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We present a SOA-based architecture framework. The architecture frame-
work is designed to be close to industry standards, especially to the Service
Component Architecture (SCA). The framework is language independent and
the building blocks of each system, activities and data, are first class citizens.
We present a meta model of the architecture framework and discuss its con-
cepts in detail. Through the framework concepts such as wiring, correlation,
and instantiation can be clarified. This allows us to demystify some of the
confusion related to SOA.
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1 Introduction

Since the early days of computer science it is well-known that mastering the complexity
of large (software) systems is the major challenge. On the level of programming, many
methods and techniques such as structured programming, stepwise refinement, functional
programming, logical programming, and object-oriented programming, were developed.
Another attempt to master complexity was to introduce more levels of abstraction in
the development. So, techniques for structural analysis and design were introduced
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followed by specification languages such as Z [ASM80] and Vienna Development Method
(VDM) [Jon90].

One very successful approach for handling complexity is modularization. Already from
the beginning of computer science, programming languages have facilities to split sys-
tems into modules that hide details you do not need when you use or reuse the module.
Modules have different names like “procedure”, “subroutine”, “function”, “class”, “ob-
ject”, “capsule”, or “component”. There are many types of properties the modules differ
in, for example, the way they are invoked, whether they are stateless or not, and if they
have side effects. The principle of compositionality is one of the most desirable require-
ments for modular systems: A collection of modules that are properly connected to each
other should behave as one module itself. Often, we require more: If we have verified
that all modules of a system satisfy some property and they are connected properly,
then the system as a whole should have the same property. In object-oriented program-
ming modules, called classes or objects, are first class citizens. During the last decade,
modularization is considered as the most important feature of a design of a system. In
the rest of this paper, we will use the term component for a module.

At a high level, a system is described by its components and their relationships. Such
a description is the architecture of a system. Software architects are the most wanted
specialists in the software industry. There are several languages to define components
and to glue them together. There are also different architectural styles. In this paper, we
concentrate on a style based on the Service-Oriented Architecture (SOA) [HKG05]. SOA
can be seen as one of the key technologies to enable flexibility and reduce complexity
in software systems. Today, SOA is a set of ideas for architectural design and there are
some proposals for SOA frameworks, including a concrete architectural language: the
Service Component Architecture (SCA) [BBE+06], and software tools to design systems
in the SOA style.

In this paper, we present a SOA-based architecture framework by means of a meta
model and discuss its concepts in detail. The architecture framework consists of three
models each representing a particular view.

The component model presents an abstract view on the components of the system and
shows which components interact with each other by message exchange. Therefore, the
component model shows the components, their interfaces, and how these interfaces are
wired. The component model allows for a concept of hierarchy, too.

Every component contains a process, which is a set of activities. The process model
provides a view on these activities and their relation to the data entities. An activity
can access to data entities that are located within and outside its component by using
the concepts of method call and message exchange, respectively. We further show that
our process model is generic and thus it can be specialized by process models such as
WS-BPEL [AAA+06] and Petri nets.

The data model is a view on data entities and their relationships. The architecture
framework allows for internal relationships between data entities (i.e., within a com-
ponent) and external relationships between data entities (i.e., across the borders of
components). These two different relationships introduce hierarchy in the data model.

Besides these three views, the architecture framework also covers important concepts
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such as component instantiation and message correlation (i.e., deliver messages to their
correct component instance). To support the concept of instantiation, we distinguish in
the process model between case and base activities and in the data model between case
and base entities. A case activity (entity) belongs to a single instance whereas a base
activity (entity) is independent of a specific instance.

To enable the verification of systems on the level of the architecture, we collect a
number of constraints for the architecture framework and specify them using the Object
Constraint Language (OCL) [OMG03]. These constraints can be implemented and au-
tomatically checked during the system design. We further present rules to transform the
architecture framework into Colored Petri net models. This is only shown by example,
but a fully worked out semantics for the architecture framework can be easily derived
from it. The formal semantics is the basis to make the architecture framework applicable
for formal verification (e.g., model checking).

Our architecture framework should be close to industrial standards, especially SCA.
Therefore, we compare the concepts of our architecture framework with those of SCA
and show that it extends SCA.

The outline of the paper is as follows: In Sect. 2, we sketch the practice of component-
based software systems. We also introduce software architectures and in particular
the Service-Oriented Architecture. Based on SOA, we formulate a set of requirements
for a SOA-based architecture framework. Next, in Sect. 3, we present our two running
examples, the dating service and the container transport system. Our main contribution,
the architecture framework including component, process, and data model, is presented
in Sect. 4. We introduce the architecture framework by means of a meta model and
show that it covers most of the requirements for a SOA-based architecture framework.
Subsequently, in Sect. 5, we show how the architecture can be formalized by transforming
the dating service example into Colored Petri net models. Afterwards, in Sect. 6, we
compare our proposed framework with the Service Component Architecture. Finally,
Sect. 7 summarizes the paper, discusses related work, and describes how our work will
be continued.

2 Context

2.1 The Component-Based World

The idea to use components in software development was already published by McIlroy
in 1968 [McI68]. In this paper, McIlroy presented his idea of mass-produced software
components. Even though much progress has been booked since then, today there is still
no universally accepted definition of what a component is. Most cited is the definition
of Szyperski [Szy98]:

“A component is a unit of composition with contractually specified inter-
faces and explicit context dependencies only. A software component can be
deployed independently and is subject to composition by third parties.”
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Messerschmitt and Szyperski present in [MS03] a more enhanced definition: A software
component is a reusable module suitable for composition into multiple applications. A
component fulfills five properties:

• it can be used in multiple projects,

• it is designed independently of any specific project and system context,

• it can be composed with other components,

• it is encapsulated, i.e. only the interfaces are visible and the implementation cannot
be modified,

• it can be deployed and installed as an independent atomic unit and later upgraded
independently of the remainder of the system.

As there is no consensus about what a component is, there is also no agreement on the
granularity of components. A component can be small grained like a graphical object
in a user interface or coarse grained like a debtors register in an Enterprise Resource
Planning (ERP) system, for instance.

A component has four different interfaces: (1) a software interface to compose the
component with other software components, (2) a user interface which allows the com-
munication between the component and a human user, (3) a configuration interface that
is used to configure the component (e.g., set parameters), and (4) a monitoring inter-
face to provide runtime diagnostic statements of the component’s internal, for example,
values of the messages that are sent or received by the component. So far, components
often have neither a user nor a monitoring interface, but in near future they will become
an inherent part of a component’s interface.

Components can be classified based on their functionality : There are application spe-
cific and generic components. A general ledger component or an SAP component is an
example of an application specific component whereas a document manager or a work-
flow engine is a generic component. A synonym for generic and application specific is
horizontal and vertical, respectively, because components address either a horizontal or
a vertical market [Szy98]. A vertical market, also known as a niche market, meets the
interest of their customers by offering custom-tailored products. In contrast, a horizontal
market tries to attempt most of the needs of a broader community of customers. An-
other classification of components is based on the configuration of their parameters. In
a predefined (or hard-wired) component, the version is hard-coded and the parameters
are selected from an option list. An inventory control rule like FIFO or LIFO would
be an example. In contrast, the parameters in a programmable component are database
schemes, process models, or business rules.

Components may specify nonfunctional properties. Nonfunctional properties are also
named Quality of Service (QoS). Examples are response time and the usage of resources.

A component may have relevance from a business perspective (which is the primary
focus of SOA) or from an IT perspective (as in traditional software systems).
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A system, which is developed by composing components, is a component-based system.
Component-based systems will evolve in an organic way. There may never be a total
renewal nor an upgrade of the overall system. Instead, components will be replaced
periodically by better ones, for example, because the performance was not good enough
anymore. Adding new functionality to the system will also be realized by either adding
new components or replacing components by better ones. This will reduce the total cost
of ownership of component-based systems.

At the time, component-based systems are in particular used in the area of web ser-
vices. However, to make these systems for customers attractive, the industry has to make
tool support available and define standards, for example, for components and component
architectures. In fact, companies like IBM, Microsoft, Oracle, and SAP spend a lot of
effort in this field. Consequently, the market expectations of component-based systems
will increase during the next 5–10 years. Reasons, why customers will use component-
based systems, are the enormously growing of software systems during the last decades
and the globalization which demands greater flexibility – in particular from the software
systems. So for today’s IT, it is most challenging to respond quickly to new business
requirements while reducing the IT costs. One possibility to overcome this problem is to
buy software (components) from third parties. This is, in fact, usually cheaper and more
effective than doing the work itself. Therefore, the software development in many com-
panies has been out-sourced. Building software from reusable components rather than
from scratch is another possibility to reduce IT costs, design time, and develop more
flexible software systems. Component-based design has two major benefits when the
component-based system fulfills the compositionality principle. Firstly, it structures the
design and the development of systems and thus reduces the amount of effort needed to
verify and maintain systems. Secondly, the reuse of components reduces the development
effort [BS05].

Components may have a vendor. Vendors will compete with each other to offer the
best functionality. For instance, they will offer components with different levels of qual-
ity and/or functionality at a different level of price. Furthermore, components will be
customized. For this purpose, vendors might offer compound components, i.e. prepacked
solutions or combinations of components with parameters that can be used as a new
predefined component. For example, the software of set-top boxes offered by telecom-
munication companies consists of components. These components have parameters (e.g.,
video format and resolution) that are initially configured.

In the component-based world, the architecture is of crucial importance. Firstly,
the architecture can be used as a blue print for the development of a component. For
example, a component can be seen as a black-box (i.e., only the interface is visible) or as a
white-box (i.e., the internal details of the component are visible, too). As the architecture
supports such different views on a component, it may help to develop software in a
more structured way. Secondly, an architecture facilitates the work distribution in the
software development process: If the interfaces are specified, different components can
be developed independent of each other.

Simulation, testing, and verification of components is an important, but very difficult
task. Components are replaced by other components or added to the system and this
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change must preserve the properties of the system. Sometimes the replacement has to
be done at runtime which makes this task even more difficult. We further believe that in
the near future customers will require a guarantee that at least some safety properties
hold in a component. Such a safety property might be for example: “if the component
fails to function, it will never jeopardize the overall system”. Therefore, (computer-
aided) verification of components such as in [SCCS05] becomes increasingly important.
Mainly important are especially verification methods to predict systems properties from
component properties. Finally, as mentioned above, a component-based system is not
upgraded, but components have to be added and exchanged during the runtime of the
system. To this end, approaches are needed that incorporate this requirement into the
architecture.

2.2 Architecture Frameworks

Let us now shift our focus from components and component-based systems to software
architectures. We start with a definition of software architecture in general and introduce
then the Service-Oriented Architecture.

2.2.1 Software Architectures

Just like for the term “component”, everyone knows roughly what a software architecture
is, but there is also no universally accepted definition. We therefore start this section
with two definitions from the literature. Based on these definitions, we elaborate our
own definition.

The first definition of software architecture, we present, is a modern one [BCK03]:

“The software architecture of a program or computing system is the structure
or structures of the system, which comprise software elements, the externally
visible properties of those elements, and the relationships among them.”

The second, but also well-known definition, is presented by the IEEE Standards Asso-
ciation for Recommended Practice for Architectural Description of Software-Intensive
Systems:

“Architecture is defined by the recommended practice as the fundamental
organization of a system, embodied in its components, their relationships to
each other and the environment, and the principles governing its design and
evolution.”

Referring to both definitions, an architecture shows the elements of the system, i.e. in
case of a component-based system the components and their relationships. We restrict
us to “the structure of the system” or “the fundamental organization of a system” and we
define this as a set of views. A view is a model of a part or an aspect of a system. Views
should be consistent ; that is, no view should contradict another view on the system.
Furthermore, views should also be complete. That means, every property of the system
should be modelled by at least one view. As a view is a model (i.e., a simplification of
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the system), it is therefore possible that the view does not make a statement whether a
specific property holds or not.

Based on these facts, we elaborate the definition of a software architecture to the
following which is used throughout this paper:

“An architecture of a system is a set of descriptions that present different
views of the system. These views should be consistent and complete. Each
view models a set of components of the system, one or more functions of each
component, and the relationships between these components.”

For example, a view could show a data model of some components and the inheritance
relationship between the components.

