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Abstract. 

In the first part of this paper a theory of generalized eigenfunctions is 

developed which is based on the theory of generalized functions intro

duced by De Graaf. For a finite number of commuting self-adjoint operators 

the existence of a complete set of simultaneous generalized eigenfunctions 

is proved. A major role in the construction of the proof is played by the 

commutative multiplicity theory. 

The second part is devoted to an Ansatz for a mathematical interpretation 

of Dirac's formalism. Instead of employing rigged Hilbert space theory 

Dirac's bracket notion is reinterpreted and extended to the generalized 

function space Tx,A' In this way, the concepts of the Fourier expansion 

of kets, of the orthogonality of complete sets of eigenkets and of :matrices 

of unbounded linear mappings, all in the spirit of Dirac, fit into a 

mathematical rigorous theory. 

AMS Classifications 46FIO, 47A70, 81R05. 
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Preliminaries. 

The introduction of a theory of generalized eigenfunctions is closely rela-

ted to a theory of generalized functions. of course. In [GeVil, ch. I. to this 

end the theory of rigged Hilbert spaces is introduced. Here we employ 

De Graaf's theory of generalized functions, see [G]. In these prelimina-

ries the main features of this theory will be given. 

In a Hilbert space X consider the evolution equation 

(p. I ) du 
dt = -Au 

where A is a positive, unbounded self-adjoint operator. A solution u of 

(p.l) is called a trajectory if u satisfies 

(p.2.i) V t>O : u (t) E: X 

(p.2.H) 

We emphasize that lim u(t) does not necessarily exist in X-sense. The 
Uo 

complex vector space of all trajectories is denoted by TX,Ao The space 

Tx,A is considered as a space of generalized functions in [G]. 

The analyticity space SX,A is defined to be the dense linear subspace of 

-tA X consisting of smooth elements of the form e h where h € X and t > O. 

-tA Hence Sx A = U e (X). For each f E: Sx A' there exis ts T > 0 such that 
• t>O • -rA 

e f E SX.A' Further, for each F € Tx.A we have F(t) € SX,A for all 

t > O. SX,A is the test function space in De Graaf's theory. In Tx,A we 

take the topology induced by the seminorms 

(p.3) F 1+ IIF(t) \I • F E: TX,Ao 
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Because of the trajectory property (p.2.ii) of elements in Tx A' it is , 
a Frechet space with this topology. In Sx,A we take the inductive limit 

topology. In [GJ, a set of seminorms on SX,A is produced which generates 

the inductive limit topology. 

The pairing between SX,A and Tx,A is defined by 

(p.4) 

Here (-,-) denotes the inner product in x. Definition (p.4) makes sense 

for < > 0 sufficiently small. Due to the trajectory property (p.2.ii) it 

does not depend on the choice of <. 

The space SX,A is nuclear if and only if A generates a semigroup of Hilbert

Schmidt operators on X. In this case A has an orthonormal basis (vk) of 

eigenvectors with respective eigenvalues Ak. say. Further, for all t > 0 
CIO 

\' -Ak t the series L e converges. It can be shown that f E SX,A if and only 
k=l 

if there exis ts < > 0 such that 

(p.5) 

and F E Tx A if and only if for all t > 0 , 

(p.6) 

Finally we remark that besides these topics in [G] there can also be 

found a detailed characterization of continuous linear mappings on these 

spaces, the introduction of four topological tensor product spaces, and 

four Kernel theorems. 
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o. Introduction 

First I want to give an illustrative example for the general theory of this 

paper. Therefore, let SX,A be the test function space with X = L2(E) and 

A = 1-( - d
2 

+ x 2 + 1 ), the Hamiltonian operator of the harmonic oscilla-
2 dx2 

tor. This SX,A-space is one of the examples discussed in [G]. 

It is well-known that the Hermite functions ~k' k = 0,1, ••• are the eigen

functions of A with eigenvalues k + I. So for each t > 0, the operator 

e-
tA 

is Hilbert-Schmidt, and the spaces SX,A and Tx,A are nuclear. The 

self-adjoint operator Q 

(Qf) (x) = x f(x) X € :R, 

maps SX,A continuously into itself, and can be extended to a continuous 

linear mapping on Tx A' denoted by Q, also. , 
The linear functional 0 , given by Xo 

is an eigenfunctional of Q with eigenvalue xo. The question arises whether 

0xO E Tx,A' The space SX.A consists of entire analytic functions. So 

for each f € ~.A' f(xO) exists, and can be written as 

00 

Hence 0xO E TX,A if and only if the series 

converges in X for all t > O. Because of the growth properties of l~k(xo)1 

for large k, this is true in this special case. 
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In this paper only nuclear Sx,A spaces are considered. This implies that 

-t A all the operators e t > 0, have to be Hilbert-Schmidt. So A has an 

orthonormal basis of eigenvectors v),v2' ••• with respective eigenvalues 
00 

o < Al S A
Z 

S ••• satisfying I e-Ait < 00 for all t > O. 
i-I 

Let T be a self-adjoint operator in X which is continuous on SX,A' Since 

T is self-adjoint, T can always be represented as a multiplication operator 

in a countably direct sum of L2-spaces. For convenience in this introduc

tion, we shall consider the special case that T is unitarily equivalent 

to multiplication by the identity function in LZ(lR,~) for some finite 

Borel measure ~. In other words, a unitary operator U : X ~ LZ(lR,~) 

exists, such that Q - UTU* is given by 

(Q6) (x) • x 6 (x) 

on its domain D{Q) == U(D(T». U maps SX,A continuously onto Sy,S' where 

y = L2(lR,~) and S .. UAU* • 

Put IPk .. Uvk , k .. 1,2,. ••. Then the IPk'S establish an orthonomal basis 

in y and they are the eigenvectors of S with eigenvalues A1,A Z"" • 

Let Xo E o(T), the spectrum of T. It is obvious that Xo is a (generalized) 

eigenvalue of T if and only if the linear functional A 
Xo 

is continuous on Sy,S' This continuity condition is equivalent to the 

condition 

(0.1 ) 

Of course, there is a problem here. In general 6(xO) has no meaning for 

LZ-functions. Formula (0.1) makes sense only, if we can choose a represen-

tant from each equivalence class <!Pk> in a unique way. In case 
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SY.B c Lro (R, ll) we could employ the lifting theory of Ionescu Tulcea 

(see [IT]). But in general Sy,B is not contained in Loo(E.,ll). 

