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Abstract
This paper deals with the fixed-cycle traffic-light (FCTL) queue, where vehicles arrive to an
intersection controlled by a traffic light and form a queue. The traffic light alternates between
green and red periods, and delayed vehicles are assumed to depart during the green period at
equal time intervals. The key performance characteristic in the FCTL queue is the so-called mean
overflow, defined as the mean queue length at the end of a green period.

An exact solution for the mean overflow is available, but it has been considered to be of lit
tle practical value since it requires some numerical procedures. Therefore, most of the literature
on the FCTL queue is about deriving approximations for the mean overflow. In deriving these
approximations, most authors first approximate the FCTL queue by a bulk service queue, approx
imate the mean overflow in the bulk service queue, and use this as an approximation for the mean
overflow in the FCTL queue. So far, no quantitative comparison of both models has been given.
We compare both models and assess the quality of the approximation for various settings of the
parameter values. In this comparison and throughout the whole paper we do not restrict ourselves
to Poisson arrivals, but consider a more general arrival process instead.

We discuss the numerical issues that need to be resolved to calculate the exact expression for
the mean overflow in both queues and show that clear computational schemes are available. Next,
we present several bounds and approximations of the mean overflow that do not require numerical
procedures. In particular, we derive a new approximation based on the heavy traffic limit and a
scaling argument. We compare the new bounds and approximation with the existing ones. We
elaborate on the impact of several parameters, like the length of the green and red period, and
the variance of the arrival distribution. Each of these parameters turns out to be crucial.

Keywords: traffic light, fixed-time control, overflow, bulk service queue, approximations, bounds,
mean delay.



1 Introduction

Over the last four decades, there has been a broad effort to obtain good approximations for the
average queue length and delay of vehicles at signalized intersections. In this effort, the fixed-cycle
traffic-light (FCTL) queue is one of the best-studied models. Vehicles arrive to an intersection
controlled by a traffic light and form a queue. The traffic light alternates between green and red
periods of durations 9 and r, respectively, and delayed vehicles are assumed to depart during the
green period at equal time intervals.

Most of the research devoted to the FCTL queue is based on the simplifying assumption that
vehicles arrive to the traffic light according to a Poisson process, with Webster's formula [22]
as the most famous result. Webster's formula, which is partially based on simulation results,
gives the mean delay of a vehicle. McNeill [13] derived an exact expression for the mean delay
up to one unknown: the mean size of the overflow (the mean queue length at the end of a
green period). We denote this unknown by IEXg . From McNeill's formula, it became clear that
obtaining an exact formula for the mean delay was equivalent to obtaining an exact formula
for IEXg • Darroch [7] provided an exact formula for IEXg in 1964, but up to this day, this is
not well-known (see e.g. the recent publications Dion et al. [9], Tarko [21]), probably due to
the fact that Darroch uses a slightly different setting (discrete-time) and his approach is both
analytically and computationally involved. The latter must be why Ohno [19] gives a detailed
algorithmic description of the computation of Darroch's rather complicated expression for IEXg •

Ohno further presents a thorough overview on the research that is based on the Poisson assumption.
In particular, Ohno compares the various approximative closed-form formulas for the mean delay,
like those of Webster [22], Webster & Cobbe [23], McNeill [13], Miller [15] and Newell [18]. The
latter three were obtained by approximating IEXg •

Hence, although an exact expression for IEXg exists, there has been a desire for deriving approx
imative closed-form expressions. This is perfectly legitimate for several reasons. First, the FCTL
queue is mainly used for the dimensioning of intersections, and for this purpose approximations are
sufficient. Secondly, most results were obtained in the 1960's, when the available computational
power was much less than nowadays. Since Darroch's solution requires numerical computations,
at that time rather difficult, searching for easy-calculable approximations was a natural thing to
do. Third, the results of the FCTL queue might serve as the input for a network of intersections.
In order to optimize such a network, the expressions for the input should not be computationally
cumbersome.

The latter two arguments do not necessarily hold true nowadays. That is, due to improved
numerical algorithms and the increased computational power, the numerical determination of
Darroch's solution has become a straightforward exercise. The first argument remains true, and an
approximation can both be sufficient and provide insight in the impact of the various parameters.
Remarkably, most approximations have been derived by first reducing the FCTL queue to a
slightly easier model known as the bulk service queue. The overflow in the bulk service queue is
then approximated and also used as an approximation for lEXg' The validity of such a two-stage
approximation heavily depends on how well the bulk service queue approximates the FCTL queue.
Although one can reason that for heavily loaded intersections both models are much alike, this
issue has never been investigated properly.

As mentioned, most of the research on the FCTL queue is devoted to Poisson arrivals. Notable
exceptions are Miller [15] and Newell [18], who both derive approximations for IEXg using fairly
general arguments, and Darroch [7] and McNeill [13] who both consider a compound Poisson
process. The assumption of (compound) Poisson arrivals allows the FCTL queue to be modeled
at embedded points, namely the times just after the departure of a delayed vehicle, see Darroch
[7]. We generalize this by assuming that the number of vehicles that arrive per slot follow some
discrete distribution (the Poisson and compound Poisson are also discrete distributions). This
allows one to consider distributions with a larger coefficient of variation, distributions with a finite
support, or distributions fitted to empirical data.
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1.1 Our contribution

As mentioned, most approximations for the FCTL queue are derived from approximating the
FCTL queue by the discrete bulk service queue. So far, no quantitative comparison of both
models has been given. We compare both models and assess the quality of the approximation
of the FCTL queue by the bulk service queue for various settings of the parameter values. In
this comparison and throughout the paper we do not restrict ourselves to Poisson arrivals, but we
consider a more general arrival process instead.

We discuss the numerical issues that are needed to calculate the exact expression for the mean
overflow in both the FCTL queue and the bulk service queue. As it turns out, determining the exact
expressions requires for both models the numerical calculations of the roots of a certain equation.
We will show that clear computational schemes for determining the roots are available. With
these schemes, the way to calculate the exact expression for the mean overflow is fully specified.
However, from a practical point of view, there is still a need for bounds and approximations of the
mean overflow that do not depend on root-finding, to allow for a quick evaluation and give some
more insight.

We present several lower and upper bounds on the exact solution of the mean overflow, and an
upper bound on the mean overflow in the bulk service queue, which also serves as an upper bound
on the mean overflow in the FCTL queue. We further derive a new approximation for the mean
overflow, based on the heavy traffic limit and a scaling argument. The approximation holds for a
general arrival process. We compare the new approximation with the existing approximations and
the newly derived bounds. In particular, we elaborate on the impact of the various parameters
like the length of the green and red period, and the variance of the arrival distribution. Each of
these parameters turns out to be crucial.

The remainder of this paper is structured as follows. In Sec. 2 we present the exact solutions for
the FCTL queue and the bulk service queue, along with a comparison between both models. For
the mean overflow in the FCTL queue we present bounds in Sec. 3 and approximations in Sec. 4.
The new bounds and approximations are compared with the existing ones in Sec. 5 for various
settings. Some conclusions are presented in Sec. 6.