A specification to organize and develop a software architecture in a specific style is
an architecture framework. Some examples for software architecture frameworks are
UML, CORBA, Turbine, Avalon, Koala, SCA, and SRML to name a few. The Uni-
fied Modeling Language (UML)1 serves the (graphical) description of models. It can be
used to describe the structure (e.g., using class diagrams) or the behavior (e.g., using
use-case diagrams or sequence diagrams). Common Object Request Broker Architec-
ture (CORBA)2 enables the interaction of heterogenous applications by providing an
interface definition language, object models, and communication protocols. Apache’s
Turbine3 is a servlet-based framework to develop web applications. Avalon4, also from
the Apache foundation, is a framework for building server side applications. It allows
to create components, manage them, and use them in applications. At Philips, the
Koala framework [OLKM00, Omm02] is designed and used. It is a component model for
electronic devices. Components interact with each other through interfaces and can be
connected using connectors. The Service Component Architecture (SCA) [BBE+06] pro-
vides a programming model for building applications, components, and systems based
on SOA. The programming model describes the relationships, the composition, and the
deployment of components. It also applies infrastructure capabilities to components
such as security and transaction. Later, in Sect. 6.1, we will give a short introduction to
SCA. Finally, the SENSORIA Reference Modelling Language (SRML) [FLB06] is an ar-
chitectural framework which has been inspired by SCA. The language presents a formal
model for components and their composition.

2.2.2 Service-Oriented Architecture

The example architecture frameworks, which are presented above, reveal that the use
of reusable software components becomes more and more popular. One of today’s most
popular architecture frameworks is the Service-Oriented Architecture (SOA) [HKG05].
SOA is seen as one of the key technologies to enable flexibility and reduce complexity in
software systems. It follows the paradigm to explicitly separate an implementation from

1www.uml.org
2www.corba.org
3http://jakarta.apache.org/turbine/
4http://avalon.apache.org
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its interface. Such an interface is well-defined ; that is, it is based on standards such as
the Web Service Description Language (WSDL) [CCMW01, CMRW06]. Implementation
and interface form together a component.

In SOA, a component is referred to a service, but we prefer to use the term component.
Components are independent of applications and the computing platforms on which
they run. Components in a SOA can be connected without having knowledge of their
technical details; they are loosely coupled. To connect components during runtime, SOA
supports dynamic binding. For the message exchange between components, standardized
communication protocols are used. Further, all the standards, which are used in a SOA,
are extensible, meaning they are not limited to current standards and technologies.

SOA distinguishes three different roles of components: component provider, component
consumer, and component registry. It postulates a general protocol for interaction: A
component provider registers at the component registry by submitting information about
how to interact with its component. The component registry manages such information
about all registered component providers and allows a component consumer to find an
adequate component provider. Then, the component of the provider and the component
of the consumer may bind and start interaction.

A component has two kinds of interfaces: buy and sell interfaces. Buy interfaces
specify which services are required by the component. In contrast, sell interfaces specify
which services are provided by the component. So in terms of the component roles,
in SOA, a component plays the consumer’s role at the buy interfaces and at the sell
interfaces it plays the provider’s role.

Apart from these technical paradigms services in SOA are also based on an economical
paradigm. A service is comparable with a business unit. So it should create value for its
environment. Therefore the two kinds of interfaces can be seen as the buy side and the
sell side of the service. On the buy side, a service behaves as a service consumer or client
and buys other services. On the sell side, a service behaves as the service provider and
offers its service to other services. Services are operating as actors on a market place.
This means, they offer their services to any consumer who needs it and they buy services
from providers with the best value proposition. So both parties publish their needs and
offerings at a repository, respectively.

2.3 General Requirements of an Architecture Framework

The following list of required features is distilled from the variety of proposals for archi-
tecture frameworks. They can be seen as general requirements that should be satisfied
by an architectural framework:

• The basic concept of an architecture framework should be a component.

• A component should have four interfaces: a software interface, a user interface,
a configuration interface, and a monitoring interface. Interfaces, in particular the
software interface, should facilitate an easy “plug and play” of components.

• A component should also have an internal structure that consists of
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– a process, which is a partially ordered set of activities. Activities describe the
component’s behavior.

– data entities, which are global to the component. These data entities can be
used to configure the component.

• Components should support the concept of instantiation. For this purpose, the
architecture framework should distinguish between activities and data entities that
belong to a single instance and those that can be used by all instances.

• An architecture framework should support the concept of message correlation to
deliver a message to its correct component instance.

• A component should have a mechanism to catch and handle faults. It should
also support an orthogonal mechanism, namely, the roll back of already executed
activities.

• A component should offer a monitoring service which logs the execution of the
component. For this purpose, the monitoring interface of the component is used.

• It should support relationships between components:

1. Interaction relationships with facilities for synchronous and asynchronous
communication by message exchange on the one hand and shared data entities
on the other hand.

2. Hierarchical relationships between components to support refinement as a
design technique.

3. Inheritance relationships to facilitate reuse in the (re)design.

• The architecture framework is open in the sense that the following three elements
are left undefined, they can be considered as “plug-ins”:

– A process formalism describes the ordering of the activities in a component.
Such a formalism usually separates the activities from the data entities of a
component. We should allow for different formalisms, for example, labelled
transition systems, various kinds of process algebras, Petri nets, or industry
standards as UML activity diagrams, Business Process Modeling Notation
(BPMN) [Whi04], and Web Services Business Process Execution Language
(WS-BPEL) [AAA+06]. Programming languages such as Java or C++ can
also be used.

– A data model defines the data entities, their types, and the methods to ac-
cess to them. We may use here algebraic formalisms such as abstract state
machines [BS03] or industry standards as UML class diagrams, entity rela-
tionship model, or the relation model. As industry standards are often not
refined enough to provide all the relevant aspects of a data model, we use the
Object Constraint Language (OCL) [OMG03] to specify constraints between
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entities of a data model. It is also possible to use programming languages
such as Java or C++ as a data model.

– A language defines the operations of activities. Here, we may apply formal
specification languages such as abstract state machines, B [Abr96], VDM
[Jon90], or Z [ASM80], but also programming languages such as Java, C++,
or Standard ML (the programming language used in CPN Tools [RWL+03]).

• An architecture framework should have a formal semantics.

• It should be close to existing industrial (graphical) description techniques such as
the UML family, BPMN and process models as WS-BPEL. With “close” we mean
that the models used in the architecture framework can be easily translated into
existing industrial description techniques and vice versa.

Not every process formalism separates the activities from the data entities of a com-
ponent. For example, WS-BPEL provides a combined view on activities (WS-BPEL
activities) and on data elements (WS-BPEL variables). So an architecture should offer
both views, the combined view, showing data entities and activities together, and also
a view restricted to the ordering of activities without data aspects.

3 Running Examples

In this section, we present our two running examples, the dating service and the container
transport system.

The dating service administrates a database which stores information about boys and
girls looking all for the “right” partner. The business idea is that the customer (i.e., a
boy or a girl) registers and after paying a fee, the system searches for the best matching
partner in its database. The contact data of this resulting match is send to the customer.
If the customer is not happy with this match, he can go on trying until he is satisfied
with the partner selected by the system or he gives up.

Let us now have a more detailed look a the dating service. After receiving the reg-
istration information of the customer, the system checks its identification, for example,
whether the customer is a known marriage swindler. If the check is positive, the registra-
tion of the customer is confirmed, else it is rejected. After receiving the confirmation, the
customer can pay the fee. Then, the system searches for the best matching partner and
its contact information are sent to the customer. If the customer is not happy with this
match, he can pay again and thus initiate a new partner search. This can be repeated
until the customer is satisfied with his partner or decides to give up. If the customer
finds a partner, he is asked to send a success story to the dating service which will be
published. Then, the service is finished.

The container transport system is more complex than the dating services. In this
example, there exists containers, ships, and trucks. The idea is that containers are
stuffed (i.e., loaded) and then transported to their strip address. After stripping (i.e.,
unloading), the container has to be transported to its stuff address where it is stuffed
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and so on. Means of transport are trucks for short distances and ships for long distances.
Trucks transport containers from a harbor to its strip address and after stripping to its
stuff address. Next, a truck transports the container to the harbor.

4 A SOA-Based Architecture Framework

Starting from the Service-Oriented Architecture, we collected requirements for a SOA-
based architecture framework in Sect. 2.3. In this section, we present a meta model of our
architecture framework. We introduce its concepts including the three views component
model, process model, and data model. We further show that the architecture framework
covers most of the collected requirements.

4.1 Component Model

In the following, we present our SOA-based architecture framework. It is based on the
general requirements presented in Sect. 2.3. Figure 1 shows the abstract meta model
of the architecture framework in UML notation. After a general explanation of this
meta model, we have a more detailed look at the concepts of components, the interface
concept, and the wiring of components.

4.1.1 General Overview of the Architecture Framework

The basic concept of the architecture framework is a component. We distinguish atomic
components and composite components. An atomic component consists of a process,
which is a set of activities (c is the name of the relationship between entities “atomic
component” and “process” and k between “process” and “activity” in Fig. 1), and zero
or more data entities (relationship a in Fig. 1). Every data entity has a type (relation-
ship q). A composite component, however, describes hierarchical relationship between
components. It is a container for components; that is, it may contain atomic components
and other composite components (relationship h).

Each component has one or more interfaces (sometimes called port) with its environ-
ment (relationship g). An interface is either a buy or a sell interface and consists of a
set of operations (relationship f). An operation describes a message exchange between
two participants. However, it can be used by any number of components. An operation
follows a given operation type (relationship u) which describes a message exchange pat-
tern between the participants. We allow for the four operation types presented in the
WSDL 1.1 specification [CCMW01]: one-way, request-response, solicit-response, and no-
tification. In general, an operation type consists of zero or one input and/or zero or one
output messages and an optional fault message. Each message has a message type. As
can be seen from Fig. 1, the operation type of one-way and notification has an input and
an output message, respectively. Operation types solicit-response and request-response
define an input message, an output message, and optionally a fault message. The differ-
ence between both operation types is the message order. In case of a solicit-response, the
component first sends a message and then receives a message (i.e., an outgoing message
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Figure 1: Abstract meta model of the architecture framework.

followed by an incoming message) whereas in case of a request-response, the component
first receives a message and then sends a message (i.e., an incoming message followed
by an outgoing message). In practise, operation types one-way and request-response are
predominantly used and solicit-response and notification are less relevant.

An activity may exchange messages through one or more operations (relationship
j) with other components. It may also access some of the data entities of its atomic
component by means of method calls (not shown in Fig. 1). These method calls may
change the value of the data entities. A more detailed look at processes and data elements
is presented in Sect. 4.2 and Sect. 4.3, respectively.

Besides wrapping components (relationship h), a composite component also defines
one or more wires (relationship i). In general, a wire connects interfaces of components.
More precisely, a wire connects two operations depicted by relationships d and e. These
two operations have either the same operation type or they have complementing opera-
tion types, for example, one-way and notification. Wiring two operations with the same
operation type can be seen as a reference. The operation of a component is propagated
to the enclosing composite component. Such a wire is therefore called a vertical wire. It
always connects an operation of a component by its direct parent operation. In contrast,
wiring two operations with complementing operation types shows the connection of two
components. We call such a wire a horizontal wire. The two different wires are visualized
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in Fig. 2.

w1

i1

w2

i2

i3
w3

i4
w4

(a) Vertical wires.

i2
w1

i1

i4
w2

i3

i6i5
w3

i8i7
w4

(b) Horizontal wires.

Figure 2: Different wiring concepts: In Fig. 2(a), for every pair of operations with the
same operation type a vertical wire is shown which connects these operations.
Wires w1,. . . ,w4 are depicted by a solid line. Interfaces i1,. . . ,i4 are depicted
by a dashed frame. A box visualizes an operation. Its operation type is
depicted by one or two arcs inside the box. Interface i1 has an operation with
operation type notification, i2 one-way, i3 request-response, and i4 solicit-
response. On the left hand of a wire, the interface of a component is shown.
The component is sketched by a solid frame. On the right hand, only the
propagated operation is shown. As can be seen from this figure, every wire
connects only operations of the same operation type. Figure 2(b) presents the
four different pairs of operations, this time connected by a horizontal wire.
Again, a component is sketched by a solid frame. In contrast to a vertical
wire, a horizontal wire connects two operations with complementing operation
types. Wire w1, for instance, connects a notification operation (interface i1)
with a one-way operation (interface i2).

Most of the information about wiring operations cannot be derived from the meta
model in Fig. 1. Later, in Sect. 4.5, we will therefore define the wiring using the Object
Constraint Language.

Components support the concept of instances (not depicted in Fig. 1). As this mainly
affects the process of a component, we introduce instantiation in Sect. 4.2.

