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o Introduction 

In this paper we design a parallel program for computing the Dirichlet Convolution of two 
arithmetical functions. We believe that the program derivation we present is easy to under­
stand and is, thereby, a nice example of our l1)ethod for designing parallel programs. Programs 
are derived from their formal specification in a calculational manner. Correctness by design 
is our main objective, whereas other methods afterwards require a verification of the con­
structed algorithm. 

The problem of designing a parallel program for Dirichlet Convolution was originally posed 
by Tom Verhoeff in [5J. Solutions for comPJlting the Dirichlet Convolution can be found in 
[OJ and [3J. These solutions resemble our solution; the program derivations, however, are 
completely different. 

The program we derive is a program with fine-grained parallelism. We do not discuss methods 
to enlarge the grain-size. Our main goal is to show that our design method can be applied to 
non-trivial examples as easily as to simple examples. 

This paper is organized as follows. In section 1 the Dirichlet Convolu tion is defined and a par­
allel program is derived for computing the Dirichlet Convolution of two arbitrary arithmetical 
functions. Section 2 deals with the inverse convolution problem. A parallel program for the 
inverse convolution problem turns out to be almost identical to the program for Dirichlet 
Convolution. The Mobius function is an instance of the inverse convolution problem. A par­
allel program for this function is discussed in section 3. Our program for the Mobius function 
differs from Tom Verhoeff's program [5J. 

The notation we use has been adopted from [4J. 

1 Dirichlet Convolution 

In this section we give a definition of Dirichlet Convolution. Next, we generalize this definition 
and obtain an expression for which we derive a recurrence relation. The program we derive 
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consists of a network of cells that communicate with each other by message passing over uni­
directional channels. By applying the above mentioned recurrence relation, we derive relations 
for the individual communications along the channels. These relations impose requirements 
upon the communication behavior of the cells. After finding a communication behavior that 
satisfies these requirements and that introduces minimal buffering, we present the program 
text. A short complexity analysis of the program concludes this section. 

For an introduction to the theory of arithmetical functions we refer to [2]. We consider , 
arithmetical functions to be functions defined on the positive integers and that have the 
integers as their range. The Dirichlet Convolution of two arithmetical functions F and G, 
denoted by F * G, is defined as 

for n ~ l. 
In this definition, the summation ranges over a non-empty domain that is symmetric in p 
and q. In the program derivation, we shall maintain this symmetry. We do so because 
other problems (e.g. dynamic programming [1]) show that destroying symmetry often leads 
to inefficient programs. 

For the derivation of our program we prefer a slightly different (but equivalent) definition of 
F*G: 

We generalize this expression by introducing an additional variable. For 0 :<; m :<; n, expres­
sion Q( m, n) is defined as 

Notice that expression Q(m,n) is defined in the context of arithmetical functions F and G. 

Taking m = n, we then have Q(n,n) = (F*O)(n). Hence, computing the Dirichlet Convolu­
tion of two arithmetical functions can be done by evaluating expression Q. 'vVe now derive a 
recurrence relation for Q(m,n), since evaluating Q(n,n) involves evaluation of partial sums 
Q(m,n). 

For 0:<; m <,fii 

Q(m,n) = 0 

and for ,fii :<; m + 1 :<; n, we derive 

Q(m + l,n) 

= {def. Q} 

(Sp,q:p*q=n II (,fii:<;p:<;m+l V,fii:<;q:<;m+l):F(p)*G(q)) 
= {,fii:<;m+l} 

(Sp,q: p*q = nll(,fii:<; p:<; mV,fii:<; q:<; mVp= m+l Vq = m+l): F(p)*G(q)) 
{ domain split} 
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Figure 0: linear network of cells 

(8p,q:p*q=n A (vn5,p5,m V vn5,q5,m):F(p)*G(q)) 

+(8 p,q : p * q = nAp = m + 1 A q = m + 1 : F(p) * G(q» 

+(8p,q:p*q=n A P-lq A (p=m+l V q=m+l):F(p)*G(q» 
{def. Q} 

Q(m,n) 

+if (m+l)2=n --+ F(m+l)*G(m+l) 
~ (m+l)2-1n A (m+lln) --+ F(m+ 1)*G(n/(m+ 1» 

~ ,em + 11 n) 
fi 

+ F(n/(m + 1» * G(m + 1) 
--+ 0 

where kin denotes k divides n, i.e. n mod k = O. 