2 Exact solutions

In most studies on the FCTL queue that do no rely on the Poisson assumption, e.g. [4,7,14, 17],
the following two assumptions are made:

Assumption 2.1. (discrete-time assumption) The time axis is divided into constant time intervals
of unit length, so-called slots, where each slot corresponds to the time needed for a delayed vehicle
to depart from the queue. The green and red period, and thus the cycle time c (with c = g + r),
are assumed to be fixed multiples of one slot. Hence, g and r are integers expressed in slots. Those
vehicles that arrive to the queue and are delayed, join the queue at the end of the slot in which
they arrive.

Assumption 2.2. (independence assumption) Let Yk,n denote the number of vehicles that arrive
to the intersection during slot k in cycle n. The random variables Yk,n are assumed to be indepen
dent and identically distributed (Li.d.) for all k, n, according to some discrete random variable Y
with probability generating function (pgf) Y(z).

The discrete-time assumption together with the independence assumption allow one to model
the queue length at the end of slots as a discrete-time Markov chain. We also work under these
assumptions and assess their implications at several places in this paper. Note that a Poisson
arrival process satisfies the independence assumption. Furthermore, although it might seem rather
restrictive, the independence assumption is frequently made and allows for a far larger class of
arrival distributions than just the Poisson case.

The following assumption is always made for the FCTL queue:
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Assumption 2.3. (FCTL assumption) For those cycles in which the queue clears before the green
period terminates, all vehicles that arrive during the residual green period pass through the system
and experience no delay whatsoever.

The FCTL assumption is legitimate in the sense that the vehicles in question can pass the
intersection without slowing down. It does however have some severe consequences for the analysis
of the queue length, as discussed next. Let Xk,n denote the queue length at time k in cycle n
(time expressed in slots). Then, in cycle n, XO,n is the queue length at the beginning of the
green period, and Xg,n is the overflow, defined as the queue length at the end of a green period
(and thus the beginning of the red period). Let An denote the total number of vehicles that
arrive to the intersection in between the two measurements of the overflow Xg,n and X g,n+1'
So An is the number of arrivals from Xg,n onwards in a consecutive red and green period, and
An = E~=g+1 Yk,n +E1=1 Yk,n+1' Further, An = A~ +A~, where A~ denotes the delayed vehicles
and A~ those vehicles that pass without delay on behalf of the FCTL assumption. The overflow
queue can then be defined as

X g,n+1 = max{Xg,n + A~ - g,O}. (2.1)

The fact that A~ depends on both Xg,n and the exact specification of when the arrivals occur
makes (2.1) hard to analyse. The analysis could be simplified if all vehicles would be delayed, so
all vehicles arrive while the queue length is at least one, and An = A~. The variables A~ are then
Li.d. and (2.1) reduces to the classical bulk service queue, first solved by Bailey [3]. He derived
the pgf of the stationary queue length X g, defined as limn -+DO Xg,n, that exists if lEA < g. The
pgf requires the determination of 9 (complex-valued) roots on and within the unit circle of some
characteristic equation.

Beckmann et al. [4] and Newell [17] assumed a Bernoulli arrival process with Y(z) = 1-a+az.
On this assumption of 0 or 1 arrivals per slot, the bulk service assumption holds true (An = A~),

and Bailey's solution can be applied to derive the exact value of IEXg • When Y can take values
larger than 1, the bulk service assumption is obviously an approximation and yields an upper bound
on the overflow queue. For a compound Poisson process, McNeill [13] used Bailey's solution to
derive an upper bound on IEXg • Although one would want an upper bound to be easy to compute,
McNeill's upper bound is not, since it still requires the numerical calculation of the 9 roots.

Using the discrete-time assumption, Darroch [7] derived the solution to the true FCTL queue
that is of the same complexity as Bailey's solution to the bulk service queue, again requiring the
roots of a characteristic equation. The effort put into determining the roots is in Darroch's case
more justifiable, though, since it leads to the exact solution.

Next, we introduce the following definition of delay:

Definition 2.4. (delay) The delay D of a vehicle is defined as the number of slots from the
beginning of the first slot after the slot in which the vehicle arrives, until the end of the slot in
which the delayed vehicle departs from the queue (see Fig. 1).

Arrival

I~
,

Delay

Figure 1: Graphical representation of delay

Using this definition, the following expression for the mean delay can be derived (see Darroch
[7]):

r [(J2 ]
lED = 2 (1 ) 1 Y + rJ.Ly + 2lEXg ,

cJ.Ly -J.Ly -J.Ly

where we have denoted the mean and variance of Y by J.Ly and (J~, respectively.
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(2.3)

(2.4)

(2.5)

(2.6)

Delay in the FCTL queue can be defined in several ways, depending on how one handles the
delay of a vehicle experienced within the slot of its arrival. We use Definition 2.4 which does not
include this part of the delay; we assume that the vehicle joins the queue at the beginning of the
next slot after its arrival. This is in line with the discrete-time assumption, where we assume that
the arrival of vehicles only occurs at the end of a slot; the vehicles then arrive as a batch. In
reality, the vehicles arrive one-by-one, each vehicle arriving at some different time point during
the slot, and the total delay DT satisfies DT = D +DR where D is defined by Definition 2.4, and
DR is the residual delay within the slot of arrival, DR E [O,IJ.

For (compound) Poisson arrivals, it is possible to include DR (due to the PASTA property),
and the mean delay is then given by (see McNeill [13])

r [0-
2

]lED = 2 (I ) _Y- + rJ.Ly + 2lEXg + 1 .
CJ.Ly - J.Ly 1 - J.LY

In comparison with (2.2), Expression (2.3) has an additional term r/{2cJ.Ly{I- J.LY)), which can
be easily shown to be lEDR. For Poisson arrivals, Ohno [I9J gives a comparison between McNeill's
expression, Darroch's Expression (2.2) (where Ohno's formula (I7) for Darroch's mean delay
formula is incorrect), and several other approximations. Ohno shows that the differences are
only marginal. To allow for a more general arrival distribution, we take (2.2) as our expression for
the mean delay, except when we present results for (compound) Poisson arrivals, in which case we
use (2.3). In Appendix B we derive the mean delay (2.3) for Poisson arrivals, where we rely on
the PASTA property and Little's law.

2.1 Mean overflow

2.1.1 The FCTL queue

We now present Darroch's solution to the FCTL queue. Let Y be any discrete random variable
(Darroch assumes Y to be of compound Poisson type). Clearly, to have stability, it is required
that the number of arriving vehicles is less than the maximum number of vehicles that can depart,
and hence Y should satisfy

CJ.Ly < g.

Darroch [7J obtains the following exact expression for the mean overflow:

lEX
_ CO"~+r2J.L~-g2(I-J.Ly)2 _ o-} + I-J.Ly + (I-J.Ly)2~ ..