The state of a component is determined by the value of data entities, the received or
sent messages, and the state of its process (i.e., its activities). Each activity is changing
the state. So, an architecture describes a transition system.
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4.1.2 Interface and Wiring

Now, we take a more detailed look at the framework’s interface concept. The similarity
of our interface concept to WSDL is intended. As WSDL is a widely-used industry
standard, it is necessary that the interface definition in our architecture framework is at
least adaptable to WSDL. In Fig. 3, an example component model is visualized. We use
the same graphical notation as in Fig. 2.

i5

i6

i1

c1

c2

c3

w2

w4

w3

i3

i2

w1

i4

Figure 3: Example component model consisting of three components, c1, c2, and c3.
Component c1 contains components c2 and c3. It defines four wires w1,. . . ,w4

and six interfaces i1,. . . ,i6. A horizontal wire connects operations of two com-
ponents that have the same enclosing component. For example, wires w1 and
w4 are horizontal wires. Wire w4 connects the operations of the interfaces
i5 and i6. The interfaces are part of components c2 and c3 whose enclosing
component is c1. A special case is wire w1 which connects operations of the
interfaces i2 and i3. Both interfaces are part of component c2 and consequently
share the same enclosing component c1. A vertical wire, in contrast, connects
the operation of a component with an operation of its enclosing component.
Wires w2 and w3 are examples of vertical wires. It can be seen that w2 and
w3 connect operations of component c2 with operations of its enclosing com-
ponent c1. Interfaces i3 and i6 are buy interfaces. All other interfaces are sell
interfaces.

A wire represents only an abstract view on the communication of a component. It only
shows the invocation dependencies of a component and there can be any number of calls
along a wire. As shown by wire w1, it is not excluded to wire an operation to another
operation of the same component. In order to clarify the difference between horizontal
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and vertical wires, we present in Sect. 4.5 constraints that specify their behavior.
From relationships d and e in the meta model in Fig. 1, it can be derived that one

operation may be part of several wires. The different possibilities of wiring are shown
in Fig. 4. All the wires w1, . . . , w4 are horizontal wires. Wiring one operation with
another operation is depicted in Fig. 4(a). Wire w1 connects a one-way operation with
a notification operation and w2 a request-response operation with a solicit-response
operation. It is also possible to wire an operation to several operations having the same
complementing operation type. As an example, consider the wiring in Fig. 4(b). In
this figure, wire w3 and w4 wire a request-response operation (interface i3) with two
solicit-response operations (interface i4).

i2
w1

w2

i1

C1
C2

(a) Wiring operations with comple-
menting operation types.

i3

i4

w3

w4

C2
C3

(b) Wiring multiple operations with
complementing operation types.

Figure 4: Different wiring concepts.

A wiring, as presented in Fig. 4(b), can be seen as a choice. If at runtime the cor-
responding activities of both operations are enabled, this choice is solved, for example,
nondeterministically. If only the activity of one operation is enabled, the choice can
be solved deterministically. Nevertheless, the framework should throw a warning to the
developer, because this behavior might not be its intention. However, it is not possible
to wire a request-response operation with a one-way and a notification operation, for
instance.

On the level of activities and operations, it is possible that two or more activities share
one operation. This is a valid behavior, but as the wiring in Fig. 4(b), it can be seen as
a choice; that is, in case of an incoming message each activity can receive this message.
If at runtime only one of these activities is enabled, the choice can be deterministically
solved. Otherwise, the choice can be solved nondeterministically, for instance. Again, in
such a situation, the framework should throw a warning to the developer. A deterministic
choice, however, can be enforced by the static structure of the process. As an example,
consider each activity being in a different OR-branch. Then, only one of these branches
is executed and thus only one activity is enabled.

These examples show that the architecture framework relies on precise interpretations,
hence we need formal semantics (as proposed in the general requirements in Sect. 2.3).
The semantics formally defines the behavior of the architecture framework and is subject
of Sect. 5. In addition, the architecture framework should also offer tool support to detect
such design flaws.
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4.2 Process Model

Let us now shift our attention from components to processes. First of all, we clarify
the relation between process and data entities and we introduce the two concepts an
activity can access to a data entity. Subsequent, the concept of instantiation is explained.
Instantiation makes it necessary to deliver a message to a concrete component instance.
Therefore, we develop a concept of message correlation. Finally, we introduce with
WS-BPEL and Petri nets two specializations of our process model.

4.2.1 Activities and Data Elements

As required in Sect. 2.3, a component has a set of activities. From Fig. 1 it can be derived
that a composite component does not (directly) fulfill this requirement. A composite
component, however, can be flattened to a component that contains atomic components
only. Consequently, it also contains a set of activities – the set of all activities of its
inclosing atomic components and thus it still fulfills the above requirement.

Figure 5 presents a detailed meta model of an atomic component in UML notation.
It is used, in the following, to explain the relationship between entities “data entity”
and “process”. A process contains a set of activities (relationship k in Fig. 5). Every
activity consists of zero or more method calls and some additional logic (relationships
call and m, respectively). Methods are used to read and write the value of data elements.
Logic controls the method calls and evaluates their return values. It can be specified by
functions and their signatures. The construction of the logic is the work of programmers
after the software architect has designed the architecture.

The sphere of an activity is defined as the set of data elements this activity can access
using a method call (relationship sphere). Clearly, the sphere only contains data entities
that are defined in the same atomic component as the activity. In our architecture
framework, method calls are restricted to activities. As a consequence, no data entity
can have access to another data entity. Methods and activities are defined in the same
component and activities can only call methods which are defined in that component. A
method can be used by several activities, therefore it is defined at the component level.

We have seen that for each activity data access by a method call is restricted to
data elements within the activity’s sphere. However, this is often too restrictive as an
activity might also need access data entities located in other components. For example,
the ship process needs information about the container loaded on the ship. Therefore,
the architecture framework supports a second mechanism to access data. To access data
outside of an atomic component, the concept of message exchange can be used. This
concept is not visible in Fig. 5, but in Fig. 1 (see relationship j). Instead of calling a
method directly, an activity sends a message to an operation (relationship j in Fig. 1)
that passes it to another activity which contains the respective data entity in its sphere.

A component consists of two connected layers: a process layer and an data layer.
The component’s activities form a process (see entity “process” in Fig. 5) and thus the
process layer. The process layer can be seen as a workflow model. The data layer,
in contrast, can be seen as a data base schema. It consists of the component’s data
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Figure 5: More detailed meta model of an atomic component with respect to the entity
process.

entities. The process can communicate with the component’s environment by message
exchange and it can access to data entities by method call. The relationships between
entities “process” and “data entity” in Fig. 1, more precisely, the relationships between
“activity”, “method”, and “data entity” presented in Fig. 5 show that process layer and
data layer are connected. Neither entity “method” nor “message” (and the corresponding
interface concept) are part of one of these two layers, but they can be seen as the glue
between these two layers.

4.2.2 Instantiation

One of the most important concepts of an architecture framework is instantiation. In
our architecture framework, components can be instantiated multiple times (not shown
in the meta models in Fig. 1 and Fig. 5). For the purpose of instantiation, atomic
components distinguish between case activities and case entities on the one hand and
base activities and base entities on the other hand (cf. Fig. 1 and Fig. 5). The set of
case and base activities is also called case process and base process, respectively. To
understand the difference between case and base, we need to consider the life-cycle of a
component.

Once an (atomic) component is initialized its base process and its base elements (if
the component contains them) are initialized, too. Thus, the initialization can be seen
as the instantiation of the base process. Afterwards, the component can be instantiated.
To create a case, i.e. a new instance, a start activity (see Fig. 5) is used. We distinguish
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two possibilities to create a case depending on the start activity being a base or a case
activity. A base start activity can create any number of cases. Every case is identified
by a case id. A case start activity, in contrast, needs to be triggered by the component’s
environment. For this purpose, an atomic component has to be invoked via its interface.
The message is received by the start activity, which then creates a case. A process may
have more than one start activity, but there is no process which has a base and a case
start activity. This fact will be specified by help of an OCL constraint in Sect. 4.5. The
instantiation implies the creation of case activities and case elements which belong to
exactly one case. Their life-cycle is restricted to its respective case. When a case has
been finished, it can be destroyed. The life-cycle of base activities and base entities, in
contrast, only ends once the component is deactivated.

In Fig. 6(a), an abstract view on the process of the dating service is shown. The process
is drawn by a solid frame. On this frame, the two interfaces i1 and i2 are depicted. The
dashed line inside the frame divides the process into case (on the left) and base (on the
right). The case process consists of three activities, ca1–ca3. Each activity is drawn as
a rectangle and the arcs visualize the direction of their execution order; that is, ca1–ca3

are executed sequentially starting from ca1. Activity ca1 is highlighted visualizing that
it is a start activity. The case entity ce is depicted by a cylinder. If an activity has access
to a data element or it is connected to an operation, then this is represented by a dotted
line between the two entities (e.g., the line connecting ca2 and ce). The base consists
of a base activity ba1 and a base entity be. The pictograms are the same as for the
case. The idea of the dating service is as follows: The customer registers at the dating
service (ca1). Its profile is saved in the customer database be. Next, the dating service
sends the confirmation together with the bill to the customer who replies by paying the
fees (ca2). The payment information are stored in ce. Finally, the dating service looks
for a matching partner in be and delivers the result to the customer (ca3). Figure 6(a)
is an example of a process being instantiated by a start activity. More precisely, the
registration which a customer sends to the first operation in interface i1 implies that ca1

creates a case.
A slightly different version of the process of the dating service is shown in Fig. 6(b).

There are two additional activities, base activity ba0 and case activity ca0, in this process.
All other elements are identical with respect to Fig. 6(a). In contrast to Fig. 6(a), the
process is instantiated by the base process. ba0 is a start activity and creates any number
of cases. Each case can execute its case activity ca0 which can be seen as a preparation
of the respective case. Afterwards, each case has to wait for a request. If a request
arrives at the operation, it will be assigned to one of the cases. This assignment can be
nondeterministically, for instance.

For a case created by a base process, we divide its life-cycle into two different phases.
The first phase is called preservation time. During its preservation time, the case does
not interact with other components. In the second phase, the engage time, the case
interacts with other components (i.e., with cases of other components). The engage
time ends when the case is destroyed. A case, which is created by a start activity, in
contrast, has only an engage time and no preservation time. Back to our example in
Fig. 6, the engage time of DS 1 and DS 2 is the execution of case activities ca1–ca3. The
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(b) Instantiation by the base process.

Figure 6: Different instantiation concepts.

preservation time of DS 2 is the execution of case activity ca0. DS 1 has no preservation
time, because it is instantiated by a start case activity.

Base activities and entities are independent of a specific case. More precisely, if a case
has access to a base, then all cases have access, too. A base activity may create cases
and may access base entities within its sphere. A case activity, however, may access
case entities and base entities as shown in Fig. 5. It may also trigger base activities. In
contrast, a base activity can neither access to case entities nor trigger case activities.
Therefore, the connection between base and case processes is stronger in direction from
case to base than the other way around. On this account, a base entity can be seen as a
parameter. Base activities, however, are typically used for monitoring and configuration
of a component (see the four interfaces mentioned in Sect. 2.1). In the example presented
in Fig. 6, all customer profiles are saved in base entity be. This makes sense, as every case
needs to add new profiles and get information about possible partners. However, for each
case the information about the payment of a customer is stored locally in case entity ce.
That means, after the customer received the contact information of a partner, its profile
is saved in be, but information about its payment are deleted as ce is destroyed together
with the case. Interface i2 in Fig. 6(a) and Fig. 6(b) is an example for a monitoring
interface. Base activity ba1 is triggered by an incoming message and replies information
about the process which are taken from the customer database be. Depended on the
information saved in be, it might be also possible to monitor all cases. For this purpose,
every case had to write its state information into be.
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4.2.3 Message Correlation – Interacting Case Processes

In this section, we take a look at component interaction by message exchange. During
the interaction, messages have to be delivered to the correct component’s operation.
However, component interaction is a more difficult task as several cases of every com-
ponent may be involved. With it, the problem arises how a message can be delivered
to the correct case of a component. Therefore, our architecture framework provides the
concept of message correlation, which is known from WS-BPEL, for instance. Every
case is identified by its case id. A message can be delivered to the correct case if the
case id can be either determined from the content of the message or it is an explicit
part of the message. In this section, we restrict ourselves to interaction between case
processes. The differences, when base processes are also involved in the interaction, are
discussed in the next section. Before we introduce our concept of message correlation, we
present possible scenarios of component interaction to show the requirements of message
correlation.

In the literature (e.g., in [Pap01]), orchestration and choreography are two widely used
terms for service or component interaction. Each term describes a specific view on the
interaction.

An orchestration describes the interaction from the perspective of one component. It
is a view on the process model and the message exchange of this component. In contrast,
a choreography is described from the perspective of all parties. It defines the observable
behavior between all participating components. Thus, it is a view on the component
model which shows all interacting components. A choreography does not necessarily
consist of isolated cases only, but several cases of a component might be involved. For
example, in our container transport system a single ship can load plenty of containers;
that is, a single ship case interacts with several container cases.