We rewrite this recurrence relation for Q(m,n) 

Q(O,n) = 0 

Q(m+l,n) = Q(m,n) 

+ if (m + 1)2 < n V ,(m+lln) --+ 0 
~ (m + 1)2 = n --+ F(m+l)*G(m+l) 

2 

~ (m+l)2>n A (m+lln) --+ F(m + 1) * G(n/(m + 1)) 
+ F(n/(m + 1» * G(m + 1) 

fi 

for 0 5, m < n. 

We now have a recurrence relation for Q( m, n) which we use in the program derivation that 
follows. 

The program we derive consists of a linear network of cells (see fig. 0). Cell 0 is fed with two 
arithmetical functions along two input channels fo and go: 

fo(i) = F(i+l) 

go(i) = G(i+l) 

for i 2: O. 
Cell 0 also communicates with the environment by means of output channel bo, which satisfies 
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bo(i) = (F*G)(i + 1) 

for i 2: O. 

Given this definition, the first communication along channel bo satisfies 

bo(O) 
= {def. bo } 

(F*G)(l) 

= {def. F*G} 

F(I) * G(l) 

= {def. fa and go } 

fo(O) * go(O) 

and for i 2: 0 we have 

bo(i+1) 

{def. bo } 

(F*G)((i + 1) + 1) 
= {def. Q} 

Q((i + 1)+ 1,(i + 1) + 1) 

= {recurrence relation for Q; using (i + 2)2 > i + 2 and i + 2 I i + 2} 

Q(i+ 1,(i+ 1) + 1)+F((i+ 1)+ l)*G(l)+ F(l)*G((i+ 1)+ 1) 
= {def. fa and go } 

Q(i + 1,(i + 1) + 1) + foCi + 1) * go(O) + forO) * go(i + 1) 

3 

On account of this expression, we decide that cell 1 computes Q( i + 1, (i + 1) + 1) and sends 
the result to cell 0 along channel b1 . Generalizing, output channel bj of cell j (j 2: 1) satisfies 

bj ( i) = Q(i + 1, i + 1 + j) 

for i > O. Notice that this relation also holds for j = O. On account of this observation, - , 
we expect that, later on, matching the communication behaviors of cell 0 and cell 1 will not 
cause any problem. 

Summarizing, the values communicated along channel bo satisfy 

bo(O) = fo(O) * go(O) 

bo(i + 1) = b1(i)+ foCi + 1) * go(O) + forO) * go(i + 1) 

From now on we consider cell j for j 2: l. 

The first communication along channel bj satisfies 

bj(O) 

{def. bj } 

Q(I,l + j) 

(0) 

(1) 
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= {recurrence relation for Q; Q(O,1 + j) = 0; 12 < j + I} 
o 

and for i 2: 0 we have 

bj (i+l) 

{def. bj} 

Q«i+ 1) + 1,(i + 1) + 1+ j) 
{recurrence relation for Q; (i + 2 I i + j + 2) = (i + 2 I j)} 

Q(i + 1, i + 1 + (j + 1» 

+ if (i + 2)2 < i + j + 2 V ,( i + 2 I j) ---+ 0 
II (i+2)2 =i+j+2 ---+ F(i+2)*G(i+2) 
II (i+2)2>i+j+2 A (i+2!i) ---+ F(i+2)*G«i+j+2)/(i+2)) 

fi 
+F«i + j + 2)/(i + 2)). G(i + 2) 

4 

Thus, for the (i + 1)-th communication along channel bj cell j should have at its disposal the 
values of: Q( i + 1, i + 1+ (j + 1)), F(i+ 2), G( i + 2), F(1+ j I(i + 2)), and G(1+ j I( i+ 2)). 
On account of the definition of channel bj, the i-th communication along channel bj+1 equals 
Q(i + l,i + 1+ (j + 1». 

For F(1 + j I(i + 2)), F(i + 2), G( i + 2), and G(1 + j I(i + 2» we introduce four input channels 
for cell j: respectively €j, /j, gj, and hj. Just like the definition of input channels 10 and go, 
we define 

Ij(i) = F(i+l) 

gj(i) = G(i+l) 

for i 2: o. 
Although, according to above derivation for bj( i + 1), IA i) (and gj( i) similarly) need only to 
be specified for indices i satisfying (i + 1)2 2: i + j + 1, we have specified Ij (i) for all natural i. 
For the specification of channel €j and hj, however, we are more liberal, viz. 