We shall prove that a unique choice of representants 'k in the classes 

<~k>' k = 1,2, ••• , implies a unique choice of representants in all 

classes <f> of SY,B' just by defining 

00 

(0.2) 

Here we take 

X 1+ lim{ II (Qh (x» -I f 'k dll } 
h~O Qh(x) 

(0.3) 

where Qh(x) - [x-h, x+hJ. It is clear that Definition (0.3) does not 

depend on the choice of ~k E <qlk>-

The general case that T is equivalent to multiplication by the identity 

function in a countably direct sum of LZ-spaces can be dealt with similarly_ 

In section I we shall show the existence of generalized eigenfunctions 

for a continuous self-adjoint orerator T on SX,A- In section 2 excerpts 

of the commutative multiplicity theory are given. For this theory we 

refer to Nelson ([N]) and Brown ([Br]). The main theorem in section 3 

states that we can a priori remove a set of measure zero N out of the 

spectrum aCT) of T such, that for all points in cr(T)\N with multiplicity 

m, 0 S m s ro, there exist precisely m independent generalized eigenfunc-

tions. Section 4 is devoted to a sketchy proof of the result that in an 

adapted form the conclusions of section 3 remain valid for an n-tuple of 

commuting self-adjoint operators. Finally, in section 5 an Ansatz is given 

for a mathematical interpretation of Dirac's formalism. 
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1. 'Thf existence of generalized eigenfunctions 

In the sequel A will denote a positive self-adjoint operator in X which 

generates a semigroup of Hilbert-Schmidt operators. So A has an ortho-

normal basis of eigenvectors v
1
,v

2
, ••• with respective eigenvalues 

00 

Al ,A2 •••. satisfying ,I e-Ait < 00 for all t > O. Further, T will denote 
1.=1 

a self-adjoint operator in X, which maps SX,A continuously into itself. 

The spectral resolution of T is denoted by (HA)A€E' 

For 6 € X, the subspace X 6 of X is defined to be the closure of the linear 

span of the set {H (ll) 6 I II c lR a Borel set}, Here H(ll) denotes the spec-

tral projection J dHA • 

(1.1) Lemma 

The subspace X6 of X is unitarily equivalent to L2(lR,P6), where Po denotes 

the positive, finite Borel measure (H),o.6)AElR' 

Proof 

The proof will be sketchy. A detailed proof can be found in [Br]. 

Let 9 E Xi' Then there exist sequences (a(n» and (A~n». such 
II j jE:N J JEll 

that 

lim II 9 - = 0 • 
n-l«> 

So we may conclude that the finite series 

jn 
L a~n) H(ll~n) 6 

j=J J J 

are uniformly bounded. Then ~ = lim 
n~ 

exists and because of the 
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completeness of L
2

(lR,p 6)'

By (*) 9 can be expressed as 9 = ",(T)6 with 11911 • II"'II
L

. On the other
2

hand, if '" E L2(lR.,P6)' then

I n
lim L a ~n) !J. ~n)
n-- j=1 J J

with the limit taken in L2-sense. So obviously 9 = ",(T)6.

The following equivalence holds

is unitary. This completes the proof.

(1.2) Notation

P denotes the set of x E: JR which satisfy

for every £ > o.

For each x E: P, define

o

(1.3) Gt,h(X) := emb{ [P6(Qh(X»]-1 J dH).. 6} (t)

Q
h

(x)

t > o.
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Here emb is the continuous linear mapping from X into Tx,A' 

-tA emb(w) ! t ~ e W, W E X, 

and Q
h 

(x) the closed interval [x - h , x + h] • 

Since (vk)kE~ is an orthonormal basis of eigenvectors of A the Fourier 

expansion of G hex) is given by 
t, 

, t > 0, h > 0 • 

By Lemma (1.1) for each k E ~ there exists (j)k E L2 ('Il,f) 6) such that. 

d(HAO,vk) • I 
Q

h 
(x) 

, h > o. 

Wi th the aid of Theorem 10.49 in [WZ) we can prove that the limi t 

fPk(x) = lim 
MO 

q>k dp 6 

is well defined for almost every x E P and every k € ~, and 'k can be 

interpreted as a representant of the L
2
-class <q>k> in the usual way. 

\' -Akt 2 Let t > O. The function Lei Cfik I belongs to L) (lR,p 6)' So there 
k€E 

exists a null set Nt such that for all x € P\N t 

Put N == U N
1

/
k

, and let x € P\N. Then N is a null set with respect to 
kEE 
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I 
PO' Since for each t > 0 there exists n € :N with 0 < n < t~ 

Define G
t 

by ,x 

(1.4) G 
t,x 

Then t 0+ Gt,x is an element of Tx,A' 

Let h € Sx A' and put , 

t > 0 • 

Then lii(x) I <00 for all x € P\N. This can be seen as follows: 

for t > 0 small enough. 

(I .5) Theorem 

For each x E P, h > 0 and t > 0, define 

Gt,h(x) := emb{ P6(Qh(x»-1 I dHA 6} (t) • 

Qh(x) 

Then there exists a null set NO with respect to P6 such that 

(i) G = lim G hex) exists for all x € P\N, and all 
t,x h+O t, II 

t > O. 

(ii) G t 1+ G E Tx A and G ;: 0 for all x IE: P\N,. x t,x, x 1) 

(iii) TG == xG for all x € P\N 1 • 
x X D 
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Proof 

(1.5.i) Let t > o~ t > 0 and let x E P\N, where N is the null set as 
! 

defined above. Put M t == ( I e-Akt I~k(x) 12) . Fix kO € Ii so large 
x, k-I 

that 

Then 

Further choose h > 0 so small that both 

Ip6(Qh(X»-1 J ~kdP6 - ~k(x)1 < t k .. 1, ••• ,kO ' 

and 
Q

h 
(x) 

Then 

-tA 
£lIe "1~X 

and 

on 

J qlkdP 6)vk Il
2 

.. II I -A t -I ( e k P 6(Qh (x) 
k=kO+1 Qh (x) 

"" 
J = I e-2Akt Ip/Qh(X»-1 ~kdP612 ~ 

k==kO +J Qh (x) 

-A t 00 

-Akt -1 

f 
2 2 

~ e kO I e P6(Qh(x» I «)k I dp 6 < e: 
k=O Qh (x) 
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A combination of the estimates (*), (**) and (***) gives the result 

lIemb Po(Qh<x»-1 ( f dNA 0) (t) 
-tA 

- G II < e:(2 + lie IIX(iOX) t,x 
Qh(x) 

for h small enough, where Gt is defined by (1.4). ,x 

(I.S.ii) If G is defined by G : t ~ G • it is obvious that G E TX A' x x t,x x , 

Let ra be the set of all x E P\N for which Gx = a. We shall show that 

fa is 

'$k(x) 

let k 

a null set wi th respect to PO' Note first that Gx :: a 

:: a for all k E lL Hence fa is a Borel set. Put y = 

€ N. Then 

(y,vk):: f d(EA o,v
k

) J '$kdp 6 = a , 
ra fa 

Hence y = a and fa is a null set with respect to Po' 

(I,S.iii) We have to show that TG = xG . 
x x 

Since T - xl is continuous on TX A' , 

Computing the latter limit, we obtain for every t > a 

implies 

f d fA 0 
fa 

and 
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This expression can be treated as follows. 

