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Abstract

The identifiability problem that rises in mixed numerical-experimental problems
is one of the most important issues if an experiment has to be designed for the
quantification of material parameters. This paper focuses on the relation between
various aspects of an experiment and the condition number of the information
matrix used in gradient algorithms for the parameter estimation. The initial
estimate of the parameter sets permits to indicate whether or not the designed
experiment provides the required information. A comparison is made for a
tensile specimen and a bend specimen, where different types of measurements
are simulated. Various aspects influence the optimal relation between an
experiment and a numerical model. The proper analysis of this relationship
permits the optimization of the design of an experiment.

1 Introduction

Amongst other methods, the parameters used in numerical models can be properly
identified by means of mixed numerical-experimental techniques. Commonly, ex-
perimental results and computational simulations are combined in order to mini-
mize an objective function, which should lead to the best agreement between mea-
surements and computations, see Beck and Arnold \ Draper and Smith \ Sol and
Oomens \ Meuwissen et alA This minimization process is often troublesome
and convergence may occur to different minima starting from different initial esti-
mates. A troublesome convergence of the estimation process may be due to model
errors, measurement errors, an inappropriate objective function or an experiment
that does not sufficiently trigger all the material nonlinearities. The latter problem

                                                             Transactions on Modelling and Simulation vol 21, © 1999 WIT Press, www.witpress.com, ISSN 1743-355X 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                           
 
 
                                                                                  
 
                                                                      
 
                                                                                  
 
 
 
 
 
 

                            
                                                                                  
                                                                                  
                                                                                  
 
 

 
                                                                                                                                         
                                                        

 
                   

 
 
 



544 Computational Methods and Experimental Measurements

is related to the question of identifiability and estimability. The lack of identi-
fiability, which is generally due to the existence of multicollinearity, should be
investigated in view of the design of the experiment. Several examples are avail-
able in literature, especially for linear models, e.g., Hinkelmann and Kempthorne^,
Norton &, Pukelsheim^.

In the case of highly nonlinear material behaviour, such an identification anal-
ysis becomes particularly difficult. The complete experimental setup, i.e. the ge-
ometry of the test specimen, the boundary and loading conditions, the measure-
ment technique and the point(s) of measurement, must be evaluated on beforehand
in order to make sure that the proposed experiment provides the required data to
identify the parameters accurately. Many experiments are not optimized in the
sense that the measurements are not carried out at the right place on the test speci-
men or the provided data does not allow to identify all parameters independently.
A preliminary identification analysis permits to assess whether an experiment pro-
vides the requested data. In such an analysis, it is assumed that the computational
model is the perfect model for the investigated material. Even in the absence of
model errors, an estimation procedure may be troublesome. It is therefore neces-
sary to resolve the identifiability problem completely in this ideal case. Real ap-
plications inevitably involve measurements and model errors and the combination
of these errors with the presence of multicollinearity may have a baleful influence
on the mixed numerical-experimental procedure.

The theory of optimum experimental design ̂  provides useful answers for
many case problems. However, the nonlinear identification of material parameters
presents problems which are difficult to cope with. This contribution illustrates
that the design of an experiment may have an important influence on the efficiency
of mixed numerical-experimental methods. Attention is focused on the efficiency
of the experiment, and the influence of measurement errors on the condition of the
information matrix. Two problems will be addressed. The first problem is essential
in the mixed numerical-experimental optimization procedure. Since measurements
of different nature with different dimensions are performed, and since the unknown
material parameters also differ in scale and units, it is essential to rephrase the
problem in a dimensionless format. On the basis of these dimensionless parameters
and measurements a second topic will be treated. For this purpose, an analysis of
multicollinearity is carried out, where the influence of the notch depth of a bend
specimen, the influence of different types of measurements as well as the location
of the measurement points is scrutinized.

2 Optimization of the information matrix used in mixed nume-

rical-experimental methods

An important problem that arises in mixed numerical-experimental methods is the
dimensional and scale incompatibility of the material parameters and measured
quantities. This section proposes a dimensionless rescaling of the basic estimation
problem which is optimized for the condition number of the information matrix.
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Computational Methods and Experimental Measurements 545

This step is both important for the iterative parameter estimation procedure and for
the identifiability question. This problem has to be treated before the proper anal-
ysis of the experiments, since it reflects the procedure experimental information is
being dealt with.

