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TAIL ASYMPTOTICS FOR PROCESSOR SHARING QUEUES

FABRICE GUILLEMIN, PHILIPPE ROBERT, AND BERT ZWART

ABSTRACT. The basic queueing system considered in this paper is the MIG/1
processor sharing (PS) queue with or without impatience and with finite or
infinite capacity. Under some mild assumptions, a criterion for the validity of
the RSR (Reduced Service Rate) approximation is established when service
times are heavy tailed. This result is applied to various models based on
MIG/1 processor sharing queues.
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1. INTRODUCTION

Processor Sharing (PS) queues, made popular by the work of Kleinrock [13],
were originally proposed to analyze the performance of time sharing disciplines
in computer systems. Over the past few years, the processor-sharing paradigm
has emerged as a powerful concept for modeling the flow-level performance of
bandwidth-sharing protocols in communication networks. In this context, the driv
ing random variables (especially service times) of PS models are often assumed to be
heavy-tailed, reflecting the extreme variability of file transfers and session lengths.
In view of this, several studies have focused on the analysis of the tail of the so
journ time distribution for the M/G/l PS queue under heavy-tailed assumptions.
See for example (in increasing level of generality) Zwart and Boxma [18], Nunez
Queija [14], and Jelenkovic and Momcilovic [10]. In all these references, sufficient
conditions are given for the following tail-equivalence between the distributions of
the sojourn time V and of the service time B of a customer:

(1) 1P' (V> x) rv 1P' (B > x(1 - p)),

The equivalence indicates that for a customer with a large sojourn time everything
happens as if he were served alone with a reduced service rate 1-p. In other words,
the service rate 1 is reduced by the load p of the other customers. Therefore, the
equivalence (1) is often called a reduced-load approximation (RLA) , or also a reduced
service rate approximation (RSR).
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The present paper extends (1) to a wide class of processor sharing queues. This
is established by means of a sufficient condition for (1) which can, in principle, be
applied to evaluate delay asymptotics for any model in which time-sharing plays a
role. In particular, we extend Equation (1) to the case when a customer receives a
general service rate in if there are n customers in the system (PS is a special case
with in = l/n). This service discipline is sometimes called Generalized Processor
Sharing, see e.g. Cohen [7], but nowadays this term is also used for another class
of models (namely Weighted Fair Queueing systems [5]). Thus, we shall call this
extension state-dependent processor sharing. An important special case of the class
of state-dependent PS queues is the M/G/s PS queue, with in = max{l,s/n}. A
convenient property of this class of models is in that the steady-state distribution
is insensitive; see Bonald and Proutiere [3] for recent work on insensitivity of such
queues.

A second class of models considered in this paper is composed of PS queues with
finite buffers and/or reneging. This class of models is the original motivation for
this work: PS queues with reneging aim at capturing impatience effects occurring
at the user level. As a matter of fact, it is often observed in the Internet that users
transferring large files often interrupt their transactions when the received band
width is so small that transaction durations become far too long. This phenomenon
is mainly due to the protocol used to transfer data in the Internet (namely TCP),
which achieves to some extent a fair sharing of bandwidth in the network..

An important issue for this kind of traffic is whether admission control should be
performed or not. The large-deviations results of the present paper aim to give some
insight into the introduction of admission control for elastic traffic in broadband
packet networks; we refer to the paper Boyer et al. [4] for more discussion in this
direction. From a technical point of view, the main point of that paper is to make
use of the relation IP' (V> x) = IP' (B > R(x)), where R(x) is defined as

r 1
R(x) = Jo 1 +Q(u) du

with Q(u) being the queue length process in the same PS queue with one additional
permanent customer. In this setting R(x) is the amount of service received by the
permanent customer between 0 and x. This relationship holds for any PS queue.

This expression shows the importance of the process {R(x)}. In fact, the most
important condition for (1) to hold is that IP'(R(x) < x/K) is sufficiently well
behaved when x gets large for some particular K. This brings us to another con
tribution of this paper: The study of probabilities of the form IP' (V(ax) > x) when
a > 0 is fixed and x goes to infinity, where V(ax) is the sojourn time of a cus
tomer with service time ax. Besides being of intrinsic interest, and being a crucial
ingredient in the proof of (1), these asymptotics are also useful to investigate the
probability of reneging of large files, see Section 5.

We analyze these probabilities using large-deviations techniques for heavy-tailed
distributions. In particular, we show that

(2) IP' (R(x) < ax) = IP' (V(ax) > x) = O(IP' (B r > x/Cal)
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with l(a) a step function of a. We note that l(a) can be interpreted as the number
of other large customers which are necessary to cause a large sojourn time.

The paper is organized as follows. In Section 2, we formulate our general result.
This result is applied in Section 3, to obtain the delay asymp£otics for the standard
PS queue. The method in this section is easily extended to the class of state
dependent PS queues, as shown in Section 4. Sections 5 and 6 consider PS queues
with finite buffers and/or impatience. In particular, an analogue of (1) is developed
in Section 5, and analogues of (2) are given in Section 6.

Throughout the paper, for any non-negative random variable X with finite mean,
X r will denote a random variable whose density is given by JP> (X > x) /E (X) and
for x 2: 0, lxJ is the integer part of x.

2. A SUFFICIENT CONDITION FOR TAIL-EQUIVALENCE

In this section we give a general result, which will be the starting point for a
number of specific models to be discussed later on.

Although all our applications concern PS queues, we will formulate our result in
a more general setting. Consider an a.s. increasing stochastic process (R(x), x 2: 0)
such that R(x)/x converges to some constant "'I E (0,1) a.s., and a random variable
B which is independent of (R(x)). We are interested in the asymptotic behavior of
the probability JP> (B > R(x)) as x goes to infinity.

