

A systematic design of parallel program for Dirichlet
convolution
Citation for published version (APA):
Struik, P. (1989). A systematic design of parallel program for Dirichlet convolution. (Computing science notes;
Vol. 8907). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/1989

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/f2851ef7-6c25-4620-95a3-9e410d332cf7

A Systematic Design of a Parallel

Program for Dirichlet Convolution

by

Pieter Struik

89/7

May, 1989

COMPUTING SCIENCE NOTES

This is a series of notes of the Computing
Science Section of the Department of
Mathematics and Computing'Science
Eindhoven University of Technology.
Since many of these notes arti preliminary
versions or may be published' elsewhere, they
have a limited distribution only and are not
for review. '
Copies of these notes are available from the
author or the editor. '

Eindhoven University of Technology
Department of Mathematics and Computing Science
P.O. Box 513
5600 MB EINDHOVEN
The Netherlands
All rights reserved
editors: prof.dr.M.Rem

prof.dr.K.M.van Hee.

A Systematic Design of a Parallel Program
for

Dirichlet Convolution

Pieter Struik
Department of Mathematics and Computing Science

Eindhoven University of Technology
P.O.Box 513, 5600 MB Eindhoven, The Netherlands

May 11,1989

o Introduction

In this paper we design a parallel program for computing the Dirichlet Convolution of two
arithmetical functions. We believe that the program derivation we present is easy to under­
stand and is, thereby, a nice example of our l1)ethod for designing parallel programs. Programs
are derived from their formal specification in a calculational manner. Correctness by design
is our main objective, whereas other methods afterwards require a verification of the con­
structed algorithm.

The problem of designing a parallel program for Dirichlet Convolution was originally posed
by Tom Verhoeff in [5J. Solutions for comPJlting the Dirichlet Convolution can be found in
[OJ and [3J. These solutions resemble our solution; the program derivations, however, are
completely different.

The program we derive is a program with fine-grained parallelism. We do not discuss methods
to enlarge the grain-size. Our main goal is to show that our design method can be applied to
non-trivial examples as easily as to simple examples.

This paper is organized as follows. In section 1 the Dirichlet Convolu tion is defined and a par­
allel program is derived for computing the Dirichlet Convolution of two arbitrary arithmetical
functions. Section 2 deals with the inverse convolution problem. A parallel program for the
inverse convolution problem turns out to be almost identical to the program for Dirichlet
Convolution. The Mobius function is an instance of the inverse convolution problem. A par­
allel program for this function is discussed in section 3. Our program for the Mobius function
differs from Tom Verhoeff's program [5J.

The notation we use has been adopted from [4J.

1 Dirichlet Convolution

In this section we give a definition of Dirichlet Convolution. Next, we generalize this definition
and obtain an expression for which we derive a recurrence relation. The program we derive

1 DIRICHLET CONVOLUTION 1

consists of a network of cells that communicate with each other by message passing over uni­
directional channels. By applying the above mentioned recurrence relation, we derive relations
for the individual communications along the channels. These relations impose requirements
upon the communication behavior of the cells. After finding a communication behavior that
satisfies these requirements and that introduces minimal buffering, we present the program
text. A short complexity analysis of the program concludes this section.

For an introduction to the theory of arithmetical functions we refer to [2]. We consider ,
arithmetical functions to be functions defined on the positive integers and that have the
integers as their range. The Dirichlet Convolution of two arithmetical functions F and G,
denoted by F * G, is defined as

for n ~ l.
In this definition, the summation ranges over a non-empty domain that is symmetric in p
and q. In the program derivation, we shall maintain this symmetry. We do so because
other problems (e.g. dynamic programming [1]) show that destroying symmetry often leads
to inefficient programs.

For the derivation of our program we prefer a slightly different (but equivalent) definition of
F*G:

We generalize this expression by introducing an additional variable. For 0 :<; m :<; n, expres­
sion Q(m, n) is defined as

Notice that expression Q(m,n) is defined in the context of arithmetical functions F and G.

Taking m = n, we then have Q(n,n) = (F*O)(n). Hence, computing the Dirichlet Convolu­
tion of two arithmetical functions can be done by evaluating expression Q. 'vVe now derive a
recurrence relation for Q(m,n), since evaluating Q(n,n) involves evaluation of partial sums
Q(m,n).