Usually, the number of components, which are involved in the choreography, is fixed.
We call such a choreography static. A static choreography is typically designed in a way
that all parties arrange the interfaces of the components needed. Afterwards, each party
can develop its component(s) and eventually – after all components are implemented –
the interaction can start. However, it is also possible to design a dynamic choreography.
For example, when a component searches for other components (maybe by help of a
provider), the number of components involved in the choreography grows. The number
of components may also decrease as a component might leave the choreography. So in
a dynamic choreography, the number of involved components is not fixed, but it can
increase or decrease.

Independent whether the choreography is dynamic or static, the interaction between
the involved components starts and eventually ends. Let S and R be components in
a choreography. In an interaction between S and R, there is one component, S, that
takes the initiative; that is, S sends the first message and thus it starts the interaction
between both components. There are two possibilities for S to start the interaction with
R. S can either create a case of R or it can find a case of R. A case can be found if S

has a reference to a case of R (e.g., from a third party) or vice versa. Another possibility
to find a case of R is to decide from the message content whether there exists a case
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of R that can handle the request. This criterion either specifies requirements of S that
have to be fulfilled by R or it contains information that have to fulfill the requirements
of at least one case of R. Obviously, if S sends a criterion, it is possible that there is no
matching case in R or there are several cases that can handle the request sent by S. If
several cases match, one case has to be chosen, for example, nondeterministically. If S

creates a case of R, then R has a case start activity. Otherwise, the interaction between
S and R starts by finding a case. As S has no reference to a case of R, it has to fulfill a
criterion. This criterion can also be the empty set, meaning the message is matched by
any case.

We now take a look at some examples for the start of an interaction. In our dating
service, a person, say a boy, might call the service in order to find a partner. This is an
example of a case creation, as the case of the boy’s process creates a case of the dating
service. For the second example, consider the case that the dating service finds a possible
partner for that boy. The service sends the girl’s contact information to the boy. So the
boy has a reference to call the girl. That means, the case of the boy’s process knows
the case id of the girl’s process and thus can interact with that case. As an example
for a criterion, we refer to the container transport system. A shipper might transport a
container to the harbor and publish information of the container’s destination and the
date when it has to reach its destination at the latest. Then, every ship that fulfills these
criteria (destination and date) can decide to load this container.

If a case of R replies a message to S, the case has to decide whether it wants to
send information about its case id or it wants to keep it anonymous. A shipper in
the container transport system, for instance, does not need to know on which ship its
container is transported. Thus, the ship can send an acknowledgement that the container
has arrived at the destination harbor without publishing the ship’s case id. It is also
possible that R, the receiver, has no information about the sender S, because S did not
send its case id and no other sufficient information can be derived from the message
content to identify its case. For example, a shipper might call a ship transport company
to ask for price information. For this purpose, the shipper does not need to identify.

Now, we define the term correlation. Correlation of a case c is firstly the set of cases to
which c has a reference to and secondly the set of components to which c sent its case id.
That means, the correlation contains all cases that can be directly called by c, because it
knows their respective case ids. Furthermore, it contains a set of components and each
component has at least one case which has a reference to c. A correlation of all cases
spans a graph where each node is a case. This graph has two kinds of directed arcs:
reference arcs and send arcs. Let c1 and c2 be two cases. A reference arc is drawn from
case c1 to case c2 if c1 knows the case id of c2. A send arc, in contrast, is drawn from
case c1 to case c2 if c1 sent its case id to component C2 and the message was delivered
to c2. In the latter case, c1 has only knowledge about component C2 and not about case
c2. We call the resulting graph a correlation set. The graph can be a complete graph.
A complete graph is a graph in which each node has a directed arc (of each kind) to
all other nodes. In component interaction, every state can be described by a correlation
set.

As an example, we consider a choreography of three components C1, C2, and C3. These
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components and their wiring are depicted in Fig. 4. C1 is the component on the left in
Fig. 4(a) (with interface i1) and C3 the component on the right in Fig. 4(b) (with interface
i4). Component C2 is the component that has an interface to C1 (right component in
Fig. 4(a) with interface i2) and it also has an interface to C3 (left component in Fig. 4(b)
with interface i3). The possible interaction of this choreography is illustrated in Fig. 7

c1

(a) State 1.

c1

c2

(b) State 2.

c1

c2

c3

(c) State 3.

c1

c2

c3

(d) State 4.

Figure 7: Correlation set for components in Fig. 4. The states of the interaction are
described by the four correlation sets shown in 7(a)–7(d). Each node ci depicts
a case of component Ci (1 ≤ i ≤ 3). A send arc is depicted by a dotted arc and
a reference arc by a solid arc. In Fig. 7(a) c1, the initiator case of component
C1, is shown. c1 sends a message to component C2 and it creates case c2. This
message contains the case id of c1. The resulting state is shown in Fig. 7(b).
For the created case c2 a node is drawn. There is a reference arc from c2

to c1 meaning that c2 knows the case id of c1. The send arc from c1 to c2

visualizes the knowledge of case c1 about sending its case id to component C2.
Afterwards, c2 creates c3 by sending a message containing its case id and the
case id of c1. This correlation set is shown in Fig. 7(c). Case c3 has a reference
arc to every case in this choreography and c2 a send arc to c3. c3 replies, but
it does not send its case id. Thus, the correlation set in Fig. 7(c) does not
change. Finally, c2 replies to c1. As this message contains the case id of c2, a
send arc from c2 to c1 and a reference arc from c1 to c2 is added in Fig. 7(d).

In our concept of message correlation, we formalize a message format by the following
six tuple:

msg = (addresssnd , addressrec, caseIDsnd , caseIDrec, corrInfo,msgCnt) (1)

The six tuple consists of the sender’s address, the receiver’s address, the sender’s case
id, the receiver’s case id, the correlation information (i.e., the criterion used to decide
whether a message matches a case), and finally, the message content. Addresses and
message content are mandatory whereas case ids and correlation information are op-
tional.

4.2.4 Interacting Base Processes

In the last section, we introduced message correlation, a concept that makes it possible
to deliver messages to a case, more precisely, to a case process. However, a process
also consists of a base process and base activities may also communicate by message
exchange. Therefore, this section deals with component interaction where the message
is received by the component’s base process.
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The base process is part of every running case of its enclosing component. For a
sender, it is therefore sufficient to know the address of the receiving component. That
means, the concept of message correlation has not to be applied to base processes. As an
example, consider the monitoring interface i2 in Fig. 6(a). To monitor component DS1

it is not necessary to know the case id of a running case. This fact makes it necessary to
define the semantics of an operation connected to a base and a case activity. Figure 8
presents an example component for this scenario. The process of component C consists
of a base activity ba and two case activity ca1 and ca2. Both, ca2 and ba are connected
with the request-response operation in interface i2. The behavior of this connection can
be seen as a choice. Independent whether the message contains a case id, it is always
possible that ba receives this message. If both activities are activated at runtime, the
choice can be solved nondeterministically, for instance.

i2

C

ba

ca2

ca1

i1

Figure 8: Operation connecting a case activity and a base activity.

4.2.5 Specification of the Middleware

Components in our architecture can be wired. Usually, in complex systems the wiring
of components is decoupled from the components itself. A software that connects com-
ponents is a middleware. A middleware is a component itself. It helps to hide the
complexity of a component from its environment. Possible tasks of a middleware are the
routing of incoming and outgoing messages, for instance. In Fig. 9, an abstract model
of the middleware is shown. In this figure, two components A and B are depicted. Each
component consists of one case activity caA and caB and one interface iA and iB, re-
spectively. The two operations are wired by w. For purposes of simplification, there is
just a simple request-response interaction between these components.

The middleware in Fig. 9 is drawn as a cloud. It should realize the wiring of the two
operations. More detailed, the middleware (virtually) connects the interfaces of both
components and takes care that an outgoing message of the left component reaches the
respective operation in the right component. The same holds for the reply message.
Furthermore, the middleware has to evaluate the message in order to route it to the
right case of the receiving component. For this purpose, the case id of the receiver (see
the message format on page 22) has to be compared with the case ids of all running cases
of the receiver’s component. If an incoming message neither creates a case nor specifies
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Figure 9: Abstract model of the middleware.

the receiver’s case id, the middleware has to evaluate whether there is a criterion that
matches one of the running cases. With it, the correlation information and the sender’s
case id (see the message format on page 22) are evaluated. If no match is found, the
middleware sends an error message to the sender.

The routing is of course more complex as shown in Fig. 9. In Sect. 5, we will present
an implementation of the middleware using a Petri net model. The model in Fig. 9, in
contrast, can be seen as a specification of the middleware.

4.2.6 Example Process Models

Our proposed architecture framework in Fig. 1 is highly generic and thus it is easy to fit
in specific language proposals. In the following, we demonstrate that we can easily link
two example process models, WS-BPEL and Petri nets, into our architecture framework.
These example process models specialize the process model in Fig. 5.

The Web Services Business Process Execution Language (WS-BPEL) [AAA+06] is a
widely-used language for describing the behavior of business processes based on web
services. For the specification of a business process WS-BPEL, provides activities and
distinguishes between basic and structured activities. A basic activity can communicate
with other WS-BPEL processes by message exchange (invoke, receive, reply), manipu-
late or check data (assign, validate), wait for some time (wait), just do nothing (empty),
signal faults (throw), or end the entire process instance (exit). A structured activity
defines a causal order on the basic activities and can be nested in another structured
activity. The structured activities include sequential execution (sequence), parallel exe-
cution (flow), data-dependent branching (if), timeout- or message-dependent branching
(pick), and repeated execution (while, repeatUntil, forEach). The most important struc-
tured activity is a scope. It links an activity to a transaction management subsystem
and provides fault, compensation, and event handling. For the sake of simplicity we re-
strict our view on WS-BPEL to activities and do not go into the details of WS-BPEL’s
advanced concepts like fault and compensation handling.

The meta model in UML notation for this restricted part of WS-BPEL is depicted in
Fig. 10.5 The relation between entities activity and structured activity is most relevant
for our architecture: Every WS-BPEL activity can be contained in a structured activity

5Activities throw, rethrow, compensate, compensateScope, validate, and extensionActivity are not
shown in Fig. 10.
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and every structured activity can contain one or more activities. Entity “activity” in
our architecture framework (see Fig. 1) coincides with a WS-BPEL activity. Thus,
WS-BPEL can be easily linked into our framework. This is shown by connecting entity
“activity” with the already known entities “process” and “atomic component” (see Fig. 1
and Fig. 5). A “data entity” (not shown in Fig. 10) corresponds to a WS-BPEL variable.
If WS-BPEL is used for describing the process model for a component, then this process
also implicitly describes the data model through its WS-BPEL variable definitions. WS-
BPEL does not distinguish base and case; that is, WS-BPEL activities, variables, and
also WS-BPEL’s advanced concepts like fault and compensation handling always belong
to exactly one case (i.e., to a process instance). The concept of start activities is also
supported in WS-BPEL. Activities “receive” and “pick” can be used to create an instance
of a WS-BPEL process if the attribute createInstance is set to true. In our framework,
every activity can be a start activity. So we have to add this fact by a constraint.
Also our concept of logic can be mapped to WS-BPEL: It is possible to specify XPATH
expressions in WS-BPEL and there also exist extensions of WS-BPEL that allow, for
instance, the integration of Java code into the WS-BPEL code [BGK+04].
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Figure 10: Meta model for WS-BPEL activities.

The formalism of Petri nets has been proven to be an adequate model for business
processes (e.g., [Aal98]). A Petri net (see e.g., [Rei85] for a formal definition) is a
bipartite graph. It consists of two different nodes, places and transitions, and (directed)
arcs. An arc connects either a place and a transition (input arc) or a transition and a
place (output arc)6. Places can contain (black) tokens which represent a data value. We

6Please note, there are Petri net classes which allow arcs between nodes of the same kind. For a general
meta model for Petri nets, we refer to Billington et al. [BCH+03].
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consider here Colored Petri nets (CPNs) [Jen92], an extension of usual Petri nets. In a
CPN, tokens have a value (i.e., a color). That way, “real” data values can be modeled.

The Petri net meta model in UML notation is presented in Fig. 11. In the meta model,
input arcs and output arcs are distinguished. Like WS-BPEL, Petri nets can be easily
linked into our architecture framework. Entity Petri net and entity transition coincide
with entities “process” and “activity” in Fig. 1, respectively. A start activity can also
be modeled by a Petri net transition. More precisely, the transition has to generate a
new case id. Entity “logic” in Fig. 1 coincides with entity label. A label is either a
transition guard (i.e., a Boolean expression) or an (arc) inscription. A data element can
be modeled by a place and the data value by a token on this place. If we think of a
Petri net as a model for the base and the case process, different cases can be expressed
by different colors, where each color represents exactly one case id, for instance.
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Figure 11: Meta model for Petri nets.