I P 6(Qh (x» -I J (A - x) Q)k (A) dp 61
2 

s; 

Qh(x) 

~ e-2Aktp6(Qh(x»-1 ( J IfPk (A)1
2
dP6) • 

k 0 Qh(x) 

s; h 2 
(M + 1)2 for h small enough. x,t 

So the limit (*) is null, and (J .S.iii) is proved. 

2. Commutative multiplicity theory 

The commutative multiplicity theorem enables us to set up a theory, which 

ensures that the notion 'multiplicity of an eigenvalue' also makes sense 

for generalized eigenvalues. The so called multiplicity theory which leads 

to this theorem is mainly measure theoretical. It is very well described 

by Nelson in [NeJ. ch. VI, and by Brown in [Br]. 

(2.1) Definition 

Let p be a positive, finite Borel measure on lL Then the support of p, 

supp(p), is defined by 

supp(p) := {r E lR I V 0 e::> p([r-t; ,r+e::]) > O} • 

o 
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(2.2) Lemma 

Let p be a positive, finite Borel measure on:JR. Then the complement 

of supp(p), supp(p)*, is a set of measure zero with respect to p. 

Proof 

* For each x E sUPP(p) , define the set Q :=[x-£,x+E:]with£>O 
X,E 

taken so that p{O ) = O. Then 
""x , E 

* supp(p) C U Q • 
XESUpp(p) * x, E: 

* Let k E lil. The set supp(p) n [-k,k] is bounded in:JR. With Besicovitch 

covering's Lemma ([WZ], p.J85) it follows that there is a countable set 

{XI ,x2""} such that 

* supp(p) n [-k,kJ c U Q • 
i-I xi ,Ei 

Hence 

* p(supp(p) n [-k,k]) o. 

Since k E: N is arbitrary, supp(p) * itself is a set of measure zero. 0 

There 1S another charaterization of supp(p). 

(2.3) Lennna 

supp(p) is the complement of the largest measurable open set 0 for which 

p(O) == o. 

Proof 

Let sUPPI(P) denote the complement of the largest measurable open null 

set, the set sUPPI(P) is well defined (see [BoJ, p. 16). Suppose 

x f sUPPI(P), Then there exists E > 0 such that the interval 
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* [x-e:,x+d C sUPPI(P) • So p([x-e:,x+e:J)'" 0, and x I supp(p). 

Conversely, suppose x f supp(p). Then there exists E > 0 such that 

* p ([x - E , X + e::J) :: 0. This implies that (x - E , X + e:) C sUPP 1 (p) . 

Hence x f sUPPI(P), completing the proof. 

(2.4) Definition 

The Borel measure v is absolutely continuous wi th respect to the Borel 

measure v, notation v « ~, if for every Borel set N with v(N) = 0, 

also v(N) :: 0. 

The Borel measures v and ~ are equivalent, \I - ~, if v « V and ~ « v. 

It is clear that v - V implies supp(v) :: supp{~). So it makes sense to 

write supp«\I» meaning the support of each v in the equivalence class 

<V>, 

(2.5) Definition 

Two equivalent classes <v> and <V> are called mutually disjoint if 

v (supp<v> n sUPP<ll» = II (supp<v> n sUPP<JJ» 0 • 

If one wants a canonical listing of the eigenvalues of a matrix it is 

natural to list all eigenvalues of multiplicity one, two, etc. We need 

a way of saying that an operator is of uniform mUltiplicity one, two, etc. 

To this end we introduce 

(2.6) Definition 

A self-adjoint operator T is said to be of uniform multiplicity m, 

~ m $ 00, if T is unitarily equivalent to multiplication by the ident-

tity function in L2(1R,\.l) (l) ••• ED L
2

(lR.,ll), where there are m terms in 

the sum and II is a finite Borel measure. 

o 
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This definition makes sense because if T is also unitarily equivalent 

to multiplication by the identity function on L2(lR,v) e ... e L2(:R,v) 

(n times), then m = n and ~ - v (see [Br]). 

(2.7) Theorem (Commutative multiplicity theorem) 

Let T be a self-adjoint operator in a Hilbert space X. Then there exists 

a decomposition X '"' X e XI e ... e X e ... so that 
"" m 

(i) 

(U) 

T acts invariantly in each X 
m 

T r X has uniform multiplicity m 
m 

(iii) The measure classes <~ > associated with the spectral representation 
m 

of T r X are mutually disjoint. 
m 

Further, the subspaces X"".X).X2 •••• (some of which may be zero) and the 

measure classes <~"">.<~]>.<~2>' ••• are uniquely determined by (i). (ii) 

and (iii). 

Proof 

For a proof see Nelson, [N] ch. VI or Brown, [BrJ. 

3. A total set of generalized eigenfunctions for the self-adjoint operator T 

(3. I) Defini tion 

A set reX is called cyclic with respect to T if 

X "" if) X • 
yE: r Y 

Since X is separable. r consists of an at most countable number of ele-

ments. If r can be choosen such that it consists of one element only, 

this element is called a cyclic vector and the operator T a cyclic ope-

o 
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rator. The cyclic set r is not uniquely determined. The commutative 

multiplicity theorem brings in some uniqueness. 

(3.2) Lemma 

T has uniform multiplicity one if and only if T is cyclic. (see Defini-

tion 2.6) 

By Theorem (2.7) X can be splitted into a countable direct sum, 

The restricted operator T r X , ) $ m $ 00, is unitarily equivalent to 
m 

mul tiplication by the identi ty function in 

(m times). 

By X ., j = I, ... ,m, we denote the orthogonal subspace of X , which 
mJ m 

corresponds to the j-th term in the direct sum. Since T r X . obviously 
mJ 

em) 
has uniform multiplicity one, there exists a cyclic vector Y

j 
for 

T r X .• Thus we obtain a set r, 
mJ 

r : = {y jm) I I $ j < m + I , I $ m $ co} , 

which is cyclic for T. Note that 1 $ m $ m means m = 00,1,2, •••• 

Let m, I $ m $ co, be fixed so that X .;. {OJ, and let j, I $ j < m+ 1 be 
m 

fixed. Further, let p~m) denote the finite Borel measure(( HAy~m) ,yim»)) >..ElR' 

The projection from X onto X . is denoted by p~m) and the unitary opera-
mJ J 

f X ( Y» b em) . 11 ... em) u<.m)pC.m)v
k

• tor rom mJ' onto L2 .... ,1) (m) Y U. • Fl.na y, put vk . = 
y. J ,J J J 

J 
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From Theorem (1.3) we obtain sets N~m) of measure zero with respect to 
J 

p~m), m = 00,1,2, ••• , such that for each 0 € supp(p~m»\N~m) 
J J J 

is in Tx,A' and 

TG(m~ 
0',] 

Following Theorem (2.7) p ~m) ~ p ~m) for all i. 1 ~ i < m + 1, 
]. J 

set N~m) is a null set with respect to each (m) P t N(m) = J Pi • u 

(3.3) Theorem 

i.e. the 
m 
U N~m) • 

j=l J 

Let m, 1 ::; m ;,.; "", be taken such that X '" {O}. Then there exists a null 
m 

set N(m) with respect to <u > with the property that for every 
m 

0' E supp«U »\N(m) there are precisely m independent generalized eigenm 

functions with eigenvalue 0'. Further, the set 

is total. 