The main result of this section gives a sufficient condition for the tail equivalence

JP>(B > R(x)) '" JP>(B > "'Ix).

Informally, this result holds if the speed of convergence of R(x)/x is sufficiently
fast, compared to the tail behavior of JP> (B > x). This is formalized by Theorem 1
below, which relies on the following conditions.

Assumptions.

(A-I) The distribution function of the service time has a regularly varying tail
with index 1J 2: 1, i.e.

JP>(B > x) = L(x)x-V
;

(A-2) R(x)/x -+ "'I a.s. as x goes to infinity, with °< "'I < 1;
(A-3) There exists a positive and finite constant K such that

JP>(R(x)::; x/K) = o(JP>(B > x)).

Theorem 1. If Assumptions (A-l)-(A-3) hold and the random variable B is in
dependent of the process (R(x)), then

JP>(B > R(x)) '" JP>(B > "'Ix)

when x goes to infinity.

This result is related to Theorem 5.1.1. in Nuiiez-Queija [14]. The main strength
of our theorem is the weakness of the third condition. In Nunez-Queija's result, a
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similar condition needs to be satisfied for every K > 1/'y. As indicated in Nunez
Queija [ibid.], this condition can be checked when some detailed information of the
sojourn-time distribution is known.

Our proof is related to recent work of Foss and Korshunov [9]. Indeed, our result
can be reformulated as the problem of sampling the stochastic process R-1(x) at a
sub-exponential time B. Further work on this problem can be found in Asmussen
et ai. [2], and Jelenkovic et ai. [11].

Proof. For x 2: 0 and e > 0, the quantity lP (B > R(x)) can be decomposed as
follows:

lP (B > R(x)) = lP (B > R(x), R(x) 2: (-y + e)x)

+ lP (B > R(x), (-y - e)x < R(x) < (-y + e)x)

+ lP (B > R(x), R(x) ~ (-y - e)x)

= I + II + III.

The three terms are estimated separately. Note that Term I is less than

lP (B > (-y + e)x) lP (R(x) 2: (-y + e)x) ,

which is o(lP (B > 'Yx)) by the Law of Large Numbers (LLN) stated above (As
sumption (A-2)) and the Regular Variation (RV) property of the distribution of B
(Assumption (A-I)).

Term II can be lower bounded by

II 2: lP (-yx - ex < R(x) < 'YX + ex) lP (B > 'YX + ex) = lP (B > 'YX + ex) (1 - 0(1)),

as x ~ 00, and upper bounded by II ~ lP (B > 'YX - ex).
We now turn to Term III. Distinguishing between the two cases R(x) < xlK and

R(x) 2: xlK, the quantity III can be written as III = IIIa+IIlb. Assumption (A-3)
implies that IlIa can be neglected. The other term IIIb is given by

IIIb = lE [lP(B > R(x)IR(x)) l{x/K<R(x)<b-e)x}]

~lP(B>xIK)lP(R(x)< (/'-e)x)

lP(B > xlK)
=lP(B>'Yx ) lP(B>'Yx ) lP(R(x) < (/'-e)x).

The regular variation property of the distribution of B shows that second term of the
last expression is converging to a constant as x goes to infinity. By Assumption (A
2), it is then clear that IIIb is o(lP (B > 'Yx)).

As a consequence, since

lP (B > 'Yx ± ex) = (_1'_) II (1 + 0(1))
lP(B>'Yx ) 'Y±e

when x goes to infinity, we deduce that for all e > 0

(_1'_)11 +0(1) ~ lP(B > R(x)) ~ (_1'_)11 +0(1)
'Y+ e lP(B>'Yx ) 'Y- e

when x goes to infinity. Since the above inequality is valid for all 0 < e < 1', we
obtain the desired result and the theorem is proved. 0
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(3)

As will become clear below, Assumption (A-3) is the most difficult condition
to be checked. Assumption (A-2) is usually implied by stability of the queueing
system. Indeed, when

r 1
R(x) = Jo 1 + Q(u) du,

where (Q(u)) is the number of non-permanent customers in a processor sharing
queue having a permanent customer, R(x) is the amount of service received by the
permanent customer. In this case, under some stability condition,

'Y=lE C+~(OO))
where Q(oo) is the limit in distribution of the process (Q(u)).

3. THE MIG/1 PS QUEUE

In this section we consider the standard MIG/1 PS queue with arrival rate A
and generic service time distribution B. Let p = AlE (B) be the load of the queue,
assumed to be strictly less than 1. The goal of this section is to show that Theorem 1
can be used in this case. While the reduced load approximation (RLA) is already
known for this queue in a more general context, this section is intended to set up
a procedure relying on the use of Assumptions (A-1)-(A-3), which will used in the
following to obtain an RLA property for several other queueing systems.

The processor sharing queue is assumed to be at equilibrium at time 0 and that
a permanent customer arrives at that time. The stationary sojourn time V of this
queue can then be expressed as the time at which the amount of service received
by the permanent customer is equal to his requested service time B independent
of the system. This yields the following representation: lP' (V > x) = lP' (B > R(x)),
where

(X 1
R(x) = Jo 1 + Q(u) du,

(Q(u)) describing the number of non-permanent customers in the queue. It is first
shown that Assumption (A-2) holds for the variables (R(x)). By adding residual
service times of non-permanent customers, it is not difficult to show that the process
(Q(t)) can be embedded in a Markov process and that this process is Harris ergodic
(by looking at the evolution of the total workload and by using Proposition 3.13
of Asmussen [1] for example). Thus the ergodic Theorem for Harris Markov chains
shows that (x - R(x))/x converges almost surely to some constant. Since x - R(x)
is the amount of work received by non-permanent customers up to time x, this
constant is necessarily p. Hence the quantity R(x)/x converges almost surely to
1 - p as x goes to infinity. Assumption (A-2) is hence satisfied.

