
 

A compositional proof theory for fault tolerant real-time
distributed systems
Citation for published version (APA):
Schepers, H. J. J. H., & Gerth, R. T. (1993). A compositional proof theory for fault tolerant real-time distributed
systems. (Computing science notes; Vol. 9325). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/1993

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/5d041161-af24-403e-b961-9f1cd0126430


A Compositional Proof Theory for 
Fault Tolerant Real-Time Distributed Systems 

Henk Schepers! Rob Gerth§ 

Department of Mathematics and Computing Science 
Eindhoven University of Technology 

P.O. Box 513, 5600 MB Eindhoven, The Netherlands 

Abstract 

In this report we present a compositional network proof theory to specify and verify fault tolerant 
real-time distributed systems. Important in such systems is the failure hypothesis that stipulates 
the class of failures that must be tolerated. In the formalism presented in this report, the failure 
hypothesis of a system is represented by a predicate which expresses how faults might transform the 
observable input and output behaviour of the system. A proof of correctness of a triple modular 
redundant system is given to illustrate our approach. 

Key words: Compositional proof theory, distributed system, failure hypothesis, fault tolerance, 
real-time system, relative network completeness, soundness, specification, verification. 

1 Introduction 

It is difficult to prove the properties of a distributed system composed of failure prone processes, as such 
proofs must take into account the effects of faults occurring at any point in the execution of the individual 
processes. Yet, as distributed systems are employed in increasingly critical areas, e.g. to control aircraft 
and to monitor hospital patients, the inherently closely related fault tolerance and real-time requirements 
become stronger and stronger. In the Hoare style formalism of [6] Cristian deals with the effects of faults 
that have occurred by partitioning the initial state space into disjoint subspaces, and providing a separate 
specification for each part. In the formalisms for fault tolerance that have been proposed in the more 
recent literature to deal with the occurrence of faults during execution (cf. [4, 10, 11, 15, 16, 23]) -
of which only the approaches of [15J and to a smaller degree [4J provide support for reasoning about 
real-time issues - the occurrence of a fault is modeled explicitly as an observable action. In contrast, we 
suggest a more abstract approach where the effects of faults on the externally visible input and output 
behaviour are modeled while the syntactic interfaces of the processes remain unchanged. In particular, 
we propose a formalism which abstracts from the internal states of the processes and concentrates on 
the input and output behaviour that is observable at their interface. As a consequence, in our proof 
theory we do not deal with the sequential aspects of processes. To support top-down program design 
our approach is compositional, that is, it allows for the reasoning with the specifications of processes 
without considering their implementation and the precise nature and occurrence of faults in such an 
implementation. 

In fault tolerant systems, three domains of behaviour are distinguished: normal, exceptional and 
catastrophic (see (14]). Normal behaviour is the behaviour when no faults occur. The discriminating 
factor between exceptional and catastrophic behaviour is the failure hypothesis which expresses how 

tSupported by the Dutch STW under grant nUll1ber NWI88.1517: 'Fault Tolerance: Paradigll1s, Models, Logics, Con­
struction'. E-ll1ail: schepers@win.tue.nl. 

§Currently working in ESPRIT project P6021: 'Building Correct Reactive Systell1s (REACT)'. E-mail: robg@win.tue.nl. 
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faults affect the normal behaviour. Relative to the failure hypothesis an exceptional behaviour exhibits 
an abnormality which should be tolerated (to an extent that remains to be specified). A catastrophic 
behaviour has an abnormality that was not anticipated (cf. [2, 14, 17]). Under a particular failure 
hypothesis for each of its components, a system is designed to tolerate (only) those anticipated component 
failures (see e.g. [19] for some design examples). In particular, the exceptional behaviour together with 
the normal behaviour constitutes the acceptable behaviour. 

In [22] Schepers and Hooman developed a trace-based compositional proof theory for safety properties 
of fault tolerant distributed systems. In this theory, the failure hypothesis of a process is formalized as a 
relation between the normal and acceptable behaviour of that process providing a modular treatment of 
faults. Indeed, such a relation enables us to abstract from the precise nature of a fault and to focus on 
the abnormal behaviour it causes. Here, we extend this proof theory to reason about liveness, fairness, 
and real-time issues. To do so, we replace the underlying finite trace model by a model in which the 
timed, infinite traces of a process are decorated with timed refusal sets. The extended model enables 
deadlock to be taken into account. To exclude unrealistic behaviour, it incorporates finite variability [3], 
or non-Zenoness (cf. [1]), by guaranteeing that each action has a fixed minimal duration. However, the 
introduction of time causes the importance of liveness and fairness to decrease, since many interesting 
properties become safety properties [13]. 

The remainder of this report is organized as follows. Section 2 introduces the programming lan­
guage. Section 3 introduces the model of computation and the denotational semantics. In Section 4 we 
present the assertion language and associated correctness formulae. In Section 5 we incorporate failure 
hypotheses into our formalism. Section 6 presents a compositional network proof theory for fault tolerant 
real-time distributed systems. We illustrate our method by applying it., in Section 7, to a triple modular 
redundant system. In Section 8 we show that the proof system of Section 6 is sound and relative network 
complete. A conclusion appears in Section 9. An extended abstract of this report will appear in [21]. 

2 Programming language 

In this section we present an occa m-like programming language [9] which is used to define networks 
of processes that communicate synchronously via directed channels. Let VAR be a non empty set of 
program variables, CHAN a nonempty set of channel names, and VAL a denumerable domain of values. 
IN denotes the set of natural numbers (including 0), CQ the rationals, and IR the reals. Let TIME be 
some ordered time domain (00 E TIME). For the scope of this report it is immaterial whether time 
domain TIME is discrete, that is, TIME = { UT I T E IN } for some positive smallest time unit u, dense, 
that is, TIME = { T E CQ I T 2: 0 }, or continuous, that is, TIME = { T E IR I T 2: 0 }. The syntax 
of our programming language is given in Table 1, with n E IN, n 2:: I, x E VAR, p E VAL, c E CHAN, 
dE TIME, and eset <; CHAN. 

Table 1: Syntax of the Programming Language 

Expression e ,,- I' I x I el + e, I el - e, I el x e, 

Boolean Expression b el = e, I el < e, I ~b I b1 Vb, 
Guarded Command G 

Process P 

[ 07=1 bi ~ Pi J I [0,=1 ei?xi ~ Pi 0 delay d ~ P J 
skip I x:=e I e!e I e?x I P1 ;P, I G I.G I 
PI II P, I P\ eset 

Informally, the statements of our programming language have the following meaning: 

Atomic statements 

• skip terminates after ]{skip units of time, where constant ]{skip > O . 

• Assignment x := e assigns the value of expression e to the variable x. 
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• Output statement c!e is used to send the value of expression e on channel c as soon as a correspond­
ing input command is available. Since communication is synchronous, such an output. statement 
is suspended unt.il a parallel process executes an input statement c?x. 

• Input statement c?x is used to receive a value via channel c and assign this value to the variable 
x. As for the output command, such an input statement has to wait for a corresponding partner 
before a (synchronous) communication can take place. 

Compound statements 

• Pi; P2 indicates sequential composition: first execute P1 , and continue with the execution of P2 if 
and when Pi terminates. 

• Boolean guarded command [ 07=, bi ---> Pi ]. If none of the bi evaluate to true then this command 
terminates after evaluation of the booleans. Otherwise, non-deterministically select one of the bi 
that evaluates to true and execute the corresponding statement Pi. 

• Communication guarded command ( Oi=i Ci?Xi --+ Pi 0 delay d --+ P]. Wait at most d time 
units for some input. Ci ?Xi to become enabled. As soon as one of the Ci communications is possible 
(before d time units have elapsed), it is performed and thereafter the corresponding Pi is executed. 
If two or more inputs become enabled at the same time, t,hen one of these is non-deterministically 
chosen. If none of the inputs becomes enabled within d time units after the start of the execution 
of the communication guarded command, then P is executed. 

• Iteration * G indicates repeated execution of guarded command G as long as at least one of the 
guards is open. When none of the guards is open * G terminates. 

• P, II P2 indicates the parallel execution of the processes P, and P2. 

• P\ cset hides the channels from cset. 

Definition 1 (Variables occurring in a process) The set var(P) of variables occurring in process 
P is inductively defined as follows: 

• var(,.,.) = 0 

• var(x) = {x} 

• var(e, + e2) = var(e, - (2) = var(e, X e2) = var(e, = e2) = var(e, < e2) = var(e,) U var(e2) 

• var(,b) = var(b) 

• var(b, V b2) = var(b,) U var(b2) 

• var(skip) = 0 

• var(x:= e) = {x} U var(e) 

• var(e!e) = var(e) 

• var(e?x) = {x} 

• var(P,; P2) = var(P,) U va,·(P2) 

• var([ 07=, bi ---> Pi ]) = Ui'=, var(bi ) U U,=, var(Pi ) 

• var([ 07=, ei?Xi ---> Pi 0 delay d ---> Po ]) = U,=, {xd U Ui'=ovar(Pi) 

• var( *G) = var( G) 
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• var(P, II P,) = var(P,) U var(P,) 

• var(P\ cset) = var(P) 

Definition 2 (Observable input channels of a process) The set. of visible, or observable, input 
channels of process P, notation in(P}, is obtained as follows by structural induction: 

• in (skip) = in(x := e) = in(c!e) = 0 

• in(c?x) = {c} 

• in(P,; P,) = in(P') U in(P,) 

• in([ 07=, b; ~ Pi ]) = U?=, in(P;) 

• in([ 07=, C;?Xi ~ P; 0 delay d ~ Po]) = U?=,{c;} U U7=oin(Pi) 

• inC .G) = inC G) 

• in(P, II P,) = in(P,) U in(P,) 

• in(P\ cset) = in(P) - cset 

Definition 3 (Observable output channels of a process) The set of observable output channels of 
process P, notation out(P), is defined inductively as follows: 

• out (skip) = out(x := e) = 0 

• out(e!e) = {c} 

• out(c?x) = 0 

• out(P, ; P,) = out(P,) U out(P,) 

• outer 0,=, bi ~ Pi ]) = U,=, out(P;) 

• outer 07=, C;?Xi ~ Pi 0 delay d ~ Po]) = U,=oout(P;) 

• out( .G) = out (G) 

• out(P, II P2 ) = out(P,) U out(P,) 

• out(P\ cset) = out(P) - csel 

Definition 4 (Observable channels of a process) The set of observable channels of a process P, 
notation chan(P), is defined by chan(P) = in(P) U out(P). 0 

2.1 Syntactic Restrictions 

To guarantee that channels are unidirectional and point-to-point, we have the following syntactic con­
straints (for any n E IN, dE TIME, c" ... ,c" E CHAN, and x" ... ,x" E VAR): 

• For P, ; P, we require that in(P') n out(P2 ) = 0 and out(P,) n in(P2 ) = 0. 