2.1 Identifiability of a parameter set

Assume that an experiment is carried out in view of the estimation of a param-
eter set £ of a nonlinear constitutive model for a given material. The measured
response from the experiment is stored in a column m, which may contain forces,
displacements or other measured quantities. The predicted response of the compu-
tational model is given by h, where the computation has been synchronized with
the experiment through the use of prescribed forces or displacements.

Mixed numerical-experimental techniques are used to determine the set of
parameters £ for which the model response h(0) provides the closest fit to the
measurements m. Commonly, an objective function is defined to quantify the
quality of the fit*-'. In the present paper, a quadratic objective function J(£) is
adopted ~

m - A( 0 )] (1)

The matrix V_ is a positive definite symmetric weighting matrix. The Gauss-
Markov estimator is retrieved if the diagonal terms of V_ equal 1 over the variances
of the different measurements. If V_ is omitted, a classical least-squares estimator is
obtained. The unknown parameters £ are determined by minimizing the objective
function J(0) A classical method to accomplish this minimization is a Gauss-
Newton gradient algorithm which leads to an iterative solution of the estimation
problem. Details of this algorithm can be found in literature*. Other frequently
used techniques are given by the method of steepest descent or the Levenberg-
Marquardt method.

The iterative update of the parameters j9 is given by:

%= [Ŝ VS]-* [Ŝ V(rn-K)] (2)

In here, 5 represents the sensitivity matrix which is defined by

The sensitivity matrix can be computed in a semi-analytical manner ™ or by a finite
difference scheme*.

In analogy to regression problems the matrix C_ given by

(4)

can be called the information matrix of the nonlinear estimation problem. The
condition of this information matrix is a generally accepted indicator for the iden-
tifiability of the problem * .
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546 Computational Methods and Experimental Measurements

The entire iterative estimation procedure is started from an initial estimate
10^ of the parameters. The condition of the information matrix will next be anal-
ysed in the vicinity of this initial estimate. Evidently, the conclusions from such
an analysis do not apply to the whole range of admissible values of the parame-
ters Oj but an ill-conditioned information matrix at the initial estimate may drive
the entire parameter identification to a bad convergence and additional non-unique
solutions. The condition of the information matrix has been intensively studied in
regression problems**. In a linear regression problem, the parameters have to be
determined from a set of measurements according to

m = S0 (5)r\u r^> ^ '

where the sensitivity matrix 5 is a constant matrix. The least squares solution is
then given by

0,= C-^^m (6)

C = S^3 (7)

which is similar to the linearized equation (2) for the iterative correction 80̂  in the
case V_ = L The condition of the information matrix can be investigated in various
ways. The determinant of C has to be large, but its value totally depends on the
scale of the parameters and measurements. A more efficient method is based on
an eigenvalue analysis of the information matrix C_. The ratio of the largest eigen-
value Xmax to the smallest eigenvalue \min is a good measure of multicollinearity,
which is called the condition number of C_. The condition number does not change
if the entire sensitivity matrix is multiplied by a constant. The larger the value
of the condition number, the greater the degree of multicollinearity. It is gen-
erally accepted that a condition number less than 100 poses little problem with
multicollinearity. Larger values suggest that the linear dependency between the
different columns of the sensitivity matrix is too strong, which renders the inde-
pendent identification of the unknown parameters troublesome. Furthermore, the
parameter covariance matrix P_ which is the inverse of the information matrix C_
given by equation (4), is directly affected by the condition of C_. The worser the
condition of the information matrix C, the larger the covariances of the parameters
will be.

In linear regression methods, the problem of multicollinearity is alleviated in
two steps. First a change of variables is carried out which transforms the prob-
lem into a fully dimensionless regression problem. Secondly, another estimation
procedure is used which is less sensitive to multicollinearity. A well-known proce-
dure is ridge regression. The parameter set, initially given by equation (6), is then
determined from

£= [C + a/]~* S^m (8)

where a is a positive coefficient, generally smaller than unity. For nonlinear prob-
lems, the Levenberg-Marquardt algorithm is obtained from equation (2) through
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Computational Methods and Experimental Measurements 547

the addition of the same term a/ to the information matrix. The Levenberg-
Marquardt algorithm has always been presented as a compromise between the
steepest descent method and Gauss-Newton method. The analogy with the linear
regression methods confirms that the Levenberg-Marquardt algorithm is indeed
less sensitive to multicollinearity. The second step to cope with multicollinear-
ity thus exists for both linear and nonlinear estimation problems. The first step,
which is undoubtfully more important is mostly omitted in nonlinear estimation
problems. The use of a Markov estimator already neutralizes the influence of the
units of the measured response. However, the units and scale of the parameters and
the incompatibility of forces, displacements and strains persists. Applying an ad-
hoc supplementary weighting to the matrix V_ is often performed, which generally
leads to an enhanced information matrix. This implies that it makes little sense to
compare the efficiencies of experiments in which different types and numbers of
measurements are used, if the sensitivity matrix is not rendered dimensionless in a
rigorous manner.

