] . (2.105)

For a pure TM waveguide mode, the longitudinal field components e′z must be
square integrable functions within V that satisfy[

∇2
t + k′2t

]
e′z = 0, (2.106)

and

∀ρ ∈ ∂V [e′z = 0]. (2.107)

This constitutes a so-called Dirichlet boundary value problem. For a pure TE
waveguide mode, the longitudinal field components h′′z must be square integrable
functions within V that satisfy[

∇2
t + k′′2t

]
h′′z = 0, (2.108)

and

∀ρ ∈ ∂V [∂νh
′′
z = 0] . (2.109)
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This constitutes a so-called Neumann boundary value problem. Both Dirichlet
and Neumann boundary value problems have a doubly denumerable infinite
number of solutions (modes). We label these solutions with an integer mode
index m and a polarization index α of which the latter can be either single (TM)
or double (TE) prime. The single integer mode index m is to simplify notation.
Since the problem is two-dimensional, we have two integer mode indices. The
wavevectors5 (kα

t and kα
z ), field (uα

t and uα
z ) and modal (Uα) components are

written in the integer form as

uα
t (ρ)→ uα

t;m(ρ),
uα

z (ρ)→ uα
z;m(ρ),

Uα(z)→ Uα
m(z),

kα
t → kα

t;m,

kα
z → kα

z;m.

(2.110)

Furthermore, the TM and TE sets of solutions combined form a basis in the
space of the transverse fields [34, section 5.5] (a Hilbert space, L2[V ]). The
transverse fields can therefore be written as

Et(ρ, z) =
∑
m,α

V α
m(z)eα

t;m(ρ), (2.111)

Ht(ρ, z) =
∑
m,α

Iα
m(z)hα

t;m(ρ). (2.112)

In the next two paragraphs, we examine some more interesting properties of the
TM and TE waveguide mode functions.

TM Mode Functions

In this paragraph we consider the properties for the TM mode functions for
the cylindrical waveguide. First we prove that the Dirichlet Laplacian has (an
infinite number of) real and negative eigenvalues, denoted as −k′2t;m, with m =
1, 2, . . . . We start from the observation that a given TM mode e′z;m satisfies
Helmholtz’ equation 2.106 [

∇2
t + k′2t;m

]
e′z;m = 0. (2.113)

Now, we take the inner product (using the bra-ket notation) of both sides of
this equation with e′z;m. We obtain

<
[
∇2

t + k′2t;m
]
e′z;m | e′z;m >= 0. (2.114)

Solving equation 2.114 for k′2t;m results in

k′2t;m = −
< ∇2

t e
′
z;m | e′z;m >

< e′z;m | e′z;m >
. (2.115)

5Modes in a closed metal waveguide have in principle no wavevector, but are characterized
by the eigenvalue −k2

t .
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We can simplify the numerator of this equation by using the following chain
rule for differentiation by parts

e′∗z;m∇2
t e
′
z;m = ∇t · (e′∗z;m∇te

′
z;m)−∇te

′∗
z;m ·∇te

′
z;m, (2.116)

and by applying Gauss’ divergence theorem 2.5 where ∇t · ν̂d` = ∂νd`. This
leads to

< ∇2
t e
′
z;m | e′z;m >=

∮
e′∗z;m∂νe

′
z;md`− < ∇te

′
z;m |∇te

′
z;m > . (2.117)

The contour integral in the right-hand side vanishes because of the boundary
condition 2.107. With this result, equation 2.115 reduces to

k′2t;m =
< ∇te

′
z;m |∇te

′
z;m >

< e′z;m | e′z;m >
=
‖∇te

′
z;m‖2

‖e′z;m‖2
. (2.118)

We conclude that the eigenvalue −k′2t;m is clearly real-valued and negative since
it is equal to the quotient of two norms.

Next, we prove that the corresponding eigenfunctions e′z;m are orthogonal.
Any TM mode e′z;m satisfies Helmholtz’ equation 2.106[

∇2
t + k′2t;m

]
e′z;m = 0, (2.119)

where we have taken into account that k′2t;n is real-valued. Taking the inner
product of equation 2.119 with e′∗z;n and subtracting the counterpart with m
and n interchanged, we obtain∫

(e′∗z;n∇2
t e
′
z;m − e′z;m∇2

t e
′∗
z;n)dA = −(k′2t;m − k′2t;n) < e′z;m | e′z;n > . (2.120)

We can simplify the left-hand side of equation 2.120 by using the following chain
rule for differentiation by parts

e′∗z;n∇2
t e
′
z;m − e′z;m∇2

t e
′∗
z;n = ∇t · (e′∗z;n∇te

′
z;m − e′z;m∇te

′∗
z;n), (2.121)

and by applying Gauss’ divergence theorem. Doing this leads us to∫
(e′∗z;n∇2

t e
′
z;m−e′z;m∇2

t e
′∗
z;n)dA =∮ (

e′∗z;n∂νe
′
z;m − e′z;m∂νe

′∗
z;n

)
d`.

(2.122)

Equation 2.122 is known as Green’s second theorem. The contour integral in
the right-hand side vanishes because of the boundary condition 2.107. With
this result, equation 2.120 reduces to

< e′z;m | e′z;n >= 0 if k′2t;m 6= k′2t;n. (2.123)

We conclude that the longitudinal field components are orthogonal for differ-
ent eigenvalues. For equal eigenvalues k′2t;m = k′2t;n the Gram-Schmidt process
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always allows us to construct a set of orthogonal longitudinal field components
{e′z;m, e

′
z;n} since every linear combination is also an eigenfunction [99, 3].

Subsequently, we prove that the corresponding mode functions e′t;m and h′t;m
are orthogonal. To do so we rewrite the inner product between two given TM
modes e′t;m and e′t;n with the aid of equation 2.90 as

< e′t;m | e′t;n >=
k′z;mk

′∗
z;n

k′2t;mk
′2
t;n

< ∇te
′
z;m |∇te

′
z;n > . (2.124)

Note that we have taken into account that k′2t;n is real-valued. The inner product
in the right-hand side of equation 2.124 can be rewritten by using the following
product rule for differentiation by parts

∇te
′
z;m ·∇te

′∗
z;n = ∇t · (e′z;m∇te

′∗
z;n)− e′z;m∇2

t e
′∗
z;n

= ∇t · (e′z;m∇te
′∗
z;n) + k′2t;ne

′
z;me

′∗
z;n.

(2.125)

In deriving equation 2.125 we have used Helmholtz’ equation 2.106, the fact
that k′2t;n is real-valued, and Gauss’ divergence theorem. This leads to

< e′t;m | e′t;n >=
k′z;mk

′∗
z;n

k′2t;mk
′2
t;n

(∮
e′z;m∂νe

′∗
z;nd`+ k′2t;n < e′z;m | e′z;n >

)
. (2.126)

First, the contour integral vanishes due to the boundary condition 2.107. Sec-
ond, the inner product vanishes due to the orthogonality of the longitudinal
field components, as given in equation 2.123. Thus, equation 2.126 reduces to

< e′t;m | e′t;n >= 0 if k′2t;m 6= k′2t;n. (2.127)

As a consequence of equation 2.92 we also have

< h′t;m |h′t;n >= 0 if k′2t;m 6= k′2t;n. (2.128)

We conclude that the transverse field components are orthogonal.
Finally, the complex power transported by a single TM mode can be obtained

by invoking Poynting’s theorem. This results in

Sm = Pm + jQm = V ′
mI

′∗
m

∫
(e′t;m × h′∗t;m) · ẑdA. (2.129)

Relation 2.92 fixes the magnitude of h′t;m relative to e′t;m. Furthermore, due
to the choice of Z ′∞;m, the norm of h′t;m equals the norm of e′t;m. However,
the value of the norm is still arbitrary. We take advantage of this situation
by setting this norm equal to one. With this normalization, the value of the
integral in equation 2.129 is known since

‖e′t;m‖2 =
∫

e′t;m · (h′∗t;m × ẑ)dA =
∫

(e′t;m × h′∗t;m) · ẑdA. (2.130)
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Consequently, the complex power transported by a single TM mode has the
same form as the one used in circuit theory, i.e.

Sm = Pm + jQm = V ′
mI

′∗
m. (2.131)

By substituting m = n in equation 2.126, we obtain

‖e′t;m‖2 =
|k′z;m|2

k′2t;m

∫
|e′z;m|2dA. (2.132)

A careful inspection of equation 2.132 shows that we can obtain a normalized
e′t;m by introducing a new set of scalar generating functions Φm = Φm(ρ) [34,
section 5.4.1], such that

e′z;m = −j
k′t;m
k′z;m

Φm. (2.133)

The scalar generating functions Φm must be square integrable, satisfy[
∇2

t + k′2t;m
]
Φm = 0, (2.134)

and must be supplemented with the following boundary condition

∀m,∀ρ ∈ ∂V [Φm(ρ) = 0]. (2.135)

The functions {Φm} are normalized by forcing

< Φm |Φn >= δm,n. (2.136)

The TM mode functions can now be written as

e′t;m = −∇tΦm

k′t;m
, (2.137)

h′t;m =
∇tΦm

k′t;m
× ẑ. (2.138)

From the definitions 2.134-2.138 it follows that the quantities k′t;m, Φm and
e′t;m depend neither on the frequency nor on the value of the scalar constitutive
parameters. e′z;m, however, does depend on these latter two parameters via
k′z;m.

TE Mode Functions

In this paragraph we consider the properties for the TE mode functions for
the cylindrical waveguide. First we prove that the Neumann Laplacian has
(an infinite number of) real and negative eigenvalues, denoted as −k′′2t;m, with
m = 1, 2, . . . . We start from the observation that a given TE mode h′′z;m satisfies
Helmholtz’ equation 2.108[

∇2
t + k′′2t;m

]
h′′z;m = 0. (2.139)
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Next, we take the inner product (using the bra-ket notation) of both sides of
this equation with h′′z;m. We obtain

<
[
∇2

t + k′′2t;m

]
h′′z;m |h′′z;m >= 0. (2.140)

Solving equation 2.140 for k′′2t;m results in

k′′2t;m = −
< ∇2

th
′′
z;m |h′′z;m >

< h′′z;m |h′′z;m >
. (2.141)

We can simplify the numerator of this equation by using the following chain
rule for differentiation by parts

h′′∗z;m∇2
th

′′
z;m = ∇t · (h′′∗z;m∇th

′′
z;m)−∇th

′′∗
z;m ·∇th

′′
z;m, (2.142)

and by applying Gauss’ divergence theorem 2.5. This leads to

< ∇2
th

′′
z;m |h′′z;m >=

∮
h′′∗z;m∂νh

′′
z;md`− < ∇th

′′
z;m |∇th

′′
z;m > . (2.143)

The contour integral in the right-hand side vanishes because of the boundary
condition 2.109. With this result, equation 2.141 reduces to

k′′2t;m =
< ∇th

′′
z;m |∇th

′′
z;m >

< h′′z;m |h′′z;m >
=
‖∇th

′′
z;m‖2

‖h′′z;m‖2
. (2.144)

We conclude that the eigenvalue −k′′2t;m is clearly real-valued and negative since
it is equal to the quotient of two norms.

Next, we prove that the corresponding eigenfunctions h′′z;m are orthogonal.
Any TE mode h′′z;m satisfies Helmholtz’ equation 2.108[

∇2
t + k′′2t;m

]
h′′z;m = 0, (2.145)

where we have taken into account that k′′2t;n is real-valued. Taking the inner
product of equation 2.145 with h′′∗z;n and subtracting the counterpart with m
and n interchanged, we obtain∫

(h′′∗z;n∇2
th

′′
z;m − h′′z;m∇2

th
′′∗
z;n)dA = −(k′′2t;m − k′′2t;n) < h′′z;m |h′′z;n > . (2.146)

By using the Green’s second theorem as derived in equation 2.122 we can sim-
plify the left-hand side of equation 2.146 to∫

(h′′∗z;n∇2
th

′′
z;m−h′′z;m∇2

th
′′∗
z;n)dA =∮ (

h′′∗z;n∂νh
′′
z;m − h′′z;m∂νh

′′∗
z;n

)
d`.

(2.147)
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The contour integral in equation 2.147 vanishes because of the boundary con-
dition 2.109. With this result, equation 2.146 reduces to

< h′′z;m |h′′∗z;n >= 0 if k′′2t;m 6= k′′2t;n. (2.148)

We conclude that the longitudinal field components are orthogonal for differ-
ent eigenvalues. For equal eigenvalues k′2t;m = k′2t;n the Gram-Schmidt process
always allows us to construct a set of orthogonal longitudinal field components
{e′z;m, e

′
z;n} since every linear combination is also an eigenfunction [99, 3].

Subsequently, we prove that the corresponding mode functions e′′t;m and h′′t;m
are orthogonal. To do so we rewrite the inner product between two given TE
modes h′′t;m and h′′t;n with the aid of equation 2.96 as

< h′′t;m |h′′t;n >=
k′′z;mk

′′∗
z;n

k′′2t;mk
′′2
t;n

< ∇th
′′
z;m |∇th

′′
z;n >, (2.149)

where we have taken into account that k′′2t;n is real-valued. The inner product
in the right-hand side of equation 2.149 can be rewritten by using the following
product rule for differentiation by parts

∇th
′′
z;m ·∇th

′′∗
z;n = ∇t · (h′′z;m∇th

′′∗
z;n)− h′′z;m∇2

th
′′∗
z;n

= ∇t · (h′′z;m∇th
′′∗
z;n) + k′′2t;nh

′′
z;mh

′′∗
z;n.

(2.150)

In deriving equation 2.150 we have used Helmholtz’ equation 2.108, the fact
that k′′2t;n is real-valued, and Gauss’ divergence theorem. We end up with

< h′′t;m |h′′t;n >=
k′′z;mk

′′∗
z;n

k′′2t;mk
′′2
t;n

(∮
h′′z;m∂νh

′′∗
z;nd`+ k′′2t;n < h′′z;m |h′′z;n >

)
. (2.151)

First, the contour integral vanishes due to the boundary condition 2.109. Sec-
ond, the inner product vanishes due to the orthogonality of the longitudinal
field components, as given in equation 2.148. Thus, equation 2.151 reduces to

< h′′t;m |h′′t;n >= 0 if k′′2t;m 6= k′′2t;n. (2.152)

As a consequence of equation 2.97 we also have

< e′′t;m | e′′t;n >= 0 if k′′2t;m 6= k′′2t;n. (2.153)

We conclude that the transverse field components are orthogonal.
Finally, the complex power transported by a single TE mode can be obtained

by invoking Poynting’s theorem. This results in

Sm = Pm + jQm = V ′′
mI

′′∗
m

∫
(e′′t;m × h′′∗t;m) · ẑdA. (2.154)

Relation 2.97 fixes the magnitude of e′′t;m relative to h′′t;m. Furthermore, due
to the choice of Y ′′

∞;m, the norm of e′′t;m equals the norm of h′′t;m. However,
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the value of the norm is still arbitrary. We take advantage of this situation by
setting this norm to be one. With this normalization, the integral in equation
2.154 has a fixed value since

‖h′′t;m‖2 =
∫

(ẑ× e′′t;m) · h′′∗t;mdA =
∫

(e′′t;m × h′′∗t;m) · ẑdA. (2.155)

Again, the complex power transported by a single TE mode has the same form
as the one used in circuit theory, i.e.

Sm = Pm + jQm = V ′′
mI

′′∗
m . (2.156)

Choosing m = n in equation 2.151 results in

‖h′′t;m‖2 =
|k′′z;m|2

k′′2t;m

∫
|h′′z;m|2dA. (2.157)

A careful inspection of equation 2.157 shows that we can obtain a normalized
h′′t;m by introducing a new set of scalar generating functions Ψm = Ψm(ρ) [34,
section 5.4.2], such that

h′′z;m = −j
k′′t;m
k′′z;m

Ψm. (2.158)

The scalar generating functions Ψm must be square integrable, satisfy[
∇2

t + k′′2t;m

]
Ψm = 0, (2.159)

and must be supplemented with the following boundary condition

∀m,∀ρ ∈ ∂V [∂νΨm(ρ) = 0] . (2.160)

The functions {Ψm} are normalized by forcing

< Ψm |Ψn >= δm,n. (2.161)

The TE mode functions can now be written as

h′′t;m = −∇tΨm

k′′t;m
, (2.162)

e′′t;m = ẑ× ∇tΨm

k′′t;m
. (2.163)

From the definitions 2.159-2.163 it follows that the quantities k′′t;m, Ψm and
h′′t;m depend neither on the frequency nor on the value of the scalar constitutive
parameters. h′′z;m, however, does depend on these latter two parameters via
k′′z;m.
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2.4.3 Mode Functions for a Layered Space

In this section we determine the mode functions for the layered space. Let us first
consider the definition of a layered space. The cross-section occupies an infinite
area in the transverse plane. Furthermore we assume that the layered space is
infinitely long and piecewise uniform in the z-direction, i.e., the electromagnetic
properties of its filling are piecewise constant and independent of a finite interval
in z.

For a pure TM mode, the longitudinal field components e′z must be square
integrable over any finite interval and satisfy[

∇2
t + k′2t

]
e′z = 0. (2.164)

In a similar way, for a pure TE mode, the longitudinal field components h′′z must
be square integrable over any finite interval and satisfy[

∇2
t + k′′2t

]
h′′z = 0. (2.165)

Both equations 2.164 and 2.165 have a continuous set of solutions (modes or
plane waves6). We label these solutions with a continuous mode index wavevec-
tor kt and a polarization index α of which the latter can be either a single (TM)
or a double prime (TE). The wavevectors (kα

t and kα
z ), field (uα

t and uα
z ) and

modal (Uα) components are written in the continuous form as

uα
t (ρ)→ uα

t (kt,ρ),
uα

z (ρ)→ uα
z (kt,ρ),

Uα(z)→ Uα(kt, z),
kα

t → kα
t (kt) = kt,

kα
z → kα

z (kt) = kz.

(2.166)

Furthermore the TM and TE sets of solutions combined form a basis in the
space of the transverse fields [104] (a Hilbert space, L2). The transverse fields
can therefore be written in the following general form as

Et(ρ, z) =
∑
α

∫
V α(kt, z)eα

t (kt,ρ)dkt, (2.167)

Ht(ρ, z) =
∑
α

∫
Iα(kt, z)hα

t (kt,ρ)dkt. (2.168)

In the next two paragraphs we examine the most interesting properties of the
TM and TE layered space mode functions.

6The modes in this case can be either plane waves or cylindrical waves. Clearly, on account
of the application to phased arrays, the modes are chosen in the form of plane waves.
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TM Mode Functions

Inspired by equation 2.133 we introduce a similar set of scalar generating func-
tions Φ(kt) = Φ(kt,ρ), such that

e′z(kt) = −j
kt

kz
Φ(kt). (2.169)

The scalar generating functions Φ(kt) must be square integrable and must sat-
isfy the two-dimensional Helmholtz equation[

∇2
t + k2

t

]
Φ(kt) = 0. (2.170)

The functions {Φ(kt)} are normalized in distributional sense by forcing

< Φ(k′t) |Φ(k′′t ) >= δ(k′t − k′′t ). (2.171)

This equation also ensures the orthogonality between two different TM layered
space modes with index k′t and k′′t . Solving equation 2.170 for Φ(kt) and re-
quiring 2.171 leads to

Φ(kt) =
1
2π

exp(−jkt · ρ). (2.172)

By using equation 2.169, we find the corresponding longitudinal field component
as

e′z(kt) = − j
2π

kt

kz
exp(−jkt · ρ). (2.173)

The layered space TM mode functions are now obtained from equations 2.90
and 2.91. We find

e′t(kt) =
j

2π
k̂ exp(−jkt · ρ), (2.174)

h′t(kt) = − j
2π

α̂ exp(−jkt · ρ), (2.175)

in which k̂ = kt/kt and α̂ = k̂× ẑ.

TE Mode Functions

To obtain the TE modes we introduce a similar set of scalar generating functions
Ψ(kt) = Ψ(kt,ρ), such that

h′′z (kt) = −j
kt

kz
Ψ(kt). (2.176)

The scalar generating functions Ψ(kt) must be square integrable and must sat-
isfy the two-dimensional Helmholtz equation[

∇2
t + k2

t

]
Ψ(kt) = 0. (2.177)
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The functions {Ψ(kt)} are normalized in distributional sense by forcing

< Ψ(k′t) |Ψ(k′′t ) >= δ(k′t − k′′t ). (2.178)

This equation inherently ensures the orthogonality between two different TE
layered space modes with index k′t and k′′t . Solving equation 2.177 for Ψ(kt)
and requiring 2.178 leads to

Ψ(kt) =
1
2π

exp(−jkt · ρ). (2.179)

The corresponding longitudinal field component is now obtained from equation
2.176 as

h′′z (kt) = − j
2π

kt

kz
exp(−jkt · ρ). (2.180)

The layered space TE mode functions are now obtained from equations 2.95 and
2.96. We find

h′′t (kt) =
j

2π
k̂ exp(−jkt · ρ), (2.181)

e′′t (kt) =
j

2π
α̂ exp(−jkt · ρ). (2.182)

Substituting the results for the TM and TE layered space mode functions in
equations 2.167 and 2.168 finally results in

Et(ρ, z) =
1
2π

∫
Ēt(kt, z) exp(−jkt · ρ)dkt, (2.183)

Ht(ρ, z) =
1
2π

∫
H̄t(kt, z) exp(−jkt · ρ)dkt, (2.184)

in which

Ēt(kt, z) = j
kt

kt
V ′(kt, z)− j

(
ẑ× kt

kt

)
V ′′(kt, z), (2.185)

H̄t(kt, z) = j
(
ẑ× kt

kt

)
I ′(kt, z) + j

kt

kt
I ′′(kt, z). (2.186)

In these equations we recognize the well-known spectral field representation
expressed in terms of a two-dimensional Fourier transform [104].

The modes for which kt = 0 are TEM modes. There are two linearly inde-
pendent ones, one with the electric field parallel to the x-axis and the other one
with the electric field parallel to the y-axis (for example). Moreover, when phase
shift walls are added, the modal spectrum becomes discrete and the modes are
the Floquet modes.
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2.4.4 Modal Transmission Line Equations

Without loss of generality, the transverse electromagnetic field in an arbitrary
planarly stratified medium can be written as

Et(ρ, z) = S [V α(z)eα
t (ρ)] , (2.187)

Ht(ρ, z) = S [Iα(z)hα
t (ρ)] , (2.188)

where S[·] indicates a linear superposition of denumerable or non-denumerable
modes. This field representation assumes the form of either equations 2.109 and
2.110 for the general cylindrical waveguide or equations 2.165 and 2.166 for the
layered space. The z-dependent components V α(z) and Iα(z) are referred to as
the modal voltages and currents for the electric and magnetic field components,
respectively [112, section 6.2]. They show an exponential z-dependence in the
source-free case for piecewise homogeneous media.

In this section we use the Marcuvitz-Schwinger equations combined with the
mode functions to derive the modal transmission line equations that describe the
evolution of these modal voltages and currents. This only depends on the cross-
section, and is allowed since the set of mode functions is complete. To start with
the derivation of the modal transmission line equations, let us first substitute
the field representation, equations 2.187 and 2.188, in the Marcuvitz-Schwinger
equations 2.57 and 2.58. We obtain

−S [eα
t ∂zV

α(z)] = ξS [Iα(z)W · (hα
t × ẑ)] + Meff

t × ẑ, (2.189)

−S [hα
t ∂zI

α(z)] = ηS [V α(z)W · (ẑ× eα
t )] + ẑ× Jeff

t , (2.190)

with W = It +k−2∇t∇t. Subsequently, we take the inner product of equations
2.189 and 2.190 with eβ

t and hβ
t , respectively. Note that eβ

t and hβ
t not only

differ from eα
t and hα

t in polarization index β but can also differ in the indices
m or kt for the waveguide or layered space, respectively. Doing this leads to

−∂zV
β(z) = ξS[Iα(z) <W · eα

t | e
β
t >]+ < Meff

t × ẑ | eβ
t >, (2.191)

−∂zI
β(z) = ηS[V α(z) <W · hα

t |h
β
t >]+ < ẑ× Jeff

t |h
β
t > . (2.192)

Furthermore, the inner products containing the W-operator can be elaborated
by using the orthogonality properties of the modes. For the waveguide modes
this results in

<W · eα
t;m | e

β
t;n >=


k′2z;n
k2 δm,n if α and β are TM modes,
δm,n if α and β are TE modes,
0 otherwise,

(2.193)

and

<W · hα
t;m |h

β
t;n >=


δm,n if α and β are TM modes,
k′′2z;n
k2 δm,n if α and β are TE modes,

0 otherwise.

(2.194)
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For the layered space modes this results in

<W · eα
t (k′t) | e

β
t (k′′t ) >=


k′′2z

k2 δ(k′t − k′′t ) if α and β are TM modes,
δ(k′t − k′′t ) if α and β are TE modes,
0 otherwise,

(2.195)

and

<W · hα
t (k′t) |h

β
t (k′′t ) >=


δ(k′t − k′′t ) if α and β are TM modes,
k′′2z

k2 δ(k′t − k′′t ) if α and β are TE modes,
0 otherwise.

(2.196)

By substituting these simplifications for the inner products in equations 2.191
and 2.192, we arrive at the so-called modal transmission line equations, where
V α(z) and Iα(z) satisfy

−∂zV
α(z) = jkα

z Z
α
∞I

α(z) + vα(z), (2.197)
−∂zI

α(z) = jkα
z Y

α
∞V

α(z) + iα(z), (2.198)

and in which the voltages and currents are defined as

V α(z) =< Et(ρ, z) | eα
t (ρ) >, (2.199)

Iα(z) =< Ht(ρ, z) |hα
t (ρ) >, (2.200)

vα(z) =< Meff
t (ρ, z)× ẑ | eα

t (ρ) >, (2.201)

iα(z) =< ẑ× Jeff
t (ρ, z) |hα

t (ρ) > . (2.202)

A circuit representation of the first and second modal transmission line equation
is given in figures 2.5 and 2.6, respectively7. Combining these two circuits leads
to a circuit representation of an infinitesimally small piece of transmission line,
and is given in figure 2.7. Note that the order in which the two are combined
is irrelevant. The circuit representation for a finite length transmission line
between z = z1 and z = z3 with a voltage and current generator at z = z2
is given in figure 2.8, where for z1 < z < z2 and z2 < z < z3 the line is
characterized by a characteristic admittance Y (1)

∞ and Y (2)
∞ , respectively.

A homogeneous solution for V α(z) and Iα(z) can be found by solving the
source-free modal transmission line equations with vα(z) = 0 and iα(z) = 0. In
a region where kα

z remains constant, V α(z) and Iα(z) must then satisfy[
∂2

z + kα2

z

]
V α(z) = 0, (2.203)[

∂2
z + kα2

z

]
Iα(z) = 0, (2.204)

7In principle these separate circuits do not exist and serve no purpose except for ”visual-
izing” the Kirchhof laws. The equations 2.197 and 2.198 form a system, they are to be taken
together, at the same time. The corresponding structure is that of figure 2.7.
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which justifies the assumption for the exponential z-dependence of the field so-
lutions. At discontinuous interfaces at z = z0, appropriate boundary conditions
for V α(z) and Iα(z) can be found by integrating the modal transmission line
equations across the interface. At z = z0, V α(z) and Iα(z) must then satisfy

lim
z↑z0

V α(z)− lim
z↓z0

V α(z) = lim
∆z→0

∫ z0+∆z

z0−∆z

vα(z)dz, (2.205)

lim
z↑z0

Iα(z)− lim
z↓z0

Iα(z) = lim
∆z→0

∫ z0+∆z

z0−∆z

iα(z)dz. (2.206)

Finally, we consider the determination of the modal voltage vα(z) and current
iα(z) generators which were defined as

vα(z) =< Meff
t (ρ, z)× ẑ | eα

t (ρ) >=< Meff
t |hα

t >, (2.207)

iα(z) =< ẑ× Jeff
t (ρ, z) |hα

t (ρ) >=< Jeff
t | eα

t >, (2.208)

in which

Meff
t = Mt + η−1ẑ× (∇tJz), (2.209)

Jeff
t = Jt + ξ−1(∇tMz)× ẑ. (2.210)

Substituting equations 2.209 and 2.210 in equations 2.207 and 2.208 leads to

vα(z) =< Mt |hα
t > +η−1

∫
eα∗

t ·∇tJzdA, (2.211)

iα(z) =< Jt | eα
t > +ξ−1

∫
hα∗

t ·∇tMzdA. (2.212)

In some models of practical applications the impressed current distributions
are not differentiable. To accommodate for this, it is convenient to employ
integration by parts to remove the transverse gradient operating on Jz and Mz.
To this end, we employ the identities

eα∗

t ·∇tJz = ∇t · (Jzeα∗

t )− Jz∇t · eα∗

t , (2.213)

hα∗

t ·∇tMz = ∇t · (Mzhα∗

t )−Mz∇t · hα∗

t . (2.214)

Using these identities and Gauss’ divergence theorem results in

vα(z) =< Mt |hα
t > +η−1

∮
Jz ν̂ · eα∗

t d`− η−1

∫
Jz∇t · eα∗

t dA, (2.215)

iα(z) =< Jt | eα
t > +ξ−1

∮
Mz ν̂ · hα∗

t d`− ξ−1

∫
Mz∇t · hα∗

t dA. (2.216)

On account of:

1. the non-radiating behavior of an electric current source located at an in-
finitesimal distance from and oriented parallel to a perfectly electric con-
ducting boundary,
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2. ν̂ · hα∗

t = ν̂ · (ẑ× eα∗

t ) = −ẑ · (eα∗

t × ν̂) = 0,

the contour integrals vanish, and we finally obtain the following simple expres-
sions for the generators

vα(z) =< Mt |hα
t > +Zα∗

∞ < Jz | eα
z >, (2.217)

iα(z) =< Jt | eα
t > +Y α∗

∞ < Mz |hα
z > . (2.218)

In appendix B, the transmission line equations are solved for a number of stan-
dard configurations used in the next chapters.
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Figure 2.5: Circuit representation of the first modal transmission line equation:
Kirchhof’s voltage law [70, section 1.2.1], which states that the sum of the
voltages in a loop equals zero.
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Figure 2.6: Circuit representation of the second modal transmission line equa-
tion: Kirchhof’s current law [70, section 1.2.1], which states that the sum of the
currents in a node equals zero.
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Figure 2.7: Circuit representation of an infinitesimally small piece of transmis-
sion line which is a combination of the circuit representations of the first and
second modal transmission line equation. This circuit is representative for the
modal transmission line equations.
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Figure 2.8: Circuit representation [112, section 6.2] for a finite-length trans-
mission line between z = z1 and z = z3 with a lumbed voltage and current
generator at z = z2. For z1 < z < z2 and z2 < z < z3 the line is characterized
by a characteristic admittance Y (1)

∞ and Y
(2)
∞ , respectively. Note that we have

omitted the polarization index α.
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Chapter 3

Computational Method

”Models should be made as simple as possible, but not any simpler.”
Albert Einstein (1879-1955)

In this chapter we develop a computational method with which we can calculate
the unknown electromagnetic field within the unit-cell structure.

To do so, first note that within the total unit-cell structure there are parts
in which the junctions show a significant electromagnetic coupling (the concept
of electromagnetic coupling is based on the number of accessible modes in the
neighboring segment, which will be defined and explained later in this chapter)
between modi (even for a junction between two different segments). We call
these parts basic structures. Between the basic structures there is a low elec-
tromagnetic coupling. To calculate the total electromagnetic field efficiently, we
exploit this property, and separate the total calculation into one for calculating
it for each basic structure, and one for combining them.

We start with the calculation of the electromagnetic field for a single basic
structure, and first give a detailed description of its configuration in section
3.1. Then to ensure the existence and uniqueness of a field solution within
the basic structure, proper boundary conditions must be supplemented. From
an electromagnetic engineer point of view these boundary conditions describe
the domain where the Maxwell equations are to be solved. In section 3.2 we
formulate the scattering field problem and describe these boundary conditions
[35, chapter 6] for the basic structure.

The final objective of the simulation is to compute the field radiated by a
given source in a complicated structure. If the Green’s function of this struc-
ture were known, the computation could be carried out without difficulty and
there would be no need to apply the equivalence theorem. On the contrary,
by closing some gaps or removing some metal parts, we obtain simpler regions
where the Green’s function is known, as a modal expansion. The equivalence
theorem [112, section 6.4] states that, in order to have the same field in the
original and the modified structure, it is necessary to introduce suitable current
distributions. The actual value of these currents cannot be given explicitly, but
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can be determined by the solution of an integral equation. Integral, because the
relationship between currents and fields is always of integral type, with a kernel
which is the Green’s function, which is known in each sub-domain. In section
3.3 we describe the equivalent scattering field problem. The equivalent scatter-
ing field problem is solved by using a so-called coupled field integral equation
technique. This technique is described in section 3.4.

These unknown surface currents are discretized in terms of expansion func-
tions in section 3.5 and subsequently determined by the method of moments.
This method approximates the integral equation by a matrix equation of type
Lu = f with linear operator L, unknown vector u, and forcing vector f . The
linear system can be solved by means of straightforward inversion of L, or by
making use of more sophisticated iterative schemes [91, 109].

In section 3.6 we discuss in detail the calculation of the linear operator L
and the forcing vector f . To do this, we first incorporate the explicit form of
the appropriate Green’s function to express the electromagnetic fields in terms
of the expansion surface currents. Doing this leads to an implementation of the
equation for the waveguide. For the layered space, we have to incorporate the
periodic arrangement of the unit cells, to allow for an interaction between unit
cells. Two choices [112, section 7.3] are made for this purpose.

Depending on the geometrical shape of the support of the unknown surface
current that is used to solve the field integral equation, a number of expansion
and weighting functions have to be defined. In section section 3.7, we discuss
the choice of these functions [74, 76]. We distinguish between global and local
functions. Global functions make use of the overall shape of the support of
the unknown surface current by assigning to it a ”transverse global expansion”.
These functions are more physical but less flexible. We discuss the waveguide
mode [11, 14], the thin strip and the weighted Chebyshev [1] global functions.
Local functions approximate the overall shape of the support of the unknown
surface current by dividing it into small primitive elements. These functions
are more flexible. We discuss the rectangular rooftop [104] and the triangular
Rao-Wilton-Glisson functions [88]. We define these functions, and discuss the
most relevant properties.

Once we have solved the unknown surface currents with the method of mo-
ments, we calculate in section 3.8 the total electromagnetic field at any given
location within the configuration. To do so, we first define so-called probing
interfaces at the left and right side of the basic structure at some finite distance
away from the junctions. We calculate the total electromagnetic field at these
probing interfaces. Due to the superposition principle [35, section 11.3], the total
field at these probing interfaces can be written as a sum of the incident field and
a scattered field. To calculate the electromagnetic behavior of the total unit-cell
structure, we must combine the individual electromagnetic behaviors of all basic
structures. For this purpose we formulate a so-called generalized scattering ma-
trix, which characterizes this behavior for all basic structures individually, by
expressing the outgoing waves in terms of the incident waves [31, 48]. Then we
formulate a procedure that cascades two generalized scattering matrices [112,
section 6.3] to obtain a new generalized scattering matrix which characterizes
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the electromagnetic behavior of the combination of the two corresponding basic
structures.

In section 3.9 we give an interpretation of the field solution based on energy
principles. We first derive and then use Poynting’s theorem [35, chapter 7], and
find an expression for the energy conservation. We then give a physical inter-
pretation of three different parts of this expression, i.e., power flow through the
basic structure from outside, energy storage and loss within the basic structure,
and power generation by sources inside the basic structure. Then we simplify
the expression for the power flow by using the field expansions both for the
waveguide and for the layered space. Finally, we show that the part responsible
for power generated by sources inside the basic structure vanishes.

In section 3.10, we find leading order term expressions for the electromag-
netic field far away from the radiating part of the basic structure. This is
called the far-field approximation [35, section 10.7]. The expressions are used
to calculate the active element pattern and the active reflection coefficient. The
usefulness of calculating these parameters comes from the fact that the direct
measurement of the active element pattern and the active reflection coefficient
[86] involves only a reasonably large portion of the proposed array. It can thus be
used to locate and correct array design problems before full-scale development,
which reduces the risk of a costly design failure.

Finally in section 3.11 we discuss the numerical evaluation of the linear
operator L, and of the forcing vector f .

3.1 Description of the Configuration

An arbitrary basic structure is a part of the total unit-cell structure in which the
junctions show a significant electromagnetic coupling. It consists without loss
of generality of M + 1 segments separated by M junctions, for a given positive
integer M , and is schematized in figure 3.1.
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x̂

ŷ
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Figure 3.1: An arbitrary basic structure with M + 1 segments Sm separated by
M junctions Jm positioned at z = zm for a given integer M .

In figure 3.2 we have schematized a single junction Jm positioned at z = zm

which separates two segments Sm and Sm+1 where m ∈ {1, 2, . . . ,M}. Jm is
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representative for all junctions within the basic structure. The junction Jm can
contain arbitrarily shaped infinitely thin perfectly electric conducting material
(patches) represented by the surface C̄m. The complementary surface Cm of
C̄m represents the gaps (apertures) in between the patches. Cm∪ C̄m equals the
total surface of the junction. Further, we define a transversely unbounded (also
bounded to be able to consider waveguide steps), longitudinally infinitesimal
thin volume Vm centered around z = zm as

Vm = lim
h↓zm

{(x, y, z) | −h < z < h}. (3.1)

It has a boundary ∂Vm = ∂Vm;1 ∪ ∂Vm;2 defined by

∂Vm;1 = lim
h↑zm

{(x, y, h)}, ∂Vm;2 = lim
h↓zm

{(x, y, h)}. (3.2)

The complement V̄m of Vm shares the same boundary ∂Vm, and is referred to
as the region of interest. It is defined by

V̄m = lim
h↓zm

{(x, y, z) | z < −h ∨ z > h}, (3.3)

The outward normal vectors n̂ and ñ with respect to the volume Vm are defined
by

n̂ = −ẑ, ñ = ẑ. (3.4)

Any vector field quantity X that is a function of the point of observation r can
be written as a function of the transverse position vector ρ and the longitudinal
coordinate z as

X(r) = X(ρ + zẑ) = X(ρ, z). (3.5)

This vector field quantity X can also be written in terms of transverse Xt and
longitudinal Xz components as

X(ρ, z) = Xt(ρ, z) + ẑXz(ρ, z). (3.6)

The vector field quantity X evaluated at an infinitesimal distance from the left
and right side of the junction Jm is denoted by X̂m and X̃m, respectively, and
defined by

X̂m(ρ) = lim
z↑zm

X(ρ, z) = X(ρ, z−m), X̃m(ρ) = lim
z↓zm

X(ρ, z) = X(ρ, z+
m). (3.7)

The vector field quantity X evaluated at z = zm (which is continuous at z = zm)
is denoted by Xm, and defined by

Xm(ρ) = X(ρ, zm). (3.8)
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Figure 3.2: Description of the configuration for a single junction Jm positioned
at z = zm which separates two segments Sm and Sm+1. C̄m represents the
patches, and Cm represents the apertures.

3.2 Formulation of the Boundary Conditions

Across certain boundary surfaces in the basic structure configuration, the elec-
tromagnetic properties, and hence the electromagnetic field quantities, may be
discontinuous. Since at those positions the field quantities are no longer differ-
entiable, Maxwell’s equations in differential form cease to hold [35, chapter 6]
in ordinary sense (but not in distributional sense). To overcome this problem,
these equations must be supplemented with boundary conditions that interre-
late the field values at both sides of the surfaces of discontinuity. From an
electromagnetic engineering point of view these boundary conditions describe
the domain where the Maxwell equations are to be solved.

The apertures Cm at the junction Jm represent the gaps in between the
patches. Note that the constitutive parameters of each neighboring segment Sm

and Sm+1 at this junction may be chosen arbitrarily. The following boundary
condition assures a continuous tangential electric and magnetic field when we
approach the apertures Cm for z < zm and z > zm

∀ρ ∈ Cm [Êt;m(ρ) = Ẽt;m(ρ) and Ĥt;m(ρ) = H̃t;m(ρ)], (3.9)

respectively. The patches C̄m in the junction Jm are composed of infinitely thin
perfectly electric conducting (PEC) material. This type of material is denoted as
electrically impenetrable. The following boundary condition assures a vanishing
tangential electric field when we approach the patches C̄m for z < zm and z > zm

∀ρ ∈ C̄m [Êt;m(ρ) = 0 and Ẽt;m(ρ) = 0], (3.10)

respectively.
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3.3 Application of the Equivalence Theorem

The final objective of the simulation is to compute the field radiated by a given
source in a complicated structure. If the Green’s function of this structure were
known, the computation could be carried out without difficulty and there would
be no need to apply the equivalence theorem. On the contrary, by closing some
gaps or removing some metal parts, we obtain simpler regions where the Green’s
function is known, as a modal expansion. The equivalence theorem says that
in order to have the same field in the original and the modified structure, it is
necessary to introduce suitable current distributions. The actual value of these
currents cannot be given explicitly, but can be determined by the solution of an
integral equation. Integral, because the relationship between currents and fields
is always of integral type, with a kernel which is the Green’s function, which is
known in each sub-domain.

The mathematical basis for this procedure is the equivalence theorem [112,
section 6.4]. Consider configuration A given in figure 3.3, where a general system
of sources is radiating into a medium that is inhomogeneous because of the
presence of bodies with arbitrary characteristics (e.g., metallic, dielectric, etc.).
A regular closed surface ∂V , with outward normal n̂, is introduced to separate
the inhomogeneous portion of space V from V̄ . Also, the sources are divided
into internal (Jint, Mint) and external (Jext, Mext) ones. The theorem states
that in the computation of the electromagnetic field in a point P outside the
surface ∂V the internal sources can be ignored, provided that one introduces
the equivalent surface currents

Js =n̂×H(r∂V )δ(r− r∂V ), (3.11)
Ms =E(r∂V )× n̂δ(r− r∂V ), (3.12)

where r∂V describes the surface ∂V and δ(r − r∂V ) is the Dirac surface delta
function with support on ∂V . Moreover, since the external sources and the
equivalent ones radiate a null field in V , the constitutive relations of this region
can be chosen arbitrarily. This means that the inhomogeneity can be removed.
This is indicated in the equivalent configuration B in figure 3.3.

For our problem, we formulate an equivalent field problem by choosing the
boundary surface ∂Vm that encloses Vm to be the imaginary closed surface.
The region inside this surface is defined as Vm, whereas the region outside this
surface is defined as the region of interest V̄m. The equivalent configuration is
indicated in figure 3.4. By using the equivalence theorem, we have to place the
following (still unknown) equivalent surface currents on ∂Vm:

Ĵm(ρ, z) = [n̂× Ĥm(ρ)]δ(z − zm), (3.13)

J̃m(ρ, z) = [ñ× H̃m(ρ)]δ(z − zm), (3.14)

M̂m(ρ, z) = [Êm(ρ)× n̂]δ(z − zm), (3.15)

M̃m(ρ, z) = [Ẽm(ρ)× ñ]δ(z − zm). (3.16)

Note that we have to distinguish between the two sides z−m (quantities with a
caret) and z+

m (quantities with a tilda) of zm. Note that these surface currents
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Figure 3.3: Illustration of the equivalence theorem: a general system of sources
is radiating in an inhomogeneous medium where the electromagnetic field at a
point of observation P in a region V̄ is identical for the two configurations where
in V the internal sources Jint and Mint are switched off and surface currents Js

and Ms are placed on the boundary surface ∂V .

show a Dirac dependence δ(z − zm) with dimension [m−1] in the longitudinal
z-coordinate. This z-dependence is omitted from now on.

The boundary conditions 3.9 and 3.10 are defined on the apertures Cm and
on the patches C̄m, respectively. Due to the infinitesimal distance between
the sheets ∂Vm;1 and ∂Vm;2, these surfaces coincide with the boundary ∂Vm.
The boundary conditions can therefore be translated into conditions on the
equivalent electric and magnetic surface currents.

To be more specific, the boundary condition 3.9, which is necessary to as-
sure a continuous tangential electric and magnetic field when we approach the
apertures Cm for z < zm and z > zm, is translated into

∀ρ ∈ Cm [M̂m(ρ) = −M̃m(ρ) and Ĵm(ρ) = −J̃m(ρ)], (3.17)

while the boundary condition 3.10, which is necessary to assure a vanishing
tangential electric field when we approach the patches C̄m for z < zm and
z > zm, is translated into

∀ρ ∈ C̄m [M̂m(ρ) = 0 and M̃m(ρ) = 0]. (3.18)

Moreover, the electromagnetic field inside Vm vanishes. This means that we can
choose arbitrary the constitutive relations inside this region, and remove any
inhomogeneity, such as the patches. There are in general two ways to do this.
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Figure 3.4: Equivalent configuration for the single junction Jm located at z = zm

which separates the two segments Sm and Sm+1.

1. The first way to remove the inhomogeneity is to remove all the patches
within Vm, i.e. C̄m. We denote this as the type I equivalent formulation.
Due to the infinitesimal distance between the sheets ∂Vm;1 and ∂Vm;1, the
surface currents tend to have coincident supports, and can be added. The
total electric and magnetic surface currents at z = zm are now given by

Jm(ρ) = Ĵm(ρ) + J̃m(ρ), (3.19)

Mm(ρ) = M̂m(ρ) + M̃m(ρ). (3.20)

The result is a non-zero electric surface current on C̄m (representing a
discontinuous tangential magnetic field on the patches), and a zero elec-
tric surface current on Cm (representing a continuous tangential magnetic
field in the apertures). The magnetic surface current is zero on Cm (repre-
senting a continuous tangential electric field in the apertures) and on C̄m.
Further, we consider Jm(ρ) to be the unknown surface current. Although
the magnetic surface current is zero on C̄m, it does not assure a vanishing
tangential electric field on the patches. This condition must therefore be
explicitly enforced and is given by equation 3.10

∀ρ ∈ C̄m [Et;m(ρ) = 0]. (3.21)

Both the configuration and the circuit representation [112, section 6.4]
associated with the type I equivalent formulation is schematized in figure
3.5.

2. The second way to remove the inhomogeneity is to fill all the apertures
within Vm with patches, i.e. within Cm. We denote this as the type
II equivalent formulation. Due to the infinitesimal distance between the
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Figure 3.5: Type I equivalent configuration for the single junction Jm located
at z = zm which separates the two segments Sm and Sm+1, and circuit repre-
sentation with single shunt current generator [112, section 6.4]. Note that this
circuit applies for every mode.
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sheets ∂Vm;1 and ∂Vm;2, the surface currents on both sides are separated
by an infinitely thin perfectly electric conducting (PEC) sheet. The result
is a short-circuited electric surface current on both sides of C̄m and Cm

and must be disregarded since they radiate no field. The magnetic surface
currents on both sides of C̄m are zero (representing a vanishing tangential
electric field on the patches), and are equal in strength but opposite in
sign on both sides of Cm (representing a continuous tangential electric
field in the apertures). Further, we consider M̂m(ρ) which has support
on Cm to be the unknown surface current. By explicitly enforcing 3.18,
the tangential electric field on the patches vanishes. Subsequently, by
explicitly enforcing the first part of equation 3.17 (since these currents
face a PEC sheet), a continuous tangential electric field in the apertures is
assured. However, due to the short-circuited electric surface currents, the
second part of equation 3.9 is not satisfied. The continuity of the tangential
magnetic field in the apertures must therefore be explicitly enforced and
is given by

∀ρ ∈ Cm [Ĥt;m(ρ) = H̃t;m(ρ)]. (3.22)

Both the configuration and the circuit representation1 [112, section 6.4.2]
associated with the type II equivalent formulation is schematized in figure
3.6.

3.4 Formulation of the Integral Equation

In the previous section we have transformed the original scattering field problem
into an equivalent one in which we have replaced each of the M junctions within
the original basic structure by either a type I or type II equivalent configuration.
In both cases, M unknown equivalent surface currents are introduced and M
additional boundary conditions have been supplemented. Note that we do not
consider scattering by dielectric objects.

To solve the equivalent scattering field problem, we must simultaneously
solve the set of M unknown surface currents for each junction by simultaneously
enforcing the set of M supplemented boundary conditions. These conditions
form the starting point of the formulation for a coupled field integral equation.

Within the equivalent configuration, the surface currents radiate through
the segments and influence the electromagnetic fields at other junctions. This
influence explicitly stops at a junction for which a type II equivalent config-
uration has been selected, which is due to the presence of the metal sheet at
this junction. Implicitly, the influence is tunneled through this junction by the
unknown magnetic surface current which is equal in strength but opposite in
sign on both sides of the metal sheet. Furthermore, an external incident elec-

1In the circuit it is evident that the voltage at the junction is continuous. Since this holds
true for all the modes independently, the transverse electric field is continuous on the complete
cross section of the junction.
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Figure 3.6: Type II equivalent configuration for the single junction Jm located
at z = zm which separates the two segments Sm and Sm+1, and circuit repre-
sentation with two series voltage generators [112, section 6.4.2]. Note that this
circuit applies for every mode.
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tromagnetic field (represented by an incident surface current) may be present
on both sides of the basic structure.

Electric-Field Integral Equation

If a junction Jm is replaced with a type I equivalent formulation, a unknown
equivalent electric surface current Jm(ρ) is introduced, and the following addi-
tional boundary condition for a vanishing tangential electric field on the patches
C̄m must be enforced:

∀ρ ∈ C̄m [Et;m(CurrentDistributions,ρ) = 0]. (3.23)

The substitution of the appropriate field representation in equation 3.23 leads
to the so-called electric-field integral equation (EFIE). The tangential electric
field Et;m is a function (of the integral type) of the surface currents present
in the equivalent configuration on the left and right sides of junction Jm. At
the junction, the unknown electric surface current Jm(ρ) is added to the list
of unknown current distrubutions. Four different kind of junction combinations
exist with corresponding current distributions.

1. At the left side of junction Jm we have, in descending order, p junctions
with a type I configuration (no patches), and a source of the incident field
from the left of the entire domain. At the right side of junction Jm we
have, in ascending order, q junctions with a type I configuration, and a
source of the incident field from the right of the entire domain. The set
of surface currents can be written as:{

Ĵinc, M̂inc,Jm−p, . . . ,Jm−1,Jm,Jm+1, . . . ,Jm+q, J̃inc, M̃inc
}

(ρ).

2. At the left side of junction Jm we have, in descending order p junctions
with a type I configuration, and a source of the incident field from the left
of the entire domain. At the right side of junction Jm we have, in ascending
order q junctions with a type I configuration, and a final junction with a
type II configuration (no apertures). The set of surface currents can be
written as:{

Ĵinc, M̂inc,Jm−p, . . . ,Jm−1,Jm,Jm+1, . . . ,Jm+q, M̂m+q+1

}
(ρ).

3. At the left side of junction Jm we have, in descending order p junctions
with a type I configuration, and a final junction with a type II configu-
ration. At the right side of junction Jm we have, in ascending order q
junctions with a type I configuration, and a source of the incident field
from the right of the entire domain. The set of surface currents can be
written as:{

M̃m−p−1,Jm−p, . . . ,Jm−1,Jm,Jm+1, . . . ,Jm+q, J̃inc, M̃inc
}

(ρ).
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4. At the left side of junction Jm we have, in descending order p junctions
with a type I configuration, and a final junction with a type II configu-
ration. At the right side of junction Jm we have, in ascending order q
junctions with a type I configuration, and a final junction with a type II
configuration. The set of surface currents can be written as:{

M̃m−p−1,Jm−p, . . . ,Jm−1,Jm,Jm+1, . . . ,Jm+q, M̂m+q+1

}
(ρ).

Magnetic-Field Integral Equation

If a junction Jm is replaced with a type II equivalent formulation, two coupled
(thus in principle one) unknown equivalent magnetic surface currents M̂m(ρ)
and M̃m(ρ) = −M̂m(ρ) are introduced, and the following additional boundary
condition for the continuity of the tangential magnetic field in the apertures Cm

must be enforced:

∀ρ ∈ Cm [Ĥt;m(LeftCurrentDistribution,ρ) =

H̃t;m(RightCurrentDistribution,ρ)].
(3.24)

The substitution of the appropriate field representation in equation 3.24 leads to
the so-called magnetic-field integral equation (MFIE). The tangential magnetic
field Ĥt;m is a function (of the integral type) of the current distributions present
in the equivalent configuration at the left side of junction Jm. At the junction,
the unknown magnetic surface current M̂m is added to the list of unknown
current distributions. Two different kind of junction combinations exist with
corresponding current distributions.

1. At the left side of junction Jm we have, in descending order p junctions
with a type I configuration, and a source of the incident field from the left
of the entire domain. The set of surface currents can be written as:{

Ĵinc, M̂inc,Jm−p, . . . ,Jm−1, M̂m

}
(ρ).

2. At the left side of junction Jm we have, in descending order p junctions
with a type I configuration, and a final junction with a type II configura-
tion. The set of surface currents can be written as:{

M̃m−p−1,Jm−p, . . . ,Jm−1, M̂m

}
(ρ).

The tangential magnetic field H̃t;m is a function of the currents present in
the equivalent configuration at the right side of junction Jm. At the junction,
the unknown magnetic surface current M̃m(ρ) is added to the list of unknown
current distrbutions. For this side, two different kind of junction combinations
exist with corresponding current distributions.
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1. At the right side of junction Jm we have, in ascending order q junctions
with a type I configuration, and a source of the incident field from the
right of the entire domain. The set of surface currents can be written as:{

M̃m,Jm+1, . . . ,Jm+q, J̃inc, M̃inc
}

(ρ).

2. At the right side of junction Jm we have, in ascending order q junctions
with a type I configuration, and a final junction with a type II configura-
tion. The set of surface currents can be written as:{

M̃m,Jm+1, . . . ,Jm+q, M̂m+q+1

}
(ρ).

Coupled-Field Integral Equation

Subsequently, we apply a number of operations on the set of M given boundary
conditions. First, consider all junctions with a type II equivalent configuration.
We apply the boundary conditions for the continuity of the electric field in the
apertures, i.e., {

. . . , M̃n, . . .
}

(ρ) =
{
. . . ,−M̂n, . . .

}
(ρ). (3.25)

Then, since Maxwell’s equations are linear in terms of the sources, we can apply
the superposition principle. This means that we can write the total field as a
linear combination of the fields for each source contribution as

Ĥt;m({. . . , αM̂p, . . . , βJq, . . . },ρ) = · · ·+ αĤt;m(M̂p,ρ)+

· · ·+ βĤt;m(Jq,ρ) + . . .
(3.26)

The terms that are a function of the unknowns are moved to and ordered at
the left-hand side of the equality sign, whereas those that are a function of the
incident currents are moved to and ordered at the right-hand side of the equality
sign. The substitution of the appropriate field representations in the set of M
given boundary conditions leads to the so-called coupled-field integral equations
(CFIE). The form of the field representation depends on the type (waveguide
or layered space), and is therefore postponed until section 3.6 where both cases
are discussed in detail.

Example

As an example, we consider the boundary conditions for two arbitrary coupled
junctions J1 and J2 that both have been replaced by type II configurations. The
configuration are given in figure 3.7. We then assume:

1. The ”LeftCurrentDistribution” and ”RightCurrentDistribution” of junc-
tion J1 is given by{

M̂inc, M̂1

}
(ρ) and

{
M̃1, M̂2

}
(ρ),



3.5 Formulation of the Matrix Equation: Method of Moments 69

-

6

O............................................................................. ....... ....... .....................t ẑ
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Figure 3.7: An example basic structure with three segments Sm separated by
two junctions Jm positioned at z = zm, and enclosed with two probes PL and
PR positioned at z = zL and z = zR, respectively.

respectively. When applying the prescribed operations, i.e., equations 3.25
and 3.26, and moving and ordering to the appropriate place of the equality
sign, we obtain the following magnetic-field integral equation (MFIE) for
junction J1

∀ρ ∈ C1 [Ĥt;1(M̂1,ρ)+H̃t;1(M̂1,ρ)−
H̃t;1(M̂2,ρ) = −Ĥt;1(M̂inc,ρ)].