Proof 

{G (m~ I 1 ~ j < m + I, 1 ~ m ~ 00, 
0,] o E 

Since the measure classes <u > are mutually disjoint, the first assertion 
m 

has been shown already. 

A set VeT A is said to be total, if X, 

VF€V<g,F> == O .. g == o . 

So suppose 

<g,G(m~> 0 O,J 
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for I ~ j < m+ J, I ~ m s: 00 and a E Supp«j.I »\N(m). Then it immediately 
m 

follows that (U~m)p~m)g)(a) == 0 almost everywhere with respect to <j.I >, 
J J m 

wi th I ::; j < m +) and 1 ~ m ~ 00. So g = O. 

(3.4) ~ 

Let aCT) be the spectrum of T. Then 

aCT) 

Proof 

U supp( <\l » 
m m€:Nu{co} 

If x '- aCT), then there exists £ > 0 such that 

H([x- £ , x + d) = 0 • 

So for all m, I s: m s: 00, 

\l ([x - e; , x + e:J) = 0 • 
m 

This implies (x - £/2 , x + £/2) ¢ supp(jl ) and hence 
m 

x i U supp( <j.I » • 
I ::;ms:oo m 

Conversely, suppose x '- u supp «J.l » • Then there exis ts 6 > 0 such 
m 

that (x-6,x+6) ¢ 
)::;m~oo (m) 

supp«j.J »,1::; m::; "". Hence H([x-6,x+6J)y. == 0 
m J 

for all m E :N u {oo}, J s: j < m+ I. This implies H([x- 6, x+ 6]) = o. 

o 

So x '- a (T) • 0 

We finish this section with two examples. 
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(3.5) Example 

Let 1.0 E oCT) be an eigenvalue of multiplicity mO' Then H({AO}) is a 

non-zero projection on X, and for j, 1 s j < nu + 1 fixed, we have 

H({"O})Y~mo) 
J 

Hence G;tno) EX. 
O,j 

(3.6) Example 

Let C be a self-adjoint compact operator on X. Then the vectors 

(m) 
Y· J 

co 

:= I 2-k e ~m) 
k=1 J,k 

S J ~ m, ISm < co , 

where the series may be a finite sum t establish a cyclic set for C. Here 

(e~mk» is an orthonormal basis of eigenvectors for C; e~mk) is the j-th 
J, J, 

eigenvector, 1 S j S m, with eigenvalue ~~m) of multiplicity m, 

1 S m < co 

4. The case of n-commuting self-adjoint operators 

In this section we shall extend the theory of the first part of this 

paper to the case of n commuting self-adjoint operators, where n is a 

natural number. We only discuss the frame work of this extension, because 

there really is no essential difference with the theory of one self-

adjoint operator. 

Let (T 1,T2, ..• ,Tn) be an n-set of commuting self-adjoint operators in X, 

which map SX,A continuously into itself. Let (H,,'>,,'e:E' i = I, ... ,n , 
1. 1. 
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denote their respective spectral resolutions. For 6 E x, the Hilbert 

space X6 is the closure in X of the linear span 

<{H
1

(A 1) ••. H (A )61 A. c It a Borel set, i .. l, •. qn}>. n n 1 

n 
The Hilbert space X6 is unitarily equivalent to L2(E ,P6)' where P6 

is the well- defined fini te measure 

over the Borel subsets of ]In. For every 9 E: X6 there exists n E L2(:Rn ,P6) 

with the properties 

9 .. f ~dHA ••• '\ 6 n t n 
E. 

II 9 112 - fl~12dP6' 
lRn 

The n-set restricted to X6' (TI, •.. ,Tn ) r X6 is unitarily equivalent to 

the n-set (Q., ••. ,Qn)' where Qi denotes multiplication by Ai in 

n 
L2(JR ,P6)' 

For x E: lRn and h > O. we define the cube Qh (x) by 

Qh(x) := {~ E E.
n 

Ilx. - cl :5 h, i = l, ... ,n}. 
1 1 

Further we define the set P c lRn by 

Then in case of the n-set (T1, ••• ,T
n
), Theorem (1.3) can be reformulated 

as follows 
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(4.1) Theorem 

For x E P, define 

G h(t) 
x~ 

There exists a null set N with respect to Po such that for all x E P\N 

(i) G (t) := Ibn G h(t) exists in X for all t > 0 
x h,j.O x, 

(ii) G x 

(iii) T. G = x. G • 
1 X 1 X 

Proof 

cf. the proof of Theorem 1.3. 

The measure theoretical part of section 2 can be adapted in the usual way 

. n to measures ln m., cf. Definition (2.1), (2.4), (2.5) and (2.6) and Lemma 

(2.2) and (2.3). 

For a better understanding of the commutative multiplicity theorem for 

an n-set of self-adjoint commuting operators, we introduce the notion of 

(generalized) eigentuple of mUltiplicity m, ) ~ m S m. 

(4.2) Definition 

An n-tuple A = (AI"" ,An) E m.n 
is an eigentuple of the n-set (T I ,··· ,Tn) 

of multiplicity m if there exist m orthonormal simultaneous eigenvectors 

e~m~ such that 
I\,J 

(m) 
T. e, . 

1 1\, J 
(m) 

A. e, . , ) s; j < m + ), lsi ~ n • 
1 I\,J 

Similarly, the notion generalized eigentuple can be introduced. 

o 
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If one wants a canonical listing of the eigentuples of an n-set of 

commuting matrices it is natural to list all eigentuples of multiplicity 

one, two, .••• We need a way of saying that an n-set of commuting self-

adjoint operators is of uniform multiplicity one, two, etc. 

(4.3) Definition 

An n-set (T1 , ••• ,Tn) of commuting self-adjoint operators is said to be 

of uniform multiplicity m if each T. is unitarily equivalent to multi-
1 

plication by Ai in L2 (JRn 
,\.l) $ ... $ L2 (m

n 
,11), where there are m terms 

in the sum and where 11 is a finite Borel measure in En. 

The formulation of the commutative multiplicity theorem for an n-set of 

commuting self-adjoint operators is quite evident. 

(4.4) Theorem 

Let (T1, ••• ,Tn) be an n-set of commuting self-adjoint operators in X. 