For 0:<; m <,fii

Q(m,n) = 0

and for ,fii :<; m + 1 :<; n, we derive

Q(m + l,n)

= {def. Q}

(Sp,q:p*q=n II (,fii:<;p:<;m+l V,fii:<;q:<;m+l):F(p)*G(q))
= {,fii:<;m+l}

(Sp,q: p*q = nll(,fii:<; p:<; mV,fii:<; q:<; mVp= m+l Vq = m+l): F(p)*G(q))
{ domain split}

1 DIRICHLET CONVOLUTION

fo

go

bo

el ej ej+l

It Ii fj+1

0 gl
1

gj
J

gj+l

hI hj hj+l

b1 b , bj+1

Figure 0: linear network of cells

(8p,q:p*q=n A (vn5,p5,m V vn5,q5,m):F(p)*G(q))

+(8 p,q : p * q = nAp = m + 1 A q = m + 1 : F(p) * G(q»

+(8p,q:p*q=n A P-lq A (p=m+l V q=m+l):F(p)*G(q»
{def. Q}

Q(m,n)

+if (m+l)2=n --+ F(m+l)*G(m+l)
~ (m+l)2-1n A (m+lln) --+ F(m+ 1)*G(n/(m+ 1»

~ ,em + 11 n)
fi

+ F(n/(m + 1» * G(m + 1)
--+ 0

where kin denotes k divides n, i.e. n mod k = O.

We rewrite this recurrence relation for Q(m,n)

Q(O,n) = 0

Q(m+l,n) = Q(m,n)

+ if (m + 1)2 < n V ,(m+lln) --+ 0
~ (m + 1)2 = n --+ F(m+l)*G(m+l)

2

~ (m+l)2>n A (m+lln) --+ F(m + 1) * G(n/(m + 1))
+ F(n/(m + 1» * G(m + 1)

fi

for 0 5, m < n.

We now have a recurrence relation for Q(m, n) which we use in the program derivation that
follows.

The program we derive consists of a linear network of cells (see fig. 0). Cell 0 is fed with two
arithmetical functions along two input channels fo and go:

fo(i) = F(i+l)

go(i) = G(i+l)

for i 2: O.
Cell 0 also communicates with the environment by means of output channel bo, which satisfies

1 DIRICHLET CONVOLUTION

bo(i) = (F*G)(i + 1)

for i 2: O.

Given this definition, the first communication along channel bo satisfies

bo(O)
= {def. bo }

(F*G)(l)

= {def. F*G}

F(I) * G(l)

= {def. fa and go }

fo(O) * go(O)

and for i 2: 0 we have

bo(i+1)

{def. bo }

(F*G)((i + 1) + 1)
= {def. Q}

Q((i + 1)+ 1,(i + 1) + 1)

= {recurrence relation for Q; using (i + 2)2 > i + 2 and i + 2 I i + 2}

Q(i+ 1,(i+ 1) + 1)+F((i+ 1)+ l)*G(l)+ F(l)*G((i+ 1)+ 1)
= {def. fa and go }

Q(i + 1,(i + 1) + 1) + foCi + 1) * go(O) + forO) * go(i + 1)

3

On account of this expression, we decide that cell 1 computes Q(i + 1, (i + 1) + 1) and sends
the result to cell 0 along channel b1 . Generalizing, output channel bj of cell j (j 2: 1) satisfies

bj (i) = Q(i + 1, i + 1 + j)

for i > O. Notice that this relation also holds for j = O. On account of this observation, - ,
we expect that, later on, matching the communication behaviors of cell 0 and cell 1 will not
cause any problem.

Summarizing, the values communicated along channel bo satisfy

bo(O) = fo(O) * go(O)

bo(i + 1) = b1(i)+ foCi + 1) * go(O) + forO) * go(i + 1)

From now on we consider cell j for j 2: l.

The first communication along channel bj satisfies

bj(O)

{def. bj }

Q(I,l + j)

(0)

(1)

1 DIRICHLET CONVOLUTION

= {recurrence relation for Q; Q(O,1 + j) = 0; 12 < j + I}
o

and for i 2: 0 we have

bj (i+l)

{def. bj}

Q«i+ 1) + 1,(i + 1) + 1+ j)
{recurrence relation for Q; (i + 2 I i + j + 2) = (i + 2 I j)}

Q(i + 1, i + 1 + (j + 1»

+ if (i + 2)2 < i + j + 2 V ,(i + 2 I j) ---+ 0
II (i+2)2 =i+j+2 ---+ F(i+2)*G(i+2)
II (i+2)2>i+j+2 A (i+2!i) ---+ F(i+2)*G«i+j+2)/(i+2))

fi
+F«i + j + 2)/(i + 2)). G(i + 2)

4

Thus, for the (i + 1)-th communication along channel bj cell j should have at its disposal the
values of: Q(i + 1, i + 1+ (j + 1)), F(i+ 2), G(i + 2), F(1+ j I(i + 2)), and G(1+ j I(i+ 2)).
On account of the definition of channel bj, the i-th communication along channel bj+1 equals
Q(i + l,i + 1+ (j + 1».

For F(1 + j I(i + 2)), F(i + 2), G(i + 2), and G(1 + j I(i + 2» we introduce four input channels
for cell j: respectively €j, /j, gj, and hj. Just like the definition of input channels 10 and go,
we define

Ij(i) = F(i+l)

gj(i) = G(i+l)

for i 2: o.
Although, according to above derivation for bj(i + 1), IA i) (and gj(i) similarly) need only to
be specified for indices i satisfying (i + 1)2 2: i + j + 1, we have specified Ij (i) for all natural i.
For the specification of channel €j and hj, however, we are more liberal, viz.