(3.27)

2. The ”LeftCurrentDistribution” and ”RightCurrentDistribution” of junc-
tion J2 are given by{

M̃1, M̂2

}
(ρ) and

{
M̃2, M̃inc

}
(ρ),

respectively. When applying the two prescribed operations, i.e., equa-
tions 3.25 and 3.26, and moving and ordering to the appropriate place of
the equality sign, we obtain the following magnetic-field integral equation
(MFIE) for junction J2

∀ρ ∈ C2 [Ĥt;2(M̂2,ρ)+H̃t;2(M̂2,ρ)−
Ĥt;2(M̂1,ρ) = H̃t;2(M̃inc,ρ)].

(3.28)

3.5 Formulation of the Matrix Equation: Method
of Moments

In general, the coupled field integral equation cannot be solved in closed form.
This means that we need to invoke numerical solution techniques. To this
end, we must first reduce the infinite number of unknowns to a finite number by
discretizing the unknown surface currents. For this purpose we introduce general
vectorial patch and aperture type expansion functions f (m)

p (ρ) and g(m)
q (ρ) with

dimension [m−1] to approximate the unknown electric Jm and magnetic M̂m
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surface currents, respectively. They are written as a linear combination of the
expansion functions

Jm(ρ) =
Pm∑
p=1

I(m)
p f (m)

p (ρ), (3.29)

M̂m(ρ) =
Qm∑
q=1

V (m)
q g(m)

q (ρ), (3.30)

where I(m)
p and V (m)

q represent the unknown scalar coefficients with dimension
[A] and [V], respectively. Further Pm and Qm denote the number of expansion
functions. By choosing f (m)

p (ρ) to be a patch-type function (which is zero on
the apertures), a continuous magnetic field in the aperture is guaranteed. By
choosing g(m)

q (ρ) to be an aperture-type function (which is zero on the patches),
a vanishing electric field on the patch is guaranteed.

Now let us consider again the example given at the end of the previous
section. When we substitute the discretized surface currents into the relevant
parts of the magnetic-field integral equation 3.27 for junction J1, and when we
apply the superposition principle, we obtain

∀ρ ∈ C1

[
Q1∑
r=1

V (1)
r [Ĥt;1(g(1)

r ,ρ) + H̃t;1(g(1)
r ,ρ)]−

Q2∑
s=1

V (2)
s H̃t;1(g(2)

s ,ρ) = −Ĥt;1(M̂inc,ρ)

]
.

(3.31)

When we apply the same procedure to magnetic-field integral equation 3.28 for
junction J2, we obtain

∀ρ ∈ C2

[
Q2∑
s=1

V (2)
s [Ĥt;2(g(2)

s ,ρ) + H̃t;2(g(2)
s ,ρ)]−

Q1∑
r=1

V (1)
r Ĥt;2(g(1)

r ,ρ) = H̃t;2(M̃inc,ρ)

]
.

(3.32)

Note that the system of equations given by equations 3.31 and 3.32 constitutes
an infinitely over-determined system, i.e., a finite (Q1+Q2) number of unknowns
and an infinite (∀ρ ∈ Cm) number of equations. We introduce general patch and
aperture type weighting functions f (m)

v (ρ) and g(m)
w (ρ) to reduce the number of

equations to a finite number (Q1 +Q2). To obtain this so-called weak form of
the coupled field integral equation, we take the following inner product of the
discretized coupled field integral equations with the weighting functions

∀1 ≤ v ≤ Qm [< . . . | f (m)
v >], (3.33)

∀1 ≤ w ≤ Qm [< . . . |g(m)
w >]. (3.34)
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Note that we must choose weighting procedure 3.33 and 3.34, if junction Jm has
been replaced with a type I and type II equivalent formulation, respectively. A
so-called Galerkin scheme is obtained when we choose the same set of weighting
and expansion functions.

Subsequently, we have to select the expansion functions that represent the
unknown surface currents. This choice depends on the geometrical shape of the
support of these surface currents [74, 76]. We distinguish between global and
local functions which are discussed in more detail in section 3.7.

Global functions make use of the overall shape of the support of the unknown
surface current by assigning to it a ”transverse global expansion”. With these
functions we can explicitly build in the expected physical behavior of the un-
known surface currents. An example is the known behavior of surface currents
near the edges on a patch or in an aperture (either of singular 1/

√
x or non-

singular
√
x type). A disadvantage of global functions is the lack of flexibility

to describe arbitrarily shaped surface currents. An advantage is that in general
using global functions leads to a smaller size of the matrix L.

Local functions approximate the overall shape of the support of the unknown
surface current by dividing it into small primitive elements. These functions are
more flexible when we want to describe arbitrarily shaped surface currents.
With these functions we can implicitly build in the expected physical behavior
of the unknown surface currents by for example choosing more local expansion
functions near edges where we expect some special behavior (so-called mesh
refinement). A disadvantage is that in general using local functions leads to a
larger size of the matrix L.

The overall goal should be to have a good accuracy. Achieving this goal
requires a lot of hands-on experience and a good understanding of the expected
physical behavior. The result is a linear system which can be solved by means
of either straightforward inversion of L (for a small sized L), or by using more
sophisticated iterative schemes (for a large sized L).

Let us consider again the example given at the end of the previous section.
The application of the weighting procedure to equation 3.31 for junction J1

results in

∀1 ≤v ≤ Q1

[
Q1∑
r=1

V (1)
r [< Ĥt;1(g(1)

r ,ρ) |g(1)
v > + < H̃t;1(g(1)

r ,ρ) |g(1)
v >]−

Q2∑
s=1

V (2)
s < H̃t;1(g(2)

s ,ρ) |g(1)
v >= − < Ĥt;1(M̂inc,ρ) |g(1)

v >

]
,

(3.35)
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while the same principle applied to equation 3.32 for junction J2 results in

∀1 ≤w ≤ Q2

[
Q2∑
s=1

V (2)
s [< Ĥt;2(g(2)

s ,ρ) |g(2)
w > + < H̃t;2(g(2)

s ,ρ) |g(2)
w >]−

Q1∑
r=1

V (1)
r < Ĥt;2(g(1)

r ,ρ) |g(2)
w >=< H̃t;2(M̃inc,ρ) |g(2)

w >

]
.

(3.36)

These two equations can be rewritten in a more convenient form:

∀1 ≤ v ≤ Q1

[
Q1∑
r=1

V (1)
r (Av,r +Bv,r) +

Q2∑
s=1

V (2)
s Cv,s = Dv

]
, (3.37)

∀1 ≤ w ≤ Q2

[
Q1∑
r=1

V (1)
r Gw,r +

Q2∑
s=1

V (2)
s (Ew,s + Fw,s) = Hw

]
, (3.38)

which can be written formally as the following matrix equation

Lu = f . (3.39)

The square matrix L represents the linear operator of the basic structure, and
describes the interaction between the junctions. Its elements either have the
dimension of impedance, admittance, or are dimensionless. We can write L as

L =
(
Av,r +Bv,r Cv,s

Gw,r Ew,s + Fw,s

)
, (3.40)

where the matrix elements are given and physically interpreted by:

1. Av,r =< Ĥt;1(g
(1)
r ,ρ) |g(1)

v > is the self interaction of the magnetic field
strength at the left side of the first interface due to a magnetic surface
current at the left side of the first interface,

2. Bv,r =< H̃t;1(g
(1)
r ,ρ) |g(1)

v > is the self interaction of the magnetic field
strength at the right side of the first interface due to a magnetic surface
current at the right side of the first interface,

3. Cv,s = − < H̃t;1(g
(2)
s ,ρ) |g(1)

v > is the coupling between the magnetic
field strength at the right side of the first interface due to a magnetic
surface current at the left side of the second interface,

4. Gw,r = − < Ĥt;2(g
(1)
r ,ρ) |g(2)

w > is the coupling between the magnetic
field strength at the left side of the second interface due to a magnetic
surface current at the right side of the first interface,

5. Ew,s =< Ĥt;2(g
(2)
s ,ρ) |g(2)

w > is the self interaction of the magnetic field
strength at the left side of the second interface due to a magnetic surface
current at the left side of the second interface,
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Figure 3.8: A graphical interpretation of the different terms (Av,r, Bv,r, Cv,s,
Ew,s, Fw,s, Gw,r) in the linear operator L and (Dv, Hw) in the forcing vector
f for the example basic structure with three segments Sm separated by two
junctions Jm.

6. Fw,s =< H̃t;2(g
(2)
s ,ρ) |g(2)

w > is the self interaction of the magnetic field
strength at the right side of the second interface due to a magnetic surface
current at the right side of the second interface.

The column vector f represents the forcing vector, and describes the external
incident electromagnetic field. We can write f as

f =
(

Dv

Hw

)
, (3.41)

where each vector element is given and physically interpreted by:

1. Dv = − < Ĥt;1(M̂inc,ρ) |g(1)
v > is the magnetic field strength at the left

side of the first interface due to a incident magnetic surface current at the
left probing side,

2. Hw =< H̃t;2(M̃inc,ρ) |g(2)
w > is the magnetic field strength at the right

side of the second interface due to a incident magnetic surface current at
the right probing side.

A graphical interpretation of the different terms in the linear operator L and
the forcing vector f for the example basic structure is given in figure 3.8. The
vector u represents the unknowns, and is given by

u =

(
V

(1)
r

V
(2)
s

)
. (3.42)
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Once the matrix equation 3.39 (linear system) is solved for the unknown vector u
by means of either straightforward inversion of L, or by using more sophisticated
iterative schemes [91, 109], the unknown surface currents{

M̂1, M̂2

}
(ρ),

can be found by substituting the vector u into the surface current expansion,
i.e. equations 3.29 and 3.30.

3.6 Calculation of the Matrix/Vector Elements

In the previous section we have formulated a matrix equation Lu = f that solves
the unknown surface currents with the method of moments. In this section, we
discuss in detail the calculation of the individual linear operator L, and the
forcing vector f .

3.6.1 Calculation of the Matrix Elements

As an example, we focus on the calculation of the matrix elements for the
contribution Av,r to L, which is given by

Av,r =< Ĥt;1(g(1)
r ,ρ) |g(1)

v >, (3.43)

Waveguide

First, we consider the first section to be a waveguide. Then, the field represen-
tation for the transverse magnetic field is given by equation 2.115, and can be
written as

Ĥt;1(g(1)
r ,ρ) =

∑
j,α

Iα
j (z−1 )hα

t;j(ρ). (3.44)

When we substitute this field expansion in equation 3.43, we obtain

Av,r =
∑
j,α

Iα
j (z−1 ) < hα

t;j |g(1)
v >, (3.45)

where Iα
j (z−1 ) is a linear function of the inner product < g(1)

r |hα
t;j >. We can

rewrite equation 3.45 as

Av,r =
∑
j,α

Iα
j (z−1 ) < g(1)

r |hα
t;j >< hα

t;j |g(1)
v >, (3.46)

where we have explicitly isolated < g(1)
r |hα

t;j > from Iα
j (z−1 ). For Av,r, we have

Iα
j (z−1 ) = −Y α

∞;j which represents the transmission line solution for a left half
space with source described in appendix B.1.
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Layered Space

Second, we consider the first section to be a layered space. Then, the field
representation for the transverse magnetic field is given by equation 2.168, and
can be written as

Ĥt;1(g(1)
r ,ρ) =

∑
α

∫
Iα(kt, z

−
1 )hα

t (kt,ρ)dkt. (3.47)

When we substitute this field expansion in equation 3.43, we obtain

Av,r =
∑
α

∫
Iα(kt, z

−
1 ) < hα

t (kt) |g(1)
v > dkt, (3.48)

where Iα(kt, z
−
1 ) is a linear function of the inner product < g(1)

r |hα
t (kt) >. We

can rewrite equation 3.48 as

Av,r =
∑
α

∫
Iα(kt, z

−
1 ) < g(1)

r |hα
t (kt) >< hα

t (kt) |g(1)
v > dkt, (3.49)

where we have explicitly extracted < g(1)
r |hα

t (kt) > from Iα(kt, z
−
1 ). For Av,r,

we have Iα(kt, z
−
1 ) = −Y α

∞(kt) which represents the transmission line solution
for a left half space with source described in appendix B.1.

Periodic Arrangement

Subsequently, we must take into account the periodic arrangement, to allow for
an interaction (mutual coupling) between unit cells. The only place where the
unit cells can interact is within the layered space via the equivalent magnetic
surface current M̂1 within the first section. To incorporate this behavior, we
extend the expansion surface current g(1)

r , which is defined only on a single unit
cell, to a periodic version. Consequently, the Green’s function, the transmission
line solution, for the magnetic field evaluated at z = z−1 due to a single magnetic
surface current must be replaced by a periodic version as well. For this purpose,
we first assume an incident plane wave with transverse wavevector kinc

t . Then
we consider two types of periodical extensions [112, section 7.3]. These two
types are explained in detail in appendix K.

Staircase Phase Function

The first choice for a periodical extension of g(1)
r is the so-called staircase phase

function g(1),S
r (see equation K.19), and is expressed as

g(1),S
r (ρ) = exp(−jkinc

t · ρ)

(g(1)
r (ρ) exp(jkinc

t · ρ)
)
∗
∐

d1,d2

(ρ)

 , (3.50)
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where the so-called Dirac brush function
∐

d1,d2
(ρ), which is a two-dimensional

generalization of the Dirac comb function, is defined as∐
d1,d2

(ρ) =
∑
p,q

δ(ρ− pd1 − qd2). (3.51)

The corresponding spectrum2 (see equation K.20) is given by

< g(1),S
r |hα

t (kt) >=
4π2

A
< g(1)

r |hα
t (kt) >

∐
k1,k2

(kt − kinc
t ). (3.52)

The Galerkin procedure suggests that expansion and weighting functions must
be identical. However this causes mathematical difficulties since integrals of
products of delta functions with identical support are undefined. To solve this
problem, we select non-periodical weighting functions. This makes sense since
the periodicity of the structure is already built in through the periodical expan-
sion functions. There is no need to enforce it again in the weighting functions.
If we choose

g(1),S
v (ρ) = g(1)

v (ρ), (3.53)

we look into a single cell only, and we avoid the mathematical difficulties. The
corresponding spectrum is given by

< hα
t (kt) |g(1),S

v >=< hα
t (kt) |g(1)

v > . (3.54)

By substituting 3.52 and 3.54 in 3.49, we arrive at

Av,r =
4π2

A

∑
j,α

Iα(kt;j , z
−
1 ) < g(1)

r |hα
t (kt;j) >< hα

t (kt;j) |g(1)
v > . (3.55)

The transverse wavevector kt is defined in a reciprocal lattice and is a function
of the index j and can be expressed as

kt;j = Rmj + kinc
t , DTR = 2πI, mj =

(
m1,j

m2,j

)
. (3.56)

The 2 by 2 matrix D represents the elementary dimensions of the periodical
structure. The columns of D form the basis vectors d1 and d2 of a single unit
cell. Given D, the matrix R is determined by equation 3.56, and represents
the corresponding reciprocal transverse wavevector lattice, which is discussed in
detail in appendix K. Both indices m1,j and m2,j are integers and range from
−∞ to ∞.

In general, kinc
t changes when the frequency or the angle of incidence of the

plane wave is varied. Consequently, the reciprocal lattice kt;j moves along in
the spectral plane. This means that the inner products < g(1)

r |hα
t (kt;j) > and

< hα
t (kt;j) |g(1)

v > are sampled at different points when kinc
t changes.

2We call this a spectrum because hα
t (kt) are plane waves, i.e., exponentials.
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Linear Phase Function

The second choice for a periodical extension of g(1)
r is the so-called linear phase

function g(1),L
r (see equation K.21), and is expressed as

g(1),L
r (ρ) = exp(−jkinc

t · ρ)

g(1)
r (ρ) ∗

∐
d1,d2

(ρ)

 . (3.57)

The corresponding spectrum (see equation K.22) is given by

< g(1),L
r |hα

t (kt) >=
4π2

A
< g(1)

r |hα
t (kt − kinc

t ) >
∐

k1,k2

(kt − kinc
t ). (3.58)

If we choose

g(1),L
v (ρ) = g(1)

v (ρ) exp(−jkinc
t · ρ). (3.59)

we avoid similar mathematical difficulties (that integrals of products of delta
functions with identical support are undefined) described for the staircase phase
function. The corresponding spectrum is given by

< hα
t (kt) |g(1),L

v >=< hα
t (kt − kinc

t ) |g(1)
v > . (3.60)

By substituting 3.58 and 3.60 in 3.49, we arrive at

Av,r =
4π2

A

∑
j,α

Iα(kt;j , z
−
1 ) < g(1)

r |hα
t (Rmj) >< hα

t (Rmj) |g(1)
v > . (3.61)

Note that < g(1)
r |hα

t (Rmj) > and < hα
t (Rmj) |g(1)

v > are sampled at fixed
points in the reciprocal lattice when kinc

t changes. Hence they may be computed
once and then stored. This procedure leads to a saving of computer time if
the basic structure is complicated and the computation of the spectra is time
consuming.

3.6.2 Calculation of the Vector Elements

As an example, we focus on the calculation of the vector elements for the con-
tribution Dv to f , which is given by

Dv = − < Ĥt;1(M̂inc,ρ) |g(1)
v > . (3.62)

Waveguide

First, we consider the first section to be a waveguide. Then, the field represen-
tation for the transverse magnetic field is given by equation 2.115, and can be
written as

Ĥt;1(M̂inc,ρ) =
∑
j,α

Iα
j (z−1 )hα

t;j(ρ). (3.63)
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When we substitute this field expansion in equation 3.62, we obtain

Dv = −
∑
j,α

Iα
j (z−1 ) < hα

t;j |g(1)
v >, (3.64)

where Iα
j (z−1 ) is a linear function of the inner product < M̂inc |hα

t;j >. We can
rewrite equation 3.64 as

Dv = −
∑
j,α

Iα
j (z−1 ) < M̂inc |hα

t;j >< hα
t;j |g(1)

v >, (3.65)

where we have explicitly isolated < M̂inc |hα
t;j > from Iα

j (z−1 ). For Dv, Iα
j (z−1 )

is given by the transmission line solution for a half space with offset source
described in appendix B.5.

Layered Space

Second, we consider the first section to be a layered space. Then, the field
representation for the transverse magnetic field is given by equation 2.168, and
can be written as

Ĥt;1(M̂inc,ρ) =
∑
α

∫
Iα(kt, z

−
1 )hα

t (kt,ρ)dkt. (3.66)

When we substitute this field expansion in equation 3.62, we obtain

Dv = −
∑
α

∫
Iα(kt, z

−
1 ) < hα

t (kt) |g(1)
v > dkt, (3.67)

where Iα(kt, z
−
1 ) is a linear function of the inner product < M̂inc |hα

t (kt) >.
We can rewrite equation 3.67 as

Dv = −
∑
α

∫
Iα(kt, z

−
1 ) < M̂inc |hα

t (kt) >< hα
t (kt) |g(1)

v > dkt, (3.68)

where we have explicitly extracted < M̂inc |hα
t (kt) > from Iα(kt, z

−
1 ). For Dv,

Iα(kt, z
−
1 ) is given by the transmission line solution for a half space with offset

source described in appendix B.5.

Periodic Arrangement

Subsequently, we must take into account the periodic arrangement, to allow for
an interaction (mutual coupling) between unit cells. For this purpose, we first
assume an incident plane wave with transverse wavevector kinc

t . In general, when
the plane wave changes its direction, the system matrix S has to be recomputed
since kt depends on kinc

t . However, if this shift is a lattice vector, i.e. Rmj , then
the system matrix S does not change [112, section 7.3]. The points of the lattice
are simply relabeled. This means that the system matrix is a periodic function
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of kt. With just a single system matrix inversion it is possible to compute the
response of the basic structure for a given incident field consisting of a discrete
spectrum of plane waves directly linked to the same reciprocal lattice, i.e.

< M̂inc |hα
t (kt) >= V̂inc(kt)

∐
k1,k2

(kt − kinc
t ). (3.69)

Then we consider two types of periodical extensions. These two types are ex-
plained in detail in appendix K and have also been used in the previous section.

Staircase Phase Function

The first choice for a periodic extension of g(1)
r is the so-called staircase phase

function g(1),S
r (see equation 3.53). If we choose the weighting function

g(1),S
v (ρ) = g(1)

v (ρ), (3.70)

we avoid the mathematical difficulties (that integrals of products of delta func-
tions with identical support are undefined) described in the previous section.
By using equations 3.69 and 3.70, we can rewrite equation 3.68 as

Dv = −4π2

A

∑
j,α

Iα(kt;j , z
−
1 )V̂inc(kt;j) < hα

t (kt;j) |g(1)
v > . (3.71)

Linear Phase Function

The second choice for a periodic extension of g(1)
r is the so-called linear phase

function g(1),L
r (see equation 3.59). If we choose the weighting function

g(1),L
v (ρ) = g(1)

v (ρ) exp(−jkinc
t · ρ), (3.72)

we avoid the mathematical difficulties (that integrals of products of delta func-
tions with identical support are undefined) described in the previous section.
By using equations 3.69 and 3.72, we can rewrite equation 3.68 as

Dv = −4π2

A

∑
j,α

Iα(kt;j , z
−
1 )V̂inc(kt;j) < hα

t (Rmj) |g(1)
v > . (3.73)

Note that < hα
t (Rmj) |g(1)

v > is sampled at fixed points in the reciprocal lattice
when kinc

t changes. Hence they may be computed once and then stored.

3.7 Expansion and Weighting Functions

If we use the method of moments to solve the coupled field integral equation
described in this chapter, we have to define a number of expansion and weighting
functions for the unknown surface current at the junctions. This choice depends
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Figure 3.9: Cross section of a rectangular waveguide in the x, y-plane.

on the geometrical shape of the support of these surface currents. We discuss
this in this section, and we distinguish between global and local functions.

Global functions make use of the overall shape of the support of the unknown
surface current by assigning to it a ”transverse global expansion”. We discuss
the rectangular waveguide mode functions, the thin strip functions, and the
weighted Chebyshev functions. We define these functions in sections 3.7.1, 3.7.2
and 3.7.3 and discuss some valuable properties.

Local functions approximate the overall shape of the support of the unknown
surface current by dividing it into small primitive elements for which the local
edge conditions are taken into account. We discuss the rectangular rooftop and
the triangular Rao-Wilton-Glisson (RWG) functions. We define these functions
in sections 3.7.4 and 3.7.5 and discuss the most relevant properties.

3.7.1 Waveguide Mode Functions

The unknown surface current is approximated by using rectangular waveguide
mode functions [11, 14]. First, a cross section of the waveguide is drawn in
figure 3.9.

The waveguide has a cross section A with a boundary ∂A. The cross section
is rectangular in shape with length a and height b. The lower left corner of this
waveguide is shifted from the origin towards x = e and y = f . This is done to
allow for a shifted waveguide within the unit cell.

The electric and magnetic modal fields within this waveguide can be written
in terms of square integrable and normalized scalar generating functions Φm

and Ψm given by equations 2.137, 2.138, 2.162 and 2.163. Further, Φm and Ψm

satisfy equations 2.134 and 2.159, respectively. Given the rectangular shape of
the waveguide, we can solve these equations. For Φm, we obtain the following
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analytical solution.

Φm(ρ) =

{
2√
ab

sin
(

mπ
a (x− e)

)
sin
(

nπ
b (y − f)

)
if ρ ∈ A,

0 otherwise,
(3.74)

k′t;m =

√(mπ
a

)2

+
(nπ
b

)2

, (3.75)

where m,n = 1, 2, 3, . . . . For Ψm, we obtain the following analytical solution.

Ψm(ρ) =

{√
εmεn

ab cos
(

mπ
a (x− e)

)
cos
(

nπ
b (y − f)

)
if ρ ∈ A,

0 otherwise,
(3.76)

k′′t;m =

√(mπ
a

)2

+
(nπ
b

)2

, (3.77)

wherem,n = 0, 1, 2, . . . but wherem = n = 0 is excluded because it corresponds
to a vanishing field. Note that we have replaced the single indexm with an index
pair (m,n). Further, we have used the Neumann symbol [34, definition 4.50]
defined as

εm =

{
1 if m = 0,
2 otherwise.

(3.78)

The inner product between the rectangular waveguide mode expansion/weighting
functions and the waveguide mode functions is evaluated in appendix C. The
inner product between the rectangular waveguide mode expansion/weighting
functions and the layered space mode functions is evaluated in appendix D.

3.7.2 Thin Strip Functions

The so-called thin strip function is particularly suited when the geometrical
shape of the support of the surface current consists of separate thin rectangular
regions, whose width is small compared to the length of the strip. The behavior
of the surface current in such a region can be written as the product of a
modal sin(x)-function in the length direction, and a 1/

√
x-function in the width

direction which satifies the edge conditions analytically. The thin strip function
with label n has a support Sn, and is defined as

fn(ρ) =


p̂n

1r
1−

“
2y′
wn

”2
sin
(

πmn

ln

[
x′ + ln

2

])
if ρ ∈ Sn,

0 otherwise,
(3.79)

in which

x′ = ρ · d̂n, y′ = ρ · (ẑ× d̂n), d̂n = x̂ cos(α) + ŷ sin(α), (3.80)
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Figure 3.10: Domain, vectors and scalars used in the definition of the thin strip
function.

and in which

p̂n =

{
d̂n for an electric current on the patch,
ẑ× d̂n for a magnetic current in the aperture.

(3.81)

d̂n denotes the unit-length vector along the length of the thin strip which is
rotated by an angle α with respect to the x-axis. p̂n denotes the direction of
the surface current. sn denotes the transverse vector from the origin to the
center of the thin strip. mn denotes the mode number. ln denotes the length
of the thin strip. wn << ln denotes the width of the thin strip. See figure 3.10
for a graphical representation of the domain, vectors and scalars used in the
definition of the thin strip function. The inner product between the thin strip
functions and the layered space mode functions is evaluated in appendix I.

3.7.3 Patch Functions

The so-called patch function is particularly suited when the geometrical shape of
the support of the surface current consists of separate rectangular regions. The
behavior of the surface current in such a region can be written as the product
of
√
x functions Cm(x,w) and 1/

√
x functions Dm(x,w) that satisfy the edge

conditions analytically [1]. The patch function with label n has a rectangular
support Sn, and is defined as

fn(ρ) =


ûnCpn

(x′, ln)Dqn
(y′, wn) if ρ ∈ Sn and ûn-directed,

v̂nDqn
(x′, ln)Cpn

(y′, wn) if ρ ∈ Sn and v̂n-directed,
0 otherwise,

(3.82)

in which

x′ = ρ · ûn, y′ = ρ · v̂n, ûn = x̂ cos(α) + ŷ sin(α), v̂n = ẑ× ûn, (3.83)
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ûn

v̂n

sn

�
�

�
�

�
�

�
�

��>

Figure 3.11: Domain, vectors and scalars used in the definition of the patch
function.

and in which

Cm(x,w) =Um

(
2x
w

)√
1−

(
2x
w

)2

, (3.84)

Dm(x,w) = Tm

(
2x
w

)
1√

1−
(

2x
w

)2 , (3.85)

where m = 0, 1, 2, . . . , and where Tm(x) = cos(m arccos(x)) and Um(x) =
sin((m+1) arccos(x))/ sin(arccos(x)) are the Chebyshev polynomials of the first
and second kind, respectively [2, chapter 22]. ûn and v̂n denote the unit-length
vectors parallel and perpendicular to the longitudinal axis of the rectangle, re-
spectively, which is rotated by an angle α with respect to the x-axis. sn denotes
the transverse vector from the origin to the center of the rectangle. pn and qn
denote the order of the Chebyshev polynomials. ln denotes the length of the
rectangle. wn denotes the width of the rectangle. See figure 3.11 for a graphical
representation of the domain, vectors and scalars used in the definition of the
patch function.

The inner product between the patch functions and the layered space mode
functions is described in detail in appendix J.

3.7.4 Rooftop Functions

The so-called rooftop function is particularly suited when the geometrical shape
of the support of the surface current consists of rectangular regions. These
regions are broken up in (almost) square subdomains and the rooftop functions
are defined on every two adjacent subdomains [104].
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Figure 3.12: Domain, vectors and scalars used in the definition of the rooftop
function.

Two given adjacent rectangular subdomains have an interior edge with label
n in common. We assign to this edge a preferred direction which allows us
to discriminate between a so-called positive S+

n and negative S−n rectangular
subdomain. The rooftop function associated with this interior edge is now
defined as

fn(ρ) = d̂nΛ((ρ− sn) · d̂n, pn, qn)Π((ρ− sn) · (ẑ× d̂n), wn), (3.86)

in which the triangle function is defined as

Λ(x, p, q) =


1 + x

p if −p < x < 0,
1− x

q if 0 < x < q,

0 otherwise,

(3.87)

and in which the block function is defined as

Π(y, w) =

{
1
w if −w

2 < y < w
2 ,

0 otherwise.
(3.88)

Further, d̂n denotes the unit-length vector perpendicular to the interior edge.
sn denotes the transverse vector from the origin to the center of the rooftop
function. pn and qn denote the lengths of the rectangular subdomains S+

n and
S−n , respectively. wn denotes the height of the rooftop function. See figure 3.12
for a graphical representation of the domain, vectors and scalars used in the
definition of the rooftop function.

The rooftop function has some valuable properties. First, the surface current
has no component normal to the exterior boundary of the surface formed its own
rectangular subdomains. This is why two rooftop functions must overlap. This
means that line charges will not exist along boundaries between the subdomains.
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Second, the normal component of the surface current on the interior edge is
constant and continuous across this edge. This ensures that also this edge is
free of line charges. Third, the surface charge density is proportional to the
surface divergence of the surface current given by

∇t · fn(ρ) =


1

wnpn
if ρ ∈ S−n ,

− 1
wnqn

if ρ ∈ S+
n ,

0 otherwise,

(3.89)

and is a constant within each rectangular subdomain. Fourth, the total charge,
i.e. surface charge density times area, over both rectangular subdomains equals
zero. Finally, since the normal component of the surface current on the interior
edge is of unit length, each coefficient in the unknown current expansion may
be interpreted as the normal component of current density flowing through the
interior edge.

The inner product between the rooftop functions and the waveguide mode
functions is evaluated in appendix E. The inner product between the rooftop
functions and the layered space mode functions is evaluated in appendix F.

3.7.5 RWG Functions

The so-called Rao-Wilton-Glisson (RWG) function is particularly suited when
the geometrical shape of the support of the surface current consists of arbitrarily
shaped regions. These regions are broken up in (almost) equilateral triangular
subdomains and the RWG functions are defined on every pair of adjacent sub-
domains [88].

Two given adjacent triangular subdomains have an interior edge with label
n in common. The vertices of this edge are given by ρ

(1)
n and ρ

(2)
n . We assign

to this edge an arbitrary preferred direction ρ
(12)
n = ρ

(2)
n − ρ

(1)
n which allows

us to discriminate between a so-called positive T+
n and negative T−n triangular

subdomain by using the right-hand rule for the contour of these two triangles.
The RWG function associated with this interior edge is now defined as

fn(ρ) =


ln

2A+
n

(ρ− ρ+
n ) if ρ ∈ T+

n ,
ln

2A−
n

(ρ−n − ρ) if ρ ∈ T−n ,
0 otherwise.

(3.90)

ln denotes the length of the interior edge, ρ+
n and ρ−n denote the outer vertices

of the triangular subdomains T+
n and T−n , respectively. A+

n and A−n denote the
areas of the triangular subdomains T+

n and T−n , respectively. See figure 3.13 for
a graphical representation of the domain, vectors and scalars used in the RWG
function.

The RWG function has some valuable properties. First, the surface current
has no component normal to the exterior boundary of the surface formed by the
triangular subdomains. This means that no line charges will exist along this
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Figure 3.13: Domain, vectors and scalars used in the RWG function.

boundary. Second, the normal component of the current on the interior edge
is constant and continuous across this edge. This ensures that also this edge
is free of line charges. Third, the surface charge density is proportional to the
surface divergence of the surface current given by

∇t · fn(ρ) =


ln
A+

n
if ρ ∈ T+

n ,

− ln
A−

n
if ρ ∈ T−n ,

0 otherwise,

(3.91)

and is a constant within each triangular subdomain. Fourth, the total charge,
i.e. surface charge density times area, over both triangular subdomains equals
zero. Fifth, by using an appropriate linear combination of three RWG functions
corresponding to the three (interior) edges within a single triangular subdomain,
we are able to construct a uniform current flowing in an arbitrary direction
within this triangular subdomain. Finally, since the normal component of the
surface current on the interior edge is of unit length, each coefficient in the
unknown current expansion may be interpreted as the normal component of
current density flowing through the interior edge.

The inner product between the RWG functions and the waveguide mode
functions is evaluated in appendix G. The inner product between the RWG
functions and the layered space mode functions is evaluated in appendix H.

3.8 Calculation of the Total Field

We calculate the total electromagnetic field at any given location within the
configuration. To do so, we first define so-called probing interfaces at the left and
right side of the basic structure at some finite distance away from the junctions.
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We calculate the total electromagnetic field at these probing interfaces. Due
to the superposition principle [35, section 11.3], the total field at these probing
interfaces can be written as a sum of an incident and a scattered field, which is
discussed in sections 3.8.1 and 3.8.2, respectively.

Then, in section 3.8.3 we formulate a so-called generalized scattering matrix,
which characterizes the electromagnetic behavior for a single basic structure, by
expressing the outgoing waves in terms of the incident waves [31, 48].

Finally, in section 3.8.4 we formulate a procedure that cascades two general-
ized scattering matrices [112, section 6.3] to obtain a new generalized scattering
matrix which characterizes the electromagnetic behavior of the combination of
the two corresponding basic structures.

First, we define so-called probing interfaces at which we calculate the total
electromagnetic field. Without loss of generality, we define a left probing in-
terface in the first segment at z = zL < z1, where z1 denotes the location of
the first junction. At an infinitesimally small negative distance away from zL

at z = z−L , we place an incident magnetic surface current M̂inc. We calculate
the total transverse electromagnetic field at this interface, i.e., Et(ρ, zL) and
Ht(ρ, zL).

Further, we define a right probing interface in the last segment at z = zR >
zM , where zM denotes the location of the last junction for a given M . At
an infinitesimally small positive distance away from zR at z = z+

R , we place
an incident magnetic surface current M̃inc. We calculate the total transverse
electromagnetic field at this interface, i.e., Et(ρ, zR), and Ht(ρ, zR).

Consider again the example at the end of section 3.4. The application of
the field equivalence principle divides the original basic structure into three
separate closed sections with the following equivalent magnetic surface cur-
rents: {M̂inc, M̂1} if z < z1, {M̃1 = −M̂1, M̂2} if z1 < z < z2, and {M̃2 =
−M̂2, M̃inc} if z > z2.

Due to the superposition principle, the total electromagnetic field at the left
probing interface can be written as a sum of the incident field and a scattered
field as

Et(ρ, zL) = Einc
t (ρ, zL) + Escat

t (ρ, zL), (3.92)
Ht(ρ, zL) = Hinc

t (ρ, zL) + Hscat
t (ρ, zL). (3.93)

Einc
t (ρ, zL) and Hinc

t (ρ, zL) denote the incident electric and magnetic field, re-
spectively, and are a consequence of M̂inc. Escat

t (ρ, zL) and Hscat
t (ρ, zL) denote

the scattered electric and magnetic field, respectively, and are a consequence of
M̂1. The same argument can be applied to the total electromagnetic field at the
right probing interface for Et(ρ, zR) and Ht(ρ, zR), which are a consequence of
M̃2 and M̃inc.

3.8.1 Calculation of the Incident Field

As an example, we calculate Hinc
t (ρ, zL) for a waveguide section. The field

representation for a transverse magnetic field is given by equation 2.115 and
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can be written as

Hinc
t (ρ, zL) =

∑
j,α

Iα
j (zL)hα

t;j(ρ), (3.94)

where the Green’s function Iα
j (zL) is a linear function of the inner product

< M̂inc |hα
t;j >. We can rewrite equation 3.94 as

Hinc
t (ρ, zL) =

∑
j,α I

α
j (zL) < M̂inc |hα

t;j > hα
t;j(ρ), (3.95)

where we have isolated < M̂inc |hα
t;j > from the Green’s function Iα

j (zL). Fur-
thermore, Iα

j (zL) is given by the Green’s function for a half space with offset
source derived in appendix B.5. Finally, if we choose for M̂inc the waveguide
mode hβ

t;k for a given β and k, then Hinc
t (ρ, zL) reduces to

Hinc
t (ρ, zL) = Iβ

k (zL)hβ
t;k(ρ). (3.96)

The same line of argument can be used to obtain an expression for Einc
t (ρ, zL).

3.8.2 Calculation of the Scattered Field

As an example, we calculate Hscat
t (ρ, zL) for a waveguide section. Hscat

t (ρ, zL)
is the result of M̂1 which is obtained by solving Lu = f for a given incident
field, i.e., for a given forcing vector f . M̂1 can be written in the form of equation
3.30 as

M̂1(ρ) =
Q1∑
q=1

V (1)
q g(1)

q (ρ). (3.97)

The field representation for a transverse magnetic field is given by equation
2.115 and can be written as

Hscat
t (ρ, zL) =

∑
j,α

Iα
j (zL)hα

t;j(ρ), (3.98)

where the Green’s function Iα
j (zL) is a linear function of the inner product

< M̂1 |hα
t;j >. We can rewrite equation 3.98 as

Hscat
t (ρ, zL) =

∑
j,α

Iα
j (zL) < M̂1 |hα

t;j > hα
t;j(ρ), (3.99)

where we have extracted < M̂1 |hα
t;j > from the Green’s function Iα

j (zL). Fur-
thermore, Iα

j (zL) is given by the Green’s function for a left half space with
source described in appendix B.1. Finally, if we substitute equation 3.97 in
3.99, we arrive at

Hscat
t (ρ, zL) =

∑
j,α

Iα
j (zL)

Q1∑
q=1

V (1)
q < g(1)

q |hα
t;j > hα

t;j(ρ). (3.100)

The same argument can be used to obtain an expression for Escat
t (ρ, zL).
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Figure 3.14: Definition of the wave amplitudes for a scattering matrix.

3.8.3 Formulation of the Scattering Matrix

We formulate a so-called generalized scattering matrix, which characterizes the
electromagnetic behavior for a single basic structure, by expressing the outgoing
waves in terms of the incident waves [31, 48].

We consider an arbitrary basic structure with left and right probing inter-
faces at z = z1 and z = z2, respectively. Since the basic structure is linearly
reacting, the relation between the corresponding incident and outgoing volt-
age/current amplitudes at the probes (also known as the ports) can be written
as (

V −
1

V +
2

)
= SV

(
V +

1

V −
2

)
,

(
I−1
I+
2

)
= SI

(
I+
1

I−2

)
, (3.101)

where

SV =
(
SV,11 SV,12

SV,21 SV,22

)
=
(
V −

1 /V +
1 V −

1 /V −
2

V +
2 /V +

1 V +
2 /V −

2

)
, (3.102)

and where

SI =
(
SI,11 SI,12

SI,21 SI,22

)
=
(
I−1 /I

+
1 I−1 /I

−
2

I+
2 /I

+
1 I+

2 /I
−
2

)
. (3.103)

The signs ± indicate the direction of propagation. {V +
1 , I+

1 } and {V −
1 , I−1 }

denote the incident and outgoing voltage/current amplitudes at the left probe
for a given mode, respectively. {V +

2 , I+
2 } and {V −

2 , I−2 } denote the outgoing
and incident voltage/current amplitude at the right probe for a given mode,
respectively. This is schematized in figure 3.14.

SV and SI are known as the generalized scattering matrices referred to
voltages and currents, respectively. The term generalized refers to the fact that
the incident and outgoing waves at both probes are allowed to be propagating
and/or evanescent. Further:

1. SX,11 is the reflection coefficient at the left probe,

2. SX,12 is the transmission coefficient from the right to the left probe,
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3. SX,21 is the transmission coefficient from the left to the right probe,

4. SX,22 is the reflection coefficient at the right probe.

X can be either V or I. Note that, for example, V +
1 ≡ V +

n (z1) for the waveg-
uide, whereas V +

1 ≡ V +(kt, z1) for the layered space. With the mode index
n and transverse wavevector kt we are able to select different modes at the
probes. Furthermore, we can extend the single-mode probe to a multi-mode
probe. In this case, the scalars X±

m become vectors, and the scalars SX,mn

become matrices. X can be either V or I.

3.8.4 Formulation of the Cascading Procedure

We formulate a procedure that cascades two generalized scattering matrices
[112, section 6.3] to obtain a new generalized scattering matrix which charac-
terizes the electromagnetic behavior of the combination of the two corresponding
basic structures.

The first basic structure has a left and right probing interface3 at z = z1
and z = z2, respectively. It is characterized by the generalized scattering matrix
Sa

X . The relation between the incident and outgoing waves is given by(
X−

1

X+
2

)
= Sa

X

(
X+

1

X−
2

)
, where Sa

X =
(
Sa

X,11 Sa
X,12

Sa
X,21 Sa

X,22

)
, (3.104)

where X can be V or I. The second basic structure has a left and right probing
interface at z = z2 and z = z3, respectively. It is characterized by the generalized
scattering matrix Sb

X . The relation between the incident and outgoing waves is
given by(

X−
2

X+
3

)
= Sb

X

(
X+

2

X−
3

)
, where Sb

X =
(
Sb

X,11 Sb
X,12

Sb
X,21 Sb

X,22

)
. (3.105)

If we connect the right probe of the first basic structure with the left probe of
the second basic structure, we obtain a new basic structure that has a left and
right probing interface at z = z1 and z = z3, respectively. It is characterized by
the generalized scattering matrix SX . The relation between the incident and
outgoing waves is given by(

X−
1

X+
3

)
= SX

(
X+

1

X−
3

)
, where SX =

(
SX,11 SX,12

SX,21 SX,22

)
. (3.106)

The various incident and outgoing wave amplitudes are schematized in figure
3.15. If we want to determine SX for a given Sa

X and Sb
X , we have to eliminate

X+
2 and X−

2 from the set of equations given by 3.104 and 3.105, and express

3Also called reference planes.
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Figure 3.15: Definition of the wave amplitudes for the cascading procedure.

the remaining unknowns in the form of equation 3.106. Doing this leads to

SX,11 =Sa
X,11 + Sa

X,12RX,2S
b
X,11S

a
X,21, (3.107)

SX,12 =Sa
X,12RX,2S

b
X,12, (3.108)

SX,21 =Sb
X,21RX,1S

a
X,21, (3.109)

SX,22 =Sb
X,22 + Sb

X,21RX,1S
a
X,22S

b
X,12, (3.110)

in which

RX,1 =(I − Sa
X,22S

b
X,11)

−1, (3.111)

RX,2 =(I − Sb
X,11S

a
X,22)

−1. (3.112)

This procedure is known as the Redheffer star product. In short notation we
write SX = Sa

X ⊗ Sb
X .

In the case of single-mode probes4, the transmission and reflection coeffi-
cients are complex scalars. This implies that RX,1 = RX,2. However, for multi-
mode probes (scattering matrices), this is in general not the case. This means
that the order of the various products in the Redheffer star product cannot be
disregarded.

Finally note that we will perform the Redheffer star product twice5: for
4In the case of single mode scattering matrices.
5Since the separate scattering matrices cannot be made unitary when both propagating and

evanescent modes are taken into account at the probes. The unitary property is convenient
for defining a consistent definition of energy. We propose a new definition in section 3.9.5.
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the generalized scattering matrices referred to both voltages and currents. This
means that SV = Sa

V ⊗ Sb
V and SI = Sa

I ⊗ Sb
I .

A key concept in selecting the number of modes of interest at each probe
between two interacting basic structures is that of accessible and localized modes
[90]. This choice determines the overall size of the generalized scattering matrix.
A major role in this interaction is played by the fact whether a mode is above
or below cutoff at that probe. It is convenient to classify modes as accessible or
localized when their attenuation between adjacent basic structures is lower or
higher than a specified threshold.

Accessible modes, either propagating or evanescent are responsible for the
interaction between two adjacent basic structures. Localized modes however are
so attenuated that they do not see the other basic structure and give rise only
to energy storage if the structure is lossless. In cascading the various gener-
alized scattering matrices, only the accessible modes at the probing interfaces
are involved, whereas the localized modes are disregarded. This amounts to
terminating these modes with the corresponding characteristic impedances.

3.9 Energy Considerations

In this section we give an interpretation of the field solution based on energy
principles. We first derive and then use Poynting’s theorem [35, chapter 7] in
section 3.9.1, and find an expression for the energy conservation. We then give
a physical interpretation of three different parts of this expression, i.e., power
flow through the basic structure from the outside, energy storage and loss within
the basic structure and power generation by sources inside the basic structure.
Then in section 3.9.2 we simplify the expression for the power flow by using the
field expansions both for the waveguide and for the layered space.

A reciprocal structure can usually be characterized by a symmetrical gener-
alized scattering matrix. However, SV and SI are in general not symmetrical.
In section 3.9.3 we introduce a normalization of the wave amplitudes, to obtain
so-called symmetrical power wave generalized scattering matrices. In section
3.9.4 we rewrite the energy conservation, derived in section 3.9.1, in terms of
the generalized scattering matrix for a lossless basic structure. In section 3.9.5
we define a specific energy related quantity that uses a combination of both gen-
eralized scattering matrices referred to voltages and currents. This quantity is
a direct measure of the amount of complex energy reflected and transmitted by
the basic structure, and can also be used when both propagating and evanescent
modes are present at both probing interfaces.

3.9.1 Poynting’s Theorem in its General Form

Since electric and magnetic field strengths are defined through a force exerted
on a point charge moving in vacuum, a logical starting point for energy consid-
erations is the expression for the work done by this force. Thus, the Poynting
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vector is found to be the quantity that characterizes the area density of the
power flow in the electromagnetic field in vacuum.

In (stationary) matter the exchange of energy between a bounded piece of
matter and the vacuum that surrounds it takes place across the boundary surface
of the relevant piece of matter. Further on account of the boundary condition
3.9, the normal component of Poynting’s vector is continuous across any source-
free interface, in particular across the one between vacuum and matter.

Furthermore, a necessary prerequisite for some vectorial quantity to be a
candidate for the area density of power flow is the continuity of its normal
component across any interface that is free from surface sources. If this condition
wasn’t satisfied, there would be a net gain/loss of energy in a domain of zero
thickness, which would contradict the physical condition that storage of energy
requires volume.

The Poynting vector S[VAm−2] is the area density of electromagnetic power
flow and is defined as

S(r, t) = E(r, t)×H(r, t). (3.113)

In the frequency-domain (or steady-state) analysis, the time-averaged energy
flow < S >T is defined as the time average of the Poynting vector

< S >T =
1
T

∫ t=t′+T

t=t′
E(r, t)×H(r, t)dt, (3.114)

where T = 2π/ω denotes the period in time of the fields. Now by using the
frequency-domain field representations, i.e., the s-domain equivalents with s =
jω, it follows that

< S >T =
1
2
Re (E(r, jω)×H∗(r, jω)) . (3.115)

To calculate the time-averaged power flow, we start with the s-domain Maxwell
equations 2.41 and 2.42 given by

−∇×H + ηE = −J, (3.116)
∇×E + ξH = −M, (3.117)

with s = jω, η = σ + jωε and ξ = α + jωµ. Then we take the inner product
between the complex conjugate of equation 3.116 and E, the inner product
between equation 3.117 and H∗, and add the results. We find

∇ · (E×H∗) + η∗E ·E∗ + ξH ·H∗ = −J∗ ·E−M ·H∗, (3.118)

where we have used the vector identity

∇ · (E×H∗) = −E · (∇×H∗) + H∗ · (∇×E). (3.119)

Equation 3.118 is known as the local complex Poynting’s theorem. Subsequently,
we integrate this equation over an elementary domain D that is bounded by a
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surface ∂D with outward normal ν̂. We obtain∮
∂D

(E×H∗) · ν̂dA+
∫

D

(η∗E ·E∗ + ξH ·H∗)dV =

−
∫

D

(J∗ ·E + M ·H∗)dV,
(3.120)

where we have used Gauss’ divergence theorem. Equation 3.120 is known as the
complex Poynting’s theorem in integral form. The conservation of energy flow
finally follows from this equation by taking half of its real part in accordance
with equation 3.115. This leads to

1
2
Re
∮

∂D

(E×H∗) · ν̂dA+
1
2

∫
D

(σE ·E∗ + αH ·H∗)dV =

−1
2
Re
∫

D

(J∗ ·E + M ·H∗)dV.
(3.121)

The different terms within equation 3.121 have the following physical interpre-
tation.

1. The first term on the left-hand side is interpreted as the time-averaged
power flow that is transferred from D across ∂D into its surroundings.

2. The second term on the left-hand side is interpreted as the time-averaged
ohmic loss of power (both electric and magnetic) that is irreversibly dis-
sipated into heat.

3. The first term on the right-hand side is interpreted as the time-averaged
power that is generated by the electromagnetic sources within D.

This interpretation is symbolically schematized in figure 3.16.

3.9.2 Power Flow through the Probing Surfaces

Let the volume D represent an arbitrary basic structure given in figure 3.17.
Further, let ∂DL and ∂DR represent the probing interfaces at the left and right
sides of the basic structure at z = zL and z = zR, respectively. Note that
∂D = ∂DL ∪ ∂DR. The time-averaged power flow that is transferred from D
across ∂D into its surroundings is now given by the flow through these probing
interfaces. This means that the first term on the left-hand side of equation 3.121
can be written as

1
2
Re
∮

∂D

(E×H∗) · ν̂dA =
1
2
Re
∫

∂DR

(Et ×H∗
t ) · ẑdA−

1
2
Re
∫

∂DL

(Et ×H∗
t ) · ẑdA.

(3.122)
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Figure 3.17: An arbitrary basic structure with M + 1 segments Sm separated
by M junctions Jm positioned at z = zm for a given integer M , and enclosed
between two probes PL and PR positioned at z = zL and z = zR, respectively.



96 3 Computational Method

First, we consider the first section to be a waveguide. Then, the transverse
electromagnetic field can be written as

Et(ρ, z) =
∑
m,α

V α
m(z)eα

t;m(ρ), (3.123)

Ht(ρ, z) =
∑
m,α

Iα
m(z)hα

t;m(ρ). (3.124)

The time-averaged power flow that is transferred from D across ∂DL can now
be expressed as

−1
2
Re
∫

∂DL

(Et×H∗
t ) · ẑdA = −1

2
Re
∑
m,α

∑
n,β

V α
m(zL)Iβ∗

n (zL)∫
∂DL

(eα
t;m(ρ)× hβ∗

t;n(ρ)) · ẑdA.
(3.125)

Using the orthonormality relation∫
∂DL

(eα
t;m(ρ)× hβ∗

t;n(ρ)) · ẑdA = δm,nδα,β , (3.126)

reduces (see section 2.4.2) equation 3.125 to

−1
2
Re
∫

∂DL

(Et×H∗
t ) · ẑdA =

− 1
2
Re
∑
m,α

V α
m(zL)Iα∗

m (zL).
(3.127)

Second, we consider the first section to be a layered space. Then, the transverse
electromagnetic field can be written as

Et(ρ, z) =
∑
α

∫
V α(kt, z)eα

t (kt,ρ)dkt, (3.128)

Ht(ρ, z) =
∑
α

∫
Iα(kt, z)hα

t (kt,ρ)dkt. (3.129)

The time-averaged power flow that is transferred from D across ∂DL can now
be expressed as

−1
2
Re
∫

∂DL

(Et×H∗
t ) · ẑdA = −1

2
Re
∑
α

∑
β

∫ ∫
V α(k′t, zL)Iβ∗(k′′t , zL)∫

∂DL

(eα
t (k′t,ρ)× hβ∗

t (k′′t ,ρ)) · ẑdAdk′′t dk′t.

(3.130)
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Using the following orthonormality relation∫
∂DL

(eα
t (k′t,ρ)× hβ∗

t (k′′t ,ρ)) · ẑdA = δ(k′t − k′′t )δα,β , (3.131)

reduces (see section 2.4.3) equation 3.130 to

−1
2
Re
∫

∂DL

(Et×H∗
t ) · ẑdA =

− 1
2
Re
∑
α

∫
V α(kt, zL)Iα∗(kt, zL)dkt.

(3.132)

We conclude from equations 3.127 and 3.132 that the time-averaged power flow
through a probing interface is related to the modal voltages and currents at the
probe and has the same form as the one used in circuit theory.

3.9.3 Reciprocal Basic Structure

If the basic structure does not contain any non-reciprocal media (such as a
plasma or a ferrite with an applied DC magnetic biasing field), then the impedance
matrix of this so-called reciprocal basic structure which is described in [31] must
be symmetrical. The corresponding scattering matrix can in this case be sym-
metrical if it relates power waves instead of voltage or current waves.

The two single-mode probing ports in the basic structure have in general
different characteristic impedances; thus SV and SI are in general not sym-
metrical. By introducing the following normalization of the wave voltage and
current amplitudes

Vk ← Vk

√
Y

(k)
∞ , and Ik ← Ik

√
Z

(k)
∞ ,

where Vk and Ik now represent power waves6, we can rewrite the generalized
scattering matrices as

SN
V =

 √
Y

(1)
∞ 0

0
√
Y

(2)
∞

SV

 √
Z

(1)
∞ 0

0
√
Z

(2)
∞

 , (3.133)

and

SN
I =

 √
Z

(1)
∞ 0

0
√
Z

(2)
∞

SI

 √
Y

(1)
∞ 0

0
√
Y

(2)
∞

 . (3.134)

With this normalization, we obtain symmetrical scattering matrices SN
V and SN

I .
These matrices are known as the power wave generalized scattering matrices
(PWGSM) referred to voltages and currents, respectively.

6It is customary to use a and b for incident and scattered waves, respectively.
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∞ , k
(2)
z }

Figure 3.18: Dielectric junction.

To show the asymmetry of the generalized scattering matrices and the sym-
metry of the power wave generalized scattering matrices, we consider a simple
basic structure with a single (empty) junction located at z = 0. The medium for
z < 0 and z > 0 is characterized by {Y (1)

∞ , k
(1)
z } and {Y (2)

∞ , k
(2)
z }, respectively7.

We place the left and right probing interfaces at an infinitesimal distance from
the junction at z = z1 = 0− and z = z2 = 0+, respectively. This basic struc-
ture is known as the dielectric junction, is described in appendix B.1, and is
schematized in figure 3.18. The generalized scattering matrix has the following
closed-form expression [16, chapter 4]

SV =
1

Y
(1)
∞ + Y

(2)
∞

(
Y

(1)
∞ − Y (2)

∞ 2Y (2)
∞

2Y (1)
∞ Y

(2)
∞ − Y (1)

∞

)
, (3.135)

and

SI =
1

Y
(1)
∞ + Y

(2)
∞

(
Y

(1)
∞ − Y (2)

∞ 2Y (1)
∞

2Y (2)
∞ Y

(2)
∞ − Y (1)

∞

)
. (3.136)

Note the asymmetry in both SV and SI . If we apply the normalization to the
simple basic structure, we find

SN
V =

1

Y
(1)
∞ + Y

(2)
∞

 Y
(1)
∞ − Y (2)

∞ 2
√
Y

(1)
∞ Y

(2)
∞

2
√
Y

(1)
∞ Y

(2)
∞ Y

(2)
∞ − Y (1)

∞

 , (3.137)

and

SN
I =

1

Y
(1)
∞ + Y

(2)
∞

 Y
(1)
∞ − Y (2)

∞ 2
√
Y

(1)
∞ Y

(2)
∞

2
√
Y

(1)
∞ Y

(2)
∞ Y

(2)
∞ − Y (1)

∞

 . (3.138)

Further, note that SN
V = SN

I . This is a very general statement and not only
holds for the special case considered in this section. The normalization discussed
in this section can be generalized to multi-mode probes.