A key ingredient in our analysis is the Processor Sharing queue with k permanent
customers, the corresponding queue length process is denoted by Qk (u). Define
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(5)

Note that by definition R(x) = R 1 (x). With similar arguments as before, it is not
difficult to show that

(4) lim Rk(X) =.!.1E (1- Qk(OO) ) = 1- p.
x-+oo x k k + Qk(OO) k

The main result of this section is the following RLA property.

Theorem 2. If p < 1 and B is regularly varying of index 1J with 1J > 1, then

J1D(V > x) "-' lfD(B > (1- p)x) ,

as x goes to infinity.

In order to prove Theorem 2, the major difficulty is to show that Assumption (A-
3) holds. For, we prove a series of technical lemmas. But before proceeding with
this task, let us introduce some additional notation.

Let C(c:, x) be the number of (non-tagged) customers in the system with service
time larger than c:x. More precisely, C(c:, x) counts both those customers in the
system at time 0 with remaining service time exceeding c:x and those customers
entering the system in the time interval (0, x) with service time larger than c:x.
Moreover, we add a subscript "<c:x", if we consider a system where all service
times are conditioned to be smaller than c:x, including those customers already in
the queue at time O. Finally, let e(a) be defined as:

e(a) = inf {k: ~~ ~ ~~ < a} = l(1 : p) J.
We first state an important lemma, which is an easy consequence of equation (3.9)
in Zwart [17].

Lemma 1. Consider an MIGII FIFO queue with input rate A and such that service
times are bounded by c:x for some c: > 0 and x > O. Let P(c:x) denote the duration
of a busy period of this queue starting at time t = O. Then, for every (3 > 0, there
exists c:o > 0 such that for c: < c:o

lfD (P(c:x) > x) = o(x-13 ),

when x goes to infinity.

By using the above lemma, we can then prove the following result.

Lemma 2. Let 0 < a < 1 and suppose that (1- p)la is not an integer. Then, for
every (3 > 0, there exists c: > 0 such that

lfD(R(x) < ax,C(c:,x):5 e(a) -1) = 0 (x- 13 ).

Proof. Let (3 > 0 and consider first the case e(a) = 1. The probability of interest
has the form

lfD (R(x) < ax, C(c:, x) = 0) = lfD (V<ex(ax) > x),

where V<ex(ax) is the sojourn time of a customer with requested service time ax
under the assumption that all other service times are smaller than c:x.
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Since the standard PS queue is work conserving, we can bound V<ex(ax) by the
residual busy period of an MIGII queue with service times B < ex and an addi
tional customer with service time ax. Write this residual busy period as P(a, e, x).
Without loss of generality, we can first serve the customer with service time ax,
and all the work arrived during this first service (and so on).

This branching argument leads to the decomposition

P(a, e, x) = PI (a, e, x) +P 2(e, x),

where PI(a,e,x) is the busy period initiated by the customer with service time ax
and P 2 (e, x) is the busy period initiated by customers in the queue at time O. We
then have

lP(V<ex(ax) > x):::; lP(P(a,e,x) > x)

:::; lP (PI (a, e, x) > c>x) + lP (P2 (e, x) > (1 - c»x) ,

for some 6 E (a,I).
Let P(ex) be the duration of a busy period of an MIGII queue with service

times less than ex. Moreover, let M(ax) be the number of customers entering the
system during the service of the large customer. Note that

M(ax)

PI(a,e,x)d~t'ax+ L Pi(ex).
i=1

where Pi(ex) are independent copies of P(ex). Hence,

(

M(aX) )

lP(PI(a,e,x»6x)=lP' {; Pi«ex) > (c>-a)x

(

lAa+7))xJ )
:::; lP (M(ax) ~ lAa + 71)xJ) + lP {; Pi (ex) > (6 - a)x .

for some 71 > O. The second term on the r.h.s. of the above equation can be upper
bounded by

(

lAa+7))xJ )
lAa + 71)xJlP (P<ex > qx) + lP {; Pi 1\ (qx) > (c> - a)x

for some q > 0, where Pi are Li.d. copies of the busy period P of the MIGII FIFO
queue with service times regularly varying with index v and where we have used
the fact that P(ex) :::;st P. Note that the mean value of Pis pl(A(1 - p)).

In the following, we show that by adequately choosing the parameters q, 71, c>

and e, we have lP' (pI(a,e,x) > 6x) = o(x-.B) as x gets large. Since it has been
assumed that £(a) = 1, in particular al(l- p) < 1, a constant c> E (al(1 - p), 1) is
fixed. Choose now 71 > 0 and J1, > 0 so that

~ d~. c> - (Aa + 71) (A(1 ~ p) + J1,) > o.
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With this choice of the parameters, we have

Since we know from Zwart [17] that the tail distribution of the variable P is
dominated at infinity by a regularly varying function with index 1/, by applying
Lemma 2.1 in Resnick and Samorodnitsky [15], under the assumption l~/qJ ~ 3,
one gets that

(

UAa+'7)xJ )
lP £; Pi 1\ (qx) > (0 - a)x :s cp(~x),

where cp is regularly varying with index II~/qJ /3J(1/ - 1) at infinity. By choosing q
sufficiently small so that ll~/qJ/3J(1/-1) > (3, we deduce that when x gets large,

(

L(Aa+'7)XJ )
lP £; Pi 1\ (qx) >(0 - a)x = o(x-J3 ).