2.2 Dimensionless information matrix

The dimensional incompatibility problem in estimation methods is well-known for
linear regression analyses**, where the regressor plays the role of the sensitivity
matrix. Standardized regression coefficients can be computed, which permit a cor-
relation analysis that is totally independent of the choice of scale for the regressor
or the regression coefficient. However, this procedure cannot be applied in a triv-
ial manner if regressor variables with different units exist for the same regression
coefficient. This is typically the case when different types of measurements are
performed in an experimental analysis (e.g., the applied force or the displacement
of an LVDT). Another procedure is therefore proposed for nonlinear parameter
estimation problems.

The nonlinear relation between the predicted output and the unknown param-
eter set is therefore linearized in the vicinity of the initial estimate 0^

%= 3% (9)

The variation of the output 6h and the sensitivity matrix are next divided into
blocks according to the different types of measurements that are carried out, i.e.,
forces, displacements, strains, etc. If two different types are used the following
equation ensues

- N
~ kJ

SJ % (io)

If the number of blocks equals rib and the number of parameters ra0, a reference
value can be defined for each output block, i.e., ftf (i - 1 -> n&), and each param-
eter, i.e., 0^ (k ~ I -^ no). Each output item is rescaled and made dimensionless
by dividing it by its block reference value. The same operation is carried out for
the unknown parameters. The dimensionless items are denoted with ft* and 0*.
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548 Computational Methods and Experimental Measurements

The sensitivity matrix 5 is transformed accordingly

5* =

ii C l

(11)

The entire minimization of the objective function can thus be rephrased in this di-
mensionless format. The reference values of the block output items /if and the
parameters 0^ are now determined by minimizing the condition number of the in-
formation matrix C* = (S_*)̂  S*. This minimization is carried out in the absence
of the matrix V_. The influence of measurement noise will be added afterwards.
The minimization of the condition number can be carried out in a straightforward
manner by a direct search method, e.g., the Nelder-Mead simplex search. This pro-
cedure takes little computational effort. An optimal condition number is obtained
which rescales the sensitivities in an appropriate manner. Changing units or scales
of the parameters, forces or displacements does not affect this optimum nor the
dimensionless matrices. The reference values can be maintained in the iterative
procedure for the minimization of J, but they will be less optimal if the parame-
ter set tends away from the initial estimate. Nevertheless, this procedure provides
a versatile approach to transform the parameter identification into a dimension-
less and unsealed procedure. On the basis of these optimized condition numbers,
experiments can be compared. The influence of the variances of the Markov esti-
mator in the matrix V_ can be added by transforming the variances of each output
item into its corresponding dimensionless form. The influence of the measurement
accuracy on the condition number can then be assessed by changing the variances
of the measured output items.

3 Analysis of experiments

A tensile test and a bending test will next be examined. In this analysis, it is
implicitly assumed that no model errors exist. The identification analysis must
predict a well-conditioned information matrix, since the addition of model errors
to a weak conditioned information matrix easily leads to an unestimable parameter
set. As an example, a gradient-enhanced damage model is used to describe the
nonlinear material behaviour upon failure.

3.1 Material model

The material is described with an isotropic strain-based gradient-enhanced damage
formulation, in which an intrinsic length scale exists ̂'̂ . It is a classical isotropic
continuum damage constitutive relation, in which the damage D depends on a
nonlocal equivalent strain leq- This nonlocal characteristic is computed from the
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Computational Methods and Experimental Measurements 549

field of local equivalent strains e^q in the vicinity of the material point via a partial
differential equation of the Helmholtz type:

fe? -CV (12)

The parameter c is a material parameter with the dimensions of length squared.
The local equivalent strain adopted here is based on the positive principal strain
components 14

j=l,2,3

The damage evolution law that governs the failure response is given by

D = 1 - *

(13)

(14)

In here, K represents a deformation history parameter, which equals the ultimate
nonlocal equivalent strain l^ that the material has experienced in its loading his-
tory. Furthermore, «» and /3 are material parameters, which govern the initiation
and the evolution of damage respectively. More computational details can be found
in literature^.