€j(i) = F(1+jdiv(i+l» 

hj(i) = G(1+jdiv(i+l)) 

for all natural i satisfying (i + 1 j2 > (i + j + 1). 
Actually, we have restricted ourselves a little, since €j(i) (and hj(i) similarly) need only be 
specified for indices i that also satisfy (i + 1 I j). In the sequel, we explicitly use the fact that 
€j(i) is specified only for i satisfying (i + Ij2 > (i + j + 1). 

Now, communications along channel bj are implemented by 

bj(O) 0 (2) 

bj(i + 1) = bj+1( i) 

+ if (i + 2)2 < i + j + 2 V ,( i + 2 I j) ---+ 0 (3) 
II (i+ 2j2 = i+ 1+ 2 ---+ !j(i + 1). gj(i+ 1) 
II (i+2)2>i+j+2 A (i+2!i) ---+ /j(i+l).hj(i+l) 

+€j(i + 1) * gj(i + 1) 
fi 
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Next, we turn our attention to the implementation of input channels ej, fj, 9j, and hj. On 
behalf of the symmetry between channels ej and hj, and between channels fj and 9j, we only 
discuss the implementation of channels ej ~d Ii. 

We are free to choose from which cell, either from cell (j -1) or from cell (j + 1), cell j receives 
inputs along channels ej and fj. It turns out that the first choice, values along channel ej 
are sent from cell (j - 1) to cell j, is a good one. In particular, the fact that cell 0 can easily 
generate the values to be sent along channels el and It often indicates an appropriate choice. 

Communications along channels el and It are sent by cell 0 and received by cell 1. Therefore, 
cell 0 must be able to compute both el (i) and It (i) for all natural i. 

By definition, for all natural i: It (i) = fo(i). 
The value of el (i) is only specified for natural i satisfying (i + 1)2 > i + 2, Le. ·for i :::: 1. We 
are free to choose an appropriate value for el(O). For i :::: 1: 

el(i) 

{def. ej} 

F(I+ Idiv(i+ 1» 
{i:::: 1 implies Idiv(i+ 1) = O} 

F(I) 

= {def. fo} 

forO) 

An appropriate choice for the value of e,(O), now, is el(O) = forO), of course. 

We proceed by calculating ej+! and fj+! for all j :::: 1 and i :::: O. Since communications 
along channel fj+! are very easy to implement, viz. Ii+!(i) = fj(i), we focus our attention 
on ej+l (i). 

In the calculation of ej+! we use two properties of the div -operator: 

Property: 
For j :::: 1 and i :::: 0: 

O. If-,(i + IIJ + 1), then (j + 1) div (i + 1) = j div (i + 1). 

1. If (i + IIJ + 1) and, moreover, (i + 1)2> i + j + 2, then (j + 1) div (i + 1) = j div i. 

Proof: 
Let q = (j + 1) div (i + 1) and r = (j + 1) mod (i + 1). 
Then, by definition, (j + 1) = q * (i + 1) + r 1\ 0:<; r < i + 1. 

O. We derive 

j+l=q*(i+l)+r 1\ O:<;r<i+l 
{arithmetic} 

j = q*(i+ 1)+(r-l) 1\ -1:<; (r-l) < i 

{ ~(i + 1 I j + 1) implies r oF 0 } 

j = q * (i + 1) + (r - 1) 1\ 0:<; (r - 1) < i 
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o 

Hence, (j + l)div(i+ 1) = q = jdiv(i+ 1). 

1. We derive 

(j+l)/(i+l) 

= { arithmetic } 

(i+j+2)/(i+ 1)-1 

< {(i+l)2>i+j+2} 

From j + 1 I- 0 and j + 1 = q * (i + 1), we infer q I- O. Hence, q satisfies 1::; q < i. 
Since in this case j = q*i+(q-l) and 0::; (q-l) < i, we conclude that (j+ l)div( i+ 1) = 
q = j div i. 