€j(i) = F(1+jdiv(i+l»

hj(i) = G(1+jdiv(i+l))

for all natural i satisfying (i + 1 j2 > (i + j + 1).
Actually, we have restricted ourselves a little, since €j(i) (and hj(i) similarly) need only be
specified for indices i that also satisfy (i + 1 I j). In the sequel, we explicitly use the fact that
€j(i) is specified only for i satisfying (i + Ij2 > (i + j + 1).

Now, communications along channel bj are implemented by

bj(O) 0 (2)

bj(i + 1) = bj+1(i)

+ if (i + 2)2 < i + j + 2 V ,(i + 2 I j) ---+ 0 (3)
II (i+ 2j2 = i+ 1+ 2 ---+ !j(i + 1). gj(i+ 1)
II (i+2)2>i+j+2 A (i+2!i) ---+ /j(i+l).hj(i+l)

+€j(i + 1) * gj(i + 1)
fi

1 DIRICHLET CONVOLUTION 5

Next, we turn our attention to the implementation of input channels ej, fj, 9j, and hj. On
behalf of the symmetry between channels ej and hj, and between channels fj and 9j, we only
discuss the implementation of channels ej ~d Ii.

We are free to choose from which cell, either from cell (j -1) or from cell (j + 1), cell j receives
inputs along channels ej and fj. It turns out that the first choice, values along channel ej
are sent from cell (j - 1) to cell j, is a good one. In particular, the fact that cell 0 can easily
generate the values to be sent along channels el and It often indicates an appropriate choice.

Communications along channels el and It are sent by cell 0 and received by cell 1. Therefore,
cell 0 must be able to compute both el (i) and It (i) for all natural i.

By definition, for all natural i: It (i) = fo(i).
The value of el (i) is only specified for natural i satisfying (i + 1)2 > i + 2, Le. ·for i :::: 1. We
are free to choose an appropriate value for el(O). For i :::: 1:

el(i)

{def. ej}

F(I+ Idiv(i+ 1»
{i:::: 1 implies Idiv(i+ 1) = O}

F(I)

= {def. fo}

forO)

An appropriate choice for the value of e,(O), now, is el(O) = forO), of course.

We proceed by calculating ej+! and fj+! for all j :::: 1 and i :::: O. Since communications
along channel fj+! are very easy to implement, viz. Ii+!(i) = fj(i), we focus our attention
on ej+l (i).

In the calculation of ej+! we use two properties of the div -operator:

Property:
For j :::: 1 and i :::: 0:

O. If-,(i + IIJ + 1), then (j + 1) div (i + 1) = j div (i + 1).

1. If (i + IIJ + 1) and, moreover, (i + 1)2> i + j + 2, then (j + 1) div (i + 1) = j div i.

Proof:
Let q = (j + 1) div (i + 1) and r = (j + 1) mod (i + 1).
Then, by definition, (j + 1) = q * (i + 1) + r 1\ 0:<; r < i + 1.

O. We derive

j+l=q*(i+l)+r 1\ O:<;r<i+l
{arithmetic}

j = q*(i+ 1)+(r-l) 1\ -1:<; (r-l) < i

{ ~(i + 1 I j + 1) implies r oF 0 }

j = q * (i + 1) + (r - 1) 1\ 0:<; (r - 1) < i

1 DIRICHLET CONVOLUTION 6

o

Hence, (j + l)div(i+ 1) = q = jdiv(i+ 1).

1. We derive

(j+l)/(i+l)

= { arithmetic }

(i+j+2)/(i+ 1)-1

< {(i+l)2>i+j+2}

From j + 1 I- 0 and j + 1 = q * (i + 1), we infer q I- O. Hence, q satisfies 1::; q < i.
Since in this case j = q*i+(q-l) and 0::; (q-l) < i, we conclude that (j+ l)div(i+ 1) =
q = j div i.

Notice that the second premise in the second property reflects the condition which we imposed
on the specification of e j+1'

We now derive a relation for ej+I(i). Since ej+1(i) has only been specified for indices i
satisfying (i + 1)2 > i + j + 2 we have

ej+I (i)

= {def. ej}

F(1+ (j + 1) div (i + 1))

= {property above}

if .(i + IIJ + 1) --> F(1+ j div (i + 1))
~ (i + 1 I j+ 1) --> F(1+ j div i)
fi

= {def. ej; (i + 1)2 > i + j + 2 > i + j + 1 }

if .(i + IIJ + 1) --> ej(i)
~ (i+11J+1) II i2>i+j --> ej(i-l)
~ (i+llJ+l) II i2::;i+j --> F(1+(j+1)/(i+1»)
fi