• For [07=, bi ~ Pi 1 we require that, for all i,j E {l, ... ,n}, i ij, out(P;)nin(Pj ) = 0. 

• For [ Of=l Ci?Xi ~ Pi 0 delay d ---+ Po J we require that 

- U7=, {Ci} n U''=oout.(P;) = 0, and, 

- for all i,j E {O, ... , n}, i i j, out(P;) n in(Pj) = 0. 
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o For P,IIP, we require that in(P') n in(P,) = 0 and out(P,) n out(P,) = 0. 

To avoid programs such as (c?x) \ {c}! which would be equivalent to a random assignment to x, we 
require that only internal channels are hidden: 

o For P\ cset we require that cset <;; in(P) n out(P). 

Furthermore, we do not allow parallel processes to share program variables: 

o For P,IIP, we require that var(P,) n var(P,) = 0. 

2.2 Basic timing assumptions 

To determine the timed behaviour of programs we have to make assumptions about the time needed to 
execute atomic statements and how the execution time of compound constructs can be obtained from 
the timing of the components. In our proof system the correctness of a program with respect to a 
specification, which may include timing constraints, is verified relative to these assumptions. 

In this report we assume that the execution time of atomic statements, except. for communication 
statements, is given by fixed constants. By assumption, communication takes no time. The execution 
time of a (synchronous) communication statement consists of, besides an assumed fixed constant overhead 
before and after the actual communication, the time spent waiting for a partner. 

In this report we assume maximal parallelisill, that is, we assume that each process has its own 
processor. Hence, a process executes a local, non-communication, command immediately. Since commu­
nication is synchronous, a process is forced to wait until a communication partner is available. In case 
of maximal parallelism the communication occurs as soon as such a partner indeed comes forward: it is 
never the case that one process waits to perform e!e while another process waits to execute c?x. Thus, 
maximal parallelism implies minimal waiting. 

For simplicity, we assume that there is no overhead for compound statements and that execution of 
a delay d statement takes exactly d time units. Besides constant /(skip, we assume given a constant 
/(a such that execution of each assignment statement takes /(a time units, a constant /(a denoting the 
overhead preceding a communication, a constant /(w denoting the overhead following a communication, 
and a constant Kg capturing the time required to evaluate the guards of a boolean guarded command 
and non-deterministically select one of the open guards. 

3 Model of Computation and Denotational Semantics 

The events in the various processes of a distributed system are related to each ot.her by means of a 
conceptual global clock (as is done in [12, 18]). This global notion of time is introduced at a metalevel of 
reasoning and is not incorporated in the distributed system itself. We use a special symbol T (T f/: VAH) 
to denote the global time. 

Definition 5 (States) Define the set STATE of states as the set of mappings" which map a variable 
x E VAH to a value ,,(x) E VAL and which map T to an instant "(T) E TIME. 0 

Thus, besides assigning to each program variable x a value a(x), a state a records the global time. For 
simplicity we do not make a dist.inction bet.ween t.he semant.ic and the syntactic domain of values and 
instants. In the sequel we assume that we have the standard arithmetical operators +, -, and x on 
TIME and VAL. 

Define the value of an expression e in a state IT, denoted by £[e](,,), inductively as follows: 

o £[P](,,) = /1, 

o £[x](,,) = ,,(x), 
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• £[e, + e2](O") = £[e,](O") + £[e,](O"), 

• £[e, - e,](O") = £[e,](O") - £[e,](O"), and 

• £[e, x e2](0") = £[e,](o-) x £[e,](O"). 

We define when a boolean expression b holds in a state 0", denoted by B[b](O"), as 

• B[e, = e2](0") iff £[e,](O") = £[e2](0"), 

• B[e, < e,](O") iff £[e,](o-) < £[e2](0"), 

• B[,b](O") iff not B[b](O"), and 

• B[b, V b2](0-) iff B[b,](O") or B[b,](o-). 

We represent a synchronous communication of value fl E VAL on channel c E CHAN at time 
r E TIME by a triple (r, c, 11), and define 

(Timeslamp) Is((r,c,p)) = r 

( Channel) 

( Value) 

ch((r, c, Il)) = c 

val((r,c,p)) = p 

To denote the observable input and output behaviour of a process P we use a tinLed trace () which is a 
possibly infinit.e sequence of the form ({Tl,Cl,jtI},(T2,C2,P2), ... ), where Ti 2: Ti_l! Ci E chan(P), and 
Pi E Val, for i 2: 1; for all i and j such that Ti = Tj we require Ci =f. Cj. Such a history denotes the 
communications performed by P during an execution, and the times at which t.hey occurred. 

Definition 6 (Timed traces) Let, for OBS = TIME x CHAN x VAL, TRACE be the set of limed 
traces J that is, 

TRACE = { 0 E OES' U OBSw I Vi Is(O(i)) :s Is(O(i + 1)) 
1\ Vj· ts(O(i)) = Is(O(j)) ~ ch(O(i)) =f. ch(O(j)) } 

<> 

Let () denote the empty trace, i.e. the sequence of length 0. The concatenation of two traces 0, and O2 

is denoted 0,'0, (and equals 0, if 0, is infinite). We use first (0) and, if 0 is finite, lasl(O) to refer to the 
first and last record of 0, respectively. 

However, a model based on merely timed traces is too abst.ract to define a compositional semantics, as 
has been argued in [18] and [8]. The model proposed there is the limed failures model; a confusing name 
for researchers in the fault tolerant systems community. The 'failure' refers to the fact that in this model 
one not only records t,he communications that take place but also the failed or refused attempts due to 
the absence of a communication partner. Henceforth, we will refer to this notion as t.imed observation. 

A timed observation is a timed (trace, refusal) pair. A timed refusal is a set of (channel, instant) 
pairs. If the timed refusal of a process contains (c, T) then this corresponds to the refusal of the process 
to participate in a communication on channel c at time T. 

Definition 7 (Timed refusals) Let REP be the set of limed refusal sels, that. is, 

REF = {9lI9l <; CHAN x [O,oo)} 

<> 

6 



We usually define a timed refusal by a cartesian product cset x INT, where cset ~ CHAN is a set of 
channels and INT an interval from TIME. 

Let STATEJ. = STATE U {J-}. The semantic function M assigns to a process P a set of triples 
(0"0,(9,9l),0") with 0"0 ESTATE, 9E TRACE, 9lE REF, and 0" E STATEJ.. A triple (0"0, (9,9l),0") E 
M[P] denotes a maximal observation of process P with the following informal meaning: 

• if (j '# 1- then it represents a terminating computation which starts in state 0"0, performs the 
communications as described in e while refusing those in 9\, and terminates in state a, and 

• if 0" = 1- then it represents a computation which starts in state ao, performs the communications as 
described in 0 while refusing those in 91., but never terminates. A computation does not terminate 
either because it is infinite or the process deadlocks. 

Definition 8 (Projection on traces) For a trace 0 E TRACE and a set of channels cset <;; CHAN, 
we define the projection of 0 onto cset, denoted by OJ cset, as the sequence obtained from 0 by deleting 
all records with channels not in cset. Formally, 

{ 
0 

9j cset = 00 j cset 
(t, c, v)'(90 j cset) 

if 9 = 0 
if 9 = (t, c, v)'Oo and c'i csct 
if 0 = (t, c, v),Oo and c E cset 

<> 

Definition 9 (Hiding Oil traces) Hiding is the complement of projection. Formally, the hiding of a 
set cset of channels from a trace 0 E TRACE, notation 9\ cset, is defined as 

0\ cset = OJ( CHAN - cset) 

<> 

Definition 10 (Time shift on traces) For timed trace 0 such that ts(first(O)) ~ T we define the time 
shift operation -r.. as follows: 

{ 
0 
(t - T, C, v)'(Oo., T) 

iff e = 0 
iff 9 = (t, c, v)'Oo 

<> 

Definition 11 (Projection on refusals) For a refusal 9l E REF and a set of channels cset <;; CHAN, 
we define the projection of 9l onto cset, denoted by 9lj cset as follows: 

9ljcset = 9l n (cset X [0,00)) 

<> 

Definition 12 (Hiding on refusals) Hiding is the complement of projection. Formally, the hiding of 
a set cset of channels from a refusal 9l E REF, notation 91.\ cset, is defined as 

9l\cset. = 9l n ((CHAN - cset) x [0,00)) 

<> 

Definition 13 (Time shift on refusals) For 9l E REF such that for all (c, t) E 9l it is the case that 
t 2: T the time shift operat.ion 9l-r.. T is defined as follows: 

9l.,T = {(c,t - T) I (c,t) E 9l} 

<> 
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Definition 14 (Variant of a state) The variant of a state u with respect to a variable x and a value 
{J, denoted (u : x ~ {J), is given by 

• if u = 1- then (u : x ~ {J) = 1-

• ifu of 1- then (u: x~ {J)(y) = { 

using '=:' to denote syntactic equality. 

{J 
u(y) 

if y = x 
if y ~ x 

o 

The semantic function M is inductively defined as follows. Notice that a terminated process will indefi­
nitely refuse to communicate on its channels. 

• Exection of skip terminates after /{skip time units, all the while refusing no communication. 

M[skip] = { ( Uo , ((),0) , (uo: T ~ [(,kip) ) I £[T](uo) = 0 } 

• Execution of assignment x := e terminates after Ka time units, all the while refusing no commu­
nication. In the final state x has the value of e in the initial state. 

( { 
x ~ £[e](uo) ) 

Mlx:= e] = {( Uo, ((),0), Uo: T ~ [(a ) I £IT](uo) = O} 

• In the execution of a synchronous ie-statement there comes, after an initial period of f{(X time 
units during which the communication are refused, a waiting period for a communication partner 
to become available. Execut.ion of output statement c!e either never terminates (in case no com­
munication partner ever shows up) or terminates /{w t,ime units after the c communication has 
occured. 

M[e!e] = 
{( uo, ((),9t), 1-) I £[T](uo) = 01\ 9t= {e} x [O,Ko)} 

U {( uo, (((r,e,£[e](uo))),9t), (uo: T~ r+ Kw)) I £[T](uo) = 0 
I\T2:]{o 

1\ 9t= {e} x ([O,Ka)U(r,oo))} 

Recall that we allow at most one c communication at time T = T. 

• Execution of input statement c?x either never terminates (in case no communication partner ever 
shows up) or terminates when the c communication has occurred and the received value is assigned 
to x. 