By choosing e sufficiently small, the relation lP(P(ex) > qx) = o(x-J3 - 1) holds
as x goes to infinity by Lemma 1, thus

(>.a + 1J)xlP (P<ex > qx) = o(x-,B)

when x gets large. Finally, the term lP (M(ax) > l(>.a +1J)xJ) decays exponentially
fast and is then o(x-J3 ). The above results show that lP (pl(a,e,x) > ox) = o(x-,B)
as x gets large.

To complete the proof for £(a) = 1, we note that we simply have

lP(p2(e,x) > (1-0)x) =lP(P~ex > (1-0)x),

where P~ex is the residual lifetime of the busy period P<ex. Since we can choose e
sufficiently small so that IP' (P<ex> x) = o(x-(J3+1») when x -+ 00, hence

IP' (pr(ex) > (1- o)x) = o(x-J3 ).

Let us now consider the case when £(a) is arbitrary. We have

lP(R(x) < ax,C(€,k):S £(a) -1):S lP (R£(a),<ex < ax),

with

l
x 1

R£(a) <ex = ( ( ) duo
, 0 £ a) + Q£(a),<ex U

Note that the latter probability is related to the sojourn time distribution in a PS
queue with £(a) permanent customers:

lP (R£(a),<ex < ax) = lP (V£(a),<ex(ax) > x) .
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It has been shown by van den Berg and Boxma [16] that the Laplace transform of
the sojourn time V(7") of a customer with service time 7" in the MjGjl PS queue
conditionally to the fact that there are k permanent customers is given by

(6) JE (e-SV(r) I k, 7") = (JE (e-SV(r) I 0,7")) k+1 .

Taking 7" = 00, we deduce that the sojourn time Vl(a),<ex(ax) is such that

ve(a),<ex(ax) d~t. V~ex(ax) + ... + V~~~(ax),

where V~ex(ax) for i = 1, ... ,£(a) are £(a) independent copies of V<ex(ax), which
is the sojourn time of the customer with service time ax. It follows by using the
union bound that

lP' (ve(a),<ex(ax) > x) ::; £(a)lP' W<ex(ax) > xj£(a))

= £(a)lP' (R<ex(xj£(a)) < ax).

We can then proceed as in the case £(a) = 1, using the fact that a < (1 - p)j£(a),
and we get the desired result. This completes the proof. 0

Now, we investigate the asymptotic behavior of the quantity lP' (R(x) < ax).

Lemma 3. Suppose that a < 1 - p and that (1 - p)ja is not an integer. Then,

(7) lP'(R(x) < ax) = 0 ((xlP'(B > x))l(a)) ,

when x goes to infinity, where £(a) is defined by Equation (5).

Proof. Let f3 > O. Using Lemma 2, we have for suitably small e

lP' (R(x) < ax) = 0 (x- 13 ) + lP' (R(x) < ax, C(e, x) ~ £(a)).

The latter probability is smaller than IP(C(e,x) ~ £(a)). Note that

C(e, x) ::; Co +C(O,xl'

where Co is the number of large customers present in the system at time 0, and
C(O,x] is the number of arrivals with service time larger than ex. The variable
C(O,x] has a Poisson distribution with rate AXlP' (B > ex) and Co has a geometric
distribution with parameter plP' (Br > ex) j(1 - p + pIP (Br > ex)), Le. for m ~ 0,

lP'(Co > m) = ( plP'(Br > ex) )m,
- I-p+pIP(Br>ex)

where Br is the random variable with density function lP' (B ~ x))jJE (B) on lR+.
Hence,

lP' (C(e, x) ~ £(a)) = lP' (C(O,x] 2: £(a))

l(a)-l )i ( ( )) l(a)-i+ e-AxlP'(B>ex) L (AXlP' (B > ex) pJP B > ex
i=O i! I-p+plP'(Br>ex)

Using the fact that lP' (Br > x) = O(xlP' (B > ex)) when x --; 00, it is easy to
see that all terms in the summation are O((xlP' (B > x))l(a)). The first term can
be upper bounded by (AXlP' (B > ex))l(a) j£(a)!, since the distribution of C(O,x] is
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Poisson. Taking (3 sufficiently large (e.g., (3 > (II - I)£(a)), we obtain the desired
result. This completes the proof. 0

We are now ready to prove Theorem 2.

Proof of Theorem 2. It is sufficient to check that Assumption (A-3) holds for the
model under consideration. For, we use Lemma 3. Take a small enough such that
£(a)(11 - 1) > II. Then

lP (R(x) < ax) = o(1P (B > x)).

Assumption (A-3) then holds with K = IIa. The theorem is proved. o

To conclude this section, let us give a heuristic explanation of Lemma 3. In
order for the event {R(x) < ax} to take place, the drift of the process R(x) should
be smaller than a for a long time. In average, the drift of R(x) is 1 - p. Thus, if
a < 1 - p one or more rare events to let the drift decrease below a are required.

It turns out that the most likely way for this change of drift to occur, is the
presence of other large customers. These customers can be regarded as additional
(besides the customer under consideration) permanent customers. For a model with
k + 1 permanent customers, Equation (4) shows that, to make the limit of R(x)lx
smaller than a, at least lea) other customers with service times of the order of O(x)
are needed. Hence, the estimate (7) should hold.

<Pn = , nn+l f. 'n. i=2 •

with the convention that <Po = 1. An important special case is the MIGIs PS
queue for which fn = max(I, sin).

A superscript f is added to indicate the dependence on the sequence f. As before
a permanent customer is assumed to arrive in the queue at time 0 and V f (x) is the
time for this customer to receive service x. The amount of service Rf (x) received
by the permanent customer at time x is given by

Rf (x) = l x

fl+Qf(u) du,

where Qf refers to the number of non-permanent customers.