Notice that the second premise in the second property reflects the condition which we imposed 
on the specification of e j+1' 

We now derive a relation for ej+I(i). Since ej+1(i) has only been specified for indices i 
satisfying (i + 1)2 > i + j + 2 we have 

ej+I (i) 

= {def. ej} 

F(1+ (j + 1) div (i + 1)) 

= {property above} 

if .(i + IIJ + 1) --> F(1+ j div (i + 1)) 
~ (i + 1 I j+ 1) --> F( 1+ j div i) 
fi 

= {def. ej; (i + 1)2 > i + j + 2 > i + j + 1 } 

if .(i + IIJ + 1) --> ej(i) 
~ (i+11J+1) II i2>i+j --> ej(i-l) 
~ (i+llJ+l) II i2::;i+j --> F(1+(j+1)/(i+1») 
fi 

Note that ej(i - 1) is only specified for i2 > ; + j. For i and j satisfying both (i + 11 j + 1) 
and ;2 ::; i + j and (i + 1)2 > i + j + 2, we therefore have to determine F(1 + (j + 1)/( i + 1)). 
Since 

;2::;i+j II (i+1)2>(i+1)+(j+1) 

{ arithmetic} 

i2 
- i + 1 ::; j + 1 < i * (i + 1) 

= { arithmetic} 

(i - 2) + 3/(i + 1) ::; (j + 1)/(i + 1) < i 
=;. {(i+llj+1)} 

(j+1)/(i+l)=i-1 
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we conclude that in this case F(1+(j+ 1)/(i+ 1)) = F(1+(i-1)) = /j(i-1). For indices i 
that do not satisfy (i + 1)2> i + j + 2 we are free to assign any appropriate value to €j+1(i). 

The communications along channels €j and Ij, j ;:0: 1, can now be implemented by 

€1(i) 

ft(i) 

€j+1 (i) 

10(0) 
10 (i) 
if .(i + 11J + 1) 
~ (i+111+1) 
~ (i+11J+1) 
fi 

/j(i) 

V i = 0 ..... €j(i) 
1\ i2 > i + j -+ €j(i - 1) 
1\ o < i2 ::; i + j -+ /j(i-1) 

(4) 

(5) 
(6) 

(7) 

Recapitulating, we have introduced a number of channels for which we have derived relations 
that express the dependencies of the individual communications along these channels. These 
relations give rise to a partial order on the communications along the channels. We now turn 
our attention to finding a communication behavior for the cells that is consistent with this 
partial order. 

Given relations (0) through (7) we are able to express the requirements for the communication 
behavior of the cells. We turn our attention to cell j (j ;:0: 1). For the sake of convenience, we 
drop the indices of the channel names and denote channels bj , b;+l, €;, €j+1, /;, and /j+1 by 
b, b, €, e, /, and f, respectively. 

Relations (2) and (3) give rise to a partial oJ"{!er on the communications along b, b, €, / (on ac­
count of symmetry we temporarily do not consider channels g, g, h, and Ii). A communication 
behavior that is consistent with this partial order is 

e,/,b; (b,e,l; b)* (8) 

Notice that e, I, b; b, e, /; (b, e, /; b)* is, among other possibilities, also an appropriate choice. 
This communication behavior, however, requires extra buffering ofthree values. Since we aim 
at minimal buffering we prefer communication behavior (8). 

Relation (6) gives rise to 

e; e; (e,f; e)* (9) 

And, finally, from relation (7) we infer 

(f; f)* (10) 

These relations can be combined into the following (overall) communication behavior, CB, of 
cell j (including channels g, 9, h, and Ii) 

e,/,g,h; (b,e,f,g,li; b,e,f,g,h)* (11) 

Notice that the inputs along / occur earlier in (11) than in (9). Hence, we introduced extra 
buffering. Also notice the alternation between input actions and output actions. 

Since 
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CBr{b,e,j,g,h} = (e,j,g,h; b)* 

and 

CBr {b, e,f,g, h} = (e,f,g, h; b)* 

match, we conclude that the computation we derive does not suffer from deadlock (cf. [6]). 