9 - () () 2 LJ Jq
3'2 9 - cJ.Ly 2 1 - J.Ly 9 - cJ.Ly j=O

where qj (0 :::; j < g) denotes the probability that the queue is empty at time point j of the
green period. The 9 unknowns qo, . .. ,qg-1 can be found using a numerical procedure explained
in Appendix A. Also, the following identity holds:

g-l

~qj = gI-=-~: =: a.
3=0

One can think of a as the mean number of slots in a green period that the queue is empty.
Furthermore, (2.6) can be written as

(2.7)

The right-hand side of (2.7) represents the mean number of delayed vehicles that arrive in a
consecutive red and green period {earlier denoted by lEAd, see (2.1)). The left-hand side of (2.7)
represents the mean number of slots per green period used for the departure of delayed vehicles,
and in equilibrium both quantities should be equal.
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2.1.2 The bulk service queue

The bulk service queue is defined by the recursive relation

c 9

X g,n+1 = max{Xg,n + An - g,O}, An = L Yk,n +L Y k,n+1'
k=g+1 k=1

(2.8)

Here, we have added a bar to the X for reasons of clarity. Under the stability condition CJ.ly < 9
the stationary queue length X g = liffin-+co Xg,n exists. The mean stationary queue length satisfies

2 g-1 ( ')2lEX = -:-;-_c_O'.....y_-:- + 9 - CJ.ly _ L Xj 9 - J ,
9 2(g - CJ.ly) 2 j=O 2(g - CJ.ly)

where Xj = IP(Xg + A = j). It further holds that

g-1

LXj(g - j) = 9 - CJ.ly = Q2·

j=O

(2.9)

(2.10)

The 9 unknowns Xo, ••. ,Xg-1 can be found using a similar numerical procedure as for determining
qo, ... ,qg-1 and this procedure is explained in Appendix A.

2.2 FCTL queue vs bulk service queue

We now aim at investigating the consequences of approximating the mean overflow in the FCTL
queue by the mean overflow in the bulk service queue. So how well does the bulk service queue
reflect the specific properties of the FCTL queue, and in particular, how severe are the consequences
of neglecting the FCTL assumption?

For ease of presentation we assume Poisson arrivals and take the green and red period of equal
length. In Figs. 2-3 we compare the mean overflow and mean delay as a function of the mean
number J.ly of arriving vehicles per slot for several lengths of the green period.

6

4

2

&'1 0.15 0.2 0.25 0.3 0.35 0.4
p,y

2.5,--..---,....---r---.---....---.------r-----,

ED-ED .100%
ED

2

1.5

0.5

&'1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
p,y

Figure 2: The relative difference in mean over
flow of the FCTL queue and discrete bulk service
queue for 0.1 :::; p,y < 0.5 and 9 = 5,10,20.

Figure 3: The relative difference in mean delay of
the FCTL queue and discrete bulk service queue
for 0.1 :::; p,y < 0.5 and 9 = 5,10,20.

From Fig. 2 we conclude that the difference in mean overflow decreases for increasing values
of 9 and J.ly. The latter can be reasoned as follows. When more vehicles arrive to the system,
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fewer vehicles will not be delayed when they arrive to the intersection, and hence the impact of
the FCTL assumption gets smaller. And it is exactly that assumption that separates the FCTL
queue from the discrete bulk service queue. In the limit, when J.ty 11/2, the impact of the FCTL
assumption diminishes and the two models converge to each other. This also holds for the mean
delay in Fig. 3. However, a second observation from Fig. 3 is that, when J.ty ranges from zero to its
maximum allowed value, the relative difference in mean delay first increases while after reaching
its maximum it again goes to zero when J.ty 11/2. The reason for this is the varying impact of
the mean overflow on the mean delay. Let us investigate this a bit further. In Figs. 4-5 we have
plotted the percentage of the mean delay that is determined by the term in (2.3) that includes the
mean overflow for various values of p,y and g.

100r--..---,---..,...---r---r---.----r----, 90.------.----.----,---.--..---.--------.----.-----,

I-'Y
9 1086 7

9
5432

20

40

30

TO} EXg 100M
q,tY(l-J.'Y) ED' /0

30

40

%.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

60

20

50

90

70

10

80

Figure 4: The percentage of the mean delay de
termined by the mean overflow for 0.1 :5 p,y < 0.5
and 9 = 5, 10, 20.

Figure 5: The percentage of the mean de
lay determined by the mean overflow for p,y =
0.35,0.40,0.45 and 9 = 1,2, ... , 10.

In Fig. 4 we see that the impact of the mean overflow on the mean delay increases for higher
values of J.ty. That is, when more vehicles arrive to the system, queues at the end of the green
period are more likely to occur and build up. The non-trivial shape of the curves in Fig. 3 can
then be explained by two contradicting forces: for increasing values of J.ty, the impact on the
mean delay increases while the relative difference between the overflow in the FCTL queue and
the discrete bulk service queue decreases (see Fig. 2).

3 Bounds

In the previous section we have presented the exact solution of the mean overflow in the FCTL
queue. The exact solution requires the numerical determination of the roots of the equation
zg = Y(z)C inside the unit circle. In this section we present bounds on the mean overflow that do
not require this numerical procedure.

Expression (2.5) shows that finding bounds for lEXg (and thus for lED) is tantamount to finding
bounds for ~;:~ jqj' Darroch [7] derived such bounds. In this section, we extend his approach
and present some new bounds. Throughout, we use the fact that

(3.1)

together with qj E [0,1] and ~;:~ qj = a (see (2.6». These three conditions enable us to derive
bounds by choosing specific values of the qj'
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3.1 Crude bounds

A crude lower bound can be obtained in the following way:

g-l g-l j g-l g-l g-l g-l ( )
Ljqj=LqjL1=LLqj~l)g-i)~=~I>=ag2-1. (3.2)
j=O j=l i=l i=l j=i i=l 9 9 i=l

A crude upper bound is obtained by choosing qo = '" = qg-1 = 1 (where we intentionally violate

the condition LJ:~ qj = a), leading to

g-l g-l
Ljqj ~ Lj = g(g; 1).
j=O j=O

(3.3)

Substituting these bounds into (2.5), and replacing a by (g - cJ.Ly)/(l - J.LY) yields the following
bounds on lEXg :

f( 2) + (1 - J.Ly)(g - 1) < lEX < f( 2) + (1 - J.Ly)(g - 1) (g - gJ.LY)
J.Ly,(Ty 2 - 9 - J.Ly,(Ty 2 '

9 - cJ.Ly

where

(3.4)

(3.5)
2 + 2 2 2(1 )2 2 1

f( 2) _ roy r J.Ly - 9 - J.Ly (Ty + - j.Ly
J.Ly,(Ty - - .