M[e?x] = 
{( Uo, ((),9t), 1-) I £[T](uo) = 01\ 9t= {e} x [O,Ko)} 

U {( uo, (((r,c,I,)),9t), (uo: {~f-+Jl +1" +I< ) ) I £[T](uo) = 0 
I--+T \.w a 1\ T 2: f{o 

1\ Jl E Val 
1\ 9t = {e} x ( [0, Ka) U (r, (0) ) } 

• An execution of PI ; P2 is either a non-t.erminating execution of PI or a terminating execution of 
PI followed by some execution of P2. Under the convention that a process can only refuse commu­
nications on its own channels we must, in case of sequential and suchlike composition, expand the 
refusal sets of the respect.ive components to the union of the channels of those components. 
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M[P,; P,] = 
{ (0-0, (8,9W (chan(P,) - chan(P,) X [0,00»,1-) I (0-0, (B,9t), 1- ) E M[P,] } 

U {(o-Q,(8,'O,,9t),0-) 
I 
there exist a 9t" a 9t" a 0", oF 1- and a r > ° such that [[T](o-,) = r, 
( 0-0 , (0, , 9t, ) , 0-, ) E M[P,], 
«0-, :T~O), (8" 9t, ).nr, (o-:T~T-r) )EM[P,], 
and 9t = 9t, U (chan(P,) - chan(P,» x [0, r) U 9t, U (chan(P') - chan(P,» x [r, (0) } 

where (8,9t).nt equals (O.nt,9t.nt). 

• If no guard is open, that is, evaluates to true, the boolean guarded command terminates after 
evaluating the guards which takes Kg time units. Otherwise, t,he process corresponding to one of 
the open guards (non-deterministically chosen) is executed. While evaluating the guards, commu­
nications on Uichan(Pi} are refused. 

M[[ 07=, b, --+ P, l] = 
{(o-o, «(),U,chan(P,)x[O,oo», (o-o:T~Kg»I[[T](o-Q)=o II ~B[b,V ... Vbn](o-o)} 

U {( 0-0, (8,9t), 0- ) I [[T](o-o) = 0, and there exist a k E {l, ... ,n} and a6isuch that 
B[b.](<l'o), ( 0-0 , (0,6i).n Kg, (0-: T ~ T - Kg) ) E M[P.], and 
9t = U;chan(P;) x [0, Kg] U 6i U (U,chan(P,) - chan(P.» x [Kg, (0) } 

• In case of a communication guarded command the first communication that occurs resolves the 
choice of which process to execute. If no communication occurs before d time units (0 :s d ~ 00) 
have elapsed, process P is executed. 

M[[ 07=, c,?x --+ P, 0 delay d --+ P l] = 
u, {( 0"0, «(r,c"v»'O,9t),O' ) 

I 
[[T](o-o) = 0, lia :s r < d, v E VAL, and there exists a 6i such that 
9t = (jUjchan(Pj)Uchan(P»-U;{Cj})x[O,rl-{(c"r)} 

U9t 
U«Ujchan(Pj) U chan(P» - chan(P,» x [T,oo), 

and (0-0, (0,6i).n (T+](w + Ka) , (0-: T >-> T - r - Kw + ](a) ) E M[P,] } 
U {( 0-0, (0, 9t), 0- ) 

I 
[[T](o-o) = 0, and there is a6iwith (0-0, (O,6i).nd, (0- :T~T- d» E M[P], and 
9t = «Uj chan(Pj ) U chan(P» - Uj{ Cj}) x [0, d] U 6i U (Uj chan(Pj) - chan(P» x [d, (0) } 

• An execution of * G consist.s of either an infite number of executions of G that terminate in a state 
in which at least one of the guards is open, or a finite number of executions of G such that the last 
execution does not. t,erminate or terminates in a state in which no guard is open. 
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M[*G] = 
{( uo,(O,9t),u) I £[T](uo) = 0 and there exists a k ElNU{oo}, and for every i, 0::; i < k, 

there exists a triple (17; , (O;+,,9'\;+d , ui+d such that 
Ui # 1., 
B[bG](ui), 
( (17; : T>-+ 0) , 

(Oi+' ,9'\;+d ",£[T](Ui) , 
(17;+, : T >-+ T - £[T](u;)) ) E M[G], and 

if k = 00 then 
for all j, 1::; j < k, O,A .. AOj ::S 0 and nl=, 9t, ;;> 9t, and 17 = 1., 

else if k < 00 then 
o = O,A ... AOk ,9t = n~=, 9t, ,17 = Uk , and if Uk # 1. then B[,bG](Uk) } 

• Since communication is synchronous a trace 0 of process P, II P, has the property that Or chan(Pd 
and Or chan(P,) match traces of P, and P, respectively. Communications along the channels in 
chan(P,) n chan(P,) are refused if they are refused by P, or P,. Since process P does not refuse 
to communicate on the channels in CHAN - chan(P), it is also the case that communications on 
the channels in CHAN - chan(P,) n chan(P,) are refused if they are refused by P, or P,. Process 
P, II P, terminates if and only if both P, and P, terminate. 

M[P, II P,] = { ( 170, (0, 9t), 17 ) I for i = 1,2 there exist (Oi, 9'\;), 17; such that 
(lTD, (Oi, 9'\;), 17;) E M[P;], 
and if IT, = 1. or IT, = 1. then 17 = 1. else, for all x E VAR, 

{
IT;(X)if x E var(P;) 

IT(x) = lTo(x)if x ¢c var(P, II P,)' IT(T) = rnax;(lTi(T)), 

Or chan(P;) = 0;, or chan(P, II P,) = 0, and 9t = 9t, U 9t2 } 

• The observations of P\ csel, where csel <; in(P) n oul(P), are characterized by the fact that the 
internal cset communications take place as soon as they become enabled. This means that such 
communications occur at the first. instant they are no longer refused. Recall that we allow only 
one communication per channel to occur at a particular instant. Furthermore, by our definition of 
the semantics it takes a nOH-zero period before such a taken communication can become enabled 
again. Hence, an observation of P\ cset is characterized by the fact that cset communications are 
continuously refused, except on single instants. 

Definition 15 (As soon as possible) For a timed refusal set 9l and a set csct of channels: 

ASAP(9t, csel) == 'Ie E cset· '11,,1,· {c} x [t"I,] n 9t = 0 ~ I} = I, 

o 

Then, 

M[P\csel] = {( lTD, (O\csel, 9t\csel) , IT) I (lTo, (0, 9t), IT) E M[P] 11 ASAP(9t, cset)} 

Notice that this definition incorporates finite variability, or non-Zenoness. 

Definition 16 (Timed observations) The limed observations of a process P, not.ation O[P], follow 
from: 

O[P] = { ( 8 , 9t) I there exist lTD and IT such t.hat ( lTo , (0, 9t) , IT ) E M[P] } 

o 
The set O[P] represent,s the normal behaviour of process P. In Section 5 we det.ermine the set O[Plx] 
representing the acceptable behaviour of P under the assumption of failure hypothesis X. Besides the 
already mentioned finite variability, other important properties of the semantic function CJ are that if 
(0,9t) E O[P] then Orchan(P) = 0 and 9trchan(p) = 9t. 
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4 Assertion Language and Correctness Formulae 

Assertions are used to express the relevant program properties in terms of the observable quantities. Since 
we abstract from the internal state of a process, the primitives of our assertion language are similar to the 
denotations as used in the semantic function O. In this report we specify the relation between a program 
P and an assertion q, by means of a so-called correctness formula of the form P sat q,. Intuitively, such 
a formula expresses that all executions of P satisfy q,. 

Similar to the semantic denotation of traces in the previous section, we use record expressions such 
as (T\ c, /-l), with T E TIME, c E CHAN, and J.l E VAL, in assertions. We use instant expressions, e.g. 
using the function ts to obtain the timestamp of a record. We have channel expressions, e.g. using 
the operator ch which yields the channel of a record , and value expressions , including the operator val 
which yields the value of a communication record. We use the empty trace , () 1 traces of one record , 
e.g. ((T,C,Il)), as well as the concatenation operator A and the projection operator 1 to create trace 
expressions. Further 1 for a trace expression texp and a value expression vexp we have texp( vexp) to refer 
a particular record of texp, provided vexp is a positive natural number less than or equal to the length 
of trace texp. We use expressions such as cset x [TIl T2) and the projection operator 1 to form refusal 
expressions. To refer to the timed observation of a process we use the special variables hand R to 
denote the trace of the process and the refusal set of the process, respectively. These variables are not 
updated explicitly by the process: they refer to a timed observation from the semantics. Then , we can 
write specifications such as c!2 sat hHc} = () V 3t 2: O· hHc} = ((t, c, 2)). To reason about natural 
numbers , the assertion language includes, for value expression vexp, the predicate vexp E IN which is 
true if, and only if, the value of value expression vexp is a natural number. Henceforth we use variables 
i , j, k 1 [, m that range over IN. We use, for instance, Vi· if> as an abbreviation of Vi . i E IN -t ¢J. For an 
assertion q, we also write q,(h, R) to indicate that q, has two free variables hand R. We use q,(texp, rfxp) 
to denote the assertion which is obtained from ifJ by replacing h by trace expression texp, and R by 
refusal expression rfxp. Let IVAR , with typical representative t, denote the set of logical time variables 
ranging over TIME, let VVAR , with typical representat.ive V , denote the set of logical value variables 
ranging over VAL, let TVAR , with characterist.ic element 5 , be the set of logical trace variables ranging 
over TRACE, and let RVAR, with typical element N, be the set of logical refusal variables ranging over 
REF. 

Table 2 presents the language we use to define assertions, with T E TIME, t E IVAR, c E CHAN, 
11 E VAL, v E VVAR, s E TVAR, N E RVAR, and cset C; CHAN. Observe that an expression in the 
assertion language of Table 2 does not refer to program variables since we abstract from the internal 
state of a process in this report. 

Instant expression 

Channel expression 

Value expression 

Record expression 

Trace expression 

Interval expression 

Refusal expression 

Assertion 

lexp 

ccxp 

vexp 

rexp 

lexp 

lnxp 

rfxp 

q, 

Table 2: Syntax of the Assertion Language 

.. - Tit I ts(rexp) I iexp, + iexP2 

c I ch(rexp) 

11 I v I val( rexp) I len( texp) 

(iexp, cexp, vexp) I texp( "exp) 

s I h I () I (rexp) I texp,AlexP2 I lexpl csel 

[iexp"iexp,) I {iexp} 

N I R I 0 I cset x inxp I rfxp, U rfxP2 I rfxp 1 cset 

iexp, = iexp, I cexp, = cexp2 I vexp, = vexp, I vexp E IN 
texp, = texP2 I rfxp, = rfxp, I q" /I q,2 I ,q, I 
3t . q, I 3v· q, I 35' q, I 3N· q, 

Definition 17 (Abbreviation) For record expression 
there exists an i such that texp(i) = rexp. 

rexp and trace expression texp, rexp E texp iff 
o 
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Furthermore, we use the standard abbreviations <PI V <P2 == -{,<PI /\ -'<P2), <PI - <P2 
equivalences such as Vt . <P == -(3t. -<p). 