7The structure is a junction between two transmission lines of different characteristic ad-
mittance.
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3.9.4 Lossless Basic Structure

To determine an expression for the conservation of energy for a lossless basic
structure, we consider a basic structure for which σ = α = 0. The conservation
of energy now follows from equations 3.121 and 3.122, and can be written as

−1
2
Re
∫

∂DL

(Et ×H∗
t ) · ẑdA+

1
2
Re
∫

∂DR

(Et ×H∗
t ) · ẑdA = 0, (3.139)

where the left and right probing interfaces ∂DL and ∂DR are located at z = z1
and z = z2, respectively. By using equation 3.127 for a probe in a waveguide,
or equation 3.132 for a probe in a layered space, we can rewrite equation 3.139
as

−1
2
Re[V1I

∗
1 ] +

1
2
Re[V2I

∗
2 ] = 0. (3.140)

The terms on the left-hand side of equation 3.140 can be elaborated by sepa-
rating the incident waves from the outgoing waves. Doing this leads to

Re[V −
1 I−

∗

1 + V +
2 I+∗

2 ] = Re[V +
1 I+∗

1 + V −
2 I−

∗

2 ], (3.141)

which can be rewritten in terms of a row and column vector product as

Re

[(
V −

1

V +
2

)T (
I−1
I+
2

)∗]
= Re

[(
V +

1

V −
2

)T (
I+
1

I−2

)∗]
. (3.142)

The outgoing waves are related to the incident waves through the generalized
scattering matrix defined in equation 3.101. Using this leads to

Re

[(
SV

(
V +

1

V −
2

))T (
SI

(
I+
1

I−2

))∗]
= Re

[(
V +

1

V −
2

)T (
I+
1

I−2

)∗]
,(3.143)

which can be rewritten as

Re

[(
V +

1

V −
2

)T

ST
V S

∗
I

(
I+
1

I−2

)∗]
= Re

[(
V +

1

V −
2

)T (
I+
1

I−2

)∗]
. (3.144)

This relation must hold for arbitrary V +
1 , V −

2 , I+
1 = Y

(1)
∞ V +

1 and I−2 = Y
(2)
∞ V −

2 .
It can be satisfied if

Re
(
ST

V S
∗
I

)
= I, (3.145)

where the superscript T denotes the transpose operator, and where I represents
the identity matrix. Equation 3.145 can be rewritten as

Re
(
S†ISV

)
= I, (3.146)
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where the superscript † denotes the Hermite operation, i.e., transpose and com-
plex conjugate. Note that

S†ISV = SN†

I SN
V , (3.147)

which justifies the definition of the power wave generalized scattering matrix.
If we calculate Re

(
S†ISV

)
for the simple basic structure described at the end

of section 3.9.3, we find

Re
(
S†ISV

)
=

1

|Y (1)
∞ + Y

(2)
∞ |2

Re

(
|Y (1)
∞ − Y (2)

∞ |2 + 4Y (1)
∞ Y

(2)∗

∞ 2(Y (1)∗

∞ Y
(2)
∞ − Y (1)

∞ Y
(2)∗

∞ )
2(Y (1)

∞ Y
(2)∗

∞ − Y (1)∗

∞ Y
(2)
∞ ) |Y (2)

∞ − Y (1)
∞ |2 + 4Y (1)∗

∞ Y
(2)
∞

)
,

(3.148)

which reduces to

Re
(
S†ISV

)
= I, (3.149)

since Re
(
Y

(1)∗

∞ Y
(2)
∞ − Y (1)

∞ Y
(2)∗

∞

)
= 0. Finally, it should be remarked that the

energy conservation for lossless basic structures discussed in this section can be
generalized to multi-mode probes.

3.9.5 Direct Measure for Energy

When we consider the multi-mode case where both propagating and evanescent
modes are present at both probing interfaces, the corresponding generalized
scattering matrices SV , SI , SN

V and SN
I cannot be used individually as a measure

of transmitted or reflected energy [49].
To overcome this problem, we define a specific energy related quantity SV I

as the point-wise multiplication of SV and S∗I . Subsequently, by using the
definition of complex Poynting flux P = V I∗/2, SV I can be written as

SV I =

 V −
1 I−

∗
1

V +
1 I+∗

1

V −
1 I−

∗
1

V −
2 I−

∗
2

V +
2 I+∗

2

V +
1 I+∗

1

V +
2 I+∗

2

V −
2 I−

∗
2

 =
(
P−1 /P

+
1 P−1 /P

−
2

P+
2 /P

+
1 P+

2 /P
−
2

)
. (3.150)

The elements of SV I can be interpreted as a direct measure of reflected (diagonal
elements) and transmitted (anti-diagonal elements) complex power related to
the incident complex power. Finally, if we calculate SV I for the simple basic
structure described at the end of section 3.9.3, we find

SV I =
1

|Y (1)
∞ + Y

(2)
∞ |2

(
|Y (1)
∞ − Y (2)

∞ |2 4Y (1)∗

∞ Y
(2)
∞

4Y (1)
∞ Y

(2)∗

∞ |Y (2)
∞ − Y (1)

∞ |2

)
, (3.151)

which reduces to SV I = SN2

V = SN2

I if we consider propagating modes only at
the probes. This means that Y (1)

∞ and Y (2)
∞ are real-valued.
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Figure 3.19: The process to obtain an equivalent field configuration for z > h for
an arbitrary basic structure with N + 1 segments Sn separated by N junctions
Jn positioned at z = zn for a given integer N .

3.10 Calculation of the Far Field

In this section we derive two different expressions for the far field of the radiat-
ing part of the basic structure. First we assume that the total electromagnetic
field in the basic structure is determined by solving the coupled field integral
equation with the method of moments, and that the electric field can be cal-
culated at an interface at z = h located at a finite distance at the right side
of the radiating part of the basic structure. Then we use the field equivalence
principle to formulate an equivalent field configuration for z > h where only a
magnetic surface current is replacing the total basic structure, and is radiating
an electromagnetic field into free space which is characterized by εr = 1. We
assume the basic structure to be lossless, i.e., σ = α = 0. Further we consider a
steady-state analysis, i.e. s = jω. Then we can make the following substitutions
γ = jk, η = jωε, ξ = jωµ, and k2 = ω2εµ. We define k = kr̂ and r = ‖r‖.
By using the field equivalence principle, the total electric field at an arbitrary
transverse interface at z = h above the radiating part of the basic structure can
be expressed in terms of an equivalent magnetic surface current as

M(r) = 2δ(z − h)[E(ρ, h)× ẑ]. (3.152)

The equivalent field configuration is schematized in figure 3.19 and explains
that the factor of two comes from the elimination of the PEC plane via the
image theorem. In the next two sections we describe two different techniques
for defining the far-field region and for evaluating the electromagnetic field in
this region.
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3.10.1 Far Away from a Transverse Plane

The first technique defines the far-field region as the region of observation r for
which h < z →∞. The electromagnetic field is then evaluated within this plane
by using the field representations 2.167 and 2.168 given by

Et(ρ, z) =
1
2

∑
α

∫
V α(kt, z)eα

t (kt,ρ)dkt, (3.153)

Ht(ρ, z) =
1
2

∑
α

∫
Iα(kt, z)hα

t (kt,ρ)dkt. (3.154)

Since the magnetic surface current at z = h is radiating an electromagnetic
field into free space characterized by {Y α

∞, kz}, we can use the solution for the
transmission line for a dielectric junction with source described in appendix B.1.
This leads to

V α(kt, z) = − < Meff
t (ρ) |hα

t (kt,ρ) > exp(−jkz[z − h]), (3.155)

Iα(kt, z) = − < Meff
t (ρ) |hα

t (kt,ρ) > Y α
∞(kt) exp(−jkz[z − h]), (3.156)

for z > h. When we substitute expression 3.152 for the equivalent magnetic
surface current in equations 3.155 and 3.156, we obtain

V α(kt, z) = V α(kt, h) exp(−jkz[z − h]), (3.157)
Iα(kt, z) = V α(kt, h)Y α

∞(kt) exp(−jkz[z − h]), (3.158)

where we have used equation 2.199. Combining equations 3.153 and 3.154 with
equations 3.157 and 3.158 leads to

Et(ρ, z) =
∑
α

∫
V α(kt, h) exp(−jkz[z − h])eα

t (kt,ρ)dkt, (3.159)

Ht(ρ, z) =
∑
α

∫
V α(kt, h)Y α

∞(kt) exp(−jkz[z − h])hα
t (kt,ρ)dkt. (3.160)

By using these radiated field approximations8 of Et and Ht, we can express the
time average energy flow transferred across an arbitrary transverse plane, given
by equation 3.132, as∫

< S >T ·ẑdA =
∑
α

∫
|V α(kt, h)|2Re

(
Y α∗

∞ (kt)
)

dkt. (3.161)

From equations 3.159 and 3.160, we conclude that only propagating plane waves
are present in the far field. This is due to an exponentially decaying factor
exp(−j|kz|[z − h]) as z →∞ for evanescent plane waves. This can also be con-
cluded from equation 3.161 since Re

(
Y α∗

∞ (kt)
)

is only non-zero for propagating
plane waves. This means that in this region evanescent plane waves do not
contribute to time-averaged power flow.

8This representation holds for any z value. The limit for large z can now be computed.
This is easily performed by the stationary phase method or the saddle point method. The
result is given by equation 3.173.
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3.10.2 Far Away from a Finite Volume

The second technique9 assumes that the source distributions (with spatial de-
pendence r′) are located inside some finite volume. The far-field region is then
defined as the region of observation r for which ‖r‖ → ∞. The electromagnetic
field is evaluated within this region by using the field representations described
in [35, section 10.7]. It is based on the following two leading order term expan-
sions

‖r− r′‖ = ‖r‖ − r̂ · r′ + vanishing terms as ‖r‖ → ∞, (3.162)
∇‖r− r′‖ = r̂ + vanishing terms as ‖r‖ → ∞. (3.163)

A graphical interpretation of the far-field approximation is given in figure 3.20.
The condition for a finite volume of source distributions is in principle not
satisfied when we consider the infinite array where we have source distributions
of infinite extent in the transverse plane. From a different perspective this means
that being infinitely far away from a structure that is infinite in the transverse
plane is only possible in the longitudinal direction.

However, we proceed with this technique, since this is what is usually done
in the literature. The far-field approximation of E and H is described in [35,
section 10.7], and is given by

{E,H}(r) ≈ {E∞,H∞}(r̂)G(r) as ‖r‖ → ∞, (3.164)

where G(r) = exp(−jkr)
4πr denotes the scalar Green’s function and in which

E∞ =jkr̂× F∞, (3.165)
H∞ =− jωεF∞ + jωεr̂(r̂ · F∞), (3.166)

and in which

F∞(r̂) =
∫

D

M(r′) exp(jkr̂ · r′)dV ′, (3.167)

9This is in principle an artificial distinction. If r goes to infinity, the two expressions
coincide.
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where dV ′ ≡ dx′dy′dz′. Combining equations 3.164, 3.165, and 3.167 leads to

E(r) ≈ jk
exp(−jkr)

4πr
r̂×

∫
M(r′) exp(jkr̂ · r′)dV ′. (3.168)

When we substitute equation 3.152 for the magnetic surface current in the far-
field approximation 3.168, we obtain

E(r) ≈ jk
exp(−j[kr − kzh])

2πr
r̂×

∫
E(ρ′, h)× ẑ exp(jkρ̂ · ρ′)dA′, (3.169)

where ρ̂ denotes the projection of r̂ to the x, y-plane, and where dA′ ≡ dx′dy′.
Equation 3.169 can be rewritten as

E(r) ≈ jk
exp(−j[kr − kzh])

r
r̂×

(
1
2π

∫
E(ρ′, h) exp(jkρ̂ · ρ′)dA′

)
× ẑ.

(3.170)

Using the field representation 2.199 for the layered space mode functions leads
to

E(r) ≈ jk
exp(−j[kr − kzh])

r
r̂×V(kρ̂, h)× ẑ. (3.171)

The modal voltage10 V can be decomposed in terms of TM (V ′) and TE (V ′′)
components as

V(kρ̂, h) = V ′(kρ̂, h)k̂ + V ′′(kρ̂, h)α̂, (3.172)

in which k̂ = kρ̂/|kρ̂| and α̂ = k̂× ẑ. By using this decomposition for the modal
voltage, we can express the far-field approximation11 of E(r) as

E(r) ≈ jk
exp(−j[kr − kzh])

r

[
V ′(kρ̂, h)θ̂ − V ′′(kρ̂, h) cos(θ)φ̂

]
, (3.173)

where r̂, θ̂, and φ̂ form a right-handed local coordinate system. In a similar
way, we can express the far-field approximation of H(r) as

H(r) ≈ jωε
exp(−j[kr − kzh])

r

[
V ′(kρ̂, h)φ̂ + V ′′(kρ̂, h) cos(θ)θ̂

]
. (3.174)

By using these far-field approximations for E(r) and H(r), we can express the
time-averaged energy flow, defined by equation 3.115, as

< S >T =
k2

2r2
Re (Y∞) r̂

[
|V ′(kρ̂, h)|2 + |V ′′(kρ̂, h)|2 cos2(θ)

]
, (3.175)

10Note that the dimension of V is [Vm].
11This is the result obtained from equation 3.159 by evaluating the limit for large z by using

the stationary phase method or the saddle point method.
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Figure 3.21: Array feeding configurations to obtain the antenna pattern of the
fully excited array, and the active element pattern.

where Y∞ =
√
ε/µ denotes the admittance of free space. To understand the

usefulness of this equation let us consider a finite uniform array of identical
elements. Ordinary array theory ignores mutual coupling effects between array
elements, and expresses the pattern radiated by the array in the well-known
pattern multiplication form of an element factor times an array factor. This
element factor is identical to the pattern of a single element taken in isolation
from the array, and is the same for any element in the array.

Now consider the same array, with the pattern taken with a feed at a single
element in the array, and with all other array elements terminated with char-
acteristics loads. The pattern obtained in this case is called the active element
pattern of the array. In general this pattern is different from the isolated element
pattern because adjacent elements radiate some power due to mutual coupling
with the fed element. Also the active element pattern depends on the position
of the fed element in the array. For example, edge elements have different active
element patterns from elements near the center of the array. If the array is
large, however, most of the elements see a uniform neighboring environment,
and the active element pattern can be approximated as equal for all elements
in the array.

The utility of the active element pattern comes from the fact that, if all
the active element factors can be approximated as equal, then the pattern of
the fully excited array can be expressed as the product of the active element
pattern and the array factor, in an analogous fashion to ordinary array theory.
In this case, however, all mutual coupling effects are completely accounted for,
including the possibility of scan blindnesses [87]. In fact, the realized gain of the
fully excited array at a given scan angle is proportional to the active element
pattern gain at this same angle. In addition, the active element pattern at
a given angle is also simply related to the magnitude of the active reflection
coefficient of the fully excited array scanned at that same angle [86]. The two
situations are schematized in figure 3.21

The importance of these results comes from the fact that direct measure-
ment of the scanning characteristics of a large phased array antenna is generally
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very expensive, a complete power divider network and a set of phase shifters
is required for each element. However direct measurement of an active ele-
ment pattern is much simpler, involving only a reasonable large portion of the
proposed array with characteristic loads on all but one of the elements. Mea-
surements of the active element patterns can thus be used to locate and correct
array design problems before a full-scale system is fabricated, which reduces the
risk of a costly design failure.

Moreover, comparison of measurement results with infinite-array simulations
proves much easier. Equation 3.175 directly gives the radiated power density
of the fully excited infinite array steered towards kinc

t . From this analysis, by
using the previous mentioned arguments, the active element pattern and the
active reflection coefficient are easily obtained. Note that due to the periodicity
of the infinite array, V ′ and V ′′ are discrete functions of kt. The contributions
consist of a finite number of propagating Floquet modes (plane waves) and an
infinite number of evanescent Floquet modes. In the far-field region only the
propagating Floquet modes are of interest since the evanescent modes are no
longer observed because of their decay. The first propagating Floquet mode
at kinc

t represents the broadside plane wave. Higher-order propagating Floquet
modes represent so-called grating lobes.

3.11 Numerical Implementation

The computational method described in this chapter has been implemented
into a matlab computer software package called Luxaflex. The structure of this
implementation for each basic structure basically consist of a loop over frequency
and angle of incidence and performs the following four functions.

• Assemble the matrix of the linear operator L.

• Assemble the vector of the forcing vector f .

• Solve Lu = f .

• Determine the generalized scattering matrices SV and SI .

In this section we focus on the first two functions and discuss in more detail
the numerical computations of the linear operator L in section 3.11.1, and of
the forcing vector f calculations in section 3.11.2. Finally, in section 3.11.3 we
discuss a simplification to implement a transmission line function for a reversed
transmission line.

3.11.1 Implementation of the Matrix Calculation

We have devised a general purpose computational structure to implement equa-
tions 3.46, 3.55 and 3.61. This structure supports the idea of linear operator
contribution independence, and treats all linear operator contributions to L,
such as for example Av,r, in the same manner. It does so by requiring the user
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to provide a link to the three main ingredients used in the method of moments,
i.e.,

1. the inner products (projection matrices) between the expansion and mode
functions: < gr |hα

t;j > for the waveguide, and < gr |hα
t (kt) > for the

layered space,

2. the link to the specific transmission line function: Iα
j (z) for the waveguide,

and Iα(kt, z) for the layered space,

3. the inner products (projection matrices) between the mode and weighting
functions: < hα

t;j |gv > for the waveguide, and < hα
t (kt) |gv > for the

layered space.

The computational structure is called the StampMatrix function, and has the
following interface:

function [L] = StampMatrix(L,m, n,H,G, F, varargin).

The input parameters are:

1. the matrix L,

2. the row and column indices m and n, pointing to the specific location of
the contribution in L,

3. the NrOfExpansionFunctions by NrOfModes matrix F with the inner
products between the expansion and mode functions,

4. the link G to the specific transmission line function G(i, . . . ) for a electric-
field integral equation (EFIE), and G(v, . . . ) for a magnetic-field integral
equation (MFIE),

5. the NrOfModes by NrOfWeightingFunctions matrix H with the inner
products between the mode and weighting functions,

6. the list of additional parameters varargin for the transmission line func-
tion. This is a list of variable length, and enables us to select different
types of transmission line functions without altering the fundamental be-
havior of the StampMatrix function, i.e., adding matrix contributions
such as Av,r to L.

The output parameter L is an updated matrix where the contribution has been
added. The computational structure of the StampMatrix function12 is given

12Note that a single for-loop is present, which cannot be avoided from a generic code point
of view. It therefore reduces the speed of this function.
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by

function [L] = StampMatrix(L,m, n,H,G, F, varargin)
for j = 1 : NrOfModes

L(m,n) = L(m,n) +G(1, varargin{j})[F (:, j)H(j, :)]T ;
endfor;

return.

Note that we have used the linearity principle of the transmission line function G
with respect to the sources x. This obviously means that G(x, . . . ) = xG(1, . . . )
and it allows us to write

[G(F (:, j), varargin{j})H(j, :)]T = G(1, varargin{j})[F (:, j)H(j, :)]T ,

which decreases the overall computational time of the for-loop within the com-
putational structure of the StampMatrix function.

For example, to add the contribution Av,r to the matrix L for a given waveg-
uide, we must call the StampMatrix function with the following input and
output parameters:

[L] = StampMatrix(L, (1 : Q1), (1 : Q1), < hα
t;j |g(1)

v >, . . .

ĜI,v, < g(1)
r |hα

t;j >, k
α
z;j , Y

α
∞;j , z

−
1 , z

−
1 ),

where Q1 = NrOfExpansionFunctions = NrOfWeightingFunctions, and
where the computational structure of the transmission line function ĜI,v, which
is the left half space with source described in appendix B.1, is given by

function [I] = ĜI,v(v, kz, Y∞, a, z)
I = −vY∞ exp(jkz[z − a]);

return.

3.11.2 Implementation of the Vector Calculation

We have devised a general purpose computational structure to implement equa-
tions 3.65, 3.71 and 3.73. This structure supports the idea of forcing vector
contribution independence, and treats all forcing vector contributions to f , such
as for example Dv, the same. It does so by requiring the user to provide a link
to the three main ingredients used in the method of moments, i.e.:

1. the inner products between the incident surface currents and mode func-
tions: < Minc |hα

t;j > for the waveguide, and < Minc |hα
t (kt) > for the

layered space,

2. the link to the specific transmission line function: Iα
j (z) for the waveguide,

and Iα(kt, z) for the layered space,
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3. the inner products between the mode and weighting functions: < hα
t;j |gv >

for the waveguide, and < hα
t (kt) |gv > for the layered space.

The computational structure is called the StampV ector function, and has the
following interface:

function [f ] = StampV ector(f ,m,H,G, F, varargin).

The input parameters are:

1. the vector f ,

2. the row index m, pointing to the specific location of the contribution in f ,

3. the 1 by NrOfModes matrix F with the inner products between the
incident surface current and mode functions,

4. the link G to the specific transmission line function G(i, . . . ) for a electric-
field integral equation (EFIE), and G(v, . . . ) for a magnetic-field integral
equation (MFIE),

5. the NrOfModes by NrOfWeightingFunctions matrix H with the inner
products between the mode and weighting functions,

6. the list of additional parameters varargin for the transmission line func-
tion. This is a list of variable length, and enables us to select different
types of transmission line functions without altering the fundamental be-
havior of the StampV ector function, i.e., adding vector contributions such
as Dv to f .

The output parameter f is an updated vector where the contribution has been
added. The computational structure of the StampV ector function is given by

function [f ] = StampV ector(f ,m,H,G, F, varargin)

f(m) = f(m) +G(1, varargin)[FH]T ;
return.

Note that we have used the linearity principle of the transmission line function
G with respect to the sources x. This means that G(x, . . . ) = xG(1, . . . ) and it
allows us to write

[G(F, varargin)H]T = G(1, varargin)[FH]T .

For example, to add the contribution Dv to the vector f for a given waveguide,
we must call the StampV ector function with the following input and output
parameters:

[f ] = StampV ector(f , (1 : Q1), < hα
t;j |g(1)

v >, . . .

ĜI,v,− < M̂inc |hα
t;j >, k

α
z;j , Y

α
∞;j , k

α
z;j , Y

α
∞;j , zL, z

−
1 , z

−
1 ),
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where Q1 = NrOfWeightingFunctions, where z = zL < z−1 denotes the loca-
tion of the incident surface current, and where the interface of the transmission
line function ĜI,v, which is the half space with offset source described in ap-
pendix B.5, is given by

function [I] = ĜI,v(v, k(1)
z , Y (1)

∞ , k(2)
z , Y (2)

∞ , a, b, z).

Finally, it is convenient to choose for M̂inc and M̃inc either waveguide modes
or plane waves. For example, if we choose for M̂inc the waveguide mode hβ

t;k,
then < M̂inc |hα

t;j > reduces to δk,jδα,β .

3.11.3 Reversed Transmission Line

Let us consider the transmission line function Ĝ for a given transmission line
such as for example the left half space with source described in appendix B.1.
Suppose it has the following computational structure13

function [V, I] = Ĝ(v, i, kz, Y∞, a, z)
V = v exp(jkz[z − a]);
I = −vY∞ exp(jkz[z − a]);

return.

The use of the coupled field integral techniques described in the previous sections
requires the availability of a transmission line function G̃ for the corresponding
reversed transmission line. The first way to obtain G̃ is to solve the modal
transmission line equations for the reversed structure. However, considerable
effort can be saved by using the following substitutions

z → −z,
v → −v,
i→ i,

V → V,

I → −I,

(3.176)

to obtain G̃. The idea is based on the identification of the various voltages
V , currents I, voltage generators v and current generators i in the reversed
transmission line. This is schematized in figure 3.22, and leads to the following
computational structure for G̃

function [V, I] = G̃(v, i, kz, Y∞, a, z)

[V, I] = Ĝ(−v, i, kz, Y∞,−a,−z);
I = −I;

return.

13It is also possible to use a local reference plane for which a = 0.
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Figure 3.22: Reversing a transmission line in the longitudinal direction.

Note that we can use these substitutions for any available transmission line
function to obtain the corresponding transmission line function for the reversed
transmission line.
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Chapter 4

Acceleration Technique

”Why does this applied science, which saves work and makes life eas-
ier, bring us so little happiness? The simple answer runs: Because
we have not yet learned to make sensible use of it.” Albert Einstein
(1879-1955)

In chapter 3 we have described in full detail the computation of the electromag-
netic field within the unit-cell structure. This method is based on the method of
moments, and reduces a field integral equation to a matrix equation of the type
Lu = f . L and f represent the linear operator (a square matrix) and forcing
vector of the basic structure under consideration, respectively. u represents the
unknown that has to be solved.

In this chapter we formulate a new acceleration technique1 that drastically
reduces the computation time needed to calculate the unknown electromagnetic
field within the unit-cell structure.

To minimize confusion we define a series as an infinite ordered set of terms
combined together by the addition operator. The term infinite series is some-
times used to emphasize the fact that the series contains an infinite number of
terms. A series may converge to a definite value, or may not, in which case it
is called divergent. If the sequence of partial sums converges to a definite value,
the series is said to converge.

The new acceleration technique reduces the assembly time of the linear op-
erator L, which forms the slowest part in the total computation. To do so, we
first show by example in section 4.1, that each element of L (such as Av,r) is a
sum of contributions, each of which can be written as a series in the following
general form

Av,r =
∑
j,α

g(α)(kt;j)γ̂(α)
v,r (kt;j),

1A special word of thanks goes to dr.ir. S.W. Rienstra. He devised in [89] the acceleration
procedure as outlined in sections 4.3 and 4.4.1. The implementation and the generalizations
outlined in sections 4.3.3, 4.4.2 and following were contributed by the author.
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where g(α) contains the Green’s function, and where γ̂(α)
v,r contains a combination

of the expansion and weighting functions. In order to assemble the complete
linear operator L, these general series have to be evaluated numerically for each
contribution.

In section 4.2 we show that these series tend to be asymptotically slowly
converging, i.e.,

g(α)(kt) ≈ c(α)
1 k−1

t + c
(α)
2 k−3

t + . . . for large kt.

The new acceleration technique reduces the time needed to evaluate these series
and consists of the following three steps.

1. A so-called Kummer transformation [2, section 3.6.26], where the asymp-
totically slowly converging part of the general series is subtracted (result-
ing in a fast converging reduced series)

Av,r =
∑

j

[
g(α)(kt;j)− c(α)

1 k−1
t;j − c

(α)
2 k−3

t;j

]
γ̂(α)

v,r (kt;j) + ζ(α)
v,r ,

and added (resulting in a slowly converging correction series)

ζ(α)
v,r =

∑
j

(c(α)
1 k−1

t;j + c
(α)
2 k−3

t;j )γ̂(α)
v,r (kt;j).

This step is described in detail in section 4.2.

2. A so-called Ewald transformation [85, 40], where the asymptotically slowly
converging correction series is converted into an integration over τ of ex-
ponentially fast decaying functions as

ζ(α)
v,r =

2λ√
π

∫ ∞

0

τλ−1
∑

j

(c(α)
1 + 2τ2λc

(α)
2 ) exp(−k2

t;jτ
2λ)γ̂(α)

v,r (kt;j)dτ.

These functions contain an exponentially fast converging series for which
the leading-order term is given by exp(−k2

t τ
2λ). This step is described in

detail in section 4.3.1.

3. The integration over τ is broken up into one for small τ , i.e., over the inter-
val (0, τ1), and one for large τ , i.e., over (τ1,∞). Then we apply a so-called
Poisson transformation step [89, section 6.1] for the integration over small
τ , where the relatively slow convergence of the series within the exponen-
tially fast decaying function, caused by the behavior of exp(−k2

t τ
2λ) for

small τ , is converted into an exponentially fast converging series. Formally
we write

ζ(α)
v,r =

2λ√
π

∫ ∞

τ1

τλ−1
∑

j

(c(α)
1 + 2τ2λc

(α)
2 ) exp(−k2

t;jτ
2λ)γ̂(α)

v,r (kt;j)dτ+

|D| 2λ√
π

∫ τ1

0

τλ−1
∑

j

(c(α)
1 + 2τ2λc

(α)
2 ) exp(−jρj · kinc

t )γ̄(α)
v,r (ρj , τ)dτ.
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This is described in detail in section 4.3.2. The leading-order term for
the integration over small τ is given by exp(−ρ2/(4τ2λ)). The so-called
transition point τ1 is a compromise between the convergence behavior
of the leading-order terms exp(−k2

t τ
2λ) and exp(−ρ2/(4τ2λ)). This is

described in detail in section 4.3.3.

The Poisson transformation step results in the evaluation of γ̄(α)
v,r (ρ, τ), which is

a so-called exponential regularization [53] of γ̂(α)
v,r (kt), formally written as

γ̄(α)
v,r (ρ, τ) =F−1

{
exp(−k2

t τ
2λ)γ̂(α)

v,r (kt)
}
.

The overall success of this acceleration technique critically depends on the pos-
sibility of being able to quickly evaluate γ̄(α)

v,r (ρ, τ). In section 4.4 we evaluate
the exponential regularized functions both for the rooftop and RWG functions.

Finally, in section 4.5 we quantify, compare and discuss the speed improve-
ment of the acceleration technique for the rooftop and RWG expansion func-
tions.

4.1 General Series

In this section we show by example that each element of the linear operator L
is a sum of contributions, each of which can be written as a series in a general
form. Formally, we write for any contribution Av,r to L the following general
form

Av,r =
∑
j,α

hα(kt;j)β̂α
v,r(kt;j). (4.1)

The term hα(kt;j) is dependent on the polarization α and the mode index kt;j

and, as will be shown later, contains a part of the transmission line function.
The term β̂α

v,r is dependent on the polarization α, the mode index kt;j , and the
indices {v, r} for the expansion and weighting functions. This part, as will be
shown later, contains a combination of the inner products of the expansion and
weighting functions with the mode functions of the medium.

From now on, we only consider layered space contributions. Waveguide
contributions are not considered. This means that we can write the transverse
wavevector kt;j as

kt;j = Rmj + kinc
t , DTR = 2πI, mj =

(
m1,j

m2,j

)
. (4.2)

The columns of D are the basis vectors d1 and d2 that define the dimensions
and periodic arrangement of the unit cells. The matrix R represents the corre-
sponding reciprocal transverse wavevector lattice. Both indices m1,j and m2,j

are integers.
Let us for example reconsider the contribution Av,r =< Ĥt;1(g

(1)
r ,ρ) |g(1)

v >
to L (see section 3.5). This represents the self interaction of the magnetic field
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strength at the left side of the first interface due to a magnetic surface current
at the left side of the first interface. Av,r can be written as

Av,r =< Ĥt;1(gr,ρ) |gv >

=
∑
j,α

Iα(kt;j , z
−
1 ) < hα

t (kt;j) |gv >,
(4.3)

in which

Iα(kt, z
−
1 ) = −Y α

∞(kt) < gr |hα
t (kt) > . (4.4)

Note that we have used the transmission line function for a left half space
with source described in appendix B.1. The general form, i.e., equation 4.1,
can be recognized2 if we take for hα(kt) = −Y α

∞(kt), and for β̂α
v,r(kt) =<

gr |hα
t (kt) >< hα

t (kt) |gv >. Furthermore, if we substitute the layered space
mode functions for hα

t (kt), i.e., equations 2.175 and 2.181, we can write β̂α
v,r(kt)

as

β̂α
v,r(kt) =


[
jk̂ · ĝ∗r(kt)

] [
jk̂ · ĝv(kt)

]
+ ĝ∗r(kt) · ĝv(kt) if α =TM,

−
[
jk̂ · ĝ∗r(kt)

] [
jk̂ · ĝv(kt)

]
if α =TE.

(4.5)

k̂ = kt/kt denotes the unit-length vector in the direction of the transverse
wavevector.

As a typical example that we use throughout this chapter, we consider a
simple basic structure with a single junction J1 in between two layered space
segments S1 and S2. A graphical representation of this simple basic structure is
given in figure 4.1. The dimensions and periodic arrangement of the unit cells
is defined by two basis vectors d1 = 15.8x̂[mm] and d2 = 15.8ŷ[mm]. These
dimensions correspond to a half wavelength of the excitation. The junction is
filled with perfectly electric conducting material. A rectangular hole is made
within the unit cell with dimensions: 12.5[mm] length and 1.975[mm] height.
The rectangular hole is centered and rotated around the center of the unit cell
by 45[deg] with respect to the x-axis. The hole is meshed in two different ways:
with a rectangular and with a triangular mesh. A graphical representation of
these two meshes is given in figure 4.1. We define rooftop and RWG functions
on the rectangular and triangular mesh, respectively.

The two layered space segments S1 and S2 contain vacuum. Two probing
interfaces P1 and P2 are placed in the vacuum segments S1 and S2 at a distance
of 1[mm] to the left and 1 [mm] to the right side from the junction interface
J1, respectively. At both these probing interfaces, only the incident, transmit-
ted and reflected fundamental TM and TE Floquet modes, i.e., mj = 0 are
considered since these modes are the only propagating ones.

We characterize the junction interface J1 as a type II equivalent configuration
(see section 3.3). This implies that the unknown magnetic surface currents are

2Note that hα must not be confused with the magnetic field eigenfunction hα
t .
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Figure 4.1: A simple basic structure with two segments Sm separated by a
junctions J1 positioned at z = 0[mm], and enclosed with two probes P1 and P2

positioned at z = −1[mm] and z = 1[mm], respectively. The unit cell is defined
by two basis vectors d1 = 15.8x̂[mm] and d2 = 15.8ŷ[mm]. Bottom left figure
rectangular mesh and bottom right figure triangular mesh.
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solved by means of a magnetic-field integral equation (see section 3.4). Further,
the linear operator L now has two self-interaction contributions Av,r and Bv,r

(see section 3.5). Av,r =< Ĥt;1(g
(1)
r ,ρ) |g(1)

v > represents the self interaction of
the magnetic field strength on the left-hand side of interface J1 due to a magnetic
surface current on the left side of this interface. Bv,r =< H̃t;1(g

(1)
r ,ρ) |g(1)

v >
represents the self-interaction of the magnetic field strength on the right-hand
side of interface J1 due to a magnetic surface current on the right side of this
interface3. We assume a periodical extension of the magnetic surface currents
with a staircase phase behavior in between unit cells. Both integer indices m1,j

and m2,j range independently from −30 to 30 for both contributions Av,r and
Bv,r.

The incident plane wave is characterized by fixing the angle of incidence at
θ = 5[deg], φ = 0[deg]. Further, the frequency is varied from 8[GHz] to 16[GHz]
in steps of 200[MHz]. We calculate the reflection coefficient for the two co- and
cross-polarization components as a function of the frequency.

4.2 Subtraction of Asymptotic Series

In order to assemble the complete linear operator L, we have to evaluate these
general series, equation 4.1, numerically. In this section we show that the series
is asymptotically slowly converging. To circumvent this problem, we describe a
so-called Kummer transformation [2, section 3.6.26], where the asymptotically
slowly converging part of the general series is subtracted (resulting in a fast
converging reduced series) and added (resulting in a slowly converging correction
series).

Note that, given d1 = 15.8x̂[mm] and d2 = 15.8ŷ[mm], we have k1 =
(2π/15.8)x̂[mm−1] and k2 = (2π/15.8)ŷ[mm−1]. We can can sort the norm of
the transverse wavevector kt;j = ‖kinc

t +m1;jk1 +m2;jk2‖ in such a way that
it increases for increasing integer index j. This means that, for each j, we have
a pair of integers (m1,j ,m2,j). Furthermore, we can compare the sorted norm
with the expected relation kt;j ∼

√
j. Both actual sorted and expected norms

are plotted in figure 4.2 and show a good match. Note the correct slope of 1/2.
The rate of convergence is governed by the behavior of hα(kt) for large kt. Since
hα(kt) = −Y α

∞(kt) for the contribution Av,r to L (note that we have used the
transmission line function for a left half space with source described in appendix
B.1), we can write for an asymptotic expansion for hα(kt) for large kt

hα(kt) ≈ h̃α(kt) =

{
c′1k

−1
t + c′2k

−3
t + c′3k

−5
t + . . . if α =TM,

c′′1kt + c′′2k
−1
t + c′′3k

−3
t + . . . if α =TE,

(4.6)

3Note that Av,r = Bv,r if the two segments S1 and S2 are equal.
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Figure 4.2: y = kt;j (solid curve) and y =
√
j (dashed-dotted curve) as a

function of j.

where

c′1 = −jk0

√
ε

µ
, c′2 = −1

2
jk3

0

√
ε

µ
, c′3 = −3

8
jk5

0

√
ε

µ
, (4.7)

c′′1 = − 1
jk0

√
ε

µ
, c′′2 = −1

2
jk0

√
ε

µ
, c′′3 = −1

8
jk3

0

√
ε

µ
. (4.8)

Note that we have used

kz =
√
k2 − k2

t = −j
√
k2

t − k2 = −jkt

√
1−

(
k
kt

)2

≈ −jkt

[
1− 1

2

(
k
kt

)2

− 1
8

(
k
kt

)4

− 1
16

(
k
kt

)6

− . . .
]

for large kt,

(4.9)

where the branch [61, section 6.1] of the logarithmic function log(z) (used to
calculate the square root) was chosen at arg(z) = 0 (−2π < arg(z) ≤ 0). Doing
this satisfies equation 2.81. Note that the asymptotic expansion of kz for large
kt only contains odd powers of 1/kt. Similar asymptotic expansions can easily
be derived in the case of other types of contributions to L.

In figure 4.3 we have plotted the convergence behavior of hα(kt;j), the two-
term asymptotic expansion h̃α(kt;j) and the remainder hα(kt;j) − h̃α(kt;j) as
a function of j at frequency = 8[GHz] for the contribution Av,r to L on a
logarithmic scale. The configuration under consideration is the simple basis
structure described in section 4.1. The slopes in this figure are as expected:
−1/2 for h′ and h̃′, −5/2 for h′− h̃′. 1/2 for h′′ and h̃′′, −3/2 for h′′− h̃′′. Note
that we have taken into account kt;j ∼

√
j.

However, we have an asymmetry in leading order terms between the two
polarizations for hα(kt). To compensate for this asymmetry, we rewrite the
general series, equation 4.1, in the following form

Av,r =
∑
j,α

g(α)(kt;j)γ̂(α)
v,r (kt;j), (4.10)
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in which

g(α)(kt) =

{
k−2

t [h′(kt)− h′′(kt)] if α = 1,
h′(kt) if α = 2,

(4.11)

and in which

γ̂(α)
v,r (kt) =

{
−k2

t β̂
′′
v,r(kt) if α = 1,

β̂′v,r(kt) + β̂′′v,r(kt) if α = 2.
(4.12)

Note herein the difference in notation between the superscripts α and (α) in
equations 4.1 and 4.10, respectively. The superscript (α) with parenthesis runs
over the values {1, 2}, whereas the superscript α without the parenthesis runs
over the type of polarization (TM and TE). By using equation 4.5, we can
rewrite equation 4.12 explicitly as

γ̂(α)
v,r (kt) =

{
[jkt · ĝ∗r(kt)] [jkt · ĝv(kt)] if α = 1,
ĝ∗r(kt) · ĝv(kt) if α = 2.

(4.13)

In figure 4.4 we have plotted the convergence behavior of γ̂(α)
1,1 (kt;j) as a function

of j at frequency = 8[GHz] for the contribution Av,r to L for the case of rooftop
expansion and weighting functions. The configuration under consideration is
the simple basic structure described in section 4.1. The oscillatory behavior is
due to the sampling of γ̂(α)

1,1 in the sorted transverse wavevector kt;j where the
norm kt;j increases for increasing integer index j. Further, the slopes in this
figure are as expected: −2/2 for α = 1, and −6/2 for α = 2. This result is a
combination of equation 4.13, the convergence behavior of ĝv(kt) given by

ĝv(kt) ∼ O

(
1

(kt · d̂v)2 kt · (ẑ× d̂v)

)
, (4.14)

for large kt (described in equation F.9 in appendix F), and of kt;j ∼
√
j.

Subsequently, we can write in general for an asymptotic expansion for g(α)(kt)
for large kt

g(α)(kt) ≈ g̃(α)(kt) = c
(α)
1 k−1

t + c
(α)
2 k−3

t + c
(α)
3 k−5

t + . . . , (4.15)

where

c
(1)
1 = −c′′1 , c

(1)
2 = (c′1 − c′′2), c

(1)
3 = (c′2 − c′′3), (4.16)

c
(2)
1 = c′1, c

(2)
2 = c′2, c

(2)
3 = c′3. (4.17)

In figure 4.5 we have plotted the convergence behavior of g(α)(kt;j), the two-
term asymptotic expansion g̃(α)(kt;j) and the remainder g(α)(kt;j) − g̃(α)(kt;j)
as a function of j at frequency = 8[GHz] for the contribution Av,r to L. The
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Figure 4.3: y = hα(kt;j) (solid curve), two-term asymptotic expansion y =
h̃α(kt;j) (dotted curve superimposed on the solid curve) and remainder y =
hα(kt;j) − h̃α(kt;j) (dashed-dotted curve) as a function of j. Left figure for
α = TM and right figure for α = TE.
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Figure 4.4: y = γ̂
(α)
1,1 (kt;j) (solid curve) and y = k−4α+2

t;j (dashed-dotted curve)
as a function of j. Left figure for α = 1 and right figure for α = 2.
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configuration under consideration is the simple basic structure described in sec-
tion 4.1. The slopes in this figure are as expected: −1/2 for g(1) and g̃(1), −5/2
for g(1) − g̃(1), −1/2 for g(2) and g̃(2), −5/2 for g(2) − g̃(2). Note that we have
taken into account kt;j ∼

√
j.

From now on, we restrict ourselves to a two-term asymptotic expansion
g̃(α)(kt) for g(α)(kt). Subsequently, we subtract and add the two-term asymp-
totic expansion g̃(α)(kt) from and to the general series. We can formally express
these steps as

Av,r =
∑
α

[
ξ(α)
v,r + ζ(α)

v,r

]
, (4.18)

in which

ξ(α)
v,r =

∑
j

[
g(α)(kt;j)− g̃(α)(kt;j)

]
γ̂(α)

v,r (kt;j), (4.19)

and in which

ζ(α)
v,r =

∑
j

g̃(α)(kt;j)γ̂(α)
v,r (kt;j). (4.20)

With the addition and subtraction of a two-term asymptotic expansion, the rate
of convergence for the series ξ(α)

v,r is now improved by four orders of kt. Note
that every additional term for the asymptotic expansion leads to an conver-
gence improvement by two orders in kt. However, the series ζ(α)

v,r is still slowly
converging. Its simpler form shows prospects of progress.

The series ξ(α)
v,r is approximated by a summation over a finite number of terms

n, where n equals the number of terms when the partial sum Sn =
∑n

j=1 k
−5
t;j

has reached a relative error of 0.1[%]. k−5
t;j represents the leading-order term of

g(α)(kt;j)− g̃(α)(kt;j) for large kt;j . The relative error is defined as

relative error =
∣∣∣∣Sn − SN

SN

∣∣∣∣ , (4.21)

SN denotes the partial sum for a fixed large number of terms N >> n, and
approximates the result of the infinite series where N →∞.

We have plotted the convergence behavior of
[
g(α)(kt;j)− g̃(α)(kt;j)

]
γ̂

(α)
1,1 (kt;j)

in figure 4.6 as a function of j at frequency = 8[GHz] for the contribution Av,r

to L for the case of rooftop expansion and weighting functions. The configura-
tion under consideration is the simple basic structure described in section 4.1.
The oscillatory behavior is due to the sampling of γ̂(α)

1,1 in the sorted transverse
wavevector kt;j where the norm kt;j increases for increasing integer index j.
The slopes in this figure are as expected: (−2− 5)/2 for α = 1, and (−6− 5)/2
for α = 2. This result is a combination of figures 4.4 and 4.5. Without the
Kummer transformation, the slopes would have been: (−2−1)/2 for α = 1, and
(−6− 1)/2 for α = 2.
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Figure 4.5: y = g(α)(kt;j) (solid curve), two-term asymptotic expansion y =
g̃(α)(kt;j) (dotted curve) and remainder y = g(α)(kt;j)−g̃(α)(kt;j) (dashed-dotted
curve) as a function of j. Left figure for α = 1 and right figure for α = 2.
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Note that we have to be careful with the subtraction and addition of g̃(α)(kt;j)
for mj = 0. If the incident wavevector is chosen almost in parallel with the nor-
mal incidence direction, kinc

t is small. Correspondingly, g̃(α)(kt;j) and g(α)(kt;j)
significantly differ in magnitude. This causes numerical accuracy problems
within equation 4.18.

4.3 Evaluation of Asymptotic Series

In this section we describe a so-called Ewald transformation, where the asymp-
totically slowly converging correction series ζ(α)

v,r is converted into an integral
over τ of an exponentially fast decaying function. This function contains an
exponentially fast converging series for which the leading-order term is given
by exp(−k2

t τ
2λ). Inspired by Ewald’s transformation [85, 40], we introduce the

identity

1
kn

t

=
2λ

Γ(n/2)

∫ ∞

0

τλn−1 exp(−k2
t τ

2λ)dτ, (4.22)

where λ is an arbitrary positive parameter (to be selected later). Γ(x) represents
the gamma-function. It is defined by the Euler integral [2, formula 6.1.1] as

Γ(x) =
∫ ∞

0

tx−1 exp(−t)dt. (4.23)

The explicit identities for k−1
t and k−3

t are given by

1
kt

=
2λ√
π

∫ ∞

0

τλ−1 exp(−k2
t τ

2λ)dτ,

1
k3

t

=
4λ√
π

∫ ∞

0

τ3λ−1 exp(−k2
t τ

2λ)dτ. (4.24)

We can now rewrite the correction series ζ(α)
v,r as

ζ(α)
v,r =

2λ√
π

∫ ∞

0

τλ−1
∑

j

(c(α)
1 + 2τ2λc

(α)
2 ) exp(−k2

t;jτ
2λ)γ̂(α)

v,r (kt;j)dτ, (4.25)

where we have interchanged the sum and integral. In figure 4.7 we have plotted
the integrand of ζ(α)

1,1 as a function of τ with λ = 3 at frequency = 8[GHz]
for the contribution Av,r to L for the case of rooftop expansion and weighting
functions. The configuration under consideration is the simple basic structure
described in section 4.1. Note the exponential decay of the integrand for large
τ . Furthermore, this expression has the advantage that the series converges
exponentially fast in kt for τ > 0. Near τ = 0 the series still needs a relatively
large number of terms to converge. In figure 4.8 we have plotted this slow series
convergence behavior for small τ .
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Figure 4.7: y = Im(integrand of ζ(α)
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Left figure for α = 1 and right figure for α = 2.

For this reason, we split the integration interval in ζ(α)
v,r into two parts around

a carefully chosen transition point τ = τ1: one denoted by ζ(α),L
v,r for an interval

[τ1,∞) corresponding to large τ (explained in section 4.3.1) and one denoted
by ζ

(α),S
v,r for an interval (0, τ1] corresponding to small τ (explained in section

4.3.2). A good choice for the transition point τ1 is proposed in section 4.3.3.
Note that ζ(α)

v,r = ζ
(α),S
v,r + ζ

(α),L
v,r .

4.3.1 Integration for Large Argument

The expression for ζ(α),L
v,r is given by

ζ(α),L
v,r =

2λ√
π

∫ ∞

τ1

τλ−1
∑

j

(c(α)
1 + 2τ2λc

(α)
2 ) exp(−k2

t;jτ
2λ)γ̂(α)

v,r (kt;j)dτ. (4.26)
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The integrand for large argument τ decays exponentially at infinity (provided
that kt;j 6= 0) and can therefore be evaluated numerically very efficiently. How-
ever, the mj = 0 term slows down the convergence especially if the incident
wavevector is chosen almost in parallel with the normal incidence direction.
Therefore we separate this term and treat it analytically by rewriting equation
4.26 as

ζ(α),L
v,r =Ω(α)

v,r (kinc
t , τ1, λ)+

2λ√
π

∫ ∞

τ1

τλ−1
∑

j

(c(α)
1 + 2τ2λc

(α)
2 ) exp(−k2

t;jτ
2λ)γ̌(α)

v,r (kt;j)dτ.
(4.27)

in which

γ̌(α)
v,r (kt) =

{
γ̂

(α)
v,r (kt) if kt 6= kinc

t ,

0 otherwise,
(4.28)

and Ω(α)
v,r (kinc

t , τ1, λ) is given by

2λ√
π

∫ ∞

τ1

τλ−1(c(α)
1 + 2τ2λc

(α)
2 ) exp(−kinc2

t τ2λ)γ̂(α)
v,r (kinc

t )dτ. (4.29)

The latter can be rewritten as

Ω(α)
v,r (kinc

t , τ1, λ) = γ̂(α)
v,r (kinc

t )[c(α)
1 η(kinc

t , τ1, λ) + c
(α)
2 ξ(kinc

t , τ1, λ)], (4.30)

in which

η(kinc
t , τ1, λ) =

2λ√
π

∫ ∞

τ1

τλ−1 exp(−kinc2

t τ2λ)dτ

=
1
kinc

t

[
1− erf(kinc

t τλ
1 )
]
,

(4.31)

where kinc
t = ‖kinc

t ‖ and

ξ(kinc
t , τ1, λ) =

4λ√
π

∫ ∞

τ1

τ3λ−1 exp(−kinc2

t τ2λ)dτ

=
1

kinc3
t

[
1 +

2kinc
t τλ

1√
π

exp(−kinc2

t τ2λ
1 )− erf(kinc

t τλ
1 )
]
.

(4.32)

The error function erf(x) of x is defined as [2, formula 7.1.1]

erf(x) =
2√
π

∫ x

0

exp(−t2)dt. (4.33)

Since the remaining integrand in ζ(α),L
v,r , i.e., the integrand in the right-hand side

of equation 4.27, decays exponentially at infinity, we can reduce the integration
interval to a finite interval [τ1, τ2]. We use a simple numerical integration scheme



4.3 Evaluation of Asymptotic Series 127

(such as a Simpson or a Gaussian quadrature rule) to perform the integration
over τ . We can finally write the expression for ζ(α),L

v,r as

ζ(α),L
v,r =Ω(α)

v,r (kinc
t , τ1, λ)+

2λ√
π

∫ τ2

τ1

τλ−1
∑

j

(c(α)
1 + 2τ2λc

(α)
2 ) exp(−k2

t;jτ
2λ)γ̌(α)

v,r (kt;j)dτ.
(4.34)

The series in the integrand of ζ(α),L
v,r is reduced to a summation over a finite

number of terms n, where n equals the number of terms when the partial sum
Sn =

∑n
j=1 exp(−k2

t;jτ
2λ
1 ) has reached a relative error of 0.1 [%]. exp(−k2

t;jτ
2λ
1 )

represents the worst case leading-order term of the series in the integrand of
ζ
(α),L
v,r for large kt;j . The relative error has been defined in equation 4.21.

4.3.2 Integration for Small Argument

The expression for ζ(α),S
v,r is given by

ζ(α),S
v,r =

2λ√
π

∫ τ1

0

τλ−1
∑

j

(c(α)
1 + 2τ2λc

(α)
2 ) exp(−k2

t;jτ
2λ)γ̂(α)

v,r (kt;j)dτ. (4.35)

In this section we describe a so-called Poisson transformation step, where the
relatively slow convergence of the series within the exponentially fast decaying
function, caused by the behavior of exp(−k2

t τ
2λ) for small τ , is converted into

an exponentially fast converging series for which the leading order term is given
by exp(−ρ2/(4τ2λ)). We use the following form of Poisson’s formula ([79] or
[89, section 6.1] with ξ = 0)∑

j

ψ̂(nj) = 4π2
∑

j

ψ(2πmj), (4.36)

in which nj is defined in the reciprocal (Floquet) lattice, in which mj is defined
in the direct (Bravais) lattice, and where

ψ̂(kt) = F {ψ(ρ)} =
∫
ψ(ρ) exp(−jρ · kt)dA. (4.37)

When we apply equation 4.36 to ψ̂(n) = φ̂(Rn + kinc
t ), we obtain∑

j

φ̂(Rnj + kinc
t ) = |D|

∑
j

exp(−jDmj · kinc
t )φ(Dmj), (4.38)

where |D| denotes the determinant of the matrix D. Further kt;j ≡ Rnj + kinc
t

and ρj ≡ Dmj . Subsequently, when we take φ̂(kt) = exp(−k2
t τ

2λ)γ̂(α)
v,r (kt), we

can rewrite equation 4.38 as∑
j

exp(−k2
t;jτ

2λ)γ̂(α)
v,r (kt;j) = |D|

∑
j

exp(−jDmj · kinc
t )γ̄(α)

v,r (Dmj , τ), (4.39)
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where

γ̄(α)
v,r (ρ, τ) =F−1

{
exp(−k2

t τ
2λ)γ̂(α)

v,r (kt)
}

=
1

4π2

∫
exp(−k2

t τ
2λ)γ̂(α)

v,r (kt) exp(jkt · ρ)dkt,
(4.40)

represents a so-called exponential regularization of γ̂(α)
v,r (kt). The series repre-

sented by equation 4.39 now converges rapidly for small τ . In order to avoid
evaluation at τ = 0, we select λ > 1. In this case no singularity occurs at
τ = 0. Further, we use a straight-forward numerical integration scheme (such
as a Simpson or a Gaussian quadrature rule) to perform the integration over τ .
We can finally write the expression for ζ(α),S

v,r as

ζ(α),S
v,r =|D| 2λ√

π

∫ τ1

0

τλ−1
∑

j

(c(α)
1 +

2τ2λc
(α)
2 ) exp(−jDmj · kinc

t )γ̄(α)
v,r (Dmj , τ)dτ.

(4.41)

The series in the integrand of ζ(α),S
v,r is reduced to a summation over a fi-

nite number of terms n, where n equals the number of terms when the par-
tial sum Sn =

∑n
j=1 exp(−ρ2

j/(4τ
2λ
1 )) has reached a relative error of 0.1[%].

exp(−ρ2
j/(4τ

2λ
1 )) represents the worst case leading-order term of the series in

the integrand of ζ(α),S
v,r for large ρj . The relative error has been defined in

equation 4.21.

4.3.3 Determination of the Transition Point

The new acceleration technique described in the previous sections comes with a
number of freely selectable parameters. Its performance will only be optimal if
they are chosen in the right way. Most of these parameters (such as λ, τ2, the
truncation of the reduced series ξ(α)

v,r and the series in ζ
(α),S
v,r and ζ

(α),L
v,r ) have

been discussed in the previous sections. The choice of an optimal transition
point τ1 is described in this section.

The transition point τ1 is a compromise between the differences in conver-
gence behavior of the series in ζ(α),S

v,r and ζ(α),L
v,r , respectively. A good choice for

τ1 can be obtained by first reconsidering equation 4.39∑
j

exp(−k2
t;jτ

2λ)γ̂(α)
v,r (kt;j) = |D|

∑
j

exp(−jDmj · kinc
t )γ̄(α)

v,r (Dmj , τ). (4.42)

By setting kinc
t = 0 and γ̂(α)

v,r (kt) = 1 we obtain for γ̄(α)
v,r

γ̄(α)
v,r (ρ, τ) =

1
4πτ2λ

exp
(
− ρ2

4τ2λ

)
, (4.43)
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while we can rewrite equation 4.42 as∑
j

exp(−‖Rnj‖2τ2λ) =
|D|

4πτ2λ

∑
j

exp
(
−‖Dmj‖2

4τ2λ

)
. (4.44)

This equation shows that the convergence rate of the series in ζ(α),S
v,r is governed

by the leading term

exp
(
−‖Dmj‖2

4τ2λ

)
, (4.45)

and improves for τ < τ1, while the convergence rate of the series in ζ
(α),L
v,r is

governed by the leading term

exp(−‖Rnj‖2τ2λ), (4.46)

and improves for τ > τ1. Consequently, τ1 is the compromise between both
estimates and is determined by equating these leading order term expressions
with

1. ‖Dmj‖ replaced by a characteristic step
√
|D|,

2. ‖Rnj‖ replaced by a characteristic step
√
|R|,

and solving the resulting equation for τ . Since DTR = 2πI, it follows that√
|D|
|R| = |D|

2π . The solution for τ1 is then given by

τ1 = 2λ

√
|D|
4π

. (4.47)

For the special case where d1 = 15.8x̂[mm], d2 = 15.8ŷ[mm] and λ = 3, these
two curves represented by equation 4.45 and 4.46 are plotted as a function of τ
in figure 4.9, respectively. At τ = τ1 = 0.1646 the two curves intersect.