Note that ej(i - 1) is only specified for i2 > ; + j. For i and j satisfying both (i + 11 j + 1)
and ;2 ::; i + j and (i + 1)2 > i + j + 2, we therefore have to determine F(1 + (j + 1)/(i + 1)).
Since

;2::;i+j II (i+1)2>(i+1)+(j+1)

{ arithmetic}

i2
- i + 1 ::; j + 1 < i * (i + 1)

= { arithmetic}

(i - 2) + 3/(i + 1) ::; (j + 1)/(i + 1) < i
=;. {(i+llj+1)}

(j+1)/(i+l)=i-1

1 DIRICHLET CONVOLUTION 7

we conclude that in this case F(1+(j+ 1)/(i+ 1)) = F(1+(i-1)) = /j(i-1). For indices i
that do not satisfy (i + 1)2> i + j + 2 we are free to assign any appropriate value to €j+1(i).

The communications along channels €j and Ij, j ;:0: 1, can now be implemented by

€1(i)

ft(i)

€j+1 (i)

10(0)
10 (i)
if .(i + 11J + 1)
~ (i+111+1)
~ (i+11J+1)
fi

/j(i)

V i = 0 €j(i)
1\ i2 > i + j -+ €j(i - 1)
1\ o < i2 ::; i + j -+ /j(i-1)

(4)

(5)
(6)

(7)

Recapitulating, we have introduced a number of channels for which we have derived relations
that express the dependencies of the individual communications along these channels. These
relations give rise to a partial order on the communications along the channels. We now turn
our attention to finding a communication behavior for the cells that is consistent with this
partial order.

Given relations (0) through (7) we are able to express the requirements for the communication
behavior of the cells. We turn our attention to cell j (j ;:0: 1). For the sake of convenience, we
drop the indices of the channel names and denote channels bj , b;+l, €;, €j+1, /;, and /j+1 by
b, b, €, e, /, and f, respectively.

Relations (2) and (3) give rise to a partial oJ"{!er on the communications along b, b, €, / (on ac­
count of symmetry we temporarily do not consider channels g, g, h, and Ii). A communication
behavior that is consistent with this partial order is

e,/,b; (b,e,l; b)* (8)

Notice that e, I, b; b, e, /; (b, e, /; b)* is, among other possibilities, also an appropriate choice.
This communication behavior, however, requires extra buffering ofthree values. Since we aim
at minimal buffering we prefer communication behavior (8).

Relation (6) gives rise to

e; e; (e,f; e)* (9)

And, finally, from relation (7) we infer

(f; f)* (10)

These relations can be combined into the following (overall) communication behavior, CB, of
cell j (including channels g, 9, h, and Ii)

e,/,g,h; (b,e,f,g,li; b,e,f,g,h)* (11)

Notice that the inputs along / occur earlier in (11) than in (9). Hence, we introduced extra
buffering. Also notice the alternation between input actions and output actions.

Since

1 DIRICHLET CONVOLUTION

CBr{b,e,j,g,h} = (e,j,g,h; b)*

and

CBr {b, e,f,g, h} = (e,f,g, h; b)*

match, we conclude that the computation we derive does not suffer from deadlock (cf. [6]).

The reader is invited to verify that

8

j,g; (b,e,f,g,h; /"j,g)* (12)

is a possible communication behavior for cell O.
"

From relations (0), (1), (4), (5), and (12) we easily derive a program for cell 0:

I var vjO, vi, vgO, vg, vb: inti
j? vlO, g? vgO

; b!(vIO. vgO),e!vIO,f!vjO,g!vgO,h!vgO
; (b?vb,l?vl,g?vg
;b!(vb + vj. vgO + viO. vg),e!vIO,f!vl,g!vg,h!vgO
)*

I
And from relations (2), (3), (6), (7), and (11) we derive the following program for cell j:

[var ve, vee, vi, vff, vg, vgg, vh, vhh, vb :
p,q,r,i: int;

e?vee, j?vff,g?vgg, h?vhh
; b!O,e!vee,j!vff,g!vgg,h!vhh,i:= 0
; (b?vb,e?ve,j?vj,g?vg,h?vh

int;

if (i+2)2<i+j+2 V -,(i+21J) -> r:= 0
~ (i + 2)2 = i + j + 2 -> r:= vi • vg
~ (i+2)2 > i+j+2 /\ (i+21J) ---+ r:= vj.vh+ve.vg
fi

, if -,(i + 21J + 1)
~ (i+ 2 1J+1) /\ (i+1)2>i+j+1
~ (i+2!i+1) /\ (i+l)2:Si+j+l
fi

;b!(vb + r),e!p,f!vl,g!vg,h!q
; vee, vff, vgg, vhh,i := ve,vl,vg,vh,i+ 1
)*

I

---+ p, q := ve, vh
---+ p, q := vee, vhh
---+ p, q := vff, vgg

The above program does not meet the 'modularity constraint' of [3], i.e. j occurs in the
program text and as a consequence the operation of a cell depends on the location of that cell
in the network, This problem can be eliminated by introducing additional input channels for
each cell (this technique has also been applied in [5]). By applying this technique it is possible
to implement the evaluation of the guards efficiently. Without going into further detail, we