Then there exists a decomposition 

such that 

(i) The n-set (TI •••• ,Tn) acts invariantly in each Xm, 15m 5~. 

(ii) The n-set (TI, ••• ,Tn) restricted to Xm has uniform multiplicity m. 

(iii) The measure classes <11 > associated with (TI, •• o,T) r X are m n m 

mutually disjoint. 

Further, the subspaces X
oo

,X1,X
2

, ••• (some of which may be zero) and the 

classes <l1
oo

>,<l1
J
>, ••• are uniquely determined by (i), (ii) and (iii). 
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The proof of this theorem can be derived from the proof in the one dimen-

sional case and is essentially the same (see [N], [Br]). 

(4.5) Definition 

A set reX is called cyclic with respect to (TI •••. ,Tn) if 

X... E9 X • 
yEf Y 

Note that r is at most countable. 

If r consists of one element, this element is called cyclic vector. Lemma 

3.1 can be replaced by 

(4.6) Lemma 

The n-set (TI, •.. ,T
n

) is of uniform multiplicity one if and only if it 

has a cyclic vector. 

Following Theorem (4.4) X can be splitted into a direct sum 

X = X"" E9 XI E9 X2 E9 •••. Each of the restricted operators T i r Xm, 

lsi < m + I is unitarily equivalent to multiplication by A. in 
1 

m-times • 

Let X ., I s j .( m + 1 be the orthogonal subspace of X , which corresponds 
mJ m 

to the j-th term in the sum above. Then (TI, ••• ,Tn ) r Xmj has a cyclic 

vector rjm), say. In this way a set r is obtained 

r = {y ~m) I I s j < m + 1, Ism s ""} 

which is cyclic for (Tlt ••• ,T ). 
. n 
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(4.7) Theorem 

Take m, 1 ~ m ~ ~, such that X ¥ {OJ. Then there exists a null set 
m 

N(m) with respect to <~m>' such that for all A € SUPp«~m»\N(m), there 

are precisely m independent simultaneous generalized eigenfunctions of 

(T1, ••• ,Tn) with generalized eigentuple A = (A1, ••• ,An). 

Further, the set of all generalized eigenfunctions is total. 

(4.8) Example 

Consider SX,A wi th X ;: L2 OR) and 

2 
(~,Q ) where ~ denotes the parity 

2 
x ; so 

I (d
2 

2 ) A = - - -- + x + 1 and the 2-se t 
2· 2 dx 

operator and Q2 multiplication by . 

(Q2 6) (x) = x2 6(x) and (~6) (x) = 6(-x) • 

2 Then the 2-set (~,Q ) has uniform multiplicity I because it has a cyclic 

vector; for instance take 

y : x H> (I + x) e -ix
2 

• 

5. A mathematical interpretation of Dirac's formalism 

In the preface to his book on the foundations of quantum mechanics von 

Neumann says that Dirac's formalism ~ ~Caftcelif to be ~~~ed ~n b~evitif 

and elega.nce. but that it ~n no waif Ml;ti.A6J,..U the. ~eqcUJtemen:t..6 on ma.thema.-

tical nigo~. The improper functions of Dirac, the a-function and its 

derivatives, have stimulated the growth of a new branch of mathematics: 

the theory of distributions. Yet, as far as we know, no paper on Dirac's 

formalism mathematically foundates the bold way in which Dirac treats 

the continuous spectrum of a self-adjoint operator. Most papers on this 
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subject only solve the so called generalized eigenvalue problem by means 

of the rigged Hilbert space theory of Gelfand and Shilov. But Dirac's 

formalism has more aspects. 

In this section an interpretation of the formalism is studied in terms 

of our distribution theory. It consists of the definition of ket and 

bra space, of Parseval's identity, of the Fourier expansion of kets with 

respect to continuous bases, of the existence and orthogonality of com

plete sets of eigenkets, of matrices of unbounded linear mappings with 

respect to continuous bases, and of some matrix computation. 

We shall only consider quantum systems at a given time without super

selection rules. So we do not need to specify whether we are using the 

Heisenberg or Schrodinger pictures. A quantum system at a given time is 

determined by states and observables. The space of all states is mostly 

supposed to be in 1-1 correspondence with the set of all one dimensional 

subspaces of an infinite dimensional separable Hilbert space X and the 

set of observables in i-I correspondence with the set of all self-adjoint 

operators in X. But in general we do not need to consider all self-adjoint 

operators. To describe a quantum system one can make a choice out of the 

set of observables, e.g. 'energy', 'momentum' and 'spin', which is suf

ficiently large to completely determine the quantum system and in parti

cular all relevant observables. 

In his formalism Dirac treats all points in the spectrum of a self-adjoint 

operator similarly. So the formalism assumes for instance that the notion 

multiplicity of A for every point A in the spectrum makes sense, and further 

that for each A with multiplicity m there exist precisely m independent 

eigenstates. Of course, Hilbert space theory can not fulfil these wishes. 
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Hilbert spaces are too small. Therefore, it is natural to look for spaces, 

which extend Hilbert space, and with structures comparable to Hilbert 

space structure. For instance, the trajectory spaces Tx,A are acceptable 

candidates. 

In Dirac's formalism the dual space of the ket space, the so called bra 

space, is in I-I correspondence with the ket space. So the latter space 

ought to be self-dual. To this end distribution theory can't ever be of 

any help. We try to circumvent this problem by a new interpretation of 

Dirac's bracket notion. 

Let QS be a quantum mechanical system. We assume that QS is completely 

determined by the set of self-adjoint operators {P1, ••• ,Pn} in the Hilbert 

space X. Further, we suppose that there exists a nuclear space Sx A such , 
that each Pi maps SX,A continuously into itself. So the Pi' i = I, ••• ,n, 

can be extended to continuous linear mappings on Tx,A. For instance, when 

the set {PI, .•• ,Pn} is an n-set of conunuting self-adjoint operators it 

is possible to construct such a nuclear space. 

In our interpretation the set of observables of QS corresponds uniquely 

to the set of self-adjoint operators which are continuous on SX,A. We 

note that the choice of the space Sx A depends on the self-adjoint opera-, 
tors PI, ••• ,P

n
• For the set of states we take the set of one dimensional 

subspaces of Tx,A. 

In Dirac's terminology the elements of Tx,A are the so called ket vectors. 

Therefore we introduce Dirac's bracket notation and denote them by jG> 

in the sequel. The label G in the expression IG> is mostly chosen such 

that it expresses best the properties of IG> which are relevant in the 
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context. To IG> uniquely corresponds the bra <GI defined by 

where (vk ) denotes the orthonormal basis of eigenvectors of A, and where 

the series converges in TX,A' 

The expression <F I G>. called the bracket of <FI and IG>, denotes the 

complex valued function 

<F 'G> : t 1+ < IF>(t), IG» t > 0 • 

The function <F I G> is well defined because IF> (t) E SX,A for every 

t > O. It extends to an analytic function on the open right half plane. 