4.4 Exponential Regularization

In the previous section we have shown that the slow convergence of the original
series in ζ(α),S

v,r can be repaired by using a Poisson transformation that leads to
equation 4.41. This step, however, introduces the evaluation of γ̄(α)

v,r (ρ, τ) given
by equation 4.40 which is a so-called exponential regularization of γ̂(α)

v,r (kt) [89].
The overall success of the total acceleration technique critically depends on

the availability of a rapid procedure to evaluate γ̄(α)
v,r (ρ, τ). Equation 4.41 shows

us that within the calculation of ζ(α),S
v,r , γ̄(α)

v,r (Dmj , τ) only depends on D, τ , mj ,
v and r. It does not depend on kinc

t , or on any medium parameters. Further
we have shown in section 4.3.3 that the transition point τ1 only depends on the
choice for the elementary dimensions of the periodic structure D and on λ. This



130 4 Acceleration Technique

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

y

Figure 4.9: y = exp(− |D|
4τ2λ ) (dashed-dotted curve) and y = exp(−|R|τ2λ) (dot-

ted curve) as a function of τ , transition point at τ = τ1 = 0.1646 (vertical solid
line).

means that the grid for τ (used for a numerical approximation of the integration
over τ in ζ(α),S

v,r ) can be fixed at the initialization phase of the computation. We
take advantage of this situation by calculating and storing γ̄

(α)
v,r (Dmj , τ) as a

function of α, v, r, mj and τ at the beginning of the computation. The stored
data (lookup table) can then later be used to calculate ζ(α),S

v,r as a function of
kinc

t and of any medium parameter. Note that the grid for small τ is fixed and
contains a small number of points due to the slowly varying behavior of the
integrand. The number of values for mj can be chosen small because of the
rapid convergence of the series in ζ(α),S

v,r for small τ .
Further note that γ̄(α)

v,r given by equation 4.40 can be considered as an in-
finitely differentiable regularization [53] of the function γ(α)

v,r such that γ̄(α)
v,r (ρ, 0) =

γ
(α)
v,r (ρ). Note that γ̄(α)

v,r satisfies the heat equation

∇2
t γ̄

(α)
v,r (ρ, τ) = ∂τ2λ γ̄(α)

v,r (ρ, τ), (4.48)

if we identify τ2λ to be a time-like variable [89, section 6.2]. We can then
interpret γ̄(α)

v,r as the temperature profile after a time τ2λ of the initial profile
γ̄

(α)
v,r (ρ, 0) = γ

(α)
v,r (ρ). Since γ(α)

v,r (ρ) has a compact support, γ̄(α)
v,r (ρ, τ) has an

”almost” compact support, while it decays exponentially for large values of the
argument ρ.

The remaining problem is now to find expressions for γ̄(α)
v,r (ρ, τ) for different

choices of expansion and weighting functions. In general, finding an analytical
expression appears to be difficult [89, section 6.3]. However in the following
three sections we consider three specific choices for these functions that lead to
workable analytical solutions and numerical approximations. These cases are:

1. The rooftop function used for both the expansion and weighting functions,
and placed in an orthogonal grid. In this case, we can express the γ̄(α)

v,r (ρ, τ)
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in terms of complementary error functions. We do this in section 4.4.1.

2. The rooftop function used for both the expansion and weighting functions.
This case is more general than the previous one; we are not restricted to the
placement in the orthogonal grid. In this case, we can express γ̄(α)

v,r (ρ, τ)
as a convolution of two analytically known functions, both with ”almost”
compact support. We do this in section 4.4.2.

3. The RWG function used for both the expansion and weighting functions.
In this case, we can express γ̄(α)

v,r (ρ, τ) as a convolution of two numerically
approximated functions, both with ”almost” compact support. We do this
in section 4.4.3.

4.4.1 Rooftop Function Placed in an Orthogonal Grid

In this section, we evaluate γ̄(α)
v,r (ρ, τ) if we use the rooftop function placed in

an orthogonal grid for both the expansion and weighting functions. In this case,
we can express γ̄(α)

v,r (ρ, τ) in terms of complementary error functions. γ̄(α)
v,r (ρ, τ)

is given by equation 4.40

γ̄(α)
v,r (ρ, τ) = F−1

{
exp(−k2

t τ
2λ)γ̂(α)

v,r (kt)
}
, (4.49)

with

γ̂(α)
v,r (kt) =

{
[jkt · ĝ∗r(kt)] [jkt · ĝv(kt)] if α = 1,
ĝ∗r(kt) · ĝv(kt) if α = 2.

(4.50)

Note that γ̂ indicates the spatial Fourier transform of γ. Substituting the spec-
trum of the weighting functions ĝr(kt) (equation F.5 in appendix F) given by

ĝr(kt) = d̂r exp(−jkt · ρr)Λ̂(kt · d̂r, pr, qr)Π̂(kt · (ẑ× d̂r), wr), (4.51)

and the spectrum of the expansion functions ĝv(kt) given by

ĝv(kt) = d̂v exp(−jkt · ρv)Λ̂(kt · d̂v, pv, qv)Π̂(kt · (ẑ× d̂v), wv), (4.52)

leads to the following expression for γ̂(1)
v,r(kt)

γ̂(1)
v,r(kt) = exp(jkt · [ρr − ρv])

S(wrkt · (ẑ× d̂r))
(
T (qrkt · d̂r)− T (−prkt · d̂r)

)
S(wvkt · (ẑ× d̂v))

(
T (pvkt · d̂v)− T (−qvkt · d̂v)

)
,

(4.53)
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Figure 4.10: Domain, vectors and scalars used in the rooftop function.

and the following expression for γ̂(2)
v,r(kt)

γ̂(2)
v,r(kt) =(d̂r · d̂v) exp(jkt · [ρr − ρv])

S(wrkt · (ẑ× d̂r))

(
T (−prkt · d̂r)− T (qrkt · d̂r)

kt · d̂r

)

S(wvkt · (ẑ× d̂v))

(
T (pvkt · d̂v)− T (−qvkt · d̂v)

kt · d̂v

)
,

(4.54)

in which

Λ̂(k, p, q) =
T (kp)− T (−kq)

jk
, Π̂(k,w) = S(kw), (4.55)

and in which

T (z) = S(z) exp
(

jz
2

)
, S(z) = sinc

(z
2

)
. (4.56)

See section 3.7.4 for a detailed explanation of the rooftop function. See figure
4.10 for a graphical representation of the domain, vectors and scalars used in
the rooftop function.

Subsequently, we fix the rooftop expansion and weighting functions in an
orthogonal grid, in which all pairs of d̂r and d̂v are either in parallel or per-
pendicular. Further, the grid can be rotated around the z-axis. An example
of two expansion functions placed in an orthogonal rotated reference frame is
given in figure 4.11. By doing this we create a restriction in the modeling of the
unknown surface currents. However most structures do not consist of arbitrar-
ily shaped metal patches and apertures. In most cases the unit-cell structures
can be caught in this orthogonal grid. Furthermore, this limitation allows us to
express γ̄(α)

v,r (ρ, τ) in terms of complementary error functions.
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To express γ̄(α)
v,r (ρ, τ) in terms of complementary error functions, let us first

define and summarize some properties of these functions, and of related re-
peated integrals [2, section 7.2]. The complementary error function is denoted
by erfc(x), and defined as

erfc(x) = 1− erf(x) =
2√
π

∫ ∞

x

exp(−t2)dt. (4.57)

The so-called n’th repeated integral of erfc(x) with n = 0, 1, 2, . . . (which arises
in the study of diffusion and heat conduction) is denoted by erfc(n, x), and is
defined as

erfc(n, x) =
∫ ∞

x

erfc(n− 1, t)dt. (4.58)

Note that

erfc(−1, x) =
2√
π

exp(−x2), erfc(0, x) = erfc(x). (4.59)

Further erfc(n, x) with n = 1, 2, 3, . . . satisfies the following recurrence relation

2n erfc(n, x) = erfc(n− 2, x)− 2x erfc(n− 1, x). (4.60)

Subsequently, we define scalar functions fn(z) with n = 0, 1, 2, . . . that relate to
the (n− 1)’th repeated integral of the complementary error function as follows

fn(z) = (−2)n−2erfc
(
n− 1,

z

2

)
. (4.61)

Note that ∂zfn(z) = fn−1(z). Explicit forms for the first five functions fn(z)
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are given by

f0(z) =
1

2
√
π

exp(−Z2), (4.62)

f1(z) =− 1
2
erfc(Z), (4.63)

f2(z) =
1√
π

exp(−Z2)− Zerfc(Z), (4.64)

f3(z) =
1√
π
Z exp(−Z2)−

(
Z2 +

1
2

)
erfc(Z), (4.65)

f4(z) =
2

3
√
π

(Z2 + 1) exp(−Z2)− Z
(

2
3
Z2 + 1

)
erfc(Z), (4.66)

where Z = 1
2z. Then we define

F̂0(k,w) =S(kw), (4.67)

F̂1(k,w, v) =S(kw)S(kv), (4.68)

F̂2(k, p, q) =T (kp)− T (−kq), (4.69)

F̂3(k,w, a, b) =S(kw)[T (−ka)− T (kb)], (4.70)

F̂4(k, a, b, p, q) =[T (−ka)− T (kb)][T (kp)− T (−kq)], (4.71)

F̂5(k, a, b, p, q) =k−2[T (−ka)− T (kb)][T (kp)− T (−kq)], (4.72)

F̂6(k, p, q) =k−1[T (kp)− T (−kq)]. (4.73)

By using the Fourier shift property [55, 111]

1
2π

∫ ∞

−∞
F̂n(k) exp(jkν) exp(−k2τ2λ) exp(jkx)dk = F̄n(x+ ν, τ), (4.74)

we can find4 the explicit forms for the exponentially regularized functions F̄n:

1. F̄0(x, τ, w) where F̄0(x, 0, w) = Π(x,w) describes the single rectangle func-
tion. This is plotted in figure 4.12 for a number of small values for τ .

F̄0(x, τ, w) =
1
w

[
f1

(
x+ 1

2w

τ

)
− f1

(
x− 1

2w

τ

)]
, (4.75)

4These functions could have been derived using a more general approach. However since
we are dealing with specific shapes only, we have chosen this approach with efficient and
dedicated computational implementations.
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Figure 4.12: y = F̄0(x, τ, w) as a function of x, with w = 1 and for a number of
small values for τ .

2. F̄1(x, τ, w, v) where F̄1(x, 0, w, v) = F̄0(x, 0, w) ∗ F̄0(x, 0, v) describes the
single rectangle function with sides of finite slope and can be written as
the spatial convolution between two single rectangle functions. This is
plotted in figure 4.13 for a number of small values for τ .

F̄1(x, τ, w, v) =
τ

wv

[
f2

(
x− 1

2 (v + w)
τ

)
− f2

(
x+ 1

2 (v − w)
τ

)
−

f2

(
x− 1

2 (v − w)
τ

)
+ f2

(
x+ 1

2 (v + w)
τ

)]
,

(4.76)
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Figure 4.13: y = F̄1(x, τ, w, v) as a function of x, with w = 1, v = 2 and for a
number of small values for τ .

3. F̄2(x, τ, p, q) where F̄2(x, 0, p, q) = F̄0(x + 1
2p, 0, p) − F̄0(x − 1

2q, 0, q) de-
scribes the double rectangle function. This is plotted in figure 4.14 for a
number of small values for τ .

F̄2(x, τ, p, q) = −
(

1
p

+
1
q

)
f1

(x
τ

)
+

1
p
f1

(
x+ p

τ

)
+

1
q
f1

(
x− q
τ

)
,

(4.77)
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Figure 4.14: y = F̄2(x, τ, p, q) as a function of x, with p = 2, q = 1 and for a
number of small values for τ .

4. F̄3(x, τ, w, a, b) where F̄3(x, 0, w, a, b) = −F̄2(x, 0, b, a) ∗ F̄0(x, 0, w) de-
scribes a double rectangle function with sides of finite slope and can be
written as the spatial convolution between the single and the double rect-
angle function. This is plotted in figure 4.15 for a number of small values
for τ .

F̄3(x, τ, w, a, b) =
τ

w

[(
1
a

+
1
b

)
f2

(
x+ 1

2w

τ

)
−

1
a
f2

(
x+ 1

2w − a
τ

)
− 1
b
f2

(
x+ 1

2w + b

τ

)
−
(

1
a

+
1
b

)
f2

(
x− 1

2w

τ

)
+

1
a
f2

(
x− 1

2w − a
τ

)
+

1
b
f2

(
x− 1

2w + b

τ

)]
,

(4.78)
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Figure 4.15: y = F̄3(x, τ, w, a, b) as a function of x, with w = 0.5, a = 2, b = 3
and for a number of small values for τ .

5. F̄4(x, τ, a, b, p, q) where F̄4(x, 0, a, b, p, q) = −F̄2(x, 0, b, a) ∗ F̄2(x, 0, p, q)
describes a piecewise linear function and can be written as the spatial
convolution between two double rectangle functions. This is plotted in
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figure 4.16 for a number of small values for τ .

F̄4(x, τ, a, b, p, q) = −τ
[(

1
p

+
1
q

)[(
1
a

+
1
b

)
f2

(x
τ

)
−

1
a
f2

(
x− a
τ

)
− 1
b
f2

(
x+ b

τ

)]
− 1
p

[(
1
a

+
1
b

)
f2

(
x+ p

τ

)
−

1
a
f2

(
x+ p− a

τ

)
− 1
b
f2

(
x+ p+ b

τ

)]
− 1
q

[(
1
a

+
1
b

)
f2

(
x− q
τ

)
− 1
a
f2

(
x− q − a

τ

)
− 1
b
f2

(
x− q + b

τ

)]]
,

(4.79)
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Figure 4.16: y = F̄4(x, τ, a, b, p, q) as a function of x, with a = 2, b = 3, p = 1,
q = 2 and for a number of small values for τ .

6. F̄5(x, τ, a, b, p, q) where F̄5(x, 0, a, b, p, q) describes a piecewise quadratic
function. This is plotted in figure 4.17 for a number of small values for τ .

F̄5(x, τ, a, b, p, q) = τ3

[(
1
p

+
1
q

)[(
1
a

+
1
b

)
f4

(x
τ

)
−

1
a
f4

(
x− a
τ

)
− 1
b
f4

(
x+ b

τ

)]
− 1
p

[(
1
a

+
1
b

)
f4

(
x+ p

τ

)
−

1
a
f4

(
x+ p− a

τ

)
− 1
b
f4

(
x+ p+ b

τ

)]
− 1
q

[(
1
a

+
1
b

)
f4

(
x− q
τ

)
− 1
a
f4

(
x− q − a

τ

)
− 1
b
f4

(
x− q + b

τ

)]]
,

(4.80)
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Figure 4.17: y = F̄5(x, τ, a, b, p, q) as a function of x, with a = 2, b = 3, p = 1,
q = 2 and for a number of small values for τ .

7. F̄6(x, τ, p, q) where F̄6(x, 0, p, q) describes a piecewise linear function. This
is plotted in figure 4.18 for a number of small values for τ .

F̄6(x, τ, p, q) = −τ
[(

1
p

+
1
q

)
f2

(x
τ

)
−

1
p
f2

(
x+ p

τ

)
− 1
q
f2

(
x− q
τ

)]
.

(4.81)
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Figure 4.18: y = F̄6(x, τ, p, q) as a function of x, with p = 2, q = 1 and for a
number of small values for τ .

Subsequently, we use the scalar exponential regularizations F̄n of F̂n to obtain
closed-form expressions for γ̄(α)

v,r . We introduce a new rotated frame of spectral
coordinates

k′t = (k′x, k
′
y) = (kt · d̂r,kt · (ẑ× d̂r)). (4.82)

Within this frame we can choose for d̂v either d̂r, −d̂r, ẑ× d̂r or d̂r × ẑ. These
choices correspond to the four possible orientations. Further dk′t = dkt and

ρ′ = (x′, y′) = ((ρ + ρr − ρv) · d̂r, (ρ + ρr − ρv) · (ẑ× d̂r)). (4.83)

We can now recognize the following four different cases for the exponential
regularization γ̄(1)

v,r of γ̂(1)
v,r :
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1. If d̂v = d̂r, i.e., d̂r ‖ d̂v, then

γ̂(1)
v,r(kt) = − exp(jkt · [ρr − ρv])F̂1(k′y, wr, wv)F̂4(k′x, pr, qr, pv, qv),

γ̄(1)
v,r(ρ, τ) = −F̄1(y′, τλ, wr, wv)F̄4(x′, τλ, pr, qr, pv, qv). (4.84)

2. If d̂v = −d̂r, i.e., d̂r ‖ d̂v, then

γ̂(1)
v,r(kt) = exp(jkt · [ρr − ρv])F̂1(k′y, wr, wv)F̂4(k′x, pr, qr, qv, pv),

γ̄(1)
v,r(ρ, τ) = F̄1(y′, τλ, wr, wv)F̄4(x′, τλ, pr, qr, qv, pv). (4.85)

3. If d̂v = ẑ× d̂r, i.e., d̂r ⊥ d̂v, then

γ̂(1)
v,r(kt) = exp(jkt · [ρr − ρv])F̂3(k′y, wr, qv, pv)F̂3(k′x, wv, pr, qr),

γ̄(1)
v,r(ρ, τ) = F̄3(y′, τλ, wr, qv, pv)F̄3(x′, τλ, wv, pr, qr). (4.86)

4. If d̂v = d̂r × ẑ, i.e., d̂r ⊥ d̂v, then

γ̂(1)
v,r(kt) = − exp(jkt · [ρr − ρv])F̂3(k′y, wr, pv, qv)F̂3(k′x, wv, pr, qr),

γ̄(1)
v,r(ρ, τ) = −F̄3(y′, τλ, wr, pv, qv)F̄3(x′, τλ, wv, pr, qr). (4.87)

Further, we can recognize the following two different cases for the exponential
regularization γ̄(2)

v,r of γ̂(2)
v,r :

1. If d̂v = d̂r, i.e., d̂r ‖ d̂v, then

γ̂(2)
v,r(kt) = exp(jkt · [ρr − ρv])F̂1(k′y, wr, wv)F̂5(k′x, pr, qr, pv, qv),

γ̄(2)
v,r(ρ, τ) = F̄1(y′, τλ, wr, wv)F̄5(x′, τλ, pr, qr, pv, qv). (4.88)

2. If d̂v = −d̂r, i.e., d̂r ‖ d̂v, then

γ̂(2)
v,r(kt) = − exp(jkt · [ρr − ρv])F̂1(k′y, wr, wv)F̂5(k′x, pr, qr, qv, pv),

γ̄(2)
v,r(ρ, τ) = −F̄1(y′, τλ, wr, wv)F̄5(x′, τλ, pr, qr, qv, pv). (4.89)

Note that γ̄(2)
v,r(ρ, τ) is zero if d̂r ⊥ d̂v.

Numerical Results

Finally, we show the numerical results of the complete acceleration technique for
this type of regularization. The configuration under consideration is the simple
basic structure described in section 4.1. Further we take λ = 3, τ1 = 0.1646
and τ2 = 1.5. The integration over τ is performed by using a repeated fourth-
order Gaussian quadrature integration rule on 601 subintervals of equal length
on the integration interval (0, τ2]. In figure 4.19 we have plotted the integrand
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Figure 4.19: y = Im(integrand of ζ(α)
1,1 ) (dashed-dotted curve) as a function of

τ . Transition point at τ = τ1 = 0.1646 (vertical solid line). Left figure for α = 1
and right figure for α = 2.

of ζ(α)
1,1 as a function of τ at frequency = 8 [GHz] for the contribution A1,1 to

L. The broadside term in the summation for large τ has not been separated
and not been treated analytically. Note that the integrand decays exponentially
for large τ , and is continuous at the transition point τ = τ1, which shows a
correct implementation of the evaluation of the integrand for small and large
τ . In figure 4.20 we have plotted the minimum required index j for the partial
sum in the integrand of ζ(α)

1,1 to converge with a relative error of 0.1[%] as a
function of τ . These figures show that in general only a single term is needed to
obtain the relative error of 0.1[%]. Only near the transition point less than ten
terms are needed. In figure 4.21 we have plotted the relative error of ξ(α)

v,r + ζ
(α)
v,r

as a function of {v, r} at frequency = 8[GHz]. In figure 4.22 we have plotted
the relative error of the contribution Av,r to L at frequency = 8[GHz]. These
relative errors are defined with respect to the single maximum absolute value out
of all {v, r}. These figures show that each element for the matrix contribution
Av,r to L has a low relative error. In figure 4.23 we have plotted the final
reflection and transmission coefficients as a function of frequency. Note that
there is an excellent agreement between the unaccelerated and the accelerated
computational method.

The asymmetry in the relative errors of ξ(α)
v,r + ζ

(α)
v,r for α = 1 and α = 2 is

caused by the difference of convergence behavior of ξ(α)
v,r for α = 1 and α = 2,

and has already been discussed in section 4.2.

4.4.2 Rooftop Function

In this section we evaluate γ̄(α)
v,r (ρ, τ) if we use the rooftop function for both the

expansion and weighting functions. This case is more general than the previ-
ous one; we are not restricted to the placement in the orthogonal grid, which
allows us to describe more arbitrarily shaped and oriented metal patches and
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apertures. For example we can model the unknown electric surface current on
two arbitrarily oriented and separated rectangular patches within a single unit
cell. In this case, we can express γ̄(α)

v,r (ρ, τ) as a convolution of two analytically
known functions, both with ”almost” compact support. γ̄(α)

v,r (ρ, τ) is given by
equation 4.40

γ̄(α)
v,r (ρ, τ) = F−1

{
exp(−k2

t τ
2λ)γ̂(α)

v,r (kt)
}
. (4.90)

with

γ̂(α)
v,r (kt) =

{
[jkt · ĝ∗r(kt)] [jkt · ĝv(kt)] if α = 1,
ĝ∗r(kt) · ĝv(kt) if α = 2.

(4.91)

Since gr(ρ) is real-valued, the Fourier counterpart of ĝ∗r(kt) is gr(−ρ). We can
now write the expression for γ̄(α)

v,r (ρ, τ) as

γ̄(α)
v,r (ρ, τ) =

{
ār(ρ, τ) ∗ b̄v(ρ, τ) if α = 1,
c̄r(ρ, τ) · ∗d̄v(ρ, τ) if α = 2,

(4.92)

in which ·∗ denotes a combination of first an inner product between the vectors
c̄r and d̄r, and subsequently a convolution over ρ. Further

ār(ρ, τ) = −b̄r(−ρ, τ), d̄v(ρ, τ) = F−1

{
ĝv(kt) exp

(
−1

2
k2

t τ
2λ

)}
, (4.93)

and

c̄r(ρ, τ) = d̄r(−ρ, τ), b̄v(ρ, τ) = F−1

{
jkt · ĝv(kt) exp

(
−1

2
k2

t τ
2λ

)}
. (4.94)

Note that ār, b̄v, c̄r and d̄v are all of ”almost” compact support in ρ for small τ .
Further, equation 4.92 shows that γ̄(α)

v,r (ρ, τ) can be written as a two-dimensional
convolution of two functions. Since these functions are analytically known (as
will be shown later on in this section) and both of ”almost” compact support,
the convolution can be numerically approximated by using two-dimensional fast
Fourier transformations (FFT’s) [111]. We can rewrite γ̄(1)

v,r(ρ, τ) as

γ̄(1)
v,r(ρ

′, τ) = ār(ρ, τ) ∗ b̄v(ρ, τ)|ρ=ρ′

=− b̄r(−ρ, τ) ∗ b̄v(ρ, τ)|ρ=ρ′

= ār(ρ− ρr, τ) ∗ b̄v(ρ + ρv, τ)|ρ=ρ′+ρr−ρv

=− b̄r(−ρ + ρr, τ) ∗ b̄v(ρ + ρv, τ)|ρ=ρ′+ρr−ρv
,

(4.95)

where ρr and ρv denote the translation vector from the origin to a reference
point in the rooftop weighting and expansion function, respectively. Note that

1. ār(ρ, τ) = −b̄r(−ρ, τ) denotes a mirrored b̄r(ρ, τ),
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2. ār(ρ− ρr, τ) = −b̄r(−ρ + ρr, τ) denotes a shifted and mirrored b̄r(ρ, τ),

3. b̄v(ρ + ρv, τ) denotes a shifted b̄v(ρ, τ).

The starting point for the evaluation of γ̄(1)
v,r(ρ′, τ) is the knowledge of b̄r(−ρ +

ρr, τ) and b̄v(ρ + ρv, τ). Similarly, we can rewrite γ̄(2)
v,r(ρ, τ) as

γ̄(2)
v,r(ρ

′, τ) = c̄r(ρ, τ) · ∗d̄v(ρ, τ)|ρ=ρ′

= d̄r(−ρ, τ) · ∗d̄v(ρ, τ)|ρ=ρ′

= c̄r(ρ− ρr, τ) · ∗d̄v(ρ + ρv, τ)|ρ=ρ′+ρr−ρv

= d̄r(−ρ + ρr, τ) · ∗d̄v(ρ + ρv, τ)|ρ=ρ′+ρr−ρv
.

(4.96)

Note that

1. c̄r(ρ, τ) = d̄r(−ρ, τ) denotes a mirrored d̄r(ρ, τ),

2. c̄r(ρ− ρr, τ) = d̄r(−ρ + ρr, τ) denotes a shifted and mirrored d̄r(ρ, τ),

3. d̄v(ρ + ρv, τ) denotes a shifted d̄v(ρ, τ).

The starting point for the evaluation of γ̄(2)
v,r(ρ′, τ) is the knowledge of d̄r(−ρ +

ρr, τ) and d̄v(ρ + ρv, τ). Within equations 4.93 and 4.94, the expressions

d̄v(ρ, τ) = F−1

{
ĝv(kt) exp

(
−1

2
k2

t τ
2λ

)}
, (4.97)

and

b̄v(ρ, τ) = F−1

{
jkt · ĝv(kt) exp

(
−1

2
k2

t τ
2λ

)}
, (4.98)

remain to be evaluated. To obtain closed form expressions for d̄v and b̄v, we
use the known spectrum ĝv(kt) of a rooftop function (equation F.5 in appendix
F) given by

ĝv(kt) = d̂v exp(−jkt · ρv)Λ̂(kt · d̂v, pv, qv)Π̂(kt · (ẑ× d̂v), wv). (4.99)

See section 3.7.4 for a detailed explanation of the rooftop function. See figure
4.10 for a graphical representation of the domain, vectors and scalars used in
the rooftop function.

Subsequently, by using the functions F̂0, F̂2 and F̂6 defined by equations
4.67, 4.69 and 4.73, respectively, in section 4.4.1, we can write jkt · ĝv(kt) as

jkt · ĝv(kt) = exp(−jkt · ρv)F̂2(k′x, pv, qv)F̂0(k′y, wv), (4.100)

while we can write ĝv(kt) as

ĝv(kt) = d̂v exp(−jkt · ρv)F̂6(k′x, pv, qv)F̂0(k′y, wv), (4.101)
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with

k′t = (k′x, k
′
y) = (kt · d̂v,kt · (ẑ× d̂v)). (4.102)

By using the corresponding exponential regularizations F̄0, F̄2 and F̄6 given by
equations 4.75, 4.77 and 4.81, respectively, in section 4.4.1, we can explicitly
write b̄v as

b̄v(ρ, τ) =F̄2

(
x′,

τλ

√
2
, pv, qv

)
F̄0

(
y′,

τλ

√
2
, wv

)
, (4.103)

while we can explicitly write d̄v as

d̄v(ρ, τ) =d̂vF̄6

(
x′,

τλ

√
2
, pv, qv

)
F̄0

(
y′,

τλ

√
2
, wv

)
, (4.104)

with

ρ′ = (x′, y′) = ((ρ− ρv) · d̂v, (ρ− ρv) · (ẑ× d̂v)). (4.105)

The computational structure to calculate γ̄(α)
v,r (Dmj , τ) has the following form:

function Calculate γ̄(α)
v,r (Dmj , τ)

for τ = 0+ : dτ : τ1
for v = 1 : NrOfExpansionFunctions

Calculate and Store d̄v(ρ + ρv, τ) on Grid(ρ);
Calculate and Store b̄v(ρ + ρv, τ) on Grid(ρ);

endfor;
for v = 1 : NrOfExpansionFunctions
for r = 1 : NrOfExpansionFunctions

Calculate and Store d̄r(−ρ + ρr, τ) · ∗d̄v(ρ + ρv, τ);
Calculate and Store b̄r(−ρ + ρr, τ) ∗ b̄v(ρ + ρv, τ);
for j = 1 : NrOfModes

ρ′ = Dmj + ρr − ρv;

Interpolate γ̄(α)
v,r (ρ′, τ) from Grid(ρ);

endfor;
endfor;

endfor;
endfor;

return.
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Numerical Results

Finally, we show the numerical results of the complete acceleration technique for
this type of regularization. The configuration under consideration is the simple
basic structure described in section 4.1. Further we take λ = 3, τ1 = 0.1646
and τ2 = 1.5. The integration over τ is performed by using a repeated fourth-
order Gaussian quadrature integration rule on 601 subintervals of equal length
on the integration interval (0, τ2]. In figure 4.24 we have plotted b̄1(ρ, τ) and
d̄1(ρ, τ) as a function of ρ = (x, y) with τ ≈ 0. In figure 4.25 we have plotted
γ̄

(α)
1,1 (ρ, τ) as a function of ρ = (x, y) with τ ≈ 0. These figures show that these

functions are of ”almost” compact support. The numerical convolution is done
by using FFT’s; we have used a 64 by 64 grid which reaches over a single unit
cell. In figure 4.26 we have plotted the integrand of ζ(α)

1,1 as a function of τ at
frequency = 8[GHz] for the contribution A1,1 to L. The broadside term in the
summation for large τ has not been separated and treated analytically. Note
that the integrand decreases exponentially for large τ , and is continuous at the
transition point τ = τ1, which shows a correct implementation of the evaluation
of the integrand for small and large τ . For τ ∈ (0, τ1] we have only taken into
account a single term with index (m1;j ,m2;j) = (0, 0). In figure 4.27 we have
plotted the minimum required index j for the partial sum in the integrand of
ζ
(α)
1,1 to converge with a relative error of 0.1[%] as a function of τ . For τ ∈ (0, τ1]

this is set to one in this figure. These figures show that for most τ ∈ [τ1, τ2]
only a single term is needed to obtain the relative error of 0.1[%]. Only near the
transition point less than ten terms are needed. In figure 4.28 we have plotted
the relative error of ξ(α)

v,r + ζ
(α)
v,r as a function of {v, r} at frequency = 8 [GHz].

These figures show that each element of ξ(α)
v,r + ζ

(α)
v,r has a low relative error for

α = 2 and that some elements have a relatively high relative error of 3.5[%]
for α = 1. In figure 4.29 we have plotted the relative error of the contribution
Av,r to L at frequency = 8[GHz]. These relative errors are defined with respect
to the single maximum absolute value out of all {v, r}. This figure shows that
some elements for the matrix contribution Av,r to L have a relatively high
relative error of 3.5[%]. Despite this high relative error, figure 4.30 shows that
for the final reflection and transmission coefficients, as a function of frequency,
there is an excellent agreement between the unaccelerated and the accelerated
computational method.

The asymmetry in the relative errors of ξ(α)
v,r + ζ

(α)
v,r for α = 1 and α = 2 is

caused by two effects. The first effect is already described in section 4.2 and is
caused by the difference of convergence behavior of ξ(α)

v,r for α = 1 and α = 2.
The second effect is caused by the fact that the outcome of the integration over
τ for α = 1 is determined by the accuracy for τ < τ1, whereas for α = 2 by the
accuracy for τ > τ1. This can be seen in figure 4.26. Since we take only into
account a single term for τ < τ1, we lose accuracy compared to the summation
for τ > τ1. Hence, ζ(1)

v,r is less accurate than ζ(2)
v,r .

Even though we have limited the summation for τ < τ1 to a single term, we
obtain very accurate results for the reflection and transmission coefficients as
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Figure 4.24: Top figure for b̄1(ρ, τ), bottom left figure for d̄1,x(ρ, τ) and bottom
right figure for d̄1,y(ρ, τ) as a function of ρ = (x, y) with τ ≈ 0.

a function of frequency. Taking into account more terms would require larger
two-dimensional grids to sample b̄v(ρ, τ) and d̄v(ρ, τ). This is not necessary
since for small τ , b̄v(ρ, τ) and d̄v(ρ, τ) have already small bandwidths, i.e., are
of ”almost” compact support.

4.4.3 RWG Function

In this section, we evaluate γ̄(α)
v,r (ρ, τ) if we use the RWG function for both the

expansion and weighting functions. In this case, we can express γ̄(α)
v,r (ρ, τ) as

a convolution of two numerically approximated functions both with ”almost”
compact support. γ̄(α)

v,r (ρ, τ) is given by equation 4.40

γ̄(α)
v,r (ρ, τ) = F−1

{
exp(−k2

t τ
2λ)γ̂(α)

v,r (kt)
}
, (4.106)
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Figure 4.25: γ̄(α)
1,1 (ρ, τ) as a function of ρ = (x, y) with τ ≈ 0. Left figure for

α = 1 and right figure for α = 2.
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1,1 to con-
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Transition point at τ = τ1 = 0.1646 (vertical solid line). Left figure for α = 1
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v,r as a function of {v, r}. Left figure

for α = 1 and right figure for α = 2.
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with

γ̂(α)
v,r (kt) =

{
[jkt · ĝ∗r(kt)] [jkt · ĝv(kt)] if α = 1,
ĝ∗r(kt) · ĝv(kt) if α = 2.

(4.107)

Since gr(ρ) is real-valued, the Fourier counterpart of ĝ∗r(kt) is gr(−ρ). We can
now write the expression for γ̄(α)

v,r (ρ, τ) as

γ̄(α)
v,r (ρ, τ) =

{
ār(ρ, τ) ∗ b̄v(ρ, τ) if α = 1,
c̄r(ρ, τ) · ∗d̄v(ρ, τ) if α = 2,

(4.108)

in which ·∗ denotes a combination of first an inner product between the vectors
c̄r, and d̄r and subsequently a convolution over ρ. Further

ār(ρ, τ) = ∇t · c̄r(ρ, τ), b̄v(ρ, τ) = ∇t · d̄v(ρ, τ), (4.109)

and

c̄r(ρ, τ) = d̄r(−ρ, τ), d̄v(ρ, τ) = F−1

{
ĝv(kt) exp

(
−1

2
k2

t τ
2λ

)}
. (4.110)

Note that ār, b̄v, c̄r and d̄v are all of ”almost” compact support in ρ for
small τ . Further, equation 4.108 shows that γ̄(α)

v,r (ρ, τ) can be written as a
two-dimensional convolution of two functions. Since these functions are nu-
merically approximated (as will be shown later on in this section) and both of
”almost” compact support, the convolution can be numerically approximated
by using two-dimensional fast Fourier transformations (FFT’s) [111]. Note that
ār(ρ, τ) = −b̄r(−ρ, τ). We can rewrite γ̄(1)

v,r(ρ, τ) as

γ̄(1)
v,r(ρ

′, τ) = ār(ρ, τ) ∗ b̄v(ρ, τ)|ρ=ρ′

=− b̄r(−ρ, τ) ∗ b̄v(ρ, τ)|ρ=ρ′

= ār(ρ− ρr, τ) ∗ b̄v(ρ + ρv, τ)|ρ=ρ′+ρr−ρv

=− b̄r(−ρ + ρr, τ) ∗ b̄v(ρ + ρv, τ)|ρ=ρ′+ρr−ρv
,

(4.111)

where ρr and ρv denote the translation vector from the origin to a reference
point of the RWG weighting and expansion function, respectively. Note that

1. ār(ρ, τ) = −b̄r(−ρ, τ) denotes a mirrored b̄r(ρ, τ),

2. ār(ρ− ρr, τ) = −b̄r(−ρ + ρr, τ) denotes a shifted and mirrored b̄r(ρ, τ),

3. b̄v(ρ + ρv, τ) denotes a shifted b̄v(ρ, τ).

The starting point for the evaluation of γ̄(1)
v,r(ρ′, τ) is the knowledge of b̄r(−ρ +

ρr, τ) and b̄v(ρ + ρv, τ). Similarly, we can rewrite γ̄(2)
v,r(ρ, τ) as

γ̄(2)
v,r(ρ

′, τ) = c̄r(ρ, τ) · ∗d̄v(ρ, τ)|ρ=ρ′

= d̄r(−ρ, τ) · ∗d̄v(ρ, τ)|ρ=ρ′

= c̄r(ρ− ρr, τ) · ∗d̄v(ρ + ρv, τ)|ρ=ρ′+ρr−ρv

= d̄r(−ρ + ρr, τ) · ∗d̄v(ρ + ρv, τ)|ρ=ρ′+ρr−ρv
.

(4.112)
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Note that

1. c̄r(ρ, τ) = d̄r(−ρ, τ) denotes a mirrored d̄r(ρ, τ),

2. c̄r(ρ− ρr, τ) = d̄r(−ρ + ρr, τ) denotes a shifted and mirrored d̄r(ρ, τ),

3. d̄v(ρ + ρv, τ) denotes a shifted d̄v(ρ, τ).

The starting point for the evaluation of γ̄(2)
v,r(ρ′, τ) is the knowledge of d̄r(−ρ +

ρr, τ) and d̄v(ρ + ρv, τ). Within equations 4.109 and 4.110, the expression

d̄v(ρ, τ) = F−1

{
ĝv(kt) exp

(
−1

2
k2

t τ
2λ

)}
, (4.113)

and its corresponding transverse divergence b̄v(ρ, τ) = ∇t ·d̄v(ρ, τ) remain to be
evaluated. To obtain closed form expressions for d̄v and b̄v , we first substitute
the spectrum ĝv(kt) of a RWG function (equation H.12 in appendix H) given
by

ĝv(kt) =
lv

2A+
v

[
j∇k − ρ+

v

]
h+

v (kt) +
lv

2A−v

[
ρ−v − j∇k

]
h−v (kt), (4.114)

in which

h±v (kt) =
∫

T±
v

exp(−jkt · ρ)dA = F
{
T±v (ρ)

}
, (4.115)

in equation 4.113. This leads to

d̄v(ρ, τ) =
jlv

2A+
v
F−1

{
exp

(
−1

2
k2

t τ
2λ

)
∇kh

+
v (kt)

}
−

lvρ+
v

2A+
v
F−1

{
exp

(
−1

2
k2

t τ
2λ

)
h+

v (kt)
}

+

lvρ−v
2A−v

F−1

{
exp

(
−1

2
k2

t τ
2λ

)
h−v (kt)

}
−

jlv
2A−v

F−1

{
exp

(
−1

2
k2

t τ
2λ

)
∇kh

−
v (kt)

}
,

(4.116)

which by using differentiation by parts can be rewritten as

d̄v(ρ, τ) =
jlv

2A+
v
F−1

{
(ktτ

2λ + ∇k)
[
h+

v (kt) exp
(
−1

2
k2

t τ
2λ

)]}
−

lvρ+
v

2A+
v
F−1

{
exp

(
−1

2
k2

t τ
2λ

)
h+

v (kt)
}

+

lvρ−v
2A−v

F−1

{
exp

(
−1

2
k2

t τ
2λ

)
h−v (kt)

}
−

jlv
2A−v

F−1

{
(ktτ

2λ + ∇k)
[
h−v (kt) exp

(
−1

2
k2

t τ
2λ

)]}
.

(4.117)
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Figure 4.31: Domain, vectors and scalars used in the RWG function.

See section 3.7.5 for a detailed explanation of the RWG function. See figure
4.31 for a graphical representation of the domain, vectors and scalars used in
the RWG function. Note that we have defined the reference point as ρn =
(ρ(1)

n + ρ
(2)
n )/2, i.e., the center of the common interface between two adjoining

triangles. Now collecting similar terms within equation 4.117 leads to

d̄v(ρ, τ) =
lv

2A+
v

[
ρ− ρ+

v + τ2λ∇t

]
η+

v (τ, λ,ρ)+

lv

2A−v

[
ρ−v − ρ− τ2λ∇t

]
η−v (τ, λ,ρ),

(4.118)

where

η±v (τ, λ,ρ) = F−1

{
exp

(
−1

2
k2

t τ
2λ

)
h±v (kt)

}
. (4.119)

The corresponding transverse divergence is given by

b̄v(ρ, τ) =
lv

2A+
v

[
2 + (ρ− ρ+

v ) ·∇t + τ2λ∇t ·∇t

]
η+

v (τ, λ,ρ)+

lv

2A−v

[
(ρ−v − ρ) ·∇t − 2− τ2λ∇t ·∇t

]
η−v (τ, λ,ρ).

(4.120)
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Now, we are left with the evaluation of η±v (τ, λ,ρ), ∇tη
±
v (τ, λ,ρ) and ∇t ·

∇tη
±
v (τ, λ,ρ). We can write the expression for η±v (τ, λ,ρ) as

η±v (τ, λ,ρ) =T±v (ρ) ∗ 1
2πτ2λ

exp
(
− ρ2

2τ2λ

)
=
∫
T±v (ρ′)

1
2πτ2λ

exp
(
−‖ρ− ρ′‖2

2τ2λ

)
dA′

=
1

2πτ2λ
Λ±v (τ, λ,ρ),

(4.121)

where

Λ±v (τ, λ,ρ) =
∫

T±
v

exp
(
−‖ρ− ρ′‖2

2τ2λ

)
dA′. (4.122)

We can write the expression for ∇tη
±
v (τ, λ,ρ) as

∇tη
±
v (τ, λ,ρ) =

1
2πτ2λ

∫
T±

v

∇t

{
exp

(
−‖ρ− ρ′‖2

2τ2λ

)}
dA′

=− 1
2πτ2λ

∫
T±

v

ρ− ρ′

τ2λ
exp

(
−‖ρ− ρ′‖2

2τ2λ

)
dA′

=− 1
2πτ4λ

Φ±
v (τ, λ,ρ),

(4.123)

where

Φ±
v (τ, λ,ρ) =

∫
T±

v

(ρ− ρ′) exp
(
−‖ρ− ρ′‖2

2τ2λ

)
dA′. (4.124)

We can write the expression for ∇t ·∇tη
±
v (τ, λ,ρ) as

∇t ·∇tη
±
v (τ, λ,ρ) =

1
2πτ2λ

∫
T±

v

∇t ·∇t

{
exp

(
−‖ρ− ρ′‖2

2τ2λ

)}
dA′

=
1

2πτ2λ

∫
T±

v

1
τ2λ

(
‖ρ− ρ′‖2

τ2λ
− 2
)

exp
(
−‖ρ− ρ′‖2

2τ2λ

)
dA′

=
1

2πτ6λ
Ψ±

v (τ, λ,ρ)− 1
πτ4λ

Λ±v (τ, λ,ρ),

(4.125)

where

Ψ±
v (τ, λ,ρ) =

∫
T±

v

‖ρ− ρ′‖2 exp
(
−‖ρ− ρ′‖2

2τ2λ

)
dA′. (4.126)

By using equations 4.121 and 4.123, we can write the expression for d̄v as

d̄v(ρ, τ) =
lv

4πA+
v τ2λ

[
(ρ− ρ+

v )Λ+
v (τ, λ,ρ)−Φ+

v (τ, λ,ρ)
]
+

lv

4πA−v τ2λ

[
(ρ−v − ρ)Λ−v (τ, λ,ρ) + Φ−

v (τ, λ,ρ)
]
.

(4.127)
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By using equations 4.121, 4.123 and 4.125, we can write the expression for b̄v as

b̄v(ρ, τ) =
lv

4πA+
v τ4λ

[
(ρ+

v − ρ) ·Φ+
v (τ, λ,ρ) + Ψ+

v (τ, λ,ρ)
]
+

lv

4πA−v τ4λ

[
(ρ− ρ−v ) ·Φ−

v (τ, λ,ρ)−Ψ−
v (τ, λ,ρ)

]
.

(4.128)

We stress that equations 4.127 and 4.128 are an important result to evaluate
the exponential regularized RWG function. What finally remains to be done
is to find closed-form expressions (or at least sufficiently accurate numerical
approximations) for Λ±v , Φ±

v and Ψ±
v . By using the substitutions

α =
1

2τ2λ
, u = ρ− ρ′, T±v (ρ′) = T±v (ρ− u), (4.129)

dA′ ≡ dA(ρ′) = −dA(u) ≡ −dA, (4.130)

we can write

Λ±v (τ, λ,ρ) =−
∫

T±
v

exp(−αu2)dA, (4.131)

Φ±
v (τ, λ,ρ) =−

∫
T±

v

u exp(−αu2)dA, (4.132)

Ψ±
v (τ, λ,ρ) =−

∫
T±

v

u2 exp(−αu2)dA. (4.133)

We use Stokes’ theorem (equation 2.7) to reduce the surface integrations in Λ±v
and Ψ±

v to contour integrations. If we express the vector field A in Stokes’
theorem in terms of cylinder coordinates {u, φ, z} where x = u cos(φ) and y =
u sin(φ), we can write for the curl of A

∇×A =û
(
u−1∂uAz − ∂zAφ

)
+

φ̂ (∂zAu − ∂uAz) + ẑu−1 (∂u(uAφ)− ∂φAu) .
(4.134)

For a piecewise smooth surface S, we choose a flat surface (the triangle T±v )
and place it in the plane z = 0. Further, we choose a simple parametrization
S(x, y) = xx̂+yŷ and an orientation ν̂ = ẑ for S. This means that ν̂dA = ẑdA.
Finally, if we assume that

A = A(u, φ, z) = φ̂Aφ(u), (4.135)

the curl of A assumes the following expression

∇×A = ẑu−1∂u(uAφ). (4.136)

Stokes’ theorem for this specific vector field A now reads∫
S

u−1∂u(uAφ)dA =
∮

C

Aφ(u)φ̂ · τ̂d`. (4.137)
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Evaluation of Λ±v (τ, λ,ρ)

We can now simplify the expression for Λ±v (τ, λ,ρ), equation 4.131, by choosing

∇×A = −ẑ exp(−αu2). (4.138)

This implies that

u−1∂u(uAφ) = − exp(−αu2). (4.139)

When we solve for Aφ(u), we obtain

Aφ(u) =
1
2α

[
exp(−αu2)

u
− C

u

]
. (4.140)

Note that C = 1 if 0 ∈ T±v (ρ−u), otherwise C = 0. In this way we extract the
singularity for 1/u at u = 0 if 0 ∈ T±v (ρ− u). Combining this result for Aφ(u)
with Stokes’ theorem, given by equation 4.137, leads to

−
∫

T±
v

exp(−αu2)dA =
1
2α

∮
∂T±

v

[
exp(−αu2)− C

u

]
φ̂ · τ̂ d`. (4.141)

The triangular contour integration over ∂T±v is the sum of three separate straight-
line contributions. Each of them is represented by ξΛ(α,uA,uB) with uA and
uB denoting the starting and ending vertex of that particular side of the trian-
gle, respectively. A graphical representation of the definition of the vectors is
given in figure 4.32. ξΛ(α,uA,uB) can be written using a simple straight line
parametrization u(t) = uA + uABt with uAB = uB − uA as

ξΛ(α,uA,uB) =
1
2α

∫ uB

uA

[
exp(−αu2)− C

u

]
φ̂ · τ̂ d`

=
(uAB × ẑ) · uA

2α

∫ 1

0

exp(−α‖u(t)‖2)− C
‖u(t)‖2

dt,
(4.142)

where we have used

φ̂ · τ̂ d` =
(uAB × ẑ) · uA

‖u(t)‖
dt. (4.143)

We use the following change of parametrization from t to `

t(`) =
`− `A
`B − `A

, (4.144)

where ` ranges from `A for which t(`A) = 0 to `B for which t(`B) = 1 and where

`A = uA · τ̂AB ,

`B = ‖uAB‖+ uA · τ̂AB .
(4.145)
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Figure 4.32: Definition of the vectors and scalars used in the two different
straight line parametrizations. Note that the parametrization holds for arbitrary
uA and uB .

Note that `B−`A = ‖uAB‖ and τ̂AB = uAB/‖uAB‖. A graphical representation
of the definition of the vectors and scalars used in these two different types of
straight line parametrizations is also given in figure 4.32. By using this change
of parametrization, we can rewrite the Euclidean distance ‖u(t)‖ into a simple
Pythagoras distance

√
d2 + `2 for a triangle with two perpendicular sides. This

simplifies equation 4.142 to

ξΛ(α,uA,uB) =
d

2α

∫ `B

`A

1
`2 + d2

exp(−α[`2 + d2])d`−

C

2α

[
arctan

(
`B
d

)
− arctan

(
`A
d

)]
,

(4.146)

where

d = (τ̂AB × ẑ) · uA, (4.147)

denotes the (signed) length of the vector starting from the origin and ending
at the perpendicular intersection of the vector uAB . Note that the sign of d
is important and represents an oriented distance. Now if uB = βuA for some
β ∈ R, i.e., uA and uB are in line with the origin, then uB ×uA = 0 and d = 0.
This means that ξΛ(α,uA,uB) = 0. However, if uA and uB are not in line with
the origin, then d 6= 0 and we have to evaluate the integral

exp(−αd2)
∫ `B

`A

1
`2 + d2

exp(−α`2)d`, (4.148)

In the present straightforward implementation, this so-called regularization in-
tegral is evaluated by a standard numerical integration rule, which is very time
consuming if α is large. A more elaborate technique to evaluate the regulariza-
tion integral for large α is described in full detail in appendix A. This technique
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has been implemented in a stand-alone application to prove a correct function-
ing. However, due to lack of time it has not yet been implemented to generate
b̄v(ρ, τ) and d̄v(ρ, τ).

Finally, by recalling that u = ρ− ρ′, equation 4.131 can be written as

Λ±v (τ, λ,ρ) =ξΛ(α,ρ− ρA,ρ− ρB)+
ξΛ(α,ρ− ρB ,ρ− ρC) + ξΛ(α,ρ− ρC ,ρ− ρA),

(4.149)

where ρA, ρB and ρC denote the vertices of the triangle T±v , in counter-clockwise
order.

Evaluation of Φ±
v (τ, λ,ρ)

The surface integration over T±v within Φ±
v (τ, λ,ρ), equation 4.132, can be

reduced to a contour integration over ∂T±v by first noting that

u exp(−αu2) = − 1
2α

∇t exp(−αu2), (4.150)

where ∇t is defined with respect to u = ρ − ρ′. Subsequently, if we combine
this result with the reduced version of Gauss’ theorem given by equation 2.6,
we obtain

−
∫

T±
v

u exp(−αu2)dA =
1
2α

∮
∂T±

v

exp(−αu2)ν̂d`. (4.151)

The triangular contour integration over ∂T±v is the sum of three separate straight-
line contributions. Each of these contributions is represented by ξΦ(α,uA,uB)
with uA and uB denoting the starting and ending vertex of that particular
side of the triangle, respectively. ξΦ(α,uA,uB) can be written using a simple
straight line parametrization u(t) = uA + uABt with uAB = uB − uA as

ξΦ(α,uA,uB) =
1
2α

∫ uB

uA

exp(−αu2)ν̂d`

=
uAB × ẑ

2α

∫ 1

0

exp(−α‖u(t)‖2)dt.
(4.152)

We can express ξΦ in closed form as

ξΦ(α,uA,uB) =
ν̂AB

4α

√
π

α
exp(−αd2)

[
erf
(
`B
√
α
)
− erf

(
`A
√
α
)]
, (4.153)

where `A, `B and d are given by equations 4.145 and 4.147. Finally, by recalling
that u = ρ− ρ′, equation 4.132 can be written as

Φ±
v (τ, λ,ρ) =ξΦ(α,ρ− ρA,ρ− ρB)+

ξΦ(α,ρ− ρB ,ρ− ρC) + ξΦ(α,ρ− ρC ,ρ− ρA),
(4.154)

where ρA, ρB and ρC denote the vertices of the triangle T±v , in counter-clockwise
order.
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Evaluation of Ψ±
v (τ, λ,ρ)

The expression for Ψ±
v (τ, λ,ρ), equation 4.133, can be simplified by choosing

∇×A = −ẑu2 exp(−αu2). (4.155)

This implies that

u−1∂u(uAφ) = −u2 exp(−αu2). (4.156)

When we solve for Aφ(u), we obtain

Aφ(u) =
1
2α

[
exp(−αu2)

(
u+

1
αu

)
− C

αu

]
. (4.157)

Note that C = 1 if 0 ∈ T±v (ρ− u), otherwise C = 0. If we combine this result
for Aφ(ρ) with Stokes’ theorem, given by equation 4.137, this leads us to

−
∫

T±
v

u2 exp(−αu2)dA =
1
2α

∮
∂T±

v

[
exp(−αu2)

(
u+

1
αu

)
− C

αu

]
φ̂ · τ̂d`.

(4.158)

The triangular contour integration over ∂T±v is the sum of three separate straight-
line contributions. Each line integral is represented by ξΨ(α,uA,uB) with uA

and uB denoting the starting and ending vertex of that particular side of the
triangle, respectively. ξΨ(α,uA,uB) can be written using a simple straight line
parametrization u(t) = uA + uABt with uAB = uB − uA as

ξΨ(α,uA,uB) =
1
2α

∫ uB

uA

[
exp(−αu2)

(
u+

1
αu

)
− C

αu

]
φ̂ · τ̂d`

=
(uAB × ẑ) · uA

2α

∫ 1

0

[
exp(−α‖u(t)‖2) +

(
exp(−α‖u(t)‖2)− C

α‖u(t)‖2

)]
dt

= uA · ξΦ(α,uA,uB) +
ξΛ(α,uA,uB)

α
.

(4.159)

Finally, by recalling that u = ρ− ρ′, we can write equation 4.133 as

Ψ±
v (τ, λ,ρ) =ξΨ(α,ρ− ρA,ρ− ρB)+

ξΨ(α,ρ− ρB ,ρ− ρC) + ξΨ(α,ρ− ρC ,ρ− ρA),
(4.160)

where ρA, ρB and ρC denote the vertices of the triangle T±v , in counter-clockwise
order.
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Evaluation of d̄v(ρ, τ) for τ ↓ 0

To verify the correctness of equation 4.127 we evaluate d̄v(ρ, τ) for τ ↓ 0. By
using α = 1

2τ2λ , d̄v can be rewritten as

d̄v(ρ, τ) =
lv

2A+
v

α

π

[
(ρ− ρ+

v )Λ+
v (τ, λ,ρ)−Φ+

v (τ, λ,ρ)
]
+

lv

2A−v

α

π

[
(ρ−v − ρ)Λ−v (τ, λ,ρ) + Φ−

v (τ, λ,ρ)
]
.