1 DIRICHLET CONVOLUTION 9

suggest to introduce three additional input channels Uj, Vj, and Wj, which are specified as
follows

Uj(i) = (i+1?-(i+j+1)
Vj(i) j mod (i + 1)

Wj(i) = i

for i :::: l.
For example,

can now be replaced by

Uj(i+1)<O V vj(i+1)iO

For the sake of completeness, the transformed program texts read

[var vfo, vf, vgO, vg, vb, vu, vv, vw: int;

and

f? vfO, g? vgO
j vu,vv,vw:= -1,0,0
; b!(vfo * vgO), e!vfo,f!vfO,g!vgO, h!vgO, u!vu, v!vv, w!vw
; (b?vb, f?vf, g?vg

; vu, vv, vw := vu + 2 * vw + 2,1, vw + 1
; b!(vb + vf * vgO + vfo * vg), e!vfO,j!vf,g!vg, h!vgO, u!vu, v!vv, W!VW
)*

]

[var ve,vee,v/,vjJ,vg,vgg,vh,vhh,vb,vu,vuu,vv,vvn,vw: int;
p,q,r: int;

e?vee, f?vff,g?vgg, h?vhh, u?vuu, v?vv, w?vw
; b!O,e!vee,j!vff,g!vgg,h!vhh,u!(vuu -1),v!O,w!vw
; (b?vb, e?ve,J?vf,g?vg, h?vh, u?vu, v?vv, w?vw

if vv i ww -> vvn := vv + 1 ~ vv = ww -> vvn := 0 fi
if vu < 0 V vv i ° -> r:= 0
~ vu = 0 -> ,.:= vf * vg
~ vu > 0 1\ vv = 0 -> r:= vf * vh + ve * vg
fi

, if vvn i ° -> p,q:= ve, vh

~ vvn = 0 1\ vuu > 0 -> p, q := vee, vhh

~ vvn = 0 1\ vuu :::: ° -> p,q:= vff, vgg
fi

'bl (b +) -I f-I.f -I h-I -ie 1) -I -I , . v r ,e.p, .Vj,g.vg, .q,U. vu- ,v.vvn,w.vw
; vee, vff, vgg, vhh, vuu := ve, vf, vg, vh, vu
)*

]

2 INVERSE CONVOLUTION PROBLEM 10

We axe now done with the construction of our program and conclude this section with a short
complexity analysis.

The response time of the program (consider the original program, not the transformed pro­
gram) is analysed by introducing sequence functions aj for each cell j. For a channel a and
natural i, aj(a, i) denotes the time slot in which the i-th communication along channel a

of cell j can be scheduled. From the comI]1unication behavior of the cells, (11) and (12),
the following possible sequence function can be inferred (without loss of generality we only
consider channels f, J, b, and b)

aj(f, i) 2 * i + j
aj(j, i) = 2*i+j+1

aj(b,i) = hi+j+l

aj(b, i) = 2*i+j+2

For cell 0 we have ao(b, i) = 2*i+ 1. Hence, the computation we derived has constant response
time. In the same time slot in which bo(i) is ~roduced by cell 0 cell (2 * i + 1) receives h';+l (0).
Thus, computing (F*G)(n), for 1 ~ n ~ N, involves D(N) cells and D(N) time. A sequential
solution for computing (F * G)(n), for 1 ~ n ~ N, has time complexity at least D(N log N).

2 Inverse Convolution Problem
t

In this section we present a parallel prograI]1 for the inverse convolution problem. It turns
out that this parallel program is identical to the parallel program for Dirichlet Convolution,
except for the design of cell o.
The inverse convolution problem is stated as follows: given two axithmetical functions, G and
H, one has to determine (axithmetical) function F such that F*G = H, i.e.

H(n)=(Sp,q:p*q=n 1\ l~p 1\ l~q:F(p).G(q))

for n :2: 1. Assume G(l) # o.
The computation we derive consists of a linear network of cells where cell 0 is fed with the
two given arithmetical functions along two input channels, go and ho:

go(i) =

ho(i)

for i :2: o.

G(i + 1)

H(i + 1)

Communication with the environment is established by means of output channel bo, which
satisfies

bo(i)=F(i+1)

for i :2: 0 and F satisfying F * G = H.
Since F is defined implicitly we derive relations for F(n) and, next, extract F(n) from these.