4. STATE DEPENDENT PS QUEUES

In this section the reduced load equivalence is extended to the class of state
dependent PS disciplines as investigated in Cohen [7]' Kelly [12] and Bonald and
Proutiere [3]. As mentioned in the Introduction, this model is an extension of
the standard PS queue, in the sense that each customer is being served at rate fn
instead of lin if there are n customers in the system. In the following, the sequence
f = Un, n 2:: 1) is fixed and such that fn > 0 for each n > O. Note that, if there
is a permanent customer, this amounts to consider a state dependent PS queue
associated to the shifted sequence Un+d. The quantity <Pn is defined by

1
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Assumption.

(A-4) It is assumed that

liminf nfn+I > p = AlE (B).
n--+oo

11

With this assumption, the queue is stable. The main result of this section is the
following theorem.

Theorem 3. If the service time distribution is regularly varying with index v ~ 1,
and if Assumption (A-4) holds then

lP' (Vf > x) ""' lP' (B > ,yix) ,

with

(8)

Note that by Cohen [7], lE (Vf(x)) = x/'y!. Theorem 3 is proved by checking
Assumptions (A-2) and (A-3) (see Proposition 1 and Proposition 4 below) and by
using Theorem 1. .

Proposition 1. If Assumption (A-4) holds, then, almost surely,

lim Rf(x) = "/,
x--+oo x

with ..../ defined by Equation (8).

Proof. Let (M(t)) is a Poisson process with parameter A. The process Wf(t)
describing the workload in the queue at time t is governed by the evolution equation:

M(t) t "

Wf(t)=Wf(O)+ ~Bi-l Qf(s)fI+Qf(u)du,

where (Bi ) is an Li.d. sequence with the same distribution as B. For K > 0,
TK denotes the first time the process (Q(t)) is in the interval [0, K], then Wald's
Formula gives

Assumption (A-4) shows that there exist e > a and K o such that nfn+I > p+e for
n ~ K o. The above identity gives the relationship

a~ lE (Wf (0)) - elE (t /\ TKo),

by letting t go to infinity, one gets that lE(TKo) < lE (Wf(O)) Ie. The variable TKo
is integrable.

By adding residual service times the process (Qf(t)) becomes a Markov process
and it is then not difficult to conclude then that the Markov process associated
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with (Qf(t)) is Harris ergodic. Ergodic Theorem for Harris Markov chains gives
the almost sure convergence

. Rf(x)
hm -- = IE (fHQf(oo)) .

x-+oo x

Since, for n ~ 1, lP' (Qf (00) = n) = pn¢n, the last expression is indeed ,../. 0

The above result shows that Assumption (A-2) is valid. To show that Assump
tion (A-3) holds, the process (Rf (x)) will be lower-bounded by the process associ
ated with a PS queue with k permanent customers, for some convenient k ~ 1. The
following lemma establishes a monotonicity property of the mapping f (Rf(x)).

Lemma 4. If, for some non-negative sequences f = (In) and 9 = (gn), the follow
ing conditions are satisfied:

- For any n ~ 1, fn ~ gn;
- The sequence 9 is non-increasing,

then, for any a ~ 0 and x ~ 0 and any initial state of the queue, the relation
lP' (Rf(x) ~ a) ~ lP'(R9(X) ~ a) holds. In other words, the variable Rf(x) isstochas
tically dominated by R9(X) that is, Rf(x) ~st R9(x).

Proof. To compare the two queues, a sample path argument is used. Both queues
have the same arrival process and same services. Before the first departure in one
of the queues, a job in the f-queue (Le. the PS queue with the sequence f) receives
the service fHQf(t) dt ~ gHQf(t) dt = gHQ9(t) dt during time interval [t, t + dt].
Consequently, the first departure will occur in the f-queue, and a that time a
customer present in the f-queue is also in the g-queue with a larger residual service
time. Thus, if t is smaller that the second departure time from the f-queue, then
Qf (s) ~ Q9 (s) for s ~ t and

it fHQf(u) du ~ it gl+Qf(u) du ~ it gHQ9(U) du,

since the sequence 9 is non-increasing. Thus, these inequalities also hold until the
third departure. By induction on the number of departures from the f-queue, one
concludes that Qf(t) ~ Q9(t) for any t ~ 0, and therefore that Rf(x) ~ R9(X) for
any x ~ O. The lemma is proved. 0

The main result of this section can now be proved.

Proof of Theorem 3. By Proposition 1 and Theorem 1, only Assumption (A-3) has
to be checked. Assumption (A-4) gives an e > 0 and no ~ 1 such that nfn ~ p+e for
n ~ no. Therefore, if k is chosen sufficiently large, the inequality (n + k)fn ~ p+e
holds for any n ~ 1. Hence of gn = (p + e)/(n + k) for n ~, the sequence 9 = (gn)
corresponds to a PS queue with k permanent customers and service speed p + e.
As in the proof of Proposition 2, the convolution result (6) gives the inequalities

lP' (Rf (x) < xlK) ~ lP' (R9(X) < xlK) ~ klP' (R(xlk) < xlK),

for K ~ O. Hence, the proposition follows from Theorem 3. o
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5. PS QUEUES WITH BLOCKING AND/OR RENEGING

In this section, we introduce a new extension of the standard M/G/l PS queue.
It is specifically assumed that the total number of customers is limited by some
threshold N > 0, and that the sojourn time of a customer cannot exceed some
value I. In other words, when the sojourn time exceeds I, the customer renegs by
leaving the system. The variables B and I can a priori be dependent (e.g., I = OB).