The WS-BPEL and Petri net meta models be seen as specializations of the original
meta model in Fig. 5. In principle, other specializations are possible. As a kind of
intermezzo we briefly discuss the relation between WS-BPEL and Petri nets. Petri nets
are well-suited to model the control flow aspects of WS-BPEL’s activities. As WS-BPEL
lacks of a formal semantics the transformation of WS-BPEL to Petri nets results in a
formal model of the WS-BPEL process. With Petri nets several elegant technologies
such as the theory of workflow nets [Aal98], a theory of controllability [Mar04, Sch05],
a long list of verification techniques (e.g., [Mur89, McM93, DE95, Sch00]), and tools
(e.g., [RWL+03, SR00, Sch00, Mäk02, VBA01, DMV+05]) become directly applicable.
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Figure 12 shows a Petri net model for most of the WS-BPEL activities of Fig. 10. We
use the common graphical notation. A place is denoted by a circle and a transition by a
box. These Petri net models can be seen as patterns. Every pattern has an initial and
a final place. A token on place initial models that the respective activity is activated.
A token on place final shows that the activity was executed. Places annotated with
ch on the left in Figures 12(b), 12(c), 12(d), and 12(i) model communication channels.
A token on a channel place models a message. As an example, the transition in the
receive pattern (Fig. 12(b)) can fire if there is a token on initial and ch modelling the
activation of the pattern and a message in the channel, respectively. If the transition
fires, the tokens on initial and ch are consumed (i.e., the message is received) and a
token is produced on final.

initial initial initial initial initial initial

final

(a) Empty,
wait, assign.

initial initial initial initial initial initial

final

ch

(b) Receive.

Implementation of BPEL
initial initial initial initial initial initial

final

ch

(c) Reply.

Implementation of BPEL
initial initial initial initial initial initial

final

ch1

ch2

(d) Invoke.

initial
final

final

(e) While.

…

initial

final

(f) Sequence.

…

initial initial initial initial initial initial

final

(g) Flow.

…

initial initial initial initial initial initial

final

(h) If.

…

initial

final

ch1

chn

…

(i) Pick.

Figure 12: Some of WS-BPEL’s activities modelled with Petri nets.

In the patterns of the structured activities (Figures 12(e)–12(i)) dashed frames are
depicted. On each such frame an initial and a final place is drawn. Such a frame
presents a wrapper for an arbitrary activity pattern. Every pattern can be plugged into
this frame by merging its initial and final place with the initial and final place of the
wrapper, respectively. For example, the empty pattern in Fig. 12(a) could be plugged
into the wrapper of the while pattern in Fig. 12(e) by merging the initial place and the
final place of empty and the frame, respectively.
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A dotted arc connects two places being merged. In the while pattern, for instance,
initial and the wrapper’s final place are merged. In the pick and if pattern, the final
places of each wrapper are merged with the final place of the pattern. The patterns
presented in Fig. 12 are simplified versions of the ones in [SHS05, OVA+05, LMW06].
In these papers, a feature-complete Petri net semantics for BPEL 1.1 [SHS05, OVA+05]
and WS-BPEL [LMW06] was developed.

4.3 Data Model

Many architects consider only the information architecture of a system (i.e., the database
schema) when they use the term architecture. The information architecture is actually
a data model. It is a view on data entities and their relationships. The information
architecture is very important, because it facilitates the structuring and organizing of
data entities. Often, architects start the system design with the development of the
information architecture.

Besides component model and process model, our proposed architecture framework
also offers a data model as a third view on the system. The data model is also a model
of an atomic component. In contrast to the process model (cf. Fig. 5), where the focus
was the entity “process”, the main focus of a data model is entity data entity in Fig. 1.
In the following, we introduce the general concepts of the data model, in particular its
hierarchy concept.

The data model of an atomic component is shown as a meta model in UML notation
in Fig. 13. Like in the process model (compare Fig. 5), the starting point of the data
model is again an atomic component. As a main difference, the entity data element is
renamed to composite data entity. This change is needed to model the data aspect in a
more refined way. A composite data entity forms the data layer of the atomic component
which was introduced in Sect. 4.2.

A composite data entity is a set of atomic data entities (relationship f in Fig. 13) where
every atomic data entity consists of a set of attributes (relationship p). Relationship q
shows that every attribute has a type. Atomic data entities can be accessed by activities
(relationship sphere) or exchanged by messages (relationship r). However, relationships
sphere and r in Fig. 13 are on a higher level of abstraction, because activities have access
to data by help of method calls (cf. Fig. 5 in Sect. 4.2) and messages are sent between
activities (cf. Fig. 1 in Sect. 4.1).

The data model allows for relationships between atomic data entities. Entity data
relationship illustrates this fact. Two atomic data entities can be related (relationships
n and o). We distinguish between internal data relationship and external data relation-
ship. An internal data relationship relates two atomic data entities within a composite
data entity. To provide a relationship between two atomic data entities located in dif-
ferent composite data entities and thus in different atomic components, the meta model
distinguishes between source data entity and reference data entity. A reference data
entity is a reference to a source data entity. For every source data entity there can be
any number of references (relationship t). That way, it possible to define a source data
entity in one composite data entity (i.e., in an atomic component) and to have references
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Figure 13: More detailed meta model of an atomic component with respect to the entity
data element.

(by help of reference data entities) in other atomic components. A reference data entity
and its corresponding source data entity are related by an external data relationship.
These constraints are specified in Sect. 4.5 using OCL.

The use of reference data entities introduces hierarchy in the data model. We dis-
tinguish two different views on the data model. The first and detailed view visualizes
the relationship of all atomic entities in a composite entity. On the one hand it shows
the internal data relationships between atomic data entities, that means, how entities
within an atomic component are connected. On the other hand this view also presents
the external data relationships; that is, for each reference data entity its source data
entity (relationship t in Fig. 13) is depicted. Relationship t shows, how an atomic com-
ponent is related on the data level to other atomic components by help of reference
data entities. The second and abstract view, however, is restricted to the external data
relationship only. This hierarchy concept is, in fact, similar to the concept of atomic
and composite components. As an example, a data model of two atomic components is
shown in Fig. 14. Note that we can have more levels of hierarchy by having a deeper
hierarchy of (composite) components.

Now, let us have a look at the relation between internal data relationship and external
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Figure 14: Two levels of hierarchy in the data model: A solid frame depicts an atomic
component. Inside this frame the composite data entity is shown. Boxes a–f
depict atomic data entities. Solid boxes and dashed boxes visualize source
data entities (e.g., b) and reference data entities (e.g., b′), respectively. Undi-
rected solid arcs connecting two atomic data entities model an internal data
relationship between these entities (e.g., a and b, d′ and e). In contrast, dashed
arcs that cross the border of an atomic component depict external data re-
lationships and thus which reference data entity is related to which source
data entity. Examples are b and b′, d and d′, and also c′ with a source data
entity not depicted in Fig. 14(a). The detailed view is shown in Fig. 14(a).
All atomic data entities and their internal and external data relationships are
visible. The abstract view is shown in Fig. 14(b). Only the three reference
data entities, the two corresponding source data entities, and their external
data relationships are visible.

data relationship on the one hand and method call and message exchange on the other
hand. This is also a relation between data model and process model. From the details
given in Sect. 4.2 it is known that activities can change the value of data elements by
method call. An activity has, however, only access to a restricted set of data elements,
namely, to the data elements within its sphere (cf. relationship sphere in Fig. 5). In
the data model, a method call is reflected by an internal data relationship between two
atomic data entities. External data relationships, in contrast, reflect message exchange
between activities. This is defined by an OCL constraint in Sect. 4.5.

The concept of message exchange between activities in combination with method calls
is a very powerful concept. Message patterns, like message pull and message push, can
be easily modelled.

So far, we restricted our attention to more complex structures like relationships be-
tween entities. Our data model, however, also allows for the specification of ordinary
variables, used in programming languages, for instance. Such a variable can be specified
as an atomic data entity which is not related to other entities. Entity f in Fig. 14(a) is
an example.

4.4 Relationship Between Component, Process, and Data Model

Not only the entities in the three meta models in Figures 1, 5, and 13 are related, but
there are also relationships between these meta models. In the following, we will clarify
what these relationships are.
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Entities “atomic component”, “process” and thus “activity” are part of every meta
model mentioned above. The process model and the data model presents the process
and the data entities for one atomic component, respectively. This atomic component
is part of the component model that shows the relationship between all components.
Entity “message” is also contained in all three meta models. In the component and
process model, messages are (indirectly) expressed by the relationship between activities
and operations. The data model, in contrast, contains this entity explicitly.

Looking at the process and data model, further relationships can be found. Both meta
models have an entity “data entity”. In the data model in Fig. 13, this entity is refined
to atomic and composite data entity. The concept of an activity’s sphere then relates
entities data element and activity. All these relations are visualized in Fig. 15.
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Figure 15: Relationship between the three meta models of the architecture framework.
Entities and relationships drawn by a solid line are part of the component,
process, and data model. Entities and relationships drawn by a dashed line
are only part of the process and data model.

4.5 Constraints

In the previous sections, we introduced a meta model of our architecture framework (see
Fig. 1). We further presented two refined meta models, one for the entity “process” in
Fig. 5 and another one for the entity “data element” in Fig. 13. Figure 16 presents the
detailed meta model of the architecture framework. It integrates the two refined meta
models into Fig. 1.

The meta model in Fig. 16 is in some sense quite general, because specific constraints
cannot be expressed in UML. Therefore, it is possible to create errors during the design
of the system. However, constraints of UML models can be specified using the Object
Constraint Language (OCL) [OMG03]. They can be implemented in a Computer-Aided
Software Engineering (CASE) tool which can be used to check the system at design time.
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Thus, the architect can be prevented from creating such errors.
In the following, we present several constraints that help to formalize concepts like

wiring or the relationships between entities. Consequently, the constraints will restrict
the meta model in Fig. 16 as well as the interface concept depicted in Fig. 2. All
constraints are invariants specified in OCL. OCL keywords are depicted in bold font.
For the parameters used we refer to the relationships in Fig. 16.

1. Relationship j between the entities activity and operation is redundant:

context ac : activity, op : operation inv:
if op.j → select(ac′ | ac′ = ac) → size() = 1 and

a.j → select(op′ | op′ = op) → size() = 1 then ac.k.c = op.f.g

The keyword inv means that this OCL expression is an OCL invariant. This
invariant is introduced for the context of an activity and an operation. Informally
spoken, it specifies that whenever an activity ac is connected to an operation op,
then op is part of an interface of a component which has a process containing ac.
Thus, relationship j is redundant. In OCL, this condition can be expressed by an
if then construct. The if condition specifies that ac and op have to be connected.
op.j returns a set of activities connected to op. OCL offers a large number of
predefined operators on sets (e.g., select, size()) which can be accessed by →. By
help of OCL’s select operator we select from the set op.j all activities ac. As all
activities have a unique name, we select only one activity. Using OCL’s size()
operator we check the existence of activity ac (i.e., whether only one element was
selected). Similar we select from the set of operations connected to activity ac

the operation op. In the then part of the invariant, we show that op and ac are
elements of the same component. More precisely, the (atomic) component given
by ac.k.c is the same as the one given by op.f.g.

2. A horizontal wire connects two components with the same enclosing component:

context w: horizontal wire inv: w.d.f.g.h = w.e.f.g.h = w.i

A horizontal wire w connects two operations. The component(s) of these two
operations are embedded in the same composite component. w.d.f.g.h specifies
the composite component for the component of one operation and w.e.f.g.h the
composite component for the component of the other operation. These composite
components are equivalent and finally, w.i specifies that the wire w is defined in
exactly this composite component. Wires w1 and w4 in Fig. 3 are examples of a
horizontal wire.

3. A vertical wire connects a component with its enclosing component:

context w: vertical wire inv: w.d.f.g = w.i and w.e.f.g.h = w.i

A vertical wire w connects two operations. One of these operations is defined in
a component and the other operation in that component’s enclosing component.
The left part of the conjunction specifies the enclosing component and the right
part the inclosed component. More precisely, w.i specifies the enclosing component
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which embeds the wire w. w.d.f.g specifies the component of one of the operations.
This component is equivalent to w.i and thus the enclosing component. For the
right part w.e.f.g specifies the component of the second operation and w.e.f.g.h

returns its enclosing scope which is equivalent to w.i. Wires w2 and w3 in Fig. 3
are examples of vertical wires.

4. A vertical wire connects two operations with the same operation type:

context w: vertical wire inv:
w .d .u.oclIsTypeOf (one − way) = w .e.u.oclIsTypeOf (one − way) or

w .d .u.oclIsTypeOf (notification) = w .e.u.oclIsTypeOf (notification) or

w .d .u.oclIsTypeOf (request − response) =
w .e.u.oclIsTypeOf (request − response) or

w .d .u.oclIsTypeOf (solicit − response) =
w .e.u.oclIsTypeOf (solicit − response)

A vertical wire always connects two operations of the same operation type. In-
formally spoken, this invariant defines both operation types to be either of type
one-way, notification, request-response, or solicit-response (compare Fig. 2(a)).
This is realized by an OCL disjunction using or. In each disjunction, w.d.u and
w.e.u are the two operation types of the operations wired by w. As there are four
possible operation types, we use OCL’s oclIsTypeOf () expression to specify the
operation type in detail. w.d.u.oclIsTypeOf (one −way) returns true if the type of
one-way and w.d.u are equivalent and false else. Wires w2 and w3 in Fig. 3 are
examples for vertical wires.