2(g - CJ.LY) 2(1 - J.Ly) 2

Note that the factor (g - gJ.Ly)/(g - CJ.LY) is larger than one and tends to one when the ratio
g/c i 1, i.e. when the green period is relatively long in comparison with the red period.

3.2 More precise bounds

Darroch [7] proposes the following upper bound. Let LaJ denote the integral part of a, and choose

qo = ... = qg-LaJ-2 = 0, qg-LaJ-1 = a - LaJ, qg-LaJ = ... = qg-1 = 1. (3.6)

These values lead to an upper bound on LJ:~ jqj given by

g-l
Ljqj ~ (g - LaJ -l)(a - LaJ) + LaJ(2g -2 LaJ -1).
j=O

(3.7)

Another upper bound may follow from bounding the mean queue length in the bulk service
queue lEXg , see (2.9). It can be seen that, using (2.10),

(",9-1 ( '))2 g-l ( ')2 g-l ( ')
9 - CJ.Ly = LJj=O Xj 9 - J < L Xj 9 - J < 9 L Xj 9 - J = g, (3.8)

2 2(g - CJ.Ly) - j=O 2(g - cj.Ly) - j=O 2(g - cj.Ly) 2

which yields with (2.9) that

2 2
C(Ty _ CJ.Ly < lEX < roy .

2(g - CJ.Ly) 2 - 9 - 2(g - CJ.Ly)
(3.9)

Hence, since lEXg ~ lEXg, the upper bound on lEXg in (3.9) is in fact an upper bound on lEXg.
Sharper bounds on lEXg are presented in [8].

Darroch [7] also proposed a method to derive a lower bound on LJ:~ jqj' He derived upper
bounds on qo and q1, denoted by tIo and tIl, respectively. Darroch constructed a lower bound by
setting qo = tIo, q1 = tIl and q2 = ... = qg-1 = (a - tIo - tII)/(g - 2). We now reformulate and
extend this method by providing a probabilistic interpretation and upper bounds for all qj'
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We introduce G as the random variable representing the effective green period, defined as the
number of slots per green period that are actually used for the departure of delayed vehicles. It
holds that qo = lP'(G = 0) and for j = 1, ... ,g -1 that

(3.10)

We can bound the probabilities lP'(G = j) by conditioning on the overflow being zero. Assume
that the overflow in a cycle is zero. The probability that G takes on a certain value in the next
cycle can be expressed as an exact specification of the arrivals in the intermediate red period and
those during the effective green period. The number of combinations that leads to G = j is largest
for X g = 0, so lP'(G = j) < lP'(G = jlXg = 0). This yields the following upper bounds on the qj:

j j

Qj = LlP'(G = n) < LlP'(G = nlXg = 0) = iii.
n=O n=O

(3.11)

(3.12)

(3.13)

The values qj can be expressed fully in terms of the distribution of Y (with Yj = lP'(Y = j)). We
have for example that qo = Yo, ql = Yo(l + rYl), and

q2 = Yo(1 + rYl(l + Yl) + rYOY2 + (;)yO·
Let m be the largest integer value for which

~m A

A < 0: - LJj=O qjqm _ .
g-m-1

Then, we exploit the upper bounds qj to the maximum, while still satisfying (3.1), by choosing

~m A

0: - LJj=O qj
qm+l = qm+2 = .,. = qg-l = 1 .g-m-

A lower bound on E;:~ jqj then follows from setting the qi as in (3.13). Note that E;:~ jqj is
always positive and therefore the maximum of zero and the newly found bound, yields the real
lower bound.

Example 3.1. (i) Consider Poisson arrivals with lP'(Y = j) = e-,x),.i / j! and J1.y =),.. For
9 = r = 5, and x = CJ1.y/g = 0.7 we have 0: = 2.3077, m = 2, qO = 0.174, ql = 0.388, q2 = 0.520
and qa = q4 = 0.613. The resulting lower bound equals 0.333, where the exact value is given by
0.440.

(ii) Consider geometric arrivals with lP'(Y = j) = (1- p)pi and J1.y = p/(l- p). For 9 = r = 10,
and x = CJ1.y /g = 0.9 we have 0: = 1.8182, m = 2, qO = 0.024, ql = 0.076, q2 = 0.139 and
qa = ... = q9 = 0.226. The resulting lower bound equals 4.180, where the exact value is given by
4.745.

4 Approximations

In Sec. 3 we have presented bounds on the mean overflow. We now turn to approximations
for the mean overflow. We discuss the best-known existing approximations and present a new
approximation. The latter is based on the heavy-traffic limit and a scaling argument.

4.1 Existing approximations

Miller [15] obtained an approximating formula for the mean overflow based on the discrete bulk
service queue. Miller rewrote (2.1) as

(4.1)
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where Un = 9 - (Xg,n + An) if Xg,n + An < g, and 0 otherwise. Let U = limn __co Un' The mean
overflow can then be shown to be

2 2
IEX

- _ roy - (jU
g- .

2(g - CJ.Ly)

Note that (4.2) is the same expression as (2.9) since

(4.2)

g-l g-l 2

(j~ = LXj(g - j)2 - [LXj(g - j)] .
j=O j=O

(4.3)

(4.4)

Of course, this last expression for (j~ requires the numerical determination of xo, Xl,' .. ,Xg-l as
outlined in Appendix A. Miller aimed for a simple approximation and assumed that (j~ lIEU ~ 1
with 1 the index of dispersion given by (j~ I J.Ly. This gives

lEX ~ 2cJ.Ly - 9 . 1
9 2(g - CJ.Ly) ,

when 2cJ.LY ~ g. When 2cJ.Ly < g, IEXg is taken as zero.
Newell [18] lets the red and green period tend to infinity and applies the central limit theorem

to obtain the following approximation for the overflow:

1
7r/ 2 t 2 ()lEX ~ 9 - CJ.Ly an d()

9 ~ 7r 0 exp[(g - CJ.Ly)21(2g1 cos2 ())] - 1 .
(4.5)

(4.6)lED =

The best-known approximation formula was derived by Webster [22], which holds only for
Poisson arrivals and is formulated in terms of lED (with J.Ly = (j~ = A):

(C_g)2 AC2 (C )1/3 (AC)2+S9 /C
---'--:---:~ + - 0 65 - -
2c(1 - A) 2g(g - AC) . A2 9

(4.7)

The first two terms in (4.6) are based on an MIDII queue, whereas the last term is obtained
by matching simulation results. Miller also derived an approximation for Poisson arrivals only,
formulated in terms of IEXg (with X = Aclg):

lEX ~ exp[-1.33y'g(1 - x)/x] .
9 2(1 -x)

It should be mentioned that in Rouphail et al. [20] both formulas of Miller (9.28) and (9.32)
are incorrectly cited, while Ohno [19] incorrectly cites the formula of Newell (Expression (25)) in
his paper.