In spite of its obvious practical relevance (see for instance [4] for the connection
with the problem of admission control in packet networks), little is known about
PS queues with blocking and reneging. An exception is the paper by Coffmann et
al. [6], where B and I are independent and both exponentially distributed. The
main goal of the present section is to determine the delay asymptotics of a non
reneging customer. In Section 6, the probability of reneging for large customers is
investigated in the special case I = 0B.

Denote the sojourn time of a non-reneging customer by V. As in previous sec
tions, the tail behavior of the distribution of V is given by

JID (V > x) = JID (B > R(x)) ,

with again R(x) = foX 1/(1 +Q(u)) duo Here, Q(u) is the number of customers in a
PS queue with finite waiting room N (i.e., there is room for N -1 non-permanent
customers) and reneging. The original sojourn time V can be written as

V = min{V,I},

and, with obvious notation,

V(x) = min{V(x),I(x)}.

Note that V and I are dependent in general.
It is clear that the process Q(u) is ergodic if N < 00 or I < 00 a.s. Hence,

Assumption (A-2) is always satisfied, and we have a.s.

R(x)/x -+ "I

as x goes to infinity.
We now verify that Assumptions (A-2) and (A-3) are satisfied under weaker

conditions. The next proposition guarantees the validity of Assumption (A-2).

Proposition 2. If IE (1) < 00 or N < 00 or p < 1, then there exists a constant
"I = "IN,! E (0,1) such that, almost surely,

R(x)/x -+ "I.

Proof. If p < 1, then one can upper bound Q(u) by letting N = I = 00, so that
the number of customers of this queue is stochastically smaller than the number of
customers in a stable M/G/l queue (Le. the queue without reneging).

If IE (I) < 00, the busy period of this queue is stochastically smaller than the
busy period of an M/G/oo queue with service times I. In particular it has finite
mean if IE (I) < 00.



14 FABRICE GUILLEMIN, PHILIPPE ROBERT, AND BERT ZWART

In both cases the number of customers of this queue can thus be embedded into
an Harris ergodic Markov chain. The convergence result of the proposition is just
an ergodic theorem for the Markov chain. The result is trivial if N < 00. 0

Theorem 4. Let B be regularly varying of index v > 1. If N < 00 or p < 1 or
there exists some p > 1 such that lE (1P ) < 00, then

lP' (V > x) '" lP' (B > x"'IN,! )

when x goes to infinity, where "'IN,! is defined in Proposition 2.

In general, it is not possible to compute "'IN,!. An exception is the case I == 00.

It is easily seen that in this case, the model is equivalent to one of the queues
presented in Section 4 with fn = 00 when n > N. From this, it follows easily that

(9)

Proof of Theorem 4. It suffices to show that Assumption (A-3) is satisfied. This is
trivial if N < 00, because this implies R(x) 2.: x/No If p < 1, then one can lower
bound R(x) by setting N = 1=00 and apply Theorem 3 for the ordinary M/G/1
PS queue.

Suppose that lE (1P ) < 00. The main idea is to lower-bound R(x) by bounding
Q(u) with the queue length process of the M/G/oo queue with service times I,
Le., we assume that all (non-permanent) customers remain in the system until they
reneg. Let (Ql(U)) be the process of the number of customers in this M/G/oo
queue.

From the above argument, we obtain Q(u) ~ Ql(U). Hence,

t 1
R(x) 2.: io 1 +Ql(U) duo

The idea is to write the integral as a sum, using the regenerative structure of
the M / G / 00 queue. The number of summands then corresponds to the number of
cycles of the M / G /00 queue.

As before, for c > 0, a customer is said to be small if its service time is smaller
than ex with e some small constant, to be chosen later on. Otherwise, the customer
is said to be large.

Let HI (e, x) be the number of large customers in the system at time O. Since the
evolution of the number of large customers can be viewed as a separate M/G/oo
with arrival rate AlP' (I> ex) and mean service times JE (1 I1 > ex) it follows that
HI (ex) has a Poisson distribution with rate AlE (11 {I>ex} ).

Next, we define H 2 (c, x) as the number of large customers entering the system
between time 0 and X. Obviously, H2 (e, x) has a Poisson distribution with mean
AXlP' (I> ex).

Finally, set H(e,x) = H 1 (e,x) + H2 (c,x). Note that H(c,x) has a Poisson
distribution with rate

(10) J-Ll (ex) d~ AJE (I(I > ex)) + AXlP' (I> ex).
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Since I has a finite pth moment, Chebyshev's inequality gives some constant C
(which depends upon c-) such that

f..Ll(C-X) ::; Cx 1
-

p
•

Since H(c-, x) has a Poisson distribution, for each k and each c- > 0, one has

(11) IP' (H(c-, x) > k) = 0 (X-k(P-l)) = 0(1P' (B > x)),

(12)

if k is chosen sufficiently large so that k(p - 1) > 1/. From now on, we choose k
such that this inequality is satisfied. Therefore,

IP'(R(x)::; xIK)::; IP' (l X

1 + ~l(U) du::; xIK)

= I + II,

where we separate between the possibilities H(c-,x) ::; k and H(c-,x) > k.
We need to show that both terms are of o(1P' (B > x)). For the second term, note

that

II::; IP'(H(c-,x) > k) = 0 (X- k(P-l)) = o(IP'(B > x)).

To upper bound the first term, note that if H(c, x) ::; k,

with Ql.<~x(U) denoting the number of customers at time u in an MIGloo queue
with all service times smaller than c-x. For this particular MIGloo queue, we define
r(c, x) as the number of busy periods completed at time x. Note that, during each
busy period i ~ 1, our permanent customer gets at least Ed(k +1) units of service,
where E i is an exponential random variable with mean 11>'.