Let f E Sx A' Then obviously <f I G>(-t) exists for every IG> and T > 0 , . 

sufficiently small and 

< fiG> (-t) = < ! f> (-T) , I G» ; 

similarly <G If> (-t) exis ts and 

To emphasize this nice property of the elements in SX,A the kets and bras 

corresponding to elements in SX,A are called test kets and test bras. 

Finally, we remark that for all t > 0 the function <F I G> satisfies 

· <F I G>(t) <F(t) I G>(O) .. <G{t) I F>(O) ... <G I F>(t) 
and 

<F I G>(t) ... <F(t) I G>(O) ... <F I G(t»{O) • 

Let P : Sx,A ~ Sx,A be an observable of QS. For simplicity, suppose that 

P is a cyclic operator in X, Then all points in a(P) , the spectrum of P, 

have multiplicity one. Further, there exists a cyclic vector y in X such 
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that P is unitarily equivalent to multiplication by ), in the Hilbert space 

L2Cm.,d(H),y,y». Here (H)'»'€R denotes the spectral resolution of the 

identity with respect to P. As in section 3, the Borel measure d(H),y,y) 

is denoted by dp (A) in the sequel. 
y 

Following the preceding sections there exists a null set N with respect to 

p such that for each), € o(P)\N there is an eigenket IA>. With the noy 

tation of section 3, I A> has the following Fourier expansion 

where the series converges in Tx,A' (As usual v
k 

denotes the eigenvector 

of A with eigenvalue A
k

, k = 1,2, •••• ) 

-tA 
Let g € SX,A' Then g = e f for a well chosen f € Sx,A and t > O. 

Consider the following formal computation 

Hence 

Ig> = I 
lR 

<A I f>(O) I)'> (t) dp (A) • 
y 

The only problem in this computation is the equality (*). We shall there-

fore prove that summation and integration can be interchanged. The follo-

wing inequalities hold true 
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I J e-Akt ItO,) Vk(A)1 dp/).) :;; 
k=1 1R 

~ t( I e-Akt f \f().)\2 dp (A) + I e-Akt f IVk {A)1
2

dPy
(A») == 

k=1 y k .. 1 
1R 1R 

= 1.. (II f II 2 + I) ( I e -Akt ) 
2 k-I 

By the Fubini-Tonelli theorem equality (*) is verified. 

With the aid of the above derivation, Ig> can be written as 

Ig> = J <A I f>(-t) IA>(t) dpy(A) 

1R 

where the integral converges absolutely in X, and does not depend on the 

choice of t > O. 

(5.1) Theorem 

Let If> be a test keto Then 

If> = f <A I £>(0) II.> d p/).) 

1R 

where the integral converges strongly in Tx,A' 

Proof 

Let t > O. We have seen that 

I£>(t) == f <). I f>(O) IA>(t)dpy(A) 

1R 

with absolute convergence in X. Since e-r A. r > 0, is a bourtded operator 

on X 

I f>(O) \b(t + 1:) dp ().) • 
y 

Therefore t ~ If>(t) is a trajectory. o 
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Parseval's identity is an immediate consequence of section 3 

(5.2) II f II 2 = J If 0.) 12 dp />.) == 

lR 

f I<f 1>.>(0) 12 dp
y

().) • 

Eo 

Further, from Theorem (5.1) it is clear that 

(5.3) plf> = J >. <A I f>(O) I>.> dp/A) • 

Jl 

Let F E TX,A' Then for every t > 0, F(.) E SX,A and hence by Theorem 5.1 

IF>(.) = IF(-r»(O) == I <A I F(T»(O) IA>dp/A) 

lR 

with convergence in Tx,A' Further, let t > O. Then for every T, 0 < t < t 

(5.4) I -(t-.)A F>(t) = e . IF>(.) = 

The integral in (5.4) does not depend on the choice of • and converges 

absolutely in X. The ket IF> can thus be represented by 

IF> 

By the expression 

<). I F>(·r) I).>(t -.) dp (A) • 
y 

f <A 1 F> I A> dp /A ) 

It 

is meant the trajectory 

<>. I F>(T) 1A>(t-.) dp (A) • 
y 
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Each of the integrals does not depend on the choice of T, 0 < T < t, 

and converges absolutely in X. We can write 

(5.5) IF> = J <A IF> IA>dpy(A) 

Jl 

where the integral has to be understood in the above-mentioned sense. It 

converges strongly in Tx,A' 

The result of Theorem (5.1) can be sharpened. To this end, let f E SX,A' 

Then there exists T > 0 such that eTA f E SX,A' We have 

If> = f <A 1 f> IA> dp/A) = 

Jl 

f <A I f>(-T) Ih(T) dp/A) 

Jl 
2.A 

where the latter integral converges in X. Since e2 is a closed operator 

in X, and since f <A 1 f>(-T) IA>(T/2) dp/A) converges absolutely in X, 

the integral Jl 

f <A I f>(-T) IA>(T) dpy(A) 

Jl 

converges in SX,A" Hence in our interpretation for the test ket If> we have 

If>= J<).If>I)'>dPy(A) 

Jl 

where the integral converges in SX,A' 

Consider the following equality 

A ,\J E: <1 (P) \N, t > 0 • 

Let 6). denote the function 
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and let U denote the unitary operator from X onto Y = L2(m,py). Put 

B = UAU*. Then 0" E Ty,B and for f E Sy,B 

So 0A is Dirac's delta function in Ty,B and consequently we write 

(5.6) 

Relation (5.6) expresses the generalization of the orthogonality relations 

for the eigenvectors of P to the eigenkets of P in agreement with Dirac's 

notation. 

For the sake of completeness we rewrite the result (5.5) for the bras and 

test bras 

(5.7) <FI = f 
m 

<F I ,,> <A I dp (A) 
y 

where the integral converges in Tx,A' Whenever <FI is a test bra the 

integral converges in SX,A' 

Another aspect of Dirac's formalism is the so called property of a com-

plete set of eigenkets. 

(5.8) Theorem 

pn= J"nIA><AldP/A) n '" 0,1,2, ••• 
l{ 

where the integral converges in Tx®x AlBA' Here 1,,><,,1 denotes the tensor 
• 

product II.> ® 1ft.> (e TX®X.AIBA)' 

(Here AEEA denotes the self-adjoint operator I ®A + A® I) • 
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Proof 

Let t > O. Consider the following formal derivation 

= J An IA>(t) e IA>(t) dp/A) • 

'R 

We shall prove that summation and integration can be interchanged. The re-

maining part of the proof is straight forward. 

Next we discuss the general case that P : SX,A -+- SX,A has a countable 

cyclic set. There will appear no essential difference with the case of 

a cyclic operator P. The same notation as in section 3 will be employed. 