(4.161)

Note that τ ↓ 0 is equivalent to α→∞. Then limα→∞[αΦ±
v (τ, λ,ρ)] = 0 since

limα→∞[αξΦ(α,uA,uB)] = 0 for any uA and uB . Further

lim
α→∞

∫ `B

`A

1
`2 + d2

exp(−α[`2 + d2])d` = 0. (4.162)

To evaluate d̄v for τ ↓ 0, we first consider ρ 6∈ T±v . In this case 0 6∈ T±v (ρ− u),
and accordingly C = 0. This implies that limα→∞[αξΛ(α,uA,uB)] = 0, and
thus limα→∞[αΛ±v (τ, λ,ρ)] = 0. For this case, we thus arrive at limτ↓0 d̄v(ρ, τ) =
0. Subsequently, we consider ρ ∈ T±v . In this case 0 ∈ T±v (ρ− u), and accord-
ingly C = 1. This implies that

lim
α→∞

[α
π
ξΛ(α,uA,uB)

]
=

1
2π

[
arctan

(
`B
d

)
− arctan

(
`A
d

)]
, (4.163)

which equals the 2π-normalized angle between uA and uB . The sum of the
three angles between uA and uB , between uB and uC and between uC and uA,
respectively, equals 2π. This leads us to

lim
α→∞

[α
π

Λ±v (τ, λ,ρ)
]

= 1. (4.164)

Combining these results gives us

lim
τ↓0

d̄v(ρ, τ) =


lv

2A+
v

(ρ− ρ+
v ) if ρ ∈ T+

v ,
lv

2A−
v

(ρ−v − ρ) if ρ ∈ T−v ,
0 otherwise,

(4.165)

which equals the definition of the RWG function, equation 3.90 in section 3.7.5.

Evaluation of b̄v(ρ, τ) for τ ↓ 0

To verify the correctness of equation 4.128 we evaluate b̄v(ρ, τ) for τ ↓ 0. By
using α = 1

2τ2λ , b̄v can be rewritten as

b̄v(ρ, τ) =
lv

A+
v

α2

π

[
(ρ+

v − ρ) ·Φ+
v (τ, λ,ρ) + Ψ+

v (τ, λ,ρ)
]
+

lv

A−v

α2

π

[
(ρ− ρ−v ) ·Φ−

v (τ, λ,ρ)−Ψ−
v (τ, λ,ρ)

]
.

(4.166)
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Note that limα→∞[α2Φ±
v (τ, λ,ρ)] = 0 since limα→∞[α2ξΦ(α,uA,uB)] = 0

for any uA and uB . To evaluate b̄v for τ ↓ 0, we first consider ρ 6∈ T±v .
In this case 0 6∈ T±v (ρ − u), and accordingly C = 0. By also making use
of equation 4.159, this implies that limα→∞[α2ξΨ(α,uA,uB)] = 0, and thus
limα→∞[α2Ψ±

v (τ, λ,ρ)] = 0. For this case, we thus find limτ↓0 b̄v(ρ, τ) = 0.
Subsequently, we consider ρ ∈ T±v . In this case 0 ∈ T±v (ρ− u), and accord-

ingly C = 1. By making use of equation 4.163, we find

lim
α→∞

[
α2

π
ξΨ(α,uA,uB)

]
= lim

α→∞

[α
π
ξΛ(α,uA,uB)

]
=

1
2π

[
arctan

(
`B
d

)
− arctan

(
`A
d

)]
,

(4.167)

which equals the 2π-normalized angle between uA and uB . The sum of the
three angles between uA and uB , between uB and uC and between uC and uA,
respectively, equals 2π. This leads us to

lim
α→∞

[
α2

π
Ψ±

v (τ, λ,ρ)
]

= 1. (4.168)

Combining these results gives us

lim
τ↓0

b̄v(ρ, τ) =


lv

A+
v

if ρ ∈ T+
v ,

− lv
A−

v
if ρ ∈ T−v ,

0 otherwise,

(4.169)

which can be identified as the divergence of the RWG function, equation 3.91
in section 3.7.5.

The computational structure to calculate γ̄(α)
v,r (Dmj , τ) has a similar form

as the one given in section 4.4.2.

Numerical Results

Finally, we show the numerical results of the complete acceleration technique for
this type of regularization. The configuration under consideration is the simple
basic structure described in section 4.1. Further we take λ = 3, τ1 = 0.1646
and τ2 = 1.5. The integration over τ is performed by using a repeated second-
order Gaussian quadrature integration rule on 151 subintervals of equal length
on the integration interval (0, τ2]. In figure 4.33 we have plotted b̄1(ρ, τ) and
d̄1(ρ, τ) as a function of ρ = (x, y) with τ ≈ 0. In figure 4.34 we have plotted
γ̄

(α)
1,1 (ρ, τ) as a function of ρ = (x, y) with τ ≈ 0. These figures show that these

functions are of ”almost” compact support. The numerical convolution is done
by using FFT’s; we have used a 64 by 64 grid which reaches over a quarter
of a single unit cell. The regularization integral is evaluated with a repeated
fourth-order Gaussian quadrature integration rule on 101 subintervals of equal
length on each separate line integral which is part of the triangular contour
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integration. In figure 4.35 we have plotted the integrand of ζ(α)
1,1 as a function

of τ at frequency = 8[GHz] for the contribution A1,1 to L. The broadside term
in the summation for large τ has not been separated and treated analytically.
Note that the integrand decays exponentially for large τ , and is continuous
at the transition point τ = τ1, which shows a correct implementation of the
evaluation of the integrand for small and large τ . For τ ∈ (0, τ1] we have only
taken into account a single term with index (m1;j ,m2;j) = (0, 0). In figure 4.36
we have plotted the minimum required summation index j for the series in the
integrand of ζ(α)

1,1 to converge with a relative error of 0.1[%] as a function of
τ . For τ ∈ (0, τ1] this is set to one in this figure. These figures show that for
most τ ∈ [τ1, τ2] only a single term is needed to obtain the relative error of
0.1[%]. Only near the transition point less than ten terms are needed. In figure
4.37 we have plotted the relative error of ξ(α)

v,r + ζ
(α)
v,r as a function of {v, r} at

frequency = 8[GHz]. These figures show that each element of ξ(α)
v,r + ζ

(α)
v,r has

a low relative error for α = 2 and that some elements have a relatively high
relative error of 6[%] for α = 1. In figure 4.38 we have plotted the relative
error of the contribution Av,r to L at frequency = 8 [GHz]. These relative
errors are defined with respect to the single maximum absolute value out of
all {v, r}. This figure shows that some elements for the matrix contribution
Av,r to L have a relatively high relative error of 6[%]. Figure 4.39 shows the
final reflection and transmission coefficients as a function of frequency, for which
there is an excellent agreement between the unaccelerated and the accelerated,
despite of this high relative error, computational method.

The asymmetry in relative errors of ξ(α)
v,r + ζ

(α)
v,r for α = 1 and α = 2 is

caused by two effects. The first effect is already described in section 4.2 and
corresponds to the difference of convergence behavior of ξ(α)

v,r for α = 1 and
α = 2. The second effect is caused by the fact that the result of the integration
over τ for α = 1 is determined by the accuracy for τ < τ1, whereas for α = 2
by τ > τ1. This can be seen in figure 4.35. Since we take only into account a
single term for τ < τ1, we lose accuracy compared to τ > τ1. Hence, ζ(1)

v,r is less
accurate than ζ(2)

v,r .
Even though we have limited the summation for τ < τ1 to a single term, we

obtain very accurate results for the reflection and transmission coefficients as
a function of frequency. Taking into account more terms would require larger
two-dimensional grids to sample b̄v(ρ, τ) and d̄v(ρ, τ). This is not necessary
since, for small τ , b̄v(ρ, τ) and d̄v(ρ, τ) have already small bandwidths, i.e., are
of ”almost” compact support.

4.5 Speed Improvement

The total computation time S(n) after n (different frequencies and angles of
incidence) steps for the unaccelerated computational method is proportional to
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Figure 4.33: Top figure for b̄1(ρ, τ), bottom left figure for d̄1,x(ρ, τ) and bottom
right figure for d̄1,y(ρ, τ) as a function of ρ = (x, y) with τ ≈ 0.
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the number of steps n, and is given by

S(n) = sn, (4.170)

where s denotes the time per step. It includes the computation time for matrix
assembly, matrix inversion and calculation of the scattering parameters. These
computation times are assumed constant for each step n. If matrix inversion
is done in full analytical form then this is correct. If however numerical iter-
ative techniques are used for this purpose, then computation times will show
a small variation depending on the matrix that has to be inverted. The total
computation time F (n) after n steps for the accelerated computational method
is proportional to the number of steps n added with a fixed computation time
for the generation of the lookup table for γ̄(α)

v,r (ρ, τ), and is given by

F (n) = i+ fn, (4.171)

where i denotes the time to generate the lookup table for γ̄(α)
v,r (ρ, τ), and where

f denotes the time per step. Since the matrix assembly time is reduced when
the acceleration technique is used, we have f < s. Obviously, because of i, there
is a trade off in choosing between the two methods that depends on the number
of steps n. The number of steps where both accelerated and unaccelerated
computational method need the same computation time is denoted as the break
even point nbep, and is given by

nbep =
i

s− f
, (4.172)

and is rounded off to the next nearest integer. Furhermore, we define a so-called
relative gain G(n) as the ratio between S(n) and F (n) as

G(n) =
S(n)
F (n)

=
sn

i+ fn
. (4.173)

G(n) indicates how much faster the accelerated method is compared to the
original method after n steps. Note that at break even we have

G(nbep) = 1. (4.174)

Furthermore, the so-called theoretical relative gain G∞ is defined as the gain
for which n→ inf, and is given by

G∞ = lim
n→∞

G(n) =
s

f
. (4.175)

and is the relative gain where the computation time to generate the lookup table
for γ̄(α)

v,r (ρ, τ) is ignored.
The parameters i, f and s were determined by timing various parts of the

total computation. To obtain a good estimation for these parameters, all unim-
portant parts such as graphical output are switched off. The three different
regularization methods that we used were described in detail in sections 4.4.1,
4.4.2 and 4.4.3. The configuration under consideration is the simple basic struc-
ture described in section 4.1. We take λ = 3, τ1 = 0.1646 and τ2 = 0.5. Further:
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• The first method uses a repeated fourth-order Gaussian quadrature inte-
gration rule on 201 subintervals of equal length on the integration interval
(0, τ2].

• The second method uses a repeated fourth-order Gaussian quadrature
integration rule on 201 subintervals of equal length on the integration
interval (0, τ2]. The numerical convolution is done using a 64 by 64 grid
reaching over a single unit cell.

• The third method uses a repeated second-order Gaussian quadrature inte-
gration rule on 51 subintervals of equal length on the integration interval
(0, τ2]. The numerical convolution is done using a 64 by 64 grid reaching
over a quarter of a single unit cell. The regularization integral is evalu-
ated with a repeated fourth-order Gaussian quadrature integration rule
on 101 subintervals of equal length on each separate line integral (part of
the triangular contour integration).

The broadside term in the summation for large τ has been separated and treated
analytically. The software was run on a computer with a Pentium 4 running
at 2.6[GHz] with 2[Gb] of physical memory. On this computer we obtained the
following values for i, f and s:

• Rooftop expansion functions placed in an orthogonal grid. i = 13.32[s],
f = 0.48[s], s = 3.75[s], nbep = 5, G∞ = 7.81.

• Abitrary rooftop expansion functions. i = 662.77[s], f = 0.48[s], s =
3.75[s], nbep = 203, G∞ = 7.81.

• Arbitrary RWG expansion functions. i = 4410.20[s], f = 1.32[s], s =
7.74[s], nbep = 687, G∞ = 5.86.

In figure 4.40 we have plotted the relative gain G(n), the theoretical relative
gain G∞ and the break even point nbep for these three regularization methods.

The first method is the fastest. It has the lowest generation time for the
lookup table for γ̄(α)

v,r (ρ, τ) and the time per step is almost eight times smaller
compared to the time per step in the unaccelerated method. Break even is
already reached from the fifth step onwards.

The second method has a higher generation time for the lookup table for
γ̄

(α)
v,r (ρ, τ) due to the numerical convolution. The time per step is almost eight

times smaller compared to the time per step in the unaccelerated method. Break
even is reached at a higher value for n.

The third method cannot be compared with the previous two methods. This
is due to the fact that we have more RWG than rooftop expansion functions,
i.e., more unknowns to solve. However, this method has a high generation time
for the lookup table for γ̄(α)

v,r (ρ, τ) due to both the numerical convolution and
the numerical integration within the generation of b̄v(ρ, τ) and d̄v(ρ, τ). Break
even is therefore reached at a much higher value for n. This can be reduced
by using the evaluation of the regularization integral described in appendix A.
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The time per step is almost six times smaller compared to the time per step in
the unaccelerated method.
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Figure 4.40: Relative gain G(n) (specified in equation 4.173), theoretical relative
gain G∞ (specified in equation 4.175) and break even point nbep (specified
in equation 4.172). Unit relative gain (lower dashed-dotted horizontal line).
Theoretical relative gain (upper dashed-dotted horizontal line). Break even
point (solid vertical line). Relative gain (solid curve) as a function of the number
of steps n. Top figure for rooftop expansion functions placed in an orthogonal
grid. Middle figure for arbitrary rooftop expansion functions. Bottom figure for
arbitrary RWG expansion functions.



Chapter 5

Validation

”It doesn’t matter how beautiful your theory is, it doesn’t matter
how smart you are. If it doesn’t agree with experiment, it’s wrong.”
Richard Feynman (1918-1988)

In this chapter we validate the outcome of the computational method. We
have implemented the computational method in a MATLAB software package
called Luxaflex. This software package consists of a collection of individual
computational methods for the following types of basic structures.

• Single junction: MFIE and EFIE.

• Two coupled junctions: MFIE-MFIE, EFIE-EFIE and MFIE-EFIE.

• Three coupled junctions: MFIE-MFIE-MFIE and MFIE-EFIE-EFIE.

The individual segments in between the junctions can be chosen arbitrarily,
i.e., either waveguide or layered space segments. The individual computational
methods make extensive use of a common library of functions. These functions
include implementations for transmission line responses, inner products, and
routines for adding matrix and vector contributions. The validation is done
by using internal consistency checks, by comparing results of Luxaflex with
corresponding results obtained with other simulation software packages1 and
with measurements2. These various validation techniques are first discussed in
section 5.1. Then in section 5.2, we present and validate the numerical results
of Luxaflex.

1A special word of thanks goes to dr.ir. S.M. van den Berg for his contribution to this
chapter by supplying me with his insights and withmany c©HFSS and Luxaflex simulations.

2A special word of thanks goes to ir. J. de Groot for his contribution to this chapter by
supplying me with the waveguide simulator measurements.
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5.1 Overview of Validation Techniques

In this section, we discuss three different validation techniques: internal consis-
tency in section 5.1.1, comparison with commercial software packages in section
5.1.2 and comparison with measurements in section 5.1.3.

5.1.1 Internal Consistency

This type of validation is based on the principle of energy conservation and the
reciprocity principle. The first principle states that, for a given lossless structure,
the incident time-averaged power must be equal to the outgoing time-averaged
power. This is easily checked by using the expression 3.146 for the conservation
of energy derived in section 3.9.4.

Reciprocity is a necessary condition for any solution to Maxwell’s equations
[35, chapter 11]. In its most simple form the reciprocity theorem tells us that
the measured response of a system to a source is unchanged when the source
and measurer are interchanged. To show reciprocity, it is sufficient to show
that either the impedance or admittance operator of a linear system is symmet-
ric. This internal consistency check is more thorough compared to the energy
conservation check since it takes into account the phase of the response.

5.1.2 Commercial Software Packages

This type of validation is based on the idea that different EM computational
methods should produce identical results for the same given basic structure.
These methods are widely available for a price. Some examples are: c©HFSS
[33], ADR2, c©Femlab, and c©CST Mafia. Most of these methods use the finite
element method and model the electromagnetic field for a given general complex
RF structure in terms of small three-dimensional tetrahedral building blocks.
This creates also their weakness. Finite element modeling means large compu-
tation times and large memory consumption. However finite element modeling
serves as a useful method to validate Luxaflex.

5.1.3 Measurement Techniques

This type of validation is based on the idea that our mathematical model ap-
proximates the physical reality to some desired level of accuracy. To see if this
is true we must first manufacture the basic structure under consideration and
then measure its electromagnetic response. This allow us to also test if the
modeling assumptions are chosen ideal. There are a number of facilities/devices
to do these measurements.

Far-Field Range

A modern far-field measurement facility usually consists of a large anechoic
chamber where an incident plane wave at a given frequency is created by trans-
mitting a spherical wave from a feeding system to a parabolic mirror. The result
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Figure 5.1: Far-Field range.

is a reflected plane wave which is incident on the antenna. Furthermore, the an-
tenna (basic structure) under consideration is placed on a mechanically steered
table. By rotating this table around different axes, the response of the antenna
with respect to the incident plane wave can be measured. Some examples are
shown in figures 5.1 and 5.2. This leads to a characterization of the antenna
as a function of frequency and angle of incidence. Furthermore we can measure
in a similar way, explained in section 3.10.2, the active antenna pattern. The
array finiteness and its effect on mutual coupling between the elements can be
studied.

Near-Field Range

A modern near-field measurement facility usually consists of an anechoic cham-
ber where a probing device is moved mechanically and automatically along a
predefined path near the antenna under consideration. The coupling between
the probe and the antenna leads to a characterization of the antenna since that
of the probe is known. This characterization is very local near the antenna
and enables us to see effects (such as reactive near-field effects) which are not
seen in the far field. The far field can be obtained by a near-field to far-field
transformation.

Waveguide Simulator Measurement

A waveguide simulator measurement device is a rectangular waveguide in which
we place a small number of unit-cell structures. The ends of the waveguide
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Figure 5.2: Conceptual far-field range.

are connected via a coax-to-waveguide transfer to a two-port measuring device.
This device measures the reflection and transmission coefficients as a function of
frequency. The waveguide simulator exploits the concept of infinite array theory
since it uses the image principle and the notion that any waveguide mode can
be written as a sum of two plane waves which are symmetrically oriented with
respect to the longitudinal axis of the waveguide.

This means that there is a direct link between this measurement of the finite
number of unit cells in the waveguide and the response of the infinite array for
the corresponding plane wave. The costs of the manufacturing process are re-
duced since only a small number of unit cells are needed for this measurement.
To this end, we require that the unit cell structure must exhibit a point sym-
metry in the transverse direction in order for a correct unfolding from a single
unit cell to an infinite array of unit cells due to the PEC waveguide walls.

A major disadvantage is that the angle of incidence of the plane wave in
the infinite array structure is directly related to the frequency of the incident
waveguide mode in the waveguide simulator. This means that frequency and
angle of incidence cannot be chosen independently. The freedom of this choice
depends on the number of unit cells that are placed inside the waveguide. In
addition, we have to ensure that the first propagating waveguide mode can be
excited within the frequency range of interest.

For example, let us consider the TE(1, 0) waveguide mode in a rectangular
waveguide with a width a and a height b for which kt = π/a. Subsequently we
place n square unit cells with a length and height d in a row in the waveguide.
This means that the waveguide must have dimensions a = nd and b = d. Note
that n does not necessarily have to be an integer. We only have to ensure a cor-
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Figure 5.3: Six different ways of placing unit cells inside a waveguide for which
n = 5

2 , 4, 2
√

2, 2, 3, 3
2

√
2. Each cross represents a single unit cell. [Source: lecture

notes on The Analysis of Frequency Selective Surfaces, R. Orta]

rect unfolding process of the n unit cells to the infinite array. Now the TE(0, 0)
Floquet mode in the infinite array corresponds to the TE(1, 0) waveguide mode.
Consequently, the reflection and transmission coefficients in the waveguide sim-
ulator measurement for the TE(1, 0) mode are the same for the infinite array
with an incident TE(0, 0) Floquet mode. The angles of incidence θ and φ are
defined in a polar reference system. θ and the frequency f are related by

kt =
π

a
= k0 sin(θ) ⇒ sin(θ) =

c

2nfd
. (5.1)

c denotes the speed of light. Furthermore φ = 0. Figure 5.3 presents six differ-
ent ways of placing unit cells inside a waveguide. The corresponding relations
between frequency and angle of incidence are given in figure 5.4. Here we have
assumed d = 8.4[mm]. Note that we have taken into account the cutoff fre-
quency of the TE(1, 0) waveguide mode.
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Figure 5.4: Relation between frequency and angle of incidence for the six dif-
ferent ways of placing unit cells inside a waveguide. Left figure for n = 5

2 (solid
curve), n = 4 (dashed-dotted curve), n = 2

√
2 (dotted curve). Right figure for

n = 2 (solid curve), n = 3 (dashed-dotted curve), n = 3
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5.2 Validation of the Computational Method

In this section, we present and validate the numerical results of Luxaflex for
eight different testcases. The first five testcases are concerned with different
types of frequency selective surfaces. The last three testcases are concerned
with different types of radiators.

5.2.1 Horizontal Dipole Frequency Selective Surface

Motivation of the Choice for this Structure

With this basic structure we test the computational method for three segments
with an EFIE and a dielectric junction. Further, we investigate the indepen-
dence of the electromagnetic behavior if we choose local rooftop, local RWG
and global thin-strip expansion functions to expand the unknown electric sur-
face current on the horizontal3 dipole.

Detailed Description of the Structure

The structure is schematized in figure 5.5. A single horizontal dipole of l =
5.95[mm] length and of w = 0.15[mm] width is stacked on a kapton layer of
h = 0.07[mm] thickness with a relative permittivity of εr = 3.5[]. The horizontal
dipole and the kapton layer are placed and centered in a square unit cell with
sides of d = 8.4[mm] length. The unit cells are placed in a rectangular grid with
basis vectors d1 = 8.4x̂[mm] and d2 = 8.4ŷ[mm].

3With horizontal we mean an orientation in the transverse plane.
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ẑ
-

6

d1

d2

6

?

- �

l

w

-

6

..............
............................................................... ....... ....... ..............
.......tO ŷ
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Figure 5.5: Configuration of the horizontal dipole frequency selective surface.
Bottom left plot triangular mesh and bottom right plot rectangular mesh.
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Description of the Comparison Techniques

The computational method is based on a Luxaflex model for three segments
with a dielectric junction between the first two segments and an EFIE junction
between the last two segments.

• A left probing interface is placed in the first (layered space) segment at
z = −1[mm].

• The first segment represents the free space behind the kapton layer.

• The first junction at z = 0[mm] represents the dielectric junction between
the free space and the kapton layer.

• The second segment represents the kapton layer.

• The second junction at z = 0.07[mm] represents the horizontal dipole.

• The third segment represents the free space above the horizontal dipole.

• A right probing interface is placed in the last (layered space) segment at
z = 1.07[mm] (which is 1[mm] away from the second junction).

This model was used in three different calculations where the unknown electric
surface current on the horizontal dipole was expanded using the local RWG,
local rooftop and global thin strip expansion functions.

• The first calculation is based on global thin strip expansion functions (first
10 modes).

• The second calculation is based on local rooftop expansion functions de-
fined on a rectangular mesh (given by the right plot in figure 5.5).

• The third calculation is based on local RWG expansion functions defined
on a triangular mesh (given by the left plot in figure 5.5).

The reflection coefficient between an incident TE(0, 0) and an outgoing TE(0, 0)
Floquet plane wave at the right probe is calculated. The transmission coeffi-
cient between an incident TE(0, 0) Floquet plane wave at the right probe and
an outgoing TE(0, 0) Floquet plane wave at the left probe is calculated. The
frequency f is varied from 7[GHz] to 30[GHz] in steps of 100[MHz]. The angle of
the incident TE(0, 0) Floquet plane wave is defined in a polar reference system
where the angles θ and φ vary with the frequency f given by equation 5.1 with
n = 3.

Comparison of Results

The results are presented in figure 5.6. The figure shows a very close agreement
with the numerical results produced by Luxaflex. The resonance frequency at
approximately 20[GHz] is the same for both methods. This means that the
unknown electric surface current on the horizontal dipole can be approximated
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in a good way either by using the global thin strip or by using the local rooftop
and RWG expansion functions. Furthermore, internal consistency has been
checked by using the conservation of energy principle and proved to be correct.
This supports a correct functioning of the computational method and of a large
part of the library of common functions used in all individual computational
methods.

5.2.2 Crossed Dipole Frequency Selective Surface

Motivation of the Choice for this Structure

With this basic structure we test the computational method for three segments
with an EFIE and a dielectric junction. Further, we investigate the indepen-
dence of the electromagnetic behavior if we choose local rooftop and local RWG
expansion functions to expand the unknown electric surface current on the
crossed dipole. Finally, we compare the response of this basic structure with
waveguide simulator measurements.

Detailed Description of the Structure

The structure is schematized in figure 5.7. Two dipoles each of l = 11[mm]
length and of w = 0.15[mm] width are combined in a cross which is rotated by
an angle of α = 45[deg] with respect to the x-axis and stacked on a kapton layer
of h = 0.07[mm] thickness with a relative permittivity of εr = 3.5[]. The two
dipoles and the kapton layer are centered in a square unit cell of d = 8.4[mm]
length. The unit cells are placed in a rectangular grid with basis vectors d1 =
8.4x̂[mm] and d2 = 8.4ŷ[mm].

Description of the Comparison Techniques

The computational method is based on a Luxaflex model for three segments
with a dielectric junction between the first two segments and an EFIE junction
between the last two segments.

• A left probing interface is placed in the first (layered space) segment at
z = −1[mm].

• The first segment represents the free space behind the kapton layer.

• The first junction at z = 0[mm] represents the dielectric junction between
the free space and the kapton layer.

• The second segment represents the kapton layer.

• The second junction at z = 0.07[mm] represents the crossed dipole.

• The third segment represents the free space above the crossed dipole.

• A right probing interface is placed in the last (layered space) segment at
z = 1.07[mm] (which is 1[mm] away from the second junction).
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Figure 5.6: Results for horizontal dipole frequency selective surface. Solution
based on global thin strip modes (solid curve), local rooftop expansion functions
(dashed-dotted curve) and local RWG expansion functions (dotted curve) as a
function of frequency f [GHz]. Top left figure for power reflection coefficient[dB],
bottom left figure for phase reflection coefficient[deg]. Top right figure for power
transmission coefficient[dB], bottom right figure for phase transmission coeffi-
cient[deg].
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Figure 5.7: Configuration of the crossed dipole frequency selective surface. Bot-
tom left plot triangular mesh and bottom right plot rectangular mesh.
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This model was used in three different calculations where the unknown electric
surface current on the crossed dipole was expanded using the global thin strip,
local RWG and local rooftop expansion functions.

• The first calculation is based on global thin strip expansion functions (first
10 modes).

• The second calculation is based on local rooftop expansion functions de-
fined on a rectangular mesh (given by the right plot in figure 5.7).

• The third calculation is based on local RWG expansion functions defined
on a triangular mesh (given by the left plot in figure 5.7).

The reflection coefficient between an incident TE(0, 0) and an outgoing TE(0, 0)
Floquet plane wave at the right probe is calculated. The transmission coeffi-
cient between an incident TE(0, 0) Floquet plane wave at the right probe and
an outgoing TE(0, 0) Floquet plane wave at the left probe is calculated. The
frequency f is varied from 7[GHz] to 15[GHz] in steps of 100[MHz]. The angle
of the incident TE(0, 0) Floquet plane wave is defined in a polar reference sys-
tem where the angles θ and φ vary with the frequency f given by equation 5.1
with n = 3. This relation establishes a direct link with a waveguide simulator
measurement that was carried out where three unit cells in a row were placed in
a waveguide with a width of 25.2[mm] and a height of 8.4[mm]. The measured
reflection and transmission coefficients of the TE(1, 0) waveguide mode can di-
rectly be compared with the calculated reflection and transmission coefficients
of the TE(0, 0) Floquet plane wave as a function of the frequency.

Comparison of Results

The results are presented in figure 5.8. The figure shows a good agreement
between the numerical results produced by Luxaflex, where we used the local
expansion functions, and the waveguide simulator measurements. This means
that the unknown electric surface current on the crossed dipole can be approxi-
mated in a good way either by using the local rooftop or the local RWG expan-
sion functions. The waveguide simulator measurements however show a small
approximate 500[MHz] shift to a higher frequency. This is due to a combination
of an uncertain value of the permittivity of the kapton layer and the choice of
a too simple mesh. Finer meshes lead to smaller frequency shifts with respect
to the measurements. At the cross of the two dipoles current must be able to
flow around the corner to allow for a coupling between the two dipoles. Further
at the edges of the cross we expect a significant singular edge behavior at these
corners. With the mesh given in figure 5.7 we can model current flowing around
the corner. However this singular edge behavior cannot be modeled properly
and will therefore result in an incorrect prediction of the resonance frequency.
To see the importance of the fact that current must be able to flow around the
corner we have calculated the response of the crossed dipole with the global
thin-strip functions. The result, which is also shown in figure 5.8, fails to show
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the correct behavior. Finally, internal consistency has been checked by using
the conservation of energy principle.

5.2.3 Gridded Square Frequency Selective Surface

Motivation of the Choice for this Structure

With this basic structure we test the computational method for three segments
with an EFIE and a dielectric junction. Further, we investigate the indepen-
dence of the electromagnetic behavior if we choose local rooftop and local RWG
expansion functions to expand the unknown electric surface current on the grid-
ded square. Finally, we compare the response of this basic structure with waveg-
uide simulator measurements. This structure is used within Thales Nederland
in a number of research projects. The dimensions and frequencies of operation
of this structure are not given for reasons of company confidentiality.

Detailed Description of the Structure

The structure is schematized in figure 5.9. Two square rectangular loops are
stacked on a kapton layer of thickness h with a relative permittivity of εr. The
outer rectangular loop has a heart line lo and a width wo. The inner rectangular
loop has a heart line li and a width wi. The two loops and the kapton layer are
centered in a square unit cell of size d. The unit cells are placed in a rectangular
grid with basis vectors d1 = d x̂ and d2 = d ŷ.

The circumference of a rectangular loop is closely related to a resonance
frequency of the complete structure. In the case of a loop this occurs when the
wavelength of the incident wave equals the circumference. However since there
are two loops there is interference between them which disturbs this relation.
Within Thales Nederland we have used simple lumped circuit models to describe
this coupling and to predict the new resonance frequency for given dimensions
of the rectangular loops.

Description of the Comparison Techniques

The computational method is based on a Luxaflex model for three segments
with a dielectric junction between the first two segments and an EFIE junction
between the last two segments.

• A left probing interface is placed in the first (layered space) segment.

• The first segment represents the free space behind the kapton layer.

• The first junction represents the dielectric junction between the free space
and the kapton layer.

• The second segment represents the kapton layer.

• The second junction represents the gridded square.
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Figure 5.8: Results for crossed dipole frequency selective surface. Solution based
on local rooftop expansion functions (solid curve), local RWG expansion func-
tions (dotted curve), global thin-strip expansion functions (artistic curve) and
waveguide simulator measurements (dashed-dotted curve) as a function of fre-
quency f [GHz]. Top left figure for power reflection coefficient[dB], bottom left
figure for phase reflection coefficient[deg]. Top right figure for power transmis-
sion coefficient[dB], bottom right figure for phase transmission coefficient[deg].
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• The third segment represents the free space above the gridded square.

• A right probing interface is placed in the last (layered space) segment.

This model was used in two different calculations where the unknown electric
surface current on the gridded square was expanded using the local RWG and
local rooftop expansion functions.

• The first calculation is based on local rooftop expansion functions defined
on a rectangular mesh (given by the right plot in figure 5.9).

• The second calculation is based on local RWG expansion functions defined
on a triangular mesh (given by the left plot in figure 5.9).

The reflection coefficient between an incident TE(0, 0) and an outgoing TE(0, 0)
Floquet plane wave at the right probe is calculated. The transmission coefficient
between an incident TE(0, 0) Floquet plane wave at the right probe and an out-
going TE(0, 0) Floquet plane wave at the left probe is calculated. The frequency
f is varied. The angle of the incident TE(0, 0) Floquet plane wave is defined in
a polar reference system where the angles θ and φ vary with the frequency f
given by equation 5.1 with n = 3. This relation establishes a direct link with
a waveguide simulator measurement that was carried out where three unit cells
in a row were placed in a waveguide. The measured reflection and transmission
coefficients of the TE(1, 0) waveguide mode can directly be compared with the
calculated reflection and transmission coefficients of the TE(0, 0) Floquet plane
wave as a function of the frequency.

Comparison of Results

The results are presented in figure 5.10. The figure shows a very good agreement
between the numerical results produced by Luxaflex and the waveguide simu-
lator measurements. This means that the unknown electric surface current on
the gridded square can be approximated in a good way either by using the local
rooftop or the local RWG expansion functions. To see the importance of the
fact that current must be able to flow around the corner we have calculated the
response of the gridded square with the global thin-strip functions. The result
completely fails to show a correct behavior and is therefore not shown. Fi-
nally, internal consistency has been checked by using the conservation of energy
principle.

5.2.4 Circular Loop Frequency Selective Surface

Motivation of the Choice for this Structure

With this basic structure we test the computational method for three segments
with an EFIE and a dielectric junction. We compare the response of this basic
structure with waveguide simulator measurements.
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Figure 5.10: Results for gridded square frequency selective surface. Solution
based on local rooftop expansion functions (solid curve), local RWG expan-
sion functions (dotted curve) and waveguide simulator measurements (dashed-
dotted curve) as a function of frequency. Top left figure for power reflection
coefficient[dB], bottom left figure for phase reflection coefficient[deg]. Top right
figure for power transmission coefficient[dB], bottom right figure for phase trans-
mission coefficient[deg].
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ẑ
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Figure 5.11: Configuration of the circular loop frequency selective surface. Bot-
tom figure triangular mesh.

Detailed Description of the Structure

The structure is schematized in figure 5.11. A single circular loop with a radius
of r = 4[mm] (from the center to the heart line) and w = 1[mm] width is
stacked on a kapton layer of h = 0.07[mm] thickness with a relative permittivity
of εr = 3.5[]. The circular loop and the kapton layer are centered in a square
unit cell of d = 8.4[mm] size. The unit cells are placed in a rectangular grid
with basis vectors d1 = 8.4x̂[mm] and d2 = 8.4ŷ[mm].

Description of the Comparison Techniques

The computational method is based on a Luxaflex model for three segments
with a dielectric junction between the first two segments and an EFIE junction
between the last two segments.

• A left probing interface is placed in the first (layered space) segment at
z = −1[mm].
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• The first segment represents the free space behind the kapton layer.

• The first junction at z = 0[mm] represents the dielectric junction between
the free space and the kapton layer.

• The second segment represents the kapton layer.

• The second junction at z = 0.07[mm] represents the circular loop.

• The third segment represents the free space above the circular loop.

• A right probing interface is placed in the last (layered space) segment at
z = 1.07[mm] (which is 1[mm] away from the second junction).

This model was used in a calculation where the unknown electric surface current
on the circular loop was expanded using the local RWG expansion functions
defined on a triangular mesh (given in figure 5.11). The reflection coefficient
between an incident TE(0, 0) and an outgoing TE(0, 0) Floquet plane wave at
the right probe is calculated. The transmission coefficient between an incident
TE(0, 0) Floquet plane wave at the right probe and an outgoing TE(0, 0) Floquet
plane wave at the left probe is calculated. The frequency f is varied from 7[GHz]
to 15[GHz] in steps of 100[MHz]. The angle of the incident TE(0, 0) Floquet
plane wave is defined in a polar reference system where the angles θ and φ vary
with the frequency f given by equation 5.1 with n = 3. This relation establishes
a direct link with a waveguide simulator measurement that was carried out where
three unit cells in a row were placed in a waveguide with a width of 25.2[mm]
and a height of 8.4[mm]. The measured reflection and transmission coefficients
of the TE(1, 0) waveguide mode can directly be compared with the calculated
reflection and transmission coefficients of the TE(0, 0) Floquet plane wave as a
function of the frequency.

Comparison of Results

The results are presented in figure 5.12. The figure shows a very good agree-
ment between the numerical results produced by Luxaflex and the waveguide
simulator measurements. Except in the lower frequency band we see a mismatch
between measurement and simulation. This is due to measurement difficulties
for frequencies near the cutoff frequency. Furthermore, internal consistency has
been checked by using the conservation of energy principle and proved to be
correct.

5.2.5 Square Patch Frequency Selective Surface

Motivation of the Choice for this Structure

With this basic structure we test the computational method for two segments
with an EFIE junction and a ground plane. Further, we investigate the inde-
pendence of the electromagnetic behavior if we choose local rooftop, local RWG
and global patch expansion functions to expand the unknown electric surface
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Figure 5.12: Results for circular loop frequency selective surface. Solution based
on local RWG expansion functions (solid curve) and waveguide simulator mea-
surements (dashed-dotted curve) as a function of frequency f [GHz]. Top left
figure for power reflection coefficient[dB], bottom left figure for phase reflection
coefficient[deg]. Top right figure for power transmission coefficient[dB], bottom
right figure for phase transmission coefficient[deg].
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Figure 5.13: Configuration of the square patch frequency selective surface. Bot-
tom left plot triangular mesh and bottom right plot rectangular mesh.

current on the square patch. Finally, we compare the response of this basic
structure with results obtained from the literature [1]. Note that the response
of this structure has not been measured in the waveguide simulator.

Detailed Description of the Structure

The structure is schematized in figure 5.13. A square patch of l = 14[mm]
size is stacked on a dielectric layer of h = 4.8 [mm] thickness with a relative
permittivity of εr = 2.56[]. The patch is rotated by an angle of α = 45[deg] with
respect to the x-axis. The dielectric layer with the patch is then stacked on a
ground plane. The square patch and the dielectric layer are placed and centered
in a rectangular unit cell of dx = 29[mm] length and dy = 20.5[mm] height. The
unit cells are placed in a rectangular grid with basis vectors d1 = 29x̂[mm] and
d2 = 20.5ŷ[mm].
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Description of the Comparison Techniques

The computational method is based on a Luxaflex model for three segments
with a dielectric junction between the first two segments and an MFIE junction
between the last two segments.

• The first segment represents the ground plane below the dielectric layer.
The electric conductivity was chosen large enough to represent a ground
plane.

• The first junction at z = 0[mm] represents the dielectric junction between
the ground plane and the dielectric layer.

• The second segment represents the dielectric layer.

• The second junction at z = 4.8[mm] represents the square patch.

• The third segment represents the free space above the square patch.

• A right probing interface is placed in the last (layered space) segment at
z = 5.8[mm].

This model was used in three different calculations where the unknown electric
surface current on the patch was expanded using the local RWG, local rooftop
and global patch expansion functions.

• The first calculation is based on global patch expansion functions (72 first
and second order Chebyshev modes).

• The second calculation is based on local rooftop expansion functions de-
fined on a rectangular mesh (given by the right plot in figure 5.13).

• The third calculation is based on local RWG expansion functions defined
on a triangular mesh (given by the left plot in figure 5.13).

The reflection coefficient between an incident TE(0, 0) Floquet plane wave and
an outgoing TE(0, 0) Floquet plane wave at the right probe is calculated. The
frequency f is varied from 8[GHz] to 12[GHz] in steps of 100[MHz]. The angle of
the incident TE(0, 0) Floquet plane wave is defined in a polar reference system
where the angles are fixed at θ = 30[deg] and φ = 0[deg].

Comparison of Results

The results are presented in figure 5.14. The figure shows a good agreement
between the numerical results produced by Luxaflex. Furthermore these results
are in very close agreement with the numerical results presented in [1]. This
means that the unknown electric surface current on the square patch can be
approximated in a good way either by using the global patch, the local rooftop
or the local RWG expansion functions. Furthermore, internal consistency has
been checked by using the conservation of energy principle.
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Figure 5.14: Results for square patch frequency selective surface. Solution based
on global patch expansion functions (solid curve), local rooftop expansion func-
tions (dashed-dotted curve) and local RWG expansion functions (dotted curve)
as a function of frequency f [GHz]. Top figure for power reflection coefficient[dB],
bottom figure for phase reflection coefficient[deg].
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5.2.6 Cavity Backed Patch Radiator

Motivation of the Choice for this Structure

With this basic structure we test the computational method for three segments
with two coupled MFIE junctions. We use both waveguide and layered space
segments. Further, we compare the response of this basic structure with results
obtained with c©HFSS. The dimensions and frequencies of operation of this
structure are not given for reasons of company confidentiality.

Detailed Description of the Structure

The structure is schematized in figure 5.15. It consists of three parts: a slot,
box and a patch. The slot is a waveguide of width ws and of height hs. It is
filled with a dielectric material with a relative permittivity of εr. The box is a
waveguide of width wb, of height hb and of depth h. It is filled with the same
dielectric material. The patch has a width wp and a height hp. The patch lies
on top of the box on the dielectric material. Above the patch there is free space.
The unit cells are placed in a realistic triangular grid with basis vectors d1 and
d2. In the transverse plane, all parts of this structure are centered within the
unit cell.

Description of the Comparison Techniques

The computational method is based on a Luxaflex model for three segments
with MFIE junctions between the segments.

• A left probing interface is placed in the first (waveguide) segment.

• The first segment represents the slot.

• The first junction represents the aperture between the slot and the box.

• The second segment represents the box.

• The second junction represents the interface in which the aperture around
the patch is considered.

• The last segment represents the free space above the patch.

• A right probing interface is placed in the last (layered space) segment.

This model was used in a calculation where the unknown magnetic surface
currents in both the apertures were expanded using the local RWG expansion
functions defined on a triangular mesh (given in figure 5.15). The reflection co-
efficient between an incident TE(1, 0) waveguide mode and an outgoing TE(1, 0)
waveguide mode at the left probe is calculated. This coefficient is a measure for
the mismatch loss of the complete radiating structure. The frequency is varied.
The phase shift between the elements in the basic structure is defined in a polar
reference system where the angles are fixed at θ = 0[deg] and φ = 0[deg].
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ŷ

ẑ
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Figure 5.15: Configuration of the cavity backed patch radiator. Triangular
mesh. Bottom left plot first aperture and bottom right plot second aperture.
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Figure 5.16: Results for cavity backed patch radiator. Solution based on local
RWG expansion functions (solid curve) and c©HFSS numerical results (dashed-
dotted curve) as a function of frequency. Top figure for power reflection coeffi-
cient[dB], bottom figure for phase reflection coefficient[deg].

In a second computation, we have used c©HFSS to obtain numerical results
for this configuration for comparison with Luxaflex.

Comparison of Results

The results are presented in figure 5.16. The figure shows a good agreement be-
tween the numerical results produced by Luxaflex and c©HFSS. The simulation
times for both c©HFSS and Luxaflex were for this structure an approximate two
hours. However we should note that the acceleration technique has not been
used in Luxaflex. Further Luxaflex is written in MATLAB which slows down
the computation as well. We will come back on this issue in the conclusions and
recommendations. Finally, internal consistency has been checked by using the
conservation of energy principle and proved to be correct.
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5.2.7 Open-Ended Waveguide Radiator

Motivation of the Choice for this Structure

With this basic structure we test the computational method for five segments
with two coupled MFIE junctions and two dielectric junctions. These dielectric
junctions constitute a dielectric stacked slab (also referred to as a wide angle
impedance matching sheet [59]) on top of the coupled MFIE junctions and
improve the scanning properties. We use both waveguide and layered space
segments. We investigate the independence of the electromagnetic behavior
if we choose local RWG and global waveguide mode expansion functions to
expand the unknown magnetic surface current in the apertures. Finally, we
compare the response of this basic structure with results obtained from the
literature [22, 23, 24, 25, 26, 27, 28, 29]. We note that this type of structure
is a representative candidate for a radiator. The dimensions and frequencies of
operation of this structure are not given for reasons of company confidentiality.

Detailed Description of the Structure

The structure is schematized in figure 5.17. It consists of four parts: a waveg-
uide, iris, foam layer and a so-called waim sheet. The waveguide has a width
ww and a height hw. It is filled with free space. The iris is a waveguide with a
width wi, a height hi and a depth di. It is filled with free space. The foam layer
is a layered space which consists of a material with a relative permittivity of εr.
It has a thickness of df . The waim sheet is a layered space and consists of a
single dielectric layer only. It consists of a material with a relative permittivity
of εr. It has a thickness of dw. The unit cells are placed in a triangular grid with
basis vectors d1 and d2. In the transverse direction, all parts of this structure
are centered within the unit cell.

Description of the Comparison Techniques

The computational method is based on a Luxaflex model for five segments with
MFIE junctions between the first and second two segments and dielectric junc-
tions between the third and last two segments.

• A left probing interface is placed in the first (waveguide) segment.

• The first segment represents the waveguide.

• The first junction represents the aperture between the waveguide and the
iris.

• The second segment represents the iris.

• The second junction represents the aperture between the iris and the foam
segment.

• The third segment represents the foam layer.
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Figure 5.17: Configuration of the open-ended waveguide radiator. Bottom figure
triangular mesh.
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• The third junction represents the dielectric junction between the foam
segment and the waim sheet.

• The fourth layer represents the waim sheet.

• The last junction represents the dielectric junction between the waim sheet
and the free space.

• The last segment represents the free space above the waim sheet.

• A right probing interface is placed in the last (layered space) segment.

This model was used in two different calculations where the unknown magnetic
surface currents in both apertures were expanded using the local RWG and
global waveguide mode expansion functions.

• The first calculation is based on global waveguide mode expansion func-
tions (TM(m,n) modes with m,n = 1, 2, . . . , 10 and TE(p, q) modes with
p, q = 0, 1, 2, . . . , 10 but p = q 6= 0) in both apertures (10 modes are
sufficient for convergence).

• The second calculation is based on local RWG expansion functions defined
on a triangular mesh (given in figure 5.17) in both apertures.

The reflection coefficient between an incident TE(1, 0) waveguide mode and
an outgoing TE(1, 0) waveguide mode at the left probe is calculated. This
coefficient is a measure for the mismatch loss of the complete radiating structure.
The phase shift between the elements in the basic structure is defined in a polar
reference system where the angle θ is varied from 0[deg] to 75[deg] in steps of
1[deg], and where the angle φ is fixed. Further the frequency is fixed. Finally, we
have used the results from Chan (which are based on a similar but independent
computational method) for this configuration for comparison with Luxaflex.

Comparison of Results

The results are presented in figure 5.18. The figure shows a very close agreement
between the numerical results produced by Luxaflex and from the literature [22,
23, 24, 25, 26, 27, 28, 29]. This means that the unknown magnetic surface current
in the apertures can be approximated in a good way either by using the global
waveguide mode or the local RWG expansion functions. Furthermore, internal
consistency has been checked by using the conservation of energy principle.

5.2.8 Open-Ended Waveguide with Patch Radiator

Motivation of the Choice for this Structure

With this basic structure we test the computational method for three segments
with a strongly coupled MFIE and EFIE junction. We use both waveguide
and layered space segments. We investigate the independence of the electro-
magnetic behavior if we choose local RWG, global waveguide mode and global
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Figure 5.18: Results for open-ended waveguide radiator. Solution based on
global waveguide mode expansion functions (solid curve), local RWG expansion
functions (dotted curve) and Chan numerical results (circles) as a function of
angle of incidence θ[deg] for fixed frequency with fixed φ. Top figure for power
reflection coefficient[dB], bottom figure for phase reflection coefficient[deg].



5.2 Validation of the Computational Method 199

patch expansion functions to expand the unknown electric and magnetic sur-
face currents on the patch and in the aperture. Furthermore, we compare the
response of this basic structure with results obtained from c©HFSS. The dimen-
sions and frequencies of operation of this structure are not given for reasons of
company confidentiality.

Detailed Description of the Structure

The structure is schematized in figure 5.19. It consists of three parts: a slot, a
sheet and a patch. The slot is a waveguide of width ws and of height hs. It is
filled with a dielectric material with a relative permittivity of εr. The sheet is a
layered space of thickness h. It is filled with the same dielectric material. The
patch has a width wp and a height hp. The patch lies on top of the sheet. Above
the patch there is free space. The unit cells are placed in a triangular grid with
basis vectors d1 and d2. In the transverse plane, all parts of this structure are
centered within the unit cell.

Description of the Comparison Techniques

The computational method is based on a Luxaflex model for three segments
with an MFIE junction between the first two segments, and an EFIE junction
between the last two segments.

• A left probing interface is placed in the first (waveguide) segment.

• The first segment represents the slot.

• The first junction represents the aperture between the slot and the sheet.

• The second segment represents the sheet.

• The second junction represents the patch.

• The last segment represents the free space above the patch.

• A right probing interface is placed in the last (layered space) segment.

This model was used in three different calculations where the unknown magnetic
surface current in the aperture was expanded using the local RWG and global
waveguide mode expansion functions, and where the unknown electric surface
current on the patch was expanded using local RWG and global patch expansion
functions.

• The first calculation is based on local RWG expansion functions defined
on a triangular mesh (given in figure 5.19) in both the aperture and on
the patch.

• The second calculation is based on local RWG expansion functions defined
on a triangular mesh (given by the left plot in figure 5.19) in the aperture
and global patch expansion functions (72 first and second order Chebyshev
modes) on the patch.
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Figure 5.19: Configuration of the open-ended waveguide with patch radiator.
Triangular mesh. Bottom left plot for aperture and bottom right plot for patch.
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• The third calculation is based on global waveguide mode expansion func-
tions (TM(m,n) modes with m,n = 1, 2, . . . , 10 and TE(p, q) modes with
p, q = 0, 1, 2, . . . , 10 but p = q 6= 0) in the aperture and global patch
expansion functions (72 first and second order Chebyshev modes) on the
patch.

The reflection coefficient between an incident TE(1, 0) waveguide mode and
an outgoing TE(1, 0) waveguide mode at the left probe is calculated. This
coefficient is a measure for the mismatch loss of the complete radiating structure.
The frequency is varied. The phase shift between the elements in the basic
structure is defined in a polar reference system where the angles are fixed at
θ = 30[deg] and φ = 90[deg].

Finally, we have used c©HFSS to obtain numerical results for this configu-
ration for comparison with Luxaflex.

Comparison of Results

The results are presented in figure 5.20. The figure shows a very good agreement
between the numerical results produced by Luxaflex and c©HFSS. This means
that the unknown electric and magnetic surface currents on the patch and in the
apertures can be approximated in a good way either by using the global patch or
the local RWG expansion functions. For the computation where we use global
waveguide mode expansion functions to expand the unknown magnetic surface
current in the aperture we have obtained different results. This is caused by a
strong interaction due to a short distance between the patch and the aperture.
The singular behavior of the x-directed current at the bottom and top side and
the y-directed current at the left and the right side of the aperture plays a vital
role [108]. With the global waveguide mode expansion functions this effect is
not taken into account4. To see that this is true we have plotted the electric
and magnetic surface currents on the patch and in the aperture in figure 5.21,
respectively. Furthermore, internal consistency has been checked by using the
conservation of energy principle.

4We would have to use an extremely large number of global waveguide mode expansion
functions to catch the right behavior, whereas a small number of RWG expansion functions
suffices.
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Figure 5.20: Results for open-ended waveguide with patch radiator. Solution
based on local RWG expansion functions both in slot and on patch (solid curve),
local RWG expansion functions in slot and global patch expansion functions on
patch (dashed-dotted curve), global waveguide mode expansion functions in
slot and global patch expansion functions on patch (dotted curve) and c©HFSS
numerical results (circles) as a function of frequency. Top figure for power
reflection coefficient[dB], bottom figure for phase reflection coefficient[deg].



5.2 Validation of the Computational Method 203

x
y xy

x
y xy

Figure 5.21: Absolute norm of various components of surface currents at fixed
frequency. Top left and right figure magnetic surface current in the x-direction
and y-direction in the aperture, respectively. Bottom left and right figure electric
surface current in the x-direction and y-direction on the patch, respectively.
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Chapter 6

Conclusions and
Recommendations

In the introduction we have formulated the objectives of the thesis. The first
objective was to develop a computational method that can predict the elec-
tromagnetic behavior for an arbitrary radiating array structure consisting of
waveguide feeding elements, open-ended waveguides, and multilayer frequency
selective surfaces. The second objective was to accelerate the computational
method to speed up the current and future design process of phased array an-
tennas. In this chapter we reflect on these objectives and give a number of
conclusions and recommendations.

6.1 Conclusions

We divide the conclusions on the objective of the thesis in three categories:
conclusions on the computational method, on the acceleration technique, and
on the validation.

6.1.1 Computational Method

In chapter 3 we have developed a computational method (with a software im-
plementation called Luxaflex) that calculates the unknown electromagnetic field
within the unit-cell structure. We assumed that within a single radiating ele-
ment there were parts (basic structures) in which the junctions experienced a
significant electromagnetic coupling. We assumed there was low electromagnetic
coupling between the basic structures. To determine the total electromagnetic
behavior efficiently we have exploited this property, and have separated the total
calculation into one for each basic structure, and one for combining them. For
the calculation of the electromagnetic behavior within a single basic structure
we have formulated the scattering field problem and ensured the existence and
uniqueness of a field solution within the basic structure by supplementing proper
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boundary conditions which describe the domain where the Maxwell equations
are to be solved.

The final objective of the simulation was to compute the field radiated by a
given source in a complicated structure. If the Green’s function of this structure
were known, the computation could be carried out without difficulty and there
would be no need to apply the equivalence theorem. On the contrary, by closing
some gaps or removing some metal parts, we obtained simpler regions where the
Green’s function is known, as a modal expansion. The equivalence theorem says
that in order to have the same field in the original and the modified structure,
it is necessary to introduce suitable current distributions. The actual value of
these currents cannot be given explicitly, but can be determined by the solution
of an integral equation. Integral, because the relationship between currents and
fields is always of integral type, with a kernel which is the Green’s function,
which is known in each sub-domain.

In the integral formulation, we expressed the unknown electromagnetic fields
in terms of unknown electromagnetic surface currents. These unknown surface
currents were discretized in terms of expansion functions, such as the rooftop
and Rao-Wilton-Glisson (RWG) functions, and subsequently determined by the
method of moments. This method converted the integral equation into a ma-
trix equation of the type Lu = f with linear operator L, unknown vector u, and
forcing vector f . The matrix equation was solved by means of simple inversion.
After solving the unknown surface currents with the method of moments, we
have calculated the total electromagnetic field at any given location within the
basic structure. To calculate the electromagnetic behavior of the total unit-
cell structure, we have combined the individual electromagnetic behavior of all
basic structures. For this purpose we have formulated a so-called generalized
scattering matrix, which characterized this behavior for all basic structures in-
dividually, by relating the outgoing waves in terms of the incident waves. Then
we have formulated a procedure that cascades two generalized scattering matri-
ces. The result was a new generalized scattering matrix that characterizes the
electromagnetic behavior of the combination of the two basic structures.

If we consider the case where both propagating and evanescent modes at
both probing interfaces are present, the scattering matrices for the electric and
magnetic field cannot be used individually as a measure for reflected or trans-
mitted energy. The pointwise multiplication of the scattering matrices for the
electric and magnetic field was a good alternative and direct measure for re-
flected and transmitted energy of a basic structure. Furthermore, and in this
case, the cascading procedure must be applied to both scattering matrices for
the electric and the magnetic field, respectively.

The stampmatrix/stampvector implementation turns out to be a uniform
and cheap way of implementing matrix and vector contributions to the linear
operator L. We have formulated a uniform approach where both waveguide and
layered space segments are treated in the same manner. Furthermore, we have
created a MATLAB toolbox with code for transmission-line examples, which
have been described thoroughly in appendix B. The MATLAB toolbox also
incorporates code for the interaction integrals which have been documented in
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detail in appendices C-J. These appendices make this thesis a complete manual
for Thales Nederland B.V. regarding the theory behind the Luxaflex software
implementation. This MATLAB toolbox further allowed for code reusability,
reduced the risk for implementation errors, and saved implementation time.
This is very important from an industrial point of view. This has become espe-
cially apparent in the implementation of a new computational method. Further,
by using the reversion technique for transmission lines we have saved half the
implementation time for the transmission-line examples.

We conclude that with this computational method we can predict the electromag-
netic behavior for an arbitrary radiating array structure consisting of waveguide
feeding elements, open-ended waveguides, and multilayer frequency selective sur-
faces. The prediction shows convergence when the size of the mesh elements
decreases and when the number of waveguide and layered space modes in each
segment increases.

