

An analysing and modelling tool kit for human-computer
interaction
Citation for published version (APA):
Rauterberg, G. W. M., & Fjeld, M. (1997). An analysing and modelling tool kit for human-computer interaction. In
G. Salvendy, M. J. Smith, & R. J. Koubek (Eds.), Design of computing systems : international conference, San
Francisco, August 24-29, 1997 : proceedings (pp. 589-592). (Advances in Human Factors/Ergonomics; Vol. 21).
Elsevier.

Document status and date:
Published: 01/01/1997

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/b31fb271-599c-4bf4-b5de-27b6d48cd3dc

589

An Analysing and Modelling Tool Kit for Human-Computer Interaction

M. Rauterberg & M. Fjeld

Institute for Hygiene and Applied Physiology (IHA)
Swiss Federal Institute of Technology (ETH)
Clausiusstrasse 25, CH-8092 Zurich, SWITZERLAND

A tool kit has been developed to analyze the empirical data of the interactive task solving be-
haviour described in a finite discrete state space (e.g., human-computer interaction), helping the
human factors engineer to design a good interactive system. The observable sequences of de-
cisions and actions produced by users contain much information about (1) the mental model of
the user, (2) the individual problem solving strategies for a given task, and (3) the underlying
decision structure. AMME (Automatic Mental Model Evaluator), the presented analysing tool
kit, handles the recorded decision and action sequences and automatically provides (1) an
extracted net description of the task dependent "device" model, (2) a complete state transition
matrix, and (3) different quantitative measures of the decision behaviour.

1 . THE BASIC IDEA

The basic idea is to use Petri nets to model task solving behaviour. Major operations (or
mappings) between Petri nets are abstraction, embedding and folding. The folding operation is
the corner stone of our approach. A process (or: sequence) serves as input for this operation.
An elementary process is the shortest meaningful part of a sequence: (s') -> [t'] -> (s") where s'
is the pre-state and s" the post-state of the transition t'. Folding a process means mapping S-
elements onto S-elements, T-elements onto T-elements while keeping the flow (F-) structure
constant. This gives the structure of the performance net (see Figure 1), where each state
corresponds to a system context, each transition to a system operation. The aim of the folding
operation is to reduce the number of S- and T-elements of an observed task solving process to a
minimum, giving the logical task structure (or: net). Hence, folding a process means extracting
the embedded net structure while neglecting the amount of repetitions as well as the sequential
order of actions.

2 . THE ARCHITECTURE OF THE ANALYSING TOOL KIT

The whole system of our analysing tool kit consists of seven different programs:
(1) An interactive dialog system with a logging feature, generating the task solving process
description. This description should be automatically transformed to a logfile with an ap-
propriate syntactical structure (see Table 3). However, a logfile can also be hand written by the
investigator (e.g., based on protocols of observations).
(2) The net generation program AMME, extracting the interactive process sequence and
calculating different quantitative measures of the generated net. AMME needs three input files:
(i) a complete system description on an appropriate level of granularity (e.g., the state list and
the pre-/post-state matrix in Table 1), (ii) the interactive process description (e.g., the logfile in
Table 3), and (iii) a support file for the graphic output ("defaultp.ps" is part of the tool kit).
AMME produces five different output files: (i) a protocol file (*.pro") with different quantitative
measures of the process and of the extracted net, (ii) a Petri net description file ("*.net") in a
readable form for the Petri net simulator PACE, (iii) a plain text file ("*.ptf") with the connec-

590

tivity matrix for KNOT, (iv) a plain text file ("*.mkv") with the probability matrix for the
Marcov chain analysing software SEQUENZ, and (v) a PostScript file ("*.ps") to print the net
graphic for pattern matching 'by hand'.
(3) The Petri net simulator PACE, being a commercial product. It is implemented in Smalltalk
80 and consists of a graphical editor and an interactive simulator with graphical animation.
PACE can deal with hierarchical nets, refinement of T- and S-elements, timed Petri nets as well
as stochastic Petri nets. Smalltalk 80 standard classes are available for token attributes.
(4) The net analysing program KNOT, computing the similarity between pairs of nets. With the
multidimensional scaling (MDS) module of KNOT (Kruskal non-metric MDS algorithm) we
can compute a MDS solution for any set of nets.
(5) The Marcov analysing software SEQUENZ, offering a method to compare user triggered
sequences. These sequences are transformed into first-order Marcov-chains. Similarity between
such lattices can be directly obtained by summation of the differences between lattice-cells. Also
the resulting distances provide an input to the MDS models.
(6) Any Postscript interpreter (e.g., Ghostscript) that can read and print the output file *.ps.
(7) Any text processing software supporting pure ASCII files, *.pro.

s0

d

s1

h

s0

b

s2

F3

s3

CR

s3

F9

s1

_

s3

TAB

s3

F2

s3

_

s3

TAB

s3

_

s3

transformed
Petri net
structure

s0

d h

s1

b

s2

s3

F3

F9 CR

_

TAB

F2folding
operation

observed
task solving
process
(or: sequence)

unknown mental
knowledge
structure

?

human actions

mental modelling

Figure 1: The 'folding' operation as the basic idea of AMME.