Proofs will be omitted. 

o 
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So let {y~m) 1m = ~,1,2, ••. 
J I :S j < m + I} be the cyclic set for 

P. Then X can be written as 

m=<x> 
X = E9 

m==1 

m 
E9 X 

j_1 y~m) 
J 

where by absence of better notations 
m 
e X will denote 

j=J yjm) m=\ 

j;1 \(m») <9 (j~1 \ }oo») . 
J J 

The Hilbert space X (m) is unitarily equivalent to L2(~'P (m» and 
y. y. 

J J 
is unitarily equivalent to multiplication by A in L2(~'Py~m»' 

J 

p r \{m) 
J 

Following section 3 there exist sets N(m), each of which has measure zero 

with respect to <Py~m»' m '" ~,1,2 •••• such that for all A in 
J 

SUPP«Py~m»)\N(m) there are m independent eigenkets IA,m,j>, 
J 

sj<m+1. 

The eigenkets can be written as 

where the series converges in Tx,A' Then similar to Theorem (5.1) 

(5.9) Theorem 

Let f 
E SX,A' Then 

m ..... m 
J <A ,m,j If> - L L I f> (0) II. ,m.j> dp y{m) (A) m=1 j'" I 

lR J 

with convergence in Tx,A' Further 

m=oo 
I 

m=1 
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(Parseval's identity) and 

m-" 
pi f> = I 

m-l 
I J A <A,m,j I £>(0) IA,m,j> dp (m) (A) • 

jeJ m 'Yj 

Henceforth we will call the set {I A ,m,j > I A € o(P) ,Is m S ClO, I s j < m + J} 

a Dirac basis. 

With the same interpretation as in (5.5) we have 

(5.10) 
m=eo 

IF> = L 
m=1 

I J <A,m,j IF> IA,m,j> dPy<.m) (A) 
j=1 B J 

with convergence in Tx A' In particular if IF> in (5.10) is a test ket , 
the convergence takes place even in Sx,A-sense. 

Consider the following equality 

ClO 

, I . ( ) \' -Ak t .... {m) ( ) ~(n) ( ) <).I , n , 1 A ,m oJ > t = L. e vk ' A vk ' ).I 
k=l .J ,1 

where A E SUPP«Py~m»)\N(m). ).I € SUPP«Py~n»)\N(n). 
J 1 

] s i < n + J and m. n = "". I ,2. • •• • 

Let 6(m~ denote the function 
A,J 

6(m~ ().I,n,i,t) -+ <).I,n,i I A,m,j>(t) A,J 

m-"" m 
and U the unitary operator from X onto Y - 1'9 1'9 L2 (:£,p y~m»' Put 

6(m~ 
m"'l j-I 

* .... J B = UAU • Then I: TY,B' and for f I: Sy,B A,J 

.... 
f ( u n 1') -+ .... f.(n) (11) .. , , .. 

1 

and 
n="" n 
I I 

n=1 i-I 
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Hence 

<].I ,n,i I A ,m,j> = 0, (].I) 6 .. 0 • 
1\ J1 mn 

Finally we give the adaptation of the closure property (5.8). 

(5 • 11) Theorem 

! JAn IA,m,j><A,m,jl dp (m)(A) 
j=l 1R rj 

n - 0,1,2, ••• 

with convergence of the integral in Tx@x,AIBA' 

Here we do not intend to discuss the interpretation of Dirac's formalism 

for an n-set of commuting observables. The generalization to this case 

is immediate and rather trivial. All results remain valid in an adapted 

form. We only notice the nice way in which the definition of a complete 

set of commuting observables in the sense of Dirac can be expressed in 

our terminology. 

(5.12) Proposition 

The n-set (Pl •••• 'Pn) is a complete set of commuting observables iff it 

has uniform multiplicity one. 

Given an orthonormal basis X. Every bounded linear operator B in X is 

uniquely represented by its matrix [B] with respect to this basis. The 

product of two operators B}B2 has matrix [8
1
B2J which can be derived 

by formal matrix multiplication, [B
t
B2]k1 = ~[BIJki [82J i1 • Dirac 

l. 

assumes that the matrix notion can also be introduced in the case of 

Dirac bases, and that operating with these matrices runs similarly to 
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the discrete case. Because of this assumption one can choose a represen-

tation so that the Itep!luen.ta.tivu 06 the molte a.b.6tJta.c.t quant.iUu oc,CU/l.

Jr..i.ng in the p!loblem Me lt6 .6.imple a.6 pO.6.6ible. Examples of such repre-

sentations are the so called x- and p-representations. 

Here we shall give a mathematical interpretation of this hypothesis of 

Dirac. We shall restrict ourselves to representations of observables 

with repsect to a complete set of generalized eigenfunctions of a cyclic 

self-adjoint operator. The general case of a non-cyclic self-adjoint 

.operator or of a commuting n-set can be dealt with similarly. 

Let P : SX,A ~ SX,A be a cyclic self-adjoint operator, and let I).>, 

). E o(P) , denote the eigenkets of P in Tx A' The operator F@ P is self-, 
adjoint in X ® X, and maps SXOilX AIIIA continuously into itself. Eigen-, 
kets in TX®X,AEI3A of POil Pare I).>® Ill>, ).,Il E o(P). Following Dirac 

we shall denote the tensor product IA> ® 1).1> by 1).1><).1 in the sequel. 

Every continuous linear mapping from Tx,A into SX,A is derived from an 

element of SX®X,AEI3A' because of the Kernel theorem. With the methods 

we employed in the proof of Theorem (5.1) the following result can be 

shown, 

(5 • I 3) Theorem 

Let BE SX®X,AIIIA' Then 

B = II <).I I B I ).>(0) Ill> <A I dp 0) dp (ll) 
2· Y Y m 

where the integral converges in Tx ®X,AEI3A' and where 

I I -t A tBA I I <]J B ).>(t) = <e B, A>@ ]J». 
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We note that 

e-tAEBAs = If <ll I B I A>(O) (llJ><AI)(t) dp (,,) dp (lJ) , t > 0, 
2 Y Y 

lR 

where the integral converges absolutely in X® X. 

Similar to the one variable case Tx A (cf. (5.5», Theorem (5.13) can be , 
adapted such that it is valid for elements in TX®X,AB:lA' 

(5.14) Theorem 

Let G E TX~X,AB:lA' Then we have with <\1 I G I A> t t+ <11 I G(t) I A> , 

G = If <11 I G I A> IlJ> <AI dp ().) dp (11) 
2 y Y 

lR 

where similarly to (5.5) the integral has to be understood in the fo11o-

wing sense. 

G tt+ JJ <A I G Ill>(T) (Ill> <AI)(t- T) dp (A) dp (ll) • 
y y 

lR 

Here the integrals do not depend on the choice of T, 0 < T < t, and con-

verge in X ~ X. 