The reader is invited to verify that 

8 

j,g; (b,e,f,g,h; /"j,g)* (12) 

is a possible communication behavior for cell O. 
" 

From relations (0), (1), (4), (5), and (12) we easily derive a program for cell 0: 

I var vjO, vi, vgO, vg, vb: inti 
j? vlO, g? vgO 

; b!(vIO. vgO),e!vIO,f!vjO,g!vgO,h!vgO 
; (b?vb,l?vl,g?vg 
;b!(vb + vj. vgO + viO. vg),e!vIO,f!vl,g!vg,h!vgO 
)* 

I 
And from relations (2), (3), (6), (7), and (11) we derive the following program for cell j: 

[var ve, vee, vi, vff, vg, vgg, vh, vhh, vb : 
p,q,r,i: int; 

e?vee, j?vff,g?vgg, h?vhh 
; b!O,e!vee,j!vff,g!vgg,h!vhh,i:= 0 
; (b?vb,e?ve,j?vj,g?vg,h?vh 

int; 

if (i+2)2<i+j+2 V -,(i+21J) -> r:= 0 
~ (i + 2)2 = i + j + 2 -> r:= vi • vg 
~ (i+2)2 > i+j+2 /\ (i+21J) ---+ r:= vj.vh+ve.vg 
fi 

, if -,(i + 21J + 1) 
~ (i+ 2 1J+1) /\ (i+1)2>i+j+1 
~ (i+2!i+1) /\ (i+l)2:Si+j+l 
fi 

;b!(vb + r),e!p,f!vl,g!vg,h!q 
; vee, vff, vgg, vhh,i := ve,vl,vg,vh,i+ 1 
)* 

I 

---+ p, q := ve, vh 
---+ p, q := vee, vhh 
---+ p, q := vff, vgg 

The above program does not meet the 'modularity constraint' of [3], i.e. j occurs in the 
program text and as a consequence the operation of a cell depends on the location of that cell 
in the network, This problem can be eliminated by introducing additional input channels for 
each cell (this technique has also been applied in [5]). By applying this technique it is possible 
to implement the evaluation of the guards efficiently. Without going into further detail, we 
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suggest to introduce three additional input channels Uj, Vj, and Wj, which are specified as 
follows 

Uj(i) = (i+1?-(i+j+1) 
Vj( i) j mod (i + 1) 

Wj( i) = i 

for i :::: l. 
For example, 

can now be replaced by 

Uj(i+1)<O V vj(i+1)iO 

For the sake of completeness, the transformed program texts read 

[var vfo, vf, vgO, vg, vb, vu, vv, vw: int; 

and 

f? vfO, g? vgO 
j vu,vv,vw:= -1,0,0 
; b!( vfo * vgO), e!vfo,f!vfO,g!vgO, h!vgO, u!vu, v!vv, w!vw 
; (b?vb, f?vf, g?vg 

; vu, vv, vw := vu + 2 * vw + 2,1, vw + 1 
; b!( vb + vf * vgO + vfo * vg), e!vfO,j!vf,g!vg, h!vgO, u!vu, v!vv, W!VW 
)* 

] 

[var ve,vee,v/,vjJ,vg,vgg,vh,vhh,vb,vu,vuu,vv,vvn,vw: int; 
p,q,r: int; 

e?vee, f?vff,g?vgg, h?vhh, u?vuu, v?vv, w?vw 
; b!O,e!vee,j!vff,g!vgg,h!vhh,u!(vuu -1),v!O,w!vw 
; (b?vb, e?ve,J?vf,g?vg, h?vh, u?vu, v?vv, w?vw 

if vv i ww -> vvn := vv + 1 ~ vv = ww -> vvn := 0 fi 
if vu < 0 V vv i ° -> r:= 0 
~ vu = 0 -> ,.:= vf * vg 
~ vu > 0 1\ vv = 0 -> r:= vf * vh + ve * vg 
fi 

, if vvn i ° -> p,q:= ve, vh 

~ vvn = 0 1\ vuu > 0 -> p, q := vee, vhh 

~ vvn = 0 1\ vuu :::: ° -> p,q:= vff, vgg 
fi 

'bl ( b + ) -I f-I.f -I h-I -ie 1) -I -I , . v r ,e.p, .Vj,g.vg, .q,U. vu- ,v.vvn,w.vw 
; vee, vff, vgg, vhh, vuu := ve, vf, vg, vh, vu 
)* 

] 
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We axe now done with the construction of our program and conclude this section with a short 
complexity analysis. 