4.2 New approximation formula

We will now derive a new approximation formula for the mean overflow that holds for a general
arrival process, where we aim at incorporating the key characteristic of the FCTL queue, see Sec.
2. We offset the added value of the new formula against the best existing formulas (4.4) and (4.5).
In particular, we want our approximation to reflect both the impact of the FCTL assumption
(Assumption 2.3) and the impact of the type of arrival process.

In (4.4) the FCTL assumption is neglected, since Miller approximates the FCTL queue by the
bulk service queue. In (4.5) the impact of the type of arrival process is neglected to a large extent,
since Newell relied on the central limit theorem. Thus, the approximation (4.4) is expected to be
less accurate for regimes in which the bulk service queue differs severely from the FCTL queue,
see Sec. 2, and the approximation (4.5) is expected to be less accurate for small cycles and more
volatile arrival processes. This will indeed be demonstrated in Sec. 5.

Let us now turn to the derivation of the new approximation. When the mean number CJ.Ly
of vehicles that arrive to the intersection per cycle approaches its maximum allowed value g, the

10



FCTL queue will almost never be empty. As a result hardly any vehicle might pass the intersection
without delay. This implies that the FCTL assumption has little influence on the evolution of the
queue length. In Sec. 2.1 we argued that it is exactly this assumption that makes the difference
between the FCTL queue and the bulk service queue. Hence, when cJ.Ly approaches g, the impact
of the FCTL assumption gradually vanishes, and so the FCTL queue and the bulk service queue
become more and more alike. Among other things, this implies that lEXg tends to lEXg , as
demonstrated next.

From the bound (3.4) we see that

2 g-l

1. (1- J.LY) ". (1- J.Ly)(g -1)
1m L..JJqj = ,

c/LyTg g - cJ.Ly j=O 2

and plugging this into (2.5) yields

(4.8)

lim lEXg
C/LyTg

(4.9)

From the bounds (3.9) it follows that the lEXg is dominated by the same term in heavy traffic,
Le., for Cj..Ly i g

- ca}
lEXg ;::::: lEXg ;::::: ( )' (4.10)

2 g - CJ.Ly

We now reduce the problem of determining an approximation of lEXg to the problem of finding a
good scaling function {(g, c, j..Ly) such that

ro2

lEXg ;::::: {(g, c, j..Ly) . 2( y )'
g-cj..Ly

First note that (4.4) can be rewritten as

(4.11)

(4.12)lEX ;::::: (2 _-.!L) . ro}
9 cj..Ly 2(g - CJ.LY) ,

and so Miller's approximation amounts to setting {(g,C,j..Ly) = (2 - gj(Cj..LY)) if 2cj..Ly 2: g and
{(g, c, j..Ly) = 0 if 2cj..Ly < g. But what is a proper choice for {(g, c, J.LY)? It should hold that
{(g, c, J.LY) ---7 1 when Cj..Ly i g. The scaling function {(g, c, J.LY) = cj..Ly jg obviously would meet this
requirement and also reflects the fact that the more vehicles arrive to the intersection, the more
dominant the heavy traffic limit will be. However, Cj..Ly j g equals the mean number of vehicles
that should depart during one slot in the green period if all vehicles would be delayed. So,
{(g, c, j..Ly) = cj..Ly j g does not reflect the FCTL assumption, since a part of the vehicles passes the
intersection without delay. Therefore, we multiply Cj..Ly j g with the probability that an arbitrary
slot during the green period is actually used for the departure of delayed vehicles, Le.

j..LY(C-g) CJ.Ly
{(g,C,j..Ly)= (1 ).-,g -j..Ly g

where (see (2.6) and (2.7))

g-l g-l
j..Ly(c - g) 1 ( ") 1 ( " )= - g - L..J qk = - C - L..J qk J.Ly.
g(l- j..Ly) g k=l g k=l

(4.13)

(4.14)

Fig. 6 displays for g = r = 5 and Poisson arrivals the exact value of the overflow divided by the
heavy traffic limit, along with the above-mentioned scaling functions {(g, c, J.Ly).
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Figure 6: The exact value of the overflow divided by the heavy traffic limit vs the scaling functions for
9 = r = 5 and Poisson arrivals and 0 ~ x < 1 with x = Jwelg.

5 Numerical assessment

We now present some numerical results of the mean overflow and mean delay in the FCTL queue
for various settings. We compare the newly derived bounds and approximation with the existing
ones and assess their quality under various settings of the cycle length, the ratio green period over
red period and the type of arrival process.

Table 1 and 2 display the bounds and approximations for the mean overflow, for Poisson arrivals
and geometric arrivals, respectively. Observe that upper bound (3.7) and lower bound (3.13) yield
very precise bounds, especially for higher values of x. Also note that the lower bound (3.13)
sharpens (3.4), except in cases where Q < gilo.

Miller's approximation (4.7) and the new approximation (4.13) are very accurate for Poisson
arrivals, 9 = (1/5)c and 9 = (1/2)c. In the situation where 9 = (4/5)c all approximations perform
less well, but again (4.13) produces the best results for both a Poisson as well as a geometric
arrival process.

We have seen in Sec. 2, that the impact of the mean overflow on the mean delay is increasing
with J.Ly. So indeed the difference between the exact value and the approximations of the mean
delay is more substantial in these cases as can be seen in Table 3 and 4. Here we should remark
that in almost all Poisson cases, Webster's formula is less accurate than our new approximative
expression. In case of geometric arrivals, the mean overflow and the mean delay are approximated
more precisely with the newly derived formula, than with the existing formulas of Miller (4.4) and
Newell (4.5).

In Figs. 7-8 the relative difference of the mean delay is plotted as a function of x for Poisson
and geometric arrivals respectively. With the graphical representation of this difference one can
conclude at a single glance which approximation can be best used for what scenario. For these two
scenarios the relative difference between new approximation (4.13) and the exact value is within
five percent, where this difference is in general larger for most other approximations.
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Table 1: Mean overflow for Poisson arrivals (with x = I-tyc/g).

g= ~c Ibl3 .4 ) Ibl3.13) EXg ub(3.7) Ub(3.9) ub(3.4) (4.7) (4.4) (4.5) (4.13)
10 x-0.5 0.000 0.053 0.068 0.308 0.500 0.458 0.051 0.000 0.208 0.083

0.7 0.022 0.333 0.440 0.867 1.167 1.539 0.466 0.667 0.697 0.440
0.9 2.966 3.082 3.400 4.066 4.500 7.916 3.593 4.000 3.818 3.314

c 0.98 22.795 22.795 23.225 23.815 24.500 47.785 23.528 24.000 23.722 23.068
20 x -0.5 0.000 0.131 0.022 0.321 0.500 0.771 0.015 0.000 0.089 0.083

0.7 0.000 0.000 0.276 0.881 1.167 2.560 0.275 0.667 0.457 0.440
0.9 1.841 2.437 3.037 4.069 4.500 12.978 3.133 4.000 3.395 3.314