With respect to the Dirac basis (IA>\€O(p) an element B, B E SX0X,AIBA' 

can be represented by the matrix [s] given by 

(5. 15) II ,A Ii: o{P) 

and following Theorem (5.13) 

B = JI (B] A Ill> <AI dp (A) dp (\.I) • 
2 11 Y Y 

lR 
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Further for IF> ( TX A' the ket BIF> is a test ket and , 

(5. 16) 

TA 
where T > 0 has to be taken so small that Be € SX@X,AEBA' and where 

the integral converges in TX,A and does not depend on the choice of 

t > O. Even convergence in SX,A can be proved. Further 

(5.17) <lJ I BIF>(O) == J <lJ I B I A>(-T) <). I F>(T) dp/A) 

lR 

where the integral converges absolutely. Note that <lJ I B I A>(-T) exists 

because BIF> is a test ket for every ket IF>. 

The matrix notion can be extended to elements of T X0 X,AEBA' To this end, 

let G € TX@X,AEBA' Then with the expression [G] we mean the set of 

functions 

(5. 18) [GJ
llA 

= <\1 I G I ).>. 

We note that G(t) E SX@X,AEBA" The expression [G] will be called the 

matrix of G. By Theorem (5.14) we have 

G = II [GJ , 1\1> <AI dp (A) dp (ll) • 
2 ll" Y Y 

lR 

Let If> be a test keto Then Glf> can be represented by 

(5.19) Glf> 

where T, 0 < T < t, has to be taken so small that If>(-t) ( SX,A' and where 
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the integrals converge absolutely in X and do not depend on the choice 

of T > O. Further 

(5.20) <~ I G I f> t + 

where the integrals converge absolutely and do not depend on the choice 

of T > O. 

Similarly a matrix notion will be introduced for continuous linear mappings 

from SX,A into itself resp. TX,A into itself, or equivalently because of 

the Kernel theorem for elements in T(SX@X,I@A,A®I) resp. 
, , 

T(SX@X,A@I,I®A), i.e. the spaces LS and LA as introduced by De Graaf 

in [G], ch. IV (cf. [E
l
]). 

For R € T(SX@X,I@A,A®I)the matrix representation [R] is defined by 

(5.21) [R]~A : (s,t) Ho- <ll I R(t) I A>(S) • 

Note that R(t) E SX@X,AB3A t :. O. fixed. So there exists 0 > 0 such 

that <j.J I R(t) I 1.>(-0) is well-defined because R(t) II.> is a test keto 

It can be shown that 

(5.22) R : tHo- R(t) = If [R] .., (-O,T) <IA>(t- T) @ 1\.1>(0» dp (A) dp (ll) 
2 ).lJ\ y Y 

1\ 

where the integrals converge in x~ X and do not depend on the choice of 

T, 0 < T < t and of 0 > 0 sufficiently small. We write 

(5.23) R ff [R] A Ill> <A I dp (A) dp (ll) 
2 11 y Y 

:R 
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where the integral has to be interpreted in the sense of (5.22) and 

converges in TX®X,AIEA (even in T(SX@X~I®A,A6iH». Let 

RI E T(SX®X,I®A,A@I). Then the matrix of the product RIR is given 

by 

(5.24) (s,t) 1+ J [R'] (s,o) [R] ,(-o,t)dp (\I) 
II \I \11\ Y 

".R 

where the integrals converge absolutely and do not depend on the choice 

of a, and where a > 0 has to be taken such that 

oA 
e R(t) E SX®X,AIEA • 

We write 

(5.25) f [R'] [R] \ dp (\I) 
jJ\I \/1\ Y 

JR 

where the integral converges in the indicated distributional sense. 

Further, let If> be a test keto Then Rlf> is a test ket, also, and 

(5.26) Rlf> = 2fI 
11 

<11 I R(T} 1),>(0) <). I f>(-1) IjJ> dp (A) dp (jJ) 
. y y 

ill: If [R] ,(-0,1) <A I f>(-1) Ill>(O) dp (A) dp (jJ) 
2 IJi\ Y Y 

".R 

where the integral converges in Tx,A and does not depend on the choice 

of 1 > 0 and of a > 0 chosen sufficiently small as indicated in (5.21). 

Finally, we have 

(5.27) <jJ I R I f> [R] ,( S , 1) <). I f> (-1) dp (J.) • 
jJi\ Y 
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For Q E T(SX~X,A!ii()I,I®A) its matrix [Q] is defined by 

(5.28) [Q]IlA : (s,t) -+ <)J I Q(s) I ).>(t) • 

Note that Q(s) E SX~X,AIBA' SO there exists t > 0 such that 

<ll I Q(s) I A>(-T) is well-defined because Q(s) I).> is a test keto It 

can be shown that 

(5.29) Q S 1+ Q(s):: f( [Q] ,(0,-,) (11.>(,) 19 Ill>(S-O) dp (A) dp (11) 
2 J lll\ Y Y 

J1 

where 0,0< ° < s, and where the integrals converge in X® X and do not 

depend on the choice of 0, and of T > 0 sufficiently small (cf. (5.21). 

We write 

(5.30) Q:: If [Q] ,<Ill> <I. I)dp (A) dp (ll) 
2 111\ Y Y 

.)1 

where the integral has to be interpreted in the sense of (5.29) and con-

verges in TX@X,AEBA' Let Q' E T(Sx@X,A@I,I®A). Then the matrix of the 

product Q'Q is given by 

(5.31 ) (s,t) 1+ J [Q'] (s ,-T) [QJ '(" t) dp (v) 
~V VI\ Y 

where the integrals converge absolutely and do not depend on the choice 

of T, and where T > 0 has to be taken such that 
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[Q'QJ
flA 

= J [Q I Q J [Q] \ dp ( \I) • 
fl \I \11\ Y 

:R 

:h€: integral converges 1.n the above-mentioned distributional sense. 

JIH> can be represented by 

( # 33) QIH> : s 1+ Jrf [QJ ,(0',-,) <A I H>(T) i\.l>(s -0) dp 0) dp (ll) 
2 \.11\ Y Y 

lR 

'i.-_ere the integrals converge absolutely in X for every s > 0 and do 

depend on the choice of 0, 0 < a < s. and T > 0, and where T > 0 

'fA 
to be taken such that Q(o) e E SX® X,A lEA' [:.as 

F:~:lally. note that 

(5.34) <ll I Q I H> s.... f [Q\.lA ](S.-T) <A I H>(T) dp/A). 

It 

Remark 

Tne proofs of most results we gave in the last part of this section 

become more transparant by the following relation: 

Let B E SX®X,AfBA' and let t} > 0 and t z > O. Then 

TIle proof of this relation runs analogously to the proof of Theorem (5.1). 

References to this section: 

[An]. [Bo], [DiJ, [JaJ, [GeVi] , [Mel], [Ro]. 
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