From H(l) = F(l). G(l), we readily conclude

bo(O)

2 INVERSE CONVOLUTION PROBLEM

{def. bo }

F(l)

{relation above; G(l) i O}

H(l)/G(l)

= {def. go and ho }

ho(O)/ go(O)

For n 2:: 1, we have

H(n+1)

{F*G=lI}

(Sp,q:p*q=n+1 II (v'itTI:sp V v'itTI:Sq):F(p)*G(q»
= { domain split; 1 < v'itTI}

F(l) * G(n + 1) + F(n + 1) * G(l)

+(Sp,q:p*q=n+1 II (v'itTI:Sp:Sn V v'itTI:Sq:Sn):F(p)*G(q))

Since G(l) cI 0, we conclude that function F is unique.

11

Now, recall the definition of Q(m, n) from the previous section. Q(m,n) has been defined
in the context of arithmetical functions F and G. Therefore, it is possible to substitute
Q(n, n + 1) for the quantified summation in the derivation above, giving

1I(n + 1) = F(l) * G(n + 1) + F(n + 1) * G(l) + Q(n, n + 1)

Cell 0 should have at its disposal the value of Q(n, n + 1) for each n 2:: 1. For this purpose
we can use the cells with j 2:: 1 that already have been implemented in the previous section.
Then b1 (i) = Q(i + 1, i + 2) for i 2:: 0, provided that cell 1 is supplied with the proper values.
For i 2:: 0 we deri ve

bo(i + 1)

= {def. bo }

F(i + 2)

= {above relation for lI(n + 1); G(l) 0/ O}

(H(i +2) -F(l) .G(i + 2) - Q(i+'l,i + 2))/G(1)

= {def. go, ho, bo, and b1 }

(hoU + 1) - bo(O) * go(i + 1) - b1(i»/go(O)

Summarizing:

bo(O)

bo(i+1)

ho(O)/go(O)

= (ho(i + 1) - bo(O) * go(i + 1) - b1(i»/go(0)

A possible communication bella.vior for cell 0 is (ef. (12»

g,h; (b,e,f,g,h; b,g,h)"

(13)
(14)

3 THE MOBIUS FUNCTION

The corresponding program for cell 0 reads

[var vfo, vf, vgO, vg, vb, vh : int;
g?vgO,h?vh

; vfO := vhf vgO
; b!vfO, e!vfO ,f!vfO, g!vgO, h!vgO
; (b?vb,g?vg,h?vh

; vf:= (vh - vfo. vg - vb)/vgO
; b!vf, e!vfO, f!vf,g!vg, h!vgO
)*

]

3 The Mobius Function

The Mobius function J1, is the arithmetical function defined by

if (E m : m > 1 : m2 In)
otherwise

for n ~ 1, where 11"(n) denotes the number of prime divisors of n.

12

It is well-known that the Mobius function is an instance of the inverse convolution problem,
viz.

J1,*E=U

where E is the all-one function, and U is defined by U(I) = 1, and Urn) = 0 for all n > 1.

A parallel program that computes the Mobius function can be obtained from the program
for the (general) inverse convolution problem by feeding cell 0 with input streams 9 and h
that satisfy g(i) = E(i + 1) and h(i) = Uri + 1) for i ~ O. By exploiting knowledge about
functions E and H it is possible, however, to eliminate a number of communication actions
from the program texts of the cells. By doing so, the input channels of cell 0 can be omitted
which results in a parallel program that only produces output.

After elimination of redundant statements we obtain the following program texts. For cell 0
we get

I var vb: int;
b!l, e!I,!Il

; (b?vb
;b!(-vb-l),e!1,f!(-vb-l)
)*

J
and for cell j (j ~ 1)

4 CONCLUDING REMARKS

[var ve,vee,vf,vff,vb: int;
p, r, i: intj

e?vee, f?vff
; b!O, e!vee J!vff, i := 0
; (b?vb,e?ve,f?vf

if (i+2)2 <i+j+2 V -,(i+21J)
~ (i + 2)2 = i + j + 2
~ (i+2)2 >i+j+2 1\ (i+21J)
fi

---> r:= 0
--> r:= vf
--> ·r: = vf + ve

,if -,(i+2Ij+l) --> p:=ve
~ (i + 2 1 j + 1) 1\ (i + 1)2 > i + j + 1 --> p: = vee
~ (i + 2 1 j + 1) 1\ (i + 1)2 :S i + j + 1 --> p: = vff
fi

; b!(vb + r),e!p, f!vf
;vee,vff,i:= ve,vf,i+ 1
)*

I

13

Our program for generating the Mobius function differs from the program presented in [5J.
This is mainly caused by the fact that in [5J there was no need for a 'symmetric solution'.
Such a solution even would not have been obvious.

4 Concluding Remarks

We have derived parallel programs for Dirichlet Convolution and for the inverse convolution
problem in a calculational, rather straightforward manner. A key issue in the derivation was
the decision to maintain the symmetry of the problem specification in the generalized ex­
pression Q(m, n). It is our experience that destroying symmetry in the derivation of parallel
programs often yields inefficient solutions. In fact, this observation has also been made in [0,
section 3J. Another important step in the derivation was the fact that we did not specify the
additional input channels ej and hj for all natural i. In this way we made it possible to apply
the second property that we derived for the div -operator.