0.98 21.570 21.852 22.761 23.865 24.500 77.797 22.944 24.000 23.207 23.068

9 - ~c Ib(3.4) Ib(3.13) EXg ubl3.7) ubl3 .9) ubC3.4) (4.7) (4.4) (4.5) (4.13)
10 x-0.5 0.044 0.131 0.174 0.404 0.500 0.404 0.152 0.000 0.397 0.111

0.7 0.525 0.553 0.684 1.769 1.167 1.328 0.744 0.667 0.982 0.532
0.9 3.670 3.670 3.850 4.080 4.500 6.622 4.057 4.000 4.225 3.556

c 0.98 23.594 23.594 23.781 23.996 24.500 39.353 24.059 24.000 24.186 23.413
20 x =0.5 0.000 0.063 0.098 0.409 0.500 0.724 0.070 0.000 0.253 0.111

0.7 0.000 0.371 0.527 1.012 1.167 2.373 0.533 0.667 0.772 0.532
0.9 2.950 3.172 3.590 4.1802 4.500 11.806 3.721 4.000 3.931 3.556

0.98 22.810 22.810 23.474 24.016 24.500 70.085 23.679 24.000 23.855 23.413

9 = ~c Ib(3.4) Ibl3.13) EXg
ub(3.7) ub(3.9) ub(3.4) (4.7) (4.4) (4.5) (4.13)

10 x-0.5 0.000 0.012 0.022 0.157 0.500 0.187 0.023 0.000 0.123 0.042
0.7 0.000 0.180 0.238 0.520 1.167 0.689 0.332 0.667 0.535 0.260
0.9 2.494 2.541 2.714 3.208 4.500 4.258 3.292 4.000 3.543 2.604

c 0.98 21.901 21.901 22.085 22.657 24.500 29.310 23.153 24.000 23.392 21.787
20 x-0.5 0.000 0.000 0.004 0.163 0.500 0.267 0.005 0.000 0.036 0.042

0.7 0.000 0.000 0.129 0.529 1.167 0.950 0.170 0.667 0.301 0.260
0.9 1.774 2.052 2.396 3.209 4.500 5.554 2.769 4.000 3.543 2.604

0.98 21.117 21.175 21.647 22.667 24.500 36.993 22.428 24.000 22.749 21.787

Table 2: Mean overflow for geometric arrivals (with x = I-tyc/g).

g= ~c Ib(3.4) Ib(3.13) EXg ubl3.7) ubl3.9 ) ubl3 .4) (4.4) (4.5) (4.13)
10 x =0.5 0.000 0.085 0.120 0.392 0.625 0.542 0.000 0.316 0.104

0.7 0.337 0.552 0.706 1.182 1.575 1.853 0.900 1.076 0.594
0.9 4.807 4.846 5.181 5.907 6.525 9.757 5.800 5.802 4.805

c 0.98 34.564 34.564 34.932 35.584 36.505 59.554 35.760 35.685 34.372
20 x =0.5 0.000 0.000 0.048 0.404 0.625 0.854 0.000 0.153 0.104

0.7 0.000 0.154 0.490 1.195 1.575 2.874 0.900 0.759 0.594
0.9 3.682 4.180 4.745 5.909 6.525 14.819 5.800 5.271 4.805

0.98 33.339 33.474 34.390 35.634 36.505 89.567 35.760 35.051 34.372

9 = ic Ib(3.4) Ib(3.13) EXg
ub(3.7) Ub(3.9) ub(3.4) (4.4) (4.5) (4.13)

10 x =0.5 0.089 0.161 0.211 0.449 0.550 0.449 0.000 0.458 0.122
0.7 0.677 0.677 0.826 1.107 1.330 1.480 0.760 1.160 0.606
0.9 4.460 4.460 4.627 4.871 5.310 7.412 4.720 5.054 4.196

c 0.98 28.372 28.372 28.545 28.774 29.302 44.131 28.704 29.009 28.002
20 x-0.5 0.000 0.079 0.125 0.454 0.550 0.769 0.000 0.300 0.122

0.7 0.117 0.478 0.652 1.164 1.330 2.525 0.760 0.928 0.606
0.9 3.740 3.913 4.344 4.971 5.310 12.596 4.720 4.731 4.196

0.98 27.588 27.588 28.213 28.794 29.302 74.863 28.704 28.646 28.002

g= ~c Ibl3 .4) Ibl3.13) EXg ub(3.7) ub(3.9) ub(3.4) (4.4) (4.5) (4.13)
10 x-0.5 0.000 0.034 0.057 0.223 0.700 0.253 0.000 0.255 0.058

0.7 0.267 0.407 0.488 0.817 1.820 0.986 1.040 1.075 0.405
0.9 4.809 4.816 4.981 5.523 7.740 6.573 6.880 6.632 4.478

c 0.98 39.686 39.686 39.828 40.442 43.708 47.095 42.816 42.439 38.868
20 x -0.5 0.000 0.000 0.018 0.229 0.700 0.333 0.000 0.100 0.058

0.7 0.000 0.085 0.325 0.826 1.820 1.247 1.040 0.700 0.405
0.9 4.089 4.269 4.592 5.524 7.740 7.869 6.880 6.632 4.478

0.98 38.902 38.902 39.323 40.452 43.708 54.778 42.816 41.567 38.868
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Table 3: Mean delay for Poisson arrivals (with x == JLyc/g)~

9 - ic lED (4.6) err(%) (4.7) err(%) (4.4) err(%) (4.5) err(%) (4.13) err(%)
l( x-0.5 2.626 2.511 -4.4 2.581 -1.7 2.444 -6.9 2.999 14.2 2.667 1.5

0.7 3.866 3.690 -4.6 3.923 1.5 4.365 12.9 4.432 14.6 3.866 0.0
0.9 10.422 9.788 -6.1 10.812 3.7 11.635 11.6 11.266 8.1 10.248 -1.7

c 0.98 50.371 49.394 -1.9 50.977 1.2 51.922 3.1 51.366 2.0 50.058 -0.6
2C x-0.5 4.170 4.137 -0.8 4.151 -0.5 4.111 -1.4 4.348 4.3 4.333 3.9

0.7 5.429 5.466 0.7 5.426 0.0 6.288 15.8 5.828 7.3 5.789 6.6
0.9 11.962 11.675 -2.4 12.157 1.6 13.907 16.3 12.684 6.0 12.521 4.7

0.98 51.893 51.310 -1.1 52.259 0.7 54.373 4.8 52.786 1.7 52.509 1.2

g= t c lED (4.6) err(%) (4.7) err(%) (4.4) err(%) (4.5) err(%) (4.13) err(%)
l( x-0.5 6.038 5.243 -13.2 5.849 -3.1 4.494 -25.6 8.022 32.9 5.481 -9.2

0.7 9.270 7.773 -16.1 9.673 4.3 9.157 -1.2 11.253 21.4 8.260 -10.9
0.9 25.853 23.200 -10.3 26.974 4.3 26.665 3.1 27.884 7.9 24.259 -6.2

c 0.98 125.824 122.574 -2.6 127.233 1.1 126.936 0.9 127.880 1.6 123.955 -1.5
2C x-0.5 8.920 8.587 -3.7 8.671 -2.8 8.049 -9.8 10.296 15.4 9.037 1.3