6.1.2 Acceleration Technique

Most of the computational effort in the procedure described in chapter 3 is
spent in assembling the linear operator L. In chapter 4 we presented a novel ac-
celeration technique that translated the evaluation of an asymptotically slowly
converging series, that needs to be evaluated in assembling L, into a numeri-
cal integration over an exponentially fast converging series. This technique has
reduced the time needed to evaluate these series and consists of three steps.
The first step is a Kummer transformation, where the asymptotically slowly
converging part of the series is subtracted (which results in a rapidly converging
reduced series; four orders convergence improvement) and added (which results
in a slowly converging correction series). Conventionally, a Kummer transfor-
mation is used if the correction series can be evaluated in a fast manner either
in closed analytical form or by making use of asymptotical techniques. How-
ever this is not the case for the slowly converging correction series. Instead we
take a second step where we use an Ewald transformation. This transformation
converts the asymptotically slowly converging correction series into an integra-
tion over τ of exponentially fast decaying functions. These functions contain
an exponentially fast converging series for which the leading-order term is given
by exp(−k2

t τ
2λ). The third step is to split the integration over τ into one for

small τ , i.e., over the interval (0, τ1), and one for large τ , i.e., over the interval
(τ1,∞). Then we apply a so-called Poisson transformation for the integration
over small τ , where the relatively slow convergence of the series within the ex-
ponentially fast decaying function, caused by the behavior of exp(−k2

t τ
2λ) for

small τ , is converted into an exponentially fast converging series. The leading-
order term for the integration over small τ is given by exp(−ρ2/(4τ2λ)). The
so-called transition point τ1 is a compromise between the convergence behav-
ior of the leading-order terms exp(−k2

t τ
2λ) and exp(−ρ2/(4τ2λ)). The Poisson

transformation step has resulted in the evaluation of a so-called exponential reg-
ularization of (a combination of) the expansion and weighting functions. The
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overall success of this acceleration technique is shown to critically depend on
the possibility of being able to quickly evaluate the regularization. Since the
regularization is independent of angle of incidence, frequency and medium pa-
rameters we have calculated it at the beginning of the computation and stored
it in a lookup table. This lookup table generation creates a trade-off situation
where we can decide whether or not we use the acceleration technique. Since it
takes time to generate this lookup table, a critical amount of simulations steps
(break-even point) exists where the computational method with the acceleration
technique becomes faster than the unaccelerated version.

Furthermore, we have considered three specific choices for the expansion and
weighting functions that have led to workable analytical solutions and numerical
approximations for the exponential regularization. The first case is the rooftop
function defined in an orthogonal grid, which created a restriction in the model-
ing of the unknown surface currents. However most structures do not consist of
arbitrarily shaped metal patches and apertures, and can therefore be captured
in this orthogonal grid. An advantage of this grid is that we are able to express
the exponential regularization in terms of complementary error functions. This
method is the fastest for a given testcase when compared with the other two
methods. It has the lowest lookup table generation time and the time per step
is almost eight times smaller compared to the time per step in the unaccelerated
method. Break-even is already reached from the fifth step onwards. In some
cases where the unit-cell structure cannot be captured in an orthogonal grid
we use the second case where the rooftop function is defined in an arbitrary
grid. In this case, we express the exponential regularization as a convolution of
two analytically known functions both with ”almost” compact support. This
method has a higher lookup table generation time due to the numerical convolu-
tion. The time per step is almost eight times smaller compared to the time per
step in the unaccelerated method. Break-even is reached at a higher number of
steps. The third case is the more general Rao-Wilton-Glisson function. With
this triangular expansion function we can model the unknown currents in the
most arbitrary way. In this case, we express the exponential regularization as
a convolution of two numerically approximated functions both with ”almost”
compact support. This method has a high lookup table generation time due to
both the numerical convolution and the numerical integration within the regu-
larization integral. An analytical alternative has been given for the numerical
integration, but due to time limitations has not yet been included in the im-
plementation. Break-even is reached at a much higher number of steps. The
time per step is almost six times smaller compared to the time per step in the
unaccelerated method.

Using the acceleration technique leads to the conclusion that the computational
method is fast and produces equally accurate results (within tenths of dB’s in
power) compared to the unaccelerated method.
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6.1.3 Validation

In chapter 5 we have validated the capabilities of Luxaflex. We have validated
our computational method against available commercial software tools (such as
the finite-element code c©HFSS), and (some of them) against waveguide simula-
tor measurements. We have done this for eight different radiating structures, of
which the first five structures represented different types of frequency selective
surfaces, and where the last three structures were concerned with different types
of realistic radiators.

The results showed a close agreement between Luxaflex, c©HFSS, the liter-
ature, and the waveguide simulator measurements. A key point in this success
was that we have been able to model the unknown electromagnetic current be-
havior in a good way. We allowed for current flowing around corners and for
singular behavior of current near edges in junction structures. Internal con-
sistency has further been checked by verifying conservation of energy. The
open-ended waveguide with patch example showed that a good understanding
is required to properly model the unknown surface currents in highly coupled
junctions. In this case, the insufficient use of global expansion functions in the
slot led to an incorrect reflection and transmission behavior as a function of
the frequency. Instead we used local expansion functions to correctly model the
singular behavior on the edges of the open-ended waveguide.

The waveguide simulator is an inexpensive alternative to validate infinite
array theory. A disadvantage of such a device is a coupling between frequency
and angle of incidence. This can partly be solved by placing a different number
of unit cells inside the waveguide. In this case there is still a limitation in the
use of the device due to the cutoff frequency of the waveguide.

The validation has led to the conclusion that the computational method is ac-
curate for a number of realistic examples (within tenths of dB’s) compared to
simulations with other software packages and with measurements. The accuracy
increases when the size of the mesh elements decreases and when the number of
waveguide and layered space modes in each segment increases.

6.1.4 Applications

In this section we express our opinion on the value of the work done in this the-
sis for the industry. First, we would like to stress that, with the computational
method described in this thesis, we have been able to calculate the electromag-
netic behavior for a number of realistic radiating structures. These complicated
structures consisted of multilayer parts such as feeding slots, cavities and fre-
quency selective surfaces.

To be able to do these calculations, we have developed a large software
package, called Luxaflex, which is setup using professional industry standards.
Luxaflex has been extensively validated and is now used within the Thales
antenna departments both in Holland and in France, and within a number of
external research institutes such as TNO and IRCTR. Luxaflex contains easy
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and intuitive input file structures and intelligent and innovative post-processing
techniques, such as special visualization routines for extracting and plotting the
scattering matrix behavior.

What makes Luxaflex advantageous over other commercial software pack-
ages is that it is completely transparent and its user completely controls the
calculation. Regarding the input of Luxaflex, this means that the user has full
control over:

• the separation of the radiating element structure into basic structures,

• the characterization of the segments in terms of permittivity, permeability
and electric losses,

• the definition of the probes, i.e., its location and number of modes,

• the choice of the expansion and weighting functions within each junction
in which the expected physical behavior can be taken into account,

• the choice of the number of modes for the field expansion within the seg-
ments.

Regarding the output of Luxaflex, this means that the user can fully extract
and analyze:

• the multimode interactions, both for propagating as well as for evanescent
modes,

• the power conservation and field reciprocity,

• the far field for all the electromagnetic field components in all three Ludwig
definitions [57],

• the properties of the modes both for waveguide and layered space seg-
ments.

Whereas many other commercial software packages operate as a black box, Lux-
aflex educates, through its transparency, its user. Furthermore, the availability
of a complete MATLAB open-source toolbox and build-in object oriented pro-
gramming principles allows an expansion of Luxaflex in an easy way. This thesis
contributes in this by providing a complete theoretical background.

Since Luxaflex is a dedicated tool for planar multilayer periodic structures,
it is faster compared to general-purpose commercial software. This is already
the case when the acceleration techniques described in this thesis are not used.
Using these acceleration techniques can make Luxaflex at least five times faster.
Furthermore, the speed improvements presented in this thesis using the acceler-
ation techniques are a bit conservative. By reducing the accuracy requirements
we can gain more speed improvement.

Speed improvements become for example important in the analysis of elec-
tromagnetic bandgap structures where meshing elements are becoming small
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and corresponding spectra become large in bandwidth. The acceleration tech-
nique described in this thesis promises a significant reduction of time for these
bandgap structures.

By combining the strengths of different dedicated electromagnetic compu-
tational methods, Luxaflex can be linked through its transparency with other
such software packages to form an integrated computational method which can
be used to analyze larger complex structures. Finally, since Luxaflex is fast and
transparent, it can be embedded in an iterative design method.

6.2 Recommendations

We divide the recommendations in three categories: recommendations for the
computational method, for the acceleration technique and for the validation.

6.2.1 Computational Method

It would be useful to incorporate the circular waveguide segment and TEM mode
functions. This would enable us to take into account segments with inner perfect
electric conductors such as coaxial feeding lines. We recommend an evaluation
and implementation of the inner product between a waveguide mode and a global
patch expansion function, and between a waveguide mode and a global thin strip
expansion function. Doing this would allow us to use these global expansion
functions within waveguide segments. A further increase of the computational
speed can be achieved by implementing the core of the computational method
(kernel) in a higher programming language such as Fortran. We recommend to
keep the data postprocessing of luxaflex in MATLAB.

6.2.2 Acceleration Technique

We first recommend an implementation of the evaluation of the regularization
integral as described in appendix A. This will reduce the computation time
of the exponential regularization lookup table for the Rao-Wilton-Glisson ex-
pansion function considerably. The acceleration technique has further been
implemented and demonstrated for a magnetic-field integral equation (MFIE)
and for self-interaction terms only such as Av,r of L. It would be useful to
also implement the acceleration technique for the electric-field integral equation
(EFIE) and for the coupling terms between different junctions such as Cv,s to
L (see section 3.5).

For the Rao-Wilton-Glisson and for the arbitrary rooftop expansion func-
tion, the summation for small τ is currently done over a single term only. We
recommend an extension of the summation to more terms for both expansion
functions. This will increase the accuracy of the summation for small τ , and
will consequently increase the accuracy of the correction series. This can only
be achieved by allowing for larger FFT grids within the numerical convolution
of two exponentially regularizated functions.
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6.2.3 Validation

Using multimode waveguide simulators would further reduce the limitations of
single-mode waveguide simulators. Multimode waveguide simulators allow for
higher angles of incidence in the given frequency range of the waveguide. Note
that in this case a special multimode calibration technique is required.

6.2.4 Applications

In this section we give our opinion on the added value of these recommendations
for the industry. Put in other words: what do we foresee for the future for
Luxaflex and its applications within the industry.

Obviously we will get a faster Luxaflex due to optimization of both the cur-
rent method of moment algorithm and the acceleration techniques. This will be
even more supported by an implementation of the kernel in a higher program-
ming language. The implementation in Fortran alone will already improve the
speed by at least a factor five. This facilitates a faster and cheaper phased array
antenna design period.

A fast Luxaflex supports and can easily be embedded in an iterative de-
sign process. Furthermore, new synthesis techniques based on multimode filter
theory are coming into play and require fast computations of electromagnetic
responses. These techniques further support and make use of the idea of con-
structing a radiating element in terms of segments and junctions as described
in this thesis.

New innovative interpolation techniques can easily be incorporated in Lux-
aflex as an alternative acceleration method. These methods support a fast
computation of the electromagnetic response for a given number of design pa-
rameter variations without having to perform a complete method of moments
calculation for each variation. The matrix equation Lu = f for the method of
moment solution technique is solved for u taking into account the dependence
of L and f on the design parameters.

The incorporation of TEM modes in strip-lines and coaxial feeds into Lux-
aflex will enable us to handle more complex structures. Today we tackle this
problem by using other packages to simulate these difficult parts and subse-
quently combining the results, which slows down and complicates the complete
analysis. This has especially become apparent when we connected two struc-
tures where evanescent modes play a dominant role at the interface.

For electromagnetic bandgap structures one is interested in the prediction
of surface waves and leaky waves. Since Luxaflex is transparent and built on
structured programming principles, only minor adjustments and changes are
necessary to be able to do these type of predictions. This prediction allows us
to understand and design electromagnetic bandgap structures that forbid un-
wanted surface waves in certain bandwidths. The goal would be to reduce mu-
tual coupling and corresponding unwanted performance degradations in phased
array antennas by designing appropriate substrate materials.



Appendix A

Evaluation of the
Regularization Integral

In this appendix, we will consider the evaluation of the following integral

F (`1, `2;α) =
∫ `2

`1

1
`2 + d2

exp(−α`2)d`, (A.1)

of primary interest1, which is used in section 4.4.3 to evaluate parts of the
triangular contour integration over a sub-domain of an RWG function. Let α
be real-valued and large. In general, a closed-form expression for the integral
given in equation A.1 is not available.

A.1 Reduction to Standard Integrals

The manner in which this integral is determined depends on the position of the
boundaries `1 and `2 with respect to the point ` = 0. We distinguish between
three cases.

• For 0 < `1 < `2, we write

F (`1, `2;α) = F (`1,∞;α)− F (`2,∞;α). (A.2)

• For `1 < 0 < `2, we write

F (`1, `2;α) = F (−∞,∞;α)− F (−`1,∞;α)− F (`2,∞;α). (A.3)

• For `1 < `2 < 0, we write

F (`1, `2;α) = F (−`2,−`1;α). (A.4)
1A special word of thanks goes to prof.dr. A.G. Tijhuis for his help in solving this integral

puzzle.
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Here, we have twice used the property that the integrand is an even function of
the integration variable `.

This leaves the evaluation of F (−∞,∞;α) and F (`1,∞;α), where `1 > 0.
Once these integrals are available, the symmetry relations A.2–A.4 can be used
to evaluate the integrals, as long as α`21 � 1 and α`22 � 1.

A.2 Integral over −∞ < ` <∞
We write the integral over the real line as

F (−∞,∞;α) = exp(αd2)
∫ ∞

−∞

1
`2 + d2

exp(−α[`2 + d2])d`, (A.5)

and use the identity

1
`2 + d2

exp(−α[`2 + d2]) =
∫ ∞

α

exp(−β[`2 + d2])dβ. (A.6)

We thus end up with

F (−∞,∞;α) = exp(αd2)
∫ ∞

α

exp(−βd2)
∫ ∞

−∞
exp(−β`2)d`dβ

=exp(αd2)
∫ ∞

α

√
π

β
exp(−βd2)dβ

=2
√
π exp(αd2)

∫ ∞

α

exp(−βd2)d
√
β. (A.7)

Now we use the change of variables p = d
√
β to rewrite this result as

F (−∞,∞;α) =
2
√
π

d
exp(αd2)

∫ ∞

d
√

α

exp(−p2)dp

=
π

d
exp(αd2) erfc(d

√
α), (A.8)

which, apart from a multiplicative constant, is the complement of the error
function with the leading exponential factored out. By using the property that
the integrand of equation A.1 is an even function of `, we find [45, section 3.466]

F (−∞, 0;α) = F (0,∞;α) =
1
2
F (−∞,∞;α). (A.9)

A.3 Integral over `1 < ` <∞
Next, we consider the integral over the interval `1 < ` < ∞, where we assume
that α`21 � 1. This integral is evaluated by repeated integration by parts. We
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carry out the first step:

F (`1,∞;α) =
∫ ∞

`1

1
(`2 + d2)

1
(−2α`)

d exp(−α`2)

=
exp(−α`21)

2α`1(`21 + d2)
− 1

2α

∫ ∞

`1

(3`2 + d2) exp(−α`2)
`2(`2 + d2)2

d`. (A.10)

This inspires us to consider the evaluation of the integral:∫ ∞

`1

Pn(`2) exp(−α`2)
`2n(`2 + d2)n+1

d`, (A.11)

where Pn(x) is a polynomial of degree n whose coefficients may still depend on
d2. Using the same procedure, we have

− 1
2α

∫ ∞

`1

Pn(`2)
`2n+1(`2 + d2)n+1

d exp(−α`2) =

1
2α

Pn(`21) exp(−α`21)
`2n+1
1 (`21 + d2)n+1

− 1
2α

∫ ∞

`1

Pn+1(`2) exp(−α`2)
`2n+2(`2 + d2)n+2

d`, (A.12)

with

Pn+1(x) = [(4n+ 3)x+ (2n+ 1)d2]Pn(x)− 2x(x+ d2)P ′n(x), (A.13)

where the prime indicates differentiation with respect to x. Now, from equation
A.10, we observe that P0(x) = 1. By induction, it then follows that after N + 1
steps the following approximation is obtained:

F (`1,∞;α) ≈
N∑

n=0

(−1)n Pn(`21) exp(−α`21)
(2α)n+1 (`21 + d2)n+1 `2n+1

1

, (A.14)

where the first five polynomials are given by

P0(x) = 1,
P1(x) = 3x+ d2,

P2(x) = 15x2 + 10xd2 + 3d4,

P3(x) = 105x3 + 105x2d2 + 63xd4 + 15d6,

P4(x) = 945x4 + 1260x3d2 + 1134x2d4 + 540xd6 + 105d8. (A.15)

A special case arises for `1 = d. In [2, formula 7.4.12] we find

F (0, d;α) =
π

4d
exp(αd2)

[
1− erf2

(
d
√
α
)]
, (A.16)

which leads to

F (d,∞;α) =
π

4d
exp(αd2)

[
1− erf

(
d
√
α
) (

2− erf
(
d
√
α
))]

, (A.17)

where we have used equation A.9.
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A.4 Convergence of Series

To estimate the magnitude of Pn(x), we consider the coefficients of xn and d2n.
This seems sufficient, since one of these terms will dominate the polynomial as
n becomes large. We consider the recurrence from Pn(x) to Pn+1(x).

• The term xn is replaced by:

[(4n+ 3)x+ (2n+ 1)d2]xn − 2x(x+ d2)nxn−1 = (2n+ 3)xn+1 +O(xn).

• The term d2n is replaced by: (2n+ 1)d2n+2.

This means that the numerator in equation A.14 approximately increases in
magnitude by a factor of 2n(`21 + d2). Hence, the entire term is approximately
multiplied by a factor of −n/(α`21), which means that we have a diverging,
alternating asymptotic series that should be truncated before N ≈ α`21. The
error term can then be estimated from the integral that is left after integrating
by parts.

When α`21 is too small to obtain sufficient accuracy in this manner, the
exponent exp(−α`2) decreases slowly enough over at least part of the integration
interval to allow for an efficient brute-force numerical integration. For this case
we can assume that there is a `2 > `1 for which α`22 � 1. Then we write

F (`1,∞;α) = F (`1, `2;α) + F (`2,∞;α), (A.18)

where the first part F (`1, `2;α) will be done by the brute-force numerical integra-
tion, and the second part F (`2,∞;α) by the method described in this appendix.
However, it is expected that this more complicated procedure is required only
for a few integrals in the determination of the exponential regularization of the
RWG functions.



Appendix B

Transmission Line
Examples

In this appendix we will solve the modal transmission line equations, 2.197 and
2.198, derived in section 2.4.4 for six standard configurations. These equations
are used as part of the field representation in section 3.6 where we calculate
the linear operator L and the forcing vector f , and in section 3.8 where we
calculate the total electromagnetic field. To improve readability, we will omit
the polarization index α. This means that V α, Iα, Y α

∞, Zα
∞, kα

z , vα, iα, eα
t and

hα
t will be written as V , I, Y∞, Z∞, kz, v, i, et and ht, respectively.

B.1 Dielectric Junction with Source

In this example we will solve the modal transmission line equations, 2.197 and
2.198, for the configuration shown1 in figure B.1. This transmission line is
used for a single EFIE junction to calculate the matrix contribution for the self
interaction. It is further used as a building block for the other transmission
lines in this appendix.

6J
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t

6M
eff
t

- ẑ
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{Y (1)
∞ , k

(1)
z } {Y (2)

∞ , k
(2)
z }

�A

- B

Figure B.1: Dielectric junction with source.

1Note that the figures in this appendix are hybrid ones, i.e., a mixture between a physical
waveguide description and a modal transmission line concept with corresponding propagation
constants and characteristic admittances both of which are modal parameters.
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Effective transverse electric Jeff
t and magnetic Meff

t surface current distributions
are positioned at z = a. The medium for z < a is characterized by {η(1), ξ(1)},
and for z > a by {η(2), ξ(2)}. The current distributions are defined as

Jeff
t (ρ, z) =Jeff

t (ρ)δ(z − a), (B.1)

Meff
t (ρ, z) =Meff

t (ρ)δ(z − a). (B.2)

For this configuration, the radiation conditions at z = ±∞ prescribe the follow-
ing form for the unknown V (z)

V (z) =

{
A exp(jk(1)

z [z − a]) if z < a,

B exp(−jk(2)
z [z − a]) if z > a.

(B.3)

If we substitute equation B.3 in equation 2.197 with vα(z) = 0, we obtain for
I(z)

I(z) =

{
−AY (1)

∞ exp(jk(1)
z [z − a]) if z < a,

BY
(2)
∞ exp(−jk(2)

z [z − a]) if z > a.
(B.4)

If we combine equations B.3 and B.4 with equations 2.205 and 2.206, we find
the following boundary conditions for V (z) and I(z) at z = a{

V (a−)− V (a+) = v =< Meff
t (ρ) |ht(ρ) >,

I(a−)− I(a+) = i =< Jeff
t (ρ) | et(ρ) > .

(B.5)

V (z) is discontinuous at z = a if Meff
t is non-vanishing. I(z) has a discontinuity

at z = a if Jeff
t is non-vanishing. If we solve for the unknowns A and B, we

obtain

A =
−i+ Y

(2)
∞ v

Y
(1)
∞ + Y

(2)
∞

, (B.6)

B =− i+ Y
(1)
∞ v

Y
(1)
∞ + Y

(2)
∞

. (B.7)

If the medium for z > a becomes perfectly electric conducting, i.e., Y (2)
∞ →∞,

the unknown A reduces to

A = v, (B.8)

and characterizes the solution for a left half space with source shown in figure
B.2.

6Meff
t

- ẑ
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∞ , k

(1)
z }

�A

Figure B.2: Left half space with source.
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If the medium for z < a becomes perfectly electric conducting, i.e., Y (1)
∞ →∞,

the unknown B reduces to

B = −v, (B.9)

and characterizes the solution for a right half space with source shown in figure
B.3.

6Meff
t

- ẑ
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Figure B.3: Right half space with source.

B.2 Dielectric Junction with Incident Wave

In this example we will solve the modal transmission line equations, 2.197 and
2.198, for the configuration shown in figure B.4 [16, chapter 4]. This trans-
mission line is used as a building block for the other transmission lines in this
appendix.
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{Y (1)
∞ , k
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z } {Y (2)

∞ , k
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z }

-1

�R11

- T21

Figure B.4: Dielectric junction with left incident wave.

The medium for z < a is characterized by {η(1), ξ(1)}, and for z > a by
{η(2), ξ(2)}. First, we consider a wave with unit amplitude propagating in the
positive z-direction incident from the left side of z = a. For this configura-
tion, the radiation conditions at z = ±∞ prescribe the following form for the
unknown V (z)

V (z) =

{
exp(−jk(1)

z [z − a]) +R11 exp(jk(1)
z [z − a]) if z < a,

T21 exp(−jk(2)
z [z − a]) if z > a.

(B.10)

If we substitute equation B.10 into equation 2.197 with vα(z) = 0, we obtain
for I(z)

I(z) =

{
Y

(1)
∞ exp(−jk(1)

z [z − a])−R11Y
(1)
∞ exp(jk(1)

z [z − a]) if z < a,

T21Y
(2)
∞ exp(−jk(2)

z [z − a]) if z > a.
(B.11)
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If we combine equations B.10 and B.11 with equations 2.205 and 2.206, the
following boundary conditions must be satisfied at z = a{

V (a−)− V (a+) = 0,
I(a−)− I(a+) = 0.

(B.12)

If we solve for the unknowns R11 and T21, we obtain

R11 =
Y

(1)
∞ − Y (2)

∞

Y
(1)
∞ + Y

(2)
∞

, (B.13)

T21 =
2Y (1)

∞

Y
(1)
∞ + Y

(2)
∞

. (B.14)

If the medium for z > a becomes perfectly electric conducting, i.e., Y (2)
∞ →∞,

the unknown R11 reduces to

R11 = −1, (B.15)

and represents the solution for a left half space with incident wave shown in
figure B.5.
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Figure B.5: Left half space with incident wave.

Subsequently, we consider the same configuration with a wave with unit ampli-
tude propagating in the negative z-direction incident at the right side of z = a.
This is shown in figure B.6.
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Figure B.6: Dielectric junction with right incident wave.

For this configuration, the radiation conditions at z = ±∞ prescribe the follow-
ing form for the unknown V (z)

V (z) =

{
T12 exp(jk(1)

z [z − a]) if z < a,

exp(jk(2)
z [z − a]) +R22 exp(−jk(2)

z [z − a]) if z > a.
(B.16)
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Following the same steps used for the left incident wave, we obtain

R22 =
Y

(2)
∞ − Y (1)

∞

Y
(1)
∞ + Y

(2)
∞

, (B.17)

T12 =
2Y (2)

∞

Y
(1)
∞ + Y

(2)
∞

. (B.18)

If the medium for z < a becomes perfectly electric conducting, i.e., Y (1)
∞ →∞,

the unknown R22 reduces to

R22 = −1, (B.19)

and represents the solution for a right half space with incident wave shown in
figure B.7.
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Figure B.7: Right half space with incident wave.

Rij and Tij denote the reflection and transmission coefficient and relate the
exiting wave in medium i to the incident wave with unit amplitude in medium
j, respectively.

B.3 Dielectric Junction with Offset Source

In this example we will solve the modal transmission line equations, 2.197 and
2.198, for the configuration shown in figure B.8. This transmission line is used for
a single EFIE junction with a dielectric slab to calculate the vector contribution
for an incident field on the EFIE junction.
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Figure B.8: Dielectric junction with offset source.

Effective transverse electric Jeff
t and magnetic Meff

t surface current distribu-
tions are positioned at z = a < b. The medium for z < b is characterized by
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{η(1), ξ(1)}. The medium for z > b is characterized by {η(2), ξ(2)}. The current
distributions are defined as

Jeff
t (ρ, z) =Jeff

t (ρ)δ(z − a), (B.20)

Meff
t (ρ, z) =Meff

t (ρ)δ(z − a). (B.21)

For this configuration, the radiation conditions at z = ±∞ prescribe the follow-
ing form for the unknown V (z)

V (z) =


A exp(jk(1)

z [z − a]) if z < a,

B exp(−jk(1)
z [z − a]) +BR11 exp(jk(1)

z [z − b]) if a < z < b,

BT21 exp(−jk(2)
z [z − b]) if z > b,

(B.22)

with

R11 =
Y

(1)
∞ − Y (2)

∞

Y
(1)
∞ + Y

(2)
∞

, (B.23)

T21 =
2Y (1)

∞

Y
(1)
∞ + Y

(2)
∞

. (B.24)

Note that we have used the solution for the dielectric junction with a left incident
wave. If we substitute equation B.22 into equation 2.197 with vα(z) = 0, we
obtain for I(z)

I(z) =


−AY (1)

∞ exp(jk(1)
z [z − a]) if z < a,

BY
(1)
∞ [exp(−jk(1)

z [z − a])−R11 exp(jk(1)
z [z − b])] if a < z < b,

BT21Y
(2)
∞ exp(−jk(2)

z [z − b]) if z > b.

(B.25)

If we combine equations B.22 and B.25 with equations 2.205 and 2.206, the
following boundary conditions must be satisfied at z = a{

V (a−)− V (a+) = v =< Meff
t (ρ) |ht(ρ) >,

I(a−)− I(a+) = i =< Jeff
t (ρ) | et(ρ) > .

(B.26)

V (z) is discontinuous at z = a if Meff
t is non-vanishing. I(z) has a discontinuity

at z = a if Jeff
t is non-vanishing. When we solve for the unknowns A and B, we

obtain

A =− 1
2

(
v +

i

Y
(1)
∞

)
R11 exp(jk(1)

z [a− b]) +
1
2

(
v − i

Y
(1)
∞

)
, (B.27)

B =− 1
2

(
v +

i

Y
(1)
∞

)
. (B.28)
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B.4 Half Space with Dielectric Junction and Source

In this example we will solve the modal transmission line equations, 2.197 and
2.198, for the configuration shown in figure B.9. This transmission line is used for
a single MFIE junction with a dielectric slab to calculate the matrix contribution
for the self interaction.
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Figure B.9: Half space with dielectric junction and source.

The configuration is closed with a perfectly electric conducting wall at z = b. An
effective transverse magnetic Meff

t surface current distribution is positioned at
an infinitesimal distance from this wall. The medium for z < a is characterized
by {η(1), ξ(1)}, and for a < z < b by {η(2), ξ(2)}. The current distribution is
defined as

Meff
t (ρ, z) = Meff

t (ρ)δ(z − b). (B.29)

For this configuration, the radiation conditions at z = ±∞ prescribe the follow-
ing form for the unknown V (z)

V (z) =

{
AT12 exp(jk(1)

z [z − a]) if z < a,

AR22 exp(−jk(2)
z [z − a]) +A exp(jk(2)

z [z − b]) if a < z < b,
(B.30)

with

R22 =
Y

(2)
∞ − Y (1)

∞

Y
(1)
∞ + Y

(2)
∞

, (B.31)

T12 =
2Y (2)

∞

Y
(1)
∞ + Y

(2)
∞

. (B.32)

Note that we have used the solution for the dielectric junction with a wave
incident from the right. If we substitute equation B.30 into equation 2.197 with
vα(z) = 0, we obtain for I(z)

I(z) =

{
−AY (1)

∞ T12 exp(jk(1)
z [z − a]) if z < a,

AY
(2)
∞ [R22 exp(−jk(2)

z [z − a])− exp(jk(2)
z [z − b])] if a < z < b.

(B.33)

If we combine equations B.30 and B.32 with equations 2.205 and 2.206, the
following boundary condition must be satisfied at z = b

V (b−) = v =< Meff
t (ρ) |ht(ρ) > . (B.34)
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When we solve for the unknown A, we obtain

A =
v

1 +R22 exp(−jk(2)
z [b− a])

. (B.35)

B.5 Half Space with Offset Source

In this example we will solve the modal transmission line equations, 2.197 and
2.198, for the configuration shown in figure B.10. This transmission line is
used for a single MFIE junction with a dielectric slab to calculate the vector
contribution for an incident field on the MFIE junction.
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Figure B.10: Half space with offset source.

The configuration is closed with a perfectly electric conducting wall at z = b.
Effective transverse electric Jeff

t and magnetic Meff
t surface current distributions

are positioned at z = a < b. The medium for z < a is characterized by
{η(1), ξ(1)}, and for a < z < b by {η(2), ξ(2)}. The current distributions are
defined as

Jeff
t (ρ, z) =Jeff

t (ρ)δ(z − a), (B.36)

Meff
t (ρ, z) =Meff

t (ρ)δ(z − a). (B.37)

For this configuration, the radiation conditions at z = ±∞ prescribe the follow-
ing form for the unknown V (z)

V (z) =

{
A exp(jk(1)

z [z − a]) if z < a,

B exp(−jk(2)
z [z − a]) +BR11 exp(jk(2)

z [z − b]) if a < z < b.
(B.38)

with

R11 = −1. (B.39)

Note that we have used the solution for the left half space with an incident
wave. If we substitute equation B.38 into equation 2.197 with vα(z) = 0, we
obtain for I(z)

I(z) =

{
−AY (1)

∞ exp(jk(1)
z [z − a]) if z < a,

BY
(2)
∞ [exp(−jk(2)

z [z − a])−R11 exp(jk(2)
z [z − b])] if a < z < b.

(B.40)
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Combining equations B.38 and B.40 with equations 2.205 and 2.206 leads to the
following boundary conditions for V (z) and I(z) at z = a{

V (a−)− V (a+) = v =< Meff
t (ρ) |ht(ρ) >,

I(a−)− I(a+) = i =< Jeff
t (ρ) | et(ρ) > .

(B.41)

V (z) is discontinuous at z = a if Meff
t is non-vanishing. I(z) has a discontinuity

at z = a if Jeff
t is non-vanishing. When we solve for the unknowns A and B, we

obtain

A =
vY

(2)
∞ (1 + exp(jk(2)

z [a− b]))− i(1− exp(jk(2)
z [a− b]))

Y
(1)
∞ (1− exp(jk(2)

z [a− b])) + Y
(2)
∞ (1 + exp(jk(2)

z [a− b]))
, (B.42)

B =
−(i+ vY

(1)
∞ )

Y
(1)
∞ (1− exp(jk(2)

z [a− b])) + Y
(2)
∞ (1 + exp(jk(2)

z [a− b]))
. (B.43)

B.6 Cavity with Source

In this example we will solve the modal transmission line equations, 2.197 and
2.198, for the configuration shown in figure B.11. This transmission line is used
for a double MFIE junction to calculate the matrix contribution for the self
interaction and the coupling between the two MFIE junctions.
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a b

{Y∞, kz}
�AR11

- A

Figure B.11: Cavity with source.

Both at z = a < b and z = b the configuration is closed with perfectly electric
conducting walls. An effective transverse magnetic Meff

t surface current distri-
bution is positioned at an infinitesimal distance from the left wall. The medium
for a < z < b is characterized by {η, ξ}. The current distribution is defined as

Meff
t (ρ, z) = Meff

t (ρ)δ(z − a). (B.44)

For this configuration, the radiation conditions at z = ±∞ prescribe the follow-
ing form for the unknown V (z)

V (z) = A exp(−jkz[z − a]) +AR11 exp(jkz[z − b]) if a < z < b. (B.45)

with

R11 = −1. (B.46)
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Note that we have used the solution for the left half space with an incident
wave. When we substitute equation B.45 in equation 2.197 with vα(z) = 0, we
obtain for I(z)

I(z) = AY∞[exp(−jkz[z − a])−R11 exp(jkz[z − b])] if a < z < b. (B.47)

Combining equations B.45 and B.47 with equations 2.205 and 2.206 results in
a following boundary condition for V (z) at z = a

−V (a+) = v =< Meff
t (ρ) |ht(ρ) > . (B.48)

When we solve for the unknown A, we obtain

A =
−v

1− exp(jkz[a− b])
. (B.49)



Appendix C

Interaction between Two
Waveguides

In this appendix, we evaluate1 the inner product between the electric and mag-
netic modal fields for two different overlapping rectangular waveguides. This
inner product is used in section 3.6 where we calculate the linear operator L
and the forcing vector f . The two waveguides are specified in figure C.1.

The first waveguide has a cross section A(1) with a boundary ∂A(1). The
cross section is rectangular in shape with length a and height b. The lower left
corner of this waveguide is shifted from the origin towards x = e and y = f .

The electric and magnetic modal fields within this waveguide can be written
in terms of square integrable and normalized scalar generating functions Φ(1)

m

and Ψ(1)
m , given by equations 2.137, 2.138, 2.162 and 2.163. Further, Φ(1)

m and
Ψ(1)

m satisfy equations 2.134 and 2.159, respectively. For this special case of a
rectangular waveguide, we can solve these equations in closed form. This has
been done in section 3.7.1. The result is given by equations 3.74 and 3.75 for
Φ(1)

m , and by equations 3.76 and 3.77 for Ψ(1)
m , with substitutions Φm → Φ(1)

m ,
k′t;m → k

′(1)
t;m , Ψm → Ψ(1)

m , k′′t;m → k
′′(1)
t;m , and A→ A(1).

The second waveguide has a cross-section A(2) with a boundary ∂A(2). The
cross section of this waveguide is overlapped by the cross section of the first
waveguide, i.e., A(2) ⊂ A(1). The cross-section is rectangular in shape with
length c and height d. The lower left corner of this waveguide is shifted from
the origin towards x = g and y = h. The condition A(2) ⊂ A(1) is equivalent to
the following conditions

e < g < g + c < e+ a and f < h < h+ d < f + b. (C.1)

The electric and magnetic modal fields within this waveguide can be written in
terms of square integrable and normalized scalar generating functions Φ(2)

n and

1Computation of the projection matrix between two rectangular waveguide modes.
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Figure C.1: Two overlapping rectangular waveguides.

Ψ(2)
n given by equations 2.137, 2.138, 2.162 and 2.163. Using equations 3.74-

3.77 with substitutions Φm → Φ(2)
n , k′t;m → k

′(2)
t;n , Ψm → Ψ(2)

n , k′′t;m → k
′′(2)
t;n ,

m→ p, n→ q, a→ c, b→ d, e→ g, f → h, and A→ A(2), we directly obtain
expressions for Φ(2)

n and Ψ(2)
n . Note that for this case we have replaced the single

index n with an index pair (p, q). Note that we can place the lower-left corner
of one of the two waveguides in the origin, since the interaction will depend on
g − e and h− f . We define

α(M,P, c, e, g) ≡
∫ g+c

g

sin(M(x− e)) sin(P (x− g))dx, (C.2)

which has the following analytical form

α(M,P, c, e, g) =
c

2
sinc

( c
2
(M − P )

)
cos
(
M(e− g)− c

2
(M − P )

)
−

c

2
sinc

( c
2
(M + P )

)
cos
(
M(e− g)− c

2
(M + P )

)
.

(C.3)

We define

β(M,P, c, e, g) ≡
∫ g+c

g

cos(M(x− e)) cos(P (x− g))dx, (C.4)

which has the following analytical form

β(M,P, c, e, g) =
c

2
sinc

( c
2
(M − P )

)
cos
(
M(e− g)− c

2
(M − P )

)
+

c

2
sinc

( c
2
(M + P )

)
cos
(
M(e− g)− c

2
(M + P )

)
.

(C.5)
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We define

γ(M,P, c, e, g) ≡
∫ g+c

g

cos(M(x− e)) sin(P (x− g))dx, (C.6)

which has the following analytical form

γ(M,P, c, e, g) =
c

2
sinc

( c
2
(M − P )

)
sin
(
M(e− g)− c

2
(M − P )

)
+

c

2
sinc

( c
2
(M + P )

)
sin
(
M(g − e) +

c

2
(M + P )

)
.

(C.7)

We define

δ(M,P, c, e, g) ≡
∫ g+c

g

sin(M(x− e)) cos(P (x− g))dx, (C.8)

which has the following analytical form

δ(M,P, c, e, g) =
c

2
sinc

( c
2
(M − P )

)
sin
(
M(g − e) +

c

2
(M − P )

)
+

c

2
sinc

( c
2
(M + P )

)
sin
(
M(g − e) +

c

2
(M + P )

)
.

(C.9)

Further we define

M =
mπ

a
, N =

nπ

b
, P =

pπ

c
, Q =

qπ

d
. (C.10)

In the next four sections, we will evaluate four different possible combinations
of inner products.

C.1 TM Mode in Waveguide 1, TM Mode in
Waveguide 2

First we substitute the expressions for the two TM modal fields, i.e., equations
2.137 and 2.138, in the inner product. We obtain

< e′(1)t;m | e
′(2)
t;n >= < h′(1)t;m |h

′(2)
t;n >

=
1

k
′(1)
t;mk

′(2)
t;n

< ∇tΦ(1)
m |∇tΦ(2)

n > .
(C.11)

We can simplify the inner product on the right-hand side by using the chain
rule for differentiation by parts

(∇tΦ(2)∗

n ) ·∇tΦ(1)
m =

= ∇t · (Φ(2)∗

n ∇tΦ(1)
m )− Φ(2)∗

n ∇2
t Φ

(1)
m

= ∇t · (Φ(2)∗

n ∇tΦ(1)
m ) + (k′(1)t;m)2Φ(2)∗

n Φ(1)
m ,

(C.12)
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(since Φ(1)
m satisfies equation 2.134 and since k′(1)t;m is real-valued) and by applying

Gauss’ divergence theorem. This leads to

1

k
′(1)
t;mk

′(2)
t;n

∮
∂A(2)

Φ(2)∗

n ∂νΦ(1)
m d`+

k
′(1)
t;m

k
′(2)
t;n

< Φ(1)
m |Φ(2)

n > . (C.13)

In equation C.13, the contour integral vanishes due to the boundary condition
2.135. This means that we are left with the second term. When we substitute
the analytical solutions for Φ(1)

m and Φ(2)
n for the rectangular waveguides in

equation C.13, and if we use the definition C.2, we arrive at

< e′(1)t;m | e
′(2)
t;n >= < h′(1)t;m |h

′(2)
t;n >

=
4√
abcd

√
M2 +N2

P 2 +Q2
α (M,P, c, e, g)α (N,Q, d, f, h) .

(C.14)

Subsequently, we substitute the expressions for the two TM modal fields, i.e.,
equations 2.137 and 2.138, in the inner product. We obtain

< h′(1)t;m | e
′(2)
t;n >=− < e′(1)t;m |h

′(2)
t;n >

=
1

k
′(1)
t;mk

′(2)
t;n

< ẑ×∇tΦ(1)
m |∇tΦ(2)

n > .
(C.15)

We can simplify the inner product on the right-hand side by using the chain
rule for differentiation by parts

(∇tΦ(2)∗

n ) · (ẑ×∇tΦ(1)
m ) =

= ∇t · (Φ(2)∗

n ẑ×∇tΦ(1)
m )− Φ(2)∗

n ∇t · (ẑ× Φ(1)
m )

= ∇t · (Φ(2)∗

n ẑ×∇tΦ(1)
m ),

(C.16)

and by applying Gauss’ divergence theorem. This leads to

< h′(1)t;m | e
′(2)
t;n >=− < e′(1)t;m |h

′(2)
t;n >

=
−1

k
′(1)
t;mk

′(2)
t;n

∮
∂A(2)

Φ(2)∗

n ∂τΦ(1)
m d`.

(C.17)

In equation C.17, the contour integral vanishes due to the boundary condition
2.135. With this result, the right-hand side of equation C.17 reduces to zero. At
this type of junction, where these two (arbitrary shaped) waveguide apertures
meet, this relation holds, when the second aperture is completely covered by
the first one, and when TM modes are considered for both apertures.
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C.2 TM Mode in Waveguide 1, TE Mode in
Waveguide 2

First we substitute the expressions for the TM and TE modal fields, i.e., equa-
tions 2.137, 2.138, 2.162 and 2.163, in the inner product. We obtain

< e′(1)t;m | e
′′(2)
t;n >= < h′(1)t;m |h

′′(2)
t;n >

=
1

k
′(1)
t;mk

′′(2)
t;n

< ẑ×∇tΦ(1)
m |∇tΨ(2)

n > .
(C.18)

We can simplify the inner product on the right-hand side by using the chain
rule for differentiation by parts

(∇tΦ(1)
m ) · (∇tΨ(2)∗

n × ẑ) =

= ∇t · (Φ(1)
m ∇tΨ(2)∗

n × ẑ)− Φ(1)
m ∇t · (∇tΨ(2)∗

n × ẑ)

= ∇t · (Φ(1)
m ∇tΨ(2)∗

n × ẑ),

(C.19)

and by applying Gauss’ divergence theorem. This leads to

1

k
′(1)
t;mk

′′(2)
t;n

∮
∂A(2)

Φ(1)
m ∂τΨ(2)∗

n d`. (C.20)

When we substitute the analytical solutions for Φ(1)
m and Ψ(2)

n for the rectangular
waveguides in equation C.20, and if we use the definitions C.2 and C.4, we arrive
at

< e′(1)t;m | e
′′(2)
t;n >= < h′(1)t;m |h

′′(2)
t;n >

=
2√

(M2 +N2)(P 2 +Q2)

√
εpεq
abcd

[NPα (M,P, c, e, g)β (N,Q, d, f, h)−
MQβ (M,P, c, e, g)α (N,Q, d, f, h)].

(C.21)

Subsequently, we substitute the expressions for the TM and TE modal fields,
i.e., equations 2.137, 2.138, 2.162 and 2.163, in the inner product. We obtain

< h′(1)t;m | e
′′(2)
t;n > = − < e′(1)t;m |h

′′(2)
t;n >

=
−1

k
′(1)
t;mk

′′(2)
t;n

< ∇tΦ(1)
m |∇tΨ(2)

n > .
(C.22)

If we substitute the analytical solutions for Φ(1)
m and Ψ(2)

n for the rectangular
waveguides in equation C.22, and if we use the definitions C.6 and C.8, we arrive
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at

< h′(1)t;m | e
′′(2)
t;n >=− < e′(1)t;m |h

′′(2)
t;n >

=
2√

(M2 +N2)(P 2 +Q2)

√
εpεq
abcd

[MPγ (M,P, c, e, g) δ (N,Q, d, f, h) +
NQδ (M,P, c, e, g) γ (N,Q, d, f, h)].

(C.23)

C.3 TE Mode in Waveguide 1, TM Mode in
Waveguide 2

First we substitute the expressions for the TE and TM modal fields, i.e., equa-
tions 2.137, 2.138, 2.162 and 2.163, in the inner product. We obtain

< e′′(1)t;m | e
′(2)
t;n >= < h′′(1)t;m |h

′(2)
t;n >

=
1

k
′′(1)
t;m k

′(2)
t;n

< ∇tΨ(1)
m | ẑ×∇tΦ(2)

n > .
(C.24)

We can simplify the inner product on the right-hand side by using the chain
rule for differentiation by parts

(∇tΨ(1)
m ) · (ẑ×∇tΦ(2)∗

n ) =

= ∇t · (Ψ(1)
m ẑ×∇tΦ(2)∗

n )−Ψ(1)
m ∇t · (ẑ×∇tΦ(2)∗

n )

= ∇t · (Ψ(1)
m ẑ×∇tΦ(2)∗

n ),

(C.25)

and by applying Gauss’ divergence theorem. This leads to

< e′′(1)t;m | e
′(2)
t;n >= < h′′(1)t;m |h

′(2)
t;n >

=
−1

k
′′(1)
t;m k

′(2)
t;n

∮
∂A(2)

Ψ(1)
m ∂τΦ(2)∗

n d`.
(C.26)

Furthermore, the contour integral vanishes due to the boundary condition 2.135.
With this result, the inner products given in equation C.26 reduce to zero. At
this type of junction, where these two (arbitrarily shaped) waveguide apertures
meet, this relation holds, provided that the second aperture is completely cov-
ered by the first aperture, when TE modes are considered for the first aperture,
and TM modes for the second aperture.

Subsequently, we substitute the expressions for the TE and TM modal fields,
i.e., equations 2.137, 2.138, 2.162 and 2.163, in the inner product. We obtain

< h′′(1)t;m | e
′(2)
t;n > = − < e′′(1)t;m |h

′(2)
t;n >

=
1

k
′′(1)
t;m k

′(2)
t;n

< ∇tΨ(1)
m |∇tΦ(2)

n > .
(C.27)
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We can simplify the inner product on the right-hand side by using the chain
rule for differentiation by parts

(∇tΨ(1)
m ) ·∇tΦ(2)∗

n =

= ∇t · (Φ(2)∗

n ∇tΨ(1)
m )− Φ(2)∗

n ∇2
t Ψ

(1)
m

= ∇t · (Φ(2)∗

n ∇tΨ(1)
m ) + (k′′(1)t;m )2Φ(2)∗

n Ψ(1)
m ,

(C.28)

(since Ψ(1)
m satisfies equation 2.159 and since k

′′(1)
t;m is real) and by applying

Gauss’ divergence theorem. This leads to

1

k
′′(1)
t;m k

′(2)
t;n

∮
∂A(2)

Φ(2)∗

n ∂νΨ(1)
m d`+

k
′′(1)
t;m

k
′(2)
t;n

< Ψ(1)
m |Φ(2)

n > . (C.29)

In equation C.29, the contour integral vanishes due to boundary condition 2.135.
This leaves us with the second term in equation C.29. If we substitute the
analytical solutions for Ψ(1)

m and Φ(2)
n for the rectangular waveguides in equation

C.29, and if we use the definition C.6, we arrive at

< h′′(1)t;m | e
′(2)
t;n >=− < e′′(1)t;m |h

′(2)
t;n >

=2
√
εmεn
abcd

√
M2 +N2

P 2 +Q2
γ (M,P, c, e, g) γ (N,Q, d, f, h) .

(C.30)

C.4 TE Mode in Waveguide 1, TE Mode in Waveg-
uide 2

First we substitute the expressions for the two TE modal fields, i.e., equations
2.162 and 2.163, in the inner product. We obtain

< e′′(1)t;m | e
′′(2)
t;n > =< h′′(1)t;m |h

′′(2)
t;n >

=
1

k
′′(1)
t;m k

′′(2)
t;n

< ∇tΨ(1)
m |∇tΨ(2)

n > .
(C.31)

We can simplify the inner product on the right-hand side by using the chain
rule for differentiation by parts

(∇tΨ(1)
m ) ·∇tΨ(2)∗

n =

= ∇t · (Ψ(1)
m ∇tΨ(2)∗

n )−Ψ(1)
m ∇2

t Ψ
(2)∗

n

= ∇t · (Ψ(1)
m ∇tΨ(2)∗

n ) + (k′′(2)t;n )2Ψ(1)
m Ψ(2)∗

n ,

(C.32)

(since Ψ(2)
n satisfies equation 2.159 and since k

′′(2)
t;n is real) and by applying

Gauss’ divergence theorem. This leads to

1

k
′′(1)
t;m k

′′(2)
t;n

∮
∂A(2)

Ψ(1)
m ∂νΨ(2)∗

n d`+
k
′′(2)
t;n

k
′′(1)
t;m

< Ψ(1)
m |Ψ(2)

n > . (C.33)
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Furthermore, the contour integral vanishes due to boundary condition 2.135.
This leaves only the second term in equation C.33. When we substitute the
analytical solutions for Ψ(1)

m and Ψ(2)
n for the rectangular waveguides in equation

C.33, and if we use the definition C.4, we arrive at

< e′′(1)t;m | e
′′(2)
t;n >= < h′′(1)t;m |h

′′(2)
t;n >

=
√
εmεnεpεq
abcd

√
P 2 +Q2

M2 +N2

β (M,P, c, e, g)β (N,Q, d, f, h) .

(C.34)

Subsequently, we substitute the expressions for the two TE modal fields, i.e.,
equations 2.162 and 2.163, in the inner product. We obtain

< h′′(1)t;m | e
′′(2)
t;n > = − < e′′(1)t;m |h

′′(2)
t;n >

=
1

k
′′(1)
t;m k

′′(2)
t;n

< ∇tΨ(1)
m |∇tΨ(2)

n × ẑ > .
(C.35)

If we substitute the analytical solutions for Ψ(1)
m and Ψ(2)

n for the rectangular
waveguides in equation C.35, and if we use the definitions C.6 and C.8, we arrive
at

< h′′(1)t;m | e
′′(2)
t;n >=− < e′′(1)t;m |h

′′(2)
t;n >

=
1√

(M2 +N2)(P 2 +Q2)

√
εmεnεpεq
abcd

[MQδ (M,P, c, e, g) γ (N,Q, d, f, h)−
NPγ (M,P, c, e, g) δ (N,Q, d, f, h)].

(C.36)

C.5 Summary

In this appendix we have obtained the following interaction integrals between
modes in two waveguides. For the coupling between two TM modes, we have

< e′(1)t;m | e
′(2)
t;n >= < h′(1)t;m |h

′(2)
t;n >

=
4√
abcd

√
M2 +N2

P 2 +Q2
α (M,P, c, e, g)α (N,Q, d, f, h) ,

(C.37)

and

< h′(1)t;m | e
′(2)
t;n >= − < e′(1)t;m |h

′(2)
t;n >= 0. (C.38)
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For the coupling between a TM mode in the first waveguide and a TE mode in
the second waveguide, we have

< e′(1)t;m | e
′′(2)
t;n >= < h′(1)t;m |h

′′(2)
t;n >

=
2√

(M2 +N2)(P 2 +Q2)

√
εpεq
abcd

[NPα (M,P, c, e, g)β (N,Q, d, f, h)−
MQβ (M,P, c, e, g)α (N,Q, d, f, h)],

(C.39)

and

< h′(1)t;m | e
′′(2)
t;n >=− < e′(1)t;m |h

′′(2)
t;n >

=
2√

(M2 +N2)(P 2 +Q2)

√
εpεq
abcd

[MPγ (M,P, c, e, g) δ (N,Q, d, f, h) +
NQδ (M,P, c, e, g) γ (N,Q, d, f, h)].

(C.40)

For the coupling between a TE mode in the first waveguide and a TM mode in
the second waveguide, we have

< e′′(1)t;m | e
′(2)
t;n >=< h′′(1)t;m |h

′(2)
t;n >= 0, (C.41)

and

< h′′(1)t;m | e
′(2)
t;n >=− < e′′(1)t;m |h

′(2)
t;n >

=2
√
εmεn
abcd

√
M2 +N2

P 2 +Q2
γ (M,P, c, e, g) γ (N,Q, d, f, h) .

(C.42)

For the coupling between two TE modes we have

< e′′(1)t;m | e
′′(2)
t;n >= < h′′(1)t;m |h

′′(2)
t;n >

=
√
εmεnεpεq
abcd

√
P 2 +Q2

M2 +N2

β (M,P, c, e, g)β (N,Q, d, f, h) ,

(C.43)

and

< h′′(1)t;m | e
′′(2)
t;n >=− < e′′(1)t;m |h

′′(2)
t;n >

=
1√

(M2 +N2)(P 2 +Q2)

√
εmεnεpεq
abcd

[MQδ (M,P, c, e, g) γ (N,Q, d, f, h)−
NPγ (M,P, c, e, g) δ (N,Q, d, f, h)].

(C.44)
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Appendix D

Interaction between a
Waveguide and a Layered
Space

In this appendix, we will evaluate1 the inner product between the electric and
magnetic modal fields for a layered space and a rectangular waveguide. This
waveguide is specified in figure D.1.

The waveguide has a cross section A with a boundary ∂A. The cross section
is rectangular in shape with length a and height b. The lower left corner of this
waveguide is shifted from the origin towards x = e and y = f .

The electric and magnetic modal fields within this waveguide can be written
in terms of square integrable and normalized scalar generating functions Φm

1Computation of the projection matrix between a rectangular waveguide mode and a lay-
ered space mode.

-

6

O............................................................................. ....... ....... .....................tẑ

ŷ
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A
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-�
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?

b

Figure D.1: Rectangular waveguide.
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and Ψm, given by equations 2.137, 2.138, 2.162 and 2.163. Further, Φm and
Ψm satisfy the Helmholtz equations 2.134 and 2.159, respectively. Given the
rectangular shape of the waveguide, we can solve these equations in closed form.
This has been done in section 3.7.1. The result is given by equations 3.74 and
3.75 for Φm, and by equations 3.76 and 3.77 for Ψm.

The electric and magnetic modal fields within the layered space are given by
equations 2.174, 2.175, 2.181 and 2.182. We define

α(M,kx, a, e) ≡
∫ e+a

e

sin(M(x− e)) exp(−jkxx)dx, (D.1)

which has the following analytical form

α(M,kx, a, e) =
ja
2

sinc
(a

2
[M + kx]

)
exp

(
− ja

2
[M + kx]− jkxe

)
−

ja
2

sinc
(a

2
[M − kx]

)
exp

(
ja
2

[M − kx]− jkxe

)
.

(D.2)

We define

β(M,kx, a, e) ≡
∫ e+a

e

cos(M(x− e)) exp(−jkxx)dx, (D.3)

which has the following analytical form

β(M,kx, a, e) =
a

2
sinc

(a
2
[M + kx]

)
exp

(
− ja

2
[M + kx]− jkxe

)
+

a

2
sinc

(a
2
[M − kx]

)
exp

(
ja
2

[M − kx]− jkxe

)
.

(D.4)

Further we define

M =
mπ

a
, N =

nπ

b
. (D.5)

In the next four sections, we will evaluate four different possible combinations
of inner products.