We believe that our derivation is much clearer than the program derivations given in [3J and
[0], which are, in a sense, based on similar but less explicit observations as our solution is
based on. In [3], a rather intricate routing scheme is given for the routing of 'F-coefficients'
and 'G- coefficients', which can be compared to the input channels ej and h j in our solution.
';Ye, however, refrained from giving an operational explanation for the behavior of the values
communicated along channels ej and hj: such an explanation would only complicate the rea­
soning about our program. In [0], 'domain contraction' has been applied in order to obtain
an efficient (symmetric) solution. This tecl)nique seems to be a little magical and hard to
understand if one is not familiar with the method.

Starting from a parallel program for Dirichlet Convolution it turned out to be very simple to
derive a parallel program for the inverse convolution problem: both programs are identical
except for the design of cell O. We have already come across this phenomenon in the design
of systolic arrays for polynomial multiplication and division (cf. [4]).

Finally, we have presented a parallel program for computing the Mobius function. Our pro-

""- J

REFERENCES 14

gram differs from the program presented in [5], which is mainly caused by the fact that in
[5] there was no need for a 'symmetric solution'. Such a solution even would not have been
obvious.

Acknowledgements

Acknowledgements are due to Martin Rem, Tom Verhoeff, and Joost P. Katoen for making
comments on an earlier version of this paper.

References

[0] Marina Chen, Young-il Choo, Synthesis of a Systolic Dirichlet Product Using Non-Linear
Domain Contraction, Tech. Rep. , YALEU IDCS/TR-664, Yale University, Dec. 1988.

[1] Rudolf Ma.k, Pieter Struik, A Systolic Design for Dynamic Progmmming, Computing
Science Note 89/2, Eindhoven University of Technology, The Netherlands (1989).

[2] P.J. McCarthy, Introduction to Arithmetical Functions, Springer-Verlag, 1986, ch. l.

[3] Patrice Quinton, Yves Robert, Systolic Convolution of Arithmetic Functions, IRISA Re­
search Report nr. 449, Jan. 1989.

[4] Martin Rem, Trace Theory and Systolic Computations, in PARLE: Parallel Architectures
and Languages Europe, Proceedings 1987 (J .W. de Bakker et al., eds.), Lecture Notes in
Computer Science 258, Springer-Verlag, Berlin, 1987, pp. 14-33. ,

[5] Tom Verhoeff, A Pamllel Program That (Jenerates the Mobius Sequence, Computing Sci­
ence Note 88/01, Eindhoven University of Technology, The Netherlands (1988). ,

[6] Gerard Zwaan, Parallel Computations, Ph.D.-thesis, Eindhoven University of Technology,
The Netherlands (1989).

In this series appeared :

No. Author(s) Title
85/01 R.H. Mak The formal specification and

derivation of CMOS-circuits

85/02 W.M.C.J. van Overveld On arithmetic operations with
M-out-of-N-codes

85/03 W.J.M. Lemmens Use of a computer for evaluation
of flow films

85/04 T. Verhoeff Delay insensitive directed trace
H.M.J.L. Schols structures satisfy the foam

rubber wrapper postulate

86/01 R. Koymans Specifying message passing and
real-time systems

86/02 G.A. Bussing ELISA, A language for formal
K.M. vanHee specifjcations of information
M. V oorhoeve systems

86/03 Rob Hoogerwoord Some reflections on the implementation
of trace structures

86/04 G.J. Houben The partition of an information
J. Paredaens system in several parallel systems
K.M. vanHee

86/05 Jan L.G. Dietz A framework for the conceptual
Kees M. van Hee modeling of discrete dynamic systems

I

86/06 Tom Verhoeff Nondeterminism and divergence
created by concealment in CSP

86/07 I
R. Gerth On proving communication
L. Shira closedness of distributed layers

86/08 R. Koymans Compositional semantics for
R.K. Shyamasundar real-time distributed
W.P. de Roever compupng (Inf.&Control 1987)
R. Gerth
S. Arun Kumar

86/09 C. Huizing Full abstraction of a real-time
R.Gerth denotational semantics for an
W.P. de Roever OCCAM-like language ,

86/10 J. Hooman A compositional proof theory
for real-time distributed
message passing ,

86/11 W.P. de Roever Questions to Robin Milner - A
responder's commentary (IFIP86)

I

86/12 A. Boucher A timed failures model for
R. Gerth extended communicating processes

86/13 R. Gerth Proving monitors revisited: a
W.P. de Roever fIrst step towards verifying

object oriented systems (Fund.
Informatica IX-4)

86/14 R. Koymans Specifying passing systems
requir~s extending temporal logic

87/01 R. Gerth On tbe existence of sound and
complete axiomatizations of
tbe m9nitor concept

87/02 Simon J. Klaver Federatieve Databases
Chris F.M. Verbeme

87{03 G.J. Houben A formal approach to distri-
J.Paredaens buted information systems

87{04 T.Verhoeff Delay-insensitive codes -
An overview

87/05 R.Kuiper Enforcing non-determinism via
linear time temporal logic specifIcation.