Hence, we can conclude that, if H(c-, x) ::; k,

1 .,.(~.x)

R(x) ~ k + 1 LEi'
i=l

Thus, it suffices to show that there exists a finite constant K such that

(13)

Write, for some a > 0,

(
.,.(~.X) )

IP' ~ Ei ::; xlK = o(IP'(B > x)).

(
.,.(~.X)) ( ax )

IP' ~ Ei ::; xlK ::; lP'(r(c-,x) < laxJ) +IP' ~Ei::; xlK .

The second term clearly decreases exponentially fast in x, as long as we choose K
such that a>' > 11K. Thus, it remains to show that, for some c and a,

lP'(r(c-,x) < ax) = o(IP'(B > x)).
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For 15 > 0,

lP' (r(c:, x) < ax) :::; lP' (7r°(ex) + 7r1(ex) + ... + 7r LaxJ (c:x) > x)

:::; lP' (7r°(c:x) > c5x) + lP' (7r1(ex) + ... + 7r LaxJ (ex) > (1- c5)x)

= III +IV.

In the above expression, 7r i (ex) denotes the i-th busy cycle of the M j G j 00 queue
with service times smaller than c:x, and 7r°(c:x) the remaining busy cycle at time O.

It is easy to see that 7r°(c:x) 4 7r1 (ex)r.
Note that IE (7r1 (c:x») :::; PI := eAJE(I). Choose a and 15 small enough such that

apl < (1- 15). Proposition 1 of Resnick and Samorodnitsky [15] shows that for each
c: > 0 there exists a /3 > 0 such that

lP' (7r1(ex) > x) = 0 (x- 13 )

and therefore, the relation

lP' (7r°(c:x) > x) = 0 (x l
- 13 )

holds. From this result, it follows that, given 15, one can choose sufficiently large /3
and sufficiently small e so that

III = lP' (7r°(ex) > c5x) = 0(lP' (B > x»).

Set Tn = 7r1 (c:x) + ... + 7rn(c:x). It remains to be shown that

IV = lP' (TlaxJ > (1- c5)x) = 0(lP' (B > x».

Let q > O. The last probability is smaller than

laxJlP' (7r1(c:x) > qx) + lP' (7r1(c:x) 1\ qx + ... + 7r LaxJ (c:x) 1\ qx > (1 - c5)x) .

For a given q, the first term is of 0(lP' (B > x» if c: is chosen suitably small (w.r.t.
q). The second term is smaller than

lP' (7r1 1\ qx + ... + 7r LaxJ 1\ qx > (1 - c5)x) ,

with 7r i now the ordinary busy period of the M j G j 00 queue. Since I has finite p-th
moment and is hence regularly varying with index P at infinity, the same holds for
7ri , see e.g. Proposition 1 of Daley [8]. The proof can then be completed with the
same kind of arguments as those used in the proof of Lemma 2. 0

6. RENEGING BEHAVIOR OF LARGE CUSTOMERS

In this section, it is assumed that impatience is linear, Le. 1= BB for B> 1. The
probability of reneging of a customers when its service time is large is investigated.
Let LO,N(X) denote the probability of reneging of a customer with service time
equal to x. Since I = BB, we have

(14) LO,N(X) = lP' (R(Bx) < x).

As shown in the previous section, R(x)jx -. iN,O for some constant iN,O'
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The value of O"(O,N is an important parameter. If it is smaller than 1, then
LO,N(X) converges to 1 as x gets large. This is undesirable, because of the overhead
due to the reneging of large customers.

Thus, for a given value of 0, in order to prevent the reneging of large files one
would like to choose N as large as possible so that O"(O,N > 1. It is quite natural
to define

N* == min{N: O"(O,N > I}.

Unfortunately, computing "(O,N explicitly turns out to be quite difficult. For an
approximation procedure, see Boyer et al. [4]. Note also that "(O,N is lower-bounded
by "(co,N given by Equation (9). This bound can be used to obtain a sufficient
condition under which O"(O,N > 1.

If the value of e"(O,N is only slightly larger than 1, it may happen that large
customers still reneg with reasonable probability. This could be a reason to decrease
N further. Notice that the impatience is completely removed when N == N* = lOJ.

The value N = N* may be too conservative, while the value N* may lead to an
undesirably high reneging rate. To obtain some insight in what happens between
these two extreme cases, we study the asymptotic behavior of Le,N(X), for fixed °
and N. More generally, the asymptotic; behavior of theprohability IP' (R(x) < ax)
for fixed a is investigated. Before doing so, some heuristic arguments, very similar
to those in Section 3, are given.

As one can expect from the analysis carried out in earlier sections, the asymptotic
behavior of this probability is determined by the average service rate in the PS
queue with reneging and blocking, and k additional permanent customers. Denote
this average service rate bY"(k (the parameters eand N are omitted for simplicity).
The event {R(x) < ax} takes place if a certain number of other large customers
are in the system simultaneously. In particular, we need to choose k = k(a) so that

(15) k(a) = inf{k : "(k+l < a}.

The main result of this section is the following theorem.

Theorem 5. If N < 00 and that the condition "(;,C;> > a holds, then

IP'(R(x) < ax) = 0 (IP'(B r > x)k(a))

where k(a) is defined by Equation (15)

This theorem is complementing Theorem 2 where N and I are infinite. For this
queue, the number of customers in the system can be stochastically upper-bounded
by the number of customers in an M/G/oo queue with service times OB. Note
that, without loss of generality, it can be assumed that e < N. The structure of
the proof is very similar, although the detailed arguments are different.