5. A horizontal wire connects two operations with matching operation types:

context w: horizontal wire inv:
w .d .u.oclIsTypeOf (one − way) = w .e.u.oclIsTypeOf (notification) or

w .d .u.oclIsTypeOf (request − response) =
w .e.u.oclIsTypeOf (solicit − response)

A horizontal wire connects two operations of complementing operation type. Com-
plementing operation types are one-way and notification as well as request-response
and solicit-response. Thus, in this invariant we specify that the two operation types
must be either one-way and notification or request-response and solicit-response.
Wires w1 and w4 in Fig. 3 are examples of a horizontal wire.

6. An activity can only call methods that have access to data elements within its
sphere:

context ac: activity inv:
ac.call → forAll(md | md .access.sphere →
select(ac′ | ac′ = ac) → size() = 1 ))

Every activity ac can only call methods md that have access to atomic data entities
within the sphere of ac. The respective OCL constraint consists of two parts. First,
it collects the set of all methods md activity ac can call. ac.call returns the set of
all methods ac can call. The forAll operation in OCL allows specifying a Boolean
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expression, which must hold for all objects in this set. Thus, for every md, a
Boolean expression must hold. This Boolean expression is described in the second
part of the constraint. Every method md can access to one atomic data entity,
which must be in the sphere of ac. md .access.sphere returns the set of activities
which contain the respective atomic data entity within their sphere. Using the
select operator we select all activities ac of this set. The existence of an activity
ac is checked by the size() operator.

7. Every process has at least one start activity:

context pr: process inv:
pr .k → select(ac | ac.l → notEmpty()) → size() > 0

In a process pr, there is at least one activity ac which is a start activity. The
existence of such an activity is checked by applying OCL’s select operator. ac.l is
a set of either 0 or 1 elements and applying OCL’s isEmpty() operator, we check
whether this set is empty. Using the size, we check whether the set of activities ac

is nonempty.

8. There is no process which has a base and a case start activity:

context pr: process inv:
if(pr .k → select(ca | ca.oclIsTypeOf (case activity) and ca.l → notEmpty()))
then (pr .k → forAll(ba | ba.oclIsTypeOf (base activity) and

ba.l → isEmpty())) endif and

if(pr .k → select(ba | ba.oclIsTypeOf (base activity) and ba.l → notEmpty()))
then (pr .k → forAll(ca | ca.oclIsTypeOf (case activity) and

ca.l → isEmpty())) endif

A process pr can never have a base start activity and a case start activity. This
invariant is expressed by two OCL if expressions. In the first if expression, we
check whether there exists a case activity ca in process pr which is a start activity.
ca.l is a set of either 0 or 1 elements. Applying OCL’s notEmpty() operator, we
check whether the resulting set is nonempty. If this holds, there is no base start
activity in pr. ba.l is a set of either 0 or 1 elements and applying OCL’s isEmpty()
operator, we check whether this set is empty. In the second if statement, we do
the same check for a base activity ba.

9. Two atomic data entities, which are related by an internal data relation, are located
in the same atomic component:

context x: internal data relationship inv: x.n.f = x.o.f

An internal data relationship between two atomic data entities only exists if the
entities are contained in the same composite entity and thus in the same atomic
component. As an example see the relationship between a and b in Fig. 14(a).

10. Two atomic data entities, which are related by an external data relation, are lo-
cated in different atomic components and one of them is a source data entity and
the other one its reference data entity:
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context x: external data relationship inv:
x.n.f 6= x.o.f and

((x .n.oclIsTypeOf (reference data entity) and

x .o.oclIsTypeOf (source data entity) and x.n.t = x.o) or

(x .n.oclIsTypeOf (source data entity) and

x .o.oclIsTypeOf (reference data entity) and x.o.t = x.n))

An external data relationship between two data entities only exists if these entities
are located in different composite data entities and thus in different atomic compo-
nents. Furthermore one of the entities has to be a source data entity and the other
entity one of its reference data entities. The second line of this invariant specifies
that both atomic data entities are located in different composite data entities. The
remaining lines specify a disjunction. Either x.n is a reference data entity and x.o

is a source data entity (lines three and four) or vice versa (lines four and five). To
check the type of an atomic data entity, we use the already known oclIsTypeOf
operator. x.n.t = x.o then specifies that the reference data entity x.n has to be a
reference of the source data entity x.o.

11. External data relationship means message exchange:

context A, B: activity, x: external data relationship, y: message, z: wire inv:
if x.n.f 6= x.o.f and

x .n.sphere → select(a1 | a1 = A) → size() = 1 and

x .o.sphere → select(a2 | a2 = B) → size() = 1 then

z .d .j → select(a3 | a3 = A) → size() = 1 and

z .e.j → select(a4 | a4 = B) → size() = 1 and

z .d .u.s → select(m1 | m1 = y) → size() = 1 and

z .e.u.s → select(m2 | m2 = y) → size() = 1 and

(y .r → select(e1 | e1 = x .n) → size() = 1 and

y .r → select(e2 | e2 = x .o) → size() = 1 )

Whenever there are two atomic data entities related by an external data relation-
ship x, one in the sphere of activity A and the other in the sphere of activity B,
then A and B exchange a message y. More precisely, there exists a wire z wiring
an operation of A to an operation of B and there is a message that exchanges the
value of the atomic data entities. The invariant specifies in the if -part that x is
an external data relationship (line three) and entity x.n and x.o are in the sphere
of activity A and B, respectively (line four and five). To check the existence of A

and B, we use OCL’s select and size() operators. Line six and seven specify that
A and B are wired. At least one message y is sent using wire z. Thus, y has to
pass the operation of A (z.d) and B (z.e). This is specified in line eight and nine.
In the last two lines, the relationship between message y and both atomic data
entities x.n and x.o is specified.

In conclusion, these constraints can merely seen as examples. Once these constraints
are implemented, they can be automatically checked during the design phase of the
system. At this level of design, it is faster and cheaper to fix errors than in later
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design phases. Nevertheless, constraints are not sufficient to guarantee the correctness
of systems. There are many types of errors which cannot be checked on this abstract
system level. For example, the soundness property [Aal98] has to be checked on the
process model (e.g., on the Petri net). To apply formal verification techniques on the
level of our architecture framework, it is necessary to develop a formal semantics for the
architecture framework.

4.6 Comparing the Architecture Framework with the Requirements

During the last sections, we introduced our architecture framework and its concepts. In
the following, we compare these concepts with the general requirements we collected in
Sect. 2.3. Table 1 summarizes this comparison.

As can be seen from this table, the concept of inheritance is the only requirement
which is not supported by our architecture framework so far. Subsequent, we comment
every column of Table 1.

Components are the basic concept in our architecture framework. The four kinds of
interfaces are not directly supported, but they can be modeled. Software and user in-
terface can be modeled by an interface whose operations are either connected to base
or case activities. In contrast, the operations of a configuration and monitoring inter-
face are only connected with base activities (see Fig. 6, for instance). The concept of
wiring components at their interfaces facilitates an easy “plug and play” of interfaces.
Furthermore, a component has a process (i.e., a set of activities) and data entities.

Instantiation is an important concept in our framework. The framework offers two
possibilities: Either a case start activity creates the case or a base start activity does so.
A case start activity is triggered by an incoming message whereas a base start activity
has no trigger. To make the concept of instantiation more expressive, the framework
distinguishes between activities and data related to a single case (i.e., case activities
and case entities) on the one hand and activities and data related to all cases (i.e., base
activities and base entities) on the other hand. Messages in our architecture framework
can be delivered to their correct case using the concept of message correlation.

Components in our framework do no explicitly support fault and compensation han-
dling. However, process models like WS-BPEL offer fault and compensation handling
which can then be used by the component. There is also no direct support for a moni-
toring service, but, as mentioned above, a monitoring service can be easily modeled by
base process.

As a general requirement, an architecture framework should support relationships be-
tween components. Interaction relationship is facilitated by activities. Activities may
exchange messages by using operations. Message exchange can be either synchronous
or asynchronous depended on the message exchange pattern (i.e., the operation type)
used. One-way and notification can be used for asynchronous message exchange and
request-response and solicit-response for synchronous message exchange. Communica-
tion by shared data entities is also supported, because spheres of activities do not have
to be disjunct. That means, multiple activities within a component can share their
data entities. Reference and source data entities support shared data between different
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Table 1: Almost all general requirements, which were presented in Sect. 2.3, are sup-
ported in the proposed architecture framework.

Requirement How supported in architecture framework

components are the basic con-
cept

yes

software, user, configuration,
and monitor interface

no explicit support, but can be modeled

“plug and play” of interfaces yes, by wiring

process (set of activities) yes

data entities yes, atomic and composite data entities

instantiation two concepts, either by receiving a message or by
the base process

distinguish between data and
activities belonging to a single
instance and to all instances

base and case entities; base and case activities

message correlation yes, concept for base and case processes

component has fault and com-
pensation mechanism

no explicit support, but can be part of the pro-
cess model (e.g., WS-BPEL)

component has monitoring
service

no explicit support; can be easily modeled by a
base process

interaction relationship (com-
munication by message ex-
change and shared data enti-
ties)

both concepts supported; components can com-
municate and data is shared within a compo-
nent and across the borders of components by
reference data entities that can be updated with
their respective source data entity by message
exchange

refinement as a design tech-
nique

yes, in the component model by help of atomic
and composite components and in data model by
help of reference and source data entities

inheritance not integrated

open to plug in process for-
malisms

yes, shown for WS-BPEL and Petri nets in
Sect. 4.2, for instance

open to plug in data models yes, use OCL to define constraints

open to plug in a language to
define operations of activities

yes, in the meta model we only speak about logic
which can be specified and implemented in any
language

support of a formal semantics yes, but not fully worked out

close to industrial description
techniques

yes, because process and data model are plug-
gable and so can be either exchanged or trans-
formed
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components.
The architecture framework also supports refinement as a design technique. Refine-

ment is offered in the component and the data model. Components are either composite
components and embed other components or atomic components. In the data model,
the framework offers composite data entities and basic data entities on the one hand and
source and reference data entities on the other hand.

Further, the framework is required to be open to plug in different formalisms. In
Sect. 4.2, we presented that WS-BPEL and Petri nets, two process models, can be easily
linked into the architecture framework. The same holds for the data model which is as
the process model very general. Operations for activities are modeled by entity “logic”
in Fig. 5 and thus can be defined in every programming language.

In the next section, we will formalize the proposed architecture framework. We present
rules, how the architecture framework can be transformed in to the formalism of CPNs
[Jen92]. The framework is also close to industrial description techniques. So implemen-
tations of the data and the process model can be easily linked into the framework. In
Sect. 6.2 we also compare our framework with SCA.

5 Formalization of the Architecture Framework

In this section, we formalize our proposed architecture framework. To this end, we
present rules that show how to transform the architecture framework into the formalism
of Colored Petri nets (CPN) [Jen92]. The aim of this paper is not to present a formal
semantics which is worked out in every detail. Instead, we show this formalization by
example. We present a transformation of the dating service (cf. Sect. 3) into CPN
models. From this example, the general transformation rules can be easily derived.
Before we present the CPN models, we show the three views on the dating service. For
it, we use our already known graphical notation.

5.1 Component Model of the Dating Service

In Fig. 17, an abstract component model of the dating service, CDS , is shown. It has
four interfaces: iDS−Cust, iDS−MF , iDS−Ch1, and iDS−Ch2. The first interface is the
interface to the customer. All the other interfaces are used to monitor or configure the
component.

Before we present the detailed component model of the dating service, we will intro-
duce the component models of its most important components, Match, Story, and Check
which are all depicted in Fig. 18.

Component CMatch in Fig. 18(a) implements the main functionality of the dating
service. It receives the customer’s login information, administrates this information,
and is also responsible to accept the payment of the customer and to send information
of a matching partner to the customer. The matching component communicates with the
customer via interface iM−Cust. Via interface iM−Ch, the matching component invokes
component CCheck1 which checks whether the customer is a known marriage swindler.
Interface iM−St is used to invoke component CStory to prepare everything such that the
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iDS-MF
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Figure 17: Abstract component model of the dating service.

iM-Cust iM-Base

iM-Ch

CMatch

iM-St

(a) Model of the Match-
ing Component.

iCh1-M

CCheck1

iCh1-Base

(b) Model of the Check1
Component.

iSt-M

CStory

iSt-Cust

(c) Model of the
Story Component.