The current version of AMME is restricted to process descriptions that can be traced in a
finite, discrete state space with an upper limit of different states. A further restriction is the con-
strained syntax of the logfiles that serve as input for AMME. To transform a given logfile to the
appropriate form, several tools can be applied; like Coco/R, YACC, or any other tool that can
convert text strings into other formats. AMME is freeware and available for IBM or compatible
PCs (with MsWindows ≥3.0) via Internet: http://www.ifap.bepr.ethz.ch/~rauter/amme.html

3 . HOW TO PROCEED

First, the usability engineer has to describe the action space of the user in a quite simple
syntax; the example in Table 1 shows one possible description. Table 2 describes what has
happened on the screen. Table 3 shows the content of the logfile produced by the task solving
process in Table 2.

591

Table 1: The content of a struture file (e.g., unix.str) that describes the system with all relevant
states for the analysed tasks (terminal symbols of the syntax are in bold).

list of all relevant dialog states of the interactive system
STATES =
states for correct input behavior
[Note: the first state in this list defines the starting state for the analysis. One
attractive consequence is that any part of a logfile can be analysed by updating
this state descriptor list]
 initial.state ,
 login.state ,
 systemprompt ,
 listing.state ,
 logout.state ,
states for incorrect input behavior
 login.wrong_input, ;
list of all known transitions
TRANSITIONS =
 initial.state => login.state [F_10] ;
 login.state => systemprompt [M_3] ;
 login.state => login.wrong_input [G_2] ;
 login.state => login.state [ALL] ;
 listing.state => systemprompt [M_3] ;
 login.wrong_input => systemprompt [M_3] ;
 systemprompt => logout.state [x] ;
 systemprompt => listing.state [M_16, M_17] ;
 systemprompt => systemprompt [G_4, G_5, G_24, ALL] ;
 logout.state => initial.state [CR] ; | END
[Note: the operator ALL is very powerful to eliminate all unnecessary keystroke
events; before defining a transition with this operator make sure that there
is an other correct transition to leave the pre-state beforehand]

Table 2: The appearence of a concrete "login/out" procedure on the screen of a Unix server.

output and input on the screen during each dialog step corresponding logfile content
initial state LOG_KEYBD : <F 10>
UNIX(r) System V Release 4.0 (marshall) LOG_MESSAGE: G_1
login: rauterberg LOG_KEYBD : rauterbergCR
Password: LOG_KEYBD : coraCR
Login incorrect LOG_MESSAGE: G_2
login: rauter LOG_KEYBD : rauterCR
Password: LOG_KEYBD : coraCR
Last login: Wed Feb 7 19:16:57 from rota.ethz.ch LOG_MENUE : M_3
Sun Microsystems Inc. SunOS 5.4 Generic July 1994 LOG_MESSAGE: G_4
Wed Feb 7 19:17:54 MET 1996 LOG_MESSAGE: G_5
You have no mail. LOG_MESSAGE: G_24
marshall:/export/home/rauterberg!51> ls -l LOG_KEYBD : ls -lCR
total 2 LOG_MENUE : M_16
drwxr-xr-x 7 rauter ifap 512 Feb 1 20:28 mac/ LOG_MENUE : M_17
marshall:/export/home/rauterberg!52> x LOG_KEYBD : xCR
initial state

[with the alias "x" := "logout"]

The tool kit AMME can analyse the logfile shown in Table 3, generating a Petri net as
shown in Figure 2. The current version of AMME is bound to a logfile syntax, appearent in
Table 3. Five possible logfile events can occur: "LOG_KEYBD:" ,"LOG_MESSAGE:" ,
"LOG_MENUE:", "LOG_USRTIME:" and "LOG_SYSTIME:".