0.7 11.949 11.031 -7.7 11.990 0.3 12.877 7.8 13.576 13.6 11.981 0.3
0.9 28.346 26.270 -7.3 29.053 2.5 30.568 7.8 30.196 6.5 28.162 -0.6

0.98 128.247 125.539 -2.1 129.287 0.8 130.916 2.1 130.179 1.5 127.935 -0.2

g= ic lED (4.6) err(%) (4.7) err(%) (4.4) err(%) (4.5) err(%) (4.13) err(%)
l( x =0.5 0.796 0.918 15.3 0.797 0.1 0.778 -2.3 0.880 10.6 0.813 2.1

0.7 1.391 1.670 20.1 1.468 5.5 1.739 25.0 1.633 17.4 1.409 1.3
0.9 5.039 5.413 7.4 5.613 11.4 6.315 25.3 5.862 16.3 4.930 -2.2

c 0.98 29.616 30.092 1.6 30.876 4.3 31.877 7.6 31.159 5.2 29.263 -1.2
2C x-0.5 1.114 1.241 11.3 1.115 0.1 1.111 -0.3 1.141 2.4 1.146 2.8

0.7 1.758 2.062 17.3 1.791 1.9 2.194 24.8 1.897 7.9 1.864 6.0
0.9 5.438 5.886 8.2 5.808 6.8 7.029 29.3 6.576 20.9 5.644 3.8

0.98 30.024 30.639 2.0 30.946 3.1 32.803 9.3 31.325 4.3 30.189 0.6

Table 4: Mean delay for geometric arrivals (with x = /-Lye/g).

g- ~c lED (4.4) err(%) (4.5) err(%) (4.13) err(%)
l( x-0.5 2.541 2.222 -12.6 3.065 20.6 2.500 -1.6

0.7 4.272 4.700 10.0 5.086 19.0 4.027 -5.8
0.9 13.937 15.188 9.0 15.193 9.0 13.178 -5.4

c 0.98 73.775 75.432 2.2 75.281 2.0 72.655 -1.5
2( x-0.5 4.017 3.889 -3.2 4.298 7.0 4.167 3.7

0.7 5.722 6.623 15.8 6.312 10.3 5.950 4.0
0.9 15.330 17.461 13.9 16.392 6.9 15.450 0.8

0.98 75.142 77.883 3.6 76.464 1.8 75.106 0.0

g= ic lED (4.4) err(%) (4.5) err(%) (4.13) err(%)
l( x-0.5 5.977 4.099 -31.4 8.170 36.7 5.185 -13.2

0.7 9.823 9.387 -4.4 12.048 22.7 8.366 -14.8
0.9 29.685 30.187 1.7 31.997 7.8 27.348 -7.9

c 0.98 149.633 150.441 0.5 151.988 1.6 146.875 -1.8
2( x-0.5 8.767 7.654 -12.7 10.318 17.7 8.741 -0.3

0.7 12.389 13.108 5.8 14.225 14.8 12.087 -2.4
0.9 32.053 34.089 6.4 34.150 6.5 31.250 -2.5

0.98 151.928 154.421 1.6 154.124 1.4 150.855 -0.7

g= ic lED (4.4) err(%) (4.5) err(%) (4.13) err(%)
l( x-0.5 0.770 0.722 -6.2 0.935 21.5 0.771 0.2

0.7 1.656 2.104 27.1 2.133 28.8 1.589 -4.0
0.9 7.849 9.734 24.0 9.487 20.9 7.351 -6.4

c 0.98 51.788 55.317 6.8 54.871 6.0 50.654 -2.2
2C x-0.5 1.070 1.056 -1.4 1.139 6.4 1.104 3.1

0.7 1.978 2.559 29.4 2.283 15.4 2.044 3.3
0.9 8.178 10.448 27.8 10.202 24.7 8.065 -1.4

0.98 52.117 56.242 7.9 54.767 5.1 51.579 -1.0
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Figure 7: 100%(lED -lED)/lED for 0.4 ::; x <
0.98 (with x = /1.yc/g) and 9 = r = 5 and Poisson
arrivals.

Figure 8: 100%(lED -lED)/lED for 0.4 ::; x <
0.98 (with x = /1.yc/g) and 9 = r = 10 and geo
metric arrivals.

6 Concluding remarks

Up to this day, Darroch's formula (2.5) for the mean overflow is often considered to be not of
practical importance because of the required numerical determination of the roots of Z9 = Y(z)C
on and within the unit circle. However, due to improved numerical algorithms and the increase
in computational power, root-finding can be dealt with adequately nowadays, as discussed in
Appendix A. Still, though, there is a strong incentive to derive bounds and approximations for
the mean overflow that do not involve root-finding. This is because approximations might give
more intuitive insight in the behavior of the performance characteristics and can be used for
back-of-the-envelope computations. Furthermore, when one has only knowledge of the first two
moments of Y, the exact approaches cannot be applied (or one should fit a distribution on these
moments) while most bounds and approximations retain their value.

Many approximations and bounds in the literature have been derived for the mean overflow
in the FCTL queue. In deriving these, most authors approximate the FCTL queue by the bulk
service queue. In Sec. 2 we have compared both models and concluded that, due to the FCTL
assumption (Assumption 2.3), the difference between the models is the largest for intermediate
values of the traffic intensity. For low traffic intensities the overflow is negligible, while for high
traffic intensities the models tend to each other. The latter is because, for high traffic intensities,
the impact of the FCTL queue is marginal and the heavy traffic limit (which is the same in both
models) is dominant.

We have presented several bounds and a new approximation for the mean overflow. In doing
this, we have not relied on the bulk service queue approximation. The bounds have been derived
from Darroch's exact solution. The approximation is based on the heavy traffic limit and a scaling
argument that takes into account the FCTL queue assumption. The bounds and approximation
hold for a general discrete arrival process and allow for a quick evaluation.