D.1 TM Mode in Waveguide, TM Mode in Lay-
ered Space

First we substitute the expressions for the two TM modal fields, i.e., equations
2.137, 2.138, 2.174 and 2.175, in the inner product. We obtain

< e′t(kt) | e′t;m > =< h′t(kt) |h′t;m >

= − j
2πk′t;m

< k̂ exp(−jkt · ρ) |∇tΦm > .
(D.6)
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We can simplify the inner product on the right-hand side by using the chain
rule for differentiation by parts

(k̂ exp(−jkt · ρ)) ·∇tΦm =∇t · (k̂ exp(−jkt · ρ)Φm)−
Φm∇t · (k̂ exp(−jkt · ρ)), (D.7)

and by applying Gauss’ divergence theorem. This leads to

− j
2πk′t;m

∮
∂V

k̂ exp(−jkt · ρ)Φ∗
m · ν̂d`+

j
2πk′t;m

< ∇t · (k̂ exp(−jkt · ρ)) |Φm > . (D.8)

In equation D.8, the contour integral vanishes due to the boundary condition
2.135. With this result, equation D.8 reduces to

kt

2πk′t;m
< exp(−jkt · ρ) |Φm > . (D.9)

If we substitute the analytical solution for Φm for the rectangular waveguide
into equation D.9, and if we make use of definition D.1, we arrive at

< e′t(kt) | e′t;m > =< h′t(kt) |h′t;m >

=
kt

π
√

(M2 +N2)ab
α (M,kx, a, e)α (N, ky, b, f) .

(D.10)

Finally, note that

< h′′t (kt) | e′t;m >= − < e′′t (kt) |h′t;m >=< e′t(kt) | e′t;m > . (D.11)

D.2 TM Mode in Waveguide, TE Mode in Lay-
ered Space

First we substitute the expressions for the TM and TE modal fields, i.e., equa-
tions 2.137, 2.138, 2.181 and 2.182, in the inner product. We obtain

< e′′t (kt) | e′t;m > =< h′′t (kt) |h′t;m >

= − j
2πk′t;m

< α̂ exp(−jkt · ρ) |∇tΦm > .
(D.12)

We can simplify the inner product on the right-hand side by using the chain
rule for differentiation by parts

(α̂ exp(−jkt · ρ)) ·∇tΦm =∇t · (α̂ exp(−jkt · ρ)Φm)−
Φm∇t · (α̂ exp(−jkt · ρ)), (D.13)
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and by applying Gauss’ divergence theorem. This leads to

− j
2πk′t;m

∮
∂V

α̂ exp(−jkt · ρ)Φ∗
m · ν̂d`+

j
2πk′t;m

< ∇t · (α̂ exp(−jkt · ρ)) |Φm > . (D.14)

In equation D.14, the contour integral vanishes due to the boundary condition
2.135. With this result, equation D.14 reduces to

< e′′t (kt) | e′t;m > =< h′′t (kt) |h′t;m >

=
j

2πk′t;m
< ∇t · (α̂ exp(−jkt · ρ)) |Φm >

= − jkt · (kt × ẑ)
2πk′t;mkt

< exp(−jkt · ρ) |Φm >= 0,

(D.15)

where we have used kt · (kt × ẑ). At this type of junction where this (arbitrary
shaped) waveguide meets the layered space, this relation holds, if TM modes are
considered for the waveguide, and if TE modes are considered for the layered
space. Finally, note that

< e′t(kt) |h′t;m >= − < h′t(kt) | e′t;m >=< e′′t (kt) |h′t;m >= 0. (D.16)

D.3 TE Mode in Waveguide, TM Mode in Lay-
ered Space

First we substitute the expressions for the TE and TM modal fields, i.e., equa-
tions 2.162, 2.163, 2.174 and 2.175, in the inner product. We obtain

< e′t(kt) | e′′t;m > =< h′t(kt) |h′′t;m >

=
j

2πk′′t;m
< α̂ exp(−jkt · ρ) |∇tΨm > .

(D.17)

This equation can be simplified by expanding the inner product. This results in
jky

2πk′′t;mkt
< exp(−jkt · ρ) | ∂xΨm > −

jkx

2πk′′t;mkt
< exp(−jkt · ρ) | ∂yΨm > . (D.18)

If we substitute the analytical solution for Ψm for the rectangular waveguide
into equation D.18, and if we make use of definitions D.1 and D.3, we arrive at

< e′t(kt) | e′′t;m >= < h′t(kt) |h′′t;m >

=
j

2πkt

√
εmεn

(M2 +N2)ab

[−kyMα (M,kx, a, e)β (N, ky, b, f) +
kxNβ (M,kx, a, e)α (N, ky, b, f)].

(D.19)
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Finally, note that

< h′′t (kt) | e′′t;m >= − < e′′t (kt) |h′′t;m >=< e′t(kt) | e′′t;m > . (D.20)

D.4 TE Mode in Waveguide, TE Mode in Lay-
ered Space

First we substitute the expressions for the two TE modal fields, i.e., equations
2.162, 2.163, 2.181 and 2.182, in the inner product. We obtain

< e′′t (kt) | e′′t;m > =< h′′t (kt) |h′′t;m >

= − j
2πk′′t;m

< k̂ exp(−jkt · ρ) |∇tΨm > .
(D.21)

This equation will be simplified by expanding the inner product. This results
in

− jkx

2πk′′t;mkt
< exp(−jkt · ρ) | ∂xΨm > −

jky

2πk′′t;mkt
< exp(−jkt · ρ) | ∂yΨm > . (D.22)

If we substitute the analytical solution for Ψm for the rectangular waveguide in
equation D.22, and if we make use of definitions D.1 and D.3, we arrive at

< e′′t (kt) | e′′t;m >= < h′′t (kt) |h′′t;m >

=
j

2πkt

√
εmεn

(M2 +N2)ab

[kxMα (M,kx, a, e)β (N, ky, b, f)+
kyNβ (M,kx, a, e)α (N, ky, b, f)].

(D.23)

Finally, note that

< e′t(kt) |h′′t;m >= − < h′t(kt) | e′′t;m >=< e′′t (kt) | e′′t;m > . (D.24)

D.5 Summary

In this appendix we have obtained the following interaction integrals between
modes in a waveguide and a layered space. For the coupling between two TM
modes, we have

< e′t(kt) | e′t;m > =< h′t(kt) |h′t;m >

=
kt

π
√

(M2 +N2)ab
α (M,kx, a, e)α (N, ky, b, f) ,

(D.25)
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and

< h′′t (kt) | e′t;m >= − < e′′t (kt) |h′t;m >=< e′t(kt) | e′t;m > . (D.26)

For the coupling between a TM mode in the waveguide and a TE mode in the
layered space, we have

< e′′t (kt) | e′t;m > =< h′′t (kt) |h′t;m >

=
j

2πk′t;m
< ∇t · (α̂ exp(−jkt · ρ)) |Φm >

= − jkt · (kt × ẑ)
2πk′t;mkt

< exp(−jkt · ρ) |Φm >= 0,

(D.27)

and

< e′t(kt) |h′t;m >= − < h′t(kt) | e′t;m >=< e′′t (kt) |h′t;m >= 0. (D.28)

For the coupling between a TE mode in the waveguide and a TM mode in the
layered space, we have

< e′t(kt) | e′′t;m >= < h′t(kt) |h′′t;m >

=
j

2πkt

√
εmεn

(M2 +N2)ab

[−kyMα (M,kx, a, e)β (N, ky, b, f) +
kxNβ (M,kx, a, e)α (N, ky, b, f)],

(D.29)

and

< h′′t (kt) | e′′t;m >= − < e′′t (kt) |h′′t;m >=< e′t(kt) | e′′t;m > . (D.30)

For the coupling between two TE modes we have

< e′′t (kt) | e′′t;m >= < h′′t (kt) |h′′t;m >

=
j

2πkt

√
εmεn

(M2 +N2)ab

[kxMα (M,kx, a, e)β (N, ky, b, f) +
kyNβ (M,kx, a, e)α (N, ky, b, f)],

(D.31)

and

< e′t(kt) |h′′t;m >= − < h′t(kt) | e′′t;m >=< e′′t (kt) | e′′t;m > . (D.32)



Appendix E

Interaction between a
Rooftop and a Waveguide

In this appendix, we will evaluate1 the inner product between the electric and
magnetic modal fields for a rectangular waveguide and a rooftop function. This
waveguide is drawn in figure E.1. The waveguide has a cross section A with
a boundary ∂A. The cross section is rectangular in shape with length a and
height b. The lower left corner of this waveguide is shifted from the origin
towards x = e and y = f .

The electric and magnetic modal fields within this waveguide can be written
in terms of square integrable and normalized scalar generating functions Φm

and Ψm, given by equations 2.137, 2.138, 2.162 and 2.163. Further, Φm and
Ψm satisfy the Helmholtz equations 2.134 and 2.159, respectively. Given the
rectangular shape of the waveguide, we can solve these equations. This has been

1Computation of the projection matrix between a rooftop function and a rectangular waveg-
uide mode.

-

6

O............................................................................. ....... ....... .....................tẑ

ŷ
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Figure E.1: Rectangular waveguide.
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Figure E.2: Domain, vectors and scalars used in the rooftop function.

done in section 3.7.1. The result is given by equations 3.74 and 3.75 for Φm,
and by equations 3.76 and 3.77 for Ψm.

The rooftop function has been defined by equation 3.86 as [104]

fk(ρ) = d̂kΛ((ρ− sk) · d̂k, pk, qk)Π((ρ− sk) · (ẑ× d̂k), wk). (E.1)

See section 3.7.4 for a detailed explanation of the rooftop function. See figure
E.2 for a graphical representation of the domain, vectors and scalars used in the
rooftop function. Further, d̂k is determined by the angle αk as

d̂k =
(

cos(αk)
sin(αk)

)
. (E.2)

Subsequently, we define a new right-handed Cartesian reference frame Oσ with
coordinates σ = (u, v) with respect to the original right-handed Cartesian ref-
erence frame Oρ with coordinates ρ = (x, y). The origin of this new frame is
translated by the vector sk to the center of the rooftop function fk(ρ). Further,
it is rotated by αk such that û is parallel to d̂k, and v̂ is parallel to ẑ× d̂k. The
transformation law between the two reference frames Oρ and Oσ is given by

ρ(σ) = sk +Rσ, σ(ρ) = RT (ρ− sk), (E.3)

with

R =
(

cos(αk) − sin(αk)
sin(αk) cos(αk)

)
. (E.4)

We define

α(a, b, c, d, e, f, w, p, q) ≡
∫ q

−p

∫ w
2

−w
2

Λ(u, p, q)Π(v, w)

cos(a+ bu+ cv) sin(d+ eu+ fv) dv du,

(E.5)
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which has the following analytical form

α(a, b, c, d, e, f, w, p, q) =θ(a+ d, a− d, b+ e, b− e, c+ f, c− f, w, p)−
θ(a+ d, a− d, b+ e, b− e, c+ f, c− f, w,−q),

(E.6)

in which

θ(a, b,c, d, e, f, w, p) = 1
2 sinc

(
1
2wf

) [
− p sinc

(
1
2pd
)

sin
(
b− 1

2pd
)

+
φ(d, b, p)

p

]
+ 1

2 sinc
(

1
2we

)
[
p sinc

(
1
2pc
)
sin
(
a− 1

2pc
)
− φ(c, a, p)

p

]
,

(E.7)

and in which

φ(g, h, p) =
pg cos(h− pg)− sin(h) + sin(h− pg)

g2
. (E.8)

Note that

lim
g→0

φ(g, h, p) = 1
2p

2 sin(h). (E.9)

Further, we introduce the short notation

M =
mπ

a
, N =

nπ

b
, (E.10)

and

Ak = M(sk,x − e), Bk = M cos(αk), Ck = −M sin(αk),
Dk = M(sk,y − f), Ek = N sin(αk), Fk = N cos(αk).

(E.11)

In the next four sections, we will evaluate four possible combinations of inner
products.

E.1 Magnetic TM Mode in Waveguide

First, we substitute the expression for the magnetic TM modal field, i.e., equa-
tion 2.138, in the inner product. We obtain

< h′t;m | fk >= − 1
k′t;m

< ∇tΦm | fk × ẑ > . (E.12)

If we use the coordinate transformation from Oρ to Oσ, we can elaborate equa-
tion E.12 as

< h′t;m | fk >= − 1
k′t;m

∫
[fk(ρ(σ))× ẑ] ·∇tΦm(ρ(σ))

∣∣∣∣ ∂ρ

∂σ

∣∣∣∣ dA(σ), (E.13)



246 E Interaction between a Rooftop and a Waveguide

which reduces to

< h′t;m | fk >= − 1
k′t;m

∫
[fk(σ)× ẑ] ·∇tΦm(sk +Rσ)dA(σ). (E.14)

If we substitute the expressions for fk, equation E.1, and the analytical solution
for Φm for the rectangular waveguide into the previous equation, we arrive at

< h′t;m | fk >=
2Ck

k′t;m
√
ab

∫ qk

−pk

∫ wk
2

−wk
2

Λ(u, pk, qk)Π(v, wk)

cos(Ak +Bku+ Ckv) sin(Dk + Eku+ Fkv) dv du+

2Fk

k′t;m
√
ab

∫ qk

−pk

∫ wk
2

−wk
2

Λ(u, pk, qk)Π(v, wk)

sin(Ak +Bku+ Ckv) cos(Dk + Eku+ Fkv) dv du.

(E.15)

Finally, using definitions E.5, E.10 and E.11, we can rewrite equation E.15 as

< h′t;m | fk >=
2Ck√

ab(M2 +N2)
α(Ak, Bk, Ck, Dk, Ek, Fk, wk, pk, qk)+

2Fk√
ab(M2 +N2)

α(Dk, Ek, Fk, Ak, Bk, Ck, wk, pk, qk).
(E.16)

E.2 Magnetic TE Mode in Waveguide

First, we substitute the expression for the magnetic TE modal field, equation
2.162, in the inner product. We obtain

< h′′t;m | fk >= − 1
k′′t;m

< ∇tΨm | fk > . (E.17)

With the aid of the coordinate transformation from Oρ to Oσ, we can write
equation E.17 as

< h′′t;m | fk >= − 1
k′′t;m

∫
fk(ρ(σ)) ·∇tΨm(ρ(σ))

∣∣∣∣ ∂ρ

∂σ

∣∣∣∣ dA(σ), (E.18)

which reduces to

< h′′t;m | fk >= − 1
k′′t;m

∫
fk(σ) ·∇tΨm(sk +Rσ)dA(σ). (E.19)

Upon substitution of the expressions for fk given in equation E.1 and the ana-
lytical solution for Ψm for the rectangular waveguide in the previous equation,
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we arrive at

< h′′t;m | fk >=
Bk
√
εmεn

k′′t;m
√
ab

∫ qk

−pk

∫ wk
2

−wk
2

Λ(u, pk, qk)Π(v, wk)

sin(Ak +Bku+ Ckv) cos(Dk + Eku+ Fkv) dv du+

Ek
√
εmεn

k′′t;m
√
ab

∫ qk

−pk

∫ wk
2

−wk
2

Λ(u, pk, qk)Π(v, wk)

cos(Ak +Bku+ Ckv) sin(Dk + Eku+ Fkv) dv du.

(E.20)

Finally, using definitions E.5, E.10 and E.11, we rewrite equation E.20 as

< h′′t;m | fk >=
Bk
√
εmεn√

ab(M2 +N2)
α(Dk, Ek, Fk, Ak, Bk, Ck, wk, pk, qk)+

Ek
√
εmεn√

ab(M2 +N2)
α(Ak, Bk, Ck, Dk, Ek, Fk, wk, pk, qk).

(E.21)

E.3 Electric TM Mode in Waveguide

First, we substitute the expression for the electric TM modal field given in
equation 2.137, in the inner product. We obtain

< e′t;m | fk >= − 1
k′t;m

< ∇tΦm | fk > . (E.22)

With the aid of the coordinate transformation from Oρ to Oσ, we write equation
E.22 as

< e′t;m | fk >= − 1
k′t;m

∫
fk(ρ(σ)) ·∇tΦm(ρ(σ))

∣∣∣∣ ∂ρ

∂σ

∣∣∣∣ dA(σ), (E.23)

which reduces to

< e′t;m | fk >= − 1
k′t;m

∫
fk(σ) ·∇tΦm(sk +Rσ)dA(σ). (E.24)

Upon substitution of the expressions for fk given in equation E.1 and the ana-
lytical solution for Φm for the rectangular waveguide in the previous equation,
we arrive at

< e′t;m | fk >=− 2Bk

k′t;m
√
ab

∫ qk

−pk

∫ wk
2

−wk
2

Λ(u, pk, qk)Π(v, wk)

cos(Ak +Bku+ Ckv) sin(Dk + Eku+ Fkv) dv du+

− 2Ek

k′t;m
√
ab

∫ qk

−pk

∫ wk
2

−wk
2

Λ(u, pk, qk)Π(v, wk)

sin(Ak +Bku+ Ckv) cos(Dk + Eku+ Fkv) dv du.

(E.25)



248 E Interaction between a Rooftop and a Waveguide

Finally, using definitions E.5, E.10 and E.11, we rewrite equation E.25 as

< e′t;m | fk >=
−2Bk√

ab(M2 +N2)
α(Ak, Bk, Ck, Dk, Ek, Fk, wk, pk, qk)+

−2Ek√
ab(M2 +N2)

α(Dk, Ek, Fk, Ak, Bk, Ck, wk, pk, qk).
(E.26)

E.4 Electric TE Mode in Waveguide

First, we substitute the expression for the electric TE modal field, equation
2.163, in the inner product. We obtain

< e′′t;m | fk >=
1

k′′t;m
< ∇tΨm | fk × ẑ >, (E.27)

With the aid of the coordinate transformation from Oρ to Oσ, we write equation
E.27 as

< e′′t;m | fk >=
1

k′′t;m

∫
[fk(ρ(σ))× ẑ] ·∇tΨm(ρ(σ))

∣∣∣∣ ∂ρ

∂σ

∣∣∣∣ dA(σ), (E.28)

which reduces to

< e′′t;m | fk >=
1

k′′t;m

∫
[fk(σ)× ẑ] ·∇tΨm(sk +Rσ)dA(σ). (E.29)

After substituting the expressions for fk given in equation E.1, and the analytical
solution for Ψm for the rectangular waveguide into the previous equation, we
arrive at

< e′′t;m | fk >=
Ck
√
εmεn

k′′t;m
√
ab

∫ qk

−pk

∫ wk
2

−wk
2

Λ(u, pk, qk)Π(v, wk)

sin(Ak +Bku+ Ckv) cos(Dk + Eku+ Fkv) dv du+

Fk
√
εmεn

k′′t;m
√
ab

∫ qk

−pk

∫ wk
2

−wk
2

Λ(u, pk, qk)Π(v, wk)

cos(Ak +Bku+ Ckv) sin(Dk + Eku+ Fkv) dv du.

(E.30)

Finally, using definitions E.5, E.10 and E.11, we rewrite equation E.30 as

< e′′t;m | fk >=
Ck
√
εmεn√

ab(M2 +N2)
α(Dk, Ek, Fk, Ak, Bk, Ck, wk, pk, qk)+

Fk
√
εmεn√

ab(M2 +N2)
α(Ak, Bk, Ck, Dk, Ek, Fk, wk, pk, qk).

(E.31)
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E.5 Summary

In this appendix we have obtained the following interaction integrals between
a rooftop function and a waveguide mode. For the coupling between a rooftop
function and a magnetic TM mode in the waveguide, we have

< h′t;m | fk >=
2Ck√

ab(M2 +N2)
α(Ak, Bk, Ck, Dk, Ek, Fk, wk, pk, qk)+

2Fk√
ab(M2 +N2)

α(Dk, Ek, Fk, Ak, Bk, Ck, wk, pk, qk).
(E.32)

For the coupling between a rooftop function and a magnetic TE mode in the
waveguide, we have

< h′′t;m | fk >=
Bk
√
εmεn√

ab(M2 +N2)
α(Dk, Ek, Fk, Ak, Bk, Ck, wk, pk, qk)+

Ek
√
εmεn√

ab(M2 +N2)
α(Ak, Bk, Ck, Dk, Ek, Fk, wk, pk, qk).

(E.33)

For the coupling between a rooftop function and an electric TM mode in the
waveguide, we have

< e′t;m | fk >=
−2Bk√

ab(M2 +N2)
α(Ak, Bk, Ck, Dk, Ek, Fk, wk, pk, qk)+

−2Ek√
ab(M2 +N2)

α(Dk, Ek, Fk, Ak, Bk, Ck, wk, pk, qk).
(E.34)

For the coupling between a rooftop function and an electric TE mode in the
waveguide, we have

< e′′t;m | fk >=
Ck
√
εmεn√

ab(M2 +N2)
α(Dk, Ek, Fk, Ak, Bk, Ck, wk, pk, qk)+

Fk
√
εmεn√

ab(M2 +N2)
α(Ak, Bk, Ck, Dk, Ek, Fk, wk, pk, qk).

(E.35)
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Appendix F

Interaction between a
Rooftop and a Layered
Space

In this appendix, we evaluate1 the inner product between the electric and mag-
netic modal fields for a layered space and a rooftop function.

The electric and magnetic modal fields within the layered space are given by
equations 2.174, 2.175, 2.181 and 2.182. The rooftop function has been defined
by equation 3.86 as [104, 89]

fn(ρ) = d̂nΛ((ρ− sn) · d̂n, pn, qn)Π((ρ− sn) · (ẑ× d̂n), wn). (F.1)

See section 3.7.4 for a detailed description of the rooftop function. See figure
F.1 for a graphical representation of the domain, vectors and scalars used in the
rooftop function. If we use the expressions for the electric and magnetic modal
fields within the layered space, i.e., equations 2.174, 2.175, 2.181 and 2.182, we
can distinguish the following four possible combinations of inner products

< e′t(kt) | fn > =
j

2π
k̂ · f̂n(kt), < e′′t (kt) | fn > =

j
2π

α̂ · f̂n(kt), (F.2)

< h′t(kt) | fn > = − j
2π

α̂ · f̂n(kt), < h′′t (kt) | fn > =
j

2π
k̂ · f̂n(kt), (F.3)

in which the so-called spectrum of a rooftop function is given by

f̂n(kt) =< exp(−jkt · ρ) | fn > . (F.4)

Therefore, it suffices to evaluate f̂n(kt). If we substitute the expression for the
rooftop function given in F.1, in equation F.4, we arrive at

f̂n(kt) = d̂n exp(−jkt · sn)Λ̂(kt · d̂n, pn, qn)Π̂(kt · (ẑ× d̂n), wn), (F.5)
1Computation of the projection matrix between a rooftop function and a layered space

mode.
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ŷẑ

Figure F.1: Domain, vectors and scalars used in the rooftop function.

in which

Λ̂(k, p, q) =
T (kp)− T (−kq)

jk
, Π̂(k,w) = S(kw), (F.6)

and in which

T (z) = S(z) exp
(

jz
2

)
, S(z) = sinc

(z
2

)
. (F.7)

Note that

lim
k→0

Λ̂(k, p, q) =
1
2
(p+ q). (F.8)

Finally, note that

f̂n(kt) ∼ O

(
1

(kt · d̂n)2 kt · (ẑ× d̂n)

)
, (F.9)

for large kt, since

Λ̂(k, p, q) ∼ O
(

1
k2

)
, Π̂(k,w) ∼ O

(
1
k

)
, (F.10)

for large k.



Appendix G

Interaction between an
RWG and a Waveguide

In this appendix, we will evaluate1 the inner product between the electric and
magnetic modal fields for a rectangular waveguide and an RWG function. This
waveguide is shown in figure G.1.

The waveguide has a cross section A with a boundary ∂A. The cross section
is rectangular in shape with length a and height b. The lower left corner of this
waveguide is shifted from the origin towards x = e and y = f .

The electric and magnetic modal fields within this waveguide can be written
in terms of square integrable and normalized scalar generating functions Φm

and Ψm, given by equations 2.137, 2.138, 2.162 and 2.163. Further, Φm and
Ψm satisfy the Helmholtz equations 2.134 and 2.159, respectively. Given the
rectangular shape of the waveguide, we can solve these equations in closed form.

1Computation of the projection matrix between an RWG function and a rectangular waveg-
uide mode.
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Figure G.1: Rectangular waveguide.
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Figure G.2: Domain, vectors and scalars used in the RWG function.

This has been done in section 3.7.1. The result is given by equations 3.74 and
3.75 for Φm, and by equations 3.76 and 3.77 for Ψm.

The RWG function has been defined by equation 3.90 as [88]

fk(ρ) =


lk

2A+
k

(ρ− ρ+
k ) if ρ ∈ T+

k ,

lk
2A−

k

(ρ−k − ρ) if ρ ∈ T−k ,

0 otherwise.

(G.1)

See section 3.7.5 for a detailed discussion of the RWG function. See figure G.2
for a graphical representation of the domain, vectors and scalars used in the
RWG function. Note that the divergence of fk(ρ) reduces to

∇t · fk(ρ) =


lk

A+
k

if ρ ∈ T+
k ,

− lk
A−

k

if ρ ∈ T−k ,

0 otherwise,

(G.2)

and that the curl of fk(ρ) reduces to

∇t × fk(ρ) = 0. (G.3)

We define

ω(α, β, γ, δ) ≡
∫ 1

0

cos(α+ βt) cos(γ + δt) tdt, (G.4)

which has the following analytical form

ω(α, β, γ, δ) = ω1(α, β, γ, δ) + ω2(α, β, γ, δ), (G.5)
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in which

ω1(α, β, γ, δ) =
cos(α+ γ + β + δ)− cos(α+ γ)

2(β + δ)2
+

sin(α+ γ + β + δ)
2(β + δ)

,

(G.6)

and in which

ω2(α, β, γ, δ) =
cos(α− γ + β − δ)− cos(α− γ)

2(β − δ)2
+

sin(α− γ + β − δ)
2(β − δ)

.

(G.7)

Note that

lim
(β+δ)→0

ω1(α, β, γ, δ) =
1
4

cos(α+ γ),

lim
(β−δ)→0

ω2(α, β, γ, δ) =
1
4

cos(α− γ).
(G.8)

We define

λ(α, β, γ, δ) ≡
∫ 1

0

sin(α+ βt) sin(γ + δt)tdt, (G.9)

which has the following analytical form

λ(α, β, γ, δ) = −λ1(α, β, γ, δ) + λ2(α, β, γ, δ), (G.10)

in which

λ1(α, β, γ, δ) =
1
4

cos
(
α+ γ +

β + δ

2

)
sinc

(
β + δ

2

)
+

1
4

sin
(
α+ γ +

β + δ

2

)
sinc′

(
β + δ

2

)
,

(G.11)

and in which

λ2(α, β, γ, δ) =
1
4

cos
(
α− γ +

β − δ
2

)
sinc

(
β − δ

2

)
+

1
4

sin
(
α− γ +

β − δ
2

)
sinc′

(
β − δ

2

)
.

(G.12)

Note that

lim
(β+δ)→0

λ1(α, β, γ, δ) =
1
4

cos(α+ γ),

lim
(β−δ)→0

λ2(α, β, γ, δ) =
1
4

cos(α− γ).
(G.13)
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We define

κ(α, β, γ, δ) ≡
∫ 1

0

sin(α+ βt) sin(γ + δt)dt, (G.14)

which has the following analytical form

κ(α, β, γ, δ) =
1
2
sinc

(
β − δ

2

)
cos
(
α− γ +

β − δ
2

)
−

1
2
sinc

(
β + δ

2

)
cos
(
α+ γ +

β + δ

2

)
.

(G.15)

We define

µ(α, β, γ, δ) ≡
∫ 1

0

cos(α+ βt) sin(γ + δt)dt, (G.16)

which has the following analytical form

µ(α, β, γ, δ) =
1
2
sinc

(
β + δ

2

)
sin
(
α+ γ +

β + δ

2

)
−

1
2
sinc

(
β − δ

2

)
sin
(
α− γ +

β − δ
2

)
.

(G.17)

We define

ν(α, β, γ, δ) ≡
∫ 1

0

cos(α+ βt) cos(γ + δt)dt, (G.18)

which has the following analytical form

ν(α, β, γ, δ) =
1
2
sinc

(
β + δ

2

)
cos
(
α+ γ +

β + δ

2

)
+

1
2
sinc

(
β − δ

2

)
cos
(
α− γ +

β − δ
2

)
.

(G.19)

In the next four sections, we will evaluate four possible combinations of coupling
integrals (inner products).

G.1 Magnetic TM Mode in Waveguide

First we substitute the expression for the magnetic TM modal field, i.e., equation
2.138, in the inner product. We obtain

< h′t;m | fk >=
1

k′t;m
< ∇tΦm | ẑ× fk > . (G.20)
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By using the definition of the RWG function, i.e., equation G.1, the right-hand
side can be rewritten as

1
k′t;m

∫
T+

k

(∇tΦm) · (ẑ× fk)dA+
1

k′t;m

∫
T−

k

(∇tΦm) · (ẑ× fk)dA. (G.21)

We simplify the previous equation by using the chain rule for differentiation by
parts

(∇tΦm) · (ẑ× fk) = ∇t · (Φmẑ× fk)− Φm∇t · (ẑ× fk), (G.22)

and by applying Gauss’ divergence theorem. This leads to

1
k′t;m

∫
T+

k

Φmẑ · (∇t × fk)dA− 1
k′t;m

∮
∂T+

k

Φmfk · τ̂d`+

1
k′t;m

∫
T−

k

Φmẑ · (∇t × fk)dA− 1
k′t;m

∮
∂T−

k

Φmfk · τ̂d`.
(G.23)

The application of Gauss’ divergence theorem is allowed here since the inte-
grands are continuous differentiable within the area of support. Furthermore,
the boundary integral vanishes due to equation G.3. With this result, equation
G.23 reduces to

− 1
k′t;m

∮
∂T+

k

Φmfk · τ̂d`− 1
k′t;m

∮
∂T−

k

Φmfk · τ̂d`. (G.24)

If we substitute the expression for the RWG function, i.e., equation G.1, in
equation G.24, we arrive at

< h′t;m | fk >=− lk

2A+
k k

′
t;m

∮
∂T+

k

Φm(ρ)(ρ− ρ+
k ) · τ̂d`+

− lk

2A−k k
′
t;m

∮
∂T−

k

Φm(ρ)(ρ−k − ρ) · τ̂d`.
(G.25)

If we split the contour integrals in the previous equation into separate integrals
along the straight edges, we obtain

< h′t;m | fk >=− lk

2A+
k k

′
t;m

∫ ρ
(2)
k

ρ
(1)
k

f · τ̂ 12d`−
lk

2A+
k k

′
t;m

∫ ρ+
k

ρ
(2)
k

f · τ̂ 2+d`+

− lk

2A+
k k

′
t;m

∫ ρ
(1)
k

ρ+
k

f · τ̂+1d`−
lk

2A−k k
′
t;m

∫ ρ
(2)
k

ρ
(1)
k

g · τ̂ 12d`+

− lk

2A−k k
′
t;m

∫ ρ
(1)
k

ρ−k

g · τ̂−1d`−
lk

2A−k k
′
t;m

∫ ρ−k

ρ
(2)
k

g · τ̂ 2−d`,

(G.26)
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in which

f(ρ) = Φm(ρ)(ρ− ρ+
k )

=
2√
ab

sin
(mπ
a

(x− e)
)

sin
(nπ
b

(y − f)
)

(ρ− ρ+
k ),

(G.27)

and in which

g(ρ) = Φm(ρ)(ρ−k − ρ)

=
2√
ab

sin
(mπ
a

(x− e)
)

sin
(nπ
b

(y − f)
)

(ρ−k − ρ).
(G.28)

Note that we have reversed the direction of integration over the contour ∂T−k .
Furthermore, we can write for each separate integration of f(ρ) along a straight
line

τf ,Φ(ρA
k ,ρ

AB
k ,ρ+

k ) =
∫ ρB

k

ρA
k

f · τ̂ABd`

=
∫ 1

0

f(c(t)) · τ̂AB‖c′(t)‖dt

=
∫ 1

0

f(ρA
k + tρAB

k ) · ρAB
k dt,

(G.29)

in which

c(t) = ρA
k + tρAB

k , ρAB
k = ρB

k − ρA
k , τ̂AB =

ρAB
k

‖ρAB
k ‖

, (G.30)

where ρA
k and ρB

k denote the starting and ending vertex, respectively. Elabo-
rating the integrands in equation G.29 results in

τf ,Φ(ρA
k ,ρ

AB
k ,ρ+

k ) =
2Af√
ab

∫ 1

0

sin(αf + βf t) sin(γf + δf t)dt+

2Bf√
ab

∫ 1

0

sin(αf + βf t) sin(γf + δf t)tdt,
(G.31)

in which

Af = (ρA
k − ρ+

k ) · ρAB
k , Bf = ‖ρAB

k ‖2,

αf =
(mπ
a

)
(ρA

k,x − e), βf =
(mπ
a

)
ρAB

k,x ,

γf =
(nπ
b

)
(ρA

k,y − f), δf =
(nπ
b

)
ρAB

k,y .

(G.32)

If we now use definitions G.9 and G.14, we can rewrite equation G.31 as

τf ,Φ(ρA
k ,ρ

AB
k ,ρ+

k ) =
2√
ab

[Afκ(αf , βf , γf , δf ) +Bfλ(αf , βf , γf , δf )]. (G.33)
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Furthermore, we can write for each separate integration of g(ρ) along a straight
line

τg,Φ(ρA
k ,ρ

AB
k ,ρ−k ) =

∫ ρB
k

ρA
k

g · τ̂ABd`

=
∫ 1

0

g(c(t)) · τ̂AB‖c′(t)‖dt

=
∫ 1

0

g(ρA
k + tρAB

k ) · ρAB
k dt,

(G.34)

which reduces to

τg,Φ(ρA
k ,ρ

AB
k ,ρ−k ) =

2Ag√
ab

∫ 1

0

sin(αg + βgt) sin(γg + δgt)dt+

2Bg√
ab

∫ 1

0

sin(αg + βgt) sin(γg + δgt)tdt,
(G.35)

in which

Ag = (ρ−k − ρA
k ) · ρAB

k , Bg = −‖ρAB
k ‖2,

αg =
(mπ
a

)
(ρA

k,x − e), βg =
(mπ
a

)
ρAB

k,x ,

γg =
(nπ
b

)
(ρA

k,y − f), δg =
(nπ
b

)
ρAB

k,y .

(G.36)

If we now use definitions G.9 and G.14, we can rewrite equation G.35 as

τg,Φ(ρA
k ,ρ

AB
k ,ρ−k ) =

2√
ab

[Agκ(αg, βg, γg, δg) +Bgλ(αg, βg, γg, δg)]. (G.37)

Finally, combining equations G.26, G.33 and G.37, we arrive at

< h′t;m | fk >=
−lk

2A+
k k

′
t;m

[τf ,Φ(ρ(1)
k ,ρ

(12)
k ,ρ+

k ) + τf ,Φ(ρ(2)
k ,ρ

(2+)
k ,ρ+

k )+

τf ,Φ(ρ+
k ,ρ

(+1)
k ,ρ+

k )] +
lk

2A−k k
′
t;m

[τg,Φ(ρ(1)
k ,ρ

(12)
k ,ρ−k )+

τg,Φ(ρ−k ,ρ
(−1)
k ,ρ−k ) + τg,Φ(ρ(2)

k ,ρ
(2−)
k ,ρ−k )].

(G.38)

G.2 Magnetic TE Mode in Waveguide

First, we substitute the expression for the magnetic TE modal field, i.e. equation
2.162, in the inner product. We obtain

< h′′t;m | fk >= − 1
k′′t;m

< ∇tΨm | fk >, (G.39)
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which, by using the definition of the RWG function, equation G.1, can be rewrit-
ten as

− 1
k′′t;m

∫
T+

k

(∇tΨm) · fkdA− 1
k′′t;m

∫
T−

k

(∇tΨm) · fkdA. (G.40)

We simplify this result by using the chain rule for differentiation by parts

(∇tΨm) · fk = ∇t · (Ψmfk)−Ψm∇t · fk, (G.41)

and by applying Gauss’ divergence theorem. This leads to

− 1
k′′t;m

∮
∂T+

k

Ψmfk · ν̂d`− 1
k′′t;m

∫
T+

k

Ψm∇t · fkdA+

− 1
k′′t;m

∮
∂T−

k

Ψmfk · ν̂d`− 1
k′′t;m

∫
T−

k

Ψm∇t · fkdA.
(G.42)

The application of Gauss’ divergence theorem is allowed here since the inte-
grands are continuous differentiable within the area of support. Furthermore,
we rewrite equation G.42 by using equation G.2, as

∇t · fk
k′′t;m

∫
T+

k

ΨmdA− 1
k′′t;m

∮
∂T+

k

Ψmfk · ν̂d`+

∇t · fk
k′′t;m

∫
T−

k

ΨmdA− 1
k′′t;m

∮
∂T−

k

Ψmfk · ν̂d`.
(G.43)

Note that

(∇2
t + k′′2t;m)Ψm = 0 ⇔ Ψm = − 1

k′′2t;m

∇t · (∇tΨm). (G.44)

If we use equation G.44 and Gauss’ divergence theorem, we can therefore rewrite
equation G.43 as

− ∇t · fk
k′′3t;m

∮
∂T+

k

(∇tΨm) · ν̂d`− 1
k′′t;m

∮
∂T+

k

Ψmfk · ν̂d`+

− ∇t · fk
k′′3t;m

∮
∂T−

k

(∇tΨm) · ν̂d`− 1
k′′t;m

∮
∂T−

k

Ψmfk · ν̂d`.
(G.45)

When we substitute the expression for the RWG function, i.e., equation G.1, in
equation G.45, we arrive at

< h′′t;m | fk >=− lk

A+
k k

′′3
t;m

∮
∂T+

k

(∇tΨm) · ν̂d`+

− lk

2A+
k k

′′
t;m

∮
∂T+

k

Ψm(ρ)(ρ− ρ+
k ) · ν̂d`+

lk

A−k k
′′3
t;m

∮
∂T−

k

(∇tΨm) · ν̂d`+

− lk

2A−k k
′′
t;m

∮
∂T−

k

Ψm(ρ)(ρ−k − ρ) · ν̂d`.

(G.46)
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If we split the contour integrals in the previous equation into separate contri-
butions from straight lines, we obtain

< h′′t;m | fk >=− lk

A+
k k

′′3
t;m

∫ ρ
(2)
k

ρ
(1)
k

f · ν̂12d`−
lk

A+
k k

′′3
t;m

∫ ρ+
k

ρ
(2)
k

f · ν̂2+d`+

− lk

A+
k k

′′3
t;m

∫ ρ
(1)
k

ρ+
k

f · ν̂+1d`−
lk

2A+
k k

′′
t;m

∫ ρ
(2)
k

ρ
(1)
k

g · ν̂12d`+

− lk

A−k k
′′3
t;m

∫ ρ
(2)
k

ρ
(1)
k

f · ν̂12d`−
lk

A−k k
′′3
t;m

∫ ρ
(1)
k

ρ−k

f · ν̂−1d`+

− lk

A−k k
′′3
t;m

∫ ρ−k

ρ
(2)
k

f · ν̂2−d`+
lk

2A−k k
′′
t;m

∫ ρ
(2)
k

ρ
(1)
k

h · ν̂12d`,

(G.47)

in which

f(ρ) =∇tΨm(ρ)

=− x̂
√
εmεn
ab

(mπ
a

)
sin
(mπ
a

(x− e)
)

cos
(nπ
b

(y − f)
)

+

− ŷ
√
εmεn
ab

(nπ
b

)
cos
(mπ
a

(x− e)
)

sin
(nπ
b

(y − f)
)
,

(G.48)

and

g(ρ) = Ψm(ρ)(ρ− ρ+
k )

=
√
εmεn
ab

cos
(mπ
a

(x− e)
)

cos
(nπ
b

(y − f)
)

(ρ− ρ+
k ),

(G.49)

and

h(ρ) = Ψm(ρ)(ρ−k − ρ)

=
√
εmεn
ab

cos
(mπ
a

(x− e)
)

cos
(nπ
b

(y − f)
)

(ρ−k − ρ).
(G.50)

Note that we have reversed the direction of integration along the contour ∂T−k .
Furthermore, we can write for each separate integral of f(ρ) along a straight
line

νf ,Ψ(ρA
k ,ρ

AB
k ) =

∫ ρB
k

ρA
k

f · ν̂ABd`

=
∫ 1

0

f(c(t)) · ν̂AB‖c′(t)‖dt

=
∫ 1

0

f(ρA
k + tρAB

k ) · (ρAB
k × ẑ)dt,

(G.51)
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in which

c(t) = ρA
k + tρAB

k , ρAB
k = ρB

k − ρA
k , τ̂AB =

ρAB
k

‖ρAB
k ‖

, (G.52)

where ρA
k and ρB

k denote the starting and ending vertex, respectively. Equation
G.51 reduces to

νf ,Ψ(ρA
k ,ρ

AB
k ) =Af

√
εmεn
ab

∫ 1

0

cos(αf + βf t) sin(γf + δf t)dt+

Bf

√
εmεn
ab

∫ 1

0

sin(αf + βf t) cos(γf + δf t)dt,
(G.53)

in which

Af =
(nπ
b

)
ρAB

k,x , Bf = −
(mπ
a

)
ρAB

k,y ,

αf =
(mπ
a

)
(ρA

k,x − e), βf =
(mπ
a

)
ρAB

k,x ,

γf =
(nπ
b

)
(ρA

k,y − f), δf =
(nπ
b

)
ρAB

k,y .

(G.54)

Using definition G.16, we rewrite equation G.53 as

νf ,Ψ(ρA
k ,ρ

AB
k ) =

√
εmεn
ab

[Afµ(αf , βf , γf , δf ) +Bfµ(γf , δf , αf , βf )]. (G.55)

Furthermore, we can write for each separate integral of g(ρ) along a straight
line

νg,Ψ(ρA
k ,ρ

AB
k ,ρ+

k ) =
∫ ρB

k

ρA
k

g · ν̂ABd`

=
∫ 1

0

g(c(t)) · ν̂AB‖c′(t)‖dt

=
∫ 1

0

g(ρA
k + tρAB

k ) · (ρAB
k × ẑ)dt,

(G.56)

which reduces to

νg,Ψ(ρA
k ,ρ

AB
k ,ρ+

k ) =Ag

√
εmεn
ab

∫ 1

0

cos(αg + βgt) cos(γg + δgt)dt, (G.57)

in which

Ag = (ρA
k − ρ+

k ) · (ρAB
k × ẑ),

αg =
(mπ
a

)
(ρA

k,x − e), βg =
(mπ
a

)
ρAB

k,x

γg =
(nπ
b

)
(ρA

k,y − f), δg =
(nπ
b

)
ρAB

k,y .

(G.58)
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Using definition G.18, we rewrite equation G.57 as

νg,Ψ(ρA
k ,ρ

AB
k ,ρ+

k ) = Ag

√
εmεn
ab

ν(αg, βg, γg, δg). (G.59)

Furthermore, we can write for each separate integral of h(ρ) along a straight
line

νh,Ψ(ρA
k ,ρ

AB
k ,ρ−k ) =

∫ ρB
k

ρA
k

h · ν̂ABd`

=
∫ 1

0

h(c(t)) · ν̂AB‖c′(t)‖dt

=
∫ 1

0

h(ρA
k + tρAB

k ) · (ρAB
k × ẑ)dt,

(G.60)

which reduces to

νh,Ψ(ρA
k ,ρ

AB
k ,ρ−k ) =Ah

√
εmεn
ab

∫ 1

0

cos(αh + βht) cos(γh + δht)dt, (G.61)

in which

Ah = (ρ−k − ρA
k ) · (ρAB

k × ẑ),

αh =
(mπ
a

)
(ρA

k,x − e), βh =
(mπ
a

)
ρAB

k,x

γh =
(nπ
b

)
(ρA

k,y − f), δh =
(nπ
b

)
ρAB

k,y .

(G.62)

With the aid of definition G.18, we rewrite equation G.61 as

νh,Ψ(ρA
k ,ρ

AB
k ,ρ−k ) = Ah

√
εmεn
ab

ν(αh, βh, γh, δh). (G.63)

Finally, combining equations G.47, G.55, G.59 and G.63, we arrive at

< h′′t;m | fk >= − lk

A+
k k

′′3
t;m

[νf ,Ψ(ρ(1)
k ,ρ

(12)
k ) + νf ,Ψ(ρ(2)

k ,ρ
(2+)
k )+

νf ,Ψ(ρ+
k ,ρ

(+1)
k )]− lk

2A+
k k

′′
t;m

νg,Ψ(ρ(1)
k ,ρ

(12)
k ,ρ+

k )+

− lk

A−k k
′′3
t;m

[νf ,Ψ(ρ(1)
k ,ρ

(12)
k ) + νf ,Ψ(ρ−k ,ρ

(−1)
k )+

νf ,Ψ(ρ(2)
k ,ρ

(2−)
k )] +

lk

2A−k k
′′
t;m

νh,Ψ(ρ(1)
k ,ρ

(12)
k ,ρ−k ).

(G.64)

G.3 Electric TM Mode in Waveguide

First, we substitute the expression for the electric TM modal field, i.e., equation
2.137, in the inner product. We obtain

< e′t;m | fk >= − 1
k′t;m

< ∇tΦm | fk >, (G.65)
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which, by using the definition of the RWG function, equation G.1, can be rewrit-
ten as

− 1
k′t;m

∫
T+

k

(∇tΦm) · fkdA− 1
k′t;m

∫
T−

k

(∇tΦm) · fkdA. (G.66)

We simplify the previous equation by using the chain rule for differentiation by
parts

(∇tΦm) · fk = ∇t · (Φmfk)− Φm∇t · fk, (G.67)

and by applying Gauss’ divergence theorem. This leads to

− 1
k′t;m

∮
∂T+

k

Φmfk · ν̂d`− 1
k′t;m

∫
T+

k

Φm∇t · fkdA+

− 1
k′t;m

∮
∂T−

k

Φmfk · ν̂d`− 1
k′t;m

∫
T−

k

Φm∇t · fkdA.
(G.68)

The application of Gauss’ divergence theorem is allowed here since the inte-
grands are continuous differentiable within the area of support. Next, we use
equation G.2 to rewrite equation G.68 as

∇t · fk
k′t;m

∫
T+

k

ΦmdA− 1
k′t;m

∮
∂T+

k

Φmfk · ν̂d`+

∇t · fk
k′t;m

∫
T−

k

ΦmdA− 1
k′t;m

∮
∂T−

k

Φmfk · ν̂d`.
(G.69)

Note that

(∇2
t + k′2t;m)Φm = 0 ⇔ Φm = − 1

k′2t;m
∇t · (∇tΦm). (G.70)

With equation G.70 and Gauss’ divergence theorem, we rewrite equation G.69
as

− ∇t · fk
k′3t;m

∮
∂T+

k

(∇tΦm) · ν̂d`− 1
k′t;m

∮
∂T+

k

Φmfk · ν̂d`+

− ∇t · fk
k′3t;m

∮
∂T−

k

(∇tΦm) · ν̂d`− 1
k′t;m

∮
∂T−

k

Φmfk · ν̂d`.
(G.71)

When we substitute the expression for the RWG function, i.e., equation G.1, in
equation G.71, we arrive at

< e′t;m | fk >=− lk

A+
k k

′3
t;m

∮
∂T+

k

(∇tΦm) · ν̂d`+

− lk

2A+
k k

′
t;m

∮
∂T+

k

Φm(ρ)(ρ− ρ+
k ) · ν̂d`+

lk

A−k k
′3
t;m

∮
∂T−

k

(∇tΦm) · ν̂d`+

− lk

2A−k k
′
t;m

∮
∂T−

k

Φm(ρ)(ρ−k − ρ) · ν̂d`.

(G.72)
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If we split the contour integrals in the previous equation into separate contri-
butions from straight lines, we obtain

< e′t;m | fk >=− lk

A+
k k

′3
t;m

∫ ρ
(2)
k

ρ
(1)
k

f · ν̂12d`−
lk

A+
k k

′3
t;m

∫ ρ+
k

ρ
(2)
k

f · ν̂2+d`+

− lk

A+
k k

′3
t;m

∫ ρ
(1)
k

ρ+
k

f · ν̂+1d`−
lk

2A+
k k

′
t;m

∫ ρ
(2)
k

ρ
(1)
k

g · ν̂12d`+

− lk

A−k k
′3
t;m

∫ ρ
(2)
k

ρ
(1)
k

f · ν̂12d`−
lk

A−k k
′3
t;m

∫ ρ
(1)
k

ρ−k

f · ν̂−1d`+

− lk

A−k k
′3
t;m

∫ ρ−k

ρ
(2)
k

f · ν̂2−d`+
lk

2A−k k
′
t;m

∫ ρ
(2)
k

ρ
(1)
k

h · ν̂12d`,

(G.73)

in which

f(ρ) =∇tΦm(ρ)

=x̂
2√
ab

(mπ
a

)
cos
(mπ
a

(x− e)
)

sin
(nπ
b

(y − f)
)

+

ŷ
2√
ab

(nπ
b

)
sin
(mπ
a

(x− e)
)

cos
(nπ
b

(y − f)
)
,

(G.74)

and

g(ρ) = Φm(ρ)(ρ− ρ+
k )

=
2√
ab

sin
(mπ
a

(x− e)
)

sin
(nπ
b

(y − f)
)

(ρ− ρ+
k ),

(G.75)

and

h(ρ) = Φm(ρ)(ρ−k − ρ)

=
2√
ab

sin
(mπ
a

(x− e)
)

sin
(nπ
b

(y − f)
)

(ρ−k − ρ).
(G.76)

Note that we have reversed the direction of integration along the contour ∂T−k .
Furthermore, we can write for each separate integral of f(ρ) along a straight
line

νf ,Φ(ρA
k ,ρ

AB
k ) =

∫ ρB
k

ρA
k

f · ν̂ABd`

=
∫ 1

0

f(c(t)) · ν̂AB‖c′(t)‖dt

=
∫ 1

0

f(ρA
k + tρAB

k ) · (ρAB
k × ẑ)dt,

(G.77)
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in which

c(t) = ρA
k + tρAB

k , ρAB
k = ρB

k − ρA
k , τ̂AB =

ρAB
k

‖ρAB
k ‖

, (G.78)

where ρA
k and ρB

k denote the starting and ending vertex, respectively. Equation
G.77 reduces to

νf ,Φ(ρA
k ,ρ

AB
k ) =Af

2√
ab

∫ 1

0

cos(αf + βf t) sin(γf + δf t)dt+

Bf
2√
ab

∫ 1

0

sin(αf + βf t) cos(γf + δf t)dt,
(G.79)

in which

Af =
(mπ
a

)
ρAB

k,y , Bf = −
(nπ
b

)
ρAB

k,x ,

αf =
(mπ
a

)
(ρA

k,x − e), βf =
(mπ
a

)
ρAB

k,x ,

γf =
(nπ
b

)
(ρA

k,y − f), δf =
(nπ
b

)
ρAB

k,y .

(G.80)

By using definition G.16, we rewrite equation G.79 as

νf ,Φ(ρA
k ,ρ

AB
k ) =

2√
ab

[Afµ(αf , βf , γf , δf ) +Bfµ(γf , δf , αf , βf )]. (G.81)

Furthermore, we can write for each separate integral of g(ρ) along a straight
line

νg,Φ(ρA
k ,ρ

AB
k ,ρ+

k ) =
∫ ρB

k

ρA
k

g · ν̂ABd`

=
∫ 1

0

g(c(t)) · ν̂AB‖c′(t)‖dt

=
∫ 1

0

g(ρA
k + tρAB

k ) · (ρAB
k × ẑ)dt,

(G.82)

which reduces to

νg,Φ(ρA
k ,ρ

AB
k ,ρ+

k ) =Ag
2√
ab

∫ 1

0

sin(αg + βgt) sin(γg + δgt)dt, (G.83)

in which

Ag = (ρA
k − ρ+

k ) · (ρAB
k × ẑ),

αg =
(mπ
a

)
(ρA

k,x − e), βg =
(mπ
a

)
ρAB

k,x

γg =
(nπ
b

)
(ρA

k,y − f), δg =
(nπ
b

)
ρAB

k,y .

(G.84)
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With the aid of definition G.14, we rewrite equation G.83 as

νg,Φ(ρA
k ,ρ

AB
k ,ρ+

k ) = Ag
2√
ab
κ(αg, βg, γg, δg). (G.85)

Furthermore, we can write for each separate integral of h(ρ) along a straight
line

νh,Φ(ρA
k ,ρ

AB
k ,ρ−k ) =

∫ ρB
k

ρA
k

h · ν̂ABd`

=
∫ 1

0

h(c(t)) · ν̂AB‖c′(t)‖dt

=
∫ 1

0

h(ρA
k + tρAB

k ) · (ρAB
k × ẑ)dt,

(G.86)

which reduces to

νh,Φ(ρA
k ,ρ

AB
k ,ρ−k ) =Ah

2√
ab

∫ 1

0

sin(αh + βht) sin(γh + δht)dt, (G.87)

in which

Ah = (ρ−k − ρA
k ) · (ρAB

k × ẑ),

αh =
(mπ
a

)
(ρA

k,x − e), βh =
(mπ
a

)
ρAB

k,x

γh =
(nπ
b

)
(ρA

k,y − f), δh =
(nπ
b

)
ρAB

k,y .

(G.88)

In view of definition G.14, equation G.87 is rewritten as

νh,Φ(ρA
k ,ρ

AB
k ,ρ−k ) = Ah

2√
ab
κ(αh, βh, γh, δh). (G.89)

Finally, by combining equations G.73, G.81, G.85 and G.89, we end up with

< e′t;m | fk >= − lk

A+
k k

′3
t;m

[νf ,Φ(ρ(1)
k ,ρ

(12)
k ) + νf ,Φ(ρ(2)

k ,ρ
(2+)
k )+

νf ,Φ(ρ+
k ,ρ

(+1)
k )]− lk

2A+
k k

′
t;m

νg,Φ(ρ(1)
k ,ρ

(12)
k ,ρ+

k )+

− lk

A−k k
′3
t;m

[νf ,Φ(ρ(1)
k ,ρ

(12)
k ) + νf ,Φ(ρ−k ,ρ

(−1)
k )+

νf ,Φ(ρ(2)
k ,ρ

(2−)
k )] +

lk

2A−k k
′
t;m

νh,Φ(ρ(1)
k ,ρ

(12)
k ,ρ−k ).