Figure 18: Three components of the dating service.

customer can publish a success or failure story about its date. Component CMatch can
be configured and monitored by help of interface iM−Base.

Component CCheck1, which is presented in Fig. 18(b), is invoked by component CMatch

(interface iCh1−M ). It checks whether a customer is a known marriage swindler. This
component has also a configuration interface (iCh1−Base) which is used to update the
data base storing all the marriage swindlers. There is also a second check component
CCheck2. However, this component is not depicted in Fig. 18, because it has the same
interface as component CCheck1.

Figure 18(c) depicts the component model of the story component CStory. As already
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mentioned, this component interacts with component CMatch (interface iSt−M ). It re-
ceives from the customer the story about the date (interface iSt−Cust). This story is
then published.

Figure 19 presents the detailed component model of the dating service. Component
CDS contains three components: the two check components CCheck1 and CCheck2 and
component CMainFunc. The latter is a composite component that contains the two
basic components CMatch and CStory. The customer interfaces iM−Cust and iSt−Cust of
these two components are merged to interface iMF−Cust in component CMainFunc. It is
important to mention that the concept of wiring one interface with multiple interfaces
is used in the dating service model: Interface iMF−Ch is wired with interfaces iCh1−M

and iCh2−M ; that is, the matching component is wired with both check components. For
example, if the check of the customer is subject to fee, the dating service might always
choose the check component with the lowest fee. In our example, however, this conflict
is nondeterministically solved at runtime.

5.2 Process Model of the Dating Service

In this section, we introduce the process models of the three components Match, Story,
and Check.

The process model of component Match is depicted in Fig. 20. Its interface is known
from Fig. 18(a). First of all, let us have a look at the case process (which is to the
left of the dashed vertical line). The case process consists of seven case activities ca1 -
ca7 and four case entities cname, cprofile, caddress, and caccount. These data entities store
the name, the dating profile, the address, and the bank account of the customer. With
address we mean here the customer’s contact data; that is, its component address and
case id. For purposes of readability, the spheres of the case activities are not depicted
in Fig. 20. They are defined as follows:

sphere(ca1) = {cname, cprofile, caddress},

sphere(ca2) = {cname, cprofile, caddress, bname, bprofile, baddress},

sphere(ca3) = {caccount, caddress, bprice},

sphere(ca4) = ∅,

sphere(ca5) = {bname, bprofile, baddress},

sphere(ca6) = {caddress},

sphere(ca7) = {cname, cprofile, caddress, bname, bprofile, baddress}.

The process model works as follows: If the login information of a customer is received,
start activity ca1 creates an instance of the case process. The customer’s name, profile,
and address is stored in the respective case data entities. Next, to check the customer,
the check component is called (activity ca2). If the customer is identified to be a mar-
riage swindler, activity ca7 is executed and it sends a goodbye message to the customer
and deletes the customer’s data. Otherwise, the customer’s data are saved in the cor-
responding base data entities (and are thus available for the matching process). Then,

41



iM-Cust iM-Base

iM-Ch

CMatch

iM-St

iSt-M

CStory

iSt-Cust

iCh1-M

CCheck1

iCh1-Base

iCh2-M

CCheck2

iCh2-Base

iMF-Cust

iMF-Ch

iMF-Base

iDS-Ch1

iDS-Ch2

iDS-MF
iDS-Cust

CDS
CMainFunc

Figure 19: Detailed component model of the dating service.

activity ca3 sends the bill to the customer and receives the customer’s bank information
(which are saved in caccount). Afterwards, the customer may ask for a matching partner
or leave the dating service (activity ca4). In case that he leaves, activity ca7 is executed.
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Figure 20: Process model of component CMatch – without spheres of the case activities.

Otherwise, if he asks for a partner, the component looks for a matching partner and
sends him the contact data of this partner (activity ca5). Next, the matching compo-
nent sends information to the story component such that this component can identify
the customer. That way, the customer can publish the story of its date. Finally, by help
of the loop back to activity ca4, the customer may continue the dating process or leave
the dating service. The customer’s name, profile, and address is stored in the case and
in the base data, because this information can only be stored in the base data if the
customer is checked to be not known as a marriage swindler.

The base process of component Match is simpler than its case process. The base
process only consists of two activities, ba1 and ba2. The former is used to configure the
matching component; that is, to change the fee customers have to pay. The latter is
connected to the monitor interface and thus collects all base data and sends it to the
requester.

Figure 21 depicts the process model of component Check1. Its case process consists
of two case activities and one data entity which stores the name of the customer to be
checked. The base process has one base activity and one base data entity. The latter
stores the names of all known marriage swindlers. When the check component is called
by the matching component, case activity ca1 creates an instance of the case process.
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The customer’s name sent by the matching component is stored in cname and it is checked
whether this name matches with an entry in bname. The result of this check is replied
to the matching component. Activity ca2 then deletes the process instance. To update
the base data, the configuration interface iCh1−Base and thus activity ba1 is used. As
component Check2 has the same process model, we do not show it.

ca1

ca2

cname

bname

ba1

iCh1-M

CCheck1

iCh1-Base

Figure 21: Process model of component Check1.

Finally, the process model of the story component is shown in Fig. 22. The process has
four case activities and two base data entities that store the customer’s name (bname)
and its story (bstory). This component works as follows: When a customer, say A,
receives information about a possible partner, say B, both, A and B, have to write
a story about their date. For this purpose, the instances of the matching component
from A and B send the correlation information about their respective customer to the
story component (activity ca1). Thereby, the first message creates an instance of the
case process. Afterwards, A and B have to send their part of the dating story and the
story component replies a message to both (ca2 and ca3, respectively). Then, the two
instances of the matching component are informed that the stories have been published
(ca4).

ca1

ca2

bstory

ca3

bname

AND

iSt-M

CStory

iSt-Cust

ca4

AND

Figure 22: Process model of component Story.
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5.3 Data Model of the Dating Service

In the following, we present the data models of the matching, check, and story component
using UML class diagrams.

Figure 23 visualizes the data model of the matching component. Every customer has
a bank account, a profile, and a unique address (component address and case id). From
entity “person”, it inherits a name. Furthermore, also the fee, the customer has to pay,
is modeled by entity “price”.

11
price

bank
account

person

customer

name

1

1

profile

address
11

11

Figure 23: Data model of component Match.

The data model of the check component, depicted in Fig. 24, is similar to the data
model of the matching component. By help of a directed association, we express that a
person might be a marriage swindler.

marriage
swindler

person

customer

name
1110..1

Figure 24: Data model of component Check1.

Figure 25 presents the data model of the story component. A customer is an author
and every author can be author of several parts of a story (because of having more than
one date). Two parts make a story.

5.4 Colored Petri Net Model of the Dating Service

A Colored Petri net (CPN) is an extension of usual low-level Petri nets. As a main
difference, tokens in a CPN are not restricted to be black tokens, but they can be of
any type (i.e., color). Therefore, places have a type and only contain tokens of this
type. In addition, it is possible to define functions that can change the value of tokens.
These functions are depicted as arc inscriptions. Further, a transition guard, a Boolean
expression, can be added to a transition. This transition is then only activated if its
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Figure 25: Data model of component Story.

guard is evaluated to true. For a more detailed introduction into CPNs we refer the
interested reader to Jensen [Jen92].

Before we present the CPN models of the dating service, we explain the general con-
cepts of the transformation process.

5.4.1 General Transformation Rules

To understand the CPN models, we have to explain, how interfaces, activities, and data
entities are transformed into CPNs. Furthermore, on the level of CPNs we also have to
take the concept of message correlation into account.

In our proposed architecture framework, an interface contains one or more operations
(see Fig. 16 for details). Every operation is transformed into one or two Petri net places.
More detailed, every operation of type notification or one-way is transformed into one
place and every request-response or solicit-response operation is transformed into two
places (one place for the incoming message and the other for the outgoing message). Such
a place can be seen as a message channel. A message is modelled by a Petri net token of
type message; that is, the six tuple (addresssnd , addressrec, caseIDsnd , caseIDrec, corrInfo,

msgCnt) introduced in Sect. 4.2.
As already explained in Sect. 4.2 (see Fig. 11), an activity is modelled by a Petri net

transition. A place in the CPN model models a data store. We use one place to model
all case data entities and another place to model all base data entities. Both places are
of type list of (id, data entity name, data value). In case the place models case data, id

is the case id. Otherwise, if the place models the base data, id represent a primary key.
For purposes of simplification, we model a case id by a natural number.

5.4.2 Transformation of Component Match

We start with the transformation of the component model of the matching component
presented in Fig. 18(a). Figure 26(a) depicts a modified version of this component model.
In addition to Fig. 18(a), we have labeled each operation. For example, the notification
operation in interface iM−Base has the label c config and the incoming and outgoing
part of the solicit-response operation has the label c monitor and c info, respectively.
The model in Fig. 26(a) is transformed into the CPN model in Fig. 26(b). As operations
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are transformed into places, we use these labels in the CPN model to label the channel
places and can thus identify the corresponding operation. For example, the notification
operation in interface iM−Base is transformed into a single place c config and the solicit-
response operation into two places c monitor and c info. Additionally, each place is
labeled with In or Out. The label shows if it is an incoming or outgoing channel. All
places are of type MSG ; that is, the type representing a message, and connected with the
hierarchy transition Group 1. A hierarchy transition represents a (transition-bordered)
subnet.

iM-Cust iM-Base

iM-Ch

CMatch

iM-St

c_login

c_bill
c_pay

c_date

c_partner

c_bye

c_check
c_result

c_story
c_ack

c_config

c_monitor
c_info

(a) Component model of component Match.
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MSG

MSG

MSG

MSG

MSG

MSG

MSG

MSG

MSG
MSG

MSG

Group 1

Group 1Group 1

c_config

InIn

c_monitor

InIn

c_info

OutOut

c_login

InIn

c_check

OutOut

c_result

InIn

c_bill

OutOut

c_pay

InIn

c_date

InIn

c_partner

OutOut

c_story

OutOut

c_ack

InIn

c_byeOutOut

(b) CPN model of component Match.

Figure 26: Transforming the component model of component Match into a CPN model.

Next, Fig. 27 presents a detailed model of the case process. For a better readability,
data entities are not shown. All places, except the channels, are of type case id (CaseID).
The arc inscription id is a variable of type CaseID.

We will now shortly describe the semantics of this net. When the customer sends its
login information, there is a token of type MSG on place c login. Thus, transition receive
login is activated (the value of variable m, which is of type MSG, is validated with the
message content) and can fire. An instance is created and the case id is produced on place
p1 (by help of function getCaseID). Then, transition check is activated (the case id of
p1 is assigned to variable id) and fires. This yields the case id on place p2. Furthermore,
function msgToCheckComp generates the message which is sent to the check component.
It can be seen that every arc from a transition to an Out channel has as an arc inscription
a function that generates a message of the above mentioned six tuple containing all the
correlation information. Next, when the check component sends its reply message, a
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Figure 27: CPN model of the Match process without data entities.
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message token is placed on c result. Transition guard [accept(m,id)] holds if the message
is correlated to the process instance and the customer was not identified to be a marriage
swindler. In contrast, transition guard [notAccept(m,id)] holds if the message correlates
to the process instance and the customer was identified to be a marriage swindler. If
[accept(m,id)] is evaluated to true, transition Accept is activated (the case id is assigned
to variable id and the message content to variable m) and can fire yielding the case
id on p3. Otherwise, if [notAccept(m,id)] holds, !Accept is activated and produces the
case id on p9. Every transition connected to an In channel, for example Accept, has a
transition guard that checks whether the message is correlated to the process instance.
Furthermore, in the CPN model conflicts in the control flow are solved deterministically
(e.g., the conflict between transitions Accept and !Accept). The rest of the control flow
can be sketched as follows: Having fired Accept, the component sends the bill to the
customer (sendBill) and receives the customer’s bank information (receive payment).
Then, the customer can either leave the dating service (no date) or ask for a date (new
date). In case the customer wants a new date, the process initiates a matchmaking and
sends the contact data of the resulting match to the customer (partner info). Next,
the process sends the correlation information about the customer to component story
(inform story) and waits for the reply message. The story component sends this reply
message as soon as the customer has sent its story (story hit). Transition delete data
sends a goodbye message to the customer and deletes the data of the customer from the
data base.