87/06 R.Koymans Temporele logica specifIcatie van message
passin~ en real-time systemen (in Dutch).

87/07 R.Koymans Specifying message passing and real-time
systems witb real-time temporal logic.

87{08 H.M.J.L. Schols The maximum number of states after
projection.

87{09 J. Kalisvaart Language extensions to study structures
L.R.A. Kessener for raster graphics.
W.J.M. Lemmens
M.L.P. van Lierop
F.J. Peters
H.M.M. van de Wetering

87/10 T.Verhoeff Three families of maximally nondeter-
ministic automata.

87/11 P.Lemmens Eldorado ins and outs.
SpecifIcations of a data base management
toolkit according to tbe functional model.

87{12 K.M. van Hee and OR and AI approaches to decision support
A.Lapinski systems.

87/13 J.C.S.P. van der Woude Playing witb patterns,
searching for strings.

87/14 J. Hooman A compositional proof system for an occam-
like real-time language

87/15 C. Huizing
R Gerth

A compositional semantics for statechans

W.P. de Roever

87/16 H.M.M. ten Eikelder Normal forms for a class of formulas
I.C.P' Wilmont

87/17 K.M. vanHee Modelling of discrete dynamic systems
G.-l.Houben frame}Vork and examples
1.L.G. Dietz

87/18 C.W.A.M. van Overveld An integer algorithm for rendering curved
surfaces

87/19 A.l.Seebregts Optimalisering van file allocatie in
gedistribueerde database systemen

87/20 G.l. Houben The R2 -Algebra: An extension of an
1. Paredaens algebra for nested relations

87/21 R Gerth Fully abstract denotational semantics
M. Codish for concurrent PROLOG
Y. Lichtenstein
E. Shapiro

88/01 T. Verhoeff A Parallel Program That Generates the
Mobius Sequence

88/02 K.M. vanHee Executable Specification for Information
G.l. Houben Systems
L.l. Somers
M. Voorhoeve

88/03 T. Verhoeff Settling a Question about Pythagorean Triples

88/04 G.l. Houben The Nested Relational Algebra: A Tool to handle
I.Paredaens Structured Information
D.Tahon

88/05 K.M. vanHee Executable Specifications for Information Systems
G.I. Houben
L.l. Somers
M. Voorhoeve

88/06 H.M.l.L. Schols Notes on Delay-Insensitive Communication

88/07 C. Huizing Modelling S tatechans behaviour in a fully
RGerth abstract way
W.P. de Roever

88/08 K.M. vanHee A Formal model for System Specification
G.l. Houben
L.l. Somers
M. Voorhoeve

88/09 A.T.M. Aerts A Tutorial for Data Modelling
K.M. vanHee

88/10 J.C. Ebergen A Fonnal Approach to Designing Delay Insensitive
Circuits

88!l1 O.l Houben A graphical interface fonnalism: specifying nested
J.Paredaens relatiqnal databases

88/12 A.E. Eiben Abstract theory of planning

88/13 A. Bijlsma A unified approach to sequences, bags, and trees

88/14 H.M.M. ten Eikelder Language theory of a lambda-calculus with
RH. Mak recursive types

88/15 R Bos An introduction to the category theoretic solution
C. Hemerik of recl!fsive domain equations

88/16 C.Hemerik Bottom-up tree acceptors
J.P.Katoen

88/17 KM. vanHee Executable specifications for discrete event
O.J. Houben systems
L.J. Somers
M. V oorhoeve

88/18 KM. vanHee Discrete event systems: concepts and basic
P.M.P. Rambags results:

88/19 D.K Hammer Faseri~g en documentatie in software engineering.
KM. van Hee

88/20 K.M.vanHee EXSPECT, the functional part.
L. Somers
M. V oorhoeve

89/1 E.Zs.Lepoeter-Molnar Reconstruction of a 3-D surface from its nonnal
vectors.

89/2 RH. Mak A systolic design for dynamic programming.
P.Struik

89/3 H.M.M. Ten Eikelder Some category theoretical properties related to
C. Hemerik a model for a polymorphic lambda-calculus.

89/4 lZwiers Compositionality and modularity in process
W.P. de Roever specification and design: A trace-state based

approach.

89/5 Wei Chen Networks of Communicating Processes and their
T.Verhoeff (De-)Composition.
J.T.Udding

89/6 T.Verhoeff Characterizations of Delay-Insensitive
Communication Protocols.

89n P.Struik A systematic design of a paralell program for
Dirichlet convolution.

	0. Introduction
	1. Dirichlet Convolution
	2. Inverse Convolution Problem
	3. The Möbius Function
	4. Concluding Remarks
	References