-<PI V <P2, and 

Definition 18 (PriInitive predicates J) Primitive predicates have a free variable t, t.he 'base time'. 
For a set cset of channels and an instant expression iexp, a few typical examples are: 

• enable cset at iexp == (cset x iexp) n R = 0 

• enable cset for iexp == (cset x [t, t + iexp]) n R 0 

• refuse cset upto iexp == cset x [t, t + iexp) C R 

• refuse cset precisely upto iexp == 
VI· ( refuse csel upto I ~ 1:S iexp ) 

• after iexp : <p == <p[t + iexp It} 

where [t + iexp It} denotes syntactic substitution of t + iexp for t. 

plus obvious combinations, e.g. using the connective 'and'. o 

It is sometimes convenient, to refer to the willingness of the environment to communicate. For 
instance, as a communication docs not occur until the environment stops refusing it, we can specify 
precisely for how long a communication must be enabled by taking the willingness mentioned before into 
account. In particular, consider the case that due to faults messages are lost. The fad that, after an 
input to a transmission medium, output fails to occur may indicate either that the message was lost, 
or that no communication partner has come forward yet. Using assumptions about the readiness of the 
environment to receive a message elegantly resolves such issues. 

Suppose (O,!R) E O[P]. If P did not refuse a c communication at time t, that is, (c, t) \t !R, then the 
fact that no c communication occurred at t, that is, -,(3v· (t, c, v) E 8), implies that the environment 
was not prepared to engage in such a c communication at time t. On the other hand, a c communication 
that did occur at time t could not have been refused by the environment.. Thus, we can define possible 
refusal sets of the environment: 

Definition 19 (Match) A timed refusal set N matches timed trace h and timed refusal set R, notation 
Match(h, R, N), iff 

Vc,!·( (c,t) \t R 1\ -(3v .(t,c,v) E h)) ~ (c,t) E N 
1\ Vc,t,v· (t,c,v) E h ~ (c,t) \t N 

o 

Definition 20 (Primitive predicates II) We use a second category of primil.ive predicates tailored 
to the refusal set of the environment. For a set cset of channels and an instant expression icxp, a few 
typical examples are: 

• cset enabled at iexp == 
VN· Match(h,R.,N) ~ (esct X icxp) n N 0 

• cset refused upto iexp 
VN· Match(h,R.,N) ~ csct x [I.,t+ iexp) C N 

• cset refused precisely upto iel:p == 
VI· ( cset refused upto I ,..., 1:S iexp ) 

Observe that we use the present tense to refer to refusals of the process, and the pa.st tense to refer to 
refusals of the environment. 0 
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ExaInple 1 (Calculator) Consider process C that accepts a value via in, applies a function f to it 
and produces the result via out. After an input it takes Kc time units before the corresponding output 
becomes enabled. Once an output has occurred, a next input becomes enabled after.:: time units. We 
specify C as follows: 

C sat Vi·) SiS Icn(hiout) ~ val(hiout(i)) = f(val(hiin(i))) 
A. h = () ---+ enable in and refuse oul upto ()() 
II Vt, V· (t, in, v) E h ~ 

rcfuse {in, out} upto f{ c 
A after Kc : 'tit· out refused precisely upto t 

---+ enable out and refuse in for t 
II Vt,v· (t, out,v) E h ~ 

refuse {in, out} upto [ 
II after [: VI· in refused precisely upto I 

---+ enable in and refuse out for t 
Notice how references to the readiness of the environment to communicate are used to determine, for 
instance, the time Kc + t at which an out communication occurs after an input. D. 

For an assertion </1 we define the set chan(</1) of channels such that c E chan(q,) if, and only if, a 
communication along c might affect. the validity of </>. For instance, the validity of assertion h = () is 
affected by any communication and thus we should have chan(h = 0) = CHAN. Since, by the definition 
of the semantics, communications on a channel are refused for some time aft.er a communication on 
that channel did occur, assertion RHc} = 0, like assertion RHc} = {c} x [0,(0), is invalidated by 
a communication along c, and by a communication along c only. On the other hand, also the validity 
of assertion (hHc})A(5,d, 7) = ((5,d,7)) can only be changed by a communication along channel c, 
although d occurs in the assertion as well. Hence, chan(¢» consists of the channels to which references 
to hand R in </> are restricted rather t.han t.he channels occurring syntactically in </>. Note t.hat the value 
of a logic'al variable is not. affected by any communication. 

Definition 21 (Channels in an assertion) For an assertion </> we inductively define the set chan(</» 
as the smallest set of channels such t.hat the validity of ¢ may only be affected by communications on 
the channels of chan(</1). 

• chan(T) = chan(t) = 0 

• chan(ts(rexp)) = chan(rexp) 

• chan(iexPl + iexP2) = chan(iexp,) U chan(iexpz) 

• chan(e) = 0 

• chan(ch(rexp)) = chan(rexp) 

• chan(p) = chan(v) = 0 

• chant vall rexp)) = chant rexp) 

• chan(/en(texp)) = chan(texp) 

• chan«iexp, cexp, vexp)) = chan(iexp) u chan(cexp) U chan(vexp) 

• chan(texp(vexp)) = chan(texp) U chan(vexp) 

• chants) = 0 

• chan(h) = CHAN 
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• chan(()) = 0 

• chan«(rexp)) = chan(rexp) 

• chan(texp,AtexP2) = chan(texp,) U chan (texP2) 

• chan(texpicset) = chan(texp) n cset 

• chan([iexp" iexp,)) = chan(iexpd U chan(iexp,) 

• chan({iexp}) = chan(iexp) 

• chan(N) = 0 

• chan(R) = CHAN 

• chanCO) = 0 

• chan(eset x inxp) = chan(inxp) 

• chan(rJxp, U rJxP2) = chan(rJxpd U chan(rJxp2) 

• chan( rJxp i cset) = chan( rJxp) n cset 

• chan(iexp, = iexP2) = chan(icxp,) U chan(iexP2) 

• chan( cexp, = cexP2) = chan( cexp,) U chan( cexP2) 

• chan( vexp, = "exP2) = chan( "cxpd U chan( "exP2) 

• chan( vexp E IN) = chan( vexp) 

• chan(texp, = texP2) = chan(texp,) U chan(texP2) 

• chan(rJxp, = rJxP2) = chan(rJxPd U chan(rJxp,) 

• chan(q" 1\ q,,) = chan(q,,) U chan(q,2) 

• chan(.q,) = chan(3t· q,) = chan(3". q,) = chan(3s· q,) = chan(3N· q,) = chan(q,) o 

Next we define the mea.ning of assertions. We use an environment 'Y to interpret the logical variables of 
IVARu VVARu TVARURVAR. This environment maps a logical time variable t to a value let) E TIME, 
a logical value variable v to a value ,(v) E VAL, a logical trace variable s to a trace Irs) E TRACE, and 
a logical refusal variable N to a refusal set ,(N) E REF. An assertion is interpreted with respect to a 
triple (O,91, ,). Trace () gives h its value, refusal set 9\ gives R its value, and, as said before, environment 
,interprets the logical variables of IVARU VVARU TVARURVAR. We use the special symbol t to deal 
with the interpretation of texp( vexl') where index vexp is not a positive natural number, or if it is greater 
than the length of texp. The value of an expression is undefined whenever a sub expression yields f. We 
define the value of an instant expression iexp in the trace 0, refusal 9l, and an environment " denoted 
by I[iexp]( e,!ll, I), yielding a value in TIME U {n, the value of a channel expression cexp in the trace e, 
refusal!ll, and an environment" denoted by C[cexp](O,!ll,,), yielding a value in CHAN U {f}, the value 
of a value expression vexp in the trace 0, refusal 9t, and an environment f) denoted by V[vexp](B,9t, r), 
yielding a value in VAL U {f}, the value of a record expression rexp in the trace 0, refusal 9'\, and 
an environment" denot,ed by 'R.[rexp](e,ryj,,), yielding a value in (CHAN x VAL) U {f}, the value 
of a trace expression lexp for trace 0, refusal 9l, and an environment /, denoted by T[texp](B,9l,/), 
yielding a value in TRACE U {n, the value of an interval expression inxp for trace e, refusal !ll, and 
an environment " denot.ed by I#[inxp](e,!ll, I)' yielding a value in P( TIME) U {f}, and the value of 
a refusal expression rfxp for trace 0, refusal 91, and an environment, /, denot,ed by R . .:F[r/xp](O,91,,), 
yielding a value in REF U {n, 

14 



• I[r](O,!R, ,) = r 

• I[t](O,!R,,) = let) 

{
tiff R[rexp](O,!R, ,) = t 

• I[ts(rexp)]{O,!R,,) = r iff there exist c and I' such that R[rexp](O,!R,,) = (r,c,l') 

• I[iexpl + iexp2]{0,!R, ,) = I[iexpd(O,!R, ,) + I[iexp2](0,!R, ,) 

• C[c](O,!R, ,) = c 

{ 
t iff R[rexp](O,!R, ,) = t 

• C[ ch( rexp )](O,!R, ,) = c iff there exist r and I' such that R[rexp](O,!R,,) = (r, c, 1') 

• V[P](O,!R,,) = I' 
• V[v](O,!R, ,) = ,(v) 

{ 
t iff R[rexp](O,!R, ,) = t 

• V[val(rexp)](O,!R,,) = /' iff there exist rand c such that R[rexp](O,!R,,) = (r,c,l') 

V[I ( )'(O!R) {t iff T[texp](O,!R, ,) = t 
• en texp j , " = len(T[texp](O,!R, "I)) otherwise 

• R[(cexp,vexp)HO,!R,,) = 

{ 
t iff C[cexp](O,!R, ,) = t or V[vexp](O,!R,,) = t 
(C[ cexp](O,!R, I), V[ vexp ](O,!R, ,)) otherwise 

• R[texp(vexp)](O,!R,,) = 

{ 

(r,c,l') iff there exist 0, and O2 such that len(O,) = V[vexp](O,!R,,)-1 
and T[texp](O,!R,,) = 0,'(r,C,I')'02 

f otherwise 

• T[s](O,!R,,) = Irs) 

• T[h](O,!R, ,) = 0 

• T[()](O,!R, ,) = () 

{
tiff R[rexp](O,!R, ,) = t 

• T[(rexp)](O,!R,,) = «c,p)) iff'R.[rexp](O,!R,,) = (c,l') 

• T[texpl'texp2](0,!R, ,) = 

{ 
t iffT[texpl](O,!R,,) = t or T[texp2](O,!R,,) = t 
T[ texpl](O,!R, ,JAT[ texp2](O,!R, ,) otherwise 

• [texp t cset ll ( "'~) = . T 0 ~ { t iff T[texp](O,!R, ,) = t 
I j", T[texp](Oieset,!R"Hcset otherwise 

• IN[[ iexPl, iexp2)](0,!R, ,) = [I[iexpl](O,!R, I)' I[ iexp2](0,!R, I)) 

• IN[{ie>:p}](O,!R,,) = {I[iexp](O,!R,,)} 

• R.1'[N](O,!R, ,) = ,(N) 

• R.1'[R](O,!R, ,) = !R 

• R.1'[0](0,!R, ,) = 0 
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• RFlcset x inxp](B,!It,,) = cset x INlinxl'](B,!It,,) 

• RFlrfxpl U rfxl',](B,!It,,) = RF[rfxptl(B,!It, ,) U RFlrfxp,](O,!It,,) 

• RFlrfxl'l cset](B,!It, ,) = RFlrfxp](O,!ltt cset, ,li cset 

Definition 22 (Variant of an envirOIllllent) The variant of an environment 'Y with respect to a 
logical variable 11 (either in IVAR, VVAR, TVAR, or RVAR) and a v (resp. in TIME, VAL, TRACE, 
or REF), denoted (')' : 11 ~ v), is given by 

{

V ifw=ll 
(')' : 11 ~ v){w) = ,(w) if w t 11 

<) 

We inductively define when an assertion ¢ holds for trace 0, refusal 9l, and an environment I, denoted 
by (0, !It, ,) F ¢. To avoid the complexity of a three-valued logic, an equality predicate is interpreted 
strictly with respect to f 1 that is, it is false if it contains some expression that has an undefined value. 