The complete model of the case process, which also visualizes how the activities are
connected to the data entities, is presented in Fig. 28. With it, three places are added in
Fig. 27: CS, Case Var, and Base Var. Place CS stores the case id for all running cases.
Case Var and Base Var model the case data entities and base data entities, respectively.
We do not want to explain this net in every detail, because most of its functionality has
been already explained in this section. Thus, we restrict us to some interesting facts.
When transition receive login is activated, the message content is assigned to variable
m, the set of case ids for all running cases is assigned to variable ac, and all case data
(i.e., the list of (CaseID, data entity name, data value)) are assigned to variable d. If
the transition fires, a new case id is created and added to the set of existing case ids
(function createCase). Further, the id of this new created case is produced on p1 and
the login information of the customer are added in the respective case data entities
(function setLoginData). We have already mentioned that in case of the firing of Accept
the customer’s login information are stored in the base data. For this purpose, all base
data are assigned to variable ab. Using function writeProfileToBase, the customer’s
data are added to the base data and the respective token is produced on Base Var.
Similar to this, the information about the customer’s bank account is added to the
case data (transition receive payment). In detail, the case data is assigned to variable
d and function setPayData adds the account data to the case data and produces the
respective token on Case Var. The process ends if transition delete data is activated.
Then, functions deleteCaseData and deleteBaseData delete the information about the
customer, stored in the data entities, and finally, function deleteCase deletes the process
instance.
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Figure 28: CPN model of the case process of Match.
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The base process is shown in Fig. 29. It is worthwhile to mention that the whole
process can be derived by merging the place Base Var in Fig. 28 with place Base Var
in Fig. 29.
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mab
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monitor

configure
Base
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AllBaseData

c_info

Out
MSG

c_config

In
MSG

c_monitor

In
MSG

Figure 29: CPN model of the base process of Match.

The configuration interface is used to change the current fee customers have to pay.
this is modeled by a token on c config. Firing transition configure (the message content
is assigned to variable m and the content of Base Var to variable ab) overwrites the
current fee stored in the base data (function overwriteBaseData). In case of monitoring
the matching process, a request is sent (i.e., there is a token on c monitor). Transition
monitor is activated (message content and content of Base Var are assigned to variables
m and ab, respectively). Firing monitor yields a message on c info. The message content
contains a copy of the base data (function sendMonitor). Note that the arrow connecting
monitor and Base Var is only a read arc; that is, the value of ab is just read and then
put back on Base Var.

5.4.3 Transformation of Component Check1

In Fig. 30, it is shown, how component Check1 is transformed into a CPN model.
Figure 30(a) depicts the component model of component Check1. As in the matching
component in the last section, all operations are labeled to identify the corresponding
channel places in the CPN model presented in Fig. 30(b).

iCh1-M

CCheck1

iCh1-Base

c_check
c_result

c_config

(a) Component model of component Check1.
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Check1_detail MSG

c_config
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(b) CPN model of component Check1.

Figure 30: Transforming the component model of component Check1 into a CPN model.

The CPN, which models the process of the check component, is depicted in Fig. 31. If
there is a token in channel c check, transition customer info is activated. The semantics
of firing this transition is equivalent to transition receive login in Fig. 28. To add the
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name of the customer to the case data, function setCheckData is used. Afterwards,
transition result is activated. If this transitions fires, it is checked whether the customer
is stored in the base data and thus the customer is a known marriage swindler. The
result of this check is send back to the matching component (function msgPS2DS ). Firing
delete deletes the process instance and thus the case data.

m
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Figure 31: CPN model of component Check1.

5.4.4 Transformation of Component Story

Next, we show the transformation of the story component into a CPN model. As we
have done for the other two components, we start in Fig. 32 with the transformation
of the component model into a CPN model. The labeled component model is shown in
Fig. 32(a) and its corresponding CPN model in Fig. 32(b).
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nent Story.
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(b) CPN model of component
Story.

Figure 32: Transforming the component model of component Story into a CPN model.

52



Figure 33 depicts the CPN model of the case process without data. We shortly explain
the control flow of this process model. Let A and B be the two customers chosen by the
matchmaker. Then, the case of the matching component serving A and the one serving
B send the correlation information about their customers to the story component. These
messages will reach channel c story.
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Figure 33: CPN model of the process without data of component Story.

The first message, say from the case serving A, is consumed by 1st inform. When
this transition fires, the process is instantiated. The second messages is consumed by
2nd inform. Guard [checkDS] holds if this message is from the case of the matching
component serving B. If this transition fires, it yields the case id on p32 and p33. Then,
the two branches are executed concurrently. Let us restrict to the left branch. When
customer A sends its story, a token is on c cust. Guard [isAuthor1] holds if the message
is correlated to the correct case (i.e., it is checked that this message is definitely from A).
Then, story author1 is activated and can fire yielding the case id on p34. Firing of reply
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author1 and replyDS1 response to A (function msgST2Cust1 generates the message)
and the case of matching component serving A (function msgST2DS1 generates the
message), respectively. Finally, delete synchronizes both branches and deletes the case.

Next, in Fig. 34 the complete data model of the story component is presented as a
CPN model. In this model, also the data entities (see places CS, Case Data, BaseData)
are shown. From this model it can be seen that transitions 1st inform and 2nd inform
write the case data (i.e., the correlation information of A and B) by help of functions
setInfoData and setInfo1Data. Transitions story author1 and story author2, however,
add the story of customers A and B to the base data (see functions addStory1 and
addStory2 ).
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Figure 34: CPN model of component Story.
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5.5 Middleware Model of the Dating Service

In the following, we present a middleware model for the dating service. The middleware
can also be seen as a component. It is necessary to have such a model, because it
adds flexibility to the architecture: Without a middleware model, two components that
interact with each other had to be directly connected. In terms of Petri nets this means,
we had to merge the outgoing channel of one component with the corresponding incoming
channel of the other component. Such a model is not flexible. For instance, if we
substitute component Story by another component, we also had to touch component
Match. Having a middleware component, only this component has to be changed and
component Match is not affected by this new component. Furthermore, if the middleware
is a component, it can be substituted by another component, too.
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Figure 35: CPN model of the middleware component connecting component Story and
Match.

Figure 35 presents a CPN model of a middleware component for the dating service. It
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illustrates, how components Story and Match are connected. In general, every compo-
nent has one or more incoming channels but at most one outgoing channel (c outStory
and c outDS ). This place results from merging all outgoing channels. By help of tran-
sition guards the outgoing messages are forwarded to their receiving component. For
example, a message on place c outStory is either forwarded to the customer component
(transition to Cust) or to the matching component (transition to DS ). For this purpose,
function isRcv checks whether the receiver’s address is the customer component or the
matching component. For each component there is one incoming place, for instance
DS in. All messages, which are sent to the matching component, reach this place. By
help of the five transitions and the transition guards (with function isOP), each message
can be forwarded to the operation it is sent to. As a result, on every incoming channel
such as c pay there are only tokens that belong exactly to this operation of the match-
ing component. Then, the message has only to be correlated to the correct case of the
matching component.

6 Comparing the Architecture Framework with SCA

6.1 Introduction to SCA

The Service Component Architecture (SCA) [BBE+06] provides a model for the compo-
sition of services, the creation of service components, and the reuse of existing applica-
tions within service compositions. Service components can be implemented in different
programming languages and accessed via different protocols, including web services,
asynchronous messages, or synchronous remote procedure calls.

The following paragraphs describe the SCA component model. SCA components use
a simple interface contract to describe their partner relationships.

The most important construct of SCA is the component consisting of

• services – business functions offered to other components

• references – dependencies on business functions needed from other components

• properties – values that influence the component implementation

• implementation – concrete realization of the provided services

SCA provides the concept of a component type defining the configurable aspects (or
points of variability) of an implementation. A component is a configured instance of an
implementation.

An SCA component may be implemented using traditional programming languages
like C++ or Java, scripting languages like PHP or JavaScript, declarative languages like
XQuery or SQL, or as a business process using WS-BPEL.

The SCA Assembly Model describes how components can be assembled into compos-
ites, containing the aggregated components, services, references, and properties. Com-
posites can be viewed as an implementation of a higher-level component and can be
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nested. Composites also contain wires. The source of a wire may be a component ref-
erence or a composite service. The target of a wire may be a component service or a
composite reference. Fig. 36 illustrates an example SCA composite. Note that the wires
(as in Fig. 16) describe a dependency relationship and not control flow.

Figure 36: An example SCA composite.

An SCA system represents the configuration of an SCA runtime environment. It
represents a region of configuration and control and defines the scope of what can be
connected via SCA wires. In general, an SCA runtime environment is distributed and
heterogeneous. It has a logical system level composite of running components that are
implemented by simple implementations or composites.

In SCA, services and references can be associated with bindings and policies.
References use bindings to describe the mechanism used to call a service, and services

use bindings to describe the access mechanism that clients have to use in order to call
the service. Examples for bindings are a web service, a stateless session EJB, a data
base stored procedure, or an EIS service binding.

A policy is a declaration of a specific set of behaviors, and applies to the implementa-
tion of a component or to an interaction with a component. Policies may be aggregated
into profiles. Examples for policies are WS-ReliableMessaging or WS-Addressing poli-
cies associated with Web service bindings, or a conversation policy associated with JMS
bindings.

The meta model for SCA in UML notation is presented in Fig. 37.
The interface model is extensible such that detailed partner interaction semantics could

be captured as well, for example, by using concepts like WS-BPEL Abstract Processes.
SCA components may be stateless or stateful; however, SCA does not provide an explicit
data model describing data managed by a component.
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Figure 37: Meta model of the Service Component Architecture.

6.2 Comparison to the Architecture Framework

To compare SCA with our architecture framework, we first of all present in Table 2 a
comparison of the terms used. Then, we step into the details of both frameworks.

Table 2: Comparing the terms of SCA and the architecture framework.
SCA Framework as depicted in Fig. 16

component atomic component

composite composite component

system outmost composite component

implementation process implementation like WS-BPEL, Petri nets

service sell interface

reference buy interface

property base entity

wire wire

The component concepts in both frameworks are very similar. Both frameworks sup-
port atomic and composite component, wire, and process. In SCA, it is possible to
specify a property for a composite, whereas in our framework composite components do
not have data entities.

In SCA, the term implementation is used for the choice of a process technology like
WS-BPEL, Java, or Petri nets. So an SCA implementation coincides with a process
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implementation in our architecture framework.
At the level of the interface, SCA is more extendable than our interface concept which

is restricted to WSDL 1.1. However, we can also easily extend our interface concept.
Both frameworks are very general and thus support different process models. For our

framework, we showed this in Sect. 4.2.6, and the process models supported by SCA are
listed in the last section.

SCA specifies bindings, QoS, and policies. This is, so far, not integrated in our
framework. As our meta model in Fig. 16 is general, we could easily add an entity for
each of the three concepts. The semantics had to be defined by adding relationships and
additional OCL constraints.

Finally, our architecture framework has a data model. SCA, in contrast, has no data
model yet. It only supports the configuration of components by help of properties. In our
framework, we use base activities for the configuration of components (cf. Sect. 4.2.2).

To summarize, both frameworks are very similar, in particular in the component and
process model. However, SCA does not support a data model yet which is, in our
opinion, a very important model as we mentioned in Sect. 4.3.

7 Outlook

In this paper, we addressed our efforts in developing an architecture framework for
Service-Oriented Architectures (SOA). We introduced the architecture framework by
means of a meta model that focused on three different views on software systems: a
component view, a process view, and a data view. The proposed architecture framework
also covers other important concepts such as instantiation and message correlation.

We aim at formally verifying systems on the level of the architecture. For this purpose,
we collected a number of constraints for our architecture framework and specified them
using the OCL. These constraints can be implemented and checked by a CASE tool.
That way, architects have tool support during the system design. We also presented
rules to translate the architecture framework into Colored Petri nets (CPNs). On the
level of CPNs, formal verification techniques can be applied.

The presented architecture framework is required to be language independent and
close to industry standards, in particular to SCA. We have shown that our architecture
framework extends SCA, since SCA does not provide an explicit data model yet.

Another architectural framework which has been inspired by SCA is the SENSORIA
Reference Modelling Language (SRML). SRML presents a formal model for components
and their composition. The process model specifies the language of interaction of the
process but there is no data model so far. Axenath et al. [AKR06] present a meta model
for business processes modelling (AMFIBIA) which captures the aspects control flow,
data, and organization. As in our approach, these aspects can be modelled independently
of each other and it is possible to integrate them later on. A component model is missing
so far, but the approach is extensible. To summarize, the main contribution of our
framework, the integration of the component, the data, and the process views, is neither
provided by SRML and AMFIBIA nor by state-of-the-art architecture frameworks such
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as CORBA, UML, and Koala.
In ongoing research, we want to extend the architecture framework, for example with

the concept of inheritance which allows the reuse of parts of the system. Inheritance is
one of the most important concepts in object-oriented programming and should therefore
adapted on the level of architecture frameworks. We also want to spend more effort on
the verification of the architecture and as a long-term objective on the development of
tools for the design and management of component-based systems.
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