We compare the new approximation with the existing approximations and the newly derived
bounds. The existing approximations are either obtained by neglecting the FCTL queue assump
tion or by assuming that the mean overflow and mean delay are not very sensitive to the detailed
stochastic properties (see [15, 18]), so that the FCTL assumption can be ignored. Both considera
tions might cause problems. In particular, the results presented in Sec. 5 show that the differences
in terms of performance characteristics between Poisson and geometric arrivals are considerable.
The existing approximations perform less well for geometric arrivals and smaller cycle lengths,
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both factors yielding a more stochastic system. Our new approximation remains sharp and we
conclude that it is of importance to take the stochastic properties of the system into account. The
results as presented in this paper allow one to consider distributions with a larger coefficient of
variation, distributions with a finite support, or distributions fitted to empirical data.
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(A.l)

A Some analytical results

A.I Transform solutions

Darroch [7] derives the following expression for the probability generating function of the overflow
X g :

x (z) = Y(z)g(((z) -1) L:J:~qj((z)j,
9 zg - Y(z)c

where qj = JPl(Xj = 0) and ((z) = zjY(z). In this expression there are still 9 unknowns
qo, ... , qg-1, which can be found using the following classical approach (see e.g. Bailey [3], Darroch
[7]). With Rouche's theorem, it can be shown that the denominator of (A.l) has 9 zeros on or
within the unit circle Izi ~ 1. Since a pgf is analytic and well-defined in Izi ~ 1, the numerator of
Xg(z) should vanish at each of the zeros. This gives 9 equations. One of the zeros equals 1, and
leads to a trivial equation. However, the normalization condition X g (l) = 1 provides an additional
equation. Using I'Hopital's rule, this condition is found to be (2.6).

Denote the 9 roots of zg = Y(z)C on and within the unit circle by Zo = 1, Z1,"" Zg-l' The 9
unknowns qo, ... , qg-1 then follow from solving the set of linear equations

1
((Zl)g-l
((Z2)g-1

fr

o
o (A.2)

o

The above system can by solved by applying Cramer's rule. The system can then be transformed
into a Vandermonde system, leading to the following explicit solution for qo, ... ,qg-1 (with Tk =
((Zk)):

qj = a(-I)H2 9_1
1 I: TilTi2' .. Tig_l_i' (A.3)

Ilk=l(Tk -1) l::Oil<i2< ... <ig -l-j::Og-1

The expression for lEXg given by (2.5) follows from taking the first derivative to z of Xg(z) and
evaluating this in z = 1.

For the bulk service queue, the pgf of Xg is given by (see e.g. Bailey [3])

g-1 .- I: x .(zg - z3)X Z - 3
g( ) -. zg - Y(z)c '

3=0

(A.4)

where Xj = JPl(Xg + A = j). Using the identity (2.10) and a similar reasoning as for the FCTL
queue, the 9 unknowns XO, ••• , X g-1 follow from solving the set of linear equations

9 g-1 1 Xo fr2

zf -1 zf - Zl
9 g-l

Xl 0Zl - zl
z~ - 1 z~ - Z2

9 g-l
X2 0 (A.5)Z2 - z2 =

zg 1 -1 9 9 g-l Xg-1 0g- Zg_l - Zg-l Zg_l - Zg_l

As in case of the FCTL queue, the above system can by solved by applying Cramer's rule and
leads to the following explicit solution for xo, . .. ,Xg-1:

(A.6)
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A.2 Numerical determination of the roots

For the above calculations we need to determine the roots Zo = 1, Zll ••. ,Zg-l' Since this issue of
root-finding goes a long way back in queueing theory, it has often been addressed, both from an
analytical and numerical perspective. We now give a short overview of this root-finding for the
Poisson case Y(z) = exp(),(z -1)), ), < g/c, and point out where extensions can be made to other
distributions of Y.

The easiest way to determine the roots in the Poisson case is to apply successive substitution
to a fixed-point equation. We know that the 9 roots of zg = Y(z)C in Izi ~ 1 satisfy

z = wY(z)c/g = wexp(c),(z - 1)/g), (A.7)

wg = 1. For each feasible w, (A.7) can be shown to have one unique root in Izl ~ 1. Moreover,
the equations can be solved by successive substitutions as

(A.8)

where Wk = exp(27'iik/g) and starting values zkO) = O. It can be shown that the fixed point
equations (A.8) lead to convergence to the desired roots. Adan & Zhao [1] distinguish a class of
compound Poisson distributions for which the method works. For more general discrete distribu
tions, the method is further investigated in [12].

For the Poisson case, an exact description of the roots can be obtained as well. In [12] it is
shown, using the Lagrange inversion theorem, that the roots are given by (with () = d/g)

00 (l())1-1
Z = ~ e-19 wi

k LJ l! k'
1=1

k=O,I, .. , ,g-1. (A.9)

One could truncate the infinite series over l in (A.9) to determine the roots. For a large class of
discrete distributions, exact expressions for the roots, similar to (A.9), are derived in [12].

Although the class of distributions of Y for which one can derive an exact expression like (A.9)
is far larger than the class for which the method of successive substitutions (A.8) works, see [12],
neither method works for all distributions. Therefore, the most general method relies on numerical
techniques. Chaudhry et al. [6] have developed a software program to solve root-finding problems
in queueing theory numerically, which works in our experience for almost all distributions.

B Mean delay for Poisson arrivals

In this appendix we present an elementary derivation of the mean delay expression in (2.3) for
Poisson arrivals (J..ly = O"~ = ),), where we rely on the PASTA property and Little's law. We
show that the delay of an arbitrary vehicle can be divided into five different parts, each of which
is discussed below.

(i) An arriving vehicle finds on average IELQ vehicles in the queue and each of them has a
deterministic service time equal to one slot.

(ii) By PASTA we know that the probability that a vehicle arrives during the effective red period
is equal to the fraction of time the signal is red during a cycle. This fraction is equal to r / c and
the residual effective red period is given by r /2.

(iii) When a vehicle arrives, there may be a vehicle in service (driving off at that moment),
with a mean residual service time given by 1/2. Again by PASTA, we know that the probability a
vehicle finds another vehicle in service, is equal to the fraction of time in a cycle spent on service.
For the mean time during a green period that is actually used for the departure of delayed vehicles,
lEG, the following relationship holds

lEG = J..lyr + J..lyIEG.
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(iv) It can happen that a vehicle arrives, but cannot be served in the next green period. Let Z
be the number of times an extra red period of length r has to be waited. The following version of
Little's law can be given

1
lEZfLY = -lEXg •

e
(B.2)

(B.3)

(B.4)

(v) If a vehicle arrives during the green period and there are no vehicles waiting, its service
time is equal to zero; otherwise it is equal to 1. By PASTA the probability a vehicle arrives and
cannot drive off immediately is equal to the fraction of time the system is not in idle mode, which
is during the red period and G. So with a probability equal to

1 r
- (r + lEG) = ( )'c e 1- fLy

the service time is equal to 1.
By combining (i) to (v) it follows that the mean delay (without possible service time) lEW is

given by

lEW - lELQ r
2

fLyr rlEXg- +-+ +--.
2e 2c(1 - fLY) fLye

With Little (lELQ = ,XlEW) we can now easily determine the mean delay (without possible service
time), which is equal to

lEW
r2 fLyr rlEXg= + + .

2c(1 - fLY) 2e(1 - fLy)2 fLyc(l - fLY)

Consequently, the mean delay of a vehicle (with possible service time included) is

r 2 IIr rlEX r
lED = + ,..,y + 9 + ,

2e(1 - fLY) 2c(1 - fLy)2 fLyc(l - fLY) e(l - fLY)

which is equal to (2.3).

(B.5)

(B.6)
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