• (0, !It, ,) F vexp, = vexl', iff 

VI vexp,](O,!It, ,) = Vlvexl',](B,!It, ,) and VlvexPI](O,!It, ,) '" f 

• (0, !It, ,) F cexp, = cexp, iff 

Clcexl'l](B,!It,,) = C[cexl',](O,!It, ,) and C[cexl'I](O,!It, ,) '" f 

• (B,!It, ,) F texl'I = texP2 iff 

Tltexl'tl(B,!It,,) = Tltexl',](B,!It, ,) and Tltexl'l](B,!It,,) '" f 

• (B,!It, ,) F ¢, /\¢, iff (B,!It,,) F ¢, and (O,!It,,) F ¢2 

• (B,!It,,) F ~¢ iff not (B,!It, ,) F ¢ 

• (B,!It, ,) F 3v . ¢ iff there exists a value Jl such that (0, !It, (')' : v ~ ,.,)) F ¢ 

• (B,!It,,) F 3s . ¢ iff there exists a trace iI such that (0, !It, (')' : s ~ OJ) F ¢ 

• (B,!It,,) F 3N·¢ iff there exists a refusaliRsuch that (O,!It,(')': N ~iR)) F¢ 
Example 2 (Satisfaction) In Example 1 we came across assertion 

Vt.,v· (t, in,v) E It ----7 refuse {in, out} llpto Kc 

which is an abbreviation of 

Vt,v.(t,in,v)Eh _ {in, out} x [t,t+Kc)<;;R 

This assertion holds for the triple (B,!It, ,) if, and only if, for any instant T and value Jl we have, for 
environment "I = (, : t ~ T, V ~ I') which gives logical variables t and v the value of T and Jl respectively, 

{B, !It, "I) F (t, in, v) E h - {in, out} x [t, t + Kc) <;; R 

Since It and R obtain their value from () and 91, respectively, this implication holds for those traces 0 
and refusals 9l. such that if 0 contains a record (I, in, Jl) then 9l contains {in, out} x [I, I + f{ c). b.. 

Definition 23 (Validity of an assertion) An assertion is valid, notation F ¢, iff for all 0, 91., and " 
(B,!It, ,) F ¢. <) 

As mentioned before, we use a correctness formula P sat ¢ to express that process P satisfies prop­
erty ¢. Informally, since we abstract from the int.ernal states of the processes and focus on communication, 
such a correctness formula expresses that any observation of P satisfies ¢. 

Definition 24 (Validity of a correctness fornllda) For process P and assert.ion ¢ correctness for­
mula P sat ¢ is valid, not,ation F P sat ¢, iff for all " and all (O,!It) E OIP], (B,!It, ,) F ¢. 0 
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5 Incorporating Failure Hypotheses 

Based on a particular failure hypothesis, the set of observations that characterize a process is expanded. 
To keep such an expansion manageable, failure hypothesis X of process P is formalized as a predicate 
whose only free variables are h, hQld, R, and Ro1d ) representing a relation between the normal and 
acceptable behaviours of P. The interpretation is such that (ho/d) Rold) represents a normal observation 
of process P, whereas (h, R) is an acceptable observation of P with respect to X. Such relations enable us 
to abstract from the precise nature of a fault and to focus on the abnormal behaviour it causes. Notice 
that the faults that affect a process do not influence the enabledl1€ss of its environment to communicate. 
If, for instance, due to a failure process C is sooner than usual willing to receive new input, then still 
this input will not occur before the environment is able to provide it. 

We extend the assertion language with the trace expression term hOld and refusal expression term 
Raid. Sentences of the extended language are called transformation expressions, with typical representa­
tive 1/J. To indicate that transformat.ion expression 1/J has free variables hold, h, Raid and R we also writ.e 
1jJ(h old ,h,Rold,R). Then, 1/J(texPl' texp" rfxPl, rfxp,) denotes t.he expression which is obtained from 1jJ 
by subst.itut.ing texp! for hold, texP2 for h, rfxP! for Raid, and rfxP2 for R. A transformation expression 
is interpreted with respect. to a quintet. (Bo,B,!Ro,91,,). Trace 00 gives hold its value, refusal 9lo does 
so for Raid, and, in conformity wit.h t.he foregoing, t.race (J and refusal 9l give hand R their value, and 
environment '"I interpret.s t.he logical variables of IVAR U VVAR U TVAR U RVAR. The meaning of 
assertions, as defined on page 16\ can easily be adapted for transformation expressions; the only new 
clauses are 

• T[hold](00'O,9\o,~,'"I) = 00 

• n.F[Rold](OO,O,~o,~,'"I) = ~o 
The channels occurring in a transformation expression are defined as in Definit.ion 21 with extra clauses 

• chan(h old ) = CHAN 

• chan(Ro1d ) = CllAN 

Since t.he terms hold and Rold do not occur in assertions, the following lemma is trivial. 

Lelnlna 1 (Correspondence) 
iff(O,~,'"I) F</!. 

For assert.ion </! it is for all 00 and ~o the case that (00 , 0, ~o, ~, '"I) F </! 
o 

Definition 25 (Failure hypothesis) A failure hypothesis X is a transformation expression which, to 
guarantee that the normal behaviour is part of the acceptable behaviour, represents a reflexive relation 
on the normal behaviour. Formally, we require that F X(h old1 hold, Raid, Ro/d). Furthermore, a failure 
hypot.hesis of failure prone process FP does not impose restrictions on communications along channels 
not in chan(FP), that is, F X --> X(hold i chan( FP), h i chan( FP), Rold i chan(FP), Ri chan( FP)) 0 

Care has to be taken that a failure hypothesis upholds the principle that communications cannot occur 
while being refused. Also, a failure hypothesis may not allow communications via one and the same 
channel to succeed one another arbitrarily fast or even coincide. 

Exanlple 3 (Corruption) Consider process C as already defined in Example 1. Assuming that cor­
ruption does not influence the real-time behaviour of C, we formalize corruption by asserting that 
hHin, out} and holdHin, Ollt} are equally long, if the ith element of holdHin, out} records an in com­
munication then it is equal to the ith element of hHin, out}, if the it,h element. of holdHin, out} records 
an out communication then so does the ith element of h 1 {in, out} and with equal timestamp. In the 
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latter case the communicated value recorded in h is not specified allowing it to be any element of VAL. 

Cor", len(hHin, out}) = len(hoIdHin, oui}) 
1\ IIi· 1:S:: i:S:: len(hHin, out}) - eh(hHin, ollt}(i» = eh(hoIdHin, aut}(i» 
1\ \Ii. 1:S:: i:S:: len(hTin) - hHin}(i) = holdHin}(i) 
1\ lIi·l:S:: i:S:: len(hjoui) - ts(hj{out})(i» = ts(holdHollt}(i» 
1\ R = Rold 

For a failure hypothesis X we introduce, similar to (20], the construct P l X to indicate execution 
of process P under the assumption of X. This construct enables us to specify failure prone processes, 
with typical representative FP. Using P to denote a process expressed in the programming language of 
Section 2, we define the syntax of our extended programming language in Table 3. 

Table 3: Ext.ended Synt.ax of t.he Programming Language 

Failure Prone Process FP P I FP 1 II FP, I FP\ eset I FPlx 

From Definit.ion 25 we obt.ain t.hat. ehan(x) ~ ehan(FP). Hence, ehan(FPlx) = ehan(FP) U ehan(x) = 
ehan(FP). As before, define ehan(FP 1 II FP,) = ehan(FPJ) U ehan(FP,), and ehan(FP\ eset) 
ehan(FP) - eset. 

The timed observations of a failure prone process FP are inductively defined as follows: 

• FP 1 and FP 2 synchronize on communications on the channels in chan(FP1 )nch.an(FP2 ). Hence, if 
a is a t.raee of FPdlFP2 then aT ehan(FP1 ) and aT ehan(FP2) are the corresponding traces of FP 1 

and FP 2 , respectively. As we already saw in Section 3, a communicat,ion is refused by FP 1 1IFP2 

if, and only if, it is refused by FP 1 or FP 2 . 

ClIFP1 1IFP2] = 
{ (a,'Jl) I t.here exist (0 1 ,'Jl1 ) E ClIFP1] and (02,'Jl2) E ClIFP2] such t.hat. 

OJ ehan(FP;) = Oi, for i = 1,2, Ojchan(FP 1 1IFP2) = 0, and 'Jl = 'Jl1 U'Jl2 } 

• The observations of FP\ cset are, as before, characterized by the fact that cset communications 
are continuously refused, except on single instants. 

ClIFP\cset] = {(O\eset,'Jl\cset) I (a,'Jl) E ClIFP] 1\ ASAP('Jl, eset)} 

• The observations of failure prone process FP 1 X are those observations that are related, according 
to X, to the observations of FP. 

ClIFPlx] = { (a,'Jl) I t.here exist.s a (Oo,'Jlo) E ClIFP] such t.hat., for all,, 
(Oo,O,'Jlo,'Jl,,) F X, ajchan(FP) = a, and 'JlTehan(FP) = 'Jl} 

From this definition of the semantics: 

Rule 5.1 (Iuvariauce 1) 

Rule 5.2 (Invariance 2) 

eset n chan(FP) = 0 
FP sat hl cset = () 

eset n ehan(FP) = 0 
FP sat Rl eset = 0 

Definition 26 (Colnposite transforlnation expressiou) For transformation expressions ¢l and 1/;2, 
the composite transformation expression ¢l bh is defined as follows 

1/Jd1/J2 '" 3s,N'1/Jl(hold ,S,Rold,N) 1\ 1/J2(s,h,N,R) 

where 8 and N must be fresh. 
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Since the interpretation of assertions has not changed, the validity of correctness formula FP sat ¢ is 
defined a.s in Definition 24, with P replaced by FP. 

The following lemma is easy to prove by structural induction. 