Assuming that the classical elastic parameters (Young's modulus E and Pois-
son's ratio v) have been determined in the elastic region, the estimation procedure
has to deal with 3 remaining unknown parameters, i.e., c, Aq and 0. The elastic
parameters for the simulated material equal E = 100000 MPa and v - 0.3.
The current set of remaining parameters for which the identification analysis is
performed equals c = 5 mnf, ^ = 0.001 and ft = 100.

3.2 Tensile test

A tensile test has been examined in which different simulated measurements have
been performed. The damaging specimen is shown in Figure 1. The specimen has
a length of 100 mm, a width that varies from 20 mm to 18 mm and a thickness
of 1 mm. The mechanical response of the specimen for the current parameter set

Figure 1: Damaging tensile specimen.

does not present snap-back. Four cases have been examined. The first case uses
the applied force F and the measurement of an axially placed LVDT or strain gage
Ad at the center of the specimen with a gage length of 10 mm. In the second
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550 Computational Methods and Experimental Measurements

Figure 2: Damaging bend specimen.

case, the gage length of the LVDT is reduced to 5 mm. The third case uses the
applied force and the nodal displacements u, while the fourth case is constructed
from the force and nodal strains £. The references values for the rescaling to a
dimensionless format of the measured output items and the parameters differ from
case to case, but typical values are c** — 9 mm?, K^ = 4.10~̂ , 0** — 100,
F& — 300 TV and u^ — 0.17 mm. The condition numbers for the different cases
are: 1683 (LVDT 10 mm), 143 (LVDT 5 mm), 122 (F,u) and 84 (F,£). This
first example shows that only the last case provides a condition number less than
100. Clearly, the amount and quality of the information increases depending on
the number and types of measurements.

3.3 Bending test

The second simulated experiment is a classical three-point bending test, for which
the specimen is shown in Figure 2. The specimen is 220mm long, 50mm high and
20 mm thick. The notch has a width of 5 mm with variables depths, ranging from
2.5 771771 to 22.5 TTiTTi. Three cases are examined, where each case uses the applied
load F. The first case adds the crack-opening displacement at the notch (COD).
The second case uses the entire nodal displacement field % in the beam, while the
third case adds all nodal strain components £ The results of the minimization of
the condition number is given in Table 1. Clearly, the best condition number is

Case
F -COD
F-u
F-e

Notch depths
2.5 mm
556
54
18

5 771771
676
66
34

7.5771771
455
57
26

10 771771
349
74
40

12.5 mm
292
104
70

22.5 771771
240
115
62

Table 1: Condition numbers for different cases and notch depths

achieved by considering F and £. Furthermore, it is noticed that the condition of
an experiment with a COD-measurement improves if the notch depth increases,
while this has the opposite effect for the two other cases. A small notch gives an
experiment which provides a maximum of information if displacement fields or
strain fields are measured at the surface of the specimen.

The influence of the standard deviation s of the measurements is analyzed by
varying s for one of the output blocks (each case has two output blocks). It should
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Computational Methods and Experimental Measurements 551

2.5 0 Standard deviation strain

Figure 3: Influence of the standard deviation on the condition number.

be noticed that the condition number is only influenced by the relative variation of
the dimensionless standard deviations of the output blocks. If a Markov informa-
tion matrix is used with a constant standard deviation SF of 5 TV for the load and
a variable SE for the strains, Figure 3 ensues. This Figure shows that small stan-
dard deviations S£ for the strains give best results. In this case, the contribution
of the load F to the information matrix is small. Higher values for S£ result in an
information matrix that solely depends on the force F, which leads to a significant
increase of the condition number.

4 Conclusions

A procedure has been proposed that allows to transform the optimization process
in mixed numerical-experimental methods for the identification of nonlinear ma-
terial behaviour into a dimensionless format. A dimensionless sensitivity matrix
is obtained which has been optimized through a minimization of the condition
number of the information matrix. The condition number of the dimensionless
information matrix can be used to compare the efficiency of different experiments
in which different simulated measurements are made at different locations of the
specimen.

An illustration has been given for a classical tensile test and a bending test,
making use of a gradient-enhanced damage model. The examples elucidate the
importance of the experimental design, i.e., the geometry of the specimen, the type
of measurement as well as the number, the location and density of the measurement
points. The use of an experiment with an optimally conditioned information matrix
(in the vicinity of the initial estimate of a parameter set of a computational model)
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552 Computational Methods and Experimental Measurements

is a prerequisite for the actual parameter identification with a mixed numerical-
experimental method, where measurement errors and model errors inevitably exist.
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