The response time of the program (consider the original program, not the transformed pro­
gram) is analysed by introducing sequence functions aj for each cell j. For a channel a and 
natural i, aj( a, i) denotes the time slot in which the i-th communication along channel a 

of cell j can be scheduled. From the comI]1unication behavior of the cells, (11) and (12), 
the following possible sequence function can be inferred (without loss of generality we only 
consider channels f, J, b, and b) 

aj(f, i) 2 * i + j 
aj(j, i) = 2*i+j+1 

aj(b,i) = hi+j+l 

aj(b, i) = 2*i+j+2 

For cell 0 we have ao(b, i) = 2*i+ 1. Hence, the computation we derived has constant response 
time. In the same time slot in which bo( i) is ~roduced by cell 0 cell (2 * i + 1) receives h';+l (0). 
Thus, computing (F*G)(n), for 1 ~ n ~ N, involves D(N) cells and D(N) time. A sequential 
solution for computing (F * G)( n), for 1 ~ n ~ N, has time complexity at least D( N log N). 

2 Inverse Convolution Problem 
t 

In this section we present a parallel prograI]1 for the inverse convolution problem. It turns 
out that this parallel program is identical to the parallel program for Dirichlet Convolution, 
except for the design of cell o. 
The inverse convolution problem is stated as follows: given two axithmetical functions, G and 
H, one has to determine (axithmetical) function F such that F*G = H, i.e. 

H(n)=(Sp,q:p*q=n 1\ l~p 1\ l~q:F(p).G(q)) 

for n :2: 1. Assume G(l) # o. 
The computation we derive consists of a linear network of cells where cell 0 is fed with the 
two given arithmetical functions along two input channels, go and ho: 

go( i) = 

ho(i) 

for i :2: o. 

G(i + 1) 

H(i + 1) 

Communication with the environment is established by means of output channel bo, which 
satisfies 

bo(i)=F(i+1) 

for i :2: 0 and F satisfying F * G = H. 
Since F is defined implicitly we derive relations for F(n) and, next, extract F(n) from these. 

From H(l) = F(l). G(l), we readily conclude 

bo(O) 
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{def. bo } 

F(l) 

{relation above; G(l) i O} 

H(l)/G(l) 

= {def. go and ho } 

ho(O)/ go(O) 

For n 2:: 1, we have 

H(n+1) 

{F*G=lI} 

(Sp,q:p*q=n+1 II (v'itTI:sp V v'itTI:Sq):F(p)*G(q» 
= { domain split; 1 < v'itTI} 

F(l) * G(n + 1) + F(n + 1) * G(l) 

+(Sp,q:p*q=n+1 II (v'itTI:Sp:Sn V v'itTI:Sq:Sn):F(p)*G(q)) 

Since G(l) cI 0, we conclude that function F is unique. 
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Now, recall the definition of Q(m, n) from the previous section. Q(m,n) has been defined 
in the context of arithmetical functions F and G. Therefore, it is possible to substitute 
Q( n, n + 1) for the quantified summation in the derivation above, giving 

1I( n + 1) = F(l) * G( n + 1) + F(n + 1) * G(l) + Q( n, n + 1) 

Cell 0 should have at its disposal the value of Q( n, n + 1) for each n 2:: 1. For this purpose 
we can use the cells with j 2:: 1 that already have been implemented in the previous section. 
Then b1 (i) = Q( i + 1, i + 2) for i 2:: 0, provided that cell 1 is supplied with the proper values. 
For i 2:: 0 we deri ve 

bo(i + 1) 

= {def. bo } 

F( i + 2) 

= {above relation for lI(n + 1); G(l) 0/ O} 

(H(i +2) -F(l) .G(i + 2) - Q(i+'l,i + 2))/G(1) 

= {def. go, ho, bo, and b1 } 

(hoU + 1) - bo(O) * go(i + 1) - b1(i»/go(O) 

Summarizing: 

bo(O) 

bo(i+1) 

ho(O)/go(O) 

= (ho(i + 1) - bo(O) * go(i + 1) - b1(i»/go(0) 

A possible communication bella.vior for cell 0 is (ef. (12» 

g,h; (b,e,f,g,h; b,g,h)" 

(13) 
(14) 



3 THE MOBIUS FUNCTION 

The corresponding program for cell 0 reads 

[var vfo, vf, vgO, vg, vb, vh : int; 
g?vgO,h?vh 

; vfO := vhf vgO 
; b!vfO, e!vfO ,f!vfO, g!vgO, h!vgO 
; (b?vb,g?vg,h?vh 

; vf:= (vh - vfo. vg - vb)/vgO 
; b!vf, e!vfO, f!vf,g!vg, h!vgO 
)* 

] 

3 The Mobius Function 

The Mobius function J1, is the arithmetical function defined by 

if (E m : m > 1 : m2 In) 
otherwise 

for n ~ 1, where 11"(n) denotes the number of prime divisors of n. 
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It is well-known that the Mobius function is an instance of the inverse convolution problem, 
viz. 