Lemma 2 (Substitution) Consider transformation expression 'ifJ(hold, h, Rold, R). 

a) (00 , 0, !1\0, 91,,) F 1/;(texp,h,R,'d,R) iff (T[texp](00,e,910 ,91,,),e,!1\o,91,,) F 1/; 

b) (Oo,e,!1\o,91,,) F 1/;(h,'d,texp,R,'d,R) iff (Oo,T[texp](eo,e,91o,91,,),!1\o,91,,) F-rp 
c) (Oo,O,!1\o,91,,) F 1/;(h,'d,h,rfxp,R) iff (00 , O,R[rfxp](Oo, O,!1\o,91,,),91,,) F 1/; 

d) (00, e, 910 , 91,,) F 1/;(hold, h, R,'d, rfxp) iff (Oo,O,!1\o, R[rfxp ](Oo,O,!1\o, 91, ,),,) F 1/; o 

6 A Compositional Network Proof Theory 

In this section we give a compositional network proof system for the correctness formulae. Since we focus 
on the relation between fault tolerance and concurrency, we have abstracted from the internal states of 
the processes and do not give rules for atomic statements, nor sequential composition. 

The proof system contains the following two general rules. 

Rule 6.1 (Consequence) 

Rule 6.2 (Conjunction) 

F P sat 1>1, 1>1 ~ 1>, 
FP sat 1>, 

FP sat 1>1, FP sat 1>, 
FP sat </>1 /\ </>, 

If h is a timed history of process FPdlFP, then we know that h restricted to ehan(FPJ) is the timed 
trace of communications performed by process FP 1• Similarly, the restriction of h to chan{FP2 } is the 
trace of communications performed by process FP 2 . We also know that a communication is refused 
by FP111FP, if, and only if, it is refused by FP 1 or FP,. The following inference rule for parallel 
composition reflects this knowledge. 

Rule 6.3 (Paraliel composition) 

FP 1 sat 1>1(h, R), FP, sat 1>2(h, R) 

FPdlFP, sat 3N1, N, . R = N1 UN, 
/\ </>1(hiehan(FP1),NJ) 
/\ </>,(" 1 ehan(FP,), N,) 

Observations of FP\ cset are characterized by the fact that. cset communications occur as soon as 
possible. Then, the effect of hiding a set cset of channels is simply that records of communications via 
channels of that set disappear from the process's history as do records of refused attempts from the 
process's refusal set. Thus, FP\ eset satisfies an assertion </> if FP satisfies ASAP(R, eset) ~ 1>, unless 
a reference to h or R in ¢ includes one or more channels from cset. 

Rule 6.4 (Hiding) 
FP sat ASAP(R, eset) ~ </>(" \ eset, R\ eset) 

FP\ eset sat 1>(", R) 

Lemma 3 (Hiding) With respect to hiding the following equalities are useful: 

a) (FP 1 \eset) II FP, = (FP11IFp,)\eset iff ehan(FP,) n eset = 0 

b) (FP\esetJ)\eset, = FP\(eset1 U eset.,) 
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Finally, for the introduction of a failure hypothesis we have 

Rule 6.5 (Failure hypothesis introduction) 

FP sat <P 
FPlx sat <PIx 

Observe that, since ¢ is an assertion, hOld and Rold do not appear in ¢, and hence also the composite 
expression ¢ l X is an assertion. 

7 Example: Triple Modular Redundancy 

Consider the triple modular redundant system of Figure 1. It consists of three identical components Cj, 
j ;::: 1,2,3, as already discussed in Example 1, an input triplicating component In, and a component 
Voter that determines the ultimate output. The intuition of the triple modular redundancy paradigm is 
that 3 identical components operate on the same input and send their output to a voter which outputs 
the result of a majority vote. We assume that a component needs Ke time units to apply a function 
f to an input value. Further, we assume that a component may transiently fail to provide output. To 
guarantee that a failed component does not arbitrarily fast accept fresh input, and hence confuse Voter, 
usually a synchronization channel sync is added. In this section we give the main steps of the proof that 
such failure of at most one component per round can be tolerated. 

C, 
In, OUll 

11! out 

1n3 out3 

C3 

sync 

Figure I: Triple modular redundant. system 

Definition 27 (Abbreviations) Throughout this section we use the following abbreviations: 

{ 

() if texp = () or ts(first(texp» > t 
• until(texp,t) = texp, iftexp = texp/texp, such that ts(last(texp,» ~ t and 

ts(first(texp,ll > t 
to denote trace i.cxp's prefix up to and including t. 

{ 

() if te>:p = () or ts(last(texp» < t 
• from(texp,t) = tcxp, if tcxp = texp,Atexp, such that ts(last(tcxp,» ~ t and 

ts(first(texp,)) > t 
to denote trace texp's suffix starting at t. 
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In accepts a value from the environment via channel in and dist.ributes that, value via channels inl, 
in2 and ina after KIn time units. When all three of them have occurred In tries t.o communicate via 
sync. [ time units after this communicat.ion has been taken, it enables in again. 

In sat Vi,j·l:'O i:'O len(hiin;) .... val(hiin;(i» = val(hiin(i» 
/I h = () .... enable in and refuse UJ=, {in;} upto (Xl 

/I Vt,v· (t, in,v) E h .... 
refuse chan (In) upto J{ In 

I\~=, after [(In: 'It, . in; refused precisely upto t, 
----j. enable inj for tl 

/lVt,v, (N=,(t,in;,v)Eh) .... 
refuse chan (In ) upto E 

/I after c : 'It, . sync refused precisely upto t, 
----j. enable sync for t 1 

/lVt,V' (t,sync,v)Eh .... 
refuse chan(In) up to E 

A after [ : Vt 1 . in refused precisely upto tl 
----j. enable in for t 1 

Voter awaits a communication via any of the channels out l , out2 and Olda. Upon occurrence of 
such a communication it. start.s a t.imer and await.s t.he remaining communicat.ions. If those remaining 
communications do not occur within Ll t.ime units the t.imer expires, and J{ Voter time units t.hereafter 
the tentative vot.e is communicat.ed to the environment via out. Thus, timing is essential as it ends the 
wait.ing for a value that got, lost. [ time units after an output occurs, Voter tries to synchronize via sync. 
When this communication is taken, it enables channels outl, out2 and ouia again. 

Voter sat h = () .... enable {in" in2, in3} up to (Xl 

/I Vk,l,m,t,v, k # I/lk # m/ll# m .... 
«t, onik, 11) E h /I (i, ani" 11) E h) .... 
Vtl . auim refused precisely upto il 

----j. refuse out upto lnin(tl' Ll) +]{ Voter 

/I after min(t" Ll.) + ]{ Voter : 

/I Vt,v· (t,out,v) E h .... 

Vt2 . out refused precisely upto t2 
---+ enable oui for t2 

/I 'Iv,· (t2' ant, lid E h .... v, = v 

refuse chan( Voter) upto E 

/I after c : 'It, . sync refused precisely upto I, 
.... enable sync and refuse chan( Voter) - {sync} for t, 

/I 'It,ll' (I,sync,v) E h .... 
refuse chan( Voter) upto c 

1\~=1 after [ : Vtl . inj refused precisely upto il 
---+ enable inj for tl 

Since C1 , C2 , and Ca do not. share a single channel, we easily obt.ain, by (Parallel composition) and 
(Consequence), that 
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CdlC2 11C3 sat Vi,j·1 ~ i ~ len(hioutj) ~ val(hiontj(i)) = f(val(hiin;(i))) 
f\ h = 0 ~ enable UJ=l {in;} upto 00 
f\ I/t,v· (f\~=l(t,in;,v) E h) 

~ refuse UJ=l {out;} up to Kc 
f\ after Kc : 

I/t , . UJ=l {out;} refused precisely upto t, 
~ enable UJ=l {out;} for t, 

f\ UJ=d ant;} enabled at t, 
~ after t, + [ : 

I/t2· UJ=,{ in;} refused precisely upto t, 
~ enable UJ=l {in;} for t, 

Under the assumption that faults do not change the rate at which a component accepts input, we 
formalize the hypothesis that. per round at most one of the components C 1 , C2 , and C3 fails in the way 
described above as follows: 

LOSS$.1 hi{inl,in2,in3} = holdi{iul,iu2,in3} 
f\ l/i·1 ~ i ~ llen(holdHout" 01lt2, out3})/3J ~ :lk # I· lI old To1lt.(i) E h 

1\ Rj{iul1 i1121 iU3} = Roldi{inll in21 in3} 
f\ Ri {onl." 01lt2, out3} 

R oldHont
" 

ont 2 , 01ti 3 } 

f\ hold i out,( i) E h 

U]=l{ {out;} x [t"t2) I :It,v· (t,01lt;,o) E hold f\ (t,01lt;,v) rt h 
f\ t, = ts(last(until(hTin;,t))) 
f\ t, = ts(first(frolll(hiin;, t))) } 

Observe that in this case the loss of a value boils down to refusing t.he communication involved until 
new input is accepted. 

Failure hypothesis L088':5.1 expresses that per round only one output fails to occur, and, furthermore, 
that despite such a failure fresh input. will be accepted as usual. Observe that it. suffices to know t.hat 
the environment did allow all output to conclude that a particular output does not occur due to a failure 
rather than thc unavailabilit.y of a communication partner. Hencc, by applying (Failure hypothesis 
int.roduction) and (Consequence) we conclude that after synchronous input via the channels inl, in2, 
and in3 at least two of the components of failure prone process (CdIC,IIC3 ) I LOSS$l will provide output 
within Kc time unit.s, and t,hat if at, the moment two such out.puts occur the environment does not refuse 
any of the out j communications, j = 1,2,3, t.hen all three component.s will accept, fresh input [ t.ime 
units thereafter. 
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h = () ~ enable UJ=I {inj} up to 00 

II Vt,v· U',S=I(t,ill-j,v) E h) 
~ refuse UJ=I {outj} upto KG 

II after KG : 

sat 

Vt , . UJ=I {outj} refused precisely upto t, 
~ 3k '" I· enable {out., out,} for t, 

IIVV"V2·«(t"outk,V,)Eh II (t"out/,v,)Eh) ~ vI=v2=/(v) 
II uJ=d outj} enabled at t, 
~ after t, + E : Vt, . UJ=I {inj} refused precisely upto t2 

~ enable UJ=I {inj} for t2 

Observe that, due to the assumptions concerning the environment's enabled ness to communicate, we 
only need the specifications of components GI , G2 , and G3 and failure hypothesis Loss '5. 1 to establish 
this non-blocking property. 

If the last communication of Voter relative to some instant t is a sync communication, or if Voter 
has not engaged in any communication up to and including time t, then we know that Voter does not 
refuse any outj, j = 1,2,3, at time t. Consequently, if an in commlluication occurs at time t then the 
before mentioned readiness of Voter does not change until an outj communication, j = 1,2,3, actually 
takes place. Using hvo'" = hTchan(Voter), we obtain, by (Parallel composition): 

II Voter 

sat 

ASAP(R, UJ=d outj}) ~ 
Vt,v· ( A~=I(t,inj,v)Eh 

II until(h Vo'oc,t) = 0 V 3t"V, ·Iast(until(hvo,oc,t.)) = (I."sync,v,) 
~ 3t , · O:St,:sLl. 