592

Table 3: The complete user logfile, showing a "login/out" task.
LOG_KEYBD : <F 10>
LOG_USRTIME: 1,0
LOG_MESSAGE: G_1
LOG_KEYBD : r
LOG_USRTIME: 1,0
LOG_KEYBD : a
LOG_USRTIME: 1,0
LOG_KEYBD : u
LOG_USRTIME: 1,0
LOG_KEYBD : t
LOG_USRTIME: 1,0
LOG_KEYBD : e
LOG_USRTIME: 1,0
LOG_KEYBD : r
LOG_USRTIME: 1,0
LOG_KEYBD : b
LOG_USRTIME: 1,0
LOG_KEYBD : e
LOG_USRTIME: 1,0
LOG_KEYBD : r
LOG_USRTIME: 1,0
LOG_KEYBD : g
LOG_USRTIME: 1,0
LOG_KEYBD : <CR>
LOG_USRTIME: 1,0
LOG_SYSTIME: 9,0
LOG_KEYBD : c
LOG_USRTIME: 6,0
LOG_KEYBD : o
LOG_USRTIME: 1,0
LOG_KEYBD : r

LOG_USRTIME: 1,0
LOG_KEYBD : a
LOG_USRTIME: 1,0
LOG_KEYBD : <CR>
LOG_USRTIME: 1,0
LOG_SYSTIME: 49,0
LOG_MESSAGE: G_2
LOG_SYSTIME: 8,0
LOG_KEYBD : r
LOG_USRTIME: 68,0
LOG_KEYBD : a
LOG_USRTIME: 1,0
LOG_KEYBD : u
LOG_USRTIME: 1,0
LOG_KEYBD : t
LOG_USRTIME: 1,0
LOG_KEYBD : e
LOG_USRTIME: 1,0
LOG_KEYBD : r
LOG_USRTIME: 1,0
LOG_KEYBD : <CR>
LOG_USRTIME: 1,0
LOG_SYSTIME: 9,0
LOG_KEYBD : c
LOG_USRTIME: 4,0
LOG_KEYBD : o
LOG_USRTIME: 1,0
LOG_KEYBD : r
LOG_USRTIME: 1,0
LOG_KEYBD : a
LOG_USRTIME: 1,0

LOG_KEYBD : <CR>
LOG_USRTIME: 1,0
LOG_SYSTIME: 24,0
LOG_MENUE : M_3
LOG_SYSTIME: 2,0
LOG_MESSAGE: G_4
LOG_SYSTIME: 7,0
LOG_MESSAGE: G_5
LOG_MESSAGE: 24
LOG_SYSTIME: 41,0
LOG_KEYBD : l
LOG_USRTIME: 12,0
LOG_KEYBD : s
LOG_USRTIME: 1,0
LOG_KEYBD :
LOG_USRTIME: 1,0
LOG_KEYBD : -
LOG_USRTIME: 1,0
LOG_KEYBD : l
LOG_USRTIME: 1,0
LOG_KEYBD : <CR>
LOG_USRTIME: 5,0
LOG_SYSTIME: 17,0
LOG_MENUE : M_16
LOG_MENUE : M_17
LOG_SYSTIME: 7,0
LOG_KEYBD : x
LOG_USRTIME: 81,0
LOG_KEYBD : <CR>
LOG_USRTIME: 6,0

initial.state

F_10

login.state

ALL

M_3

systemprompt

ALL

CR
logout.state

x

login.wrong_input
M_3

G_2

listing.state

M_17

M_16

Figure 2: The generated Petri net for the given "login/out" example.

With the given tool kit AMME, we can analyse and model human behaviour in a
straightforward way. Using the Petri net in Figure 2 as a model for the user task solving
behaviour, we can reproduce a mean of 43% of the observed behaviour in Table 3 (see [1]).

REFERENCE
[1] Rauterberg, M. (1995). From novice to expert decision behaviour: a qualitative modelling approach with

Petri nets. In Y. Anzai, K. Ogawa & H. Mori (Eds.), Symbiosis of Human and Artifact: Human and Social
Aspects of Human-Computer Interaction--HCI'95 (Advances in Human Factors/Ergonomics, Vol. 20B, pp.
449-454). Amsterdam: Elsevier.

Advances in Human Factors/Ergonomics, 21B

Design of
Computing Systems:
Social and Ergonomic Considerations

Proceedings of the Seventh International Conference on Human-Computer
Interaction, (HCI International '97), San Francisco, Califormia, USA

August 24-29, 1997

Volume 2

Edited by

Michael Smith
University of Wisconsin, Madison, WI 53706, USA

Gavriel Salvendy
Purdue University, West Lafayette, IN 47907, USA

Richard J. Koubek
Purdue University, West Lafayette, IN 47907, USA

 1997

Amsterdam – Lausanne – New York – Oxford – Shannon – Tokyo