J1,*E=U 

where E is the all-one function, and U is defined by U(I) = 1, and Urn) = 0 for all n > 1. 

A parallel program that computes the Mobius function can be obtained from the program 
for the (general) inverse convolution problem by feeding cell 0 with input streams 9 and h 
that satisfy g(i) = E(i + 1) and h(i) = Uri + 1) for i ~ O. By exploiting knowledge about 
functions E and H it is possible, however, to eliminate a number of communication actions 
from the program texts of the cells. By doing so, the input channels of cell 0 can be omitted 
which results in a parallel program that only produces output. 

After elimination of redundant statements we obtain the following program texts. For cell 0 
we get 

I var vb: int; 
b!l, e!I,!Il 

; (b?vb 
;b!(-vb-l),e!1,f!(-vb-l) 
)* 

J 
and for cell j (j ~ 1) 
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[var ve,vee,vf,vff,vb: int; 
p, r, i: intj 

e?vee, f?vff 
; b!O, e!vee J!vff, i := 0 
; (b?vb,e?ve,f?vf 

if (i+2)2 <i+j+2 V -,(i+21J) 
~ (i + 2)2 = i + j + 2 
~ (i+2)2 >i+j+2 1\ (i+21J) 
fi 

---> r:= 0 
--> r:= vf 
--> ·r: = vf + ve 

,if -,(i+2Ij+l) --> p:=ve 
~ ( i + 2 1 j + 1) 1\ (i + 1)2 > i + j + 1 --> p: = vee 
~ ( i + 2 1 j + 1) 1\ (i + 1)2 :S i + j + 1 --> p: = vff 
fi 

; b!( vb + r),e!p, f!vf 
;vee,vff,i:= ve,vf,i+ 1 
)* 

I 
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Our program for generating the Mobius function differs from the program presented in [5J. 
This is mainly caused by the fact that in [5J there was no need for a 'symmetric solution'. 
Such a solution even would not have been obvious. 

4 Concluding Remarks 

We have derived parallel programs for Dirichlet Convolution and for the inverse convolution 
problem in a calculational, rather straightforward manner. A key issue in the derivation was 
the decision to maintain the symmetry of the problem specification in the generalized ex­
pression Q( m, n). It is our experience that destroying symmetry in the derivation of parallel 
programs often yields inefficient solutions. In fact, this observation has also been made in [0, 
section 3J. Another important step in the derivation was the fact that we did not specify the 
additional input channels ej and hj for all natural i. In this way we made it possible to apply 
the second property that we derived for the div -operator. 

We believe that our derivation is much clearer than the program derivations given in [3J and 
[0], which are, in a sense, based on similar but less explicit observations as our solution is 
based on. In [3], a rather intricate routing scheme is given for the routing of 'F-coefficients' 
and 'G- coefficients', which can be compared to the input channels ej and h j in our solution. 
';Ye, however, refrained from giving an operational explanation for the behavior of the values 
communicated along channels ej and hj: such an explanation would only complicate the rea­
soning about our program. In [0], 'domain contraction' has been applied in order to obtain 
an efficient (symmetric) solution. This tecl)nique seems to be a little magical and hard to 
understand if one is not familiar with the method. 

Starting from a parallel program for Dirichlet Convolution it turned out to be very simple to 
derive a parallel program for the inverse convolution problem: both programs are identical 
except for the design of cell O. We have already come across this phenomenon in the design 
of systolic arrays for polynomial multiplication and division (cf. [4]). 

Finally, we have presented a parallel program for computing the Mobius function. Our pro-
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gram differs from the program presented in [5], which is mainly caused by the fact that in 
[5] there was no need for a 'symmetric solution'. Such a solution even would not have been 
obvious. 
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