1\ refuse out upto Kc + h + K Voter 

1\ after Kc + il + K Voter: Vt 2 . out refused precisely up to t2 
--t enable out for t2 

II VVI . (t2, out, v,) E h ~ V, = V 

II after KG + E : VI. , . UJ=I {inj} refused precisely upto t, 
~ enable UY=I {inj} for t, 

1\ Vt, 11 • (t, out, v) E II. --t refuse sync up to [ 
II after € : Vt , . sync refused precisely up to t, ~ enable sync for t, 

Note that if (r,c,ll) E hand c rt eset then also (r,e,ll) E hTeset. Further note that if h = () then 
hTeset = (). 

Because In will not accept new input until a sync communication occurs, we may conclude that if at 
time t a sync communication occurs and, for j = 1,2,3, there eit.her has been no inj communication, or 
the preceding inj communications all happened at the same time, then Cj does not refuse inj, j = 1,2,3, 
at time t. Again, this readiness does not change until an inj communication, j = 1,2,3, actually occurs. 
By (Hiding), the specificat.ion of In, and (Parallel composition), 
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3 

In II (((C, IIC,IIC3 ) I Loss$I)IIVoler) \ U{oul;} 
j=l 

sat 

ASAP(R, U7=d in;} U {sync}) ~ 
I/t,v· ( (t,in,v) E h 

/I until(h i U7=1 {in;}, t) = 0 V 3t
" 

VI ·!\J=llast(until(hcj, t)) = (t" in;, v,) 
~ 3t" 0:'0 t, :'0 Ll 

1\ refuse out upto KIn + Kc + i l + f{ Voter 

1\ after KIn + Ke + h + J{ Voter: Vt2' out refused precisely upto t2 
---+ enable out for t2 

/II/vI' (t" out, v,) E h ~ v, = f(v) 
1\ Vi, v· (t, out, v) E h ---+ rcfuse in npto 2[ 

1\ after 2c : Vtl . in refused precisely upto i l ---+ enable in for i l 

If the first in communication occurs at t.ime t then we know that. until(hc,lIc,lIc" I) = O. Con­
sequently, Cj does not rcfuse inj at t, J = 1,2,3. Since this willingness does not change until an inj 
communication, j ::::: 1,2,3, actually occurs, the inductive structure that appears above can easily be re­
solved under the assumption that communications on inj I j = 1,2,3, occur as soon as possible. Formally, 
by (Hiding) 

3 3 

(In II ((C, IIC,IIC3 ) I Loss$l) II Voter) \ U{in;} U U{onl;} U {sync} 
j=l j=l 

sat 

I/t,v· (t,in,v)Eh ~ 
31" 0 :'0 I, :'0 Ll 

1\ refuse out upto KIn + Kc + i l +]{ Voter 

1\ after KIn + Kc + il + f{ Voter: 'Vi2' out refused precisely up to t2 
----1- enable out for t2 

/II/vI' (t." ont, VI) E h ~ v, = f(v) 
1\ Vt, v· (i, out, v) E h ----1- refuse in upto 2£ 

1\ after 2£ : Vt'l . in refused precisely upto tl ----1- enable in for tl 

8 Soundness and Relative Network Completeness 

In this section we show t.hat the proof syst.em of Section 6 is sound, t.hat is, we prove that, if a correctness 
formula FP sat ¢ is derivable, t.hen it is valid. Furthermore, we prove the proof system to be complete, 
that is, we prove that., if a correctness formula FP sat ¢ is valid, then it is derivable. 

Theorem 1 (Soundness) The proof system of Section 6 is sound. 

Proof. See Appendix A. 

As usual when designing a proof theory, we only prove relative completeness, assuming that we can 
prove any valid formula of the underlying logic (cf. [5]). Thus, using I- q, to denote that assertion q, is 
derivable, we add the following axiom to our proof theory. 

Axiorll 1 (R.elative cOlnpleteness asslunption) For an assertion ¢, 

I-q, if Fq, 

o 
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As in [24] we use the preciseness preservation property to achieve relative completeness. The intuition 
is that, as long as the specifications of the individual processes are precise, so are the deduced specifi­
cations of systems composed of such processes. Informally, a specification of a failure prone process is 
precise if it characterizes exactly the set of observations of the process. 

Definition 28 (Preciseness) An assertion ¢ is precise for failure prone process FP iff 

i) F FP sat 4>. 

ii) if OJ chan(FP) = 0, '.Rj chan(FP) = '.R, and, for some " (0, '.R, ,) F <p, then (0, '.R) E CJ[FPl 

iii) <P -> <p(hjchan(FP),Rfchan(FP)) 0 

Let I- P sat <p denote that correctness formula P sat <p is derivable. Note that no proof rules were 
given for the sequential aspects of processes, so our notion of completeness is relative to the assump­
tion that for a process P there exist.s a' precise assertion ¢. This leads to the definition of network 
completeness. 

Definition 29 (Network conlpletencss) Assume that for every process P there exists a precise as­
sertion ¢ with r P sat ¢. Then, for any failure prone process FP and assertion 7], 1= FP sat 7] implies 
I- FP sat ry. 0 

The following lemma asserts that preCiseness is preserved. 

Lemnla 4 (Preciseness preservation) Assume that for any process P t.here exists an assertion cf> 

which is precise for P and r P sat <p. Then, for any failure prone process FP there exists an assertion 
ry which is precise for FP and I- FP sat ry. 

Proof. See Appendix B. 

The following lemma assert.s t.hat any specification satisfied by a failure prone process is implied by the 
precise specification of t.hat process. Since a precise specificat.ion only refers to channels of t.he process, 
and a valid specification might refer t.o other channels, we have to add a clause expressing that the 
process neither communicates on those other channels nor refuses to do so. 

Lemma 5 (Preciseness consequence) If <PI is precise for FP and F FP sat <P2 then 
F (<PI /\ hichan(FP) = h /\ Rjchan(FP) = R) -> <P2 

Proof. Assume that. <PI is precise for FP, and that F FP sat 4>2 (1). 
Consider any e, '.R, and,. Assume (e,'.R,,) F<Pl /\hfchan(FP) = hI\Rfclwn(FP) = R. Then, by the 
preciseness of <PI for FP, (O,'.R) E CJ[FP]. By (1), for all::;, (O,'.R,::;) F <P2. Hence, (O,'.R,,) F <P2. 0 

Now we can establish relat.ive network completeness. 

Theorenl 2 (Relative network cOlnpletencss) The proof system of Section 6 is relatively network 
complete. 

Proof. Assume t.hat for every process P there exist.s a precise specification ¢ with r P sat <p. Then, 
by t.he preciseness preservation lemma, for every failure prone process FP there exists an assertion 1} 

which is precise for FP and I- FP sat '1 (1). 
Assume F FP sat ~. By the definition of the semantics, 

I- FP sat hi chan(FP) = h /\ Ri chan(FP) = R (2). 
Then, by (1), (2), the preciseness consequence lemma, the relative completeness assumption, and (Con­
sequence), I- FP sat ~. 0 
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9 Conclusions 

We have defined a compositional proof theory for fault tolerant real-time distributed systems. In this 
theory, the failure hypothesis of a process is formalized as a relation between the normal and acceptable 
behaviour of that process. Such a relation enables one to abstract from the precise nature of a fault 
and to focus on the abnormal behaviour it causes. With respect to existing SAT formalisms, only one 
new rule, viz. the failure hypothesis introduction rule, is needed. We illustrated our method by proving 
correctness of a triple modular redundant system. 

An obvious continuation of the research described in this report is to find a logic to express failure 
hypotheses more elegantly, e.g. using the classification of failures that appears ill [7]. 
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A Proof of the Soundness Theorem 

A_I Soundness of the consequence and conjunction rule 

Trivial. 

A.2 Soundness of the parallel composition rule 

(1) . Assume F FP, sat <p" F FP2 sat <P2 
Consider any,. Let (0,9't) E O[FPdIFP 2]. 
9't; such that (OT chan(FP;), 9't;) E O[FP;] 
and 9't = 9't, U 9't2 

By the definit,ion of the semantics there exist, for i = 1,2, 

Let, for fresh N, and N 2 , 9 = (,: (N"N2 ) ~ (9't,,9't2 )). 

(2), 
(3). 

By (3), (O,9't,9) F R = N, U N2, or (0,9't, ,) F 3N" N2 · R = N, U N2 (4). 
By (1) and (2), for all,', (OTchan(FP;),9't;,,') F <P;, i = 1,2. Then, (OTchan(FP;),9't;,9) F <p;. 
Observe that R.F[N;](0,9't,9) = 9't; and that T[hTchan(FPi)](O,9't,9) = OTchan(FP;) Consequently, 
we have (T[h Tchan(FP;)](O, 9't, 9) , 'R..F[Ni](O, 9't, 9) , 9) F <Pi. Then, by applying substitution lemma 
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b) and d), we obtain that (B, 'Jl, 9) F .pi[ (h Tehan (F Pi ))/ h , N, / R ], from which we may conclude that 
(B,'Jl,,) F 3N

"
N2 . .p,[ (hichan(Fp,))/h, N;/R] (5). 

By (4) and (5) we conclude that the parallel composition rule is sound. 0 

A.3 Soundness of the hiding rule 

Assume that F FP sat ASAP(R, cset) ~ .p(h\cset, R\cset) (1). 
Consider any,. Let (B, 'Jl) E O[FP\ cset]. Then, by the definition of the semantics there exists a 
(0,9l) E O[FP] (2) 
for which ASAP(9l, cset) (3), 
such that B = 0\ cset (4), 
and 'Jl = 9l\ cset (5). 
By (2) and (1), we have that, for all" (0,9l,,) F ASAP(R, cset) ~ .p(h\cset,R\cset). Then, by (3), 
(0,9l,,) F .p(h\cset,R\cset). By substitution lemma b) and d), we obtain (O\cset,9l\cset,,) F.p. 
Hence, by (4) and (5), (0,'Jl,,) F.p, from which we conclude that the hiding rule is sound. 0 

AA Soundness of the failure hypothesis introduction rule 

Assume that F FP sat .p (1). 
Consider any,. Let (0,'Jl) E O[FPlx]. Then, by the definition of the semantics, there exists a 
(00,'J\n) E O[FP], such that, for all" (00,0,'J\n,'Jl,,) F X (2). 

Let, for fresh sand N, 9 = CI: (s,N) >-+ (00,'J\n)). 