Notation: As before, C(e, x) denotes the amount of (non-tagged) customers in the
system with service time larger than eX. The quantity C(e, x) counts both those
customers in the system at time 0 with remaining service time larger than ex and
the number of customers entering the system between time 0 and x with service
time larger than the quantity ex.
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As before, Q€ denote the number of non-permanent customers in a queue with
.e permanent customers; the notation Q€,<cx is used to indicate that all service
times are bounded by c:x (i.e. distributed as BIB < c:x). For these variables,
the parameters Band N are omitted but implicit. Finally, T€(C:, x) is defined as the
number of busy cycles of this queue between 0 and x. Note that a cycle ends if a
non-permanent customer leaves the system which is then occupied with only the
permanent customers.

To prove Theorem 5, a series of technical lemmas are derived. We first prove a
technical lemma which describes the asymptotic behavior of T€(C:, x) when x goes
to infinity.

Lemma 5. Suppose N < 00 or B< 00. For any b > 0, and any (3 > 0 there exists
an c: such that

Proof. Let 7r€(C:, x) denote the duration of a busy period of the queue with eper
manent customers and with reneging and blocking. Write

(

LbxJ )
lP' (T€(C:, x) < bx) = lP' 7rf(c:, x) +~ 7r~(C:, x) > X ,

where 7r~(C:, x), i = 1, ... , lbxJare independent copies of 7r€(C:, x) and 7rf(c:, x) is the
residual busy period at time O.

To upper-bound the above probability, one can proceed exactly as in Theorem 4.
An upper-bound for lP' (7rf(c:, x) > x) and lP' (7r€(C:, x) > x) can be obtained by defin
ing an appropriate MIGI00 queue: It is obvious that 7rf (c:, x) and 7r€(c:, x) are
respectively upper-bounded by the residual and the ordinary busy period of an
MIGloo queue in which customers have service times distributed as (1 I1 < Bc:x).
One can then proceed exactly as in the proof of Theorem 4. This completes the
proof. 0

The following lemma is an analogue of Lemma 2 for this situation.

Lemma 6. If B< 00 or N < 00, then for each (3 > 0 there exists c: > 0 such that

lP' (R(x) < ax, C(c:, x) $ k(a) - 1) = o(x-13 ).

Proof. The amount of service received by a large customer when C(c:, x) $ k(a)-l
is at least the amount of service received by a large customer in a PS queue when
there are k(a) permanent customers. Thus, let us consider

By using an ergodic theorem for the underlying Harris Markov chain, one gets that
the quantity Rk(x)lx converges a.s. to ,k' Note that ,3 N is strictly decreasing
with k. Note that ,t',N = liN. '
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By a monotonicity argument (by assuming that all large customers are in the
system permanently between time aand x), if C(E, k) :::; k(a) -1, the quantity R(x)
can be lower-bounded by

l
x 1

Rk(a),<ex = k() Q ( ) duoo a +. k(a),<ex U

By using exactly the same arguments as in the proof of Theorem 4, we have

R > 1
k(a),<ex - k(a) + 1

Tk(a) (e,x)

LEi,
i=l

where Ei , i = 1, ... , 7k(a) are independent exponential random variables with pa
rameter A. We then deduce that

lP' (R(x) < ax)
(

1 Tk(a) (e,x) )
< lP' k() L E i < ax

a + 1 i=l

(

1 lbxJ )
< lP' (7k(a)(E, x) < LbxJ) + lP' k(a) + 1 t; Ei < ax

for some b > O. As in the proof of Theorem 4, the second term on the r.h.s. of
the above inequality tends exponentially fast to 0 when b > (k(a) + l)aA. From
Lemma 6, for every (3 > 0 the variable E can be chosen so that lP' (7k(a)(E,X) < bx)
is o(x-13 ). As a consequence, the intermediate parameter b can be taken so that for
every (3 > 0 there exists an E > 0 so that

lP' (R(x) < ax, C(E, x) :::; k(a) - 1) = o(x-13 ).

This completes the proof.

We finally proceed to the proof of Theorem 5.

o

Proof of Theorem 5. By using Lemma 6, it follows immediately that for (3 > 0 and
for suitably small E,

lP' (R(x) < ax) =o(x-13 ) + lP' (R(x) < ax, C(E, x) ;::: k(a)).

The last term is smaller than lP'(C(E,X) ;::: k(a)). If Co is the number of large
customers present in the system at time 0, and C(O,x] is the number of arrivals with
service time larger than EX (blocked and non-blocked), then C(E, x) :::; Co + C(O,x]'
Regardless of the particular model under consideration, the vatiable C(O,x] has a
Poisson distribution with rate AXlP' (B > EX).

Next, consider Co. The distribution of this quantity is not known. However, it is
still possible to obtain a stochastic upper-bound for Co: Consider an MIG/oo queue
with service times BB. Let Q(u) be its associated queue length process. The PS
queues can be constructed from Q(u) by deleting customers at appropriate places.
Deleting occurs when customers are blocked or when customers leave because they
have completed their service or they have reneged.
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In the M/G/oo queue, customers are divided in two types according to the value
of the initial service time, less or greater than c:x. Denote respectively the number
of these two types of customers by (Ql(U)) and (Q2(u)).

Then, it is obvious that 0 0 :::; Ql(O), and Ql(O) has a Poisson distribution with
parameter pIE (Bl(B > c:x)) = pxlP' (B > c:x) + plP' (Br > c:x). Hence,

k(a)-l

lP' (O(c:, x) 2: k(a)) :::; lP' (Oro,xJ 2: k(a)) + L lP' (Oro,x] = k) lP' (00 2: k(a) - k)
k=O

k(a)-l

:::; lP' (O[O,x] 2: k(a)) + L lP' (Oro,xJ = k) lP' (Ql(u) 2: k(a) - k)
k=O

The proof can then be completed by using arguments similar to those used in the
proof of Lemma 3. Details are omitted. 0
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