(G.90)

G.4 Electric TE Mode in Waveguide

First, we substitute the expression for the electric TE modal field, i.e., equation
2.163, in the inner product. We obtain

< e′′t;m | fk >= − 1
k′′t;m

< ∇tΨm | ẑ× fk >, (G.91)
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which by using the definition of the RWG function, equation G.1, can be rewrit-
ten as

− 1
k′′t;m

∫
T+

k

(∇tΨm) · (ẑ× fk)dA− 1
k′′t;m

∫
T−

k

(∇tΨm) · (ẑ× fk)dA. (G.92)

We simplify these expressions by using the chain rule for differentiation by parts

(∇tΨm) · (ẑ× fk) = ∇t · (Ψmẑ× fk)−Ψm∇t · (ẑ× fk), (G.93)

and by applying Gauss’ divergence theorem. This leads to

1
k′′t;m

∫
T+

k

Ψmẑ · (∇t × fk)dA− 1
k′′t;m

∮
∂T+

k

Ψmfk · τ̂d`+

1
k′′t;m

∫
T−

k

Ψmẑ · (∇t × fk)dA− 1
k′′t;m

∮
∂T−

k

Ψmfk · τ̂d`.
(G.94)

The application of Gauss’ divergence theorem is allowed here since the inte-
grands are continuous differentiable within the area of support. Furthermore,
the surface integration vanishes due to equation G.3. With this result, equation
G.94 reduces to

− 1
k′′t;m

∮
∂T+

k

Ψmfk · τ̂d`− 1
k′′t;m

∮
∂T−

k

Ψmfk · τ̂d`. (G.95)

After substituting the expression for the RWG function, equation G.1, in equa-
tion G.95, we arrive at

< e′′t;m | fk >=− lk

2A+
k k

′′
t;m

∮
∂T+

k

Ψm(ρ)(ρ− ρ+
k ) · τ̂d`+

− lk

2A−k k
′′
t;m

∮
∂T−

k

Ψm(ρ)(ρ−k − ρ) · τ̂d`.
(G.96)

If we split the contour integrals in this equation into separate integrals along
straight lines, we obtain

< e′′t;m | fk >=− lk

2A+
k k

′′
t;m

∫ ρ
(2)
k

ρ
(1)
k

f · τ̂ 12d`−
lk

2A+
k k

′′
t;m

∫ ρ+
k

ρ
(2)
k

f · τ̂ 2+d`+

− lk

2A+
k k

′′
t;m

∫ ρ
(1)
k

ρ+
k

f · τ̂+1d`−
lk

2A−k k
′′
t;m

∫ ρ
(2)
k

ρ
(1)
k

g · τ̂ 12d`+

− lk

2A−k k
′′
t;m

∫ ρ
(1)
k

ρ−k

g · τ̂−1d`−
lk

2A−k k
′′
t;m

∫ ρ−k

ρ
(2)
k

g · τ̂ 2−d`,

(G.97)

in which

f(ρ) = Ψm(ρ)(ρ− ρ+
k )

=
√
εmεn
ab

cos
(mπ
a

(x− e)
)

cos
(nπ
b

(y − f)
)

(ρ− ρ+
k ),

(G.98)
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and in which

g(ρ) = Ψm(ρ)(ρ−k − ρ)

=
√
εmεn
ab

cos
(mπ
a

(x− e)
)

cos
(nπ
b

(y − f)
)

(ρ−k − ρ).
(G.99)

Note that we have reversed the direction of integration over the contour ∂T−k .
Furthermore, we can write for each separate integral of f(ρ) along a straight
line

τf ,Ψ(ρA
k ,ρ

AB
k ,ρ+

k ) =
∫ ρB

k

ρA
k

f · τ̂ABd`

=
∫ 1

0

f(c(t)) · τ̂AB‖c′(t)‖dt

=
∫ 1

0

f(ρA
k + tρAB

k ) · ρAB
k dt,

(G.100)

in which

c(t) = ρA
k + tρAB

k , ρAB
k = ρB

k − ρA
k , τ̂AB =

ρAB
k

‖ρAB
k ‖

, (G.101)

where ρA
k and ρB

k denote the starting and ending vertex, respectively. Equation
G.100 reduces to

τf ,Ψ(ρA
k ,ρ

AB
k ,ρ+

k ) =Af

√
εmεn
ab

∫ 1

0

cos(αf + βf t) cos(γf + δf t)dt+

Bf

√
εmεn
ab

∫ 1

0

cos(αf + βf t) cos(γf + δf t)tdt,
(G.102)

in which

Af = (ρA
k − ρ+

k ) · ρAB
k , Bf = ‖ρAB

k ‖2,

αf =
(mπ
a

)
(ρA

k,x − e), βf =
(mπ
a

)
ρAB

k,x ,

γf =
(nπ
b

)
(ρA

k,y − f), δf =
(nπ
b

)
ρAB

k,y .

(G.103)

By using definitions G.4 and G.18, we rewrite equation G.102 as

τf ,Ψ(ρA
k ,ρ

AB
k ,ρ+

k ) =
√
εmεn
ab

[Afν(αf , βf , γf , δf ) +Bfω(αf , βf , γf , δf )].

(G.104)
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Furthermore, we write for each separate integral of g(ρ) along a straight line

τg,Ψ(ρA
k ,ρ

AB
k ,ρ−k ) =

∫ ρB
k

ρA
k

g · τ̂ABd`

=
∫ 1

0

g(c(t)) · τ̂AB‖c′(t)‖dt

=
∫ 1

0

g(ρA
k + tρAB

k ) · ρAB
k dt,

(G.105)

which reduces to

τg,Ψ(ρA
k ,ρ

AB
k ,ρ−k ) =Ag

√
εmεn
ab

∫ 1

0

cos(αg + βgt) cos(γg + δgt)dt+

Bg

√
εmεn
ab

∫ 1

0

cos(αg + βgt) cos(γg + δgt)tdt,
(G.106)

in which

Ag = (ρ−k − ρA
k ) · ρAB

k , Bg = −‖ρAB
k ‖2,

αg =
(mπ
a

)
(ρA

k,x − e), βg =
(mπ
a

)
ρAB

k,x ,

γg =
(nπ
b

)
(ρA

k,y − f), δg =
(nπ
b

)
ρAB

k,y .

(G.107)

By virtue of definitions G.4 and G.18, we can rewrite equation G.106 as

τg,Ψ(ρA
k ,ρ

AB
k ,ρ−k ) =

√
εmεn
ab

[Agν(αg, βg, γg, δg) +Bgω(αg, βg, γg, δg)].

(G.108)

Finally, when we combine equations G.97, G.104 and G.108, we arrive at

< e′′t;m | fk >=
lk

2A+
k k

′′
t;m

[τf ,Ψ(ρ(1)
k ,ρ

(12)
k ,ρ+

k ) + τf ,Ψ(ρ(2)
k ,ρ

(2+)
k ,ρ+

k )+

τf ,Ψ(ρ+
k ,ρ

(+1)
k ,ρ+

k )]− lk

2A−k k
′′
t;m

[τg,Ψ(ρ(1)
k ,ρ

(12)
k ,ρ−k )+

τg,Ψ(ρ−k ,ρ
(−1)
k ,ρ−k ) + τg,Ψ(ρ(2)

k ,ρ
(2−)
k ,ρ−k )].

(G.109)

G.5 Summary

In this appendix we have obtained the following interaction integrals between
an RWG function and a waveguide mode. For the coupling between an RWG
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function and a magnetic TM mode in the waveguide, we have

< h′t;m | fk >=
−lk

2A+
k k

′
t;m

[τf ,Φ(ρ(1)
k ,ρ

(12)
k ,ρ+

k ) + τf ,Φ(ρ(2)
k ,ρ

(2+)
k ,ρ+

k )+

τf ,Φ(ρ+
k ,ρ

(+1)
k ,ρ+

k )] +
lk

2A−k k
′
t;m

[τg,Φ(ρ(1)
k ,ρ

(12)
k ,ρ−k )+

τg,Φ(ρ−k ,ρ
(−1)
k ,ρ−k ) + τg,Φ(ρ(2)

k ,ρ
(2−)
k ,ρ−k )].

(G.110)

For the coupling between an RWG function and a magnetic TE mode in the
waveguide, we have

< h′′t;m | fk >= − lk

A+
k k

′′3
t;m

[νf ,Ψ(ρ(1)
k ,ρ

(12)
k ) + νf ,Ψ(ρ(2)

k ,ρ
(2+)
k )+

νf ,Ψ(ρ+
k ,ρ

(+1)
k )]− lk

2A+
k k

′′
t;m

νg,Ψ(ρ(1)
k ,ρ

(12)
k ,ρ+

k )+

− lk

A−k k
′′3
t;m

[νf ,Ψ(ρ(1)
k ,ρ

(12)
k ) + νf ,Ψ(ρ−k ,ρ

(−1)
k )+

νf ,Ψ(ρ(2)
k ,ρ

(2−)
k )] +

lk

2A−k k
′′
t;m

νh,Ψ(ρ(1)
k ,ρ

(12)
k ,ρ−k ).

(G.111)

For the coupling between an RWG function and an electric TM mode in the
waveguide, we have

< e′t;m | fk >= − lk

A+
k k

′3
t;m

[νf ,Φ(ρ(1)
k ,ρ

(12)
k ) + νf ,Φ(ρ(2)

k ,ρ
(2+)
k )+

νf ,Φ(ρ+
k ,ρ

(+1)
k )]− lk

2A+
k k

′
t;m

νg,Φ(ρ(1)
k ,ρ

(12)
k ,ρ+

k )+

− lk

A−k k
′3
t;m

[νf ,Φ(ρ(1)
k ,ρ

(12)
k ) + νf ,Φ(ρ−k ,ρ

(−1)
k )+

νf ,Φ(ρ(2)
k ,ρ

(2−)
k )] +

lk

2A−k k
′
t;m

νh,Φ(ρ(1)
k ,ρ

(12)
k ,ρ−k ).

(G.112)

For the coupling between an RWG function and an electric TE mode in the
waveguide, we have

< e′′t;m | fk >=
lk

2A+
k k

′′
t;m

[τf ,Ψ(ρ(1)
k ,ρ

(12)
k ,ρ+

k ) + τf ,Ψ(ρ(2)
k ,ρ

(2+)
k ,ρ+

k )+

τf ,Ψ(ρ+
k ,ρ

(+1)
k ,ρ+

k )]− lk

2A−k k
′′
t;m

[τg,Ψ(ρ(1)
k ,ρ

(12)
k ,ρ−k )+

τg,Ψ(ρ−k ,ρ
(−1)
k ,ρ−k ) + τg,Ψ(ρ(2)

k ,ρ
(2−)
k ,ρ−k )].

(G.113)
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Appendix H

Interaction between an
RWG and a Layered Space

In this appendix, we will evaluate1 the inner product between the electric and
magnetic modal fields for a layered space and an RWG function.

The electric and magnetic modal fields within the layered space are given by
equations 2.174, 2.175, 2.181 and 2.182. The RWG function has been defined
by equation 3.90 as [88]

fn(ρ) =


ln

2A+
n

(ρ− ρ+
n ) if ρ ∈ T+

n ,
ln

2A−
n

(ρ−n − ρ) if ρ ∈ T−n ,
0 otherwise.

(H.1)

See section 3.7.5 for a detailed explanation of the RWG function. See figure H.1
for a graphical representation of the domain, vectors and scalars used in the
RWG function. If we use the expressions for the electric and magnetic modal
fields within the layered space, i.e., equations 2.174, 2.175, 2.181 and 2.182, we
evaluate the following four possible combinations of inner products

< e′t(kt) | fn > =
j

2π
k̂ · f̂n(kt), < e′′t (kt) | fn > =

j
2π

α̂ · f̂n(kt), (H.2)

< h′t(kt) | fn > = − j
2π

α̂ · f̂n(kt), < h′′t (kt) | fn > =
j

2π
k̂ · f̂n(kt), (H.3)

where α̂ = k̂ × ẑ, and in which the so-called spectrum of an RWG function is
given by

f̂n(kt) =< exp(−jkt · ρ) | fn > . (H.4)

1Computation of the projection matrix between an RWG function and a layered space
mode.
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Figure H.1: Domain, vectors and scalars used in the RWG function.

Therefore, it suffices to evaluate f̂n(kt). If we substitute the expression for the
RWG function, i.e., equation H.1, in equation H.4, we obtain

f̂n(kt) =
∫

T+
n

ln

2A+
n

(ρ− ρ+
n ) exp(−jkt · ρ)dA+∫

T−
n

ln

2A−n
(ρ−n − ρ) exp(−jkt · ρ)dA, (H.5)

which can be rewritten as

f̂n(kt) =
ln

2A+
n

{
g+

n (kt)− ρ+
nh

+
n (kt)

}
+

ln

2A−n

{
ρ−n h

−
n (kt)− g−n (kt)

}
, (H.6)

in which

g+
n (kt) =

∫
T+

n

ρ exp(−jkt · ρ)dA, g−n (kt) =
∫

T−
n

ρ exp(−jkt · ρ)dA, (H.7)

h+
n (kt) =

∫
T+

n

exp(−jkt · ρ)dA, h−n (kt) =
∫

T−
n

exp(−jkt · ρ)dA. (H.8)

Let ∇k be the transverse gradient operator with respect to the vector kt. By
using the chain rule for partial differentiation with respect to the vector kt, we
can rewrite the expression for g+

n (kt) as

g+
n (kt) =

∫
T+

n

ρ exp(−jkt · ρ)dA =
∫

T+
n

j∇k exp(−jkt · ρ)dA, (H.9)

which reduces to

g+
n (kt) = j∇k

∫
T+

n

exp(−jkt · ρ)dA = j∇kh
+
n (kt). (H.10)
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For g−n (kt), we find a similar relation

g−n (kt) = j∇kh
−
n (kt). (H.11)

We can now rewrite equation H.6 as

f̂n(kt) =
ln

2A+
n

{
j∇k − ρ+

n

}
h+

n (kt) +
ln

2A−n

{
ρ−n − j∇k

}
h−n (kt). (H.12)

At this point, we are left with the calculation of h+
n (kt) and h−n (kt). First, note

that2

(∇t ·∇t + k2
t ) exp(−jkt · ρ) = 0⇔

exp(−jkt · ρ) = − 1
k2

t

∇t ·∇t exp(−jkt · ρ). (H.13)

If we use this identity, we can rewrite h+
n (kt) as

h+
n (kt) =

∫
T+

n

exp(−jkt · ρ)dA = − 1
k2

t

∫
T+

n

∇t ·∇t exp(−jkt · ρ)dA. (H.14)

Applying Gauss’ divergence theorem, and evaluating ∇t exp(−jkt · ρ), results
in

h+
n (kt) =− 1

k2
t

∮
∂T+

n

∇t exp(−jkt · ρ) · ν̂d`

=
j
k2

t

∮
∂T+

n

exp(−jkt · ρ)(kt · ν̂)d`. (H.15)

We further define the following tangential τ̂ (AB)
n and normal ν̂(AB)

n unit-length
vectors along the contour of the triangle T+

n

τ̂ (12)
n =ρ(12)

n /‖ρ(12)
n ‖, ν̂(12)

n = τ̂ (12)
n × ẑ,

τ̂ (2+)
n =ρ(2+)

n /‖ρ(2+)
n ‖, ν̂(2+)

n = τ̂ (2+)
n × ẑ,

τ̂ (+1)
n =ρ(+1)

n /‖ρ(+1)
n ‖, ν̂(+1)

n = τ̂ (+1)
n × ẑ.

(H.16)

If we split the contour integrals in equation H.15 into separate corresponding
straight-line integrals, we can rewrite h+

n (kt) as

h+
n (kt) =j

kt · ν̂(12)
n

k2
t

∫ ρ(2)
n

ρ
(1)
n

exp(−jkt · ρ)d`+

j
kt · ν̂(2+)

n

k2
t

∫ ρ+
n

ρ
(2)
n

exp(−jkt · ρ)d`+

j
kt · ν̂(+1)

n

k2
t

∫ ρ(1)
n

ρ+
n

exp(−jkt · ρ)d`.

(H.17)

2A special word of thanks goes to prof.dr. A.G. Tijhuis for providing me with this clue.
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We can cast each line integral in the following form∫ ρB

ρA

fd` =
∫ `

0

f(h(`))d` =
∫ 1

0

f(g(t))‖g′(t)‖dt, f = exp(−jkt · ρ), (H.18)

where h(`) represents the arc-length curve. Subsequently, we choose the follow-
ing parametrization for g(t)

g(t) = ρA + ρABt, ρAB = ρB − ρA, t ∈ [0, 1], (H.19)

and we write equation H.18 as∫ ρB

ρA

fd` =
∫ 1

0

exp(−jkt · [ρA + ρABt])‖ρAB‖dt

=‖ρAB‖ exp
(
− 1

2 jkt · [ρA + ρB ]
)
sinc

(
− 1

2kt · ρAB

)
.

(H.20)

With the aid of this result, we can rewrite h+
n (kt) as

h+
n (kt) =j‖ρ(12)

n ‖ξ(kt,ρ
(1)
n ,ρ(2)

n )+

j‖ρ(2+)
n ‖ξ(kt,ρ

(2)
n ,ρ+

n )+

j‖ρ(+1)
n ‖ξ(kt,ρ

+
n ,ρ

(1)
n ),

(H.21)

in which

ξ(kt,ρA,ρB) =
kt · ν̂AB

k2
t

exp
(
− 1

2 jkt · [ρA + ρB ]
)
sinc

(
− 1

2kt · ρAB

)
. (H.22)

In a similar way, we define the following tangential τ̂ (AB)
n and normal ν̂(AB)

n

unit-length vectors along the contour of the triangle T−n

τ̂ (12)
n =ρ(12)

n /‖ρ(12)
n ‖, ν̂(12)

n = τ̂ (12)
n × ẑ,

τ̂ (−1)
n =ρ(−1)

n /‖ρ(−1)
n ‖, ν̂(−1)

n = τ̂ (−1)
n × ẑ,

τ̂ (2−)
n =ρ(2−)

n /‖ρ(2−)
n ‖, ν̂(2−)

n = τ̂ (2−)
n × ẑ.

(H.23)

Now, we can write h−n (kt) as

h−n (kt) =− j‖ρ(12)
n ‖ξ(kt,ρ

(1)
n ,ρ(2)

n )+

− j‖ρ(−1)
n ‖ξ(kt,ρ

−
n ,ρ

(1)
n )+

− j‖ρ(2−)
n ‖ξ(kt,ρ

(2)
n ,ρ−n ).

(H.24)

Further, we define

ζ(kt,ρA,ρB) ≡∇kξ(kt,ρA,ρB). (H.25)
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By evaluating the gradient operator ∇k, we can rewrite ζ(kt,ρA,ρB) as

ζ(kt,ρA,ρB) =
1
k2

t

exp
(
− 1

2 jkt · [ρA + ρB ]
){

sinc
(
− 1

2kt · ρAB

)
[
−2kt

k2
t

(kt · ν̂AB) + ν̂AB − 1
2 j(kt · ν̂AB)(ρA + ρB)

]
−

1
2ρAB(kt · ν̂AB)sinc′

(
− 1

2kt · ρAB

)}
.

(H.26)

If we use equation H.26, we can rewrite g+
n (kt) as

g+
n (kt) =− ‖ρ(12)

n ‖ζ(kt,ρ
(1)
n ,ρ(2)

n )+

− ‖ρ(2+)
n ‖ζ(kt,ρ

(2)
n ,ρ+

n )+

− ‖ρ(+1)
n ‖ζ(kt,ρ

+
n ,ρ

(1)
n ),

(H.27)

and g−n (kt) as

g−n (kt) =‖ρ(12)
n ‖ζ(kt,ρ

(1)
n ,ρ(2)

n )+

‖ρ(−1)
n ‖ζ(kt,ρ

−
n ,ρ

1
n)+

‖ρ(2−)
n ‖ζ(kt,ρ

(2)
n ,ρ−n ).

(H.28)

Finally, we can express the spectrum of an RWG function, as defined in equation
H.4, as

f̂n(kt) = − ln

2A+
n

{
‖ρ(12)

n ‖ζ(kt,ρ
(1)
n ,ρ(2)

n ) + ‖ρ(2+)
n ‖ζ(kt,ρ

(2)
n ,ρ+

n )+

‖ρ(+1)
n ‖ζ(kt,ρ

+
n ,ρ

(1)
n ) + jρ+

n ‖ρ(12)
n ‖ξ(kt,ρ

(1)
n ,ρ(2)

n )+

jρ+
n ‖ρ(2+)

n ‖ξ(kt,ρ
(2)
n ,ρ+

n ) + jρ+
n ‖ρ(+1)

n ‖ξ(kt,ρ
+
n ,ρ

(1)
n )
}

+

− ln

2A−n

{
‖ρ(12)

n ‖ζ(kt,ρ
(1)
n ,ρ(2)

n ) + ‖ρ(−1)
n ‖ζ(kt,ρ

−
n ,ρ

1
n)+

‖ρ(2−)
n ‖ζ(kt,ρ

(2)
n ,ρ−n ) + jρ−n ‖ρ(12)

n ‖ξ(kt,ρ
(1)
n ,ρ(2)

n )+

jρ−n ‖ρ(−1)
n ‖ξ(kt,ρ

−
n ,ρ

(1)
n ) + jρ−n ‖ρ(2−)

n ‖ξ(kt,ρ
(2)
n ,ρ−n )

}
.

(H.29)
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Appendix I

Interaction between a Thin
Strip and a Layered Space

In this appendix, we evaluate1 the inner product between the electric and mag-
netic modal fields for a layered space and a thin-strip function. The thin-strip
function serves as an approximate modal function where the expected electro-
magnetic behavior (modal sine functions in the length direction and an edge
singularity in the width direction) on the thin strip is modeled in an explicit
way.

The electric and magnetic modal fields within the layered space are given
by equations 2.174, 2.175, 2.181 and 2.182. The thin-strip function has been
defined by equation 3.79 as

fn(ρ) =


p̂n

1r
1−

“
2y′
wn

”2
sin
(

πmn

ln

[
x′ + ln

2

])
if ρ ∈ Sn,

0 otherwise.
(I.1)

See section 3.7.2 for a detailed explanation of the thin-strip function. See figure
I.1 for a graphical representation of the domain, vectors and scalars used in the
thin strip function. From the expressions for the electric and magnetic modal
fields within the layered space, i.e. equations 2.174, 2.175, 2.181 and 2.182, we
can distinguish the following four possible combinations of inner products

< e′t(kt) | fn > =
j

2π
k̂ · f̂n(kt), < e′′t (kt) | fn > =

j
2π

α̂ · f̂n(kt), (I.2)

< h′t(kt) | fn > = − j
2π

α̂ · f̂n(kt), < h′′t (kt) | fn > =
j

2π
k̂ · f̂n(kt), (I.3)

in which the so-called spectrum of a thin strip function is given by

f̂n(kt) =< exp(−jkt · ρ) | fn > . (I.4)
1Computation of the projection matrix between a thin strip function and a layered space

mode.
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Figure I.1: Domain, vectors and scalars used in the thin strip function.

Therefore, it suffices to evaluate f̂n(kt). After substituting the expression for
the thin strip function, equation I.1, in equation I.4, we arrive at

f̂n(kt) =p̂n exp
(
jkt · sn + 1

2 jlnk′x
)

1
4wnlnmnπ

2jmn+1J0

(
1
2wnk

′
y

) sin
(

1
2 [k′xln + πmn]

)[(
1
2k

′
xln
)2 − ( 1

2πmn

)2] , (I.5)

in which

k′x = kt · d̂n, k′y = kt · (ẑ× d̂n), (I.6)

and in which J0(z) denotes the zero-order Bessel function of the first kind [2,
chapter 9].



Appendix J

Interaction between a Patch
and a Layered Space

In this appendix, we evaluate1 the inner product between the electric and mag-
netic modal fields for a layered space and a patch function. The patch function
serves as an approximate modal function where the expected electromagnetic
behavior on the patch is modeled in an explicit way [1].

The electric and magnetic modal fields within the layered space are given by
equations 2.174, 2.175, 2.181 and 2.182. The patch function has been defined
in equation 3.82 as

fn(ρ) =


ûnCpn

(x′, ln)Dqn
(y′, wn) if ρ ∈ Sn and fn is ûn-directed,

v̂nDqn
(x′, ln)Cpn

(y′, wn) if ρ ∈ Sn and fn is v̂n-directed,
0 otherwise.

(J.1)

See section 3.7.3 for a detailed discussion of the patch function. See figure J.1 for
a graphical representation of the domain, vectors and scalars used in the patch
function. From the expressions for the electric and magnetic modal fields within
the layered space, i.e., equations 2.174, 2.175, 2.181 and 2.182, we identify the
following four possible combinations of inner products

< e′t(kt) | fn > =
j

2π
k̂ · f̂n(kt), < e′′t (kt) | fn > =

j
2π

α̂ · f̂n(kt), (J.2)

< h′t(kt) | fn > = − j
2π

α̂ · f̂n(kt), < h′′t (kt) | fn > =
j

2π
k̂ · f̂n(kt), (J.3)

in which the so-called spectrum of a patch function is given by

f̂n(kt) =< exp(−jkt · ρ) | fn > . (J.4)

1Computation of the projection matrix between a patch function and a layered space mode.
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Figure J.1: Domain, vectors and scalars used in the patch function.

Therefore, it suffices to evaluate f̂n(kt). Upon substituting the expression for
the patch function, i.e., equation J.1, in equation J.4, we arrive at

f̂n(kt) = φn

{
ûnĈpn

(k′x, ln)D̂qn
(k′y, wn) if fn is ûn-directed,

v̂nD̂qn
(k′x, ln)Ĉpn

(k′y, wn) if fn is v̂n-directed,
(J.5)

in which

k′x = kt · ûn, k′y = kt · v̂n, φn = exp
(

1
2 jkt · [lnûn + wnv̂n + 2sn]

)
, (J.6)

and in which the Fourier transforms Ĉm(k,w) of Cm(x,w) and D̂m(k,w) of
Dm(x,w) are given by

Ĉm(k,w) =
1
k
Jm+1

(
kw

2

)
, D̂m(k,w) = Jm

(
kw

2

)
. (J.7)

Jm(z) denotes the m-order Bessel function of the first kind [2, chapter 9]. Fi-
nally, note that

lim
k→0

Ĉm(k,w) =
w

4
. (J.8)



Appendix K

Floquet Analysis of
Periodic Structures

In this appendix we describe how the spectral integrals involved in the compu-
tation of the linear operator L are converted into summations, if the structure
is periodic, and if the incident field is a plane wave. The analysis of the infinite
periodic structure is essentially reduced to that of the central unit cell [112,
chapter 7].

In section 3.5 we have defined a set of expansion functions that are contained
within the central unit cell. The extension of these functions to the entire
periodic structure, however, is not unique. We will propose two different choices
for this extension, derive corresponding spectral representations, and examine
the properties that are relevant in the computations.

First we consider an array of unit cells, regularly arranged in a so-called
direct (or Bravais) lattice defined by the basis vectors d1 and d2. Without
loss of generality, we choose the x-axis to be in parallel with d1. A graphical
representation of the direct lattice is given in figure K.1.

We assume that the periodic structure is excited by an incident plane wave
Einc

t (r), expressed as

Einc
t (r) = Einc

t;0 exp(−jkinc · r)
= Einc

t;0 exp(−jkinc
t · ρ) exp(−jkzz)

= Einc
t (ρ) exp(−jkzz).

(K.1)

Then we define a so-called translation operator Tm,n as

Tm,nf(ρ) ≡ f(ρ +md1 + nd2), m, n = 0,±1,±2, . . . (K.2)

Subsequently, if an arbitrary vector field f(ρ) is of the form g(ρ) exp(−jkinc
t ·ρ)

where Tm,ng(ρ) = g(ρ), then f(ρ) satisfies

Tm,nf(ρ) ≡ f(ρ +md1 + nd2) = f(ρ) exp(−jkinc
t · [md1 + nd2]), (K.3)
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Figure K.1: Direct Bravais lattice (closed circles) and reciprocal Floquet lattice
(open circles).

the so-called pseudo-periodicity relation [112, equation 7.4]. It is well known
from the general theory of wave propagation in the presence of a periodic struc-
ture (a periodic g(ρ)), that the fields excited by a plane wave must have the
same periodicity as the structure, apart from a phase shift associated to the
incident field. This means that the field distributions must satisfy the afore-
mentioned pseudo-periodicity relation. To see that this is true, we apply the
translation operator to the incident plane wave. Doing this results in

Tm,nEinc(ρ) = Einc(ρ) exp(−jkinc
t · [md1 + nd2]). (K.4)

Furthermore, since the structure is invariant under the translation expressed
in Tm,n, any induced current distribution J(ρ) must also satisfy the pseudo-
periodicity relation, i.e.,

Tm,nJ(ρ) = J(ρ) exp(−jkinc
t · [md1 + nd2]). (K.5)

Now, if the arbitrary vector field f(ρ) satisfies the pseudo-periodicity relation,
the corresponding spectrum f̂(kt) is discrete. To demonstrate this, we apply a
Fourier transformation on both sides of the pseudo-periodicity relation K.3. We
apply the definition of the translation operator on the left side, and we apply
the Fourier shift theorem on both sides of the equation. We thus obtain

exp(−jkt · [md1 + nd2]) f̂(kt) = exp(−jkinc
t · [md1 + nd2]) f̂(kt), (K.6)

which can be rewritten as

exp(− jkinc
t · [md1 + nd2])[

exp(−j[kt − kinc
t ] · [md1 + nd2])− 1

]
f̂(kt) = 0. (K.7)
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A non-trivial solution for f̂(kt) exist if exp(−j[kt−kinc
t ] · [md1 +nd2]) = 1, and

is satisfied if

kt − kinc
t = pk1 + qk2, (K.8)

for arbitrary integers p and q, and with

ki · dj = 2πδi,j . (K.9)

Equation K.8 defines a so-called reciprocal (Floquet) lattice which is spanned
by the two basis vectors k1 and k2 defined by equation K.9 [112, section 7.2], [2,
section 20.3]. A graphical representation of the reciprocal lattice is also given in
figure K.1. On this lattice f̂(kt) is nonzero for discrete values for kt, i.e., f(ρ)
has a discrete spectrum. From equation K.9, we find the basis vectors of the
reciprocal lattice as

k1 = 2π
d2 × ẑ
A

, k2 = 2π
ẑ× d1

A
, (K.10)

where

A = (d1 × d2) · ẑ, (K.11)

represents the area of the unit cell. We define a so-called Dirac brush function
[112, definition 7.12], which is a two-dimensional generalization of the Dirac
comb function, as ∐

d1,d2

(ρ) =
∑
p,q

δ(ρ− pd1 − qd2). (K.12)

Its corresponding spectrum is discrete, and can be expressed in terms of the
same Dirac brush function as

F

 ∐
d1,d2

(ρ)

 =
4π2

A

∐
k1,k2

(kt), (K.13)

According to the solution technique discussed in chapter 3.4, a set of expansion
functions are defined to represent either the induced magnetic current distribu-
tion on the apertures, or the induced electric current distribution on subdomains
within the unit cell. Since the induced current distribution is pseudo-periodic,
a suitable set of expansion functions with this property must be constructed.
To this end, let fk(ρ) be a set of expansion functions defined only on the central
unit cell (and is zero outside this domain). Many different choices are possible
to extend such a function to the periodic structure such that equation K.3 is
satisfied.

The first choice (which is generally assumed in the literature [112, section
7.3]) for a periodic extension is the so-called staircase phase function fSk (ρ), and
is expressed as

fSk (ρ) ≡
∑
p,q

fk(ρ− pd1 − qd2) exp(−jkinc
t · [pd1 + qd2]), (K.14)
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This periodic extension satisfies the pseudo-periodicity relation

Tm,nfSk (ρ) ≡ fSk (ρ +md1 + nd2)

=
∑
p,q

fk(ρ− (p−m)d1 − (q − n)d2) exp(−jkinc
t · [pd1 + qd2])

=
∑
p′,q′

fk(ρ− p′d1 − q′d2) exp(−jkinc
t · [(p′ +m)d1 + (q′ + n)d2])

= exp(−jkinc
t · [md1 + nd2])fSk (ρ),

(K.15)

and represents an eigenvalue problem where the eigenvalue of the transmission
operator has a magnitude equal to one. The eigenvalue problem tells us that
the behavior of all unit cells can be regarded as equal in magnitude, except
for a stepwise phase difference between the unit cells. The second choice for a
periodic extension is the so-called linear phase function fLk (ρ), and is expressed
as [112, section 7.3]

fLk (ρ) ≡ exp(−jkinc
t · ρ)

∑
p,q

fk(ρ− pd1 − qd2), (K.16)

This periodic extension satisfies the pseudo-periodicity relation

Tm,nfLk (ρ) ≡ fLk (ρ +md1 + nd2)

= exp(−jkinc
t · [ρ +md1 + nd2])

∑
p,q

fk(ρ− (p−m)d1 − (q − n)d2)

= exp(−jkinc
t · [md1 + nd2]) exp(−jkinc

t · ρ)
∑
p′,q′

fk(ρ− p′d1 − q′d2)

= exp(−jkinc
t · [md1 + nd2])fLk (ρ),

(K.17)

and represents an eigenvalue problem where the eigenvalue of the transmission
operator has a magnitude equal to one. The eigenvalue problem tells us that
the behavior of all unit cells can be regarded as equal in magnitude, except for
a linear phase difference along the unit cells. Note that if we replace fk(ρ) with
fk(ρ) exp(−jkinc

t · ρ) in the periodic extension for fSk (ρ) as

fSk (ρ) =
∑
p,q

fk(ρ− pd1 − qd2)

exp(−jkinc
t · [ρ− pd1 − qd2]) exp(−jkinc

t · [pd1 + qd2])

=
∑
p,q

fk(ρ− pd1 − qd2) exp(−jkinc
t · ρ)

= exp(−jkinc
t · ρ)

∑
p,q

fk(ρ− pd1 − qd2) = fLk (ρ),

(K.18)

we obtain fLk (ρ). To appreciate the advantages of fLk (ρ) compared to fSk (ρ),
we must concentrate on the spectral domain. If we use equation K.12, we can
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rewrite fSk (ρ) as

fSk (ρ) = exp(−jkinc
t · ρ)

{fk(ρ) exp(jkinc
t · ρ)

}
∗
∐

d1,d2

(ρ)

 . (K.19)

where ∗ denotes convolution over ρ. Its corresponding spectrum is given by

f̂Sk (kt) =
4π2

A
f̂k(kt)

∐
k1,k2

(kt − kinc
t ). (K.20)

Note that f̂Sk (kt) is not rigidly connected to the reciprocal lattice, which means
that f̂k(kt) is sampled at different points (kinc

t + pk1 + qk2) when kinc
t changes

due to a change in frequency or angle of incidence. Finally, if we use equation
K.12, we can rewrite fLk (ρ) as

fLk (ρ) = exp(−jkinc
t · ρ)

fk(ρ) ∗
∐

d1,d2

(ρ)

 . (K.21)

Its corresponding spectrum is given by

f̂Lk (kt) =
4π2

A
f̂k(kt − kinc

t )
∐

k1,k2

(kt − kinc
t ). (K.22)

Note that f̂Lk (kt) is rigidly connected to the reciprocal lattice, which means that
f̂k(kt) is sampled in the same points (pk1 + qk2) even when kinc

t changes due to
a change in frequency or angle of incidence.
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Summary

Phased array antennas (PAAs) used in military naval radar systems contain a
large number of simple and identical radiating elements regularly arranged in
a planar grid. A recent and innovative example is the APAR multi-function
search, track and missile guidance radar from Thales Nederland. APAR is
an X-band radar and consists of four PAA faces where each PAA face has
more than 3000 radiating elements. To have a successfully operating radar
system in a stressful environment, these PAAs have to satisfy a large number
of stringent requirements, such as a wide beam scanning range and a large
frequency bandwidth with low losses. To achieve this, and further to reduce
the costs of PAA prototype building, dedicated computational methods are
used to simulate the electromagnetic (EM) behavior of PAAs. These methods
support an efficient iterative PAA design process, where a number of specific
design parameters is adjusted iteratively until the calculated EM response of the
structure satisfies the requirements. Subsequently, a prototype is constructed
and measurements are carried out. The comparison between the outcome of
these measurements and the predictions determines whether the design can be
finalized, or whether the design process should be continued.

On future PAAs the requirements on beam scanning ranges and frequency
bandwidths will become more stringent. Furthermore, new requirements such
as a low radar cross-section signature and a low EM interference (EMI) and
a high EM compatibility (EMC) will be introduced. These requirements can
only be met by selecting more complex radiating elements and by increasing the
number of computational design iterations. Moreover, the design phase must
include a sensitivity analysis, where the sensitivity of the EM behavior with re-
spect to production variations is analyzed and minimized. The goal is to obtain
a so-called production tolerant design. Most current design methods adjust the
design parameters in a trial-and-error process. Future design methods will be
more automated in this sense with the aid of synthesis techniques, which will
allow a more structured design approach. These developments lead to a strongly
increased number of computational design iterations. With the currently avail-
able numerical methods, this would lead to unacceptably long simulation times.
The objective of this thesis was to develop a computational method that can be
used in this process.

Since the number of radiating elements is large, we use the infinite-array
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approach, which assumes an infinite number of identical radiating elements with
a constant progressive phase shift between the elements. This approach reduces
the computation of the EM behavior for the infinite structure essentially to that
of a single radiating element. Typical radiating element structures, that can
be analyzed with the computational method described in this thesis, consist of
waveguide feeding elements, cavity backed patches, open-ended waveguides, and
multi-layer frequency selective surfaces. To formalize the construction of such
a typical unit-cell structure we use two types of building blocks: segments and
junctions. Segments can be either pieces of waveguide or layered space (infinite
dielectric slabs). Each junction separates two segments and can/must contain
infinitely thin arbitrarily shaped metal. Within a single radiating element there
are parts (basic structures) in which the junctions experience a significant EM
coupling. Between the basic structures there is low EM coupling. To determine
the total EM behavior efficiently we exploit this property, and separate the total
calculation into one for each basic structure, and one for combining them.

The calculation of the EM behavior within a single basic structure requires
the use of Maxwell’s equations. Since we are dealing with a planarly stratified
configuration, we derive a Green’s function formulation for a planarly stratified
medium. We distinguish here between two types of such media: the waveguide
and the layered space. Then, we formulate the scattering problem and ensure
the existence and uniqueness of a field solution within the basic structure by
supplementing proper boundary conditions. From an electromagnetic engineer-
ing point of view these boundary conditions describe the domain where the
Maxwell equations are to be solved. The final objective of the simulation is to
compute the field radiated by a given source in a complicated structure. If the
Green’s function of this structure were known, the computation could be carried
out without difficulty and there would be no need to apply the equivalence the-
orem. On the contrary, by closing some gaps or removing some metal parts, we
obtain simpler regions where the Green’s function is known, as a modal expan-
sion. The equivalence theorem says that in order to have the same field in the
original and the modified structure, it is necessary to introduce suitable current
distributions. The actual value of these currents cannot be given explicitly, but
can be determined by the solution of an integral equation. Integral, because
the relationship between currents and fields is always of integral type, with a
kernel which is the Green’s function, which is known in each sub-domain. The
equivalent scattering field problem is solved by using a so-called coupled field
integral equation (CFIE) technique, where the (electric and magnetic) field in-
tegral equations for the separate corresponding junctions are combined. These
unknown surface currents are discretized in terms of expansion functions, such
as the rooftop and Rao-Wilton-Glisson (RWG) functions, and subsequently de-
termined by the method of moments (MoM). This method approximates the
integral equation by a matrix equation of type Lu = f with linear operator L,
unknown vector u, and forcing vector f . The matrix equation can be solved by
means of simple inversion of L, or by making use of more sophisticated iterative
schemes. Once we have solved the unknown surface currents with the method of
moments, we calculate the total EM field at any given location within the basic
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structure. To calculate the EM behavior of the total unit-cell structure, we must
combine the individual EM behaviors of all basic structures. For this purpose
we formulate a so-called generalized scattering matrix, which characterizes this
behavior for all basic structures individually, by relating the outgoing waves to
the incident waves. Then we formulate a procedure that cascades two general-
ized scattering matrices. The result is a new generalized scattering matrix that
characterizes the EM behavior of the combination of the two basic structures.

Most of the computational effort in the procedure described above is spent
in assembling the linear operator L. We present a novel acceleration technique
that translates the evaluation of an asymptotically slowly converging series,
which needs to be evaluated in assembling L, into a numerical integration over
an exponentially fast converging series. This technique reduces the time needed
to evaluate these series and consists of three steps. The first step is a Kummer
transformation, where the asymptotically slowly converging part of the series
is subtracted (resulting in a rapidly converging reduced series) and added (re-
sulting in a slowly converging correction series). The second step is an Ewald
transformation, where the asymptotically slowly converging correction series is
converted into an integration over τ of exponentially fast decaying functions.
These functions contain an exponentially fast converging series for which the
leading-order term is given by exp(−k2

t τ
2λ). The third step is to split the in-

tegration over τ into one for small τ , i.e., over the interval (0, τ1), and one for
large τ , i.e., over the interval (τ1,∞). Then we apply a so-called Poisson trans-
formation for the integration over small τ , where the relatively slow convergence
of the series within the exponentially fast decaying function, corresponding to
the behavior of exp(−k2

t τ
2λ) for small τ , is converted into an exponentially fast

converging series. The leading-order term for the integration over small τ is
given by exp(−ρ2/(4τ2λ)). The so-called transition point τ1 is a compromise
between the convergence behavior of the leading-order terms exp(−k2

t τ
2λ) and

exp(−ρ2/(4τ2λ)). The Poisson transformation step results in the evaluation of
a so-called exponential regularization (ER) of (a combination of) the expansion
and weighting functions. The overall success of this acceleration technique crit-
ically depends on the possibility of being able to quickly evaluate the ER. Since
the ER is independent of angle of incidence, frequency and medium parame-
ters we calculate it at the beginning of the computation and store it in an ER
lookup table (ERLT). This ERLT generation creates a trade-off situation where
we can decide whether or not we use the acceleration technique. Since it takes
time to generate this ERLT, a critical amount of simulation steps (break-even
point) exists where the computational method with the acceleration technique
becomes faster than the unaccelerated version. Furthermore, we consider three
specific choices for the expansion and weighting functions that lead to workable
analytical solutions and numerical approximations for the ER. The first case is
the rooftop function defined in an orthogonal grid, which creates a restriction
in the modeling of the unknown surface currents. However most structures do
not consist of arbitrarily shaped metal patches and apertures, and can therefore
be captured in this orthogonal grid. An advantage of this grid is that we can
express the ER in terms of complementary error functions. This method is the
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fastest for a given test case, when compared with the other two methods. It has
the lowest ERLT generation time and the time per step is almost eight times
smaller compared to the time per step in the unaccelerated method. Break-
even is already reached from the fifth step onwards. In some cases where the
unit-cell structure cannot be captured in an orthogonal grid we use the second
case, where the rooftop function is defined in an arbitrary grid. In this case,
we express the ER as a convolution of two analytically known functions, both
with ”almost” compact support. This method has a higher ERLT generation
time due to the numerical convolution. The time per step is almost eight times
smaller compared to the time per step in the unaccelerated method. Break-
even is reached at a higher number of steps. The third case involves the more
general RWG function. With this triangular expansion function we can model
the unknown currents in the most arbitrary way. In this case, we can express
the ER as a convolution of two numerically approximated functions both with
”almost” compact support. This method has a high ERLT generation time
due to both the numerical convolution and the numerical integration within
the regularization integral. An analytical alternative is given for the numerical
integration. Break-even is reached at a much higher number of steps. The time
per step is almost six times smaller compared to the time per step in the unac-
celerated method. Using the acceleration technique leads to the conclusion that
the computational method is fast.

We validate our computational method against available commercial soft-
ware tools (such as the finite-element code c©HFSS), and (some of them) against
waveguide simulator measurements. We do this for eight different practical and
representative radiating structures, of which the first five structures represent
different types of frequency selective surfaces, and where the last three struc-
tures are concerned with different types of radiators. Based on these validation
results we argue that the computational method is besides fast also accurate.



Samenvatting

Phased array antennes (PAAs) worden steeds vaker gebruikt in militaire mari-
neradarsystemen. Zij bevatten een groot aantal simpele en identieke stralende
elementen die in een regelmatig geordend plat vlak zijn geplaatst. Een recent
en innovatief voorbeeld is de APAR multi-functie zoek-, volg- en raketbegelei-
dingsradar van Thales Nederland BV. APAR is een X-band radar die uit vier
PAA platen bestaat. Ieder van deze platen bevatten meer dan 3000 stralen-
de elementen. Om deze radars in een sterk belastende omgeving succesvol te
laten functioneren, moeten de PAAs aan een groot aantal strenge specificaties
voldoen. Voorbeelden hiervan zijn: een groot bundelstuurbereik en een grote
operationele frequentiebandbreedte met lage verliezen. Om aan deze eisen te
kunnen voldoen, en om bovendien de constructiekosten van PAA prototypes te
reduceren, gebruikt men specifieke rekenmethoden die het elektromagnetische
(EM) gedrag van PAAs voorspellen. Deze methoden staan een efficiënt itera-
tief ontwerpproces toe en ondersteunen dit. Dit proces wordt gekarakteriseerd
door een iteratieve aanpassing van een aantal specifieke ontwerpparameters tot-
dat het berekende EM gedrag aan de specificaties voldoet. Daarna wordt een
PAA prototype gebouwd en wordt het bijbehorende EM gedrag gemeten. De
vergelijking van de uitkomst van deze metingen en de voorspellingen bepalen
of het ontwerp kan worden afgerond, of dat het ontwerpproces moet worden
voortgezet.

Voor toekomstige PAAs zullen de bestaande eisen strenger worden. Boven-
dien komen er ook nieuwe eisen bij zoals een lage zichtbaarheid voor vijande-
lijke radars en een lage EM interferentie (EMI) en een hoge EM compatibili-
teit (EMC). Hierdoor is men genoodzaakt ingewikkelder stralende elementen
te gebruiken. Bovendien zullen meer ontwerpiteraties met deze rekenmetho-
des moeten worden doorlopen om aan de zwaardere eisen te voldoen. Verder
moet de ontwerpfase ook een analyse bevatten van de gevoeligheid van het EM
gedrag voor de productietoleranties. Het doel hierbij is een productietolerant
ontwerp. De meeste huidige ontwerpprocessen passen de ontwerpparameters aan
via trial-and-error. Toekomstige ontwerpprocessen zullen meer gestructureerde
ontwerpmethodieken omvatten waarin dit proces geautomatiseerd is met behulp
van synthese algoritmes. Deze nieuwe methodes geven naast de zwaardere spe-
cificaties ook aanleiding tot een sterk sterk verhoogd aantal ontwerpiteraties
met de rekenmethodes. Met de huidige beschikbare rekenmethodes zou dit tot
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onaanvaardbare rekentijden leiden. Het doel van dit proefschrift is dan ook om
een nieuwe snelle efficiënte rekenmethode te ontwikkelen om dit probleem op te
lossen.

Omdat het aantal stralende elementen groot is maken we gebruik van de
oneindige array benadering. Een eerste aanname bij deze methode is dat we
te maken hebben met een PAA waarin een oneindig aantal identieke stralen-
de elementen zijn geplaatst. Bovendien wordt aangenomen dat de elementen
in deze methode worden aangestuurd met een constant progressief faseverschil
tussen de elementen onderling. Een groot voordeel van deze methode is dat de
uiteindelijke berekening van het EM gedrag van de oneindig grote PAA wordt
gereduceerd tot het gedrag van een enkel stralend element. De typische stralen-
de elementen die kunnen worden geanalyseerd met de rekenmethode beschreven
in dit proefschrift, bestaan uit golfpijp voedingselementen, met metalen plaatjes
afgesloten trilholtes, golfpijpen met open eindes en multilaags frequentie selec-
tieve oppervlaktes (FSS). Om een enkel stralend element formeel te kunnen
opbouwen maken we gebruik van twee bouwblokken: segmenten en juncties.
Segmenten kunnen stukjes golfpijp of gelaagde media zijn. Elke junctie scheidt
twee segmenten van elkaar. Bovendien kan een junctie oneindig dun willekeurig
gevormd metaal bevatten. In een stralend element kunnen we gebieden (ba-
sisstructuren) onderscheiden waarbinnen de juncties een sterke EM koppeling
ervaren. Tussen de basisstructuren onderling is er een zwakke EM koppeling.
Om het volledige EM gedrag efficiënt te bepalen maken we gebruik van deze
eigenschap, en delen we de totale berekening op in een berekening voor iedere
basisstructuur en een procedure voor de koppeling van basisstructuren.

Aan de berekening van het EM gedrag binnen iedere basisstructuur liggen
de Maxwell vergelijkingen ten grondslag. Omdat we in onze basisstructuren
specifiek te maken hebben met planair willekeurig gelaagde structuren, leiden
we hiervoor specifiek een formulering af in termen van modale Greense functies.
We maken onderscheid tussen twee typen gelaagde media: de golfpijp en de vrije
ruimte. Daarna formuleren we het veldverstrooiingsprobleem door de randvoor-
waarden op te stellen die het bestaan van eenduidige EM velden garanderen.
Dit veldverstrooiingsprobleem kunnen we in eerste instantie niet oplossen omdat
we de Greense functie van deze configuratie met de metalen plaatjes en de gaten
niet kennen. Door echter de metalen plaatjes in de juncties te verwijderen, of de
gaten tussen de metalen plaatjes op te vullen met metaal, ontstaat een situatie
waarin we de Greense functie in modale vorm kennen en reeds hadden afgeleid.
Met behulp van het equivalentietheorema kunnen we deze nieuwe configuratie
zodanig aanpassen – met behoud van kennis van de Greense functie – dat de
oplossing van elektromagnetische velden identiek is aan die van de oorspron-
kelijke configuratie. Dit betekent dat er oppervlaktestromen gëıntroduceerd
moeten worden in de nieuwe configuratie. Deze oppervlaktestromen zijn nog
onbekend en kunnen worden bepaald met een integraalvergelijkings methode.
Integraal, omdat we de velden als een convolutie in termen van de stromen heb-
ben uitgedrukt. Het nu ontstane equivalente veldverstrooiingsprobleem lossen
we op met behulp van een gekoppelde veldintegraalvergelijking, waarin de veld-
integraalvergelijkingen voor de afzonderlijke juncties gecombineerd worden. De
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oppervlaktestromen discretiseren we met behulp van ontwikkelfuncties. Voor-
beelden die we behandelen zijn de rooftop en de Rao-Wilton-Glisson (RWG)
ontwikkelfunctie. Daarna lossen we met behulp van de methode van de momen-
ten de gediscretiseerde onbekende oppervlaktestromen op. Dit gehele proces
reduceert de gekoppelde veldintegraalvergelijking tot een eenvoudige matrixver-
gelijking van het type Lu = f met lineaire operator L, onbekende vector u, en
forceringsvector f . Deze matrixvergelijking kan worden opgelost door gebruik te
maken van eenvoudige inversie van L of van meer geavanceerde iteratieve oplos-
singsschema’s. Nadat we de oppervlaktestromen hebben berekend kunnen we
het totale EM veld overal binnen de basisstructuur bepalen. Om het EM gedrag
van de gehele stralende structuur te bepalen moeten we de individuele EM ge-
dragingen van iedere afzonderlijke basisstructuur combineren. Dit doen we met
behulp van de gegeneraliseerde verstrooiingsmatrix die dit gedrag voor iedere
basis karakteriseert door de uitgaande EM golven te relateren aan de ingaande
golven. Daarna formuleren we een procedure die twee van deze gegeneraliseerde
verstrooiingsmatrices cascadeert. De uitkomst is een gegeneraliseerde verstrooi-
ingsmatrix die het gedrag van de gecombineerde basisstructuren representeert.

In de totale berekening wordt het grootste deel van de tijd besteed aan het
”vullen”van de lineaire operator L. We presenteren een nieuwe versnellingstech-
niek die een asymptotisch langzaam convergerende reeks bij de bepaling van L
vertaalt in een numerieke integratie over een exponentieel snel convergerende
reeks. Deze techniek reduceert de evaluatietijd van deze reeks en bestaat uit
drie stappen. De eerste stap is een Kummer transformatie waarin het asymp-
totisch langzaam convergerende deel van de reeks wordt afgetrokken (hetgeen
resulteert in een snel asymptotisch convergerende gereduceerde reeks) en wordt
opgeteld (hetgeen resulteert in een langzaam asymptotisch convergerende cor-
rectiereeks). De tweede stap is een Ewald transformatie waarin de langzaam
asymptotisch convergerende correctiereeks wordt vertaald in een integratie over
τ van exponentieel snel afvallende functies. Deze functies bevatten een exponen-
tieel snel convergerende reeks waarvan de leidende term de vorm exp(−k2

t τ
2λ)

heeft. De derde stap is een opdeling van het integratieinterval over τ in een deel
voor kleine τ , d.w.z. (0, τ1), en een deel voor grote τ , d.w.z. (τ1,∞). Daarna
passen we een Poisson transformatie toe waarin de relatief langzame convergen-
tie van de reeks in de exponentieel snel afvallende functies, veroorzaakt door het
gedrag van exp(−k2

t τ
2λ) voor kleine τ , wordt omgezet in een exponentieel snel

convergerende reeks. De leidende term voor het deel voor kleine τ heeft de vorm
exp(−ρ2/(4τ2λ)). De keuze voor het omslagpunt τ1 van grote τ naar kleine τ is
een compromis tussen de convergentiesnelheid voor de termen exp(−k2

t τ
2λ) en

exp(−ρ2/(4τ2λ)). Deze Poisson transformatie resulteert in een evaluatie van een
zogenaamde exponentiële regularisatie van (een combinatie van) de expansie- en
weegfuncties. Het uiteindelijke succes van de versnellingstechniek staat of valt
met de mogelijkheid om deze exponentiële regularisatie snel te kunnen bere-
kenen. Omdat de exponentiële regularisatie onafhankelijk is van de hoek van
inval, de frequentie en van elke mediumparameter, kunnen we deze aan het be-
gin van de totale berekening opslaan in een tabel. Dit leidt ertoe dat we kunnen
afwegen of we gebruik gaan maken van deze versnellingstechniek. Omdat het
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tijd kost om de tabel te genereren is de versnelde methode pas sneller dan de
onversnelde vanaf een kritiek aantal simulatie stappen. Verder beschouwen we
drie specifieke keuzes voor de ontwikkel- en weegfuncties. Deze drie keuzes lei-
den tot werkbare analytische oplossingen en numerieke benaderingen voor de
exponentiële regularisatie. Als eerste beschouwen we de rooftop ontwikkelfunc-
tie (Cartesisch product van een driehoek- en een stapfunctie) gedefinieerd op
een orthogonaal rooster. Deze keuze beperkt ons in het modelleren van de on-
bekende EM stroom in de structuur. De meeste structuren bevatten echter geen
willekeurig wild gevormde metalen oppervlakten en de meesten hiervan zijn te
vangen in dit orthogonale rooster. Een groot voordeel van dit rooster is dat
we de exponentiële regularisatie kunnen schrijven in termen van complemen-
taire error functies. Deze methode is voor een in dit proefschrift beschreven
testvoorbeeld de snelste van de drie en heeft de minste tijd nodig om de expo-
nentiële regularisatietabel te genereren. De tijd per simulatiestap is bijna acht
keer korter in vergelijking met de onversnelde methode. Het kritieke moment
wordt al bereikt bij de vijfde simulatie stap. In die speciale gevallen waarin de
structuren in de eenheidscel niet te vangen zijn in een orthogonaal rooster kun-
nen we gebruik maken van de rooftop functie met een willekeurige oriëntatie.
In dit geval kunnen we de exponentiële regularisatie schrijven als een convo-
lutie van twee analytische functies die ieder een bijna begrensde bandbreedte
hebben. Deze methode is voor hetzelfde testvoorbeeld langzamer dan de voor-
gaande. Dit komt doordat meer tijd nodig is voor de numerieke convolutie in
de generatie van de exponentiële regularisatietabel. De tijd per simulatiestap is
ook bij deze methode bijna acht keer korter dan de onversnelde methode. Het
kritieke moment wordt pas bereikt bij een hoger aantal simulatiestappen. Als
laatste beschouwen we de RWG functie. Met deze functie kunnen we de meest
willekeurig gevormde metalen structuren in de eenheidscel beschrijven. In dit
geval kunnen we de exponentiële regularisatie schrijven als een convolutie van
twee numeriek benaderde functies die ieder bijna een begrensde bandbreedte
hebben. Deze methode heeft voor hetzelfde testvoorbeeld de meeste tijd no-
dig om de exponentiële regularisatietabel te genereren. Dit komt naast de tijd
die nodig is voor de numerieke convolutie ook door de extra tijd die nodig is
voor het numeriek benaderen van de functies zelf. Een analytisch alternatief
voor de numerieke benadering is beschikbaar. Het kritieke moment wordt pas
bereikt na een groot aantal simulatiestappen (meer dan 600). Hier is de tijd
per simulatiestap bijna zes keer korter dan de onversnelde methode. We kun-
nen concluderen dat het gebruik van deze versnellingstechniek resulteert in een
snelle rekenmethode.

Tot slot valideren we de rekenmethode door de gegenereerde resultaten te
vergelijken met resultaten van commerciële softwarepaketten (zoals de eindige
elementenmethode van c©HFSS) en met resultaten van golfpijpsimulatorme-
tingen. We doen dit aan de hand van acht verschillende vanuit de praktijk
representatieve teststructuren, waarvan de eerste vijf verschillende typen fre-
quentie selectieve oppervlaktes voorstellen, en de laatste drie verschillende ty-
pen stralers. Aan de hand van deze resultaten maken we aannemelijk dat de
rekenmethode naast snel ook nauwkeurig is.
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