Since (00,<Jlo) E O[FP], we know, by (1), that, for all " (Bo,'Jlo,,) F.p. Consequently, we have 
(00,'Jlo,9) F.p. As, for all "0 and 9l, 7[s]("O,9l,9) = 00 and RF[N](0,9l,9) = 'J\n, we may conclude 
(7[s](0, 'Jl, 9), R.F[M](O, 'Jl, 9), 9) F.p· Hence, by applying substitution lemma b) and d), we obtain 
(0,'Jl,9),F.p[s/h, N/R] (3). 
By (2), (00,0, 'Jlo, 'Jl, 9) F x, that is, (7[s](0, 'Jl, 9), 0, RF[N](O, 'Jl, 9), 'Jl, 9) F X. Then, by substitution 
lemma a) and c), (00 , 0, 'Jlo, 'Jl, 9) F X[S/h,ld, N/R'ld]. Since h,ld and R,ld obviously do not appear in 
X[S/h,ld, NIRold] we may conclude that (B,'Jl,9) F x[slh'ld, NIR,ld] (4). 
By (3) and (4) we obtain that (0, 'Jl, 9) F .p[slh, NIR] f\ x[slh old , NIR'ld],fromwhich we conclude 
(B,'Jl,,) F 3s, N . .p[ slh , NI R] f\ X[ slho/d , NI R,ld J. Hence, the failure hypothesis introduction 
rule is sound. 0 

B Proof of the Preciseness Preservation Lemma 

By induction on the structure of FP. (Base Step) By assumption, the lemma holds for P. (Induction 
Step) Assume the lemma holds for FP: 

a) Assume I- FP , sat .p, and I- FP, sat .p" with .p, and .p2 precise for FP , and FP" respectively. 
By applying (Parallel composition), we obtain 

I- FP , 11 FP, sat 3N
"

N2 · R= N, UN, (1). 
f\ .p,(hi chan(FP, ), N,) 
f\ .p,(hTchan(FP,),N,) 

We show that the above specification is precise for FP , II FP,. 

i) By (1) and soundness, we obtain 

F FP , II FP, sat 3N
" 

N,· R = N, UN, 
f\ .p, (h T chan(FP'), N,) 
f\ .p2(hTchan(FP2), N,) 
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ii) Let chanCO) <;; chan(FPdIFP,) 
and !Rlchan(FPdIFP,) =!R 
Assume further that, for some -y, (O,!R, -y) F= 3N" N, . R = N, UN, 

Hence, there exist ~ and 9l; such that 

/\ <p,(hlchan(FP,),Nd 
/\ <p,(h I chan(FP,), N,) 

(O,!R,(-y: (N"N,) >-+ (iR;,iJi;))) F= 3N"N,· R= N, uN, 

Then, by substitution lemma b) and d), 

/\ <p,(hl chan(FP!l, Nd 
/\ <p,(hl chan(FP,), N,) 

(0 I chan (F P d, iR; , (-y : (N" N,) >-+ (iR;, iJi;))) F= <p, , 

and since N, and N, do not occur free in <p" (Olchan(FP,),iR;,-y) F= <p,. 
By the preciseness of <p, for FP" 

(01 chan(FPd, iR;, -y) F= <p, [hi chan(FPd/h, RI chan(FPd/ R]. 
By substitution lemma b) and d), using (01 chan(FPdHchan(FP,) = 01 chan(FPd, 

(2), 
(3). 

(4) 

(01 chan(FPd, iR; I chan(FPd, -y) F= <p, (5a). 

Trivially, chan(OI chan(FPd) <;; chan(FPd (5b). 

It is also obvious that (iR;lchan(FP,)Hchan(FPd = iR;lchan(FPd (5c). 

By (5b), (5c), and (5a), the preciseness of <p, for FP, leads to 

((01 chan(FPd, iR; I chan(FPd,) E OIFP,] (5). 

Similarly, ((01 chan(FP,), iJi; I chan(FP,),) E OIFP,] (6). 
By (2), trivially, Olchan(FP,IIFP,) = 0 (7). 
By (4),!R = iR; u iJi;, that is, by (3),!R = (iR; I chan(FP!l) U (!it; I chan(FP,)) (8). 
By (5), (6), (7), and (8), (O,!R) E OIFPdIFP,]. 

iii) Consider any 0, 9\, and I such that 

(O,!R,-y) F= 3N"N,· R= N, UN, 
/\ .p,(hl chan(FPd, N,) 
/\ <P,(hlchan(FP,),N,) 

which is, obviously, equivalent to 

(O,!R,-y) F= 3N"N,· R= N, UN, 
/\ <p, ((h I chan(FP,IIFP,))I chan( FPd, Nil 
/\ (hUh I chan(FPdIFP,))i chan(FP,), N,) 

By the preciseness of <p, and <p, for FI', and FP" we have, using N; = Nil chan(FP;), i = 1,2, 

(O,!R,-y) F= 3N"N,· R= N, UN, 
/\ <p, «h r chan(FP,IIFP 2 ))j chant FPd, M) 
/\ <p,((h I chan( FP,IIFP,))I chan(FP,), N,) 

Following the steps that were taken sub ii), we obtain, using R = RI chan(FP,IIFP,), 

(O,!R,-y) F= 3N"N,· R= M uN; 
/\ <PI ((h I chan(FP lllFP,))I chan(FPIl, M) 
/\ <p,((hl chan(FPdIFP,))I chan(FP,), N;) 

or, equivalently, 

(O,!R, -y) F= 3M, N; R = Nl uN; 
/\ <PI ((h I chan(PP dIFP,))I chant ppd, M) 
/\ <p,((h I chan( PI' dIFP,))i chan(FP,), N;) 
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b) Assume I- FP sat </> 

with </> precise for FP. Define ~ 3s, N . </>(s, N) 
1\ ASAP(N, eset) 
1\ h = s \ eset 
I\R=N\cset 

(1) , 

We show that I- FP\ cset sat ~, and, furthermore, that ~ is precise for FP\ eset. The following 
lemma is trivial. 

Lemma 6 F </> ~ ~(h \ cset, R\ eset, E\ eset) 

By Lemma 6 and the relative completeness assumption, 

I- </> ~ ~(h\eset,R\eset) 
Hence, by (1) and (Consequence), 

I- FP sat ~(h \ eset, R\ eset) 

Then, by (Hiding), I- FP\ eset sat ~ 

It remains to be shown that ~ is precise for FP\eset 

i) By (2) and soundness F FP\ eset sat </>. 

ii) Let ehan(B) <;; chan(FP\ eset) 
!)ti ehan( FP \ eset) = !)t 

o 

(2). 

(3), 
(4), 

and assume that, for some 'Y, (B,!)t, ,) F ~ Then, there exist some 0 and 6l such that 

(B,!)t, (-y : (5, N) >-+ (0,9"\))) F </>(5, N) 
1\ ASAP(N, eset) 
1\ h = 5 \ eset 
1\ R = N\cset 

(5). 

Then, ASAP(9"\, eset) (6), 

0= 0\ eset (7), 

and !)t = 9"\\ eset (8). 

By (5), (0,9"\, ,) F </> (9a). 

By (3) and (7), ehan(O) <;; ehan(FP\ eset), and, hence, ehan(O) <;; ehan(FP) (9b). 

By (4) and (8), and the fact that eset <;; ehan(FP), we obtain 9"\iehan(FP) = 9"\ (9c). 

By (9b), (9c), and (ga), and the preciseness of </> for FP, (0,9"\) E O[FP] (g). 

By (9), (6), (7), and (8), (O,!)t) E O[FP\ eset]. 

iii) Assume (0,91., 'Y) F= J;. Then, there exist (j and 9l such that. 

(B,!)t, (, : (s, N) >-+ (0,9"\))) F </>(5, N) 
1\ ASAP(N, eset) 
1\ h = s \ eset 
1\ R = N\ esct 

By the preciseness of ¢ for FP, 
</>(s, N) ~ </>(si ehan(FP), Niehan(FP)) 
It is obvious that ASAP(N, eset) ~ ASAP(N\ ehan(FP), eset) 
Note that h = s\esct ~ hiehan(FP\eset) = (siehan(FP))\eset 
By (1), R= N\eset, that is, Riehan(FP\esct) = (Niehan(FP))\esct 
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By (1) - (5), (O,!It,(,: (s,N) >--+ (O,iit))) 1= q,(sjchan(FP),Njchan(FP)) 
/\ ASAP(Njchan,(FP), csel) 
/\ hjchan,(FP\cset) = (sjchan,(FP»\csel 
/\ Rjchan(FP\cscl) = (Njchan(FP»\csel 

From which we may conclude (O,!It,,) 1= ¢[hjchan(FP\csel)lh,RTchan(FP\csel)IRj. 

c) Assume I- F P sat q, 

with q, precise for FP. Define ¢ == q,lx, that is 

¢ == 3s,N·q,[slh, NIRj/\ X[slh"d, NIR,'dj 

Then, by (1) and (Failure hypothesis introduction), I- FPlx sat ¢ 
We show that ¢ is precise for F P I x· 

i) By (2) and soundness, we have 1= FPlx sat ¢. 
ii) Let chan(O) S;; chan(FPlx) 

!ltTchan(FPlx) = !It 

(1 ), 

(2). 

(3), 
( 4), 

and assume that., for some " (0, !It, ,) 1= ¢. Consequently, there exist some ° and iit such that 

(0, !It, b : (5, N) >--+ (O,iit») 1= q,[ slh, NI R j/\ X[ slh,'d, N I ROld j (5). 

Then, by substitution lemma b) and d), (0, iit, (, : (5, N) >--+ (0, iit») 1= q" and thus, since s 
and N do not occur free in q" (0, iit, ,) 1= q,. Since q, is precise for FP, we may conclude that 
(O,iit,,) 1= q,[(hjchan(FP»lh,(Rjchan(FP»IRj. Hence, by substitution lemma b) and d), 

(OJ chan(FP), iitj chan(FP), ,) 1= q, (6). 

Trivially, chan(Oj chan(FP» S;; chan(FP) (7). 
It is also obvious that (iitjchan(FP)ijchan(FP) iitjchan(FP) (8). 
By results (7), (8), (3), (4), (6), and the fact that q, is precise for FP, we may conclude that 

(OJ chan(FP), iitj chan(FP),) E V[FP] (9). 
By (5) and the correspondence lemma, for all 00 and !Ito 

(Oo,O,!lto,!It,(, : (s,N) >--+ (O,iit») 1= X[ slhold,NIR,'d j. By substitution lemma a) and 
c) we obtain (O,o,iit,!It,(, : (s,N) >--+ (O,iit») 1= X, and thus, since sand N do not oc­
cur free in X, (O,O,~,9t'/) F x. Since X is a failure hypothesis, we may conclude that 

(O,o,iit,!It,,) 1= X[(h,'djchan(FP»lho'd,(R,'djciwn(FP»IRo'dj. By substitution lemma a) 

and c) (Iirchan(FP),O,iitjchan(FP),!It,,) 1= X (10). 

By (9), (10), (7), and (8), (0, !It) E V[FPlxl 

iii) Follows from the fact that, since <p is precise for FP 1 

q, ~ q,[(hjchan(FP»lh,(RTchan(FP»IR], the fact that, since X is a failure hypothesis, 

X ~ x[(hjchan(FP»)lh,(R.jchan,(FP)IR], and the fact that chan(FPlx) = chan(FP). 
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